irq.c 5.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235
  1. /*
  2. * linux/arch/ia64/kernel/irq.c
  3. *
  4. * Copyright (C) 1992, 1998 Linus Torvalds, Ingo Molnar
  5. *
  6. * This file contains the code used by various IRQ handling routines:
  7. * asking for different IRQs should be done through these routines
  8. * instead of just grabbing them. Thus setups with different IRQ numbers
  9. * shouldn't result in any weird surprises, and installing new handlers
  10. * should be easier.
  11. *
  12. * Copyright (C) Ashok Raj<ashok.raj@intel.com>, Intel Corporation 2004
  13. *
  14. * 4/14/2004: Added code to handle cpu migration and do safe irq
  15. * migration without losing interrupts for iosapic
  16. * architecture.
  17. */
  18. #include <asm/delay.h>
  19. #include <asm/uaccess.h>
  20. #include <linux/module.h>
  21. #include <linux/seq_file.h>
  22. #include <linux/interrupt.h>
  23. #include <linux/kernel_stat.h>
  24. /*
  25. * 'what should we do if we get a hw irq event on an illegal vector'.
  26. * each architecture has to answer this themselves.
  27. */
  28. void ack_bad_irq(unsigned int irq)
  29. {
  30. printk(KERN_ERR "Unexpected irq vector 0x%x on CPU %u!\n", irq, smp_processor_id());
  31. }
  32. #ifdef CONFIG_IA64_GENERIC
  33. ia64_vector __ia64_irq_to_vector(int irq)
  34. {
  35. return irq_cfg[irq].vector;
  36. }
  37. unsigned int __ia64_local_vector_to_irq (ia64_vector vec)
  38. {
  39. return __get_cpu_var(vector_irq)[vec];
  40. }
  41. #endif
  42. /*
  43. * Interrupt statistics:
  44. */
  45. atomic_t irq_err_count;
  46. /*
  47. * /proc/interrupts printing:
  48. */
  49. int show_interrupts(struct seq_file *p, void *v)
  50. {
  51. int i = *(loff_t *) v, j;
  52. struct irqaction * action;
  53. unsigned long flags;
  54. if (i == 0) {
  55. char cpuname[16];
  56. seq_printf(p, " ");
  57. for_each_online_cpu(j) {
  58. snprintf(cpuname, 10, "CPU%d", j);
  59. seq_printf(p, "%10s ", cpuname);
  60. }
  61. seq_putc(p, '\n');
  62. }
  63. if (i < NR_IRQS) {
  64. spin_lock_irqsave(&irq_desc[i].lock, flags);
  65. action = irq_desc[i].action;
  66. if (!action)
  67. goto skip;
  68. seq_printf(p, "%3d: ",i);
  69. #ifndef CONFIG_SMP
  70. seq_printf(p, "%10u ", kstat_irqs(i));
  71. #else
  72. for_each_online_cpu(j) {
  73. seq_printf(p, "%10u ", kstat_cpu(j).irqs[i]);
  74. }
  75. #endif
  76. seq_printf(p, " %14s", irq_desc[i].chip->name);
  77. seq_printf(p, " %s", action->name);
  78. for (action=action->next; action; action = action->next)
  79. seq_printf(p, ", %s", action->name);
  80. seq_putc(p, '\n');
  81. skip:
  82. spin_unlock_irqrestore(&irq_desc[i].lock, flags);
  83. } else if (i == NR_IRQS)
  84. seq_printf(p, "ERR: %10u\n", atomic_read(&irq_err_count));
  85. return 0;
  86. }
  87. #ifdef CONFIG_SMP
  88. static char irq_redir [NR_IRQS]; // = { [0 ... NR_IRQS-1] = 1 };
  89. void set_irq_affinity_info (unsigned int irq, int hwid, int redir)
  90. {
  91. cpumask_t mask = CPU_MASK_NONE;
  92. cpu_set(cpu_logical_id(hwid), mask);
  93. if (irq < NR_IRQS) {
  94. irq_desc[irq].affinity = mask;
  95. irq_redir[irq] = (char) (redir & 0xff);
  96. }
  97. }
  98. bool is_affinity_mask_valid(cpumask_t cpumask)
  99. {
  100. if (ia64_platform_is("sn2")) {
  101. /* Only allow one CPU to be specified in the smp_affinity mask */
  102. if (cpus_weight(cpumask) != 1)
  103. return false;
  104. }
  105. return true;
  106. }
  107. #endif /* CONFIG_SMP */
  108. #ifdef CONFIG_HOTPLUG_CPU
  109. unsigned int vectors_in_migration[NR_IRQS];
  110. /*
  111. * Since cpu_online_map is already updated, we just need to check for
  112. * affinity that has zeros
  113. */
  114. static void migrate_irqs(void)
  115. {
  116. cpumask_t mask;
  117. irq_desc_t *desc;
  118. int irq, new_cpu;
  119. for (irq=0; irq < NR_IRQS; irq++) {
  120. desc = irq_desc + irq;
  121. if (desc->status == IRQ_DISABLED)
  122. continue;
  123. /*
  124. * No handling for now.
  125. * TBD: Implement a disable function so we can now
  126. * tell CPU not to respond to these local intr sources.
  127. * such as ITV,CPEI,MCA etc.
  128. */
  129. if (desc->status == IRQ_PER_CPU)
  130. continue;
  131. cpus_and(mask, irq_desc[irq].affinity, cpu_online_map);
  132. if (any_online_cpu(mask) == NR_CPUS) {
  133. /*
  134. * Save it for phase 2 processing
  135. */
  136. vectors_in_migration[irq] = irq;
  137. new_cpu = any_online_cpu(cpu_online_map);
  138. mask = cpumask_of_cpu(new_cpu);
  139. /*
  140. * Al three are essential, currently WARN_ON.. maybe panic?
  141. */
  142. if (desc->chip && desc->chip->disable &&
  143. desc->chip->enable && desc->chip->set_affinity) {
  144. desc->chip->disable(irq);
  145. desc->chip->set_affinity(irq, mask);
  146. desc->chip->enable(irq);
  147. } else {
  148. WARN_ON((!(desc->chip) || !(desc->chip->disable) ||
  149. !(desc->chip->enable) ||
  150. !(desc->chip->set_affinity)));
  151. }
  152. }
  153. }
  154. }
  155. void fixup_irqs(void)
  156. {
  157. unsigned int irq;
  158. extern void ia64_process_pending_intr(void);
  159. extern volatile int time_keeper_id;
  160. /* Mask ITV to disable timer */
  161. ia64_set_itv(1 << 16);
  162. /*
  163. * Find a new timesync master
  164. */
  165. if (smp_processor_id() == time_keeper_id) {
  166. time_keeper_id = first_cpu(cpu_online_map);
  167. printk ("CPU %d is now promoted to time-keeper master\n", time_keeper_id);
  168. }
  169. /*
  170. * Phase 1: Locate IRQs bound to this cpu and
  171. * relocate them for cpu removal.
  172. */
  173. migrate_irqs();
  174. /*
  175. * Phase 2: Perform interrupt processing for all entries reported in
  176. * local APIC.
  177. */
  178. ia64_process_pending_intr();
  179. /*
  180. * Phase 3: Now handle any interrupts not captured in local APIC.
  181. * This is to account for cases that device interrupted during the time the
  182. * rte was being disabled and re-programmed.
  183. */
  184. for (irq=0; irq < NR_IRQS; irq++) {
  185. if (vectors_in_migration[irq]) {
  186. struct pt_regs *old_regs = set_irq_regs(NULL);
  187. vectors_in_migration[irq]=0;
  188. generic_handle_irq(irq);
  189. set_irq_regs(old_regs);
  190. }
  191. }
  192. /*
  193. * Now let processor die. We do irq disable and max_xtp() to
  194. * ensure there is no more interrupts routed to this processor.
  195. * But the local timer interrupt can have 1 pending which we
  196. * take care in timer_interrupt().
  197. */
  198. max_xtp();
  199. local_irq_disable();
  200. }
  201. #endif