mmu.c 23 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880
  1. /*
  2. * linux/arch/arm/mm/mmu.c
  3. *
  4. * Copyright (C) 1995-2005 Russell King
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License version 2 as
  8. * published by the Free Software Foundation.
  9. */
  10. #include <linux/module.h>
  11. #include <linux/kernel.h>
  12. #include <linux/errno.h>
  13. #include <linux/init.h>
  14. #include <linux/bootmem.h>
  15. #include <linux/mman.h>
  16. #include <linux/nodemask.h>
  17. #include <asm/cputype.h>
  18. #include <asm/mach-types.h>
  19. #include <asm/setup.h>
  20. #include <asm/sizes.h>
  21. #include <asm/tlb.h>
  22. #include <asm/mach/arch.h>
  23. #include <asm/mach/map.h>
  24. #include "mm.h"
  25. DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);
  26. /*
  27. * empty_zero_page is a special page that is used for
  28. * zero-initialized data and COW.
  29. */
  30. struct page *empty_zero_page;
  31. EXPORT_SYMBOL(empty_zero_page);
  32. /*
  33. * The pmd table for the upper-most set of pages.
  34. */
  35. pmd_t *top_pmd;
  36. #define CPOLICY_UNCACHED 0
  37. #define CPOLICY_BUFFERED 1
  38. #define CPOLICY_WRITETHROUGH 2
  39. #define CPOLICY_WRITEBACK 3
  40. #define CPOLICY_WRITEALLOC 4
  41. static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK;
  42. static unsigned int ecc_mask __initdata = 0;
  43. pgprot_t pgprot_user;
  44. pgprot_t pgprot_kernel;
  45. EXPORT_SYMBOL(pgprot_user);
  46. EXPORT_SYMBOL(pgprot_kernel);
  47. struct cachepolicy {
  48. const char policy[16];
  49. unsigned int cr_mask;
  50. unsigned int pmd;
  51. unsigned int pte;
  52. };
  53. static struct cachepolicy cache_policies[] __initdata = {
  54. {
  55. .policy = "uncached",
  56. .cr_mask = CR_W|CR_C,
  57. .pmd = PMD_SECT_UNCACHED,
  58. .pte = L_PTE_MT_UNCACHED,
  59. }, {
  60. .policy = "buffered",
  61. .cr_mask = CR_C,
  62. .pmd = PMD_SECT_BUFFERED,
  63. .pte = L_PTE_MT_BUFFERABLE,
  64. }, {
  65. .policy = "writethrough",
  66. .cr_mask = 0,
  67. .pmd = PMD_SECT_WT,
  68. .pte = L_PTE_MT_WRITETHROUGH,
  69. }, {
  70. .policy = "writeback",
  71. .cr_mask = 0,
  72. .pmd = PMD_SECT_WB,
  73. .pte = L_PTE_MT_WRITEBACK,
  74. }, {
  75. .policy = "writealloc",
  76. .cr_mask = 0,
  77. .pmd = PMD_SECT_WBWA,
  78. .pte = L_PTE_MT_WRITEALLOC,
  79. }
  80. };
  81. /*
  82. * These are useful for identifying cache coherency
  83. * problems by allowing the cache or the cache and
  84. * writebuffer to be turned off. (Note: the write
  85. * buffer should not be on and the cache off).
  86. */
  87. static void __init early_cachepolicy(char **p)
  88. {
  89. int i;
  90. for (i = 0; i < ARRAY_SIZE(cache_policies); i++) {
  91. int len = strlen(cache_policies[i].policy);
  92. if (memcmp(*p, cache_policies[i].policy, len) == 0) {
  93. cachepolicy = i;
  94. cr_alignment &= ~cache_policies[i].cr_mask;
  95. cr_no_alignment &= ~cache_policies[i].cr_mask;
  96. *p += len;
  97. break;
  98. }
  99. }
  100. if (i == ARRAY_SIZE(cache_policies))
  101. printk(KERN_ERR "ERROR: unknown or unsupported cache policy\n");
  102. if (cpu_architecture() >= CPU_ARCH_ARMv6) {
  103. printk(KERN_WARNING "Only cachepolicy=writeback supported on ARMv6 and later\n");
  104. cachepolicy = CPOLICY_WRITEBACK;
  105. }
  106. flush_cache_all();
  107. set_cr(cr_alignment);
  108. }
  109. __early_param("cachepolicy=", early_cachepolicy);
  110. static void __init early_nocache(char **__unused)
  111. {
  112. char *p = "buffered";
  113. printk(KERN_WARNING "nocache is deprecated; use cachepolicy=%s\n", p);
  114. early_cachepolicy(&p);
  115. }
  116. __early_param("nocache", early_nocache);
  117. static void __init early_nowrite(char **__unused)
  118. {
  119. char *p = "uncached";
  120. printk(KERN_WARNING "nowb is deprecated; use cachepolicy=%s\n", p);
  121. early_cachepolicy(&p);
  122. }
  123. __early_param("nowb", early_nowrite);
  124. static void __init early_ecc(char **p)
  125. {
  126. if (memcmp(*p, "on", 2) == 0) {
  127. ecc_mask = PMD_PROTECTION;
  128. *p += 2;
  129. } else if (memcmp(*p, "off", 3) == 0) {
  130. ecc_mask = 0;
  131. *p += 3;
  132. }
  133. }
  134. __early_param("ecc=", early_ecc);
  135. static int __init noalign_setup(char *__unused)
  136. {
  137. cr_alignment &= ~CR_A;
  138. cr_no_alignment &= ~CR_A;
  139. set_cr(cr_alignment);
  140. return 1;
  141. }
  142. __setup("noalign", noalign_setup);
  143. #ifndef CONFIG_SMP
  144. void adjust_cr(unsigned long mask, unsigned long set)
  145. {
  146. unsigned long flags;
  147. mask &= ~CR_A;
  148. set &= mask;
  149. local_irq_save(flags);
  150. cr_no_alignment = (cr_no_alignment & ~mask) | set;
  151. cr_alignment = (cr_alignment & ~mask) | set;
  152. set_cr((get_cr() & ~mask) | set);
  153. local_irq_restore(flags);
  154. }
  155. #endif
  156. #define PROT_PTE_DEVICE L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_WRITE
  157. #define PROT_SECT_DEVICE PMD_TYPE_SECT|PMD_SECT_XN|PMD_SECT_AP_WRITE
  158. static struct mem_type mem_types[] = {
  159. [MT_DEVICE] = { /* Strongly ordered / ARMv6 shared device */
  160. .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_SHARED |
  161. L_PTE_SHARED,
  162. .prot_l1 = PMD_TYPE_TABLE,
  163. .prot_sect = PROT_SECT_DEVICE | PMD_SECT_UNCACHED,
  164. .domain = DOMAIN_IO,
  165. },
  166. [MT_DEVICE_NONSHARED] = { /* ARMv6 non-shared device */
  167. .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_NONSHARED,
  168. .prot_l1 = PMD_TYPE_TABLE,
  169. .prot_sect = PROT_SECT_DEVICE | PMD_SECT_TEX(2),
  170. .domain = DOMAIN_IO,
  171. },
  172. [MT_DEVICE_CACHED] = { /* ioremap_cached */
  173. .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_CACHED,
  174. .prot_l1 = PMD_TYPE_TABLE,
  175. .prot_sect = PROT_SECT_DEVICE | PMD_SECT_WB,
  176. .domain = DOMAIN_IO,
  177. },
  178. [MT_DEVICE_WC] = { /* ioremap_wc */
  179. .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_WC,
  180. .prot_l1 = PMD_TYPE_TABLE,
  181. .prot_sect = PROT_SECT_DEVICE | PMD_SECT_BUFFERABLE,
  182. .domain = DOMAIN_IO,
  183. },
  184. [MT_CACHECLEAN] = {
  185. .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
  186. .domain = DOMAIN_KERNEL,
  187. },
  188. [MT_MINICLEAN] = {
  189. .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN | PMD_SECT_MINICACHE,
  190. .domain = DOMAIN_KERNEL,
  191. },
  192. [MT_LOW_VECTORS] = {
  193. .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
  194. L_PTE_EXEC,
  195. .prot_l1 = PMD_TYPE_TABLE,
  196. .domain = DOMAIN_USER,
  197. },
  198. [MT_HIGH_VECTORS] = {
  199. .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
  200. L_PTE_USER | L_PTE_EXEC,
  201. .prot_l1 = PMD_TYPE_TABLE,
  202. .domain = DOMAIN_USER,
  203. },
  204. [MT_MEMORY] = {
  205. .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
  206. .domain = DOMAIN_KERNEL,
  207. },
  208. [MT_ROM] = {
  209. .prot_sect = PMD_TYPE_SECT,
  210. .domain = DOMAIN_KERNEL,
  211. },
  212. };
  213. const struct mem_type *get_mem_type(unsigned int type)
  214. {
  215. return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL;
  216. }
  217. /*
  218. * Adjust the PMD section entries according to the CPU in use.
  219. */
  220. static void __init build_mem_type_table(void)
  221. {
  222. struct cachepolicy *cp;
  223. unsigned int cr = get_cr();
  224. unsigned int user_pgprot, kern_pgprot, vecs_pgprot;
  225. int cpu_arch = cpu_architecture();
  226. int i;
  227. if (cpu_arch < CPU_ARCH_ARMv6) {
  228. #if defined(CONFIG_CPU_DCACHE_DISABLE)
  229. if (cachepolicy > CPOLICY_BUFFERED)
  230. cachepolicy = CPOLICY_BUFFERED;
  231. #elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
  232. if (cachepolicy > CPOLICY_WRITETHROUGH)
  233. cachepolicy = CPOLICY_WRITETHROUGH;
  234. #endif
  235. }
  236. if (cpu_arch < CPU_ARCH_ARMv5) {
  237. if (cachepolicy >= CPOLICY_WRITEALLOC)
  238. cachepolicy = CPOLICY_WRITEBACK;
  239. ecc_mask = 0;
  240. }
  241. #ifdef CONFIG_SMP
  242. cachepolicy = CPOLICY_WRITEALLOC;
  243. #endif
  244. /*
  245. * On non-Xscale3 ARMv5-and-older systems, use CB=01
  246. * (Uncached/Buffered) for ioremap_wc() mappings. On XScale3
  247. * and ARMv6+, use TEXCB=00100 mappings (Inner/Outer Uncacheable
  248. * in xsc3 parlance, Uncached Normal in ARMv6 parlance).
  249. */
  250. if (cpu_is_xsc3() || cpu_arch >= CPU_ARCH_ARMv6) {
  251. mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
  252. mem_types[MT_DEVICE_WC].prot_sect &= ~PMD_SECT_BUFFERABLE;
  253. }
  254. /*
  255. * ARMv5 and lower, bit 4 must be set for page tables.
  256. * (was: cache "update-able on write" bit on ARM610)
  257. * However, Xscale cores require this bit to be cleared.
  258. */
  259. if (cpu_is_xscale()) {
  260. for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
  261. mem_types[i].prot_sect &= ~PMD_BIT4;
  262. mem_types[i].prot_l1 &= ~PMD_BIT4;
  263. }
  264. } else if (cpu_arch < CPU_ARCH_ARMv6) {
  265. for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
  266. if (mem_types[i].prot_l1)
  267. mem_types[i].prot_l1 |= PMD_BIT4;
  268. if (mem_types[i].prot_sect)
  269. mem_types[i].prot_sect |= PMD_BIT4;
  270. }
  271. }
  272. cp = &cache_policies[cachepolicy];
  273. vecs_pgprot = kern_pgprot = user_pgprot = cp->pte;
  274. #ifndef CONFIG_SMP
  275. /*
  276. * Only use write-through for non-SMP systems
  277. */
  278. if (cpu_arch >= CPU_ARCH_ARMv5 && cachepolicy > CPOLICY_WRITETHROUGH)
  279. vecs_pgprot = cache_policies[CPOLICY_WRITETHROUGH].pte;
  280. #endif
  281. /*
  282. * Enable CPU-specific coherency if supported.
  283. * (Only available on XSC3 at the moment.)
  284. */
  285. if (arch_is_coherent()) {
  286. if (cpu_is_xsc3()) {
  287. mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
  288. mem_types[MT_MEMORY].prot_pte |= L_PTE_SHARED;
  289. }
  290. }
  291. /*
  292. * ARMv6 and above have extended page tables.
  293. */
  294. if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) {
  295. /*
  296. * Mark cache clean areas and XIP ROM read only
  297. * from SVC mode and no access from userspace.
  298. */
  299. mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
  300. mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
  301. mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
  302. /*
  303. * Mark the device area as "shared device"
  304. */
  305. mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED;
  306. #ifdef CONFIG_SMP
  307. /*
  308. * Mark memory with the "shared" attribute for SMP systems
  309. */
  310. user_pgprot |= L_PTE_SHARED;
  311. kern_pgprot |= L_PTE_SHARED;
  312. vecs_pgprot |= L_PTE_SHARED;
  313. mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
  314. #endif
  315. }
  316. for (i = 0; i < 16; i++) {
  317. unsigned long v = pgprot_val(protection_map[i]);
  318. protection_map[i] = __pgprot(v | user_pgprot);
  319. }
  320. mem_types[MT_LOW_VECTORS].prot_pte |= vecs_pgprot;
  321. mem_types[MT_HIGH_VECTORS].prot_pte |= vecs_pgprot;
  322. if (cpu_arch < CPU_ARCH_ARMv5)
  323. mem_types[MT_MINICLEAN].prot_sect &= ~PMD_SECT_TEX(1);
  324. pgprot_user = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | user_pgprot);
  325. pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG |
  326. L_PTE_DIRTY | L_PTE_WRITE |
  327. L_PTE_EXEC | kern_pgprot);
  328. mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask;
  329. mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask;
  330. mem_types[MT_MEMORY].prot_sect |= ecc_mask | cp->pmd;
  331. mem_types[MT_ROM].prot_sect |= cp->pmd;
  332. switch (cp->pmd) {
  333. case PMD_SECT_WT:
  334. mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT;
  335. break;
  336. case PMD_SECT_WB:
  337. case PMD_SECT_WBWA:
  338. mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB;
  339. break;
  340. }
  341. printk("Memory policy: ECC %sabled, Data cache %s\n",
  342. ecc_mask ? "en" : "dis", cp->policy);
  343. for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
  344. struct mem_type *t = &mem_types[i];
  345. if (t->prot_l1)
  346. t->prot_l1 |= PMD_DOMAIN(t->domain);
  347. if (t->prot_sect)
  348. t->prot_sect |= PMD_DOMAIN(t->domain);
  349. }
  350. }
  351. #define vectors_base() (vectors_high() ? 0xffff0000 : 0)
  352. static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr,
  353. unsigned long end, unsigned long pfn,
  354. const struct mem_type *type)
  355. {
  356. pte_t *pte;
  357. if (pmd_none(*pmd)) {
  358. pte = alloc_bootmem_low_pages(2 * PTRS_PER_PTE * sizeof(pte_t));
  359. __pmd_populate(pmd, __pa(pte) | type->prot_l1);
  360. }
  361. pte = pte_offset_kernel(pmd, addr);
  362. do {
  363. set_pte_ext(pte, pfn_pte(pfn, __pgprot(type->prot_pte)), 0);
  364. pfn++;
  365. } while (pte++, addr += PAGE_SIZE, addr != end);
  366. }
  367. static void __init alloc_init_section(pgd_t *pgd, unsigned long addr,
  368. unsigned long end, unsigned long phys,
  369. const struct mem_type *type)
  370. {
  371. pmd_t *pmd = pmd_offset(pgd, addr);
  372. /*
  373. * Try a section mapping - end, addr and phys must all be aligned
  374. * to a section boundary. Note that PMDs refer to the individual
  375. * L1 entries, whereas PGDs refer to a group of L1 entries making
  376. * up one logical pointer to an L2 table.
  377. */
  378. if (((addr | end | phys) & ~SECTION_MASK) == 0) {
  379. pmd_t *p = pmd;
  380. if (addr & SECTION_SIZE)
  381. pmd++;
  382. do {
  383. *pmd = __pmd(phys | type->prot_sect);
  384. phys += SECTION_SIZE;
  385. } while (pmd++, addr += SECTION_SIZE, addr != end);
  386. flush_pmd_entry(p);
  387. } else {
  388. /*
  389. * No need to loop; pte's aren't interested in the
  390. * individual L1 entries.
  391. */
  392. alloc_init_pte(pmd, addr, end, __phys_to_pfn(phys), type);
  393. }
  394. }
  395. static void __init create_36bit_mapping(struct map_desc *md,
  396. const struct mem_type *type)
  397. {
  398. unsigned long phys, addr, length, end;
  399. pgd_t *pgd;
  400. addr = md->virtual;
  401. phys = (unsigned long)__pfn_to_phys(md->pfn);
  402. length = PAGE_ALIGN(md->length);
  403. if (!(cpu_architecture() >= CPU_ARCH_ARMv6 || cpu_is_xsc3())) {
  404. printk(KERN_ERR "MM: CPU does not support supersection "
  405. "mapping for 0x%08llx at 0x%08lx\n",
  406. __pfn_to_phys((u64)md->pfn), addr);
  407. return;
  408. }
  409. /* N.B. ARMv6 supersections are only defined to work with domain 0.
  410. * Since domain assignments can in fact be arbitrary, the
  411. * 'domain == 0' check below is required to insure that ARMv6
  412. * supersections are only allocated for domain 0 regardless
  413. * of the actual domain assignments in use.
  414. */
  415. if (type->domain) {
  416. printk(KERN_ERR "MM: invalid domain in supersection "
  417. "mapping for 0x%08llx at 0x%08lx\n",
  418. __pfn_to_phys((u64)md->pfn), addr);
  419. return;
  420. }
  421. if ((addr | length | __pfn_to_phys(md->pfn)) & ~SUPERSECTION_MASK) {
  422. printk(KERN_ERR "MM: cannot create mapping for "
  423. "0x%08llx at 0x%08lx invalid alignment\n",
  424. __pfn_to_phys((u64)md->pfn), addr);
  425. return;
  426. }
  427. /*
  428. * Shift bits [35:32] of address into bits [23:20] of PMD
  429. * (See ARMv6 spec).
  430. */
  431. phys |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20);
  432. pgd = pgd_offset_k(addr);
  433. end = addr + length;
  434. do {
  435. pmd_t *pmd = pmd_offset(pgd, addr);
  436. int i;
  437. for (i = 0; i < 16; i++)
  438. *pmd++ = __pmd(phys | type->prot_sect | PMD_SECT_SUPER);
  439. addr += SUPERSECTION_SIZE;
  440. phys += SUPERSECTION_SIZE;
  441. pgd += SUPERSECTION_SIZE >> PGDIR_SHIFT;
  442. } while (addr != end);
  443. }
  444. /*
  445. * Create the page directory entries and any necessary
  446. * page tables for the mapping specified by `md'. We
  447. * are able to cope here with varying sizes and address
  448. * offsets, and we take full advantage of sections and
  449. * supersections.
  450. */
  451. void __init create_mapping(struct map_desc *md)
  452. {
  453. unsigned long phys, addr, length, end;
  454. const struct mem_type *type;
  455. pgd_t *pgd;
  456. if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) {
  457. printk(KERN_WARNING "BUG: not creating mapping for "
  458. "0x%08llx at 0x%08lx in user region\n",
  459. __pfn_to_phys((u64)md->pfn), md->virtual);
  460. return;
  461. }
  462. if ((md->type == MT_DEVICE || md->type == MT_ROM) &&
  463. md->virtual >= PAGE_OFFSET && md->virtual < VMALLOC_END) {
  464. printk(KERN_WARNING "BUG: mapping for 0x%08llx at 0x%08lx "
  465. "overlaps vmalloc space\n",
  466. __pfn_to_phys((u64)md->pfn), md->virtual);
  467. }
  468. type = &mem_types[md->type];
  469. /*
  470. * Catch 36-bit addresses
  471. */
  472. if (md->pfn >= 0x100000) {
  473. create_36bit_mapping(md, type);
  474. return;
  475. }
  476. addr = md->virtual & PAGE_MASK;
  477. phys = (unsigned long)__pfn_to_phys(md->pfn);
  478. length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
  479. if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) {
  480. printk(KERN_WARNING "BUG: map for 0x%08lx at 0x%08lx can not "
  481. "be mapped using pages, ignoring.\n",
  482. __pfn_to_phys(md->pfn), addr);
  483. return;
  484. }
  485. pgd = pgd_offset_k(addr);
  486. end = addr + length;
  487. do {
  488. unsigned long next = pgd_addr_end(addr, end);
  489. alloc_init_section(pgd, addr, next, phys, type);
  490. phys += next - addr;
  491. addr = next;
  492. } while (pgd++, addr != end);
  493. }
  494. /*
  495. * Create the architecture specific mappings
  496. */
  497. void __init iotable_init(struct map_desc *io_desc, int nr)
  498. {
  499. int i;
  500. for (i = 0; i < nr; i++)
  501. create_mapping(io_desc + i);
  502. }
  503. static unsigned long __initdata vmalloc_reserve = SZ_128M;
  504. /*
  505. * vmalloc=size forces the vmalloc area to be exactly 'size'
  506. * bytes. This can be used to increase (or decrease) the vmalloc
  507. * area - the default is 128m.
  508. */
  509. static void __init early_vmalloc(char **arg)
  510. {
  511. vmalloc_reserve = memparse(*arg, arg);
  512. if (vmalloc_reserve < SZ_16M) {
  513. vmalloc_reserve = SZ_16M;
  514. printk(KERN_WARNING
  515. "vmalloc area too small, limiting to %luMB\n",
  516. vmalloc_reserve >> 20);
  517. }
  518. }
  519. __early_param("vmalloc=", early_vmalloc);
  520. #define VMALLOC_MIN (void *)(VMALLOC_END - vmalloc_reserve)
  521. static int __init check_membank_valid(struct membank *mb)
  522. {
  523. /*
  524. * Check whether this memory region has non-zero size or
  525. * invalid node number.
  526. */
  527. if (mb->size == 0 || mb->node >= MAX_NUMNODES)
  528. return 0;
  529. /*
  530. * Check whether this memory region would entirely overlap
  531. * the vmalloc area.
  532. */
  533. if (phys_to_virt(mb->start) >= VMALLOC_MIN) {
  534. printk(KERN_NOTICE "Ignoring RAM at %.8lx-%.8lx "
  535. "(vmalloc region overlap).\n",
  536. mb->start, mb->start + mb->size - 1);
  537. return 0;
  538. }
  539. /*
  540. * Check whether this memory region would partially overlap
  541. * the vmalloc area.
  542. */
  543. if (phys_to_virt(mb->start + mb->size) < phys_to_virt(mb->start) ||
  544. phys_to_virt(mb->start + mb->size) > VMALLOC_MIN) {
  545. unsigned long newsize = VMALLOC_MIN - phys_to_virt(mb->start);
  546. printk(KERN_NOTICE "Truncating RAM at %.8lx-%.8lx "
  547. "to -%.8lx (vmalloc region overlap).\n",
  548. mb->start, mb->start + mb->size - 1,
  549. mb->start + newsize - 1);
  550. mb->size = newsize;
  551. }
  552. return 1;
  553. }
  554. static void __init sanity_check_meminfo(struct meminfo *mi)
  555. {
  556. int i, j;
  557. for (i = 0, j = 0; i < mi->nr_banks; i++) {
  558. if (check_membank_valid(&mi->bank[i]))
  559. mi->bank[j++] = mi->bank[i];
  560. }
  561. mi->nr_banks = j;
  562. }
  563. static inline void prepare_page_table(struct meminfo *mi)
  564. {
  565. unsigned long addr;
  566. /*
  567. * Clear out all the mappings below the kernel image.
  568. */
  569. for (addr = 0; addr < MODULE_START; addr += PGDIR_SIZE)
  570. pmd_clear(pmd_off_k(addr));
  571. #ifdef CONFIG_XIP_KERNEL
  572. /* The XIP kernel is mapped in the module area -- skip over it */
  573. addr = ((unsigned long)&_etext + PGDIR_SIZE - 1) & PGDIR_MASK;
  574. #endif
  575. for ( ; addr < PAGE_OFFSET; addr += PGDIR_SIZE)
  576. pmd_clear(pmd_off_k(addr));
  577. /*
  578. * Clear out all the kernel space mappings, except for the first
  579. * memory bank, up to the end of the vmalloc region.
  580. */
  581. for (addr = __phys_to_virt(mi->bank[0].start + mi->bank[0].size);
  582. addr < VMALLOC_END; addr += PGDIR_SIZE)
  583. pmd_clear(pmd_off_k(addr));
  584. }
  585. /*
  586. * Reserve the various regions of node 0
  587. */
  588. void __init reserve_node_zero(pg_data_t *pgdat)
  589. {
  590. unsigned long res_size = 0;
  591. /*
  592. * Register the kernel text and data with bootmem.
  593. * Note that this can only be in node 0.
  594. */
  595. #ifdef CONFIG_XIP_KERNEL
  596. reserve_bootmem_node(pgdat, __pa(&__data_start), &_end - &__data_start,
  597. BOOTMEM_DEFAULT);
  598. #else
  599. reserve_bootmem_node(pgdat, __pa(&_stext), &_end - &_stext,
  600. BOOTMEM_DEFAULT);
  601. #endif
  602. /*
  603. * Reserve the page tables. These are already in use,
  604. * and can only be in node 0.
  605. */
  606. reserve_bootmem_node(pgdat, __pa(swapper_pg_dir),
  607. PTRS_PER_PGD * sizeof(pgd_t), BOOTMEM_DEFAULT);
  608. /*
  609. * Hmm... This should go elsewhere, but we really really need to
  610. * stop things allocating the low memory; ideally we need a better
  611. * implementation of GFP_DMA which does not assume that DMA-able
  612. * memory starts at zero.
  613. */
  614. if (machine_is_integrator() || machine_is_cintegrator())
  615. res_size = __pa(swapper_pg_dir) - PHYS_OFFSET;
  616. /*
  617. * These should likewise go elsewhere. They pre-reserve the
  618. * screen memory region at the start of main system memory.
  619. */
  620. if (machine_is_edb7211())
  621. res_size = 0x00020000;
  622. if (machine_is_p720t())
  623. res_size = 0x00014000;
  624. /* H1940 and RX3715 need to reserve this for suspend */
  625. if (machine_is_h1940() || machine_is_rx3715()) {
  626. reserve_bootmem_node(pgdat, 0x30003000, 0x1000,
  627. BOOTMEM_DEFAULT);
  628. reserve_bootmem_node(pgdat, 0x30081000, 0x1000,
  629. BOOTMEM_DEFAULT);
  630. }
  631. #ifdef CONFIG_SA1111
  632. /*
  633. * Because of the SA1111 DMA bug, we want to preserve our
  634. * precious DMA-able memory...
  635. */
  636. res_size = __pa(swapper_pg_dir) - PHYS_OFFSET;
  637. #endif
  638. if (res_size)
  639. reserve_bootmem_node(pgdat, PHYS_OFFSET, res_size,
  640. BOOTMEM_DEFAULT);
  641. }
  642. /*
  643. * Set up device the mappings. Since we clear out the page tables for all
  644. * mappings above VMALLOC_END, we will remove any debug device mappings.
  645. * This means you have to be careful how you debug this function, or any
  646. * called function. This means you can't use any function or debugging
  647. * method which may touch any device, otherwise the kernel _will_ crash.
  648. */
  649. static void __init devicemaps_init(struct machine_desc *mdesc)
  650. {
  651. struct map_desc map;
  652. unsigned long addr;
  653. void *vectors;
  654. /*
  655. * Allocate the vector page early.
  656. */
  657. vectors = alloc_bootmem_low_pages(PAGE_SIZE);
  658. BUG_ON(!vectors);
  659. for (addr = VMALLOC_END; addr; addr += PGDIR_SIZE)
  660. pmd_clear(pmd_off_k(addr));
  661. /*
  662. * Map the kernel if it is XIP.
  663. * It is always first in the modulearea.
  664. */
  665. #ifdef CONFIG_XIP_KERNEL
  666. map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK);
  667. map.virtual = MODULE_START;
  668. map.length = ((unsigned long)&_etext - map.virtual + ~SECTION_MASK) & SECTION_MASK;
  669. map.type = MT_ROM;
  670. create_mapping(&map);
  671. #endif
  672. /*
  673. * Map the cache flushing regions.
  674. */
  675. #ifdef FLUSH_BASE
  676. map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS);
  677. map.virtual = FLUSH_BASE;
  678. map.length = SZ_1M;
  679. map.type = MT_CACHECLEAN;
  680. create_mapping(&map);
  681. #endif
  682. #ifdef FLUSH_BASE_MINICACHE
  683. map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M);
  684. map.virtual = FLUSH_BASE_MINICACHE;
  685. map.length = SZ_1M;
  686. map.type = MT_MINICLEAN;
  687. create_mapping(&map);
  688. #endif
  689. /*
  690. * Create a mapping for the machine vectors at the high-vectors
  691. * location (0xffff0000). If we aren't using high-vectors, also
  692. * create a mapping at the low-vectors virtual address.
  693. */
  694. map.pfn = __phys_to_pfn(virt_to_phys(vectors));
  695. map.virtual = 0xffff0000;
  696. map.length = PAGE_SIZE;
  697. map.type = MT_HIGH_VECTORS;
  698. create_mapping(&map);
  699. if (!vectors_high()) {
  700. map.virtual = 0;
  701. map.type = MT_LOW_VECTORS;
  702. create_mapping(&map);
  703. }
  704. /*
  705. * Ask the machine support to map in the statically mapped devices.
  706. */
  707. if (mdesc->map_io)
  708. mdesc->map_io();
  709. /*
  710. * Finally flush the caches and tlb to ensure that we're in a
  711. * consistent state wrt the writebuffer. This also ensures that
  712. * any write-allocated cache lines in the vector page are written
  713. * back. After this point, we can start to touch devices again.
  714. */
  715. local_flush_tlb_all();
  716. flush_cache_all();
  717. }
  718. /*
  719. * paging_init() sets up the page tables, initialises the zone memory
  720. * maps, and sets up the zero page, bad page and bad page tables.
  721. */
  722. void __init paging_init(struct meminfo *mi, struct machine_desc *mdesc)
  723. {
  724. void *zero_page;
  725. build_mem_type_table();
  726. sanity_check_meminfo(mi);
  727. prepare_page_table(mi);
  728. bootmem_init(mi);
  729. devicemaps_init(mdesc);
  730. top_pmd = pmd_off_k(0xffff0000);
  731. /*
  732. * allocate the zero page. Note that we count on this going ok.
  733. */
  734. zero_page = alloc_bootmem_low_pages(PAGE_SIZE);
  735. memzero(zero_page, PAGE_SIZE);
  736. empty_zero_page = virt_to_page(zero_page);
  737. flush_dcache_page(empty_zero_page);
  738. }
  739. /*
  740. * In order to soft-boot, we need to insert a 1:1 mapping in place of
  741. * the user-mode pages. This will then ensure that we have predictable
  742. * results when turning the mmu off
  743. */
  744. void setup_mm_for_reboot(char mode)
  745. {
  746. unsigned long base_pmdval;
  747. pgd_t *pgd;
  748. int i;
  749. if (current->mm && current->mm->pgd)
  750. pgd = current->mm->pgd;
  751. else
  752. pgd = init_mm.pgd;
  753. base_pmdval = PMD_SECT_AP_WRITE | PMD_SECT_AP_READ | PMD_TYPE_SECT;
  754. if (cpu_architecture() <= CPU_ARCH_ARMv5TEJ && !cpu_is_xscale())
  755. base_pmdval |= PMD_BIT4;
  756. for (i = 0; i < FIRST_USER_PGD_NR + USER_PTRS_PER_PGD; i++, pgd++) {
  757. unsigned long pmdval = (i << PGDIR_SHIFT) | base_pmdval;
  758. pmd_t *pmd;
  759. pmd = pmd_off(pgd, i << PGDIR_SHIFT);
  760. pmd[0] = __pmd(pmdval);
  761. pmd[1] = __pmd(pmdval + (1 << (PGDIR_SHIFT - 1)));
  762. flush_pmd_entry(pmd);
  763. }
  764. }