core.c 24 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975
  1. /*
  2. * linux/arch/arm/mach-versatile/core.c
  3. *
  4. * Copyright (C) 1999 - 2003 ARM Limited
  5. * Copyright (C) 2000 Deep Blue Solutions Ltd
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License as published by
  9. * the Free Software Foundation; either version 2 of the License, or
  10. * (at your option) any later version.
  11. *
  12. * This program is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  15. * GNU General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU General Public License
  18. * along with this program; if not, write to the Free Software
  19. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  20. */
  21. #include <linux/init.h>
  22. #include <linux/device.h>
  23. #include <linux/dma-mapping.h>
  24. #include <linux/platform_device.h>
  25. #include <linux/sysdev.h>
  26. #include <linux/interrupt.h>
  27. #include <linux/amba/bus.h>
  28. #include <linux/amba/clcd.h>
  29. #include <linux/clocksource.h>
  30. #include <linux/clockchips.h>
  31. #include <linux/cnt32_to_63.h>
  32. #include <linux/io.h>
  33. #include <asm/system.h>
  34. #include <mach/hardware.h>
  35. #include <asm/irq.h>
  36. #include <asm/leds.h>
  37. #include <asm/hardware/arm_timer.h>
  38. #include <asm/hardware/icst307.h>
  39. #include <asm/hardware/vic.h>
  40. #include <asm/mach-types.h>
  41. #include <asm/mach/arch.h>
  42. #include <asm/mach/flash.h>
  43. #include <asm/mach/irq.h>
  44. #include <asm/mach/time.h>
  45. #include <asm/mach/map.h>
  46. #include <asm/mach/mmc.h>
  47. #include "core.h"
  48. #include "clock.h"
  49. /*
  50. * All IO addresses are mapped onto VA 0xFFFx.xxxx, where x.xxxx
  51. * is the (PA >> 12).
  52. *
  53. * Setup a VA for the Versatile Vectored Interrupt Controller.
  54. */
  55. #define __io_address(n) __io(IO_ADDRESS(n))
  56. #define VA_VIC_BASE __io_address(VERSATILE_VIC_BASE)
  57. #define VA_SIC_BASE __io_address(VERSATILE_SIC_BASE)
  58. static void sic_mask_irq(unsigned int irq)
  59. {
  60. irq -= IRQ_SIC_START;
  61. writel(1 << irq, VA_SIC_BASE + SIC_IRQ_ENABLE_CLEAR);
  62. }
  63. static void sic_unmask_irq(unsigned int irq)
  64. {
  65. irq -= IRQ_SIC_START;
  66. writel(1 << irq, VA_SIC_BASE + SIC_IRQ_ENABLE_SET);
  67. }
  68. static struct irq_chip sic_chip = {
  69. .name = "SIC",
  70. .ack = sic_mask_irq,
  71. .mask = sic_mask_irq,
  72. .unmask = sic_unmask_irq,
  73. };
  74. static void
  75. sic_handle_irq(unsigned int irq, struct irq_desc *desc)
  76. {
  77. unsigned long status = readl(VA_SIC_BASE + SIC_IRQ_STATUS);
  78. if (status == 0) {
  79. do_bad_IRQ(irq, desc);
  80. return;
  81. }
  82. do {
  83. irq = ffs(status) - 1;
  84. status &= ~(1 << irq);
  85. irq += IRQ_SIC_START;
  86. generic_handle_irq(irq);
  87. } while (status);
  88. }
  89. #if 1
  90. #define IRQ_MMCI0A IRQ_VICSOURCE22
  91. #define IRQ_AACI IRQ_VICSOURCE24
  92. #define IRQ_ETH IRQ_VICSOURCE25
  93. #define PIC_MASK 0xFFD00000
  94. #else
  95. #define IRQ_MMCI0A IRQ_SIC_MMCI0A
  96. #define IRQ_AACI IRQ_SIC_AACI
  97. #define IRQ_ETH IRQ_SIC_ETH
  98. #define PIC_MASK 0
  99. #endif
  100. void __init versatile_init_irq(void)
  101. {
  102. unsigned int i;
  103. vic_init(VA_VIC_BASE, IRQ_VIC_START, ~0);
  104. set_irq_chained_handler(IRQ_VICSOURCE31, sic_handle_irq);
  105. /* Do second interrupt controller */
  106. writel(~0, VA_SIC_BASE + SIC_IRQ_ENABLE_CLEAR);
  107. for (i = IRQ_SIC_START; i <= IRQ_SIC_END; i++) {
  108. if ((PIC_MASK & (1 << (i - IRQ_SIC_START))) == 0) {
  109. set_irq_chip(i, &sic_chip);
  110. set_irq_handler(i, handle_level_irq);
  111. set_irq_flags(i, IRQF_VALID | IRQF_PROBE);
  112. }
  113. }
  114. /*
  115. * Interrupts on secondary controller from 0 to 8 are routed to
  116. * source 31 on PIC.
  117. * Interrupts from 21 to 31 are routed directly to the VIC on
  118. * the corresponding number on primary controller. This is controlled
  119. * by setting PIC_ENABLEx.
  120. */
  121. writel(PIC_MASK, VA_SIC_BASE + SIC_INT_PIC_ENABLE);
  122. }
  123. static struct map_desc versatile_io_desc[] __initdata = {
  124. {
  125. .virtual = IO_ADDRESS(VERSATILE_SYS_BASE),
  126. .pfn = __phys_to_pfn(VERSATILE_SYS_BASE),
  127. .length = SZ_4K,
  128. .type = MT_DEVICE
  129. }, {
  130. .virtual = IO_ADDRESS(VERSATILE_SIC_BASE),
  131. .pfn = __phys_to_pfn(VERSATILE_SIC_BASE),
  132. .length = SZ_4K,
  133. .type = MT_DEVICE
  134. }, {
  135. .virtual = IO_ADDRESS(VERSATILE_VIC_BASE),
  136. .pfn = __phys_to_pfn(VERSATILE_VIC_BASE),
  137. .length = SZ_4K,
  138. .type = MT_DEVICE
  139. }, {
  140. .virtual = IO_ADDRESS(VERSATILE_SCTL_BASE),
  141. .pfn = __phys_to_pfn(VERSATILE_SCTL_BASE),
  142. .length = SZ_4K * 9,
  143. .type = MT_DEVICE
  144. },
  145. #ifdef CONFIG_MACH_VERSATILE_AB
  146. {
  147. .virtual = IO_ADDRESS(VERSATILE_GPIO0_BASE),
  148. .pfn = __phys_to_pfn(VERSATILE_GPIO0_BASE),
  149. .length = SZ_4K,
  150. .type = MT_DEVICE
  151. }, {
  152. .virtual = IO_ADDRESS(VERSATILE_IB2_BASE),
  153. .pfn = __phys_to_pfn(VERSATILE_IB2_BASE),
  154. .length = SZ_64M,
  155. .type = MT_DEVICE
  156. },
  157. #endif
  158. #ifdef CONFIG_DEBUG_LL
  159. {
  160. .virtual = IO_ADDRESS(VERSATILE_UART0_BASE),
  161. .pfn = __phys_to_pfn(VERSATILE_UART0_BASE),
  162. .length = SZ_4K,
  163. .type = MT_DEVICE
  164. },
  165. #endif
  166. #ifdef CONFIG_PCI
  167. {
  168. .virtual = IO_ADDRESS(VERSATILE_PCI_CORE_BASE),
  169. .pfn = __phys_to_pfn(VERSATILE_PCI_CORE_BASE),
  170. .length = SZ_4K,
  171. .type = MT_DEVICE
  172. }, {
  173. .virtual = (unsigned long)VERSATILE_PCI_VIRT_BASE,
  174. .pfn = __phys_to_pfn(VERSATILE_PCI_BASE),
  175. .length = VERSATILE_PCI_BASE_SIZE,
  176. .type = MT_DEVICE
  177. }, {
  178. .virtual = (unsigned long)VERSATILE_PCI_CFG_VIRT_BASE,
  179. .pfn = __phys_to_pfn(VERSATILE_PCI_CFG_BASE),
  180. .length = VERSATILE_PCI_CFG_BASE_SIZE,
  181. .type = MT_DEVICE
  182. },
  183. #if 0
  184. {
  185. .virtual = VERSATILE_PCI_VIRT_MEM_BASE0,
  186. .pfn = __phys_to_pfn(VERSATILE_PCI_MEM_BASE0),
  187. .length = SZ_16M,
  188. .type = MT_DEVICE
  189. }, {
  190. .virtual = VERSATILE_PCI_VIRT_MEM_BASE1,
  191. .pfn = __phys_to_pfn(VERSATILE_PCI_MEM_BASE1),
  192. .length = SZ_16M,
  193. .type = MT_DEVICE
  194. }, {
  195. .virtual = VERSATILE_PCI_VIRT_MEM_BASE2,
  196. .pfn = __phys_to_pfn(VERSATILE_PCI_MEM_BASE2),
  197. .length = SZ_16M,
  198. .type = MT_DEVICE
  199. },
  200. #endif
  201. #endif
  202. };
  203. void __init versatile_map_io(void)
  204. {
  205. iotable_init(versatile_io_desc, ARRAY_SIZE(versatile_io_desc));
  206. }
  207. #define VERSATILE_REFCOUNTER (__io_address(VERSATILE_SYS_BASE) + VERSATILE_SYS_24MHz_OFFSET)
  208. /*
  209. * This is the Versatile sched_clock implementation. This has
  210. * a resolution of 41.7ns, and a maximum value of about 35583 days.
  211. *
  212. * The return value is guaranteed to be monotonic in that range as
  213. * long as there is always less than 89 seconds between successive
  214. * calls to this function.
  215. */
  216. unsigned long long sched_clock(void)
  217. {
  218. unsigned long long v = cnt32_to_63(readl(VERSATILE_REFCOUNTER));
  219. /* the <<1 gets rid of the cnt_32_to_63 top bit saving on a bic insn */
  220. v *= 125<<1;
  221. do_div(v, 3<<1);
  222. return v;
  223. }
  224. #define VERSATILE_FLASHCTRL (__io_address(VERSATILE_SYS_BASE) + VERSATILE_SYS_FLASH_OFFSET)
  225. static int versatile_flash_init(void)
  226. {
  227. u32 val;
  228. val = __raw_readl(VERSATILE_FLASHCTRL);
  229. val &= ~VERSATILE_FLASHPROG_FLVPPEN;
  230. __raw_writel(val, VERSATILE_FLASHCTRL);
  231. return 0;
  232. }
  233. static void versatile_flash_exit(void)
  234. {
  235. u32 val;
  236. val = __raw_readl(VERSATILE_FLASHCTRL);
  237. val &= ~VERSATILE_FLASHPROG_FLVPPEN;
  238. __raw_writel(val, VERSATILE_FLASHCTRL);
  239. }
  240. static void versatile_flash_set_vpp(int on)
  241. {
  242. u32 val;
  243. val = __raw_readl(VERSATILE_FLASHCTRL);
  244. if (on)
  245. val |= VERSATILE_FLASHPROG_FLVPPEN;
  246. else
  247. val &= ~VERSATILE_FLASHPROG_FLVPPEN;
  248. __raw_writel(val, VERSATILE_FLASHCTRL);
  249. }
  250. static struct flash_platform_data versatile_flash_data = {
  251. .map_name = "cfi_probe",
  252. .width = 4,
  253. .init = versatile_flash_init,
  254. .exit = versatile_flash_exit,
  255. .set_vpp = versatile_flash_set_vpp,
  256. };
  257. static struct resource versatile_flash_resource = {
  258. .start = VERSATILE_FLASH_BASE,
  259. .end = VERSATILE_FLASH_BASE + VERSATILE_FLASH_SIZE - 1,
  260. .flags = IORESOURCE_MEM,
  261. };
  262. static struct platform_device versatile_flash_device = {
  263. .name = "armflash",
  264. .id = 0,
  265. .dev = {
  266. .platform_data = &versatile_flash_data,
  267. },
  268. .num_resources = 1,
  269. .resource = &versatile_flash_resource,
  270. };
  271. static struct resource smc91x_resources[] = {
  272. [0] = {
  273. .start = VERSATILE_ETH_BASE,
  274. .end = VERSATILE_ETH_BASE + SZ_64K - 1,
  275. .flags = IORESOURCE_MEM,
  276. },
  277. [1] = {
  278. .start = IRQ_ETH,
  279. .end = IRQ_ETH,
  280. .flags = IORESOURCE_IRQ,
  281. },
  282. };
  283. static struct platform_device smc91x_device = {
  284. .name = "smc91x",
  285. .id = 0,
  286. .num_resources = ARRAY_SIZE(smc91x_resources),
  287. .resource = smc91x_resources,
  288. };
  289. static struct resource versatile_i2c_resource = {
  290. .start = VERSATILE_I2C_BASE,
  291. .end = VERSATILE_I2C_BASE + SZ_4K - 1,
  292. .flags = IORESOURCE_MEM,
  293. };
  294. static struct platform_device versatile_i2c_device = {
  295. .name = "versatile-i2c",
  296. .id = -1,
  297. .num_resources = 1,
  298. .resource = &versatile_i2c_resource,
  299. };
  300. #define VERSATILE_SYSMCI (__io_address(VERSATILE_SYS_BASE) + VERSATILE_SYS_MCI_OFFSET)
  301. unsigned int mmc_status(struct device *dev)
  302. {
  303. struct amba_device *adev = container_of(dev, struct amba_device, dev);
  304. u32 mask;
  305. if (adev->res.start == VERSATILE_MMCI0_BASE)
  306. mask = 1;
  307. else
  308. mask = 2;
  309. return readl(VERSATILE_SYSMCI) & mask;
  310. }
  311. static struct mmc_platform_data mmc0_plat_data = {
  312. .ocr_mask = MMC_VDD_32_33|MMC_VDD_33_34,
  313. .status = mmc_status,
  314. };
  315. /*
  316. * Clock handling
  317. */
  318. static const struct icst307_params versatile_oscvco_params = {
  319. .ref = 24000,
  320. .vco_max = 200000,
  321. .vd_min = 4 + 8,
  322. .vd_max = 511 + 8,
  323. .rd_min = 1 + 2,
  324. .rd_max = 127 + 2,
  325. };
  326. static void versatile_oscvco_set(struct clk *clk, struct icst307_vco vco)
  327. {
  328. void __iomem *sys_lock = __io_address(VERSATILE_SYS_BASE) + VERSATILE_SYS_LOCK_OFFSET;
  329. void __iomem *sys_osc = __io_address(VERSATILE_SYS_BASE) + VERSATILE_SYS_OSCCLCD_OFFSET;
  330. u32 val;
  331. val = readl(sys_osc) & ~0x7ffff;
  332. val |= vco.v | (vco.r << 9) | (vco.s << 16);
  333. writel(0xa05f, sys_lock);
  334. writel(val, sys_osc);
  335. writel(0, sys_lock);
  336. }
  337. static struct clk versatile_clcd_clk = {
  338. .name = "CLCDCLK",
  339. .params = &versatile_oscvco_params,
  340. .setvco = versatile_oscvco_set,
  341. };
  342. /*
  343. * CLCD support.
  344. */
  345. #define SYS_CLCD_MODE_MASK (3 << 0)
  346. #define SYS_CLCD_MODE_888 (0 << 0)
  347. #define SYS_CLCD_MODE_5551 (1 << 0)
  348. #define SYS_CLCD_MODE_565_RLSB (2 << 0)
  349. #define SYS_CLCD_MODE_565_BLSB (3 << 0)
  350. #define SYS_CLCD_NLCDIOON (1 << 2)
  351. #define SYS_CLCD_VDDPOSSWITCH (1 << 3)
  352. #define SYS_CLCD_PWR3V5SWITCH (1 << 4)
  353. #define SYS_CLCD_ID_MASK (0x1f << 8)
  354. #define SYS_CLCD_ID_SANYO_3_8 (0x00 << 8)
  355. #define SYS_CLCD_ID_UNKNOWN_8_4 (0x01 << 8)
  356. #define SYS_CLCD_ID_EPSON_2_2 (0x02 << 8)
  357. #define SYS_CLCD_ID_SANYO_2_5 (0x07 << 8)
  358. #define SYS_CLCD_ID_VGA (0x1f << 8)
  359. static struct clcd_panel vga = {
  360. .mode = {
  361. .name = "VGA",
  362. .refresh = 60,
  363. .xres = 640,
  364. .yres = 480,
  365. .pixclock = 39721,
  366. .left_margin = 40,
  367. .right_margin = 24,
  368. .upper_margin = 32,
  369. .lower_margin = 11,
  370. .hsync_len = 96,
  371. .vsync_len = 2,
  372. .sync = 0,
  373. .vmode = FB_VMODE_NONINTERLACED,
  374. },
  375. .width = -1,
  376. .height = -1,
  377. .tim2 = TIM2_BCD | TIM2_IPC,
  378. .cntl = CNTL_LCDTFT | CNTL_LCDVCOMP(1),
  379. .bpp = 16,
  380. };
  381. static struct clcd_panel sanyo_3_8_in = {
  382. .mode = {
  383. .name = "Sanyo QVGA",
  384. .refresh = 116,
  385. .xres = 320,
  386. .yres = 240,
  387. .pixclock = 100000,
  388. .left_margin = 6,
  389. .right_margin = 6,
  390. .upper_margin = 5,
  391. .lower_margin = 5,
  392. .hsync_len = 6,
  393. .vsync_len = 6,
  394. .sync = 0,
  395. .vmode = FB_VMODE_NONINTERLACED,
  396. },
  397. .width = -1,
  398. .height = -1,
  399. .tim2 = TIM2_BCD,
  400. .cntl = CNTL_LCDTFT | CNTL_LCDVCOMP(1),
  401. .bpp = 16,
  402. };
  403. static struct clcd_panel sanyo_2_5_in = {
  404. .mode = {
  405. .name = "Sanyo QVGA Portrait",
  406. .refresh = 116,
  407. .xres = 240,
  408. .yres = 320,
  409. .pixclock = 100000,
  410. .left_margin = 20,
  411. .right_margin = 10,
  412. .upper_margin = 2,
  413. .lower_margin = 2,
  414. .hsync_len = 10,
  415. .vsync_len = 2,
  416. .sync = FB_SYNC_HOR_HIGH_ACT | FB_SYNC_VERT_HIGH_ACT,
  417. .vmode = FB_VMODE_NONINTERLACED,
  418. },
  419. .width = -1,
  420. .height = -1,
  421. .tim2 = TIM2_IVS | TIM2_IHS | TIM2_IPC,
  422. .cntl = CNTL_LCDTFT | CNTL_LCDVCOMP(1),
  423. .bpp = 16,
  424. };
  425. static struct clcd_panel epson_2_2_in = {
  426. .mode = {
  427. .name = "Epson QCIF",
  428. .refresh = 390,
  429. .xres = 176,
  430. .yres = 220,
  431. .pixclock = 62500,
  432. .left_margin = 3,
  433. .right_margin = 2,
  434. .upper_margin = 1,
  435. .lower_margin = 0,
  436. .hsync_len = 3,
  437. .vsync_len = 2,
  438. .sync = 0,
  439. .vmode = FB_VMODE_NONINTERLACED,
  440. },
  441. .width = -1,
  442. .height = -1,
  443. .tim2 = TIM2_BCD | TIM2_IPC,
  444. .cntl = CNTL_LCDTFT | CNTL_LCDVCOMP(1),
  445. .bpp = 16,
  446. };
  447. /*
  448. * Detect which LCD panel is connected, and return the appropriate
  449. * clcd_panel structure. Note: we do not have any information on
  450. * the required timings for the 8.4in panel, so we presently assume
  451. * VGA timings.
  452. */
  453. static struct clcd_panel *versatile_clcd_panel(void)
  454. {
  455. void __iomem *sys_clcd = __io_address(VERSATILE_SYS_BASE) + VERSATILE_SYS_CLCD_OFFSET;
  456. struct clcd_panel *panel = &vga;
  457. u32 val;
  458. val = readl(sys_clcd) & SYS_CLCD_ID_MASK;
  459. if (val == SYS_CLCD_ID_SANYO_3_8)
  460. panel = &sanyo_3_8_in;
  461. else if (val == SYS_CLCD_ID_SANYO_2_5)
  462. panel = &sanyo_2_5_in;
  463. else if (val == SYS_CLCD_ID_EPSON_2_2)
  464. panel = &epson_2_2_in;
  465. else if (val == SYS_CLCD_ID_VGA)
  466. panel = &vga;
  467. else {
  468. printk(KERN_ERR "CLCD: unknown LCD panel ID 0x%08x, using VGA\n",
  469. val);
  470. panel = &vga;
  471. }
  472. return panel;
  473. }
  474. /*
  475. * Disable all display connectors on the interface module.
  476. */
  477. static void versatile_clcd_disable(struct clcd_fb *fb)
  478. {
  479. void __iomem *sys_clcd = __io_address(VERSATILE_SYS_BASE) + VERSATILE_SYS_CLCD_OFFSET;
  480. u32 val;
  481. val = readl(sys_clcd);
  482. val &= ~SYS_CLCD_NLCDIOON | SYS_CLCD_PWR3V5SWITCH;
  483. writel(val, sys_clcd);
  484. #ifdef CONFIG_MACH_VERSATILE_AB
  485. /*
  486. * If the LCD is Sanyo 2x5 in on the IB2 board, turn the back-light off
  487. */
  488. if (machine_is_versatile_ab() && fb->panel == &sanyo_2_5_in) {
  489. void __iomem *versatile_ib2_ctrl = __io_address(VERSATILE_IB2_CTRL);
  490. unsigned long ctrl;
  491. ctrl = readl(versatile_ib2_ctrl);
  492. ctrl &= ~0x01;
  493. writel(ctrl, versatile_ib2_ctrl);
  494. }
  495. #endif
  496. }
  497. /*
  498. * Enable the relevant connector on the interface module.
  499. */
  500. static void versatile_clcd_enable(struct clcd_fb *fb)
  501. {
  502. void __iomem *sys_clcd = __io_address(VERSATILE_SYS_BASE) + VERSATILE_SYS_CLCD_OFFSET;
  503. u32 val;
  504. val = readl(sys_clcd);
  505. val &= ~SYS_CLCD_MODE_MASK;
  506. switch (fb->fb.var.green.length) {
  507. case 5:
  508. val |= SYS_CLCD_MODE_5551;
  509. break;
  510. case 6:
  511. val |= SYS_CLCD_MODE_565_RLSB;
  512. break;
  513. case 8:
  514. val |= SYS_CLCD_MODE_888;
  515. break;
  516. }
  517. /*
  518. * Set the MUX
  519. */
  520. writel(val, sys_clcd);
  521. /*
  522. * And now enable the PSUs
  523. */
  524. val |= SYS_CLCD_NLCDIOON | SYS_CLCD_PWR3V5SWITCH;
  525. writel(val, sys_clcd);
  526. #ifdef CONFIG_MACH_VERSATILE_AB
  527. /*
  528. * If the LCD is Sanyo 2x5 in on the IB2 board, turn the back-light on
  529. */
  530. if (machine_is_versatile_ab() && fb->panel == &sanyo_2_5_in) {
  531. void __iomem *versatile_ib2_ctrl = __io_address(VERSATILE_IB2_CTRL);
  532. unsigned long ctrl;
  533. ctrl = readl(versatile_ib2_ctrl);
  534. ctrl |= 0x01;
  535. writel(ctrl, versatile_ib2_ctrl);
  536. }
  537. #endif
  538. }
  539. static unsigned long framesize = SZ_1M;
  540. static int versatile_clcd_setup(struct clcd_fb *fb)
  541. {
  542. dma_addr_t dma;
  543. fb->panel = versatile_clcd_panel();
  544. fb->fb.screen_base = dma_alloc_writecombine(&fb->dev->dev, framesize,
  545. &dma, GFP_KERNEL);
  546. if (!fb->fb.screen_base) {
  547. printk(KERN_ERR "CLCD: unable to map framebuffer\n");
  548. return -ENOMEM;
  549. }
  550. fb->fb.fix.smem_start = dma;
  551. fb->fb.fix.smem_len = framesize;
  552. return 0;
  553. }
  554. static int versatile_clcd_mmap(struct clcd_fb *fb, struct vm_area_struct *vma)
  555. {
  556. return dma_mmap_writecombine(&fb->dev->dev, vma,
  557. fb->fb.screen_base,
  558. fb->fb.fix.smem_start,
  559. fb->fb.fix.smem_len);
  560. }
  561. static void versatile_clcd_remove(struct clcd_fb *fb)
  562. {
  563. dma_free_writecombine(&fb->dev->dev, fb->fb.fix.smem_len,
  564. fb->fb.screen_base, fb->fb.fix.smem_start);
  565. }
  566. static struct clcd_board clcd_plat_data = {
  567. .name = "Versatile",
  568. .check = clcdfb_check,
  569. .decode = clcdfb_decode,
  570. .disable = versatile_clcd_disable,
  571. .enable = versatile_clcd_enable,
  572. .setup = versatile_clcd_setup,
  573. .mmap = versatile_clcd_mmap,
  574. .remove = versatile_clcd_remove,
  575. };
  576. #define AACI_IRQ { IRQ_AACI, NO_IRQ }
  577. #define AACI_DMA { 0x80, 0x81 }
  578. #define MMCI0_IRQ { IRQ_MMCI0A,IRQ_SIC_MMCI0B }
  579. #define MMCI0_DMA { 0x84, 0 }
  580. #define KMI0_IRQ { IRQ_SIC_KMI0, NO_IRQ }
  581. #define KMI0_DMA { 0, 0 }
  582. #define KMI1_IRQ { IRQ_SIC_KMI1, NO_IRQ }
  583. #define KMI1_DMA { 0, 0 }
  584. /*
  585. * These devices are connected directly to the multi-layer AHB switch
  586. */
  587. #define SMC_IRQ { NO_IRQ, NO_IRQ }
  588. #define SMC_DMA { 0, 0 }
  589. #define MPMC_IRQ { NO_IRQ, NO_IRQ }
  590. #define MPMC_DMA { 0, 0 }
  591. #define CLCD_IRQ { IRQ_CLCDINT, NO_IRQ }
  592. #define CLCD_DMA { 0, 0 }
  593. #define DMAC_IRQ { IRQ_DMAINT, NO_IRQ }
  594. #define DMAC_DMA { 0, 0 }
  595. /*
  596. * These devices are connected via the core APB bridge
  597. */
  598. #define SCTL_IRQ { NO_IRQ, NO_IRQ }
  599. #define SCTL_DMA { 0, 0 }
  600. #define WATCHDOG_IRQ { IRQ_WDOGINT, NO_IRQ }
  601. #define WATCHDOG_DMA { 0, 0 }
  602. #define GPIO0_IRQ { IRQ_GPIOINT0, NO_IRQ }
  603. #define GPIO0_DMA { 0, 0 }
  604. #define GPIO1_IRQ { IRQ_GPIOINT1, NO_IRQ }
  605. #define GPIO1_DMA { 0, 0 }
  606. #define RTC_IRQ { IRQ_RTCINT, NO_IRQ }
  607. #define RTC_DMA { 0, 0 }
  608. /*
  609. * These devices are connected via the DMA APB bridge
  610. */
  611. #define SCI_IRQ { IRQ_SCIINT, NO_IRQ }
  612. #define SCI_DMA { 7, 6 }
  613. #define UART0_IRQ { IRQ_UARTINT0, NO_IRQ }
  614. #define UART0_DMA { 15, 14 }
  615. #define UART1_IRQ { IRQ_UARTINT1, NO_IRQ }
  616. #define UART1_DMA { 13, 12 }
  617. #define UART2_IRQ { IRQ_UARTINT2, NO_IRQ }
  618. #define UART2_DMA { 11, 10 }
  619. #define SSP_IRQ { IRQ_SSPINT, NO_IRQ }
  620. #define SSP_DMA { 9, 8 }
  621. /* FPGA Primecells */
  622. AMBA_DEVICE(aaci, "fpga:04", AACI, NULL);
  623. AMBA_DEVICE(mmc0, "fpga:05", MMCI0, &mmc0_plat_data);
  624. AMBA_DEVICE(kmi0, "fpga:06", KMI0, NULL);
  625. AMBA_DEVICE(kmi1, "fpga:07", KMI1, NULL);
  626. /* DevChip Primecells */
  627. AMBA_DEVICE(smc, "dev:00", SMC, NULL);
  628. AMBA_DEVICE(mpmc, "dev:10", MPMC, NULL);
  629. AMBA_DEVICE(clcd, "dev:20", CLCD, &clcd_plat_data);
  630. AMBA_DEVICE(dmac, "dev:30", DMAC, NULL);
  631. AMBA_DEVICE(sctl, "dev:e0", SCTL, NULL);
  632. AMBA_DEVICE(wdog, "dev:e1", WATCHDOG, NULL);
  633. AMBA_DEVICE(gpio0, "dev:e4", GPIO0, NULL);
  634. AMBA_DEVICE(gpio1, "dev:e5", GPIO1, NULL);
  635. AMBA_DEVICE(rtc, "dev:e8", RTC, NULL);
  636. AMBA_DEVICE(sci0, "dev:f0", SCI, NULL);
  637. AMBA_DEVICE(uart0, "dev:f1", UART0, NULL);
  638. AMBA_DEVICE(uart1, "dev:f2", UART1, NULL);
  639. AMBA_DEVICE(uart2, "dev:f3", UART2, NULL);
  640. AMBA_DEVICE(ssp0, "dev:f4", SSP, NULL);
  641. static struct amba_device *amba_devs[] __initdata = {
  642. &dmac_device,
  643. &uart0_device,
  644. &uart1_device,
  645. &uart2_device,
  646. &smc_device,
  647. &mpmc_device,
  648. &clcd_device,
  649. &sctl_device,
  650. &wdog_device,
  651. &gpio0_device,
  652. &gpio1_device,
  653. &rtc_device,
  654. &sci0_device,
  655. &ssp0_device,
  656. &aaci_device,
  657. &mmc0_device,
  658. &kmi0_device,
  659. &kmi1_device,
  660. };
  661. #ifdef CONFIG_LEDS
  662. #define VA_LEDS_BASE (__io_address(VERSATILE_SYS_BASE) + VERSATILE_SYS_LED_OFFSET)
  663. static void versatile_leds_event(led_event_t ledevt)
  664. {
  665. unsigned long flags;
  666. u32 val;
  667. local_irq_save(flags);
  668. val = readl(VA_LEDS_BASE);
  669. switch (ledevt) {
  670. case led_idle_start:
  671. val = val & ~VERSATILE_SYS_LED0;
  672. break;
  673. case led_idle_end:
  674. val = val | VERSATILE_SYS_LED0;
  675. break;
  676. case led_timer:
  677. val = val ^ VERSATILE_SYS_LED1;
  678. break;
  679. case led_halted:
  680. val = 0;
  681. break;
  682. default:
  683. break;
  684. }
  685. writel(val, VA_LEDS_BASE);
  686. local_irq_restore(flags);
  687. }
  688. #endif /* CONFIG_LEDS */
  689. void __init versatile_init(void)
  690. {
  691. int i;
  692. clk_register(&versatile_clcd_clk);
  693. platform_device_register(&versatile_flash_device);
  694. platform_device_register(&versatile_i2c_device);
  695. platform_device_register(&smc91x_device);
  696. for (i = 0; i < ARRAY_SIZE(amba_devs); i++) {
  697. struct amba_device *d = amba_devs[i];
  698. amba_device_register(d, &iomem_resource);
  699. }
  700. #ifdef CONFIG_LEDS
  701. leds_event = versatile_leds_event;
  702. #endif
  703. }
  704. /*
  705. * Where is the timer (VA)?
  706. */
  707. #define TIMER0_VA_BASE __io_address(VERSATILE_TIMER0_1_BASE)
  708. #define TIMER1_VA_BASE (__io_address(VERSATILE_TIMER0_1_BASE) + 0x20)
  709. #define TIMER2_VA_BASE __io_address(VERSATILE_TIMER2_3_BASE)
  710. #define TIMER3_VA_BASE (__io_address(VERSATILE_TIMER2_3_BASE) + 0x20)
  711. #define VA_IC_BASE __io_address(VERSATILE_VIC_BASE)
  712. /*
  713. * How long is the timer interval?
  714. */
  715. #define TIMER_INTERVAL (TICKS_PER_uSEC * mSEC_10)
  716. #if TIMER_INTERVAL >= 0x100000
  717. #define TIMER_RELOAD (TIMER_INTERVAL >> 8)
  718. #define TIMER_DIVISOR (TIMER_CTRL_DIV256)
  719. #define TICKS2USECS(x) (256 * (x) / TICKS_PER_uSEC)
  720. #elif TIMER_INTERVAL >= 0x10000
  721. #define TIMER_RELOAD (TIMER_INTERVAL >> 4) /* Divide by 16 */
  722. #define TIMER_DIVISOR (TIMER_CTRL_DIV16)
  723. #define TICKS2USECS(x) (16 * (x) / TICKS_PER_uSEC)
  724. #else
  725. #define TIMER_RELOAD (TIMER_INTERVAL)
  726. #define TIMER_DIVISOR (TIMER_CTRL_DIV1)
  727. #define TICKS2USECS(x) ((x) / TICKS_PER_uSEC)
  728. #endif
  729. static void timer_set_mode(enum clock_event_mode mode,
  730. struct clock_event_device *clk)
  731. {
  732. unsigned long ctrl;
  733. switch(mode) {
  734. case CLOCK_EVT_MODE_PERIODIC:
  735. writel(TIMER_RELOAD, TIMER0_VA_BASE + TIMER_LOAD);
  736. ctrl = TIMER_CTRL_PERIODIC;
  737. ctrl |= TIMER_CTRL_32BIT | TIMER_CTRL_IE | TIMER_CTRL_ENABLE;
  738. break;
  739. case CLOCK_EVT_MODE_ONESHOT:
  740. /* period set, and timer enabled in 'next_event' hook */
  741. ctrl = TIMER_CTRL_ONESHOT;
  742. ctrl |= TIMER_CTRL_32BIT | TIMER_CTRL_IE;
  743. break;
  744. case CLOCK_EVT_MODE_UNUSED:
  745. case CLOCK_EVT_MODE_SHUTDOWN:
  746. default:
  747. ctrl = 0;
  748. }
  749. writel(ctrl, TIMER0_VA_BASE + TIMER_CTRL);
  750. }
  751. static int timer_set_next_event(unsigned long evt,
  752. struct clock_event_device *unused)
  753. {
  754. unsigned long ctrl = readl(TIMER0_VA_BASE + TIMER_CTRL);
  755. writel(evt, TIMER0_VA_BASE + TIMER_LOAD);
  756. writel(ctrl | TIMER_CTRL_ENABLE, TIMER0_VA_BASE + TIMER_CTRL);
  757. return 0;
  758. }
  759. static struct clock_event_device timer0_clockevent = {
  760. .name = "timer0",
  761. .shift = 32,
  762. .features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT,
  763. .set_mode = timer_set_mode,
  764. .set_next_event = timer_set_next_event,
  765. };
  766. /*
  767. * IRQ handler for the timer
  768. */
  769. static irqreturn_t versatile_timer_interrupt(int irq, void *dev_id)
  770. {
  771. struct clock_event_device *evt = &timer0_clockevent;
  772. writel(1, TIMER0_VA_BASE + TIMER_INTCLR);
  773. evt->event_handler(evt);
  774. return IRQ_HANDLED;
  775. }
  776. static struct irqaction versatile_timer_irq = {
  777. .name = "Versatile Timer Tick",
  778. .flags = IRQF_DISABLED | IRQF_TIMER | IRQF_IRQPOLL,
  779. .handler = versatile_timer_interrupt,
  780. };
  781. static cycle_t versatile_get_cycles(void)
  782. {
  783. return ~readl(TIMER3_VA_BASE + TIMER_VALUE);
  784. }
  785. static struct clocksource clocksource_versatile = {
  786. .name = "timer3",
  787. .rating = 200,
  788. .read = versatile_get_cycles,
  789. .mask = CLOCKSOURCE_MASK(32),
  790. .shift = 20,
  791. .flags = CLOCK_SOURCE_IS_CONTINUOUS,
  792. };
  793. static int __init versatile_clocksource_init(void)
  794. {
  795. /* setup timer3 as free-running clocksource */
  796. writel(0, TIMER3_VA_BASE + TIMER_CTRL);
  797. writel(0xffffffff, TIMER3_VA_BASE + TIMER_LOAD);
  798. writel(0xffffffff, TIMER3_VA_BASE + TIMER_VALUE);
  799. writel(TIMER_CTRL_32BIT | TIMER_CTRL_ENABLE | TIMER_CTRL_PERIODIC,
  800. TIMER3_VA_BASE + TIMER_CTRL);
  801. clocksource_versatile.mult =
  802. clocksource_khz2mult(1000, clocksource_versatile.shift);
  803. clocksource_register(&clocksource_versatile);
  804. return 0;
  805. }
  806. /*
  807. * Set up timer interrupt, and return the current time in seconds.
  808. */
  809. static void __init versatile_timer_init(void)
  810. {
  811. u32 val;
  812. /*
  813. * set clock frequency:
  814. * VERSATILE_REFCLK is 32KHz
  815. * VERSATILE_TIMCLK is 1MHz
  816. */
  817. val = readl(__io_address(VERSATILE_SCTL_BASE));
  818. writel((VERSATILE_TIMCLK << VERSATILE_TIMER1_EnSel) |
  819. (VERSATILE_TIMCLK << VERSATILE_TIMER2_EnSel) |
  820. (VERSATILE_TIMCLK << VERSATILE_TIMER3_EnSel) |
  821. (VERSATILE_TIMCLK << VERSATILE_TIMER4_EnSel) | val,
  822. __io_address(VERSATILE_SCTL_BASE));
  823. /*
  824. * Initialise to a known state (all timers off)
  825. */
  826. writel(0, TIMER0_VA_BASE + TIMER_CTRL);
  827. writel(0, TIMER1_VA_BASE + TIMER_CTRL);
  828. writel(0, TIMER2_VA_BASE + TIMER_CTRL);
  829. writel(0, TIMER3_VA_BASE + TIMER_CTRL);
  830. /*
  831. * Make irqs happen for the system timer
  832. */
  833. setup_irq(IRQ_TIMERINT0_1, &versatile_timer_irq);
  834. versatile_clocksource_init();
  835. timer0_clockevent.mult =
  836. div_sc(1000000, NSEC_PER_SEC, timer0_clockevent.shift);
  837. timer0_clockevent.max_delta_ns =
  838. clockevent_delta2ns(0xffffffff, &timer0_clockevent);
  839. timer0_clockevent.min_delta_ns =
  840. clockevent_delta2ns(0xf, &timer0_clockevent);
  841. timer0_clockevent.cpumask = cpumask_of_cpu(0);
  842. clockevents_register_device(&timer0_clockevent);
  843. }
  844. struct sys_timer versatile_timer = {
  845. .init = versatile_timer_init,
  846. };