clock.c 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835
  1. /*
  2. * linux/arch/arm/mach-omap1/clock.c
  3. *
  4. * Copyright (C) 2004 - 2005 Nokia corporation
  5. * Written by Tuukka Tikkanen <tuukka.tikkanen@elektrobit.com>
  6. *
  7. * Modified to use omap shared clock framework by
  8. * Tony Lindgren <tony@atomide.com>
  9. *
  10. * This program is free software; you can redistribute it and/or modify
  11. * it under the terms of the GNU General Public License version 2 as
  12. * published by the Free Software Foundation.
  13. */
  14. #include <linux/module.h>
  15. #include <linux/kernel.h>
  16. #include <linux/list.h>
  17. #include <linux/errno.h>
  18. #include <linux/err.h>
  19. #include <linux/clk.h>
  20. #include <linux/io.h>
  21. #include <asm/mach-types.h>
  22. #include <mach/cpu.h>
  23. #include <mach/usb.h>
  24. #include <mach/clock.h>
  25. #include <mach/sram.h>
  26. #include "clock.h"
  27. __u32 arm_idlect1_mask;
  28. /*-------------------------------------------------------------------------
  29. * Omap1 specific clock functions
  30. *-------------------------------------------------------------------------*/
  31. static void omap1_watchdog_recalc(struct clk * clk)
  32. {
  33. clk->rate = clk->parent->rate / 14;
  34. }
  35. static void omap1_uart_recalc(struct clk * clk)
  36. {
  37. unsigned int val = omap_readl(clk->enable_reg);
  38. if (val & clk->enable_bit)
  39. clk->rate = 48000000;
  40. else
  41. clk->rate = 12000000;
  42. }
  43. static void omap1_sossi_recalc(struct clk *clk)
  44. {
  45. u32 div = omap_readl(MOD_CONF_CTRL_1);
  46. div = (div >> 17) & 0x7;
  47. div++;
  48. clk->rate = clk->parent->rate / div;
  49. }
  50. static int omap1_clk_enable_dsp_domain(struct clk *clk)
  51. {
  52. int retval;
  53. retval = omap1_clk_enable(&api_ck.clk);
  54. if (!retval) {
  55. retval = omap1_clk_enable_generic(clk);
  56. omap1_clk_disable(&api_ck.clk);
  57. }
  58. return retval;
  59. }
  60. static void omap1_clk_disable_dsp_domain(struct clk *clk)
  61. {
  62. if (omap1_clk_enable(&api_ck.clk) == 0) {
  63. omap1_clk_disable_generic(clk);
  64. omap1_clk_disable(&api_ck.clk);
  65. }
  66. }
  67. static int omap1_clk_enable_uart_functional(struct clk *clk)
  68. {
  69. int ret;
  70. struct uart_clk *uclk;
  71. ret = omap1_clk_enable_generic(clk);
  72. if (ret == 0) {
  73. /* Set smart idle acknowledgement mode */
  74. uclk = (struct uart_clk *)clk;
  75. omap_writeb((omap_readb(uclk->sysc_addr) & ~0x10) | 8,
  76. uclk->sysc_addr);
  77. }
  78. return ret;
  79. }
  80. static void omap1_clk_disable_uart_functional(struct clk *clk)
  81. {
  82. struct uart_clk *uclk;
  83. /* Set force idle acknowledgement mode */
  84. uclk = (struct uart_clk *)clk;
  85. omap_writeb((omap_readb(uclk->sysc_addr) & ~0x18), uclk->sysc_addr);
  86. omap1_clk_disable_generic(clk);
  87. }
  88. static void omap1_clk_allow_idle(struct clk *clk)
  89. {
  90. struct arm_idlect1_clk * iclk = (struct arm_idlect1_clk *)clk;
  91. if (!(clk->flags & CLOCK_IDLE_CONTROL))
  92. return;
  93. if (iclk->no_idle_count > 0 && !(--iclk->no_idle_count))
  94. arm_idlect1_mask |= 1 << iclk->idlect_shift;
  95. }
  96. static void omap1_clk_deny_idle(struct clk *clk)
  97. {
  98. struct arm_idlect1_clk * iclk = (struct arm_idlect1_clk *)clk;
  99. if (!(clk->flags & CLOCK_IDLE_CONTROL))
  100. return;
  101. if (iclk->no_idle_count++ == 0)
  102. arm_idlect1_mask &= ~(1 << iclk->idlect_shift);
  103. }
  104. static __u16 verify_ckctl_value(__u16 newval)
  105. {
  106. /* This function checks for following limitations set
  107. * by the hardware (all conditions must be true):
  108. * DSPMMU_CK == DSP_CK or DSPMMU_CK == DSP_CK/2
  109. * ARM_CK >= TC_CK
  110. * DSP_CK >= TC_CK
  111. * DSPMMU_CK >= TC_CK
  112. *
  113. * In addition following rules are enforced:
  114. * LCD_CK <= TC_CK
  115. * ARMPER_CK <= TC_CK
  116. *
  117. * However, maximum frequencies are not checked for!
  118. */
  119. __u8 per_exp;
  120. __u8 lcd_exp;
  121. __u8 arm_exp;
  122. __u8 dsp_exp;
  123. __u8 tc_exp;
  124. __u8 dspmmu_exp;
  125. per_exp = (newval >> CKCTL_PERDIV_OFFSET) & 3;
  126. lcd_exp = (newval >> CKCTL_LCDDIV_OFFSET) & 3;
  127. arm_exp = (newval >> CKCTL_ARMDIV_OFFSET) & 3;
  128. dsp_exp = (newval >> CKCTL_DSPDIV_OFFSET) & 3;
  129. tc_exp = (newval >> CKCTL_TCDIV_OFFSET) & 3;
  130. dspmmu_exp = (newval >> CKCTL_DSPMMUDIV_OFFSET) & 3;
  131. if (dspmmu_exp < dsp_exp)
  132. dspmmu_exp = dsp_exp;
  133. if (dspmmu_exp > dsp_exp+1)
  134. dspmmu_exp = dsp_exp+1;
  135. if (tc_exp < arm_exp)
  136. tc_exp = arm_exp;
  137. if (tc_exp < dspmmu_exp)
  138. tc_exp = dspmmu_exp;
  139. if (tc_exp > lcd_exp)
  140. lcd_exp = tc_exp;
  141. if (tc_exp > per_exp)
  142. per_exp = tc_exp;
  143. newval &= 0xf000;
  144. newval |= per_exp << CKCTL_PERDIV_OFFSET;
  145. newval |= lcd_exp << CKCTL_LCDDIV_OFFSET;
  146. newval |= arm_exp << CKCTL_ARMDIV_OFFSET;
  147. newval |= dsp_exp << CKCTL_DSPDIV_OFFSET;
  148. newval |= tc_exp << CKCTL_TCDIV_OFFSET;
  149. newval |= dspmmu_exp << CKCTL_DSPMMUDIV_OFFSET;
  150. return newval;
  151. }
  152. static int calc_dsor_exp(struct clk *clk, unsigned long rate)
  153. {
  154. /* Note: If target frequency is too low, this function will return 4,
  155. * which is invalid value. Caller must check for this value and act
  156. * accordingly.
  157. *
  158. * Note: This function does not check for following limitations set
  159. * by the hardware (all conditions must be true):
  160. * DSPMMU_CK == DSP_CK or DSPMMU_CK == DSP_CK/2
  161. * ARM_CK >= TC_CK
  162. * DSP_CK >= TC_CK
  163. * DSPMMU_CK >= TC_CK
  164. */
  165. unsigned long realrate;
  166. struct clk * parent;
  167. unsigned dsor_exp;
  168. if (unlikely(!(clk->flags & RATE_CKCTL)))
  169. return -EINVAL;
  170. parent = clk->parent;
  171. if (unlikely(parent == 0))
  172. return -EIO;
  173. realrate = parent->rate;
  174. for (dsor_exp=0; dsor_exp<4; dsor_exp++) {
  175. if (realrate <= rate)
  176. break;
  177. realrate /= 2;
  178. }
  179. return dsor_exp;
  180. }
  181. static void omap1_ckctl_recalc(struct clk * clk)
  182. {
  183. int dsor;
  184. /* Calculate divisor encoded as 2-bit exponent */
  185. dsor = 1 << (3 & (omap_readw(ARM_CKCTL) >> clk->rate_offset));
  186. if (unlikely(clk->rate == clk->parent->rate / dsor))
  187. return; /* No change, quick exit */
  188. clk->rate = clk->parent->rate / dsor;
  189. if (unlikely(clk->flags & RATE_PROPAGATES))
  190. propagate_rate(clk);
  191. }
  192. static void omap1_ckctl_recalc_dsp_domain(struct clk * clk)
  193. {
  194. int dsor;
  195. /* Calculate divisor encoded as 2-bit exponent
  196. *
  197. * The clock control bits are in DSP domain,
  198. * so api_ck is needed for access.
  199. * Note that DSP_CKCTL virt addr = phys addr, so
  200. * we must use __raw_readw() instead of omap_readw().
  201. */
  202. omap1_clk_enable(&api_ck.clk);
  203. dsor = 1 << (3 & (__raw_readw(DSP_CKCTL) >> clk->rate_offset));
  204. omap1_clk_disable(&api_ck.clk);
  205. if (unlikely(clk->rate == clk->parent->rate / dsor))
  206. return; /* No change, quick exit */
  207. clk->rate = clk->parent->rate / dsor;
  208. if (unlikely(clk->flags & RATE_PROPAGATES))
  209. propagate_rate(clk);
  210. }
  211. /* MPU virtual clock functions */
  212. static int omap1_select_table_rate(struct clk * clk, unsigned long rate)
  213. {
  214. /* Find the highest supported frequency <= rate and switch to it */
  215. struct mpu_rate * ptr;
  216. if (clk != &virtual_ck_mpu)
  217. return -EINVAL;
  218. for (ptr = rate_table; ptr->rate; ptr++) {
  219. if (ptr->xtal != ck_ref.rate)
  220. continue;
  221. /* DPLL1 cannot be reprogrammed without risking system crash */
  222. if (likely(ck_dpll1.rate!=0) && ptr->pll_rate != ck_dpll1.rate)
  223. continue;
  224. /* Can check only after xtal frequency check */
  225. if (ptr->rate <= rate)
  226. break;
  227. }
  228. if (!ptr->rate)
  229. return -EINVAL;
  230. /*
  231. * In most cases we should not need to reprogram DPLL.
  232. * Reprogramming the DPLL is tricky, it must be done from SRAM.
  233. * (on 730, bit 13 must always be 1)
  234. */
  235. if (cpu_is_omap730())
  236. omap_sram_reprogram_clock(ptr->dpllctl_val, ptr->ckctl_val | 0x2000);
  237. else
  238. omap_sram_reprogram_clock(ptr->dpllctl_val, ptr->ckctl_val);
  239. ck_dpll1.rate = ptr->pll_rate;
  240. propagate_rate(&ck_dpll1);
  241. return 0;
  242. }
  243. static int omap1_clk_set_rate_dsp_domain(struct clk *clk, unsigned long rate)
  244. {
  245. int ret = -EINVAL;
  246. int dsor_exp;
  247. __u16 regval;
  248. if (clk->flags & RATE_CKCTL) {
  249. dsor_exp = calc_dsor_exp(clk, rate);
  250. if (dsor_exp > 3)
  251. dsor_exp = -EINVAL;
  252. if (dsor_exp < 0)
  253. return dsor_exp;
  254. regval = __raw_readw(DSP_CKCTL);
  255. regval &= ~(3 << clk->rate_offset);
  256. regval |= dsor_exp << clk->rate_offset;
  257. __raw_writew(regval, DSP_CKCTL);
  258. clk->rate = clk->parent->rate / (1 << dsor_exp);
  259. ret = 0;
  260. }
  261. if (unlikely(ret == 0 && (clk->flags & RATE_PROPAGATES)))
  262. propagate_rate(clk);
  263. return ret;
  264. }
  265. static long omap1_round_to_table_rate(struct clk * clk, unsigned long rate)
  266. {
  267. /* Find the highest supported frequency <= rate */
  268. struct mpu_rate * ptr;
  269. long highest_rate;
  270. if (clk != &virtual_ck_mpu)
  271. return -EINVAL;
  272. highest_rate = -EINVAL;
  273. for (ptr = rate_table; ptr->rate; ptr++) {
  274. if (ptr->xtal != ck_ref.rate)
  275. continue;
  276. highest_rate = ptr->rate;
  277. /* Can check only after xtal frequency check */
  278. if (ptr->rate <= rate)
  279. break;
  280. }
  281. return highest_rate;
  282. }
  283. static unsigned calc_ext_dsor(unsigned long rate)
  284. {
  285. unsigned dsor;
  286. /* MCLK and BCLK divisor selection is not linear:
  287. * freq = 96MHz / dsor
  288. *
  289. * RATIO_SEL range: dsor <-> RATIO_SEL
  290. * 0..6: (RATIO_SEL+2) <-> (dsor-2)
  291. * 6..48: (8+(RATIO_SEL-6)*2) <-> ((dsor-8)/2+6)
  292. * Minimum dsor is 2 and maximum is 96. Odd divisors starting from 9
  293. * can not be used.
  294. */
  295. for (dsor = 2; dsor < 96; ++dsor) {
  296. if ((dsor & 1) && dsor > 8)
  297. continue;
  298. if (rate >= 96000000 / dsor)
  299. break;
  300. }
  301. return dsor;
  302. }
  303. /* Only needed on 1510 */
  304. static int omap1_set_uart_rate(struct clk * clk, unsigned long rate)
  305. {
  306. unsigned int val;
  307. val = omap_readl(clk->enable_reg);
  308. if (rate == 12000000)
  309. val &= ~(1 << clk->enable_bit);
  310. else if (rate == 48000000)
  311. val |= (1 << clk->enable_bit);
  312. else
  313. return -EINVAL;
  314. omap_writel(val, clk->enable_reg);
  315. clk->rate = rate;
  316. return 0;
  317. }
  318. /* External clock (MCLK & BCLK) functions */
  319. static int omap1_set_ext_clk_rate(struct clk * clk, unsigned long rate)
  320. {
  321. unsigned dsor;
  322. __u16 ratio_bits;
  323. dsor = calc_ext_dsor(rate);
  324. clk->rate = 96000000 / dsor;
  325. if (dsor > 8)
  326. ratio_bits = ((dsor - 8) / 2 + 6) << 2;
  327. else
  328. ratio_bits = (dsor - 2) << 2;
  329. ratio_bits |= omap_readw(clk->enable_reg) & ~0xfd;
  330. omap_writew(ratio_bits, clk->enable_reg);
  331. return 0;
  332. }
  333. static int omap1_set_sossi_rate(struct clk *clk, unsigned long rate)
  334. {
  335. u32 l;
  336. int div;
  337. unsigned long p_rate;
  338. p_rate = clk->parent->rate;
  339. /* Round towards slower frequency */
  340. div = (p_rate + rate - 1) / rate;
  341. div--;
  342. if (div < 0 || div > 7)
  343. return -EINVAL;
  344. l = omap_readl(MOD_CONF_CTRL_1);
  345. l &= ~(7 << 17);
  346. l |= div << 17;
  347. omap_writel(l, MOD_CONF_CTRL_1);
  348. clk->rate = p_rate / (div + 1);
  349. if (unlikely(clk->flags & RATE_PROPAGATES))
  350. propagate_rate(clk);
  351. return 0;
  352. }
  353. static long omap1_round_ext_clk_rate(struct clk * clk, unsigned long rate)
  354. {
  355. return 96000000 / calc_ext_dsor(rate);
  356. }
  357. static void omap1_init_ext_clk(struct clk * clk)
  358. {
  359. unsigned dsor;
  360. __u16 ratio_bits;
  361. /* Determine current rate and ensure clock is based on 96MHz APLL */
  362. ratio_bits = omap_readw(clk->enable_reg) & ~1;
  363. omap_writew(ratio_bits, clk->enable_reg);
  364. ratio_bits = (ratio_bits & 0xfc) >> 2;
  365. if (ratio_bits > 6)
  366. dsor = (ratio_bits - 6) * 2 + 8;
  367. else
  368. dsor = ratio_bits + 2;
  369. clk-> rate = 96000000 / dsor;
  370. }
  371. static int omap1_clk_enable(struct clk *clk)
  372. {
  373. int ret = 0;
  374. if (clk->usecount++ == 0) {
  375. if (likely(clk->parent)) {
  376. ret = omap1_clk_enable(clk->parent);
  377. if (unlikely(ret != 0)) {
  378. clk->usecount--;
  379. return ret;
  380. }
  381. if (clk->flags & CLOCK_NO_IDLE_PARENT)
  382. omap1_clk_deny_idle(clk->parent);
  383. }
  384. ret = clk->enable(clk);
  385. if (unlikely(ret != 0) && clk->parent) {
  386. omap1_clk_disable(clk->parent);
  387. clk->usecount--;
  388. }
  389. }
  390. return ret;
  391. }
  392. static void omap1_clk_disable(struct clk *clk)
  393. {
  394. if (clk->usecount > 0 && !(--clk->usecount)) {
  395. clk->disable(clk);
  396. if (likely(clk->parent)) {
  397. omap1_clk_disable(clk->parent);
  398. if (clk->flags & CLOCK_NO_IDLE_PARENT)
  399. omap1_clk_allow_idle(clk->parent);
  400. }
  401. }
  402. }
  403. static int omap1_clk_enable_generic(struct clk *clk)
  404. {
  405. __u16 regval16;
  406. __u32 regval32;
  407. if (clk->flags & ALWAYS_ENABLED)
  408. return 0;
  409. if (unlikely(clk->enable_reg == 0)) {
  410. printk(KERN_ERR "clock.c: Enable for %s without enable code\n",
  411. clk->name);
  412. return -EINVAL;
  413. }
  414. if (clk->flags & ENABLE_REG_32BIT) {
  415. if (clk->flags & VIRTUAL_IO_ADDRESS) {
  416. regval32 = __raw_readl(clk->enable_reg);
  417. regval32 |= (1 << clk->enable_bit);
  418. __raw_writel(regval32, clk->enable_reg);
  419. } else {
  420. regval32 = omap_readl(clk->enable_reg);
  421. regval32 |= (1 << clk->enable_bit);
  422. omap_writel(regval32, clk->enable_reg);
  423. }
  424. } else {
  425. if (clk->flags & VIRTUAL_IO_ADDRESS) {
  426. regval16 = __raw_readw(clk->enable_reg);
  427. regval16 |= (1 << clk->enable_bit);
  428. __raw_writew(regval16, clk->enable_reg);
  429. } else {
  430. regval16 = omap_readw(clk->enable_reg);
  431. regval16 |= (1 << clk->enable_bit);
  432. omap_writew(regval16, clk->enable_reg);
  433. }
  434. }
  435. return 0;
  436. }
  437. static void omap1_clk_disable_generic(struct clk *clk)
  438. {
  439. __u16 regval16;
  440. __u32 regval32;
  441. if (clk->enable_reg == 0)
  442. return;
  443. if (clk->flags & ENABLE_REG_32BIT) {
  444. if (clk->flags & VIRTUAL_IO_ADDRESS) {
  445. regval32 = __raw_readl(clk->enable_reg);
  446. regval32 &= ~(1 << clk->enable_bit);
  447. __raw_writel(regval32, clk->enable_reg);
  448. } else {
  449. regval32 = omap_readl(clk->enable_reg);
  450. regval32 &= ~(1 << clk->enable_bit);
  451. omap_writel(regval32, clk->enable_reg);
  452. }
  453. } else {
  454. if (clk->flags & VIRTUAL_IO_ADDRESS) {
  455. regval16 = __raw_readw(clk->enable_reg);
  456. regval16 &= ~(1 << clk->enable_bit);
  457. __raw_writew(regval16, clk->enable_reg);
  458. } else {
  459. regval16 = omap_readw(clk->enable_reg);
  460. regval16 &= ~(1 << clk->enable_bit);
  461. omap_writew(regval16, clk->enable_reg);
  462. }
  463. }
  464. }
  465. static long omap1_clk_round_rate(struct clk *clk, unsigned long rate)
  466. {
  467. int dsor_exp;
  468. if (clk->flags & RATE_FIXED)
  469. return clk->rate;
  470. if (clk->flags & RATE_CKCTL) {
  471. dsor_exp = calc_dsor_exp(clk, rate);
  472. if (dsor_exp < 0)
  473. return dsor_exp;
  474. if (dsor_exp > 3)
  475. dsor_exp = 3;
  476. return clk->parent->rate / (1 << dsor_exp);
  477. }
  478. if(clk->round_rate != 0)
  479. return clk->round_rate(clk, rate);
  480. return clk->rate;
  481. }
  482. static int omap1_clk_set_rate(struct clk *clk, unsigned long rate)
  483. {
  484. int ret = -EINVAL;
  485. int dsor_exp;
  486. __u16 regval;
  487. if (clk->set_rate)
  488. ret = clk->set_rate(clk, rate);
  489. else if (clk->flags & RATE_CKCTL) {
  490. dsor_exp = calc_dsor_exp(clk, rate);
  491. if (dsor_exp > 3)
  492. dsor_exp = -EINVAL;
  493. if (dsor_exp < 0)
  494. return dsor_exp;
  495. regval = omap_readw(ARM_CKCTL);
  496. regval &= ~(3 << clk->rate_offset);
  497. regval |= dsor_exp << clk->rate_offset;
  498. regval = verify_ckctl_value(regval);
  499. omap_writew(regval, ARM_CKCTL);
  500. clk->rate = clk->parent->rate / (1 << dsor_exp);
  501. ret = 0;
  502. }
  503. if (unlikely(ret == 0 && (clk->flags & RATE_PROPAGATES)))
  504. propagate_rate(clk);
  505. return ret;
  506. }
  507. /*-------------------------------------------------------------------------
  508. * Omap1 clock reset and init functions
  509. *-------------------------------------------------------------------------*/
  510. #ifdef CONFIG_OMAP_RESET_CLOCKS
  511. static void __init omap1_clk_disable_unused(struct clk *clk)
  512. {
  513. __u32 regval32;
  514. /* Clocks in the DSP domain need api_ck. Just assume bootloader
  515. * has not enabled any DSP clocks */
  516. if ((u32)clk->enable_reg == DSP_IDLECT2) {
  517. printk(KERN_INFO "Skipping reset check for DSP domain "
  518. "clock \"%s\"\n", clk->name);
  519. return;
  520. }
  521. /* Is the clock already disabled? */
  522. if (clk->flags & ENABLE_REG_32BIT) {
  523. if (clk->flags & VIRTUAL_IO_ADDRESS)
  524. regval32 = __raw_readl(clk->enable_reg);
  525. else
  526. regval32 = omap_readl(clk->enable_reg);
  527. } else {
  528. if (clk->flags & VIRTUAL_IO_ADDRESS)
  529. regval32 = __raw_readw(clk->enable_reg);
  530. else
  531. regval32 = omap_readw(clk->enable_reg);
  532. }
  533. if ((regval32 & (1 << clk->enable_bit)) == 0)
  534. return;
  535. /* FIXME: This clock seems to be necessary but no-one
  536. * has asked for its activation. */
  537. if (clk == &tc2_ck /* FIX: pm.c (SRAM), CCP, Camera */
  538. || clk == &ck_dpll1out.clk /* FIX: SoSSI, SSR */
  539. || clk == &arm_gpio_ck /* FIX: GPIO code for 1510 */
  540. ) {
  541. printk(KERN_INFO "FIXME: Clock \"%s\" seems unused\n",
  542. clk->name);
  543. return;
  544. }
  545. printk(KERN_INFO "Disabling unused clock \"%s\"... ", clk->name);
  546. clk->disable(clk);
  547. printk(" done\n");
  548. }
  549. #else
  550. #define omap1_clk_disable_unused NULL
  551. #endif
  552. static struct clk_functions omap1_clk_functions = {
  553. .clk_enable = omap1_clk_enable,
  554. .clk_disable = omap1_clk_disable,
  555. .clk_round_rate = omap1_clk_round_rate,
  556. .clk_set_rate = omap1_clk_set_rate,
  557. .clk_disable_unused = omap1_clk_disable_unused,
  558. };
  559. int __init omap1_clk_init(void)
  560. {
  561. struct clk ** clkp;
  562. const struct omap_clock_config *info;
  563. int crystal_type = 0; /* Default 12 MHz */
  564. u32 reg;
  565. #ifdef CONFIG_DEBUG_LL
  566. /* Resets some clocks that may be left on from bootloader,
  567. * but leaves serial clocks on.
  568. */
  569. omap_writel(0x3 << 29, MOD_CONF_CTRL_0);
  570. #endif
  571. /* USB_REQ_EN will be disabled later if necessary (usb_dc_ck) */
  572. reg = omap_readw(SOFT_REQ_REG) & (1 << 4);
  573. omap_writew(reg, SOFT_REQ_REG);
  574. if (!cpu_is_omap15xx())
  575. omap_writew(0, SOFT_REQ_REG2);
  576. clk_init(&omap1_clk_functions);
  577. /* By default all idlect1 clocks are allowed to idle */
  578. arm_idlect1_mask = ~0;
  579. for (clkp = onchip_clks; clkp < onchip_clks+ARRAY_SIZE(onchip_clks); clkp++) {
  580. if (((*clkp)->flags &CLOCK_IN_OMAP1510) && cpu_is_omap1510()) {
  581. clk_register(*clkp);
  582. continue;
  583. }
  584. if (((*clkp)->flags &CLOCK_IN_OMAP16XX) && cpu_is_omap16xx()) {
  585. clk_register(*clkp);
  586. continue;
  587. }
  588. if (((*clkp)->flags &CLOCK_IN_OMAP730) && cpu_is_omap730()) {
  589. clk_register(*clkp);
  590. continue;
  591. }
  592. if (((*clkp)->flags &CLOCK_IN_OMAP310) && cpu_is_omap310()) {
  593. clk_register(*clkp);
  594. continue;
  595. }
  596. }
  597. info = omap_get_config(OMAP_TAG_CLOCK, struct omap_clock_config);
  598. if (info != NULL) {
  599. if (!cpu_is_omap15xx())
  600. crystal_type = info->system_clock_type;
  601. }
  602. #if defined(CONFIG_ARCH_OMAP730)
  603. ck_ref.rate = 13000000;
  604. #elif defined(CONFIG_ARCH_OMAP16XX)
  605. if (crystal_type == 2)
  606. ck_ref.rate = 19200000;
  607. #endif
  608. printk("Clocks: ARM_SYSST: 0x%04x DPLL_CTL: 0x%04x ARM_CKCTL: 0x%04x\n",
  609. omap_readw(ARM_SYSST), omap_readw(DPLL_CTL),
  610. omap_readw(ARM_CKCTL));
  611. /* We want to be in syncronous scalable mode */
  612. omap_writew(0x1000, ARM_SYSST);
  613. #ifdef CONFIG_OMAP_CLOCKS_SET_BY_BOOTLOADER
  614. /* Use values set by bootloader. Determine PLL rate and recalculate
  615. * dependent clocks as if kernel had changed PLL or divisors.
  616. */
  617. {
  618. unsigned pll_ctl_val = omap_readw(DPLL_CTL);
  619. ck_dpll1.rate = ck_ref.rate; /* Base xtal rate */
  620. if (pll_ctl_val & 0x10) {
  621. /* PLL enabled, apply multiplier and divisor */
  622. if (pll_ctl_val & 0xf80)
  623. ck_dpll1.rate *= (pll_ctl_val & 0xf80) >> 7;
  624. ck_dpll1.rate /= ((pll_ctl_val & 0x60) >> 5) + 1;
  625. } else {
  626. /* PLL disabled, apply bypass divisor */
  627. switch (pll_ctl_val & 0xc) {
  628. case 0:
  629. break;
  630. case 0x4:
  631. ck_dpll1.rate /= 2;
  632. break;
  633. default:
  634. ck_dpll1.rate /= 4;
  635. break;
  636. }
  637. }
  638. }
  639. propagate_rate(&ck_dpll1);
  640. #else
  641. /* Find the highest supported frequency and enable it */
  642. if (omap1_select_table_rate(&virtual_ck_mpu, ~0)) {
  643. printk(KERN_ERR "System frequencies not set. Check your config.\n");
  644. /* Guess sane values (60MHz) */
  645. omap_writew(0x2290, DPLL_CTL);
  646. omap_writew(cpu_is_omap730() ? 0x3005 : 0x1005, ARM_CKCTL);
  647. ck_dpll1.rate = 60000000;
  648. propagate_rate(&ck_dpll1);
  649. }
  650. #endif
  651. /* Cache rates for clocks connected to ck_ref (not dpll1) */
  652. propagate_rate(&ck_ref);
  653. printk(KERN_INFO "Clocking rate (xtal/DPLL1/MPU): "
  654. "%ld.%01ld/%ld.%01ld/%ld.%01ld MHz\n",
  655. ck_ref.rate / 1000000, (ck_ref.rate / 100000) % 10,
  656. ck_dpll1.rate / 1000000, (ck_dpll1.rate / 100000) % 10,
  657. arm_ck.rate / 1000000, (arm_ck.rate / 100000) % 10);
  658. #if defined(CONFIG_MACH_OMAP_PERSEUS2) || defined(CONFIG_MACH_OMAP_FSAMPLE)
  659. /* Select slicer output as OMAP input clock */
  660. omap_writew(omap_readw(OMAP730_PCC_UPLD_CTRL) & ~0x1, OMAP730_PCC_UPLD_CTRL);
  661. #endif
  662. /* Amstrad Delta wants BCLK high when inactive */
  663. if (machine_is_ams_delta())
  664. omap_writel(omap_readl(ULPD_CLOCK_CTRL) |
  665. (1 << SDW_MCLK_INV_BIT),
  666. ULPD_CLOCK_CTRL);
  667. /* Turn off DSP and ARM_TIMXO. Make sure ARM_INTHCK is not divided */
  668. /* (on 730, bit 13 must not be cleared) */
  669. if (cpu_is_omap730())
  670. omap_writew(omap_readw(ARM_CKCTL) & 0x2fff, ARM_CKCTL);
  671. else
  672. omap_writew(omap_readw(ARM_CKCTL) & 0x0fff, ARM_CKCTL);
  673. /* Put DSP/MPUI into reset until needed */
  674. omap_writew(0, ARM_RSTCT1);
  675. omap_writew(1, ARM_RSTCT2);
  676. omap_writew(0x400, ARM_IDLECT1);
  677. /*
  678. * According to OMAP5910 Erratum SYS_DMA_1, bit DMACK_REQ (bit 8)
  679. * of the ARM_IDLECT2 register must be set to zero. The power-on
  680. * default value of this bit is one.
  681. */
  682. omap_writew(0x0000, ARM_IDLECT2); /* Turn LCD clock off also */
  683. /*
  684. * Only enable those clocks we will need, let the drivers
  685. * enable other clocks as necessary
  686. */
  687. clk_enable(&armper_ck.clk);
  688. clk_enable(&armxor_ck.clk);
  689. clk_enable(&armtim_ck.clk); /* This should be done by timer code */
  690. if (cpu_is_omap15xx())
  691. clk_enable(&arm_gpio_ck);
  692. return 0;
  693. }