time.c 8.5 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391
  1. /*
  2. * linux/arch/arm/kernel/time.c
  3. *
  4. * Copyright (C) 1991, 1992, 1995 Linus Torvalds
  5. * Modifications for ARM (C) 1994-2001 Russell King
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. *
  11. * This file contains the ARM-specific time handling details:
  12. * reading the RTC at bootup, etc...
  13. *
  14. * 1994-07-02 Alan Modra
  15. * fixed set_rtc_mmss, fixed time.year for >= 2000, new mktime
  16. * 1998-12-20 Updated NTP code according to technical memorandum Jan '96
  17. * "A Kernel Model for Precision Timekeeping" by Dave Mills
  18. */
  19. #include <linux/module.h>
  20. #include <linux/kernel.h>
  21. #include <linux/interrupt.h>
  22. #include <linux/time.h>
  23. #include <linux/init.h>
  24. #include <linux/smp.h>
  25. #include <linux/timex.h>
  26. #include <linux/errno.h>
  27. #include <linux/profile.h>
  28. #include <linux/sysdev.h>
  29. #include <linux/timer.h>
  30. #include <linux/irq.h>
  31. #include <linux/mc146818rtc.h>
  32. #include <asm/leds.h>
  33. #include <asm/thread_info.h>
  34. #include <asm/mach/time.h>
  35. /*
  36. * Our system timer.
  37. */
  38. struct sys_timer *system_timer;
  39. #if defined(CONFIG_RTC_DRV_CMOS) || defined(CONFIG_RTC_DRV_CMOS_MODULE)
  40. /* this needs a better home */
  41. DEFINE_SPINLOCK(rtc_lock);
  42. #ifdef CONFIG_RTC_DRV_CMOS_MODULE
  43. EXPORT_SYMBOL(rtc_lock);
  44. #endif
  45. #endif /* pc-style 'CMOS' RTC support */
  46. /* change this if you have some constant time drift */
  47. #define USECS_PER_JIFFY (1000000/HZ)
  48. #ifdef CONFIG_SMP
  49. unsigned long profile_pc(struct pt_regs *regs)
  50. {
  51. unsigned long fp, pc = instruction_pointer(regs);
  52. if (in_lock_functions(pc)) {
  53. fp = regs->ARM_fp;
  54. pc = ((unsigned long *)fp)[-1];
  55. }
  56. return pc;
  57. }
  58. EXPORT_SYMBOL(profile_pc);
  59. #endif
  60. /*
  61. * hook for setting the RTC's idea of the current time.
  62. */
  63. int (*set_rtc)(void);
  64. #ifndef CONFIG_GENERIC_TIME
  65. static unsigned long dummy_gettimeoffset(void)
  66. {
  67. return 0;
  68. }
  69. #endif
  70. static unsigned long next_rtc_update;
  71. /*
  72. * If we have an externally synchronized linux clock, then update
  73. * CMOS clock accordingly every ~11 minutes. set_rtc() has to be
  74. * called as close as possible to 500 ms before the new second
  75. * starts.
  76. */
  77. static inline void do_set_rtc(void)
  78. {
  79. if (!ntp_synced() || set_rtc == NULL)
  80. return;
  81. if (next_rtc_update &&
  82. time_before((unsigned long)xtime.tv_sec, next_rtc_update))
  83. return;
  84. if (xtime.tv_nsec < 500000000 - ((unsigned) tick_nsec >> 1) &&
  85. xtime.tv_nsec >= 500000000 + ((unsigned) tick_nsec >> 1))
  86. return;
  87. if (set_rtc())
  88. /*
  89. * rtc update failed. Try again in 60s
  90. */
  91. next_rtc_update = xtime.tv_sec + 60;
  92. else
  93. next_rtc_update = xtime.tv_sec + 660;
  94. }
  95. #ifdef CONFIG_LEDS
  96. static void dummy_leds_event(led_event_t evt)
  97. {
  98. }
  99. void (*leds_event)(led_event_t) = dummy_leds_event;
  100. struct leds_evt_name {
  101. const char name[8];
  102. int on;
  103. int off;
  104. };
  105. static const struct leds_evt_name evt_names[] = {
  106. { "amber", led_amber_on, led_amber_off },
  107. { "blue", led_blue_on, led_blue_off },
  108. { "green", led_green_on, led_green_off },
  109. { "red", led_red_on, led_red_off },
  110. };
  111. static ssize_t leds_store(struct sys_device *dev,
  112. struct sysdev_attribute *attr,
  113. const char *buf, size_t size)
  114. {
  115. int ret = -EINVAL, len = strcspn(buf, " ");
  116. if (len > 0 && buf[len] == '\0')
  117. len--;
  118. if (strncmp(buf, "claim", len) == 0) {
  119. leds_event(led_claim);
  120. ret = size;
  121. } else if (strncmp(buf, "release", len) == 0) {
  122. leds_event(led_release);
  123. ret = size;
  124. } else {
  125. int i;
  126. for (i = 0; i < ARRAY_SIZE(evt_names); i++) {
  127. if (strlen(evt_names[i].name) != len ||
  128. strncmp(buf, evt_names[i].name, len) != 0)
  129. continue;
  130. if (strncmp(buf+len, " on", 3) == 0) {
  131. leds_event(evt_names[i].on);
  132. ret = size;
  133. } else if (strncmp(buf+len, " off", 4) == 0) {
  134. leds_event(evt_names[i].off);
  135. ret = size;
  136. }
  137. break;
  138. }
  139. }
  140. return ret;
  141. }
  142. static SYSDEV_ATTR(event, 0200, NULL, leds_store);
  143. static int leds_suspend(struct sys_device *dev, pm_message_t state)
  144. {
  145. leds_event(led_stop);
  146. return 0;
  147. }
  148. static int leds_resume(struct sys_device *dev)
  149. {
  150. leds_event(led_start);
  151. return 0;
  152. }
  153. static int leds_shutdown(struct sys_device *dev)
  154. {
  155. leds_event(led_halted);
  156. return 0;
  157. }
  158. static struct sysdev_class leds_sysclass = {
  159. .name = "leds",
  160. .shutdown = leds_shutdown,
  161. .suspend = leds_suspend,
  162. .resume = leds_resume,
  163. };
  164. static struct sys_device leds_device = {
  165. .id = 0,
  166. .cls = &leds_sysclass,
  167. };
  168. static int __init leds_init(void)
  169. {
  170. int ret;
  171. ret = sysdev_class_register(&leds_sysclass);
  172. if (ret == 0)
  173. ret = sysdev_register(&leds_device);
  174. if (ret == 0)
  175. ret = sysdev_create_file(&leds_device, &attr_event);
  176. return ret;
  177. }
  178. device_initcall(leds_init);
  179. EXPORT_SYMBOL(leds_event);
  180. #endif
  181. #ifdef CONFIG_LEDS_TIMER
  182. static inline void do_leds(void)
  183. {
  184. static unsigned int count = HZ/2;
  185. if (--count == 0) {
  186. count = HZ/2;
  187. leds_event(led_timer);
  188. }
  189. }
  190. #else
  191. #define do_leds()
  192. #endif
  193. #ifndef CONFIG_GENERIC_TIME
  194. void do_gettimeofday(struct timeval *tv)
  195. {
  196. unsigned long flags;
  197. unsigned long seq;
  198. unsigned long usec, sec;
  199. do {
  200. seq = read_seqbegin_irqsave(&xtime_lock, flags);
  201. usec = system_timer->offset();
  202. sec = xtime.tv_sec;
  203. usec += xtime.tv_nsec / 1000;
  204. } while (read_seqretry_irqrestore(&xtime_lock, seq, flags));
  205. /* usec may have gone up a lot: be safe */
  206. while (usec >= 1000000) {
  207. usec -= 1000000;
  208. sec++;
  209. }
  210. tv->tv_sec = sec;
  211. tv->tv_usec = usec;
  212. }
  213. EXPORT_SYMBOL(do_gettimeofday);
  214. int do_settimeofday(struct timespec *tv)
  215. {
  216. time_t wtm_sec, sec = tv->tv_sec;
  217. long wtm_nsec, nsec = tv->tv_nsec;
  218. if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
  219. return -EINVAL;
  220. write_seqlock_irq(&xtime_lock);
  221. /*
  222. * This is revolting. We need to set "xtime" correctly. However, the
  223. * value in this location is the value at the most recent update of
  224. * wall time. Discover what correction gettimeofday() would have
  225. * done, and then undo it!
  226. */
  227. nsec -= system_timer->offset() * NSEC_PER_USEC;
  228. wtm_sec = wall_to_monotonic.tv_sec + (xtime.tv_sec - sec);
  229. wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - nsec);
  230. set_normalized_timespec(&xtime, sec, nsec);
  231. set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec);
  232. ntp_clear();
  233. write_sequnlock_irq(&xtime_lock);
  234. clock_was_set();
  235. return 0;
  236. }
  237. EXPORT_SYMBOL(do_settimeofday);
  238. #endif /* !CONFIG_GENERIC_TIME */
  239. /**
  240. * save_time_delta - Save the offset between system time and RTC time
  241. * @delta: pointer to timespec to store delta
  242. * @rtc: pointer to timespec for current RTC time
  243. *
  244. * Return a delta between the system time and the RTC time, such
  245. * that system time can be restored later with restore_time_delta()
  246. */
  247. void save_time_delta(struct timespec *delta, struct timespec *rtc)
  248. {
  249. set_normalized_timespec(delta,
  250. xtime.tv_sec - rtc->tv_sec,
  251. xtime.tv_nsec - rtc->tv_nsec);
  252. }
  253. EXPORT_SYMBOL(save_time_delta);
  254. /**
  255. * restore_time_delta - Restore the current system time
  256. * @delta: delta returned by save_time_delta()
  257. * @rtc: pointer to timespec for current RTC time
  258. */
  259. void restore_time_delta(struct timespec *delta, struct timespec *rtc)
  260. {
  261. struct timespec ts;
  262. set_normalized_timespec(&ts,
  263. delta->tv_sec + rtc->tv_sec,
  264. delta->tv_nsec + rtc->tv_nsec);
  265. do_settimeofday(&ts);
  266. }
  267. EXPORT_SYMBOL(restore_time_delta);
  268. #ifndef CONFIG_GENERIC_CLOCKEVENTS
  269. /*
  270. * Kernel system timer support.
  271. */
  272. void timer_tick(void)
  273. {
  274. profile_tick(CPU_PROFILING);
  275. do_leds();
  276. do_set_rtc();
  277. write_seqlock(&xtime_lock);
  278. do_timer(1);
  279. write_sequnlock(&xtime_lock);
  280. #ifndef CONFIG_SMP
  281. update_process_times(user_mode(get_irq_regs()));
  282. #endif
  283. }
  284. #endif
  285. #if defined(CONFIG_PM) && !defined(CONFIG_GENERIC_CLOCKEVENTS)
  286. static int timer_suspend(struct sys_device *dev, pm_message_t state)
  287. {
  288. struct sys_timer *timer = container_of(dev, struct sys_timer, dev);
  289. if (timer->suspend != NULL)
  290. timer->suspend();
  291. return 0;
  292. }
  293. static int timer_resume(struct sys_device *dev)
  294. {
  295. struct sys_timer *timer = container_of(dev, struct sys_timer, dev);
  296. if (timer->resume != NULL)
  297. timer->resume();
  298. return 0;
  299. }
  300. #else
  301. #define timer_suspend NULL
  302. #define timer_resume NULL
  303. #endif
  304. static struct sysdev_class timer_sysclass = {
  305. .name = "timer",
  306. .suspend = timer_suspend,
  307. .resume = timer_resume,
  308. };
  309. static int __init timer_init_sysfs(void)
  310. {
  311. int ret = sysdev_class_register(&timer_sysclass);
  312. if (ret == 0) {
  313. system_timer->dev.cls = &timer_sysclass;
  314. ret = sysdev_register(&system_timer->dev);
  315. }
  316. return ret;
  317. }
  318. device_initcall(timer_init_sysfs);
  319. void __init time_init(void)
  320. {
  321. #ifndef CONFIG_GENERIC_TIME
  322. if (system_timer->offset == NULL)
  323. system_timer->offset = dummy_gettimeoffset;
  324. #endif
  325. system_timer->init();
  326. }