process.c 9.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394
  1. /*
  2. * linux/arch/arm/kernel/process.c
  3. *
  4. * Copyright (C) 1996-2000 Russell King - Converted to ARM.
  5. * Original Copyright (C) 1995 Linus Torvalds
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. */
  11. #include <stdarg.h>
  12. #include <linux/module.h>
  13. #include <linux/sched.h>
  14. #include <linux/kernel.h>
  15. #include <linux/mm.h>
  16. #include <linux/stddef.h>
  17. #include <linux/unistd.h>
  18. #include <linux/slab.h>
  19. #include <linux/user.h>
  20. #include <linux/delay.h>
  21. #include <linux/reboot.h>
  22. #include <linux/interrupt.h>
  23. #include <linux/kallsyms.h>
  24. #include <linux/init.h>
  25. #include <linux/cpu.h>
  26. #include <linux/elfcore.h>
  27. #include <linux/pm.h>
  28. #include <linux/tick.h>
  29. #include <linux/utsname.h>
  30. #include <linux/uaccess.h>
  31. #include <asm/leds.h>
  32. #include <asm/processor.h>
  33. #include <asm/system.h>
  34. #include <asm/thread_notify.h>
  35. #include <asm/mach/time.h>
  36. static const char *processor_modes[] = {
  37. "USER_26", "FIQ_26" , "IRQ_26" , "SVC_26" , "UK4_26" , "UK5_26" , "UK6_26" , "UK7_26" ,
  38. "UK8_26" , "UK9_26" , "UK10_26", "UK11_26", "UK12_26", "UK13_26", "UK14_26", "UK15_26",
  39. "USER_32", "FIQ_32" , "IRQ_32" , "SVC_32" , "UK4_32" , "UK5_32" , "UK6_32" , "ABT_32" ,
  40. "UK8_32" , "UK9_32" , "UK10_32", "UND_32" , "UK12_32", "UK13_32", "UK14_32", "SYS_32"
  41. };
  42. static const char *isa_modes[] = {
  43. "ARM" , "Thumb" , "Jazelle", "ThumbEE"
  44. };
  45. extern void setup_mm_for_reboot(char mode);
  46. static volatile int hlt_counter;
  47. #include <mach/system.h>
  48. void disable_hlt(void)
  49. {
  50. hlt_counter++;
  51. }
  52. EXPORT_SYMBOL(disable_hlt);
  53. void enable_hlt(void)
  54. {
  55. hlt_counter--;
  56. }
  57. EXPORT_SYMBOL(enable_hlt);
  58. static int __init nohlt_setup(char *__unused)
  59. {
  60. hlt_counter = 1;
  61. return 1;
  62. }
  63. static int __init hlt_setup(char *__unused)
  64. {
  65. hlt_counter = 0;
  66. return 1;
  67. }
  68. __setup("nohlt", nohlt_setup);
  69. __setup("hlt", hlt_setup);
  70. void arm_machine_restart(char mode)
  71. {
  72. /*
  73. * Clean and disable cache, and turn off interrupts
  74. */
  75. cpu_proc_fin();
  76. /*
  77. * Tell the mm system that we are going to reboot -
  78. * we may need it to insert some 1:1 mappings so that
  79. * soft boot works.
  80. */
  81. setup_mm_for_reboot(mode);
  82. /*
  83. * Now call the architecture specific reboot code.
  84. */
  85. arch_reset(mode);
  86. /*
  87. * Whoops - the architecture was unable to reboot.
  88. * Tell the user!
  89. */
  90. mdelay(1000);
  91. printk("Reboot failed -- System halted\n");
  92. while (1);
  93. }
  94. /*
  95. * Function pointers to optional machine specific functions
  96. */
  97. void (*pm_idle)(void);
  98. EXPORT_SYMBOL(pm_idle);
  99. void (*pm_power_off)(void);
  100. EXPORT_SYMBOL(pm_power_off);
  101. void (*arm_pm_restart)(char str) = arm_machine_restart;
  102. EXPORT_SYMBOL_GPL(arm_pm_restart);
  103. /*
  104. * This is our default idle handler. We need to disable
  105. * interrupts here to ensure we don't miss a wakeup call.
  106. */
  107. static void default_idle(void)
  108. {
  109. if (hlt_counter)
  110. cpu_relax();
  111. else {
  112. local_irq_disable();
  113. if (!need_resched())
  114. arch_idle();
  115. local_irq_enable();
  116. }
  117. }
  118. /*
  119. * The idle thread. We try to conserve power, while trying to keep
  120. * overall latency low. The architecture specific idle is passed
  121. * a value to indicate the level of "idleness" of the system.
  122. */
  123. void cpu_idle(void)
  124. {
  125. local_fiq_enable();
  126. /* endless idle loop with no priority at all */
  127. while (1) {
  128. void (*idle)(void) = pm_idle;
  129. #ifdef CONFIG_HOTPLUG_CPU
  130. if (cpu_is_offline(smp_processor_id())) {
  131. leds_event(led_idle_start);
  132. cpu_die();
  133. }
  134. #endif
  135. if (!idle)
  136. idle = default_idle;
  137. leds_event(led_idle_start);
  138. tick_nohz_stop_sched_tick(1);
  139. while (!need_resched())
  140. idle();
  141. leds_event(led_idle_end);
  142. tick_nohz_restart_sched_tick();
  143. preempt_enable_no_resched();
  144. schedule();
  145. preempt_disable();
  146. }
  147. }
  148. static char reboot_mode = 'h';
  149. int __init reboot_setup(char *str)
  150. {
  151. reboot_mode = str[0];
  152. return 1;
  153. }
  154. __setup("reboot=", reboot_setup);
  155. void machine_halt(void)
  156. {
  157. }
  158. void machine_power_off(void)
  159. {
  160. if (pm_power_off)
  161. pm_power_off();
  162. }
  163. void machine_restart(char * __unused)
  164. {
  165. arm_pm_restart(reboot_mode);
  166. }
  167. void __show_regs(struct pt_regs *regs)
  168. {
  169. unsigned long flags;
  170. char buf[64];
  171. printk("CPU: %d %s (%s %.*s)\n",
  172. smp_processor_id(), print_tainted(), init_utsname()->release,
  173. (int)strcspn(init_utsname()->version, " "),
  174. init_utsname()->version);
  175. print_symbol("PC is at %s\n", instruction_pointer(regs));
  176. print_symbol("LR is at %s\n", regs->ARM_lr);
  177. printk("pc : [<%08lx>] lr : [<%08lx>] psr: %08lx\n"
  178. "sp : %08lx ip : %08lx fp : %08lx\n",
  179. regs->ARM_pc, regs->ARM_lr, regs->ARM_cpsr,
  180. regs->ARM_sp, regs->ARM_ip, regs->ARM_fp);
  181. printk("r10: %08lx r9 : %08lx r8 : %08lx\n",
  182. regs->ARM_r10, regs->ARM_r9,
  183. regs->ARM_r8);
  184. printk("r7 : %08lx r6 : %08lx r5 : %08lx r4 : %08lx\n",
  185. regs->ARM_r7, regs->ARM_r6,
  186. regs->ARM_r5, regs->ARM_r4);
  187. printk("r3 : %08lx r2 : %08lx r1 : %08lx r0 : %08lx\n",
  188. regs->ARM_r3, regs->ARM_r2,
  189. regs->ARM_r1, regs->ARM_r0);
  190. flags = regs->ARM_cpsr;
  191. buf[0] = flags & PSR_N_BIT ? 'N' : 'n';
  192. buf[1] = flags & PSR_Z_BIT ? 'Z' : 'z';
  193. buf[2] = flags & PSR_C_BIT ? 'C' : 'c';
  194. buf[3] = flags & PSR_V_BIT ? 'V' : 'v';
  195. buf[4] = '\0';
  196. printk("Flags: %s IRQs o%s FIQs o%s Mode %s ISA %s Segment %s\n",
  197. buf, interrupts_enabled(regs) ? "n" : "ff",
  198. fast_interrupts_enabled(regs) ? "n" : "ff",
  199. processor_modes[processor_mode(regs)],
  200. isa_modes[isa_mode(regs)],
  201. get_fs() == get_ds() ? "kernel" : "user");
  202. #ifdef CONFIG_CPU_CP15
  203. {
  204. unsigned int ctrl;
  205. buf[0] = '\0';
  206. #ifdef CONFIG_CPU_CP15_MMU
  207. {
  208. unsigned int transbase, dac;
  209. asm("mrc p15, 0, %0, c2, c0\n\t"
  210. "mrc p15, 0, %1, c3, c0\n"
  211. : "=r" (transbase), "=r" (dac));
  212. snprintf(buf, sizeof(buf), " Table: %08x DAC: %08x",
  213. transbase, dac);
  214. }
  215. #endif
  216. asm("mrc p15, 0, %0, c1, c0\n" : "=r" (ctrl));
  217. printk("Control: %08x%s\n", ctrl, buf);
  218. }
  219. #endif
  220. }
  221. void show_regs(struct pt_regs * regs)
  222. {
  223. printk("\n");
  224. printk("Pid: %d, comm: %20s\n", task_pid_nr(current), current->comm);
  225. __show_regs(regs);
  226. __backtrace();
  227. }
  228. /*
  229. * Free current thread data structures etc..
  230. */
  231. void exit_thread(void)
  232. {
  233. }
  234. ATOMIC_NOTIFIER_HEAD(thread_notify_head);
  235. EXPORT_SYMBOL_GPL(thread_notify_head);
  236. void flush_thread(void)
  237. {
  238. struct thread_info *thread = current_thread_info();
  239. struct task_struct *tsk = current;
  240. memset(thread->used_cp, 0, sizeof(thread->used_cp));
  241. memset(&tsk->thread.debug, 0, sizeof(struct debug_info));
  242. memset(&thread->fpstate, 0, sizeof(union fp_state));
  243. thread_notify(THREAD_NOTIFY_FLUSH, thread);
  244. }
  245. void release_thread(struct task_struct *dead_task)
  246. {
  247. struct thread_info *thread = task_thread_info(dead_task);
  248. thread_notify(THREAD_NOTIFY_RELEASE, thread);
  249. }
  250. asmlinkage void ret_from_fork(void) __asm__("ret_from_fork");
  251. int
  252. copy_thread(int nr, unsigned long clone_flags, unsigned long stack_start,
  253. unsigned long stk_sz, struct task_struct *p, struct pt_regs *regs)
  254. {
  255. struct thread_info *thread = task_thread_info(p);
  256. struct pt_regs *childregs = task_pt_regs(p);
  257. *childregs = *regs;
  258. childregs->ARM_r0 = 0;
  259. childregs->ARM_sp = stack_start;
  260. memset(&thread->cpu_context, 0, sizeof(struct cpu_context_save));
  261. thread->cpu_context.sp = (unsigned long)childregs;
  262. thread->cpu_context.pc = (unsigned long)ret_from_fork;
  263. if (clone_flags & CLONE_SETTLS)
  264. thread->tp_value = regs->ARM_r3;
  265. return 0;
  266. }
  267. /*
  268. * fill in the fpe structure for a core dump...
  269. */
  270. int dump_fpu (struct pt_regs *regs, struct user_fp *fp)
  271. {
  272. struct thread_info *thread = current_thread_info();
  273. int used_math = thread->used_cp[1] | thread->used_cp[2];
  274. if (used_math)
  275. memcpy(fp, &thread->fpstate.soft, sizeof (*fp));
  276. return used_math != 0;
  277. }
  278. EXPORT_SYMBOL(dump_fpu);
  279. /*
  280. * Shuffle the argument into the correct register before calling the
  281. * thread function. r1 is the thread argument, r2 is the pointer to
  282. * the thread function, and r3 points to the exit function.
  283. */
  284. extern void kernel_thread_helper(void);
  285. asm( ".section .text\n"
  286. " .align\n"
  287. " .type kernel_thread_helper, #function\n"
  288. "kernel_thread_helper:\n"
  289. " mov r0, r1\n"
  290. " mov lr, r3\n"
  291. " mov pc, r2\n"
  292. " .size kernel_thread_helper, . - kernel_thread_helper\n"
  293. " .previous");
  294. /*
  295. * Create a kernel thread.
  296. */
  297. pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
  298. {
  299. struct pt_regs regs;
  300. memset(&regs, 0, sizeof(regs));
  301. regs.ARM_r1 = (unsigned long)arg;
  302. regs.ARM_r2 = (unsigned long)fn;
  303. regs.ARM_r3 = (unsigned long)do_exit;
  304. regs.ARM_pc = (unsigned long)kernel_thread_helper;
  305. regs.ARM_cpsr = SVC_MODE;
  306. return do_fork(flags|CLONE_VM|CLONE_UNTRACED, 0, &regs, 0, NULL, NULL);
  307. }
  308. EXPORT_SYMBOL(kernel_thread);
  309. unsigned long get_wchan(struct task_struct *p)
  310. {
  311. unsigned long fp, lr;
  312. unsigned long stack_start, stack_end;
  313. int count = 0;
  314. if (!p || p == current || p->state == TASK_RUNNING)
  315. return 0;
  316. stack_start = (unsigned long)end_of_stack(p);
  317. stack_end = (unsigned long)task_stack_page(p) + THREAD_SIZE;
  318. fp = thread_saved_fp(p);
  319. do {
  320. if (fp < stack_start || fp > stack_end)
  321. return 0;
  322. lr = ((unsigned long *)fp)[-1];
  323. if (!in_sched_functions(lr))
  324. return lr;
  325. fp = *(unsigned long *) (fp - 12);
  326. } while (count ++ < 16);
  327. return 0;
  328. }