ftrace.txt 52 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361
  1. ftrace - Function Tracer
  2. ========================
  3. Copyright 2008 Red Hat Inc.
  4. Author: Steven Rostedt <srostedt@redhat.com>
  5. License: The GNU Free Documentation License, Version 1.2
  6. (dual licensed under the GPL v2)
  7. Reviewers: Elias Oltmanns, Randy Dunlap, Andrew Morton,
  8. John Kacur, and David Teigland.
  9. Written for: 2.6.27-rc1
  10. Introduction
  11. ------------
  12. Ftrace is an internal tracer designed to help out developers and
  13. designers of systems to find what is going on inside the kernel.
  14. It can be used for debugging or analyzing latencies and performance
  15. issues that take place outside of user-space.
  16. Although ftrace is the function tracer, it also includes an
  17. infrastructure that allows for other types of tracing. Some of the
  18. tracers that are currently in ftrace include a tracer to trace
  19. context switches, the time it takes for a high priority task to
  20. run after it was woken up, the time interrupts are disabled, and
  21. more (ftrace allows for tracer plugins, which means that the list of
  22. tracers can always grow).
  23. The File System
  24. ---------------
  25. Ftrace uses the debugfs file system to hold the control files as well
  26. as the files to display output.
  27. To mount the debugfs system:
  28. # mkdir /debug
  29. # mount -t debugfs nodev /debug
  30. (Note: it is more common to mount at /sys/kernel/debug, but for simplicity
  31. this document will use /debug)
  32. That's it! (assuming that you have ftrace configured into your kernel)
  33. After mounting the debugfs, you can see a directory called
  34. "tracing". This directory contains the control and output files
  35. of ftrace. Here is a list of some of the key files:
  36. Note: all time values are in microseconds.
  37. current_tracer : This is used to set or display the current tracer
  38. that is configured.
  39. available_tracers : This holds the different types of tracers that
  40. have been compiled into the kernel. The tracers
  41. listed here can be configured by echoing their name
  42. into current_tracer.
  43. tracing_enabled : This sets or displays whether the current_tracer
  44. is activated and tracing or not. Echo 0 into this
  45. file to disable the tracer or 1 to enable it.
  46. trace : This file holds the output of the trace in a human readable
  47. format (described below).
  48. latency_trace : This file shows the same trace but the information
  49. is organized more to display possible latencies
  50. in the system (described below).
  51. trace_pipe : The output is the same as the "trace" file but this
  52. file is meant to be streamed with live tracing.
  53. Reads from this file will block until new data
  54. is retrieved. Unlike the "trace" and "latency_trace"
  55. files, this file is a consumer. This means reading
  56. from this file causes sequential reads to display
  57. more current data. Once data is read from this
  58. file, it is consumed, and will not be read
  59. again with a sequential read. The "trace" and
  60. "latency_trace" files are static, and if the
  61. tracer is not adding more data, they will display
  62. the same information every time they are read.
  63. iter_ctrl : This file lets the user control the amount of data
  64. that is displayed in one of the above output
  65. files.
  66. trace_max_latency : Some of the tracers record the max latency.
  67. For example, the time interrupts are disabled.
  68. This time is saved in this file. The max trace
  69. will also be stored, and displayed by either
  70. "trace" or "latency_trace". A new max trace will
  71. only be recorded if the latency is greater than
  72. the value in this file. (in microseconds)
  73. trace_entries : This sets or displays the number of trace
  74. entries each CPU buffer can hold. The tracer buffers
  75. are the same size for each CPU. The displayed number
  76. is the size of the CPU buffer and not total size. The
  77. trace buffers are allocated in pages (blocks of memory
  78. that the kernel uses for allocation, usually 4 KB in size).
  79. Since each entry is smaller than a page, if the last
  80. allocated page has room for more entries than were
  81. requested, the rest of the page is used to allocate
  82. entries.
  83. This can only be updated when the current_tracer
  84. is set to "none".
  85. NOTE: It is planned on changing the allocated buffers
  86. from being the number of possible CPUS to
  87. the number of online CPUS.
  88. tracing_cpumask : This is a mask that lets the user only trace
  89. on specified CPUS. The format is a hex string
  90. representing the CPUS.
  91. set_ftrace_filter : When dynamic ftrace is configured in (see the
  92. section below "dynamic ftrace"), the code is dynamically
  93. modified (code text rewrite) to disable calling of the
  94. function profiler (mcount). This lets tracing be configured
  95. in with practically no overhead in performance. This also
  96. has a side effect of enabling or disabling specific functions
  97. to be traced. Echoing names of functions into this file
  98. will limit the trace to only those functions.
  99. set_ftrace_notrace: This has an effect opposite to that of
  100. set_ftrace_filter. Any function that is added here will not
  101. be traced. If a function exists in both set_ftrace_filter
  102. and set_ftrace_notrace, the function will _not_ be traced.
  103. available_filter_functions : When a function is encountered the first
  104. time by the dynamic tracer, it is recorded and
  105. later the call is converted into a nop. This file
  106. lists the functions that have been recorded
  107. by the dynamic tracer and these functions can
  108. be used to set the ftrace filter by the above
  109. "set_ftrace_filter" file. (See the section "dynamic ftrace"
  110. below for more details).
  111. The Tracers
  112. -----------
  113. Here is the list of current tracers that may be configured.
  114. ftrace - function tracer that uses mcount to trace all functions.
  115. sched_switch - traces the context switches between tasks.
  116. irqsoff - traces the areas that disable interrupts and saves
  117. the trace with the longest max latency.
  118. See tracing_max_latency. When a new max is recorded,
  119. it replaces the old trace. It is best to view this
  120. trace via the latency_trace file.
  121. preemptoff - Similar to irqsoff but traces and records the amount of
  122. time for which preemption is disabled.
  123. preemptirqsoff - Similar to irqsoff and preemptoff, but traces and
  124. records the largest time for which irqs and/or preemption
  125. is disabled.
  126. wakeup - Traces and records the max latency that it takes for
  127. the highest priority task to get scheduled after
  128. it has been woken up.
  129. none - This is not a tracer. To remove all tracers from tracing
  130. simply echo "none" into current_tracer.
  131. Examples of using the tracer
  132. ----------------------------
  133. Here are typical examples of using the tracers when controlling them only
  134. with the debugfs interface (without using any user-land utilities).
  135. Output format:
  136. --------------
  137. Here is an example of the output format of the file "trace"
  138. --------
  139. # tracer: ftrace
  140. #
  141. # TASK-PID CPU# TIMESTAMP FUNCTION
  142. # | | | | |
  143. bash-4251 [01] 10152.583854: path_put <-path_walk
  144. bash-4251 [01] 10152.583855: dput <-path_put
  145. bash-4251 [01] 10152.583855: _atomic_dec_and_lock <-dput
  146. --------
  147. A header is printed with the tracer name that is represented by the trace.
  148. In this case the tracer is "ftrace". Then a header showing the format. Task
  149. name "bash", the task PID "4251", the CPU that it was running on
  150. "01", the timestamp in <secs>.<usecs> format, the function name that was
  151. traced "path_put" and the parent function that called this function
  152. "path_walk". The timestamp is the time at which the function was
  153. entered.
  154. The sched_switch tracer also includes tracing of task wakeups and
  155. context switches.
  156. ksoftirqd/1-7 [01] 1453.070013: 7:115:R + 2916:115:S
  157. ksoftirqd/1-7 [01] 1453.070013: 7:115:R + 10:115:S
  158. ksoftirqd/1-7 [01] 1453.070013: 7:115:R ==> 10:115:R
  159. events/1-10 [01] 1453.070013: 10:115:S ==> 2916:115:R
  160. kondemand/1-2916 [01] 1453.070013: 2916:115:S ==> 7:115:R
  161. ksoftirqd/1-7 [01] 1453.070013: 7:115:S ==> 0:140:R
  162. Wake ups are represented by a "+" and the context switches are shown as
  163. "==>". The format is:
  164. Context switches:
  165. Previous task Next Task
  166. <pid>:<prio>:<state> ==> <pid>:<prio>:<state>
  167. Wake ups:
  168. Current task Task waking up
  169. <pid>:<prio>:<state> + <pid>:<prio>:<state>
  170. The prio is the internal kernel priority, which is the inverse of the
  171. priority that is usually displayed by user-space tools. Zero represents
  172. the highest priority (99). Prio 100 starts the "nice" priorities with
  173. 100 being equal to nice -20 and 139 being nice 19. The prio "140" is
  174. reserved for the idle task which is the lowest priority thread (pid 0).
  175. Latency trace format
  176. --------------------
  177. For traces that display latency times, the latency_trace file gives
  178. somewhat more information to see why a latency happened. Here is a typical
  179. trace.
  180. # tracer: irqsoff
  181. #
  182. irqsoff latency trace v1.1.5 on 2.6.26-rc8
  183. --------------------------------------------------------------------
  184. latency: 97 us, #3/3, CPU#0 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:2)
  185. -----------------
  186. | task: swapper-0 (uid:0 nice:0 policy:0 rt_prio:0)
  187. -----------------
  188. => started at: apic_timer_interrupt
  189. => ended at: do_softirq
  190. # _------=> CPU#
  191. # / _-----=> irqs-off
  192. # | / _----=> need-resched
  193. # || / _---=> hardirq/softirq
  194. # ||| / _--=> preempt-depth
  195. # |||| /
  196. # ||||| delay
  197. # cmd pid ||||| time | caller
  198. # \ / ||||| \ | /
  199. <idle>-0 0d..1 0us+: trace_hardirqs_off_thunk (apic_timer_interrupt)
  200. <idle>-0 0d.s. 97us : __do_softirq (do_softirq)
  201. <idle>-0 0d.s1 98us : trace_hardirqs_on (do_softirq)
  202. This shows that the current tracer is "irqsoff" tracing the time for which
  203. interrupts were disabled. It gives the trace version and the version
  204. of the kernel upon which this was executed on (2.6.26-rc8). Then it displays
  205. the max latency in microsecs (97 us). The number of trace entries displayed
  206. and the total number recorded (both are three: #3/3). The type of
  207. preemption that was used (PREEMPT). VP, KP, SP, and HP are always zero
  208. and are reserved for later use. #P is the number of online CPUS (#P:2).
  209. The task is the process that was running when the latency occurred.
  210. (swapper pid: 0).
  211. The start and stop (the functions in which the interrupts were disabled and
  212. enabled respectively) that caused the latencies:
  213. apic_timer_interrupt is where the interrupts were disabled.
  214. do_softirq is where they were enabled again.
  215. The next lines after the header are the trace itself. The header
  216. explains which is which.
  217. cmd: The name of the process in the trace.
  218. pid: The PID of that process.
  219. CPU#: The CPU which the process was running on.
  220. irqs-off: 'd' interrupts are disabled. '.' otherwise.
  221. need-resched: 'N' task need_resched is set, '.' otherwise.
  222. hardirq/softirq:
  223. 'H' - hard irq occurred inside a softirq.
  224. 'h' - hard irq is running
  225. 's' - soft irq is running
  226. '.' - normal context.
  227. preempt-depth: The level of preempt_disabled
  228. The above is mostly meaningful for kernel developers.
  229. time: This differs from the trace file output. The trace file output
  230. includes an absolute timestamp. The timestamp used by the
  231. latency_trace file is relative to the start of the trace.
  232. delay: This is just to help catch your eye a bit better. And
  233. needs to be fixed to be only relative to the same CPU.
  234. The marks are determined by the difference between this
  235. current trace and the next trace.
  236. '!' - greater than preempt_mark_thresh (default 100)
  237. '+' - greater than 1 microsecond
  238. ' ' - less than or equal to 1 microsecond.
  239. The rest is the same as the 'trace' file.
  240. iter_ctrl
  241. ---------
  242. The iter_ctrl file is used to control what gets printed in the trace
  243. output. To see what is available, simply cat the file:
  244. cat /debug/tracing/iter_ctrl
  245. print-parent nosym-offset nosym-addr noverbose noraw nohex nobin \
  246. noblock nostacktrace nosched-tree
  247. To disable one of the options, echo in the option prepended with "no".
  248. echo noprint-parent > /debug/tracing/iter_ctrl
  249. To enable an option, leave off the "no".
  250. echo sym-offset > /debug/tracing/iter_ctrl
  251. Here are the available options:
  252. print-parent - On function traces, display the calling function
  253. as well as the function being traced.
  254. print-parent:
  255. bash-4000 [01] 1477.606694: simple_strtoul <-strict_strtoul
  256. noprint-parent:
  257. bash-4000 [01] 1477.606694: simple_strtoul
  258. sym-offset - Display not only the function name, but also the offset
  259. in the function. For example, instead of seeing just
  260. "ktime_get", you will see "ktime_get+0xb/0x20".
  261. sym-offset:
  262. bash-4000 [01] 1477.606694: simple_strtoul+0x6/0xa0
  263. sym-addr - this will also display the function address as well as
  264. the function name.
  265. sym-addr:
  266. bash-4000 [01] 1477.606694: simple_strtoul <c0339346>
  267. verbose - This deals with the latency_trace file.
  268. bash 4000 1 0 00000000 00010a95 [58127d26] 1720.415ms \
  269. (+0.000ms): simple_strtoul (strict_strtoul)
  270. raw - This will display raw numbers. This option is best for use with
  271. user applications that can translate the raw numbers better than
  272. having it done in the kernel.
  273. hex - Similar to raw, but the numbers will be in a hexadecimal format.
  274. bin - This will print out the formats in raw binary.
  275. block - TBD (needs update)
  276. stacktrace - This is one of the options that changes the trace itself.
  277. When a trace is recorded, so is the stack of functions.
  278. This allows for back traces of trace sites.
  279. sched-tree - TBD (any users??)
  280. sched_switch
  281. ------------
  282. This tracer simply records schedule switches. Here is an example
  283. of how to use it.
  284. # echo sched_switch > /debug/tracing/current_tracer
  285. # echo 1 > /debug/tracing/tracing_enabled
  286. # sleep 1
  287. # echo 0 > /debug/tracing/tracing_enabled
  288. # cat /debug/tracing/trace
  289. # tracer: sched_switch
  290. #
  291. # TASK-PID CPU# TIMESTAMP FUNCTION
  292. # | | | | |
  293. bash-3997 [01] 240.132281: 3997:120:R + 4055:120:R
  294. bash-3997 [01] 240.132284: 3997:120:R ==> 4055:120:R
  295. sleep-4055 [01] 240.132371: 4055:120:S ==> 3997:120:R
  296. bash-3997 [01] 240.132454: 3997:120:R + 4055:120:S
  297. bash-3997 [01] 240.132457: 3997:120:R ==> 4055:120:R
  298. sleep-4055 [01] 240.132460: 4055:120:D ==> 3997:120:R
  299. bash-3997 [01] 240.132463: 3997:120:R + 4055:120:D
  300. bash-3997 [01] 240.132465: 3997:120:R ==> 4055:120:R
  301. <idle>-0 [00] 240.132589: 0:140:R + 4:115:S
  302. <idle>-0 [00] 240.132591: 0:140:R ==> 4:115:R
  303. ksoftirqd/0-4 [00] 240.132595: 4:115:S ==> 0:140:R
  304. <idle>-0 [00] 240.132598: 0:140:R + 4:115:S
  305. <idle>-0 [00] 240.132599: 0:140:R ==> 4:115:R
  306. ksoftirqd/0-4 [00] 240.132603: 4:115:S ==> 0:140:R
  307. sleep-4055 [01] 240.133058: 4055:120:S ==> 3997:120:R
  308. [...]
  309. As we have discussed previously about this format, the header shows
  310. the name of the trace and points to the options. The "FUNCTION"
  311. is a misnomer since here it represents the wake ups and context
  312. switches.
  313. The sched_switch file only lists the wake ups (represented with '+')
  314. and context switches ('==>') with the previous task or current task
  315. first followed by the next task or task waking up. The format for both
  316. of these is PID:KERNEL-PRIO:TASK-STATE. Remember that the KERNEL-PRIO
  317. is the inverse of the actual priority with zero (0) being the highest
  318. priority and the nice values starting at 100 (nice -20). Below is
  319. a quick chart to map the kernel priority to user land priorities.
  320. Kernel priority: 0 to 99 ==> user RT priority 99 to 0
  321. Kernel priority: 100 to 139 ==> user nice -20 to 19
  322. Kernel priority: 140 ==> idle task priority
  323. The task states are:
  324. R - running : wants to run, may not actually be running
  325. S - sleep : process is waiting to be woken up (handles signals)
  326. D - disk sleep (uninterruptible sleep) : process must be woken up
  327. (ignores signals)
  328. T - stopped : process suspended
  329. t - traced : process is being traced (with something like gdb)
  330. Z - zombie : process waiting to be cleaned up
  331. X - unknown
  332. ftrace_enabled
  333. --------------
  334. The following tracers (listed below) give different output depending
  335. on whether or not the sysctl ftrace_enabled is set. To set ftrace_enabled,
  336. one can either use the sysctl function or set it via the proc
  337. file system interface.
  338. sysctl kernel.ftrace_enabled=1
  339. or
  340. echo 1 > /proc/sys/kernel/ftrace_enabled
  341. To disable ftrace_enabled simply replace the '1' with '0' in
  342. the above commands.
  343. When ftrace_enabled is set the tracers will also record the functions
  344. that are within the trace. The descriptions of the tracers
  345. will also show an example with ftrace enabled.
  346. irqsoff
  347. -------
  348. When interrupts are disabled, the CPU can not react to any other
  349. external event (besides NMIs and SMIs). This prevents the timer
  350. interrupt from triggering or the mouse interrupt from letting the
  351. kernel know of a new mouse event. The result is a latency with the
  352. reaction time.
  353. The irqsoff tracer tracks the time for which interrupts are disabled.
  354. When a new maximum latency is hit, the tracer saves the trace leading up
  355. to that latency point so that every time a new maximum is reached, the old
  356. saved trace is discarded and the new trace is saved.
  357. To reset the maximum, echo 0 into tracing_max_latency. Here is an
  358. example:
  359. # echo irqsoff > /debug/tracing/current_tracer
  360. # echo 0 > /debug/tracing/tracing_max_latency
  361. # echo 1 > /debug/tracing/tracing_enabled
  362. # ls -ltr
  363. [...]
  364. # echo 0 > /debug/tracing/tracing_enabled
  365. # cat /debug/tracing/latency_trace
  366. # tracer: irqsoff
  367. #
  368. irqsoff latency trace v1.1.5 on 2.6.26
  369. --------------------------------------------------------------------
  370. latency: 12 us, #3/3, CPU#1 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:2)
  371. -----------------
  372. | task: bash-3730 (uid:0 nice:0 policy:0 rt_prio:0)
  373. -----------------
  374. => started at: sys_setpgid
  375. => ended at: sys_setpgid
  376. # _------=> CPU#
  377. # / _-----=> irqs-off
  378. # | / _----=> need-resched
  379. # || / _---=> hardirq/softirq
  380. # ||| / _--=> preempt-depth
  381. # |||| /
  382. # ||||| delay
  383. # cmd pid ||||| time | caller
  384. # \ / ||||| \ | /
  385. bash-3730 1d... 0us : _write_lock_irq (sys_setpgid)
  386. bash-3730 1d..1 1us+: _write_unlock_irq (sys_setpgid)
  387. bash-3730 1d..2 14us : trace_hardirqs_on (sys_setpgid)
  388. Here we see that that we had a latency of 12 microsecs (which is
  389. very good). The _write_lock_irq in sys_setpgid disabled interrupts.
  390. The difference between the 12 and the displayed timestamp 14us occurred
  391. because the clock was incremented between the time of recording the max
  392. latency and the time of recording the function that had that latency.
  393. Note the above example had ftrace_enabled not set. If we set the
  394. ftrace_enabled, we get a much larger output:
  395. # tracer: irqsoff
  396. #
  397. irqsoff latency trace v1.1.5 on 2.6.26-rc8
  398. --------------------------------------------------------------------
  399. latency: 50 us, #101/101, CPU#0 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:2)
  400. -----------------
  401. | task: ls-4339 (uid:0 nice:0 policy:0 rt_prio:0)
  402. -----------------
  403. => started at: __alloc_pages_internal
  404. => ended at: __alloc_pages_internal
  405. # _------=> CPU#
  406. # / _-----=> irqs-off
  407. # | / _----=> need-resched
  408. # || / _---=> hardirq/softirq
  409. # ||| / _--=> preempt-depth
  410. # |||| /
  411. # ||||| delay
  412. # cmd pid ||||| time | caller
  413. # \ / ||||| \ | /
  414. ls-4339 0...1 0us+: get_page_from_freelist (__alloc_pages_internal)
  415. ls-4339 0d..1 3us : rmqueue_bulk (get_page_from_freelist)
  416. ls-4339 0d..1 3us : _spin_lock (rmqueue_bulk)
  417. ls-4339 0d..1 4us : add_preempt_count (_spin_lock)
  418. ls-4339 0d..2 4us : __rmqueue (rmqueue_bulk)
  419. ls-4339 0d..2 5us : __rmqueue_smallest (__rmqueue)
  420. ls-4339 0d..2 5us : __mod_zone_page_state (__rmqueue_smallest)
  421. ls-4339 0d..2 6us : __rmqueue (rmqueue_bulk)
  422. ls-4339 0d..2 6us : __rmqueue_smallest (__rmqueue)
  423. ls-4339 0d..2 7us : __mod_zone_page_state (__rmqueue_smallest)
  424. ls-4339 0d..2 7us : __rmqueue (rmqueue_bulk)
  425. ls-4339 0d..2 8us : __rmqueue_smallest (__rmqueue)
  426. [...]
  427. ls-4339 0d..2 46us : __rmqueue_smallest (__rmqueue)
  428. ls-4339 0d..2 47us : __mod_zone_page_state (__rmqueue_smallest)
  429. ls-4339 0d..2 47us : __rmqueue (rmqueue_bulk)
  430. ls-4339 0d..2 48us : __rmqueue_smallest (__rmqueue)
  431. ls-4339 0d..2 48us : __mod_zone_page_state (__rmqueue_smallest)
  432. ls-4339 0d..2 49us : _spin_unlock (rmqueue_bulk)
  433. ls-4339 0d..2 49us : sub_preempt_count (_spin_unlock)
  434. ls-4339 0d..1 50us : get_page_from_freelist (__alloc_pages_internal)
  435. ls-4339 0d..2 51us : trace_hardirqs_on (__alloc_pages_internal)
  436. Here we traced a 50 microsecond latency. But we also see all the
  437. functions that were called during that time. Note that by enabling
  438. function tracing, we incur an added overhead. This overhead may
  439. extend the latency times. But nevertheless, this trace has provided
  440. some very helpful debugging information.
  441. preemptoff
  442. ----------
  443. When preemption is disabled, we may be able to receive interrupts but
  444. the task cannot be preempted and a higher priority task must wait
  445. for preemption to be enabled again before it can preempt a lower
  446. priority task.
  447. The preemptoff tracer traces the places that disable preemption.
  448. Like the irqsoff tracer, it records the maximum latency for which preemption
  449. was disabled. The control of preemptoff tracer is much like the irqsoff
  450. tracer.
  451. # echo preemptoff > /debug/tracing/current_tracer
  452. # echo 0 > /debug/tracing/tracing_max_latency
  453. # echo 1 > /debug/tracing/tracing_enabled
  454. # ls -ltr
  455. [...]
  456. # echo 0 > /debug/tracing/tracing_enabled
  457. # cat /debug/tracing/latency_trace
  458. # tracer: preemptoff
  459. #
  460. preemptoff latency trace v1.1.5 on 2.6.26-rc8
  461. --------------------------------------------------------------------
  462. latency: 29 us, #3/3, CPU#0 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:2)
  463. -----------------
  464. | task: sshd-4261 (uid:0 nice:0 policy:0 rt_prio:0)
  465. -----------------
  466. => started at: do_IRQ
  467. => ended at: __do_softirq
  468. # _------=> CPU#
  469. # / _-----=> irqs-off
  470. # | / _----=> need-resched
  471. # || / _---=> hardirq/softirq
  472. # ||| / _--=> preempt-depth
  473. # |||| /
  474. # ||||| delay
  475. # cmd pid ||||| time | caller
  476. # \ / ||||| \ | /
  477. sshd-4261 0d.h. 0us+: irq_enter (do_IRQ)
  478. sshd-4261 0d.s. 29us : _local_bh_enable (__do_softirq)
  479. sshd-4261 0d.s1 30us : trace_preempt_on (__do_softirq)
  480. This has some more changes. Preemption was disabled when an interrupt
  481. came in (notice the 'h'), and was enabled while doing a softirq.
  482. (notice the 's'). But we also see that interrupts have been disabled
  483. when entering the preempt off section and leaving it (the 'd').
  484. We do not know if interrupts were enabled in the mean time.
  485. # tracer: preemptoff
  486. #
  487. preemptoff latency trace v1.1.5 on 2.6.26-rc8
  488. --------------------------------------------------------------------
  489. latency: 63 us, #87/87, CPU#0 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:2)
  490. -----------------
  491. | task: sshd-4261 (uid:0 nice:0 policy:0 rt_prio:0)
  492. -----------------
  493. => started at: remove_wait_queue
  494. => ended at: __do_softirq
  495. # _------=> CPU#
  496. # / _-----=> irqs-off
  497. # | / _----=> need-resched
  498. # || / _---=> hardirq/softirq
  499. # ||| / _--=> preempt-depth
  500. # |||| /
  501. # ||||| delay
  502. # cmd pid ||||| time | caller
  503. # \ / ||||| \ | /
  504. sshd-4261 0d..1 0us : _spin_lock_irqsave (remove_wait_queue)
  505. sshd-4261 0d..1 1us : _spin_unlock_irqrestore (remove_wait_queue)
  506. sshd-4261 0d..1 2us : do_IRQ (common_interrupt)
  507. sshd-4261 0d..1 2us : irq_enter (do_IRQ)
  508. sshd-4261 0d..1 2us : idle_cpu (irq_enter)
  509. sshd-4261 0d..1 3us : add_preempt_count (irq_enter)
  510. sshd-4261 0d.h1 3us : idle_cpu (irq_enter)
  511. sshd-4261 0d.h. 4us : handle_fasteoi_irq (do_IRQ)
  512. [...]
  513. sshd-4261 0d.h. 12us : add_preempt_count (_spin_lock)
  514. sshd-4261 0d.h1 12us : ack_ioapic_quirk_irq (handle_fasteoi_irq)
  515. sshd-4261 0d.h1 13us : move_native_irq (ack_ioapic_quirk_irq)
  516. sshd-4261 0d.h1 13us : _spin_unlock (handle_fasteoi_irq)
  517. sshd-4261 0d.h1 14us : sub_preempt_count (_spin_unlock)
  518. sshd-4261 0d.h1 14us : irq_exit (do_IRQ)
  519. sshd-4261 0d.h1 15us : sub_preempt_count (irq_exit)
  520. sshd-4261 0d..2 15us : do_softirq (irq_exit)
  521. sshd-4261 0d... 15us : __do_softirq (do_softirq)
  522. sshd-4261 0d... 16us : __local_bh_disable (__do_softirq)
  523. sshd-4261 0d... 16us+: add_preempt_count (__local_bh_disable)
  524. sshd-4261 0d.s4 20us : add_preempt_count (__local_bh_disable)
  525. sshd-4261 0d.s4 21us : sub_preempt_count (local_bh_enable)
  526. sshd-4261 0d.s5 21us : sub_preempt_count (local_bh_enable)
  527. [...]
  528. sshd-4261 0d.s6 41us : add_preempt_count (__local_bh_disable)
  529. sshd-4261 0d.s6 42us : sub_preempt_count (local_bh_enable)
  530. sshd-4261 0d.s7 42us : sub_preempt_count (local_bh_enable)
  531. sshd-4261 0d.s5 43us : add_preempt_count (__local_bh_disable)
  532. sshd-4261 0d.s5 43us : sub_preempt_count (local_bh_enable_ip)
  533. sshd-4261 0d.s6 44us : sub_preempt_count (local_bh_enable_ip)
  534. sshd-4261 0d.s5 44us : add_preempt_count (__local_bh_disable)
  535. sshd-4261 0d.s5 45us : sub_preempt_count (local_bh_enable)
  536. [...]
  537. sshd-4261 0d.s. 63us : _local_bh_enable (__do_softirq)
  538. sshd-4261 0d.s1 64us : trace_preempt_on (__do_softirq)
  539. The above is an example of the preemptoff trace with ftrace_enabled
  540. set. Here we see that interrupts were disabled the entire time.
  541. The irq_enter code lets us know that we entered an interrupt 'h'.
  542. Before that, the functions being traced still show that it is not
  543. in an interrupt, but we can see from the functions themselves that
  544. this is not the case.
  545. Notice that __do_softirq when called does not have a preempt_count.
  546. It may seem that we missed a preempt enabling. What really happened
  547. is that the preempt count is held on the thread's stack and we
  548. switched to the softirq stack (4K stacks in effect). The code
  549. does not copy the preempt count, but because interrupts are disabled,
  550. we do not need to worry about it. Having a tracer like this is good
  551. for letting people know what really happens inside the kernel.
  552. preemptirqsoff
  553. --------------
  554. Knowing the locations that have interrupts disabled or preemption
  555. disabled for the longest times is helpful. But sometimes we would
  556. like to know when either preemption and/or interrupts are disabled.
  557. Consider the following code:
  558. local_irq_disable();
  559. call_function_with_irqs_off();
  560. preempt_disable();
  561. call_function_with_irqs_and_preemption_off();
  562. local_irq_enable();
  563. call_function_with_preemption_off();
  564. preempt_enable();
  565. The irqsoff tracer will record the total length of
  566. call_function_with_irqs_off() and
  567. call_function_with_irqs_and_preemption_off().
  568. The preemptoff tracer will record the total length of
  569. call_function_with_irqs_and_preemption_off() and
  570. call_function_with_preemption_off().
  571. But neither will trace the time that interrupts and/or preemption
  572. is disabled. This total time is the time that we can not schedule.
  573. To record this time, use the preemptirqsoff tracer.
  574. Again, using this trace is much like the irqsoff and preemptoff tracers.
  575. # echo preemptirqsoff > /debug/tracing/current_tracer
  576. # echo 0 > /debug/tracing/tracing_max_latency
  577. # echo 1 > /debug/tracing/tracing_enabled
  578. # ls -ltr
  579. [...]
  580. # echo 0 > /debug/tracing/tracing_enabled
  581. # cat /debug/tracing/latency_trace
  582. # tracer: preemptirqsoff
  583. #
  584. preemptirqsoff latency trace v1.1.5 on 2.6.26-rc8
  585. --------------------------------------------------------------------
  586. latency: 293 us, #3/3, CPU#0 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:2)
  587. -----------------
  588. | task: ls-4860 (uid:0 nice:0 policy:0 rt_prio:0)
  589. -----------------
  590. => started at: apic_timer_interrupt
  591. => ended at: __do_softirq
  592. # _------=> CPU#
  593. # / _-----=> irqs-off
  594. # | / _----=> need-resched
  595. # || / _---=> hardirq/softirq
  596. # ||| / _--=> preempt-depth
  597. # |||| /
  598. # ||||| delay
  599. # cmd pid ||||| time | caller
  600. # \ / ||||| \ | /
  601. ls-4860 0d... 0us!: trace_hardirqs_off_thunk (apic_timer_interrupt)
  602. ls-4860 0d.s. 294us : _local_bh_enable (__do_softirq)
  603. ls-4860 0d.s1 294us : trace_preempt_on (__do_softirq)
  604. The trace_hardirqs_off_thunk is called from assembly on x86 when
  605. interrupts are disabled in the assembly code. Without the function
  606. tracing, we do not know if interrupts were enabled within the preemption
  607. points. We do see that it started with preemption enabled.
  608. Here is a trace with ftrace_enabled set:
  609. # tracer: preemptirqsoff
  610. #
  611. preemptirqsoff latency trace v1.1.5 on 2.6.26-rc8
  612. --------------------------------------------------------------------
  613. latency: 105 us, #183/183, CPU#0 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:2)
  614. -----------------
  615. | task: sshd-4261 (uid:0 nice:0 policy:0 rt_prio:0)
  616. -----------------
  617. => started at: write_chan
  618. => ended at: __do_softirq
  619. # _------=> CPU#
  620. # / _-----=> irqs-off
  621. # | / _----=> need-resched
  622. # || / _---=> hardirq/softirq
  623. # ||| / _--=> preempt-depth
  624. # |||| /
  625. # ||||| delay
  626. # cmd pid ||||| time | caller
  627. # \ / ||||| \ | /
  628. ls-4473 0.N.. 0us : preempt_schedule (write_chan)
  629. ls-4473 0dN.1 1us : _spin_lock (schedule)
  630. ls-4473 0dN.1 2us : add_preempt_count (_spin_lock)
  631. ls-4473 0d..2 2us : put_prev_task_fair (schedule)
  632. [...]
  633. ls-4473 0d..2 13us : set_normalized_timespec (ktime_get_ts)
  634. ls-4473 0d..2 13us : __switch_to (schedule)
  635. sshd-4261 0d..2 14us : finish_task_switch (schedule)
  636. sshd-4261 0d..2 14us : _spin_unlock_irq (finish_task_switch)
  637. sshd-4261 0d..1 15us : add_preempt_count (_spin_lock_irqsave)
  638. sshd-4261 0d..2 16us : _spin_unlock_irqrestore (hrtick_set)
  639. sshd-4261 0d..2 16us : do_IRQ (common_interrupt)
  640. sshd-4261 0d..2 17us : irq_enter (do_IRQ)
  641. sshd-4261 0d..2 17us : idle_cpu (irq_enter)
  642. sshd-4261 0d..2 18us : add_preempt_count (irq_enter)
  643. sshd-4261 0d.h2 18us : idle_cpu (irq_enter)
  644. sshd-4261 0d.h. 18us : handle_fasteoi_irq (do_IRQ)
  645. sshd-4261 0d.h. 19us : _spin_lock (handle_fasteoi_irq)
  646. sshd-4261 0d.h. 19us : add_preempt_count (_spin_lock)
  647. sshd-4261 0d.h1 20us : _spin_unlock (handle_fasteoi_irq)
  648. sshd-4261 0d.h1 20us : sub_preempt_count (_spin_unlock)
  649. [...]
  650. sshd-4261 0d.h1 28us : _spin_unlock (handle_fasteoi_irq)
  651. sshd-4261 0d.h1 29us : sub_preempt_count (_spin_unlock)
  652. sshd-4261 0d.h2 29us : irq_exit (do_IRQ)
  653. sshd-4261 0d.h2 29us : sub_preempt_count (irq_exit)
  654. sshd-4261 0d..3 30us : do_softirq (irq_exit)
  655. sshd-4261 0d... 30us : __do_softirq (do_softirq)
  656. sshd-4261 0d... 31us : __local_bh_disable (__do_softirq)
  657. sshd-4261 0d... 31us+: add_preempt_count (__local_bh_disable)
  658. sshd-4261 0d.s4 34us : add_preempt_count (__local_bh_disable)
  659. [...]
  660. sshd-4261 0d.s3 43us : sub_preempt_count (local_bh_enable_ip)
  661. sshd-4261 0d.s4 44us : sub_preempt_count (local_bh_enable_ip)
  662. sshd-4261 0d.s3 44us : smp_apic_timer_interrupt (apic_timer_interrupt)
  663. sshd-4261 0d.s3 45us : irq_enter (smp_apic_timer_interrupt)
  664. sshd-4261 0d.s3 45us : idle_cpu (irq_enter)
  665. sshd-4261 0d.s3 46us : add_preempt_count (irq_enter)
  666. sshd-4261 0d.H3 46us : idle_cpu (irq_enter)
  667. sshd-4261 0d.H3 47us : hrtimer_interrupt (smp_apic_timer_interrupt)
  668. sshd-4261 0d.H3 47us : ktime_get (hrtimer_interrupt)
  669. [...]
  670. sshd-4261 0d.H3 81us : tick_program_event (hrtimer_interrupt)
  671. sshd-4261 0d.H3 82us : ktime_get (tick_program_event)
  672. sshd-4261 0d.H3 82us : ktime_get_ts (ktime_get)
  673. sshd-4261 0d.H3 83us : getnstimeofday (ktime_get_ts)
  674. sshd-4261 0d.H3 83us : set_normalized_timespec (ktime_get_ts)
  675. sshd-4261 0d.H3 84us : clockevents_program_event (tick_program_event)
  676. sshd-4261 0d.H3 84us : lapic_next_event (clockevents_program_event)
  677. sshd-4261 0d.H3 85us : irq_exit (smp_apic_timer_interrupt)
  678. sshd-4261 0d.H3 85us : sub_preempt_count (irq_exit)
  679. sshd-4261 0d.s4 86us : sub_preempt_count (irq_exit)
  680. sshd-4261 0d.s3 86us : add_preempt_count (__local_bh_disable)
  681. [...]
  682. sshd-4261 0d.s1 98us : sub_preempt_count (net_rx_action)
  683. sshd-4261 0d.s. 99us : add_preempt_count (_spin_lock_irq)
  684. sshd-4261 0d.s1 99us+: _spin_unlock_irq (run_timer_softirq)
  685. sshd-4261 0d.s. 104us : _local_bh_enable (__do_softirq)
  686. sshd-4261 0d.s. 104us : sub_preempt_count (_local_bh_enable)
  687. sshd-4261 0d.s. 105us : _local_bh_enable (__do_softirq)
  688. sshd-4261 0d.s1 105us : trace_preempt_on (__do_softirq)
  689. This is a very interesting trace. It started with the preemption of
  690. the ls task. We see that the task had the "need_resched" bit set
  691. via the 'N' in the trace. Interrupts were disabled before the spin_lock
  692. at the beginning of the trace. We see that a schedule took place to run
  693. sshd. When the interrupts were enabled, we took an interrupt.
  694. On return from the interrupt handler, the softirq ran. We took another
  695. interrupt while running the softirq as we see from the capital 'H'.
  696. wakeup
  697. ------
  698. In a Real-Time environment it is very important to know the wakeup
  699. time it takes for the highest priority task that is woken up to the
  700. time that it executes. This is also known as "schedule latency".
  701. I stress the point that this is about RT tasks. It is also important
  702. to know the scheduling latency of non-RT tasks, but the average
  703. schedule latency is better for non-RT tasks. Tools like
  704. LatencyTop are more appropriate for such measurements.
  705. Real-Time environments are interested in the worst case latency.
  706. That is the longest latency it takes for something to happen, and
  707. not the average. We can have a very fast scheduler that may only
  708. have a large latency once in a while, but that would not work well
  709. with Real-Time tasks. The wakeup tracer was designed to record
  710. the worst case wakeups of RT tasks. Non-RT tasks are not recorded
  711. because the tracer only records one worst case and tracing non-RT
  712. tasks that are unpredictable will overwrite the worst case latency
  713. of RT tasks.
  714. Since this tracer only deals with RT tasks, we will run this slightly
  715. differently than we did with the previous tracers. Instead of performing
  716. an 'ls', we will run 'sleep 1' under 'chrt' which changes the
  717. priority of the task.
  718. # echo wakeup > /debug/tracing/current_tracer
  719. # echo 0 > /debug/tracing/tracing_max_latency
  720. # echo 1 > /debug/tracing/tracing_enabled
  721. # chrt -f 5 sleep 1
  722. # echo 0 > /debug/tracing/tracing_enabled
  723. # cat /debug/tracing/latency_trace
  724. # tracer: wakeup
  725. #
  726. wakeup latency trace v1.1.5 on 2.6.26-rc8
  727. --------------------------------------------------------------------
  728. latency: 4 us, #2/2, CPU#1 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:2)
  729. -----------------
  730. | task: sleep-4901 (uid:0 nice:0 policy:1 rt_prio:5)
  731. -----------------
  732. # _------=> CPU#
  733. # / _-----=> irqs-off
  734. # | / _----=> need-resched
  735. # || / _---=> hardirq/softirq
  736. # ||| / _--=> preempt-depth
  737. # |||| /
  738. # ||||| delay
  739. # cmd pid ||||| time | caller
  740. # \ / ||||| \ | /
  741. <idle>-0 1d.h4 0us+: try_to_wake_up (wake_up_process)
  742. <idle>-0 1d..4 4us : schedule (cpu_idle)
  743. Running this on an idle system, we see that it only took 4 microseconds
  744. to perform the task switch. Note, since the trace marker in the
  745. schedule is before the actual "switch", we stop the tracing when
  746. the recorded task is about to schedule in. This may change if
  747. we add a new marker at the end of the scheduler.
  748. Notice that the recorded task is 'sleep' with the PID of 4901 and it
  749. has an rt_prio of 5. This priority is user-space priority and not
  750. the internal kernel priority. The policy is 1 for SCHED_FIFO and 2
  751. for SCHED_RR.
  752. Doing the same with chrt -r 5 and ftrace_enabled set.
  753. # tracer: wakeup
  754. #
  755. wakeup latency trace v1.1.5 on 2.6.26-rc8
  756. --------------------------------------------------------------------
  757. latency: 50 us, #60/60, CPU#1 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:2)
  758. -----------------
  759. | task: sleep-4068 (uid:0 nice:0 policy:2 rt_prio:5)
  760. -----------------
  761. # _------=> CPU#
  762. # / _-----=> irqs-off
  763. # | / _----=> need-resched
  764. # || / _---=> hardirq/softirq
  765. # ||| / _--=> preempt-depth
  766. # |||| /
  767. # ||||| delay
  768. # cmd pid ||||| time | caller
  769. # \ / ||||| \ | /
  770. ksoftirq-7 1d.H3 0us : try_to_wake_up (wake_up_process)
  771. ksoftirq-7 1d.H4 1us : sub_preempt_count (marker_probe_cb)
  772. ksoftirq-7 1d.H3 2us : check_preempt_wakeup (try_to_wake_up)
  773. ksoftirq-7 1d.H3 3us : update_curr (check_preempt_wakeup)
  774. ksoftirq-7 1d.H3 4us : calc_delta_mine (update_curr)
  775. ksoftirq-7 1d.H3 5us : __resched_task (check_preempt_wakeup)
  776. ksoftirq-7 1d.H3 6us : task_wake_up_rt (try_to_wake_up)
  777. ksoftirq-7 1d.H3 7us : _spin_unlock_irqrestore (try_to_wake_up)
  778. [...]
  779. ksoftirq-7 1d.H2 17us : irq_exit (smp_apic_timer_interrupt)
  780. ksoftirq-7 1d.H2 18us : sub_preempt_count (irq_exit)
  781. ksoftirq-7 1d.s3 19us : sub_preempt_count (irq_exit)
  782. ksoftirq-7 1..s2 20us : rcu_process_callbacks (__do_softirq)
  783. [...]
  784. ksoftirq-7 1..s2 26us : __rcu_process_callbacks (rcu_process_callbacks)
  785. ksoftirq-7 1d.s2 27us : _local_bh_enable (__do_softirq)
  786. ksoftirq-7 1d.s2 28us : sub_preempt_count (_local_bh_enable)
  787. ksoftirq-7 1.N.3 29us : sub_preempt_count (ksoftirqd)
  788. ksoftirq-7 1.N.2 30us : _cond_resched (ksoftirqd)
  789. ksoftirq-7 1.N.2 31us : __cond_resched (_cond_resched)
  790. ksoftirq-7 1.N.2 32us : add_preempt_count (__cond_resched)
  791. ksoftirq-7 1.N.2 33us : schedule (__cond_resched)
  792. ksoftirq-7 1.N.2 33us : add_preempt_count (schedule)
  793. ksoftirq-7 1.N.3 34us : hrtick_clear (schedule)
  794. ksoftirq-7 1dN.3 35us : _spin_lock (schedule)
  795. ksoftirq-7 1dN.3 36us : add_preempt_count (_spin_lock)
  796. ksoftirq-7 1d..4 37us : put_prev_task_fair (schedule)
  797. ksoftirq-7 1d..4 38us : update_curr (put_prev_task_fair)
  798. [...]
  799. ksoftirq-7 1d..5 47us : _spin_trylock (tracing_record_cmdline)
  800. ksoftirq-7 1d..5 48us : add_preempt_count (_spin_trylock)
  801. ksoftirq-7 1d..6 49us : _spin_unlock (tracing_record_cmdline)
  802. ksoftirq-7 1d..6 49us : sub_preempt_count (_spin_unlock)
  803. ksoftirq-7 1d..4 50us : schedule (__cond_resched)
  804. The interrupt went off while running ksoftirqd. This task runs at
  805. SCHED_OTHER. Why did not we see the 'N' set early? This may be
  806. a harmless bug with x86_32 and 4K stacks. On x86_32 with 4K stacks
  807. configured, the interrupt and softirq run with their own stack.
  808. Some information is held on the top of the task's stack (need_resched
  809. and preempt_count are both stored there). The setting of the NEED_RESCHED
  810. bit is done directly to the task's stack, but the reading of the
  811. NEED_RESCHED is done by looking at the current stack, which in this case
  812. is the stack for the hard interrupt. This hides the fact that NEED_RESCHED
  813. has been set. We do not see the 'N' until we switch back to the task's
  814. assigned stack.
  815. ftrace
  816. ------
  817. ftrace is not only the name of the tracing infrastructure, but it
  818. is also a name of one of the tracers. The tracer is the function
  819. tracer. Enabling the function tracer can be done from the
  820. debug file system. Make sure the ftrace_enabled is set otherwise
  821. this tracer is a nop.
  822. # sysctl kernel.ftrace_enabled=1
  823. # echo ftrace > /debug/tracing/current_tracer
  824. # echo 1 > /debug/tracing/tracing_enabled
  825. # usleep 1
  826. # echo 0 > /debug/tracing/tracing_enabled
  827. # cat /debug/tracing/trace
  828. # tracer: ftrace
  829. #
  830. # TASK-PID CPU# TIMESTAMP FUNCTION
  831. # | | | | |
  832. bash-4003 [00] 123.638713: finish_task_switch <-schedule
  833. bash-4003 [00] 123.638714: _spin_unlock_irq <-finish_task_switch
  834. bash-4003 [00] 123.638714: sub_preempt_count <-_spin_unlock_irq
  835. bash-4003 [00] 123.638715: hrtick_set <-schedule
  836. bash-4003 [00] 123.638715: _spin_lock_irqsave <-hrtick_set
  837. bash-4003 [00] 123.638716: add_preempt_count <-_spin_lock_irqsave
  838. bash-4003 [00] 123.638716: _spin_unlock_irqrestore <-hrtick_set
  839. bash-4003 [00] 123.638717: sub_preempt_count <-_spin_unlock_irqrestore
  840. bash-4003 [00] 123.638717: hrtick_clear <-hrtick_set
  841. bash-4003 [00] 123.638718: sub_preempt_count <-schedule
  842. bash-4003 [00] 123.638718: sub_preempt_count <-preempt_schedule
  843. bash-4003 [00] 123.638719: wait_for_completion <-__stop_machine_run
  844. bash-4003 [00] 123.638719: wait_for_common <-wait_for_completion
  845. bash-4003 [00] 123.638720: _spin_lock_irq <-wait_for_common
  846. bash-4003 [00] 123.638720: add_preempt_count <-_spin_lock_irq
  847. [...]
  848. Note: ftrace uses ring buffers to store the above entries. The newest data
  849. may overwrite the oldest data. Sometimes using echo to stop the trace
  850. is not sufficient because the tracing could have overwritten the data
  851. that you wanted to record. For this reason, it is sometimes better to
  852. disable tracing directly from a program. This allows you to stop the
  853. tracing at the point that you hit the part that you are interested in.
  854. To disable the tracing directly from a C program, something like following
  855. code snippet can be used:
  856. int trace_fd;
  857. [...]
  858. int main(int argc, char *argv[]) {
  859. [...]
  860. trace_fd = open("/debug/tracing/tracing_enabled", O_WRONLY);
  861. [...]
  862. if (condition_hit()) {
  863. write(trace_fd, "0", 1);
  864. }
  865. [...]
  866. }
  867. Note: Here we hard coded the path name. The debugfs mount is not
  868. guaranteed to be at /debug (and is more commonly at /sys/kernel/debug).
  869. For simple one time traces, the above is sufficent. For anything else,
  870. a search through /proc/mounts may be needed to find where the debugfs
  871. file-system is mounted.
  872. dynamic ftrace
  873. --------------
  874. If CONFIG_DYNAMIC_FTRACE is set, the system will run with
  875. virtually no overhead when function tracing is disabled. The way
  876. this works is the mcount function call (placed at the start of
  877. every kernel function, produced by the -pg switch in gcc), starts
  878. of pointing to a simple return. (Enabling FTRACE will include the
  879. -pg switch in the compiling of the kernel.)
  880. When dynamic ftrace is initialized, it calls kstop_machine to make
  881. the machine act like a uniprocessor so that it can freely modify code
  882. without worrying about other processors executing that same code. At
  883. initialization, the mcount calls are changed to call a "record_ip"
  884. function. After this, the first time a kernel function is called,
  885. it has the calling address saved in a hash table.
  886. Later on the ftraced kernel thread is awoken and will again call
  887. kstop_machine if new functions have been recorded. The ftraced thread
  888. will change all calls to mcount to "nop". Just calling mcount
  889. and having mcount return has shown a 10% overhead. By converting
  890. it to a nop, there is no measurable overhead to the system.
  891. One special side-effect to the recording of the functions being
  892. traced is that we can now selectively choose which functions we
  893. wish to trace and which ones we want the mcount calls to remain as
  894. nops.
  895. Two files are used, one for enabling and one for disabling the tracing
  896. of specified functions. They are:
  897. set_ftrace_filter
  898. and
  899. set_ftrace_notrace
  900. A list of available functions that you can add to these files is listed
  901. in:
  902. available_filter_functions
  903. # cat /debug/tracing/available_filter_functions
  904. put_prev_task_idle
  905. kmem_cache_create
  906. pick_next_task_rt
  907. get_online_cpus
  908. pick_next_task_fair
  909. mutex_lock
  910. [...]
  911. If I am only interested in sys_nanosleep and hrtimer_interrupt:
  912. # echo sys_nanosleep hrtimer_interrupt \
  913. > /debug/tracing/set_ftrace_filter
  914. # echo ftrace > /debug/tracing/current_tracer
  915. # echo 1 > /debug/tracing/tracing_enabled
  916. # usleep 1
  917. # echo 0 > /debug/tracing/tracing_enabled
  918. # cat /debug/tracing/trace
  919. # tracer: ftrace
  920. #
  921. # TASK-PID CPU# TIMESTAMP FUNCTION
  922. # | | | | |
  923. usleep-4134 [00] 1317.070017: hrtimer_interrupt <-smp_apic_timer_interrupt
  924. usleep-4134 [00] 1317.070111: sys_nanosleep <-syscall_call
  925. <idle>-0 [00] 1317.070115: hrtimer_interrupt <-smp_apic_timer_interrupt
  926. To see which functions are being traced, you can cat the file:
  927. # cat /debug/tracing/set_ftrace_filter
  928. hrtimer_interrupt
  929. sys_nanosleep
  930. Perhaps this is not enough. The filters also allow simple wild cards.
  931. Only the following are currently available
  932. <match>* - will match functions that begin with <match>
  933. *<match> - will match functions that end with <match>
  934. *<match>* - will match functions that have <match> in it
  935. These are the only wild cards which are supported.
  936. <match>*<match> will not work.
  937. # echo hrtimer_* > /debug/tracing/set_ftrace_filter
  938. Produces:
  939. # tracer: ftrace
  940. #
  941. # TASK-PID CPU# TIMESTAMP FUNCTION
  942. # | | | | |
  943. bash-4003 [00] 1480.611794: hrtimer_init <-copy_process
  944. bash-4003 [00] 1480.611941: hrtimer_start <-hrtick_set
  945. bash-4003 [00] 1480.611956: hrtimer_cancel <-hrtick_clear
  946. bash-4003 [00] 1480.611956: hrtimer_try_to_cancel <-hrtimer_cancel
  947. <idle>-0 [00] 1480.612019: hrtimer_get_next_event <-get_next_timer_interrupt
  948. <idle>-0 [00] 1480.612025: hrtimer_get_next_event <-get_next_timer_interrupt
  949. <idle>-0 [00] 1480.612032: hrtimer_get_next_event <-get_next_timer_interrupt
  950. <idle>-0 [00] 1480.612037: hrtimer_get_next_event <-get_next_timer_interrupt
  951. <idle>-0 [00] 1480.612382: hrtimer_get_next_event <-get_next_timer_interrupt
  952. Notice that we lost the sys_nanosleep.
  953. # cat /debug/tracing/set_ftrace_filter
  954. hrtimer_run_queues
  955. hrtimer_run_pending
  956. hrtimer_init
  957. hrtimer_cancel
  958. hrtimer_try_to_cancel
  959. hrtimer_forward
  960. hrtimer_start
  961. hrtimer_reprogram
  962. hrtimer_force_reprogram
  963. hrtimer_get_next_event
  964. hrtimer_interrupt
  965. hrtimer_nanosleep
  966. hrtimer_wakeup
  967. hrtimer_get_remaining
  968. hrtimer_get_res
  969. hrtimer_init_sleeper
  970. This is because the '>' and '>>' act just like they do in bash.
  971. To rewrite the filters, use '>'
  972. To append to the filters, use '>>'
  973. To clear out a filter so that all functions will be recorded again:
  974. # echo > /debug/tracing/set_ftrace_filter
  975. # cat /debug/tracing/set_ftrace_filter
  976. #
  977. Again, now we want to append.
  978. # echo sys_nanosleep > /debug/tracing/set_ftrace_filter
  979. # cat /debug/tracing/set_ftrace_filter
  980. sys_nanosleep
  981. # echo hrtimer_* >> /debug/tracing/set_ftrace_filter
  982. # cat /debug/tracing/set_ftrace_filter
  983. hrtimer_run_queues
  984. hrtimer_run_pending
  985. hrtimer_init
  986. hrtimer_cancel
  987. hrtimer_try_to_cancel
  988. hrtimer_forward
  989. hrtimer_start
  990. hrtimer_reprogram
  991. hrtimer_force_reprogram
  992. hrtimer_get_next_event
  993. hrtimer_interrupt
  994. sys_nanosleep
  995. hrtimer_nanosleep
  996. hrtimer_wakeup
  997. hrtimer_get_remaining
  998. hrtimer_get_res
  999. hrtimer_init_sleeper
  1000. The set_ftrace_notrace prevents those functions from being traced.
  1001. # echo '*preempt*' '*lock*' > /debug/tracing/set_ftrace_notrace
  1002. Produces:
  1003. # tracer: ftrace
  1004. #
  1005. # TASK-PID CPU# TIMESTAMP FUNCTION
  1006. # | | | | |
  1007. bash-4043 [01] 115.281644: finish_task_switch <-schedule
  1008. bash-4043 [01] 115.281645: hrtick_set <-schedule
  1009. bash-4043 [01] 115.281645: hrtick_clear <-hrtick_set
  1010. bash-4043 [01] 115.281646: wait_for_completion <-__stop_machine_run
  1011. bash-4043 [01] 115.281647: wait_for_common <-wait_for_completion
  1012. bash-4043 [01] 115.281647: kthread_stop <-stop_machine_run
  1013. bash-4043 [01] 115.281648: init_waitqueue_head <-kthread_stop
  1014. bash-4043 [01] 115.281648: wake_up_process <-kthread_stop
  1015. bash-4043 [01] 115.281649: try_to_wake_up <-wake_up_process
  1016. We can see that there's no more lock or preempt tracing.
  1017. ftraced
  1018. -------
  1019. As mentioned above, when dynamic ftrace is configured in, a kernel
  1020. thread wakes up once a second and checks to see if there are mcount
  1021. calls that need to be converted into nops. If there are not any, then
  1022. it simply goes back to sleep. But if there are some, it will call
  1023. kstop_machine to convert the calls to nops.
  1024. There may be a case in which you do not want this added latency.
  1025. Perhaps you are doing some audio recording and this activity might
  1026. cause skips in the playback. There is an interface to disable
  1027. and enable the "ftraced" kernel thread.
  1028. # echo 0 > /debug/tracing/ftraced_enabled
  1029. This will disable the calling of kstop_machine to update the
  1030. mcount calls to nops. Remember that there is a large overhead
  1031. to calling mcount. Without this kernel thread, that overhead will
  1032. exist.
  1033. If there are recorded calls to mcount, any write to the ftraced_enabled
  1034. file will cause the kstop_machine to run. This means that a
  1035. user can manually perform the updates when they want to by simply
  1036. echoing a '0' into the ftraced_enabled file.
  1037. The updates are also done at the beginning of enabling a tracer
  1038. that uses ftrace function recording.
  1039. trace_pipe
  1040. ----------
  1041. The trace_pipe outputs the same content as the trace file, but the effect
  1042. on the tracing is different. Every read from trace_pipe is consumed.
  1043. This means that subsequent reads will be different. The trace
  1044. is live.
  1045. # echo ftrace > /debug/tracing/current_tracer
  1046. # cat /debug/tracing/trace_pipe > /tmp/trace.out &
  1047. [1] 4153
  1048. # echo 1 > /debug/tracing/tracing_enabled
  1049. # usleep 1
  1050. # echo 0 > /debug/tracing/tracing_enabled
  1051. # cat /debug/tracing/trace
  1052. # tracer: ftrace
  1053. #
  1054. # TASK-PID CPU# TIMESTAMP FUNCTION
  1055. # | | | | |
  1056. #
  1057. # cat /tmp/trace.out
  1058. bash-4043 [00] 41.267106: finish_task_switch <-schedule
  1059. bash-4043 [00] 41.267106: hrtick_set <-schedule
  1060. bash-4043 [00] 41.267107: hrtick_clear <-hrtick_set
  1061. bash-4043 [00] 41.267108: wait_for_completion <-__stop_machine_run
  1062. bash-4043 [00] 41.267108: wait_for_common <-wait_for_completion
  1063. bash-4043 [00] 41.267109: kthread_stop <-stop_machine_run
  1064. bash-4043 [00] 41.267109: init_waitqueue_head <-kthread_stop
  1065. bash-4043 [00] 41.267110: wake_up_process <-kthread_stop
  1066. bash-4043 [00] 41.267110: try_to_wake_up <-wake_up_process
  1067. bash-4043 [00] 41.267111: select_task_rq_rt <-try_to_wake_up
  1068. Note, reading the trace_pipe file will block until more input is added.
  1069. By changing the tracer, trace_pipe will issue an EOF. We needed
  1070. to set the ftrace tracer _before_ cating the trace_pipe file.
  1071. trace entries
  1072. -------------
  1073. Having too much or not enough data can be troublesome in diagnosing
  1074. an issue in the kernel. The file trace_entries is used to modify
  1075. the size of the internal trace buffers. The number listed
  1076. is the number of entries that can be recorded per CPU. To know
  1077. the full size, multiply the number of possible CPUS with the
  1078. number of entries.
  1079. # cat /debug/tracing/trace_entries
  1080. 65620
  1081. Note, to modify this, you must have tracing completely disabled. To do that,
  1082. echo "none" into the current_tracer. If the current_tracer is not set
  1083. to "none", an EINVAL error will be returned.
  1084. # echo none > /debug/tracing/current_tracer
  1085. # echo 100000 > /debug/tracing/trace_entries
  1086. # cat /debug/tracing/trace_entries
  1087. 100045
  1088. Notice that we echoed in 100,000 but the size is 100,045. The entries
  1089. are held in individual pages. It allocates the number of pages it takes
  1090. to fulfill the request. If more entries may fit on the last page
  1091. then they will be added.
  1092. # echo 1 > /debug/tracing/trace_entries
  1093. # cat /debug/tracing/trace_entries
  1094. 85
  1095. This shows us that 85 entries can fit in a single page.
  1096. The number of pages which will be allocated is limited to a percentage
  1097. of available memory. Allocating too much will produce an error.
  1098. # echo 1000000000000 > /debug/tracing/trace_entries
  1099. -bash: echo: write error: Cannot allocate memory
  1100. # cat /debug/tracing/trace_entries
  1101. 85