cfq-iosched.c 94 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810
  1. /*
  2. * CFQ, or complete fairness queueing, disk scheduler.
  3. *
  4. * Based on ideas from a previously unfinished io
  5. * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
  6. *
  7. * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
  8. */
  9. #include <linux/module.h>
  10. #include <linux/blkdev.h>
  11. #include <linux/elevator.h>
  12. #include <linux/jiffies.h>
  13. #include <linux/rbtree.h>
  14. #include <linux/ioprio.h>
  15. #include <linux/blktrace_api.h>
  16. #include "blk-cgroup.h"
  17. /*
  18. * tunables
  19. */
  20. /* max queue in one round of service */
  21. static const int cfq_quantum = 4;
  22. static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
  23. /* maximum backwards seek, in KiB */
  24. static const int cfq_back_max = 16 * 1024;
  25. /* penalty of a backwards seek */
  26. static const int cfq_back_penalty = 2;
  27. static const int cfq_slice_sync = HZ / 10;
  28. static int cfq_slice_async = HZ / 25;
  29. static const int cfq_slice_async_rq = 2;
  30. static int cfq_slice_idle = HZ / 125;
  31. static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
  32. static const int cfq_hist_divisor = 4;
  33. /*
  34. * offset from end of service tree
  35. */
  36. #define CFQ_IDLE_DELAY (HZ / 5)
  37. /*
  38. * below this threshold, we consider thinktime immediate
  39. */
  40. #define CFQ_MIN_TT (2)
  41. /*
  42. * Allow merged cfqqs to perform this amount of seeky I/O before
  43. * deciding to break the queues up again.
  44. */
  45. #define CFQQ_COOP_TOUT (HZ)
  46. #define CFQ_SLICE_SCALE (5)
  47. #define CFQ_HW_QUEUE_MIN (5)
  48. #define CFQ_SERVICE_SHIFT 12
  49. #define RQ_CIC(rq) \
  50. ((struct cfq_io_context *) (rq)->elevator_private)
  51. #define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elevator_private2)
  52. static struct kmem_cache *cfq_pool;
  53. static struct kmem_cache *cfq_ioc_pool;
  54. static DEFINE_PER_CPU(unsigned long, cfq_ioc_count);
  55. static struct completion *ioc_gone;
  56. static DEFINE_SPINLOCK(ioc_gone_lock);
  57. #define CFQ_PRIO_LISTS IOPRIO_BE_NR
  58. #define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
  59. #define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
  60. #define sample_valid(samples) ((samples) > 80)
  61. #define rb_entry_cfqg(node) rb_entry((node), struct cfq_group, rb_node)
  62. /*
  63. * Most of our rbtree usage is for sorting with min extraction, so
  64. * if we cache the leftmost node we don't have to walk down the tree
  65. * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
  66. * move this into the elevator for the rq sorting as well.
  67. */
  68. struct cfq_rb_root {
  69. struct rb_root rb;
  70. struct rb_node *left;
  71. unsigned count;
  72. u64 min_vdisktime;
  73. struct rb_node *active;
  74. unsigned total_weight;
  75. };
  76. #define CFQ_RB_ROOT (struct cfq_rb_root) { RB_ROOT, NULL, 0, 0, }
  77. /*
  78. * Per process-grouping structure
  79. */
  80. struct cfq_queue {
  81. /* reference count */
  82. atomic_t ref;
  83. /* various state flags, see below */
  84. unsigned int flags;
  85. /* parent cfq_data */
  86. struct cfq_data *cfqd;
  87. /* service_tree member */
  88. struct rb_node rb_node;
  89. /* service_tree key */
  90. unsigned long rb_key;
  91. /* prio tree member */
  92. struct rb_node p_node;
  93. /* prio tree root we belong to, if any */
  94. struct rb_root *p_root;
  95. /* sorted list of pending requests */
  96. struct rb_root sort_list;
  97. /* if fifo isn't expired, next request to serve */
  98. struct request *next_rq;
  99. /* requests queued in sort_list */
  100. int queued[2];
  101. /* currently allocated requests */
  102. int allocated[2];
  103. /* fifo list of requests in sort_list */
  104. struct list_head fifo;
  105. /* time when queue got scheduled in to dispatch first request. */
  106. unsigned long dispatch_start;
  107. /* time when first request from queue completed and slice started. */
  108. unsigned long slice_start;
  109. unsigned long slice_end;
  110. long slice_resid;
  111. unsigned int slice_dispatch;
  112. /* pending metadata requests */
  113. int meta_pending;
  114. /* number of requests that are on the dispatch list or inside driver */
  115. int dispatched;
  116. /* io prio of this group */
  117. unsigned short ioprio, org_ioprio;
  118. unsigned short ioprio_class, org_ioprio_class;
  119. unsigned int seek_samples;
  120. u64 seek_total;
  121. sector_t seek_mean;
  122. sector_t last_request_pos;
  123. unsigned long seeky_start;
  124. pid_t pid;
  125. struct cfq_rb_root *service_tree;
  126. struct cfq_queue *new_cfqq;
  127. struct cfq_group *cfqg;
  128. /* Sectors dispatched in current dispatch round */
  129. unsigned long nr_sectors;
  130. };
  131. /*
  132. * First index in the service_trees.
  133. * IDLE is handled separately, so it has negative index
  134. */
  135. enum wl_prio_t {
  136. BE_WORKLOAD = 0,
  137. RT_WORKLOAD = 1,
  138. IDLE_WORKLOAD = 2,
  139. };
  140. /*
  141. * Second index in the service_trees.
  142. */
  143. enum wl_type_t {
  144. ASYNC_WORKLOAD = 0,
  145. SYNC_NOIDLE_WORKLOAD = 1,
  146. SYNC_WORKLOAD = 2
  147. };
  148. /* This is per cgroup per device grouping structure */
  149. struct cfq_group {
  150. /* group service_tree member */
  151. struct rb_node rb_node;
  152. /* group service_tree key */
  153. u64 vdisktime;
  154. unsigned int weight;
  155. bool on_st;
  156. /* number of cfqq currently on this group */
  157. int nr_cfqq;
  158. /* Per group busy queus average. Useful for workload slice calc. */
  159. unsigned int busy_queues_avg[2];
  160. /*
  161. * rr lists of queues with requests, onle rr for each priority class.
  162. * Counts are embedded in the cfq_rb_root
  163. */
  164. struct cfq_rb_root service_trees[2][3];
  165. struct cfq_rb_root service_tree_idle;
  166. unsigned long saved_workload_slice;
  167. enum wl_type_t saved_workload;
  168. enum wl_prio_t saved_serving_prio;
  169. struct blkio_group blkg;
  170. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  171. struct hlist_node cfqd_node;
  172. atomic_t ref;
  173. #endif
  174. };
  175. /*
  176. * Per block device queue structure
  177. */
  178. struct cfq_data {
  179. struct request_queue *queue;
  180. /* Root service tree for cfq_groups */
  181. struct cfq_rb_root grp_service_tree;
  182. struct cfq_group root_group;
  183. /* Number of active cfq groups on group service tree */
  184. int nr_groups;
  185. /*
  186. * The priority currently being served
  187. */
  188. enum wl_prio_t serving_prio;
  189. enum wl_type_t serving_type;
  190. unsigned long workload_expires;
  191. struct cfq_group *serving_group;
  192. bool noidle_tree_requires_idle;
  193. /*
  194. * Each priority tree is sorted by next_request position. These
  195. * trees are used when determining if two or more queues are
  196. * interleaving requests (see cfq_close_cooperator).
  197. */
  198. struct rb_root prio_trees[CFQ_PRIO_LISTS];
  199. unsigned int busy_queues;
  200. int rq_in_driver[2];
  201. int sync_flight;
  202. /*
  203. * queue-depth detection
  204. */
  205. int rq_queued;
  206. int hw_tag;
  207. /*
  208. * hw_tag can be
  209. * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
  210. * 1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
  211. * 0 => no NCQ
  212. */
  213. int hw_tag_est_depth;
  214. unsigned int hw_tag_samples;
  215. /*
  216. * idle window management
  217. */
  218. struct timer_list idle_slice_timer;
  219. struct work_struct unplug_work;
  220. struct cfq_queue *active_queue;
  221. struct cfq_io_context *active_cic;
  222. /*
  223. * async queue for each priority case
  224. */
  225. struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
  226. struct cfq_queue *async_idle_cfqq;
  227. sector_t last_position;
  228. /*
  229. * tunables, see top of file
  230. */
  231. unsigned int cfq_quantum;
  232. unsigned int cfq_fifo_expire[2];
  233. unsigned int cfq_back_penalty;
  234. unsigned int cfq_back_max;
  235. unsigned int cfq_slice[2];
  236. unsigned int cfq_slice_async_rq;
  237. unsigned int cfq_slice_idle;
  238. unsigned int cfq_latency;
  239. struct list_head cic_list;
  240. /*
  241. * Fallback dummy cfqq for extreme OOM conditions
  242. */
  243. struct cfq_queue oom_cfqq;
  244. unsigned long last_end_sync_rq;
  245. /* List of cfq groups being managed on this device*/
  246. struct hlist_head cfqg_list;
  247. };
  248. static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd);
  249. static struct cfq_rb_root *service_tree_for(struct cfq_group *cfqg,
  250. enum wl_prio_t prio,
  251. enum wl_type_t type,
  252. struct cfq_data *cfqd)
  253. {
  254. if (!cfqg)
  255. return NULL;
  256. if (prio == IDLE_WORKLOAD)
  257. return &cfqg->service_tree_idle;
  258. return &cfqg->service_trees[prio][type];
  259. }
  260. enum cfqq_state_flags {
  261. CFQ_CFQQ_FLAG_on_rr = 0, /* on round-robin busy list */
  262. CFQ_CFQQ_FLAG_wait_request, /* waiting for a request */
  263. CFQ_CFQQ_FLAG_must_dispatch, /* must be allowed a dispatch */
  264. CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
  265. CFQ_CFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */
  266. CFQ_CFQQ_FLAG_idle_window, /* slice idling enabled */
  267. CFQ_CFQQ_FLAG_prio_changed, /* task priority has changed */
  268. CFQ_CFQQ_FLAG_slice_new, /* no requests dispatched in slice */
  269. CFQ_CFQQ_FLAG_sync, /* synchronous queue */
  270. CFQ_CFQQ_FLAG_coop, /* cfqq is shared */
  271. CFQ_CFQQ_FLAG_deep, /* sync cfqq experienced large depth */
  272. };
  273. #define CFQ_CFQQ_FNS(name) \
  274. static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
  275. { \
  276. (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
  277. } \
  278. static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
  279. { \
  280. (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
  281. } \
  282. static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
  283. { \
  284. return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
  285. }
  286. CFQ_CFQQ_FNS(on_rr);
  287. CFQ_CFQQ_FNS(wait_request);
  288. CFQ_CFQQ_FNS(must_dispatch);
  289. CFQ_CFQQ_FNS(must_alloc_slice);
  290. CFQ_CFQQ_FNS(fifo_expire);
  291. CFQ_CFQQ_FNS(idle_window);
  292. CFQ_CFQQ_FNS(prio_changed);
  293. CFQ_CFQQ_FNS(slice_new);
  294. CFQ_CFQQ_FNS(sync);
  295. CFQ_CFQQ_FNS(coop);
  296. CFQ_CFQQ_FNS(deep);
  297. #undef CFQ_CFQQ_FNS
  298. #ifdef CONFIG_DEBUG_CFQ_IOSCHED
  299. #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
  300. blk_add_trace_msg((cfqd)->queue, "cfq%d%c %s " fmt, (cfqq)->pid, \
  301. cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
  302. blkg_path(&(cfqq)->cfqg->blkg), ##args);
  303. #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) \
  304. blk_add_trace_msg((cfqd)->queue, "%s " fmt, \
  305. blkg_path(&(cfqg)->blkg), ##args); \
  306. #else
  307. #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
  308. blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
  309. #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) do {} while (0);
  310. #endif
  311. #define cfq_log(cfqd, fmt, args...) \
  312. blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
  313. /* Traverses through cfq group service trees */
  314. #define for_each_cfqg_st(cfqg, i, j, st) \
  315. for (i = 0; i <= IDLE_WORKLOAD; i++) \
  316. for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
  317. : &cfqg->service_tree_idle; \
  318. (i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
  319. (i == IDLE_WORKLOAD && j == 0); \
  320. j++, st = i < IDLE_WORKLOAD ? \
  321. &cfqg->service_trees[i][j]: NULL) \
  322. static inline enum wl_prio_t cfqq_prio(struct cfq_queue *cfqq)
  323. {
  324. if (cfq_class_idle(cfqq))
  325. return IDLE_WORKLOAD;
  326. if (cfq_class_rt(cfqq))
  327. return RT_WORKLOAD;
  328. return BE_WORKLOAD;
  329. }
  330. static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
  331. {
  332. if (!cfq_cfqq_sync(cfqq))
  333. return ASYNC_WORKLOAD;
  334. if (!cfq_cfqq_idle_window(cfqq))
  335. return SYNC_NOIDLE_WORKLOAD;
  336. return SYNC_WORKLOAD;
  337. }
  338. static inline int cfq_group_busy_queues_wl(enum wl_prio_t wl,
  339. struct cfq_data *cfqd,
  340. struct cfq_group *cfqg)
  341. {
  342. if (wl == IDLE_WORKLOAD)
  343. return cfqg->service_tree_idle.count;
  344. return cfqg->service_trees[wl][ASYNC_WORKLOAD].count
  345. + cfqg->service_trees[wl][SYNC_NOIDLE_WORKLOAD].count
  346. + cfqg->service_trees[wl][SYNC_WORKLOAD].count;
  347. }
  348. static void cfq_dispatch_insert(struct request_queue *, struct request *);
  349. static struct cfq_queue *cfq_get_queue(struct cfq_data *, bool,
  350. struct io_context *, gfp_t);
  351. static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
  352. struct io_context *);
  353. static inline int rq_in_driver(struct cfq_data *cfqd)
  354. {
  355. return cfqd->rq_in_driver[0] + cfqd->rq_in_driver[1];
  356. }
  357. static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
  358. bool is_sync)
  359. {
  360. return cic->cfqq[is_sync];
  361. }
  362. static inline void cic_set_cfqq(struct cfq_io_context *cic,
  363. struct cfq_queue *cfqq, bool is_sync)
  364. {
  365. cic->cfqq[is_sync] = cfqq;
  366. }
  367. /*
  368. * We regard a request as SYNC, if it's either a read or has the SYNC bit
  369. * set (in which case it could also be direct WRITE).
  370. */
  371. static inline bool cfq_bio_sync(struct bio *bio)
  372. {
  373. return bio_data_dir(bio) == READ || bio_rw_flagged(bio, BIO_RW_SYNCIO);
  374. }
  375. /*
  376. * scheduler run of queue, if there are requests pending and no one in the
  377. * driver that will restart queueing
  378. */
  379. static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
  380. {
  381. if (cfqd->busy_queues) {
  382. cfq_log(cfqd, "schedule dispatch");
  383. kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
  384. }
  385. }
  386. static int cfq_queue_empty(struct request_queue *q)
  387. {
  388. struct cfq_data *cfqd = q->elevator->elevator_data;
  389. return !cfqd->rq_queued;
  390. }
  391. /*
  392. * Scale schedule slice based on io priority. Use the sync time slice only
  393. * if a queue is marked sync and has sync io queued. A sync queue with async
  394. * io only, should not get full sync slice length.
  395. */
  396. static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
  397. unsigned short prio)
  398. {
  399. const int base_slice = cfqd->cfq_slice[sync];
  400. WARN_ON(prio >= IOPRIO_BE_NR);
  401. return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
  402. }
  403. static inline int
  404. cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  405. {
  406. return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
  407. }
  408. static inline u64 cfq_scale_slice(unsigned long delta, struct cfq_group *cfqg)
  409. {
  410. u64 d = delta << CFQ_SERVICE_SHIFT;
  411. d = d * BLKIO_WEIGHT_DEFAULT;
  412. do_div(d, cfqg->weight);
  413. return d;
  414. }
  415. static inline u64 max_vdisktime(u64 min_vdisktime, u64 vdisktime)
  416. {
  417. s64 delta = (s64)(vdisktime - min_vdisktime);
  418. if (delta > 0)
  419. min_vdisktime = vdisktime;
  420. return min_vdisktime;
  421. }
  422. static inline u64 min_vdisktime(u64 min_vdisktime, u64 vdisktime)
  423. {
  424. s64 delta = (s64)(vdisktime - min_vdisktime);
  425. if (delta < 0)
  426. min_vdisktime = vdisktime;
  427. return min_vdisktime;
  428. }
  429. static void update_min_vdisktime(struct cfq_rb_root *st)
  430. {
  431. u64 vdisktime = st->min_vdisktime;
  432. struct cfq_group *cfqg;
  433. if (st->active) {
  434. cfqg = rb_entry_cfqg(st->active);
  435. vdisktime = cfqg->vdisktime;
  436. }
  437. if (st->left) {
  438. cfqg = rb_entry_cfqg(st->left);
  439. vdisktime = min_vdisktime(vdisktime, cfqg->vdisktime);
  440. }
  441. st->min_vdisktime = max_vdisktime(st->min_vdisktime, vdisktime);
  442. }
  443. /*
  444. * get averaged number of queues of RT/BE priority.
  445. * average is updated, with a formula that gives more weight to higher numbers,
  446. * to quickly follows sudden increases and decrease slowly
  447. */
  448. static inline unsigned cfq_group_get_avg_queues(struct cfq_data *cfqd,
  449. struct cfq_group *cfqg, bool rt)
  450. {
  451. unsigned min_q, max_q;
  452. unsigned mult = cfq_hist_divisor - 1;
  453. unsigned round = cfq_hist_divisor / 2;
  454. unsigned busy = cfq_group_busy_queues_wl(rt, cfqd, cfqg);
  455. min_q = min(cfqg->busy_queues_avg[rt], busy);
  456. max_q = max(cfqg->busy_queues_avg[rt], busy);
  457. cfqg->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
  458. cfq_hist_divisor;
  459. return cfqg->busy_queues_avg[rt];
  460. }
  461. static inline unsigned
  462. cfq_group_slice(struct cfq_data *cfqd, struct cfq_group *cfqg)
  463. {
  464. struct cfq_rb_root *st = &cfqd->grp_service_tree;
  465. return cfq_target_latency * cfqg->weight / st->total_weight;
  466. }
  467. static inline void
  468. cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  469. {
  470. unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
  471. if (cfqd->cfq_latency) {
  472. /*
  473. * interested queues (we consider only the ones with the same
  474. * priority class in the cfq group)
  475. */
  476. unsigned iq = cfq_group_get_avg_queues(cfqd, cfqq->cfqg,
  477. cfq_class_rt(cfqq));
  478. unsigned sync_slice = cfqd->cfq_slice[1];
  479. unsigned expect_latency = sync_slice * iq;
  480. unsigned group_slice = cfq_group_slice(cfqd, cfqq->cfqg);
  481. if (expect_latency > group_slice) {
  482. unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
  483. /* scale low_slice according to IO priority
  484. * and sync vs async */
  485. unsigned low_slice =
  486. min(slice, base_low_slice * slice / sync_slice);
  487. /* the adapted slice value is scaled to fit all iqs
  488. * into the target latency */
  489. slice = max(slice * group_slice / expect_latency,
  490. low_slice);
  491. }
  492. }
  493. cfqq->slice_start = jiffies;
  494. cfqq->slice_end = jiffies + slice;
  495. cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
  496. }
  497. /*
  498. * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
  499. * isn't valid until the first request from the dispatch is activated
  500. * and the slice time set.
  501. */
  502. static inline bool cfq_slice_used(struct cfq_queue *cfqq)
  503. {
  504. if (cfq_cfqq_slice_new(cfqq))
  505. return 0;
  506. if (time_before(jiffies, cfqq->slice_end))
  507. return 0;
  508. return 1;
  509. }
  510. /*
  511. * Lifted from AS - choose which of rq1 and rq2 that is best served now.
  512. * We choose the request that is closest to the head right now. Distance
  513. * behind the head is penalized and only allowed to a certain extent.
  514. */
  515. static struct request *
  516. cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
  517. {
  518. sector_t s1, s2, d1 = 0, d2 = 0;
  519. unsigned long back_max;
  520. #define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
  521. #define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
  522. unsigned wrap = 0; /* bit mask: requests behind the disk head? */
  523. if (rq1 == NULL || rq1 == rq2)
  524. return rq2;
  525. if (rq2 == NULL)
  526. return rq1;
  527. if (rq_is_sync(rq1) && !rq_is_sync(rq2))
  528. return rq1;
  529. else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
  530. return rq2;
  531. if (rq_is_meta(rq1) && !rq_is_meta(rq2))
  532. return rq1;
  533. else if (rq_is_meta(rq2) && !rq_is_meta(rq1))
  534. return rq2;
  535. s1 = blk_rq_pos(rq1);
  536. s2 = blk_rq_pos(rq2);
  537. /*
  538. * by definition, 1KiB is 2 sectors
  539. */
  540. back_max = cfqd->cfq_back_max * 2;
  541. /*
  542. * Strict one way elevator _except_ in the case where we allow
  543. * short backward seeks which are biased as twice the cost of a
  544. * similar forward seek.
  545. */
  546. if (s1 >= last)
  547. d1 = s1 - last;
  548. else if (s1 + back_max >= last)
  549. d1 = (last - s1) * cfqd->cfq_back_penalty;
  550. else
  551. wrap |= CFQ_RQ1_WRAP;
  552. if (s2 >= last)
  553. d2 = s2 - last;
  554. else if (s2 + back_max >= last)
  555. d2 = (last - s2) * cfqd->cfq_back_penalty;
  556. else
  557. wrap |= CFQ_RQ2_WRAP;
  558. /* Found required data */
  559. /*
  560. * By doing switch() on the bit mask "wrap" we avoid having to
  561. * check two variables for all permutations: --> faster!
  562. */
  563. switch (wrap) {
  564. case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
  565. if (d1 < d2)
  566. return rq1;
  567. else if (d2 < d1)
  568. return rq2;
  569. else {
  570. if (s1 >= s2)
  571. return rq1;
  572. else
  573. return rq2;
  574. }
  575. case CFQ_RQ2_WRAP:
  576. return rq1;
  577. case CFQ_RQ1_WRAP:
  578. return rq2;
  579. case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
  580. default:
  581. /*
  582. * Since both rqs are wrapped,
  583. * start with the one that's further behind head
  584. * (--> only *one* back seek required),
  585. * since back seek takes more time than forward.
  586. */
  587. if (s1 <= s2)
  588. return rq1;
  589. else
  590. return rq2;
  591. }
  592. }
  593. /*
  594. * The below is leftmost cache rbtree addon
  595. */
  596. static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
  597. {
  598. /* Service tree is empty */
  599. if (!root->count)
  600. return NULL;
  601. if (!root->left)
  602. root->left = rb_first(&root->rb);
  603. if (root->left)
  604. return rb_entry(root->left, struct cfq_queue, rb_node);
  605. return NULL;
  606. }
  607. static struct cfq_group *cfq_rb_first_group(struct cfq_rb_root *root)
  608. {
  609. if (!root->left)
  610. root->left = rb_first(&root->rb);
  611. if (root->left)
  612. return rb_entry_cfqg(root->left);
  613. return NULL;
  614. }
  615. static void rb_erase_init(struct rb_node *n, struct rb_root *root)
  616. {
  617. rb_erase(n, root);
  618. RB_CLEAR_NODE(n);
  619. }
  620. static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
  621. {
  622. if (root->left == n)
  623. root->left = NULL;
  624. rb_erase_init(n, &root->rb);
  625. --root->count;
  626. }
  627. /*
  628. * would be nice to take fifo expire time into account as well
  629. */
  630. static struct request *
  631. cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  632. struct request *last)
  633. {
  634. struct rb_node *rbnext = rb_next(&last->rb_node);
  635. struct rb_node *rbprev = rb_prev(&last->rb_node);
  636. struct request *next = NULL, *prev = NULL;
  637. BUG_ON(RB_EMPTY_NODE(&last->rb_node));
  638. if (rbprev)
  639. prev = rb_entry_rq(rbprev);
  640. if (rbnext)
  641. next = rb_entry_rq(rbnext);
  642. else {
  643. rbnext = rb_first(&cfqq->sort_list);
  644. if (rbnext && rbnext != &last->rb_node)
  645. next = rb_entry_rq(rbnext);
  646. }
  647. return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
  648. }
  649. static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
  650. struct cfq_queue *cfqq)
  651. {
  652. /*
  653. * just an approximation, should be ok.
  654. */
  655. return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) -
  656. cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
  657. }
  658. static inline s64
  659. cfqg_key(struct cfq_rb_root *st, struct cfq_group *cfqg)
  660. {
  661. return cfqg->vdisktime - st->min_vdisktime;
  662. }
  663. static void
  664. __cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
  665. {
  666. struct rb_node **node = &st->rb.rb_node;
  667. struct rb_node *parent = NULL;
  668. struct cfq_group *__cfqg;
  669. s64 key = cfqg_key(st, cfqg);
  670. int left = 1;
  671. while (*node != NULL) {
  672. parent = *node;
  673. __cfqg = rb_entry_cfqg(parent);
  674. if (key < cfqg_key(st, __cfqg))
  675. node = &parent->rb_left;
  676. else {
  677. node = &parent->rb_right;
  678. left = 0;
  679. }
  680. }
  681. if (left)
  682. st->left = &cfqg->rb_node;
  683. rb_link_node(&cfqg->rb_node, parent, node);
  684. rb_insert_color(&cfqg->rb_node, &st->rb);
  685. }
  686. static void
  687. cfq_group_service_tree_add(struct cfq_data *cfqd, struct cfq_group *cfqg)
  688. {
  689. struct cfq_rb_root *st = &cfqd->grp_service_tree;
  690. struct cfq_group *__cfqg;
  691. struct rb_node *n;
  692. cfqg->nr_cfqq++;
  693. if (cfqg->on_st)
  694. return;
  695. /*
  696. * Currently put the group at the end. Later implement something
  697. * so that groups get lesser vtime based on their weights, so that
  698. * if group does not loose all if it was not continously backlogged.
  699. */
  700. n = rb_last(&st->rb);
  701. if (n) {
  702. __cfqg = rb_entry_cfqg(n);
  703. cfqg->vdisktime = __cfqg->vdisktime + CFQ_IDLE_DELAY;
  704. } else
  705. cfqg->vdisktime = st->min_vdisktime;
  706. __cfq_group_service_tree_add(st, cfqg);
  707. cfqg->on_st = true;
  708. cfqd->nr_groups++;
  709. st->total_weight += cfqg->weight;
  710. }
  711. static void
  712. cfq_group_service_tree_del(struct cfq_data *cfqd, struct cfq_group *cfqg)
  713. {
  714. struct cfq_rb_root *st = &cfqd->grp_service_tree;
  715. if (st->active == &cfqg->rb_node)
  716. st->active = NULL;
  717. BUG_ON(cfqg->nr_cfqq < 1);
  718. cfqg->nr_cfqq--;
  719. /* If there are other cfq queues under this group, don't delete it */
  720. if (cfqg->nr_cfqq)
  721. return;
  722. cfq_log_cfqg(cfqd, cfqg, "del_from_rr group");
  723. cfqg->on_st = false;
  724. cfqd->nr_groups--;
  725. st->total_weight -= cfqg->weight;
  726. if (!RB_EMPTY_NODE(&cfqg->rb_node))
  727. cfq_rb_erase(&cfqg->rb_node, st);
  728. cfqg->saved_workload_slice = 0;
  729. blkiocg_update_blkio_group_dequeue_stats(&cfqg->blkg, 1);
  730. }
  731. static inline unsigned int cfq_cfqq_slice_usage(struct cfq_queue *cfqq)
  732. {
  733. unsigned int slice_used, allocated_slice;
  734. /*
  735. * Queue got expired before even a single request completed or
  736. * got expired immediately after first request completion.
  737. */
  738. if (!cfqq->slice_start || cfqq->slice_start == jiffies) {
  739. /*
  740. * Also charge the seek time incurred to the group, otherwise
  741. * if there are mutiple queues in the group, each can dispatch
  742. * a single request on seeky media and cause lots of seek time
  743. * and group will never know it.
  744. */
  745. slice_used = max_t(unsigned, (jiffies - cfqq->dispatch_start),
  746. 1);
  747. } else {
  748. slice_used = jiffies - cfqq->slice_start;
  749. allocated_slice = cfqq->slice_end - cfqq->slice_start;
  750. if (slice_used > allocated_slice)
  751. slice_used = allocated_slice;
  752. }
  753. cfq_log_cfqq(cfqq->cfqd, cfqq, "sl_used=%u sect=%lu", slice_used,
  754. cfqq->nr_sectors);
  755. return slice_used;
  756. }
  757. static void cfq_group_served(struct cfq_data *cfqd, struct cfq_group *cfqg,
  758. struct cfq_queue *cfqq)
  759. {
  760. struct cfq_rb_root *st = &cfqd->grp_service_tree;
  761. unsigned int used_sl;
  762. used_sl = cfq_cfqq_slice_usage(cfqq);
  763. /* Can't update vdisktime while group is on service tree */
  764. cfq_rb_erase(&cfqg->rb_node, st);
  765. cfqg->vdisktime += cfq_scale_slice(used_sl, cfqg);
  766. __cfq_group_service_tree_add(st, cfqg);
  767. /* This group is being expired. Save the context */
  768. if (time_after(cfqd->workload_expires, jiffies)) {
  769. cfqg->saved_workload_slice = cfqd->workload_expires
  770. - jiffies;
  771. cfqg->saved_workload = cfqd->serving_type;
  772. cfqg->saved_serving_prio = cfqd->serving_prio;
  773. } else
  774. cfqg->saved_workload_slice = 0;
  775. cfq_log_cfqg(cfqd, cfqg, "served: vt=%llu min_vt=%llu", cfqg->vdisktime,
  776. st->min_vdisktime);
  777. blkiocg_update_blkio_group_stats(&cfqg->blkg, used_sl,
  778. cfqq->nr_sectors);
  779. }
  780. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  781. static inline struct cfq_group *cfqg_of_blkg(struct blkio_group *blkg)
  782. {
  783. if (blkg)
  784. return container_of(blkg, struct cfq_group, blkg);
  785. return NULL;
  786. }
  787. void
  788. cfq_update_blkio_group_weight(struct blkio_group *blkg, unsigned int weight)
  789. {
  790. cfqg_of_blkg(blkg)->weight = weight;
  791. }
  792. static struct cfq_group *
  793. cfq_find_alloc_cfqg(struct cfq_data *cfqd, struct cgroup *cgroup, int create)
  794. {
  795. struct blkio_cgroup *blkcg = cgroup_to_blkio_cgroup(cgroup);
  796. struct cfq_group *cfqg = NULL;
  797. void *key = cfqd;
  798. int i, j;
  799. struct cfq_rb_root *st;
  800. struct backing_dev_info *bdi = &cfqd->queue->backing_dev_info;
  801. unsigned int major, minor;
  802. /* Do we need to take this reference */
  803. if (!css_tryget(&blkcg->css))
  804. return NULL;;
  805. cfqg = cfqg_of_blkg(blkiocg_lookup_group(blkcg, key));
  806. if (cfqg || !create)
  807. goto done;
  808. cfqg = kzalloc_node(sizeof(*cfqg), GFP_ATOMIC, cfqd->queue->node);
  809. if (!cfqg)
  810. goto done;
  811. cfqg->weight = blkcg->weight;
  812. for_each_cfqg_st(cfqg, i, j, st)
  813. *st = CFQ_RB_ROOT;
  814. RB_CLEAR_NODE(&cfqg->rb_node);
  815. /*
  816. * Take the initial reference that will be released on destroy
  817. * This can be thought of a joint reference by cgroup and
  818. * elevator which will be dropped by either elevator exit
  819. * or cgroup deletion path depending on who is exiting first.
  820. */
  821. atomic_set(&cfqg->ref, 1);
  822. /* Add group onto cgroup list */
  823. sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
  824. blkiocg_add_blkio_group(blkcg, &cfqg->blkg, (void *)cfqd,
  825. MKDEV(major, minor));
  826. /* Add group on cfqd list */
  827. hlist_add_head(&cfqg->cfqd_node, &cfqd->cfqg_list);
  828. done:
  829. css_put(&blkcg->css);
  830. return cfqg;
  831. }
  832. /*
  833. * Search for the cfq group current task belongs to. If create = 1, then also
  834. * create the cfq group if it does not exist. request_queue lock must be held.
  835. */
  836. static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd, int create)
  837. {
  838. struct cgroup *cgroup;
  839. struct cfq_group *cfqg = NULL;
  840. rcu_read_lock();
  841. cgroup = task_cgroup(current, blkio_subsys_id);
  842. cfqg = cfq_find_alloc_cfqg(cfqd, cgroup, create);
  843. if (!cfqg && create)
  844. cfqg = &cfqd->root_group;
  845. rcu_read_unlock();
  846. return cfqg;
  847. }
  848. static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg)
  849. {
  850. /* Currently, all async queues are mapped to root group */
  851. if (!cfq_cfqq_sync(cfqq))
  852. cfqg = &cfqq->cfqd->root_group;
  853. cfqq->cfqg = cfqg;
  854. /* cfqq reference on cfqg */
  855. atomic_inc(&cfqq->cfqg->ref);
  856. }
  857. static void cfq_put_cfqg(struct cfq_group *cfqg)
  858. {
  859. struct cfq_rb_root *st;
  860. int i, j;
  861. BUG_ON(atomic_read(&cfqg->ref) <= 0);
  862. if (!atomic_dec_and_test(&cfqg->ref))
  863. return;
  864. for_each_cfqg_st(cfqg, i, j, st)
  865. BUG_ON(!RB_EMPTY_ROOT(&st->rb) || st->active != NULL);
  866. kfree(cfqg);
  867. }
  868. static void cfq_destroy_cfqg(struct cfq_data *cfqd, struct cfq_group *cfqg)
  869. {
  870. /* Something wrong if we are trying to remove same group twice */
  871. BUG_ON(hlist_unhashed(&cfqg->cfqd_node));
  872. hlist_del_init(&cfqg->cfqd_node);
  873. /*
  874. * Put the reference taken at the time of creation so that when all
  875. * queues are gone, group can be destroyed.
  876. */
  877. cfq_put_cfqg(cfqg);
  878. }
  879. static void cfq_release_cfq_groups(struct cfq_data *cfqd)
  880. {
  881. struct hlist_node *pos, *n;
  882. struct cfq_group *cfqg;
  883. hlist_for_each_entry_safe(cfqg, pos, n, &cfqd->cfqg_list, cfqd_node) {
  884. /*
  885. * If cgroup removal path got to blk_group first and removed
  886. * it from cgroup list, then it will take care of destroying
  887. * cfqg also.
  888. */
  889. if (!blkiocg_del_blkio_group(&cfqg->blkg))
  890. cfq_destroy_cfqg(cfqd, cfqg);
  891. }
  892. }
  893. /*
  894. * Blk cgroup controller notification saying that blkio_group object is being
  895. * delinked as associated cgroup object is going away. That also means that
  896. * no new IO will come in this group. So get rid of this group as soon as
  897. * any pending IO in the group is finished.
  898. *
  899. * This function is called under rcu_read_lock(). key is the rcu protected
  900. * pointer. That means "key" is a valid cfq_data pointer as long as we are rcu
  901. * read lock.
  902. *
  903. * "key" was fetched from blkio_group under blkio_cgroup->lock. That means
  904. * it should not be NULL as even if elevator was exiting, cgroup deltion
  905. * path got to it first.
  906. */
  907. void cfq_unlink_blkio_group(void *key, struct blkio_group *blkg)
  908. {
  909. unsigned long flags;
  910. struct cfq_data *cfqd = key;
  911. spin_lock_irqsave(cfqd->queue->queue_lock, flags);
  912. cfq_destroy_cfqg(cfqd, cfqg_of_blkg(blkg));
  913. spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
  914. }
  915. #else /* GROUP_IOSCHED */
  916. static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd, int create)
  917. {
  918. return &cfqd->root_group;
  919. }
  920. static inline void
  921. cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg) {
  922. cfqq->cfqg = cfqg;
  923. }
  924. static void cfq_release_cfq_groups(struct cfq_data *cfqd) {}
  925. static inline void cfq_put_cfqg(struct cfq_group *cfqg) {}
  926. #endif /* GROUP_IOSCHED */
  927. /*
  928. * The cfqd->service_trees holds all pending cfq_queue's that have
  929. * requests waiting to be processed. It is sorted in the order that
  930. * we will service the queues.
  931. */
  932. static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  933. bool add_front)
  934. {
  935. struct rb_node **p, *parent;
  936. struct cfq_queue *__cfqq;
  937. unsigned long rb_key;
  938. struct cfq_rb_root *service_tree;
  939. int left;
  940. int new_cfqq = 1;
  941. service_tree = service_tree_for(cfqq->cfqg, cfqq_prio(cfqq),
  942. cfqq_type(cfqq), cfqd);
  943. if (cfq_class_idle(cfqq)) {
  944. rb_key = CFQ_IDLE_DELAY;
  945. parent = rb_last(&service_tree->rb);
  946. if (parent && parent != &cfqq->rb_node) {
  947. __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
  948. rb_key += __cfqq->rb_key;
  949. } else
  950. rb_key += jiffies;
  951. } else if (!add_front) {
  952. /*
  953. * Get our rb key offset. Subtract any residual slice
  954. * value carried from last service. A negative resid
  955. * count indicates slice overrun, and this should position
  956. * the next service time further away in the tree.
  957. */
  958. rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
  959. rb_key -= cfqq->slice_resid;
  960. cfqq->slice_resid = 0;
  961. } else {
  962. rb_key = -HZ;
  963. __cfqq = cfq_rb_first(service_tree);
  964. rb_key += __cfqq ? __cfqq->rb_key : jiffies;
  965. }
  966. if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
  967. new_cfqq = 0;
  968. /*
  969. * same position, nothing more to do
  970. */
  971. if (rb_key == cfqq->rb_key &&
  972. cfqq->service_tree == service_tree)
  973. return;
  974. cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
  975. cfqq->service_tree = NULL;
  976. }
  977. left = 1;
  978. parent = NULL;
  979. cfqq->service_tree = service_tree;
  980. p = &service_tree->rb.rb_node;
  981. while (*p) {
  982. struct rb_node **n;
  983. parent = *p;
  984. __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
  985. /*
  986. * sort by key, that represents service time.
  987. */
  988. if (time_before(rb_key, __cfqq->rb_key))
  989. n = &(*p)->rb_left;
  990. else {
  991. n = &(*p)->rb_right;
  992. left = 0;
  993. }
  994. p = n;
  995. }
  996. if (left)
  997. service_tree->left = &cfqq->rb_node;
  998. cfqq->rb_key = rb_key;
  999. rb_link_node(&cfqq->rb_node, parent, p);
  1000. rb_insert_color(&cfqq->rb_node, &service_tree->rb);
  1001. service_tree->count++;
  1002. if (add_front || !new_cfqq)
  1003. return;
  1004. cfq_group_service_tree_add(cfqd, cfqq->cfqg);
  1005. }
  1006. static struct cfq_queue *
  1007. cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
  1008. sector_t sector, struct rb_node **ret_parent,
  1009. struct rb_node ***rb_link)
  1010. {
  1011. struct rb_node **p, *parent;
  1012. struct cfq_queue *cfqq = NULL;
  1013. parent = NULL;
  1014. p = &root->rb_node;
  1015. while (*p) {
  1016. struct rb_node **n;
  1017. parent = *p;
  1018. cfqq = rb_entry(parent, struct cfq_queue, p_node);
  1019. /*
  1020. * Sort strictly based on sector. Smallest to the left,
  1021. * largest to the right.
  1022. */
  1023. if (sector > blk_rq_pos(cfqq->next_rq))
  1024. n = &(*p)->rb_right;
  1025. else if (sector < blk_rq_pos(cfqq->next_rq))
  1026. n = &(*p)->rb_left;
  1027. else
  1028. break;
  1029. p = n;
  1030. cfqq = NULL;
  1031. }
  1032. *ret_parent = parent;
  1033. if (rb_link)
  1034. *rb_link = p;
  1035. return cfqq;
  1036. }
  1037. static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1038. {
  1039. struct rb_node **p, *parent;
  1040. struct cfq_queue *__cfqq;
  1041. if (cfqq->p_root) {
  1042. rb_erase(&cfqq->p_node, cfqq->p_root);
  1043. cfqq->p_root = NULL;
  1044. }
  1045. if (cfq_class_idle(cfqq))
  1046. return;
  1047. if (!cfqq->next_rq)
  1048. return;
  1049. cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
  1050. __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
  1051. blk_rq_pos(cfqq->next_rq), &parent, &p);
  1052. if (!__cfqq) {
  1053. rb_link_node(&cfqq->p_node, parent, p);
  1054. rb_insert_color(&cfqq->p_node, cfqq->p_root);
  1055. } else
  1056. cfqq->p_root = NULL;
  1057. }
  1058. /*
  1059. * Update cfqq's position in the service tree.
  1060. */
  1061. static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1062. {
  1063. /*
  1064. * Resorting requires the cfqq to be on the RR list already.
  1065. */
  1066. if (cfq_cfqq_on_rr(cfqq)) {
  1067. cfq_service_tree_add(cfqd, cfqq, 0);
  1068. cfq_prio_tree_add(cfqd, cfqq);
  1069. }
  1070. }
  1071. /*
  1072. * add to busy list of queues for service, trying to be fair in ordering
  1073. * the pending list according to last request service
  1074. */
  1075. static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1076. {
  1077. cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
  1078. BUG_ON(cfq_cfqq_on_rr(cfqq));
  1079. cfq_mark_cfqq_on_rr(cfqq);
  1080. cfqd->busy_queues++;
  1081. cfq_resort_rr_list(cfqd, cfqq);
  1082. }
  1083. /*
  1084. * Called when the cfqq no longer has requests pending, remove it from
  1085. * the service tree.
  1086. */
  1087. static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1088. {
  1089. cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
  1090. BUG_ON(!cfq_cfqq_on_rr(cfqq));
  1091. cfq_clear_cfqq_on_rr(cfqq);
  1092. if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
  1093. cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
  1094. cfqq->service_tree = NULL;
  1095. }
  1096. if (cfqq->p_root) {
  1097. rb_erase(&cfqq->p_node, cfqq->p_root);
  1098. cfqq->p_root = NULL;
  1099. }
  1100. cfq_group_service_tree_del(cfqd, cfqq->cfqg);
  1101. BUG_ON(!cfqd->busy_queues);
  1102. cfqd->busy_queues--;
  1103. }
  1104. /*
  1105. * rb tree support functions
  1106. */
  1107. static void cfq_del_rq_rb(struct request *rq)
  1108. {
  1109. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  1110. const int sync = rq_is_sync(rq);
  1111. BUG_ON(!cfqq->queued[sync]);
  1112. cfqq->queued[sync]--;
  1113. elv_rb_del(&cfqq->sort_list, rq);
  1114. if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) {
  1115. /*
  1116. * Queue will be deleted from service tree when we actually
  1117. * expire it later. Right now just remove it from prio tree
  1118. * as it is empty.
  1119. */
  1120. if (cfqq->p_root) {
  1121. rb_erase(&cfqq->p_node, cfqq->p_root);
  1122. cfqq->p_root = NULL;
  1123. }
  1124. }
  1125. }
  1126. static void cfq_add_rq_rb(struct request *rq)
  1127. {
  1128. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  1129. struct cfq_data *cfqd = cfqq->cfqd;
  1130. struct request *__alias, *prev;
  1131. cfqq->queued[rq_is_sync(rq)]++;
  1132. /*
  1133. * looks a little odd, but the first insert might return an alias.
  1134. * if that happens, put the alias on the dispatch list
  1135. */
  1136. while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
  1137. cfq_dispatch_insert(cfqd->queue, __alias);
  1138. if (!cfq_cfqq_on_rr(cfqq))
  1139. cfq_add_cfqq_rr(cfqd, cfqq);
  1140. /*
  1141. * check if this request is a better next-serve candidate
  1142. */
  1143. prev = cfqq->next_rq;
  1144. cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
  1145. /*
  1146. * adjust priority tree position, if ->next_rq changes
  1147. */
  1148. if (prev != cfqq->next_rq)
  1149. cfq_prio_tree_add(cfqd, cfqq);
  1150. BUG_ON(!cfqq->next_rq);
  1151. }
  1152. static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
  1153. {
  1154. elv_rb_del(&cfqq->sort_list, rq);
  1155. cfqq->queued[rq_is_sync(rq)]--;
  1156. cfq_add_rq_rb(rq);
  1157. }
  1158. static struct request *
  1159. cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
  1160. {
  1161. struct task_struct *tsk = current;
  1162. struct cfq_io_context *cic;
  1163. struct cfq_queue *cfqq;
  1164. cic = cfq_cic_lookup(cfqd, tsk->io_context);
  1165. if (!cic)
  1166. return NULL;
  1167. cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
  1168. if (cfqq) {
  1169. sector_t sector = bio->bi_sector + bio_sectors(bio);
  1170. return elv_rb_find(&cfqq->sort_list, sector);
  1171. }
  1172. return NULL;
  1173. }
  1174. static void cfq_activate_request(struct request_queue *q, struct request *rq)
  1175. {
  1176. struct cfq_data *cfqd = q->elevator->elevator_data;
  1177. cfqd->rq_in_driver[rq_is_sync(rq)]++;
  1178. cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
  1179. rq_in_driver(cfqd));
  1180. cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
  1181. }
  1182. static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
  1183. {
  1184. struct cfq_data *cfqd = q->elevator->elevator_data;
  1185. const int sync = rq_is_sync(rq);
  1186. WARN_ON(!cfqd->rq_in_driver[sync]);
  1187. cfqd->rq_in_driver[sync]--;
  1188. cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
  1189. rq_in_driver(cfqd));
  1190. }
  1191. static void cfq_remove_request(struct request *rq)
  1192. {
  1193. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  1194. if (cfqq->next_rq == rq)
  1195. cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
  1196. list_del_init(&rq->queuelist);
  1197. cfq_del_rq_rb(rq);
  1198. cfqq->cfqd->rq_queued--;
  1199. if (rq_is_meta(rq)) {
  1200. WARN_ON(!cfqq->meta_pending);
  1201. cfqq->meta_pending--;
  1202. }
  1203. }
  1204. static int cfq_merge(struct request_queue *q, struct request **req,
  1205. struct bio *bio)
  1206. {
  1207. struct cfq_data *cfqd = q->elevator->elevator_data;
  1208. struct request *__rq;
  1209. __rq = cfq_find_rq_fmerge(cfqd, bio);
  1210. if (__rq && elv_rq_merge_ok(__rq, bio)) {
  1211. *req = __rq;
  1212. return ELEVATOR_FRONT_MERGE;
  1213. }
  1214. return ELEVATOR_NO_MERGE;
  1215. }
  1216. static void cfq_merged_request(struct request_queue *q, struct request *req,
  1217. int type)
  1218. {
  1219. if (type == ELEVATOR_FRONT_MERGE) {
  1220. struct cfq_queue *cfqq = RQ_CFQQ(req);
  1221. cfq_reposition_rq_rb(cfqq, req);
  1222. }
  1223. }
  1224. static void
  1225. cfq_merged_requests(struct request_queue *q, struct request *rq,
  1226. struct request *next)
  1227. {
  1228. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  1229. /*
  1230. * reposition in fifo if next is older than rq
  1231. */
  1232. if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
  1233. time_before(rq_fifo_time(next), rq_fifo_time(rq))) {
  1234. list_move(&rq->queuelist, &next->queuelist);
  1235. rq_set_fifo_time(rq, rq_fifo_time(next));
  1236. }
  1237. if (cfqq->next_rq == next)
  1238. cfqq->next_rq = rq;
  1239. cfq_remove_request(next);
  1240. }
  1241. static int cfq_allow_merge(struct request_queue *q, struct request *rq,
  1242. struct bio *bio)
  1243. {
  1244. struct cfq_data *cfqd = q->elevator->elevator_data;
  1245. struct cfq_io_context *cic;
  1246. struct cfq_queue *cfqq;
  1247. /* Deny merge if bio and rq don't belong to same cfq group */
  1248. if ((RQ_CFQQ(rq))->cfqg != cfq_get_cfqg(cfqd, 0))
  1249. return false;
  1250. /*
  1251. * Disallow merge of a sync bio into an async request.
  1252. */
  1253. if (cfq_bio_sync(bio) && !rq_is_sync(rq))
  1254. return false;
  1255. /*
  1256. * Lookup the cfqq that this bio will be queued with. Allow
  1257. * merge only if rq is queued there.
  1258. */
  1259. cic = cfq_cic_lookup(cfqd, current->io_context);
  1260. if (!cic)
  1261. return false;
  1262. cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
  1263. return cfqq == RQ_CFQQ(rq);
  1264. }
  1265. static void __cfq_set_active_queue(struct cfq_data *cfqd,
  1266. struct cfq_queue *cfqq)
  1267. {
  1268. if (cfqq) {
  1269. cfq_log_cfqq(cfqd, cfqq, "set_active");
  1270. cfqq->slice_start = 0;
  1271. cfqq->dispatch_start = jiffies;
  1272. cfqq->slice_end = 0;
  1273. cfqq->slice_dispatch = 0;
  1274. cfqq->nr_sectors = 0;
  1275. cfq_clear_cfqq_wait_request(cfqq);
  1276. cfq_clear_cfqq_must_dispatch(cfqq);
  1277. cfq_clear_cfqq_must_alloc_slice(cfqq);
  1278. cfq_clear_cfqq_fifo_expire(cfqq);
  1279. cfq_mark_cfqq_slice_new(cfqq);
  1280. del_timer(&cfqd->idle_slice_timer);
  1281. }
  1282. cfqd->active_queue = cfqq;
  1283. }
  1284. /*
  1285. * current cfqq expired its slice (or was too idle), select new one
  1286. */
  1287. static void
  1288. __cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  1289. bool timed_out)
  1290. {
  1291. cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
  1292. if (cfq_cfqq_wait_request(cfqq))
  1293. del_timer(&cfqd->idle_slice_timer);
  1294. cfq_clear_cfqq_wait_request(cfqq);
  1295. /*
  1296. * store what was left of this slice, if the queue idled/timed out
  1297. */
  1298. if (timed_out && !cfq_cfqq_slice_new(cfqq)) {
  1299. cfqq->slice_resid = cfqq->slice_end - jiffies;
  1300. cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
  1301. }
  1302. cfq_group_served(cfqd, cfqq->cfqg, cfqq);
  1303. if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
  1304. cfq_del_cfqq_rr(cfqd, cfqq);
  1305. cfq_resort_rr_list(cfqd, cfqq);
  1306. if (cfqq == cfqd->active_queue)
  1307. cfqd->active_queue = NULL;
  1308. if (&cfqq->cfqg->rb_node == cfqd->grp_service_tree.active)
  1309. cfqd->grp_service_tree.active = NULL;
  1310. if (cfqd->active_cic) {
  1311. put_io_context(cfqd->active_cic->ioc);
  1312. cfqd->active_cic = NULL;
  1313. }
  1314. }
  1315. static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
  1316. {
  1317. struct cfq_queue *cfqq = cfqd->active_queue;
  1318. if (cfqq)
  1319. __cfq_slice_expired(cfqd, cfqq, timed_out);
  1320. }
  1321. /*
  1322. * Get next queue for service. Unless we have a queue preemption,
  1323. * we'll simply select the first cfqq in the service tree.
  1324. */
  1325. static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
  1326. {
  1327. struct cfq_rb_root *service_tree =
  1328. service_tree_for(cfqd->serving_group, cfqd->serving_prio,
  1329. cfqd->serving_type, cfqd);
  1330. if (!cfqd->rq_queued)
  1331. return NULL;
  1332. /* There is nothing to dispatch */
  1333. if (!service_tree)
  1334. return NULL;
  1335. if (RB_EMPTY_ROOT(&service_tree->rb))
  1336. return NULL;
  1337. return cfq_rb_first(service_tree);
  1338. }
  1339. static struct cfq_queue *cfq_get_next_queue_forced(struct cfq_data *cfqd)
  1340. {
  1341. struct cfq_group *cfqg;
  1342. struct cfq_queue *cfqq;
  1343. int i, j;
  1344. struct cfq_rb_root *st;
  1345. if (!cfqd->rq_queued)
  1346. return NULL;
  1347. cfqg = cfq_get_next_cfqg(cfqd);
  1348. if (!cfqg)
  1349. return NULL;
  1350. for_each_cfqg_st(cfqg, i, j, st)
  1351. if ((cfqq = cfq_rb_first(st)) != NULL)
  1352. return cfqq;
  1353. return NULL;
  1354. }
  1355. /*
  1356. * Get and set a new active queue for service.
  1357. */
  1358. static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
  1359. struct cfq_queue *cfqq)
  1360. {
  1361. if (!cfqq)
  1362. cfqq = cfq_get_next_queue(cfqd);
  1363. __cfq_set_active_queue(cfqd, cfqq);
  1364. return cfqq;
  1365. }
  1366. static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
  1367. struct request *rq)
  1368. {
  1369. if (blk_rq_pos(rq) >= cfqd->last_position)
  1370. return blk_rq_pos(rq) - cfqd->last_position;
  1371. else
  1372. return cfqd->last_position - blk_rq_pos(rq);
  1373. }
  1374. #define CFQQ_SEEK_THR 8 * 1024
  1375. #define CFQQ_SEEKY(cfqq) ((cfqq)->seek_mean > CFQQ_SEEK_THR)
  1376. static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  1377. struct request *rq)
  1378. {
  1379. sector_t sdist = cfqq->seek_mean;
  1380. if (!sample_valid(cfqq->seek_samples))
  1381. sdist = CFQQ_SEEK_THR;
  1382. return cfq_dist_from_last(cfqd, rq) <= sdist;
  1383. }
  1384. static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
  1385. struct cfq_queue *cur_cfqq)
  1386. {
  1387. struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
  1388. struct rb_node *parent, *node;
  1389. struct cfq_queue *__cfqq;
  1390. sector_t sector = cfqd->last_position;
  1391. if (RB_EMPTY_ROOT(root))
  1392. return NULL;
  1393. /*
  1394. * First, if we find a request starting at the end of the last
  1395. * request, choose it.
  1396. */
  1397. __cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
  1398. if (__cfqq)
  1399. return __cfqq;
  1400. /*
  1401. * If the exact sector wasn't found, the parent of the NULL leaf
  1402. * will contain the closest sector.
  1403. */
  1404. __cfqq = rb_entry(parent, struct cfq_queue, p_node);
  1405. if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
  1406. return __cfqq;
  1407. if (blk_rq_pos(__cfqq->next_rq) < sector)
  1408. node = rb_next(&__cfqq->p_node);
  1409. else
  1410. node = rb_prev(&__cfqq->p_node);
  1411. if (!node)
  1412. return NULL;
  1413. __cfqq = rb_entry(node, struct cfq_queue, p_node);
  1414. if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
  1415. return __cfqq;
  1416. return NULL;
  1417. }
  1418. /*
  1419. * cfqd - obvious
  1420. * cur_cfqq - passed in so that we don't decide that the current queue is
  1421. * closely cooperating with itself.
  1422. *
  1423. * So, basically we're assuming that that cur_cfqq has dispatched at least
  1424. * one request, and that cfqd->last_position reflects a position on the disk
  1425. * associated with the I/O issued by cur_cfqq. I'm not sure this is a valid
  1426. * assumption.
  1427. */
  1428. static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
  1429. struct cfq_queue *cur_cfqq)
  1430. {
  1431. struct cfq_queue *cfqq;
  1432. if (!cfq_cfqq_sync(cur_cfqq))
  1433. return NULL;
  1434. if (CFQQ_SEEKY(cur_cfqq))
  1435. return NULL;
  1436. /*
  1437. * We should notice if some of the queues are cooperating, eg
  1438. * working closely on the same area of the disk. In that case,
  1439. * we can group them together and don't waste time idling.
  1440. */
  1441. cfqq = cfqq_close(cfqd, cur_cfqq);
  1442. if (!cfqq)
  1443. return NULL;
  1444. /* If new queue belongs to different cfq_group, don't choose it */
  1445. if (cur_cfqq->cfqg != cfqq->cfqg)
  1446. return NULL;
  1447. /*
  1448. * It only makes sense to merge sync queues.
  1449. */
  1450. if (!cfq_cfqq_sync(cfqq))
  1451. return NULL;
  1452. if (CFQQ_SEEKY(cfqq))
  1453. return NULL;
  1454. /*
  1455. * Do not merge queues of different priority classes
  1456. */
  1457. if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
  1458. return NULL;
  1459. return cfqq;
  1460. }
  1461. /*
  1462. * Determine whether we should enforce idle window for this queue.
  1463. */
  1464. static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1465. {
  1466. enum wl_prio_t prio = cfqq_prio(cfqq);
  1467. struct cfq_rb_root *service_tree = cfqq->service_tree;
  1468. BUG_ON(!service_tree);
  1469. BUG_ON(!service_tree->count);
  1470. /* We never do for idle class queues. */
  1471. if (prio == IDLE_WORKLOAD)
  1472. return false;
  1473. /* We do for queues that were marked with idle window flag. */
  1474. if (cfq_cfqq_idle_window(cfqq))
  1475. return true;
  1476. /*
  1477. * Otherwise, we do only if they are the last ones
  1478. * in their service tree.
  1479. */
  1480. return service_tree->count == 1;
  1481. }
  1482. static void cfq_arm_slice_timer(struct cfq_data *cfqd)
  1483. {
  1484. struct cfq_queue *cfqq = cfqd->active_queue;
  1485. struct cfq_io_context *cic;
  1486. unsigned long sl;
  1487. /*
  1488. * SSD device without seek penalty, disable idling. But only do so
  1489. * for devices that support queuing, otherwise we still have a problem
  1490. * with sync vs async workloads.
  1491. */
  1492. if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
  1493. return;
  1494. WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
  1495. WARN_ON(cfq_cfqq_slice_new(cfqq));
  1496. /*
  1497. * idle is disabled, either manually or by past process history
  1498. */
  1499. if (!cfqd->cfq_slice_idle || !cfq_should_idle(cfqd, cfqq))
  1500. return;
  1501. /*
  1502. * still active requests from this queue, don't idle
  1503. */
  1504. if (cfqq->dispatched)
  1505. return;
  1506. /*
  1507. * task has exited, don't wait
  1508. */
  1509. cic = cfqd->active_cic;
  1510. if (!cic || !atomic_read(&cic->ioc->nr_tasks))
  1511. return;
  1512. /*
  1513. * If our average think time is larger than the remaining time
  1514. * slice, then don't idle. This avoids overrunning the allotted
  1515. * time slice.
  1516. */
  1517. if (sample_valid(cic->ttime_samples) &&
  1518. (cfqq->slice_end - jiffies < cic->ttime_mean))
  1519. return;
  1520. cfq_mark_cfqq_wait_request(cfqq);
  1521. sl = cfqd->cfq_slice_idle;
  1522. mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
  1523. cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu", sl);
  1524. }
  1525. /*
  1526. * Move request from internal lists to the request queue dispatch list.
  1527. */
  1528. static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
  1529. {
  1530. struct cfq_data *cfqd = q->elevator->elevator_data;
  1531. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  1532. cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
  1533. cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
  1534. cfq_remove_request(rq);
  1535. cfqq->dispatched++;
  1536. elv_dispatch_sort(q, rq);
  1537. if (cfq_cfqq_sync(cfqq))
  1538. cfqd->sync_flight++;
  1539. cfqq->nr_sectors += blk_rq_sectors(rq);
  1540. }
  1541. /*
  1542. * return expired entry, or NULL to just start from scratch in rbtree
  1543. */
  1544. static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
  1545. {
  1546. struct request *rq = NULL;
  1547. if (cfq_cfqq_fifo_expire(cfqq))
  1548. return NULL;
  1549. cfq_mark_cfqq_fifo_expire(cfqq);
  1550. if (list_empty(&cfqq->fifo))
  1551. return NULL;
  1552. rq = rq_entry_fifo(cfqq->fifo.next);
  1553. if (time_before(jiffies, rq_fifo_time(rq)))
  1554. rq = NULL;
  1555. cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
  1556. return rq;
  1557. }
  1558. static inline int
  1559. cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1560. {
  1561. const int base_rq = cfqd->cfq_slice_async_rq;
  1562. WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
  1563. return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
  1564. }
  1565. /*
  1566. * Must be called with the queue_lock held.
  1567. */
  1568. static int cfqq_process_refs(struct cfq_queue *cfqq)
  1569. {
  1570. int process_refs, io_refs;
  1571. io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
  1572. process_refs = atomic_read(&cfqq->ref) - io_refs;
  1573. BUG_ON(process_refs < 0);
  1574. return process_refs;
  1575. }
  1576. static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
  1577. {
  1578. int process_refs, new_process_refs;
  1579. struct cfq_queue *__cfqq;
  1580. /* Avoid a circular list and skip interim queue merges */
  1581. while ((__cfqq = new_cfqq->new_cfqq)) {
  1582. if (__cfqq == cfqq)
  1583. return;
  1584. new_cfqq = __cfqq;
  1585. }
  1586. process_refs = cfqq_process_refs(cfqq);
  1587. /*
  1588. * If the process for the cfqq has gone away, there is no
  1589. * sense in merging the queues.
  1590. */
  1591. if (process_refs == 0)
  1592. return;
  1593. /*
  1594. * Merge in the direction of the lesser amount of work.
  1595. */
  1596. new_process_refs = cfqq_process_refs(new_cfqq);
  1597. if (new_process_refs >= process_refs) {
  1598. cfqq->new_cfqq = new_cfqq;
  1599. atomic_add(process_refs, &new_cfqq->ref);
  1600. } else {
  1601. new_cfqq->new_cfqq = cfqq;
  1602. atomic_add(new_process_refs, &cfqq->ref);
  1603. }
  1604. }
  1605. static enum wl_type_t cfq_choose_wl(struct cfq_data *cfqd,
  1606. struct cfq_group *cfqg, enum wl_prio_t prio,
  1607. bool prio_changed)
  1608. {
  1609. struct cfq_queue *queue;
  1610. int i;
  1611. bool key_valid = false;
  1612. unsigned long lowest_key = 0;
  1613. enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;
  1614. if (prio_changed) {
  1615. /*
  1616. * When priorities switched, we prefer starting
  1617. * from SYNC_NOIDLE (first choice), or just SYNC
  1618. * over ASYNC
  1619. */
  1620. if (service_tree_for(cfqg, prio, cur_best, cfqd)->count)
  1621. return cur_best;
  1622. cur_best = SYNC_WORKLOAD;
  1623. if (service_tree_for(cfqg, prio, cur_best, cfqd)->count)
  1624. return cur_best;
  1625. return ASYNC_WORKLOAD;
  1626. }
  1627. for (i = 0; i < 3; ++i) {
  1628. /* otherwise, select the one with lowest rb_key */
  1629. queue = cfq_rb_first(service_tree_for(cfqg, prio, i, cfqd));
  1630. if (queue &&
  1631. (!key_valid || time_before(queue->rb_key, lowest_key))) {
  1632. lowest_key = queue->rb_key;
  1633. cur_best = i;
  1634. key_valid = true;
  1635. }
  1636. }
  1637. return cur_best;
  1638. }
  1639. static void choose_service_tree(struct cfq_data *cfqd, struct cfq_group *cfqg)
  1640. {
  1641. enum wl_prio_t previous_prio = cfqd->serving_prio;
  1642. bool prio_changed;
  1643. unsigned slice;
  1644. unsigned count;
  1645. struct cfq_rb_root *st;
  1646. unsigned group_slice;
  1647. if (!cfqg) {
  1648. cfqd->serving_prio = IDLE_WORKLOAD;
  1649. cfqd->workload_expires = jiffies + 1;
  1650. return;
  1651. }
  1652. /* Choose next priority. RT > BE > IDLE */
  1653. if (cfq_group_busy_queues_wl(RT_WORKLOAD, cfqd, cfqg))
  1654. cfqd->serving_prio = RT_WORKLOAD;
  1655. else if (cfq_group_busy_queues_wl(BE_WORKLOAD, cfqd, cfqg))
  1656. cfqd->serving_prio = BE_WORKLOAD;
  1657. else {
  1658. cfqd->serving_prio = IDLE_WORKLOAD;
  1659. cfqd->workload_expires = jiffies + 1;
  1660. return;
  1661. }
  1662. /*
  1663. * For RT and BE, we have to choose also the type
  1664. * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
  1665. * expiration time
  1666. */
  1667. prio_changed = (cfqd->serving_prio != previous_prio);
  1668. st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type,
  1669. cfqd);
  1670. count = st->count;
  1671. /*
  1672. * If priority didn't change, check workload expiration,
  1673. * and that we still have other queues ready
  1674. */
  1675. if (!prio_changed && count &&
  1676. !time_after(jiffies, cfqd->workload_expires))
  1677. return;
  1678. /* otherwise select new workload type */
  1679. cfqd->serving_type =
  1680. cfq_choose_wl(cfqd, cfqg, cfqd->serving_prio, prio_changed);
  1681. st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type,
  1682. cfqd);
  1683. count = st->count;
  1684. /*
  1685. * the workload slice is computed as a fraction of target latency
  1686. * proportional to the number of queues in that workload, over
  1687. * all the queues in the same priority class
  1688. */
  1689. group_slice = cfq_group_slice(cfqd, cfqg);
  1690. slice = group_slice * count /
  1691. max_t(unsigned, cfqg->busy_queues_avg[cfqd->serving_prio],
  1692. cfq_group_busy_queues_wl(cfqd->serving_prio, cfqd, cfqg));
  1693. if (cfqd->serving_type == ASYNC_WORKLOAD)
  1694. /* async workload slice is scaled down according to
  1695. * the sync/async slice ratio. */
  1696. slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1];
  1697. else
  1698. /* sync workload slice is at least 2 * cfq_slice_idle */
  1699. slice = max(slice, 2 * cfqd->cfq_slice_idle);
  1700. slice = max_t(unsigned, slice, CFQ_MIN_TT);
  1701. cfqd->workload_expires = jiffies + slice;
  1702. cfqd->noidle_tree_requires_idle = false;
  1703. }
  1704. static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd)
  1705. {
  1706. struct cfq_rb_root *st = &cfqd->grp_service_tree;
  1707. struct cfq_group *cfqg;
  1708. if (RB_EMPTY_ROOT(&st->rb))
  1709. return NULL;
  1710. cfqg = cfq_rb_first_group(st);
  1711. st->active = &cfqg->rb_node;
  1712. update_min_vdisktime(st);
  1713. return cfqg;
  1714. }
  1715. static void cfq_choose_cfqg(struct cfq_data *cfqd)
  1716. {
  1717. struct cfq_group *cfqg = cfq_get_next_cfqg(cfqd);
  1718. cfqd->serving_group = cfqg;
  1719. /* Restore the workload type data */
  1720. if (cfqg->saved_workload_slice) {
  1721. cfqd->workload_expires = jiffies + cfqg->saved_workload_slice;
  1722. cfqd->serving_type = cfqg->saved_workload;
  1723. cfqd->serving_prio = cfqg->saved_serving_prio;
  1724. }
  1725. choose_service_tree(cfqd, cfqg);
  1726. }
  1727. /*
  1728. * Select a queue for service. If we have a current active queue,
  1729. * check whether to continue servicing it, or retrieve and set a new one.
  1730. */
  1731. static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
  1732. {
  1733. struct cfq_queue *cfqq, *new_cfqq = NULL;
  1734. cfqq = cfqd->active_queue;
  1735. if (!cfqq)
  1736. goto new_queue;
  1737. if (!cfqd->rq_queued)
  1738. return NULL;
  1739. /*
  1740. * The active queue has run out of time, expire it and select new.
  1741. */
  1742. if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq))
  1743. goto expire;
  1744. /*
  1745. * The active queue has requests and isn't expired, allow it to
  1746. * dispatch.
  1747. */
  1748. if (!RB_EMPTY_ROOT(&cfqq->sort_list))
  1749. goto keep_queue;
  1750. /*
  1751. * If another queue has a request waiting within our mean seek
  1752. * distance, let it run. The expire code will check for close
  1753. * cooperators and put the close queue at the front of the service
  1754. * tree. If possible, merge the expiring queue with the new cfqq.
  1755. */
  1756. new_cfqq = cfq_close_cooperator(cfqd, cfqq);
  1757. if (new_cfqq) {
  1758. if (!cfqq->new_cfqq)
  1759. cfq_setup_merge(cfqq, new_cfqq);
  1760. goto expire;
  1761. }
  1762. /*
  1763. * No requests pending. If the active queue still has requests in
  1764. * flight or is idling for a new request, allow either of these
  1765. * conditions to happen (or time out) before selecting a new queue.
  1766. */
  1767. if (timer_pending(&cfqd->idle_slice_timer) ||
  1768. (cfqq->dispatched && cfq_should_idle(cfqd, cfqq))) {
  1769. cfqq = NULL;
  1770. goto keep_queue;
  1771. }
  1772. expire:
  1773. cfq_slice_expired(cfqd, 0);
  1774. new_queue:
  1775. /*
  1776. * Current queue expired. Check if we have to switch to a new
  1777. * service tree
  1778. */
  1779. if (!new_cfqq)
  1780. cfq_choose_cfqg(cfqd);
  1781. cfqq = cfq_set_active_queue(cfqd, new_cfqq);
  1782. keep_queue:
  1783. return cfqq;
  1784. }
  1785. static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
  1786. {
  1787. int dispatched = 0;
  1788. while (cfqq->next_rq) {
  1789. cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
  1790. dispatched++;
  1791. }
  1792. BUG_ON(!list_empty(&cfqq->fifo));
  1793. /* By default cfqq is not expired if it is empty. Do it explicitly */
  1794. __cfq_slice_expired(cfqq->cfqd, cfqq, 0);
  1795. return dispatched;
  1796. }
  1797. /*
  1798. * Drain our current requests. Used for barriers and when switching
  1799. * io schedulers on-the-fly.
  1800. */
  1801. static int cfq_forced_dispatch(struct cfq_data *cfqd)
  1802. {
  1803. struct cfq_queue *cfqq;
  1804. int dispatched = 0;
  1805. while ((cfqq = cfq_get_next_queue_forced(cfqd)) != NULL)
  1806. dispatched += __cfq_forced_dispatch_cfqq(cfqq);
  1807. cfq_slice_expired(cfqd, 0);
  1808. BUG_ON(cfqd->busy_queues);
  1809. cfq_log(cfqd, "forced_dispatch=%d", dispatched);
  1810. return dispatched;
  1811. }
  1812. static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1813. {
  1814. unsigned int max_dispatch;
  1815. /*
  1816. * Drain async requests before we start sync IO
  1817. */
  1818. if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_driver[BLK_RW_ASYNC])
  1819. return false;
  1820. /*
  1821. * If this is an async queue and we have sync IO in flight, let it wait
  1822. */
  1823. if (cfqd->sync_flight && !cfq_cfqq_sync(cfqq))
  1824. return false;
  1825. max_dispatch = cfqd->cfq_quantum;
  1826. if (cfq_class_idle(cfqq))
  1827. max_dispatch = 1;
  1828. /*
  1829. * Does this cfqq already have too much IO in flight?
  1830. */
  1831. if (cfqq->dispatched >= max_dispatch) {
  1832. /*
  1833. * idle queue must always only have a single IO in flight
  1834. */
  1835. if (cfq_class_idle(cfqq))
  1836. return false;
  1837. /*
  1838. * We have other queues, don't allow more IO from this one
  1839. */
  1840. if (cfqd->busy_queues > 1)
  1841. return false;
  1842. /*
  1843. * Sole queue user, no limit
  1844. */
  1845. max_dispatch = -1;
  1846. }
  1847. /*
  1848. * Async queues must wait a bit before being allowed dispatch.
  1849. * We also ramp up the dispatch depth gradually for async IO,
  1850. * based on the last sync IO we serviced
  1851. */
  1852. if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
  1853. unsigned long last_sync = jiffies - cfqd->last_end_sync_rq;
  1854. unsigned int depth;
  1855. depth = last_sync / cfqd->cfq_slice[1];
  1856. if (!depth && !cfqq->dispatched)
  1857. depth = 1;
  1858. if (depth < max_dispatch)
  1859. max_dispatch = depth;
  1860. }
  1861. /*
  1862. * If we're below the current max, allow a dispatch
  1863. */
  1864. return cfqq->dispatched < max_dispatch;
  1865. }
  1866. /*
  1867. * Dispatch a request from cfqq, moving them to the request queue
  1868. * dispatch list.
  1869. */
  1870. static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1871. {
  1872. struct request *rq;
  1873. BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
  1874. if (!cfq_may_dispatch(cfqd, cfqq))
  1875. return false;
  1876. /*
  1877. * follow expired path, else get first next available
  1878. */
  1879. rq = cfq_check_fifo(cfqq);
  1880. if (!rq)
  1881. rq = cfqq->next_rq;
  1882. /*
  1883. * insert request into driver dispatch list
  1884. */
  1885. cfq_dispatch_insert(cfqd->queue, rq);
  1886. if (!cfqd->active_cic) {
  1887. struct cfq_io_context *cic = RQ_CIC(rq);
  1888. atomic_long_inc(&cic->ioc->refcount);
  1889. cfqd->active_cic = cic;
  1890. }
  1891. return true;
  1892. }
  1893. /*
  1894. * Find the cfqq that we need to service and move a request from that to the
  1895. * dispatch list
  1896. */
  1897. static int cfq_dispatch_requests(struct request_queue *q, int force)
  1898. {
  1899. struct cfq_data *cfqd = q->elevator->elevator_data;
  1900. struct cfq_queue *cfqq;
  1901. if (!cfqd->busy_queues)
  1902. return 0;
  1903. if (unlikely(force))
  1904. return cfq_forced_dispatch(cfqd);
  1905. cfqq = cfq_select_queue(cfqd);
  1906. if (!cfqq)
  1907. return 0;
  1908. /*
  1909. * Dispatch a request from this cfqq, if it is allowed
  1910. */
  1911. if (!cfq_dispatch_request(cfqd, cfqq))
  1912. return 0;
  1913. cfqq->slice_dispatch++;
  1914. cfq_clear_cfqq_must_dispatch(cfqq);
  1915. /*
  1916. * expire an async queue immediately if it has used up its slice. idle
  1917. * queue always expire after 1 dispatch round.
  1918. */
  1919. if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
  1920. cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
  1921. cfq_class_idle(cfqq))) {
  1922. cfqq->slice_end = jiffies + 1;
  1923. cfq_slice_expired(cfqd, 0);
  1924. }
  1925. cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
  1926. return 1;
  1927. }
  1928. /*
  1929. * task holds one reference to the queue, dropped when task exits. each rq
  1930. * in-flight on this queue also holds a reference, dropped when rq is freed.
  1931. *
  1932. * Each cfq queue took a reference on the parent group. Drop it now.
  1933. * queue lock must be held here.
  1934. */
  1935. static void cfq_put_queue(struct cfq_queue *cfqq)
  1936. {
  1937. struct cfq_data *cfqd = cfqq->cfqd;
  1938. struct cfq_group *cfqg;
  1939. BUG_ON(atomic_read(&cfqq->ref) <= 0);
  1940. if (!atomic_dec_and_test(&cfqq->ref))
  1941. return;
  1942. cfq_log_cfqq(cfqd, cfqq, "put_queue");
  1943. BUG_ON(rb_first(&cfqq->sort_list));
  1944. BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
  1945. cfqg = cfqq->cfqg;
  1946. if (unlikely(cfqd->active_queue == cfqq)) {
  1947. __cfq_slice_expired(cfqd, cfqq, 0);
  1948. cfq_schedule_dispatch(cfqd);
  1949. }
  1950. BUG_ON(cfq_cfqq_on_rr(cfqq));
  1951. kmem_cache_free(cfq_pool, cfqq);
  1952. cfq_put_cfqg(cfqg);
  1953. }
  1954. /*
  1955. * Must always be called with the rcu_read_lock() held
  1956. */
  1957. static void
  1958. __call_for_each_cic(struct io_context *ioc,
  1959. void (*func)(struct io_context *, struct cfq_io_context *))
  1960. {
  1961. struct cfq_io_context *cic;
  1962. struct hlist_node *n;
  1963. hlist_for_each_entry_rcu(cic, n, &ioc->cic_list, cic_list)
  1964. func(ioc, cic);
  1965. }
  1966. /*
  1967. * Call func for each cic attached to this ioc.
  1968. */
  1969. static void
  1970. call_for_each_cic(struct io_context *ioc,
  1971. void (*func)(struct io_context *, struct cfq_io_context *))
  1972. {
  1973. rcu_read_lock();
  1974. __call_for_each_cic(ioc, func);
  1975. rcu_read_unlock();
  1976. }
  1977. static void cfq_cic_free_rcu(struct rcu_head *head)
  1978. {
  1979. struct cfq_io_context *cic;
  1980. cic = container_of(head, struct cfq_io_context, rcu_head);
  1981. kmem_cache_free(cfq_ioc_pool, cic);
  1982. elv_ioc_count_dec(cfq_ioc_count);
  1983. if (ioc_gone) {
  1984. /*
  1985. * CFQ scheduler is exiting, grab exit lock and check
  1986. * the pending io context count. If it hits zero,
  1987. * complete ioc_gone and set it back to NULL
  1988. */
  1989. spin_lock(&ioc_gone_lock);
  1990. if (ioc_gone && !elv_ioc_count_read(cfq_ioc_count)) {
  1991. complete(ioc_gone);
  1992. ioc_gone = NULL;
  1993. }
  1994. spin_unlock(&ioc_gone_lock);
  1995. }
  1996. }
  1997. static void cfq_cic_free(struct cfq_io_context *cic)
  1998. {
  1999. call_rcu(&cic->rcu_head, cfq_cic_free_rcu);
  2000. }
  2001. static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
  2002. {
  2003. unsigned long flags;
  2004. BUG_ON(!cic->dead_key);
  2005. spin_lock_irqsave(&ioc->lock, flags);
  2006. radix_tree_delete(&ioc->radix_root, cic->dead_key);
  2007. hlist_del_rcu(&cic->cic_list);
  2008. spin_unlock_irqrestore(&ioc->lock, flags);
  2009. cfq_cic_free(cic);
  2010. }
  2011. /*
  2012. * Must be called with rcu_read_lock() held or preemption otherwise disabled.
  2013. * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
  2014. * and ->trim() which is called with the task lock held
  2015. */
  2016. static void cfq_free_io_context(struct io_context *ioc)
  2017. {
  2018. /*
  2019. * ioc->refcount is zero here, or we are called from elv_unregister(),
  2020. * so no more cic's are allowed to be linked into this ioc. So it
  2021. * should be ok to iterate over the known list, we will see all cic's
  2022. * since no new ones are added.
  2023. */
  2024. __call_for_each_cic(ioc, cic_free_func);
  2025. }
  2026. static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  2027. {
  2028. struct cfq_queue *__cfqq, *next;
  2029. if (unlikely(cfqq == cfqd->active_queue)) {
  2030. __cfq_slice_expired(cfqd, cfqq, 0);
  2031. cfq_schedule_dispatch(cfqd);
  2032. }
  2033. /*
  2034. * If this queue was scheduled to merge with another queue, be
  2035. * sure to drop the reference taken on that queue (and others in
  2036. * the merge chain). See cfq_setup_merge and cfq_merge_cfqqs.
  2037. */
  2038. __cfqq = cfqq->new_cfqq;
  2039. while (__cfqq) {
  2040. if (__cfqq == cfqq) {
  2041. WARN(1, "cfqq->new_cfqq loop detected\n");
  2042. break;
  2043. }
  2044. next = __cfqq->new_cfqq;
  2045. cfq_put_queue(__cfqq);
  2046. __cfqq = next;
  2047. }
  2048. cfq_put_queue(cfqq);
  2049. }
  2050. static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
  2051. struct cfq_io_context *cic)
  2052. {
  2053. struct io_context *ioc = cic->ioc;
  2054. list_del_init(&cic->queue_list);
  2055. /*
  2056. * Make sure key == NULL is seen for dead queues
  2057. */
  2058. smp_wmb();
  2059. cic->dead_key = (unsigned long) cic->key;
  2060. cic->key = NULL;
  2061. if (ioc->ioc_data == cic)
  2062. rcu_assign_pointer(ioc->ioc_data, NULL);
  2063. if (cic->cfqq[BLK_RW_ASYNC]) {
  2064. cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
  2065. cic->cfqq[BLK_RW_ASYNC] = NULL;
  2066. }
  2067. if (cic->cfqq[BLK_RW_SYNC]) {
  2068. cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
  2069. cic->cfqq[BLK_RW_SYNC] = NULL;
  2070. }
  2071. }
  2072. static void cfq_exit_single_io_context(struct io_context *ioc,
  2073. struct cfq_io_context *cic)
  2074. {
  2075. struct cfq_data *cfqd = cic->key;
  2076. if (cfqd) {
  2077. struct request_queue *q = cfqd->queue;
  2078. unsigned long flags;
  2079. spin_lock_irqsave(q->queue_lock, flags);
  2080. /*
  2081. * Ensure we get a fresh copy of the ->key to prevent
  2082. * race between exiting task and queue
  2083. */
  2084. smp_read_barrier_depends();
  2085. if (cic->key)
  2086. __cfq_exit_single_io_context(cfqd, cic);
  2087. spin_unlock_irqrestore(q->queue_lock, flags);
  2088. }
  2089. }
  2090. /*
  2091. * The process that ioc belongs to has exited, we need to clean up
  2092. * and put the internal structures we have that belongs to that process.
  2093. */
  2094. static void cfq_exit_io_context(struct io_context *ioc)
  2095. {
  2096. call_for_each_cic(ioc, cfq_exit_single_io_context);
  2097. }
  2098. static struct cfq_io_context *
  2099. cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
  2100. {
  2101. struct cfq_io_context *cic;
  2102. cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
  2103. cfqd->queue->node);
  2104. if (cic) {
  2105. cic->last_end_request = jiffies;
  2106. INIT_LIST_HEAD(&cic->queue_list);
  2107. INIT_HLIST_NODE(&cic->cic_list);
  2108. cic->dtor = cfq_free_io_context;
  2109. cic->exit = cfq_exit_io_context;
  2110. elv_ioc_count_inc(cfq_ioc_count);
  2111. }
  2112. return cic;
  2113. }
  2114. static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
  2115. {
  2116. struct task_struct *tsk = current;
  2117. int ioprio_class;
  2118. if (!cfq_cfqq_prio_changed(cfqq))
  2119. return;
  2120. ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
  2121. switch (ioprio_class) {
  2122. default:
  2123. printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
  2124. case IOPRIO_CLASS_NONE:
  2125. /*
  2126. * no prio set, inherit CPU scheduling settings
  2127. */
  2128. cfqq->ioprio = task_nice_ioprio(tsk);
  2129. cfqq->ioprio_class = task_nice_ioclass(tsk);
  2130. break;
  2131. case IOPRIO_CLASS_RT:
  2132. cfqq->ioprio = task_ioprio(ioc);
  2133. cfqq->ioprio_class = IOPRIO_CLASS_RT;
  2134. break;
  2135. case IOPRIO_CLASS_BE:
  2136. cfqq->ioprio = task_ioprio(ioc);
  2137. cfqq->ioprio_class = IOPRIO_CLASS_BE;
  2138. break;
  2139. case IOPRIO_CLASS_IDLE:
  2140. cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
  2141. cfqq->ioprio = 7;
  2142. cfq_clear_cfqq_idle_window(cfqq);
  2143. break;
  2144. }
  2145. /*
  2146. * keep track of original prio settings in case we have to temporarily
  2147. * elevate the priority of this queue
  2148. */
  2149. cfqq->org_ioprio = cfqq->ioprio;
  2150. cfqq->org_ioprio_class = cfqq->ioprio_class;
  2151. cfq_clear_cfqq_prio_changed(cfqq);
  2152. }
  2153. static void changed_ioprio(struct io_context *ioc, struct cfq_io_context *cic)
  2154. {
  2155. struct cfq_data *cfqd = cic->key;
  2156. struct cfq_queue *cfqq;
  2157. unsigned long flags;
  2158. if (unlikely(!cfqd))
  2159. return;
  2160. spin_lock_irqsave(cfqd->queue->queue_lock, flags);
  2161. cfqq = cic->cfqq[BLK_RW_ASYNC];
  2162. if (cfqq) {
  2163. struct cfq_queue *new_cfqq;
  2164. new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic->ioc,
  2165. GFP_ATOMIC);
  2166. if (new_cfqq) {
  2167. cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
  2168. cfq_put_queue(cfqq);
  2169. }
  2170. }
  2171. cfqq = cic->cfqq[BLK_RW_SYNC];
  2172. if (cfqq)
  2173. cfq_mark_cfqq_prio_changed(cfqq);
  2174. spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
  2175. }
  2176. static void cfq_ioc_set_ioprio(struct io_context *ioc)
  2177. {
  2178. call_for_each_cic(ioc, changed_ioprio);
  2179. ioc->ioprio_changed = 0;
  2180. }
  2181. static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  2182. pid_t pid, bool is_sync)
  2183. {
  2184. RB_CLEAR_NODE(&cfqq->rb_node);
  2185. RB_CLEAR_NODE(&cfqq->p_node);
  2186. INIT_LIST_HEAD(&cfqq->fifo);
  2187. atomic_set(&cfqq->ref, 0);
  2188. cfqq->cfqd = cfqd;
  2189. cfq_mark_cfqq_prio_changed(cfqq);
  2190. if (is_sync) {
  2191. if (!cfq_class_idle(cfqq))
  2192. cfq_mark_cfqq_idle_window(cfqq);
  2193. cfq_mark_cfqq_sync(cfqq);
  2194. }
  2195. cfqq->pid = pid;
  2196. }
  2197. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  2198. static void changed_cgroup(struct io_context *ioc, struct cfq_io_context *cic)
  2199. {
  2200. struct cfq_queue *sync_cfqq = cic_to_cfqq(cic, 1);
  2201. struct cfq_data *cfqd = cic->key;
  2202. unsigned long flags;
  2203. struct request_queue *q;
  2204. if (unlikely(!cfqd))
  2205. return;
  2206. q = cfqd->queue;
  2207. spin_lock_irqsave(q->queue_lock, flags);
  2208. if (sync_cfqq) {
  2209. /*
  2210. * Drop reference to sync queue. A new sync queue will be
  2211. * assigned in new group upon arrival of a fresh request.
  2212. */
  2213. cfq_log_cfqq(cfqd, sync_cfqq, "changed cgroup");
  2214. cic_set_cfqq(cic, NULL, 1);
  2215. cfq_put_queue(sync_cfqq);
  2216. }
  2217. spin_unlock_irqrestore(q->queue_lock, flags);
  2218. }
  2219. static void cfq_ioc_set_cgroup(struct io_context *ioc)
  2220. {
  2221. call_for_each_cic(ioc, changed_cgroup);
  2222. ioc->cgroup_changed = 0;
  2223. }
  2224. #endif /* CONFIG_CFQ_GROUP_IOSCHED */
  2225. static struct cfq_queue *
  2226. cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync,
  2227. struct io_context *ioc, gfp_t gfp_mask)
  2228. {
  2229. struct cfq_queue *cfqq, *new_cfqq = NULL;
  2230. struct cfq_io_context *cic;
  2231. struct cfq_group *cfqg;
  2232. retry:
  2233. cfqg = cfq_get_cfqg(cfqd, 1);
  2234. cic = cfq_cic_lookup(cfqd, ioc);
  2235. /* cic always exists here */
  2236. cfqq = cic_to_cfqq(cic, is_sync);
  2237. /*
  2238. * Always try a new alloc if we fell back to the OOM cfqq
  2239. * originally, since it should just be a temporary situation.
  2240. */
  2241. if (!cfqq || cfqq == &cfqd->oom_cfqq) {
  2242. cfqq = NULL;
  2243. if (new_cfqq) {
  2244. cfqq = new_cfqq;
  2245. new_cfqq = NULL;
  2246. } else if (gfp_mask & __GFP_WAIT) {
  2247. spin_unlock_irq(cfqd->queue->queue_lock);
  2248. new_cfqq = kmem_cache_alloc_node(cfq_pool,
  2249. gfp_mask | __GFP_ZERO,
  2250. cfqd->queue->node);
  2251. spin_lock_irq(cfqd->queue->queue_lock);
  2252. if (new_cfqq)
  2253. goto retry;
  2254. } else {
  2255. cfqq = kmem_cache_alloc_node(cfq_pool,
  2256. gfp_mask | __GFP_ZERO,
  2257. cfqd->queue->node);
  2258. }
  2259. if (cfqq) {
  2260. cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
  2261. cfq_init_prio_data(cfqq, ioc);
  2262. cfq_link_cfqq_cfqg(cfqq, cfqg);
  2263. cfq_log_cfqq(cfqd, cfqq, "alloced");
  2264. } else
  2265. cfqq = &cfqd->oom_cfqq;
  2266. }
  2267. if (new_cfqq)
  2268. kmem_cache_free(cfq_pool, new_cfqq);
  2269. return cfqq;
  2270. }
  2271. static struct cfq_queue **
  2272. cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
  2273. {
  2274. switch (ioprio_class) {
  2275. case IOPRIO_CLASS_RT:
  2276. return &cfqd->async_cfqq[0][ioprio];
  2277. case IOPRIO_CLASS_BE:
  2278. return &cfqd->async_cfqq[1][ioprio];
  2279. case IOPRIO_CLASS_IDLE:
  2280. return &cfqd->async_idle_cfqq;
  2281. default:
  2282. BUG();
  2283. }
  2284. }
  2285. static struct cfq_queue *
  2286. cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct io_context *ioc,
  2287. gfp_t gfp_mask)
  2288. {
  2289. const int ioprio = task_ioprio(ioc);
  2290. const int ioprio_class = task_ioprio_class(ioc);
  2291. struct cfq_queue **async_cfqq = NULL;
  2292. struct cfq_queue *cfqq = NULL;
  2293. if (!is_sync) {
  2294. async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
  2295. cfqq = *async_cfqq;
  2296. }
  2297. if (!cfqq)
  2298. cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
  2299. /*
  2300. * pin the queue now that it's allocated, scheduler exit will prune it
  2301. */
  2302. if (!is_sync && !(*async_cfqq)) {
  2303. atomic_inc(&cfqq->ref);
  2304. *async_cfqq = cfqq;
  2305. }
  2306. atomic_inc(&cfqq->ref);
  2307. return cfqq;
  2308. }
  2309. /*
  2310. * We drop cfq io contexts lazily, so we may find a dead one.
  2311. */
  2312. static void
  2313. cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
  2314. struct cfq_io_context *cic)
  2315. {
  2316. unsigned long flags;
  2317. WARN_ON(!list_empty(&cic->queue_list));
  2318. spin_lock_irqsave(&ioc->lock, flags);
  2319. BUG_ON(ioc->ioc_data == cic);
  2320. radix_tree_delete(&ioc->radix_root, (unsigned long) cfqd);
  2321. hlist_del_rcu(&cic->cic_list);
  2322. spin_unlock_irqrestore(&ioc->lock, flags);
  2323. cfq_cic_free(cic);
  2324. }
  2325. static struct cfq_io_context *
  2326. cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
  2327. {
  2328. struct cfq_io_context *cic;
  2329. unsigned long flags;
  2330. void *k;
  2331. if (unlikely(!ioc))
  2332. return NULL;
  2333. rcu_read_lock();
  2334. /*
  2335. * we maintain a last-hit cache, to avoid browsing over the tree
  2336. */
  2337. cic = rcu_dereference(ioc->ioc_data);
  2338. if (cic && cic->key == cfqd) {
  2339. rcu_read_unlock();
  2340. return cic;
  2341. }
  2342. do {
  2343. cic = radix_tree_lookup(&ioc->radix_root, (unsigned long) cfqd);
  2344. rcu_read_unlock();
  2345. if (!cic)
  2346. break;
  2347. /* ->key must be copied to avoid race with cfq_exit_queue() */
  2348. k = cic->key;
  2349. if (unlikely(!k)) {
  2350. cfq_drop_dead_cic(cfqd, ioc, cic);
  2351. rcu_read_lock();
  2352. continue;
  2353. }
  2354. spin_lock_irqsave(&ioc->lock, flags);
  2355. rcu_assign_pointer(ioc->ioc_data, cic);
  2356. spin_unlock_irqrestore(&ioc->lock, flags);
  2357. break;
  2358. } while (1);
  2359. return cic;
  2360. }
  2361. /*
  2362. * Add cic into ioc, using cfqd as the search key. This enables us to lookup
  2363. * the process specific cfq io context when entered from the block layer.
  2364. * Also adds the cic to a per-cfqd list, used when this queue is removed.
  2365. */
  2366. static int cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
  2367. struct cfq_io_context *cic, gfp_t gfp_mask)
  2368. {
  2369. unsigned long flags;
  2370. int ret;
  2371. ret = radix_tree_preload(gfp_mask);
  2372. if (!ret) {
  2373. cic->ioc = ioc;
  2374. cic->key = cfqd;
  2375. spin_lock_irqsave(&ioc->lock, flags);
  2376. ret = radix_tree_insert(&ioc->radix_root,
  2377. (unsigned long) cfqd, cic);
  2378. if (!ret)
  2379. hlist_add_head_rcu(&cic->cic_list, &ioc->cic_list);
  2380. spin_unlock_irqrestore(&ioc->lock, flags);
  2381. radix_tree_preload_end();
  2382. if (!ret) {
  2383. spin_lock_irqsave(cfqd->queue->queue_lock, flags);
  2384. list_add(&cic->queue_list, &cfqd->cic_list);
  2385. spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
  2386. }
  2387. }
  2388. if (ret)
  2389. printk(KERN_ERR "cfq: cic link failed!\n");
  2390. return ret;
  2391. }
  2392. /*
  2393. * Setup general io context and cfq io context. There can be several cfq
  2394. * io contexts per general io context, if this process is doing io to more
  2395. * than one device managed by cfq.
  2396. */
  2397. static struct cfq_io_context *
  2398. cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
  2399. {
  2400. struct io_context *ioc = NULL;
  2401. struct cfq_io_context *cic;
  2402. might_sleep_if(gfp_mask & __GFP_WAIT);
  2403. ioc = get_io_context(gfp_mask, cfqd->queue->node);
  2404. if (!ioc)
  2405. return NULL;
  2406. cic = cfq_cic_lookup(cfqd, ioc);
  2407. if (cic)
  2408. goto out;
  2409. cic = cfq_alloc_io_context(cfqd, gfp_mask);
  2410. if (cic == NULL)
  2411. goto err;
  2412. if (cfq_cic_link(cfqd, ioc, cic, gfp_mask))
  2413. goto err_free;
  2414. out:
  2415. smp_read_barrier_depends();
  2416. if (unlikely(ioc->ioprio_changed))
  2417. cfq_ioc_set_ioprio(ioc);
  2418. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  2419. if (unlikely(ioc->cgroup_changed))
  2420. cfq_ioc_set_cgroup(ioc);
  2421. #endif
  2422. return cic;
  2423. err_free:
  2424. cfq_cic_free(cic);
  2425. err:
  2426. put_io_context(ioc);
  2427. return NULL;
  2428. }
  2429. static void
  2430. cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
  2431. {
  2432. unsigned long elapsed = jiffies - cic->last_end_request;
  2433. unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
  2434. cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
  2435. cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
  2436. cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
  2437. }
  2438. static void
  2439. cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  2440. struct request *rq)
  2441. {
  2442. sector_t sdist;
  2443. u64 total;
  2444. if (!cfqq->last_request_pos)
  2445. sdist = 0;
  2446. else if (cfqq->last_request_pos < blk_rq_pos(rq))
  2447. sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
  2448. else
  2449. sdist = cfqq->last_request_pos - blk_rq_pos(rq);
  2450. /*
  2451. * Don't allow the seek distance to get too large from the
  2452. * odd fragment, pagein, etc
  2453. */
  2454. if (cfqq->seek_samples <= 60) /* second&third seek */
  2455. sdist = min(sdist, (cfqq->seek_mean * 4) + 2*1024*1024);
  2456. else
  2457. sdist = min(sdist, (cfqq->seek_mean * 4) + 2*1024*64);
  2458. cfqq->seek_samples = (7*cfqq->seek_samples + 256) / 8;
  2459. cfqq->seek_total = (7*cfqq->seek_total + (u64)256*sdist) / 8;
  2460. total = cfqq->seek_total + (cfqq->seek_samples/2);
  2461. do_div(total, cfqq->seek_samples);
  2462. cfqq->seek_mean = (sector_t)total;
  2463. /*
  2464. * If this cfqq is shared between multiple processes, check to
  2465. * make sure that those processes are still issuing I/Os within
  2466. * the mean seek distance. If not, it may be time to break the
  2467. * queues apart again.
  2468. */
  2469. if (cfq_cfqq_coop(cfqq)) {
  2470. if (CFQQ_SEEKY(cfqq) && !cfqq->seeky_start)
  2471. cfqq->seeky_start = jiffies;
  2472. else if (!CFQQ_SEEKY(cfqq))
  2473. cfqq->seeky_start = 0;
  2474. }
  2475. }
  2476. /*
  2477. * Disable idle window if the process thinks too long or seeks so much that
  2478. * it doesn't matter
  2479. */
  2480. static void
  2481. cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  2482. struct cfq_io_context *cic)
  2483. {
  2484. int old_idle, enable_idle;
  2485. /*
  2486. * Don't idle for async or idle io prio class
  2487. */
  2488. if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
  2489. return;
  2490. enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
  2491. if (cfqq->queued[0] + cfqq->queued[1] >= 4)
  2492. cfq_mark_cfqq_deep(cfqq);
  2493. if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
  2494. (!cfq_cfqq_deep(cfqq) && sample_valid(cfqq->seek_samples)
  2495. && CFQQ_SEEKY(cfqq)))
  2496. enable_idle = 0;
  2497. else if (sample_valid(cic->ttime_samples)) {
  2498. if (cic->ttime_mean > cfqd->cfq_slice_idle)
  2499. enable_idle = 0;
  2500. else
  2501. enable_idle = 1;
  2502. }
  2503. if (old_idle != enable_idle) {
  2504. cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
  2505. if (enable_idle)
  2506. cfq_mark_cfqq_idle_window(cfqq);
  2507. else
  2508. cfq_clear_cfqq_idle_window(cfqq);
  2509. }
  2510. }
  2511. /*
  2512. * Check if new_cfqq should preempt the currently active queue. Return 0 for
  2513. * no or if we aren't sure, a 1 will cause a preempt.
  2514. */
  2515. static bool
  2516. cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
  2517. struct request *rq)
  2518. {
  2519. struct cfq_queue *cfqq;
  2520. cfqq = cfqd->active_queue;
  2521. if (!cfqq)
  2522. return false;
  2523. if (cfq_class_idle(new_cfqq))
  2524. return false;
  2525. if (cfq_class_idle(cfqq))
  2526. return true;
  2527. /*
  2528. * if the new request is sync, but the currently running queue is
  2529. * not, let the sync request have priority.
  2530. */
  2531. if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
  2532. return true;
  2533. if (new_cfqq->cfqg != cfqq->cfqg)
  2534. return false;
  2535. if (cfq_slice_used(cfqq))
  2536. return true;
  2537. /* Allow preemption only if we are idling on sync-noidle tree */
  2538. if (cfqd->serving_type == SYNC_NOIDLE_WORKLOAD &&
  2539. cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
  2540. new_cfqq->service_tree->count == 2 &&
  2541. RB_EMPTY_ROOT(&cfqq->sort_list))
  2542. return true;
  2543. /*
  2544. * So both queues are sync. Let the new request get disk time if
  2545. * it's a metadata request and the current queue is doing regular IO.
  2546. */
  2547. if (rq_is_meta(rq) && !cfqq->meta_pending)
  2548. return true;
  2549. /*
  2550. * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
  2551. */
  2552. if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
  2553. return true;
  2554. if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
  2555. return false;
  2556. /*
  2557. * if this request is as-good as one we would expect from the
  2558. * current cfqq, let it preempt
  2559. */
  2560. if (cfq_rq_close(cfqd, cfqq, rq))
  2561. return true;
  2562. return false;
  2563. }
  2564. /*
  2565. * cfqq preempts the active queue. if we allowed preempt with no slice left,
  2566. * let it have half of its nominal slice.
  2567. */
  2568. static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  2569. {
  2570. cfq_log_cfqq(cfqd, cfqq, "preempt");
  2571. cfq_slice_expired(cfqd, 1);
  2572. /*
  2573. * Put the new queue at the front of the of the current list,
  2574. * so we know that it will be selected next.
  2575. */
  2576. BUG_ON(!cfq_cfqq_on_rr(cfqq));
  2577. cfq_service_tree_add(cfqd, cfqq, 1);
  2578. cfqq->slice_end = 0;
  2579. cfq_mark_cfqq_slice_new(cfqq);
  2580. }
  2581. /*
  2582. * Called when a new fs request (rq) is added (to cfqq). Check if there's
  2583. * something we should do about it
  2584. */
  2585. static void
  2586. cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  2587. struct request *rq)
  2588. {
  2589. struct cfq_io_context *cic = RQ_CIC(rq);
  2590. cfqd->rq_queued++;
  2591. if (rq_is_meta(rq))
  2592. cfqq->meta_pending++;
  2593. cfq_update_io_thinktime(cfqd, cic);
  2594. cfq_update_io_seektime(cfqd, cfqq, rq);
  2595. cfq_update_idle_window(cfqd, cfqq, cic);
  2596. cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
  2597. if (cfqq == cfqd->active_queue) {
  2598. /*
  2599. * Remember that we saw a request from this process, but
  2600. * don't start queuing just yet. Otherwise we risk seeing lots
  2601. * of tiny requests, because we disrupt the normal plugging
  2602. * and merging. If the request is already larger than a single
  2603. * page, let it rip immediately. For that case we assume that
  2604. * merging is already done. Ditto for a busy system that
  2605. * has other work pending, don't risk delaying until the
  2606. * idle timer unplug to continue working.
  2607. */
  2608. if (cfq_cfqq_wait_request(cfqq)) {
  2609. if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
  2610. cfqd->busy_queues > 1) {
  2611. del_timer(&cfqd->idle_slice_timer);
  2612. __blk_run_queue(cfqd->queue);
  2613. } else
  2614. cfq_mark_cfqq_must_dispatch(cfqq);
  2615. }
  2616. } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
  2617. /*
  2618. * not the active queue - expire current slice if it is
  2619. * idle and has expired it's mean thinktime or this new queue
  2620. * has some old slice time left and is of higher priority or
  2621. * this new queue is RT and the current one is BE
  2622. */
  2623. cfq_preempt_queue(cfqd, cfqq);
  2624. __blk_run_queue(cfqd->queue);
  2625. }
  2626. }
  2627. static void cfq_insert_request(struct request_queue *q, struct request *rq)
  2628. {
  2629. struct cfq_data *cfqd = q->elevator->elevator_data;
  2630. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  2631. cfq_log_cfqq(cfqd, cfqq, "insert_request");
  2632. cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
  2633. rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
  2634. list_add_tail(&rq->queuelist, &cfqq->fifo);
  2635. cfq_add_rq_rb(rq);
  2636. cfq_rq_enqueued(cfqd, cfqq, rq);
  2637. }
  2638. /*
  2639. * Update hw_tag based on peak queue depth over 50 samples under
  2640. * sufficient load.
  2641. */
  2642. static void cfq_update_hw_tag(struct cfq_data *cfqd)
  2643. {
  2644. struct cfq_queue *cfqq = cfqd->active_queue;
  2645. if (rq_in_driver(cfqd) > cfqd->hw_tag_est_depth)
  2646. cfqd->hw_tag_est_depth = rq_in_driver(cfqd);
  2647. if (cfqd->hw_tag == 1)
  2648. return;
  2649. if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
  2650. rq_in_driver(cfqd) <= CFQ_HW_QUEUE_MIN)
  2651. return;
  2652. /*
  2653. * If active queue hasn't enough requests and can idle, cfq might not
  2654. * dispatch sufficient requests to hardware. Don't zero hw_tag in this
  2655. * case
  2656. */
  2657. if (cfqq && cfq_cfqq_idle_window(cfqq) &&
  2658. cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
  2659. CFQ_HW_QUEUE_MIN && rq_in_driver(cfqd) < CFQ_HW_QUEUE_MIN)
  2660. return;
  2661. if (cfqd->hw_tag_samples++ < 50)
  2662. return;
  2663. if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
  2664. cfqd->hw_tag = 1;
  2665. else
  2666. cfqd->hw_tag = 0;
  2667. }
  2668. static void cfq_completed_request(struct request_queue *q, struct request *rq)
  2669. {
  2670. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  2671. struct cfq_data *cfqd = cfqq->cfqd;
  2672. const int sync = rq_is_sync(rq);
  2673. unsigned long now;
  2674. now = jiffies;
  2675. cfq_log_cfqq(cfqd, cfqq, "complete rqnoidle %d", !!rq_noidle(rq));
  2676. cfq_update_hw_tag(cfqd);
  2677. WARN_ON(!cfqd->rq_in_driver[sync]);
  2678. WARN_ON(!cfqq->dispatched);
  2679. cfqd->rq_in_driver[sync]--;
  2680. cfqq->dispatched--;
  2681. if (cfq_cfqq_sync(cfqq))
  2682. cfqd->sync_flight--;
  2683. if (sync) {
  2684. RQ_CIC(rq)->last_end_request = now;
  2685. cfqd->last_end_sync_rq = now;
  2686. }
  2687. /*
  2688. * If this is the active queue, check if it needs to be expired,
  2689. * or if we want to idle in case it has no pending requests.
  2690. */
  2691. if (cfqd->active_queue == cfqq) {
  2692. const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
  2693. if (cfq_cfqq_slice_new(cfqq)) {
  2694. cfq_set_prio_slice(cfqd, cfqq);
  2695. cfq_clear_cfqq_slice_new(cfqq);
  2696. }
  2697. /*
  2698. * Idling is not enabled on:
  2699. * - expired queues
  2700. * - idle-priority queues
  2701. * - async queues
  2702. * - queues with still some requests queued
  2703. * - when there is a close cooperator
  2704. */
  2705. if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
  2706. cfq_slice_expired(cfqd, 1);
  2707. else if (sync && cfqq_empty &&
  2708. !cfq_close_cooperator(cfqd, cfqq)) {
  2709. cfqd->noidle_tree_requires_idle |= !rq_noidle(rq);
  2710. /*
  2711. * Idling is enabled for SYNC_WORKLOAD.
  2712. * SYNC_NOIDLE_WORKLOAD idles at the end of the tree
  2713. * only if we processed at least one !rq_noidle request
  2714. */
  2715. if (cfqd->serving_type == SYNC_WORKLOAD
  2716. || cfqd->noidle_tree_requires_idle)
  2717. cfq_arm_slice_timer(cfqd);
  2718. }
  2719. }
  2720. if (!rq_in_driver(cfqd))
  2721. cfq_schedule_dispatch(cfqd);
  2722. }
  2723. /*
  2724. * we temporarily boost lower priority queues if they are holding fs exclusive
  2725. * resources. they are boosted to normal prio (CLASS_BE/4)
  2726. */
  2727. static void cfq_prio_boost(struct cfq_queue *cfqq)
  2728. {
  2729. if (has_fs_excl()) {
  2730. /*
  2731. * boost idle prio on transactions that would lock out other
  2732. * users of the filesystem
  2733. */
  2734. if (cfq_class_idle(cfqq))
  2735. cfqq->ioprio_class = IOPRIO_CLASS_BE;
  2736. if (cfqq->ioprio > IOPRIO_NORM)
  2737. cfqq->ioprio = IOPRIO_NORM;
  2738. } else {
  2739. /*
  2740. * unboost the queue (if needed)
  2741. */
  2742. cfqq->ioprio_class = cfqq->org_ioprio_class;
  2743. cfqq->ioprio = cfqq->org_ioprio;
  2744. }
  2745. }
  2746. static inline int __cfq_may_queue(struct cfq_queue *cfqq)
  2747. {
  2748. if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
  2749. cfq_mark_cfqq_must_alloc_slice(cfqq);
  2750. return ELV_MQUEUE_MUST;
  2751. }
  2752. return ELV_MQUEUE_MAY;
  2753. }
  2754. static int cfq_may_queue(struct request_queue *q, int rw)
  2755. {
  2756. struct cfq_data *cfqd = q->elevator->elevator_data;
  2757. struct task_struct *tsk = current;
  2758. struct cfq_io_context *cic;
  2759. struct cfq_queue *cfqq;
  2760. /*
  2761. * don't force setup of a queue from here, as a call to may_queue
  2762. * does not necessarily imply that a request actually will be queued.
  2763. * so just lookup a possibly existing queue, or return 'may queue'
  2764. * if that fails
  2765. */
  2766. cic = cfq_cic_lookup(cfqd, tsk->io_context);
  2767. if (!cic)
  2768. return ELV_MQUEUE_MAY;
  2769. cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
  2770. if (cfqq) {
  2771. cfq_init_prio_data(cfqq, cic->ioc);
  2772. cfq_prio_boost(cfqq);
  2773. return __cfq_may_queue(cfqq);
  2774. }
  2775. return ELV_MQUEUE_MAY;
  2776. }
  2777. /*
  2778. * queue lock held here
  2779. */
  2780. static void cfq_put_request(struct request *rq)
  2781. {
  2782. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  2783. if (cfqq) {
  2784. const int rw = rq_data_dir(rq);
  2785. BUG_ON(!cfqq->allocated[rw]);
  2786. cfqq->allocated[rw]--;
  2787. put_io_context(RQ_CIC(rq)->ioc);
  2788. rq->elevator_private = NULL;
  2789. rq->elevator_private2 = NULL;
  2790. cfq_put_queue(cfqq);
  2791. }
  2792. }
  2793. static struct cfq_queue *
  2794. cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_context *cic,
  2795. struct cfq_queue *cfqq)
  2796. {
  2797. cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
  2798. cic_set_cfqq(cic, cfqq->new_cfqq, 1);
  2799. cfq_mark_cfqq_coop(cfqq->new_cfqq);
  2800. cfq_put_queue(cfqq);
  2801. return cic_to_cfqq(cic, 1);
  2802. }
  2803. static int should_split_cfqq(struct cfq_queue *cfqq)
  2804. {
  2805. if (cfqq->seeky_start &&
  2806. time_after(jiffies, cfqq->seeky_start + CFQQ_COOP_TOUT))
  2807. return 1;
  2808. return 0;
  2809. }
  2810. /*
  2811. * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
  2812. * was the last process referring to said cfqq.
  2813. */
  2814. static struct cfq_queue *
  2815. split_cfqq(struct cfq_io_context *cic, struct cfq_queue *cfqq)
  2816. {
  2817. if (cfqq_process_refs(cfqq) == 1) {
  2818. cfqq->seeky_start = 0;
  2819. cfqq->pid = current->pid;
  2820. cfq_clear_cfqq_coop(cfqq);
  2821. return cfqq;
  2822. }
  2823. cic_set_cfqq(cic, NULL, 1);
  2824. cfq_put_queue(cfqq);
  2825. return NULL;
  2826. }
  2827. /*
  2828. * Allocate cfq data structures associated with this request.
  2829. */
  2830. static int
  2831. cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
  2832. {
  2833. struct cfq_data *cfqd = q->elevator->elevator_data;
  2834. struct cfq_io_context *cic;
  2835. const int rw = rq_data_dir(rq);
  2836. const bool is_sync = rq_is_sync(rq);
  2837. struct cfq_queue *cfqq;
  2838. unsigned long flags;
  2839. might_sleep_if(gfp_mask & __GFP_WAIT);
  2840. cic = cfq_get_io_context(cfqd, gfp_mask);
  2841. spin_lock_irqsave(q->queue_lock, flags);
  2842. if (!cic)
  2843. goto queue_fail;
  2844. new_queue:
  2845. cfqq = cic_to_cfqq(cic, is_sync);
  2846. if (!cfqq || cfqq == &cfqd->oom_cfqq) {
  2847. cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
  2848. cic_set_cfqq(cic, cfqq, is_sync);
  2849. } else {
  2850. /*
  2851. * If the queue was seeky for too long, break it apart.
  2852. */
  2853. if (cfq_cfqq_coop(cfqq) && should_split_cfqq(cfqq)) {
  2854. cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
  2855. cfqq = split_cfqq(cic, cfqq);
  2856. if (!cfqq)
  2857. goto new_queue;
  2858. }
  2859. /*
  2860. * Check to see if this queue is scheduled to merge with
  2861. * another, closely cooperating queue. The merging of
  2862. * queues happens here as it must be done in process context.
  2863. * The reference on new_cfqq was taken in merge_cfqqs.
  2864. */
  2865. if (cfqq->new_cfqq)
  2866. cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
  2867. }
  2868. cfqq->allocated[rw]++;
  2869. atomic_inc(&cfqq->ref);
  2870. spin_unlock_irqrestore(q->queue_lock, flags);
  2871. rq->elevator_private = cic;
  2872. rq->elevator_private2 = cfqq;
  2873. return 0;
  2874. queue_fail:
  2875. if (cic)
  2876. put_io_context(cic->ioc);
  2877. cfq_schedule_dispatch(cfqd);
  2878. spin_unlock_irqrestore(q->queue_lock, flags);
  2879. cfq_log(cfqd, "set_request fail");
  2880. return 1;
  2881. }
  2882. static void cfq_kick_queue(struct work_struct *work)
  2883. {
  2884. struct cfq_data *cfqd =
  2885. container_of(work, struct cfq_data, unplug_work);
  2886. struct request_queue *q = cfqd->queue;
  2887. spin_lock_irq(q->queue_lock);
  2888. __blk_run_queue(cfqd->queue);
  2889. spin_unlock_irq(q->queue_lock);
  2890. }
  2891. /*
  2892. * Timer running if the active_queue is currently idling inside its time slice
  2893. */
  2894. static void cfq_idle_slice_timer(unsigned long data)
  2895. {
  2896. struct cfq_data *cfqd = (struct cfq_data *) data;
  2897. struct cfq_queue *cfqq;
  2898. unsigned long flags;
  2899. int timed_out = 1;
  2900. cfq_log(cfqd, "idle timer fired");
  2901. spin_lock_irqsave(cfqd->queue->queue_lock, flags);
  2902. cfqq = cfqd->active_queue;
  2903. if (cfqq) {
  2904. timed_out = 0;
  2905. /*
  2906. * We saw a request before the queue expired, let it through
  2907. */
  2908. if (cfq_cfqq_must_dispatch(cfqq))
  2909. goto out_kick;
  2910. /*
  2911. * expired
  2912. */
  2913. if (cfq_slice_used(cfqq))
  2914. goto expire;
  2915. /*
  2916. * only expire and reinvoke request handler, if there are
  2917. * other queues with pending requests
  2918. */
  2919. if (!cfqd->busy_queues)
  2920. goto out_cont;
  2921. /*
  2922. * not expired and it has a request pending, let it dispatch
  2923. */
  2924. if (!RB_EMPTY_ROOT(&cfqq->sort_list))
  2925. goto out_kick;
  2926. /*
  2927. * Queue depth flag is reset only when the idle didn't succeed
  2928. */
  2929. cfq_clear_cfqq_deep(cfqq);
  2930. }
  2931. expire:
  2932. cfq_slice_expired(cfqd, timed_out);
  2933. out_kick:
  2934. cfq_schedule_dispatch(cfqd);
  2935. out_cont:
  2936. spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
  2937. }
  2938. static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
  2939. {
  2940. del_timer_sync(&cfqd->idle_slice_timer);
  2941. cancel_work_sync(&cfqd->unplug_work);
  2942. }
  2943. static void cfq_put_async_queues(struct cfq_data *cfqd)
  2944. {
  2945. int i;
  2946. for (i = 0; i < IOPRIO_BE_NR; i++) {
  2947. if (cfqd->async_cfqq[0][i])
  2948. cfq_put_queue(cfqd->async_cfqq[0][i]);
  2949. if (cfqd->async_cfqq[1][i])
  2950. cfq_put_queue(cfqd->async_cfqq[1][i]);
  2951. }
  2952. if (cfqd->async_idle_cfqq)
  2953. cfq_put_queue(cfqd->async_idle_cfqq);
  2954. }
  2955. static void cfq_exit_queue(struct elevator_queue *e)
  2956. {
  2957. struct cfq_data *cfqd = e->elevator_data;
  2958. struct request_queue *q = cfqd->queue;
  2959. cfq_shutdown_timer_wq(cfqd);
  2960. spin_lock_irq(q->queue_lock);
  2961. if (cfqd->active_queue)
  2962. __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
  2963. while (!list_empty(&cfqd->cic_list)) {
  2964. struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
  2965. struct cfq_io_context,
  2966. queue_list);
  2967. __cfq_exit_single_io_context(cfqd, cic);
  2968. }
  2969. cfq_put_async_queues(cfqd);
  2970. cfq_release_cfq_groups(cfqd);
  2971. blkiocg_del_blkio_group(&cfqd->root_group.blkg);
  2972. spin_unlock_irq(q->queue_lock);
  2973. cfq_shutdown_timer_wq(cfqd);
  2974. /* Wait for cfqg->blkg->key accessors to exit their grace periods. */
  2975. synchronize_rcu();
  2976. kfree(cfqd);
  2977. }
  2978. static void *cfq_init_queue(struct request_queue *q)
  2979. {
  2980. struct cfq_data *cfqd;
  2981. int i, j;
  2982. struct cfq_group *cfqg;
  2983. struct cfq_rb_root *st;
  2984. cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
  2985. if (!cfqd)
  2986. return NULL;
  2987. /* Init root service tree */
  2988. cfqd->grp_service_tree = CFQ_RB_ROOT;
  2989. /* Init root group */
  2990. cfqg = &cfqd->root_group;
  2991. for_each_cfqg_st(cfqg, i, j, st)
  2992. *st = CFQ_RB_ROOT;
  2993. RB_CLEAR_NODE(&cfqg->rb_node);
  2994. /* Give preference to root group over other groups */
  2995. cfqg->weight = 2*BLKIO_WEIGHT_DEFAULT;
  2996. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  2997. /*
  2998. * Take a reference to root group which we never drop. This is just
  2999. * to make sure that cfq_put_cfqg() does not try to kfree root group
  3000. */
  3001. atomic_set(&cfqg->ref, 1);
  3002. blkiocg_add_blkio_group(&blkio_root_cgroup, &cfqg->blkg, (void *)cfqd,
  3003. 0);
  3004. #endif
  3005. /*
  3006. * Not strictly needed (since RB_ROOT just clears the node and we
  3007. * zeroed cfqd on alloc), but better be safe in case someone decides
  3008. * to add magic to the rb code
  3009. */
  3010. for (i = 0; i < CFQ_PRIO_LISTS; i++)
  3011. cfqd->prio_trees[i] = RB_ROOT;
  3012. /*
  3013. * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
  3014. * Grab a permanent reference to it, so that the normal code flow
  3015. * will not attempt to free it.
  3016. */
  3017. cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
  3018. atomic_inc(&cfqd->oom_cfqq.ref);
  3019. cfq_link_cfqq_cfqg(&cfqd->oom_cfqq, &cfqd->root_group);
  3020. INIT_LIST_HEAD(&cfqd->cic_list);
  3021. cfqd->queue = q;
  3022. init_timer(&cfqd->idle_slice_timer);
  3023. cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
  3024. cfqd->idle_slice_timer.data = (unsigned long) cfqd;
  3025. INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
  3026. cfqd->cfq_quantum = cfq_quantum;
  3027. cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
  3028. cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
  3029. cfqd->cfq_back_max = cfq_back_max;
  3030. cfqd->cfq_back_penalty = cfq_back_penalty;
  3031. cfqd->cfq_slice[0] = cfq_slice_async;
  3032. cfqd->cfq_slice[1] = cfq_slice_sync;
  3033. cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
  3034. cfqd->cfq_slice_idle = cfq_slice_idle;
  3035. cfqd->cfq_latency = 1;
  3036. cfqd->hw_tag = -1;
  3037. cfqd->last_end_sync_rq = jiffies;
  3038. return cfqd;
  3039. }
  3040. static void cfq_slab_kill(void)
  3041. {
  3042. /*
  3043. * Caller already ensured that pending RCU callbacks are completed,
  3044. * so we should have no busy allocations at this point.
  3045. */
  3046. if (cfq_pool)
  3047. kmem_cache_destroy(cfq_pool);
  3048. if (cfq_ioc_pool)
  3049. kmem_cache_destroy(cfq_ioc_pool);
  3050. }
  3051. static int __init cfq_slab_setup(void)
  3052. {
  3053. cfq_pool = KMEM_CACHE(cfq_queue, 0);
  3054. if (!cfq_pool)
  3055. goto fail;
  3056. cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
  3057. if (!cfq_ioc_pool)
  3058. goto fail;
  3059. return 0;
  3060. fail:
  3061. cfq_slab_kill();
  3062. return -ENOMEM;
  3063. }
  3064. /*
  3065. * sysfs parts below -->
  3066. */
  3067. static ssize_t
  3068. cfq_var_show(unsigned int var, char *page)
  3069. {
  3070. return sprintf(page, "%d\n", var);
  3071. }
  3072. static ssize_t
  3073. cfq_var_store(unsigned int *var, const char *page, size_t count)
  3074. {
  3075. char *p = (char *) page;
  3076. *var = simple_strtoul(p, &p, 10);
  3077. return count;
  3078. }
  3079. #define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
  3080. static ssize_t __FUNC(struct elevator_queue *e, char *page) \
  3081. { \
  3082. struct cfq_data *cfqd = e->elevator_data; \
  3083. unsigned int __data = __VAR; \
  3084. if (__CONV) \
  3085. __data = jiffies_to_msecs(__data); \
  3086. return cfq_var_show(__data, (page)); \
  3087. }
  3088. SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
  3089. SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
  3090. SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
  3091. SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
  3092. SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
  3093. SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
  3094. SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
  3095. SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
  3096. SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
  3097. SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
  3098. #undef SHOW_FUNCTION
  3099. #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
  3100. static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
  3101. { \
  3102. struct cfq_data *cfqd = e->elevator_data; \
  3103. unsigned int __data; \
  3104. int ret = cfq_var_store(&__data, (page), count); \
  3105. if (__data < (MIN)) \
  3106. __data = (MIN); \
  3107. else if (__data > (MAX)) \
  3108. __data = (MAX); \
  3109. if (__CONV) \
  3110. *(__PTR) = msecs_to_jiffies(__data); \
  3111. else \
  3112. *(__PTR) = __data; \
  3113. return ret; \
  3114. }
  3115. STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
  3116. STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
  3117. UINT_MAX, 1);
  3118. STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
  3119. UINT_MAX, 1);
  3120. STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
  3121. STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
  3122. UINT_MAX, 0);
  3123. STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
  3124. STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
  3125. STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
  3126. STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
  3127. UINT_MAX, 0);
  3128. STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
  3129. #undef STORE_FUNCTION
  3130. #define CFQ_ATTR(name) \
  3131. __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
  3132. static struct elv_fs_entry cfq_attrs[] = {
  3133. CFQ_ATTR(quantum),
  3134. CFQ_ATTR(fifo_expire_sync),
  3135. CFQ_ATTR(fifo_expire_async),
  3136. CFQ_ATTR(back_seek_max),
  3137. CFQ_ATTR(back_seek_penalty),
  3138. CFQ_ATTR(slice_sync),
  3139. CFQ_ATTR(slice_async),
  3140. CFQ_ATTR(slice_async_rq),
  3141. CFQ_ATTR(slice_idle),
  3142. CFQ_ATTR(low_latency),
  3143. __ATTR_NULL
  3144. };
  3145. static struct elevator_type iosched_cfq = {
  3146. .ops = {
  3147. .elevator_merge_fn = cfq_merge,
  3148. .elevator_merged_fn = cfq_merged_request,
  3149. .elevator_merge_req_fn = cfq_merged_requests,
  3150. .elevator_allow_merge_fn = cfq_allow_merge,
  3151. .elevator_dispatch_fn = cfq_dispatch_requests,
  3152. .elevator_add_req_fn = cfq_insert_request,
  3153. .elevator_activate_req_fn = cfq_activate_request,
  3154. .elevator_deactivate_req_fn = cfq_deactivate_request,
  3155. .elevator_queue_empty_fn = cfq_queue_empty,
  3156. .elevator_completed_req_fn = cfq_completed_request,
  3157. .elevator_former_req_fn = elv_rb_former_request,
  3158. .elevator_latter_req_fn = elv_rb_latter_request,
  3159. .elevator_set_req_fn = cfq_set_request,
  3160. .elevator_put_req_fn = cfq_put_request,
  3161. .elevator_may_queue_fn = cfq_may_queue,
  3162. .elevator_init_fn = cfq_init_queue,
  3163. .elevator_exit_fn = cfq_exit_queue,
  3164. .trim = cfq_free_io_context,
  3165. },
  3166. .elevator_attrs = cfq_attrs,
  3167. .elevator_name = "cfq",
  3168. .elevator_owner = THIS_MODULE,
  3169. };
  3170. static int __init cfq_init(void)
  3171. {
  3172. /*
  3173. * could be 0 on HZ < 1000 setups
  3174. */
  3175. if (!cfq_slice_async)
  3176. cfq_slice_async = 1;
  3177. if (!cfq_slice_idle)
  3178. cfq_slice_idle = 1;
  3179. if (cfq_slab_setup())
  3180. return -ENOMEM;
  3181. elv_register(&iosched_cfq);
  3182. return 0;
  3183. }
  3184. static void __exit cfq_exit(void)
  3185. {
  3186. DECLARE_COMPLETION_ONSTACK(all_gone);
  3187. elv_unregister(&iosched_cfq);
  3188. ioc_gone = &all_gone;
  3189. /* ioc_gone's update must be visible before reading ioc_count */
  3190. smp_wmb();
  3191. /*
  3192. * this also protects us from entering cfq_slab_kill() with
  3193. * pending RCU callbacks
  3194. */
  3195. if (elv_ioc_count_read(cfq_ioc_count))
  3196. wait_for_completion(&all_gone);
  3197. cfq_slab_kill();
  3198. }
  3199. module_init(cfq_init);
  3200. module_exit(cfq_exit);
  3201. MODULE_AUTHOR("Jens Axboe");
  3202. MODULE_LICENSE("GPL");
  3203. MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");