rt2x00queue.c 25 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973
  1. /*
  2. Copyright (C) 2010 Willow Garage <http://www.willowgarage.com>
  3. Copyright (C) 2004 - 2010 Ivo van Doorn <IvDoorn@gmail.com>
  4. Copyright (C) 2004 - 2009 Gertjan van Wingerde <gwingerde@gmail.com>
  5. <http://rt2x00.serialmonkey.com>
  6. This program is free software; you can redistribute it and/or modify
  7. it under the terms of the GNU General Public License as published by
  8. the Free Software Foundation; either version 2 of the License, or
  9. (at your option) any later version.
  10. This program is distributed in the hope that it will be useful,
  11. but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13. GNU General Public License for more details.
  14. You should have received a copy of the GNU General Public License
  15. along with this program; if not, write to the
  16. Free Software Foundation, Inc.,
  17. 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  18. */
  19. /*
  20. Module: rt2x00lib
  21. Abstract: rt2x00 queue specific routines.
  22. */
  23. #include <linux/slab.h>
  24. #include <linux/kernel.h>
  25. #include <linux/module.h>
  26. #include <linux/dma-mapping.h>
  27. #include "rt2x00.h"
  28. #include "rt2x00lib.h"
  29. struct sk_buff *rt2x00queue_alloc_rxskb(struct queue_entry *entry)
  30. {
  31. struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
  32. struct sk_buff *skb;
  33. struct skb_frame_desc *skbdesc;
  34. unsigned int frame_size;
  35. unsigned int head_size = 0;
  36. unsigned int tail_size = 0;
  37. /*
  38. * The frame size includes descriptor size, because the
  39. * hardware directly receive the frame into the skbuffer.
  40. */
  41. frame_size = entry->queue->data_size + entry->queue->desc_size;
  42. /*
  43. * The payload should be aligned to a 4-byte boundary,
  44. * this means we need at least 3 bytes for moving the frame
  45. * into the correct offset.
  46. */
  47. head_size = 4;
  48. /*
  49. * For IV/EIV/ICV assembly we must make sure there is
  50. * at least 8 bytes bytes available in headroom for IV/EIV
  51. * and 8 bytes for ICV data as tailroon.
  52. */
  53. if (test_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags)) {
  54. head_size += 8;
  55. tail_size += 8;
  56. }
  57. /*
  58. * Allocate skbuffer.
  59. */
  60. skb = dev_alloc_skb(frame_size + head_size + tail_size);
  61. if (!skb)
  62. return NULL;
  63. /*
  64. * Make sure we not have a frame with the requested bytes
  65. * available in the head and tail.
  66. */
  67. skb_reserve(skb, head_size);
  68. skb_put(skb, frame_size);
  69. /*
  70. * Populate skbdesc.
  71. */
  72. skbdesc = get_skb_frame_desc(skb);
  73. memset(skbdesc, 0, sizeof(*skbdesc));
  74. skbdesc->entry = entry;
  75. if (test_bit(DRIVER_REQUIRE_DMA, &rt2x00dev->flags)) {
  76. skbdesc->skb_dma = dma_map_single(rt2x00dev->dev,
  77. skb->data,
  78. skb->len,
  79. DMA_FROM_DEVICE);
  80. skbdesc->flags |= SKBDESC_DMA_MAPPED_RX;
  81. }
  82. return skb;
  83. }
  84. void rt2x00queue_map_txskb(struct queue_entry *entry)
  85. {
  86. struct device *dev = entry->queue->rt2x00dev->dev;
  87. struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
  88. skbdesc->skb_dma =
  89. dma_map_single(dev, entry->skb->data, entry->skb->len, DMA_TO_DEVICE);
  90. skbdesc->flags |= SKBDESC_DMA_MAPPED_TX;
  91. }
  92. EXPORT_SYMBOL_GPL(rt2x00queue_map_txskb);
  93. void rt2x00queue_unmap_skb(struct queue_entry *entry)
  94. {
  95. struct device *dev = entry->queue->rt2x00dev->dev;
  96. struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
  97. if (skbdesc->flags & SKBDESC_DMA_MAPPED_RX) {
  98. dma_unmap_single(dev, skbdesc->skb_dma, entry->skb->len,
  99. DMA_FROM_DEVICE);
  100. skbdesc->flags &= ~SKBDESC_DMA_MAPPED_RX;
  101. } else if (skbdesc->flags & SKBDESC_DMA_MAPPED_TX) {
  102. dma_unmap_single(dev, skbdesc->skb_dma, entry->skb->len,
  103. DMA_TO_DEVICE);
  104. skbdesc->flags &= ~SKBDESC_DMA_MAPPED_TX;
  105. }
  106. }
  107. EXPORT_SYMBOL_GPL(rt2x00queue_unmap_skb);
  108. void rt2x00queue_free_skb(struct queue_entry *entry)
  109. {
  110. if (!entry->skb)
  111. return;
  112. rt2x00queue_unmap_skb(entry);
  113. dev_kfree_skb_any(entry->skb);
  114. entry->skb = NULL;
  115. }
  116. void rt2x00queue_align_frame(struct sk_buff *skb)
  117. {
  118. unsigned int frame_length = skb->len;
  119. unsigned int align = ALIGN_SIZE(skb, 0);
  120. if (!align)
  121. return;
  122. skb_push(skb, align);
  123. memmove(skb->data, skb->data + align, frame_length);
  124. skb_trim(skb, frame_length);
  125. }
  126. void rt2x00queue_align_payload(struct sk_buff *skb, unsigned int header_length)
  127. {
  128. unsigned int frame_length = skb->len;
  129. unsigned int align = ALIGN_SIZE(skb, header_length);
  130. if (!align)
  131. return;
  132. skb_push(skb, align);
  133. memmove(skb->data, skb->data + align, frame_length);
  134. skb_trim(skb, frame_length);
  135. }
  136. void rt2x00queue_insert_l2pad(struct sk_buff *skb, unsigned int header_length)
  137. {
  138. unsigned int payload_length = skb->len - header_length;
  139. unsigned int header_align = ALIGN_SIZE(skb, 0);
  140. unsigned int payload_align = ALIGN_SIZE(skb, header_length);
  141. unsigned int l2pad = payload_length ? L2PAD_SIZE(header_length) : 0;
  142. /*
  143. * Adjust the header alignment if the payload needs to be moved more
  144. * than the header.
  145. */
  146. if (payload_align > header_align)
  147. header_align += 4;
  148. /* There is nothing to do if no alignment is needed */
  149. if (!header_align)
  150. return;
  151. /* Reserve the amount of space needed in front of the frame */
  152. skb_push(skb, header_align);
  153. /*
  154. * Move the header.
  155. */
  156. memmove(skb->data, skb->data + header_align, header_length);
  157. /* Move the payload, if present and if required */
  158. if (payload_length && payload_align)
  159. memmove(skb->data + header_length + l2pad,
  160. skb->data + header_length + l2pad + payload_align,
  161. payload_length);
  162. /* Trim the skb to the correct size */
  163. skb_trim(skb, header_length + l2pad + payload_length);
  164. }
  165. void rt2x00queue_remove_l2pad(struct sk_buff *skb, unsigned int header_length)
  166. {
  167. unsigned int l2pad = L2PAD_SIZE(header_length);
  168. if (!l2pad)
  169. return;
  170. memmove(skb->data + l2pad, skb->data, header_length);
  171. skb_pull(skb, l2pad);
  172. }
  173. static void rt2x00queue_create_tx_descriptor_seq(struct queue_entry *entry,
  174. struct txentry_desc *txdesc)
  175. {
  176. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(entry->skb);
  177. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)entry->skb->data;
  178. struct rt2x00_intf *intf = vif_to_intf(tx_info->control.vif);
  179. unsigned long irqflags;
  180. if (!(tx_info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ) ||
  181. unlikely(!tx_info->control.vif))
  182. return;
  183. /*
  184. * Hardware should insert sequence counter.
  185. * FIXME: We insert a software sequence counter first for
  186. * hardware that doesn't support hardware sequence counting.
  187. *
  188. * This is wrong because beacons are not getting sequence
  189. * numbers assigned properly.
  190. *
  191. * A secondary problem exists for drivers that cannot toggle
  192. * sequence counting per-frame, since those will override the
  193. * sequence counter given by mac80211.
  194. */
  195. spin_lock_irqsave(&intf->seqlock, irqflags);
  196. if (test_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags))
  197. intf->seqno += 0x10;
  198. hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
  199. hdr->seq_ctrl |= cpu_to_le16(intf->seqno);
  200. spin_unlock_irqrestore(&intf->seqlock, irqflags);
  201. __set_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags);
  202. }
  203. static void rt2x00queue_create_tx_descriptor_plcp(struct queue_entry *entry,
  204. struct txentry_desc *txdesc,
  205. const struct rt2x00_rate *hwrate)
  206. {
  207. struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
  208. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(entry->skb);
  209. struct ieee80211_tx_rate *txrate = &tx_info->control.rates[0];
  210. unsigned int data_length;
  211. unsigned int duration;
  212. unsigned int residual;
  213. /* Data length + CRC + Crypto overhead (IV/EIV/ICV/MIC) */
  214. data_length = entry->skb->len + 4;
  215. data_length += rt2x00crypto_tx_overhead(rt2x00dev, entry->skb);
  216. /*
  217. * PLCP setup
  218. * Length calculation depends on OFDM/CCK rate.
  219. */
  220. txdesc->signal = hwrate->plcp;
  221. txdesc->service = 0x04;
  222. if (hwrate->flags & DEV_RATE_OFDM) {
  223. txdesc->length_high = (data_length >> 6) & 0x3f;
  224. txdesc->length_low = data_length & 0x3f;
  225. } else {
  226. /*
  227. * Convert length to microseconds.
  228. */
  229. residual = GET_DURATION_RES(data_length, hwrate->bitrate);
  230. duration = GET_DURATION(data_length, hwrate->bitrate);
  231. if (residual != 0) {
  232. duration++;
  233. /*
  234. * Check if we need to set the Length Extension
  235. */
  236. if (hwrate->bitrate == 110 && residual <= 30)
  237. txdesc->service |= 0x80;
  238. }
  239. txdesc->length_high = (duration >> 8) & 0xff;
  240. txdesc->length_low = duration & 0xff;
  241. /*
  242. * When preamble is enabled we should set the
  243. * preamble bit for the signal.
  244. */
  245. if (txrate->flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
  246. txdesc->signal |= 0x08;
  247. }
  248. }
  249. static void rt2x00queue_create_tx_descriptor(struct queue_entry *entry,
  250. struct txentry_desc *txdesc)
  251. {
  252. struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
  253. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(entry->skb);
  254. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)entry->skb->data;
  255. struct ieee80211_rate *rate =
  256. ieee80211_get_tx_rate(rt2x00dev->hw, tx_info);
  257. const struct rt2x00_rate *hwrate;
  258. memset(txdesc, 0, sizeof(*txdesc));
  259. /*
  260. * Header and frame information.
  261. */
  262. txdesc->length = entry->skb->len;
  263. txdesc->header_length = ieee80211_get_hdrlen_from_skb(entry->skb);
  264. /*
  265. * Check whether this frame is to be acked.
  266. */
  267. if (!(tx_info->flags & IEEE80211_TX_CTL_NO_ACK))
  268. __set_bit(ENTRY_TXD_ACK, &txdesc->flags);
  269. /*
  270. * Check if this is a RTS/CTS frame
  271. */
  272. if (ieee80211_is_rts(hdr->frame_control) ||
  273. ieee80211_is_cts(hdr->frame_control)) {
  274. __set_bit(ENTRY_TXD_BURST, &txdesc->flags);
  275. if (ieee80211_is_rts(hdr->frame_control))
  276. __set_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags);
  277. else
  278. __set_bit(ENTRY_TXD_CTS_FRAME, &txdesc->flags);
  279. if (tx_info->control.rts_cts_rate_idx >= 0)
  280. rate =
  281. ieee80211_get_rts_cts_rate(rt2x00dev->hw, tx_info);
  282. }
  283. /*
  284. * Determine retry information.
  285. */
  286. txdesc->retry_limit = tx_info->control.rates[0].count - 1;
  287. if (txdesc->retry_limit >= rt2x00dev->long_retry)
  288. __set_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags);
  289. /*
  290. * Check if more fragments are pending
  291. */
  292. if (ieee80211_has_morefrags(hdr->frame_control)) {
  293. __set_bit(ENTRY_TXD_BURST, &txdesc->flags);
  294. __set_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags);
  295. }
  296. /*
  297. * Check if more frames (!= fragments) are pending
  298. */
  299. if (tx_info->flags & IEEE80211_TX_CTL_MORE_FRAMES)
  300. __set_bit(ENTRY_TXD_BURST, &txdesc->flags);
  301. /*
  302. * Beacons and probe responses require the tsf timestamp
  303. * to be inserted into the frame, except for a frame that has been injected
  304. * through a monitor interface. This latter is needed for testing a
  305. * monitor interface.
  306. */
  307. if ((ieee80211_is_beacon(hdr->frame_control) ||
  308. ieee80211_is_probe_resp(hdr->frame_control)) &&
  309. (!(tx_info->flags & IEEE80211_TX_CTL_INJECTED)))
  310. __set_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags);
  311. /*
  312. * Determine with what IFS priority this frame should be send.
  313. * Set ifs to IFS_SIFS when the this is not the first fragment,
  314. * or this fragment came after RTS/CTS.
  315. */
  316. if ((tx_info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT) &&
  317. !test_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags)) {
  318. __set_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags);
  319. txdesc->ifs = IFS_BACKOFF;
  320. } else
  321. txdesc->ifs = IFS_SIFS;
  322. /*
  323. * Determine rate modulation.
  324. */
  325. hwrate = rt2x00_get_rate(rate->hw_value);
  326. txdesc->rate_mode = RATE_MODE_CCK;
  327. if (hwrate->flags & DEV_RATE_OFDM)
  328. txdesc->rate_mode = RATE_MODE_OFDM;
  329. /*
  330. * Apply TX descriptor handling by components
  331. */
  332. rt2x00crypto_create_tx_descriptor(entry, txdesc);
  333. rt2x00ht_create_tx_descriptor(entry, txdesc, hwrate);
  334. rt2x00queue_create_tx_descriptor_seq(entry, txdesc);
  335. rt2x00queue_create_tx_descriptor_plcp(entry, txdesc, hwrate);
  336. }
  337. static int rt2x00queue_write_tx_data(struct queue_entry *entry,
  338. struct txentry_desc *txdesc)
  339. {
  340. struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
  341. /*
  342. * This should not happen, we already checked the entry
  343. * was ours. When the hardware disagrees there has been
  344. * a queue corruption!
  345. */
  346. if (unlikely(rt2x00dev->ops->lib->get_entry_state &&
  347. rt2x00dev->ops->lib->get_entry_state(entry))) {
  348. ERROR(rt2x00dev,
  349. "Corrupt queue %d, accessing entry which is not ours.\n"
  350. "Please file bug report to %s.\n",
  351. entry->queue->qid, DRV_PROJECT);
  352. return -EINVAL;
  353. }
  354. /*
  355. * Add the requested extra tx headroom in front of the skb.
  356. */
  357. skb_push(entry->skb, rt2x00dev->ops->extra_tx_headroom);
  358. memset(entry->skb->data, 0, rt2x00dev->ops->extra_tx_headroom);
  359. /*
  360. * Call the driver's write_tx_data function, if it exists.
  361. */
  362. if (rt2x00dev->ops->lib->write_tx_data)
  363. rt2x00dev->ops->lib->write_tx_data(entry, txdesc);
  364. /*
  365. * Map the skb to DMA.
  366. */
  367. if (test_bit(DRIVER_REQUIRE_DMA, &rt2x00dev->flags))
  368. rt2x00queue_map_txskb(entry);
  369. return 0;
  370. }
  371. static void rt2x00queue_write_tx_descriptor(struct queue_entry *entry,
  372. struct txentry_desc *txdesc)
  373. {
  374. struct data_queue *queue = entry->queue;
  375. queue->rt2x00dev->ops->lib->write_tx_desc(entry, txdesc);
  376. /*
  377. * All processing on the frame has been completed, this means
  378. * it is now ready to be dumped to userspace through debugfs.
  379. */
  380. rt2x00debug_dump_frame(queue->rt2x00dev, DUMP_FRAME_TX, entry->skb);
  381. }
  382. static void rt2x00queue_kick_tx_queue(struct queue_entry *entry,
  383. struct txentry_desc *txdesc)
  384. {
  385. struct data_queue *queue = entry->queue;
  386. struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
  387. /*
  388. * Check if we need to kick the queue, there are however a few rules
  389. * 1) Don't kick unless this is the last in frame in a burst.
  390. * When the burst flag is set, this frame is always followed
  391. * by another frame which in some way are related to eachother.
  392. * This is true for fragments, RTS or CTS-to-self frames.
  393. * 2) Rule 1 can be broken when the available entries
  394. * in the queue are less then a certain threshold.
  395. */
  396. if (rt2x00queue_threshold(queue) ||
  397. !test_bit(ENTRY_TXD_BURST, &txdesc->flags))
  398. rt2x00dev->ops->lib->kick_tx_queue(queue);
  399. }
  400. int rt2x00queue_write_tx_frame(struct data_queue *queue, struct sk_buff *skb,
  401. bool local)
  402. {
  403. struct ieee80211_tx_info *tx_info;
  404. struct queue_entry *entry = rt2x00queue_get_entry(queue, Q_INDEX);
  405. struct txentry_desc txdesc;
  406. struct skb_frame_desc *skbdesc;
  407. u8 rate_idx, rate_flags;
  408. if (unlikely(rt2x00queue_full(queue)))
  409. return -ENOBUFS;
  410. if (unlikely(test_and_set_bit(ENTRY_OWNER_DEVICE_DATA,
  411. &entry->flags))) {
  412. ERROR(queue->rt2x00dev,
  413. "Arrived at non-free entry in the non-full queue %d.\n"
  414. "Please file bug report to %s.\n",
  415. queue->qid, DRV_PROJECT);
  416. return -EINVAL;
  417. }
  418. /*
  419. * Copy all TX descriptor information into txdesc,
  420. * after that we are free to use the skb->cb array
  421. * for our information.
  422. */
  423. entry->skb = skb;
  424. rt2x00queue_create_tx_descriptor(entry, &txdesc);
  425. /*
  426. * All information is retrieved from the skb->cb array,
  427. * now we should claim ownership of the driver part of that
  428. * array, preserving the bitrate index and flags.
  429. */
  430. tx_info = IEEE80211_SKB_CB(skb);
  431. rate_idx = tx_info->control.rates[0].idx;
  432. rate_flags = tx_info->control.rates[0].flags;
  433. skbdesc = get_skb_frame_desc(skb);
  434. memset(skbdesc, 0, sizeof(*skbdesc));
  435. skbdesc->entry = entry;
  436. skbdesc->tx_rate_idx = rate_idx;
  437. skbdesc->tx_rate_flags = rate_flags;
  438. if (local)
  439. skbdesc->flags |= SKBDESC_NOT_MAC80211;
  440. /*
  441. * When hardware encryption is supported, and this frame
  442. * is to be encrypted, we should strip the IV/EIV data from
  443. * the frame so we can provide it to the driver separately.
  444. */
  445. if (test_bit(ENTRY_TXD_ENCRYPT, &txdesc.flags) &&
  446. !test_bit(ENTRY_TXD_ENCRYPT_IV, &txdesc.flags)) {
  447. if (test_bit(DRIVER_REQUIRE_COPY_IV, &queue->rt2x00dev->flags))
  448. rt2x00crypto_tx_copy_iv(skb, &txdesc);
  449. else
  450. rt2x00crypto_tx_remove_iv(skb, &txdesc);
  451. }
  452. /*
  453. * When DMA allocation is required we should guarentee to the
  454. * driver that the DMA is aligned to a 4-byte boundary.
  455. * However some drivers require L2 padding to pad the payload
  456. * rather then the header. This could be a requirement for
  457. * PCI and USB devices, while header alignment only is valid
  458. * for PCI devices.
  459. */
  460. if (test_bit(DRIVER_REQUIRE_L2PAD, &queue->rt2x00dev->flags))
  461. rt2x00queue_insert_l2pad(entry->skb, txdesc.header_length);
  462. else if (test_bit(DRIVER_REQUIRE_DMA, &queue->rt2x00dev->flags))
  463. rt2x00queue_align_frame(entry->skb);
  464. /*
  465. * It could be possible that the queue was corrupted and this
  466. * call failed. Since we always return NETDEV_TX_OK to mac80211,
  467. * this frame will simply be dropped.
  468. */
  469. if (unlikely(rt2x00queue_write_tx_data(entry, &txdesc))) {
  470. clear_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags);
  471. entry->skb = NULL;
  472. return -EIO;
  473. }
  474. set_bit(ENTRY_DATA_PENDING, &entry->flags);
  475. rt2x00queue_index_inc(queue, Q_INDEX);
  476. rt2x00queue_write_tx_descriptor(entry, &txdesc);
  477. rt2x00queue_kick_tx_queue(entry, &txdesc);
  478. return 0;
  479. }
  480. int rt2x00queue_update_beacon(struct rt2x00_dev *rt2x00dev,
  481. struct ieee80211_vif *vif,
  482. const bool enable_beacon)
  483. {
  484. struct rt2x00_intf *intf = vif_to_intf(vif);
  485. struct skb_frame_desc *skbdesc;
  486. struct txentry_desc txdesc;
  487. if (unlikely(!intf->beacon))
  488. return -ENOBUFS;
  489. mutex_lock(&intf->beacon_skb_mutex);
  490. /*
  491. * Clean up the beacon skb.
  492. */
  493. rt2x00queue_free_skb(intf->beacon);
  494. if (!enable_beacon) {
  495. rt2x00dev->ops->lib->kill_tx_queue(intf->beacon->queue);
  496. mutex_unlock(&intf->beacon_skb_mutex);
  497. return 0;
  498. }
  499. intf->beacon->skb = ieee80211_beacon_get(rt2x00dev->hw, vif);
  500. if (!intf->beacon->skb) {
  501. mutex_unlock(&intf->beacon_skb_mutex);
  502. return -ENOMEM;
  503. }
  504. /*
  505. * Copy all TX descriptor information into txdesc,
  506. * after that we are free to use the skb->cb array
  507. * for our information.
  508. */
  509. rt2x00queue_create_tx_descriptor(intf->beacon, &txdesc);
  510. /*
  511. * Fill in skb descriptor
  512. */
  513. skbdesc = get_skb_frame_desc(intf->beacon->skb);
  514. memset(skbdesc, 0, sizeof(*skbdesc));
  515. skbdesc->entry = intf->beacon;
  516. /*
  517. * Send beacon to hardware and enable beacon genaration..
  518. */
  519. rt2x00dev->ops->lib->write_beacon(intf->beacon, &txdesc);
  520. mutex_unlock(&intf->beacon_skb_mutex);
  521. return 0;
  522. }
  523. void rt2x00queue_for_each_entry(struct data_queue *queue,
  524. enum queue_index start,
  525. enum queue_index end,
  526. void (*fn)(struct queue_entry *entry))
  527. {
  528. unsigned long irqflags;
  529. unsigned int index_start;
  530. unsigned int index_end;
  531. unsigned int i;
  532. if (unlikely(start >= Q_INDEX_MAX || end >= Q_INDEX_MAX)) {
  533. ERROR(queue->rt2x00dev,
  534. "Entry requested from invalid index range (%d - %d)\n",
  535. start, end);
  536. return;
  537. }
  538. /*
  539. * Only protect the range we are going to loop over,
  540. * if during our loop a extra entry is set to pending
  541. * it should not be kicked during this run, since it
  542. * is part of another TX operation.
  543. */
  544. spin_lock_irqsave(&queue->lock, irqflags);
  545. index_start = queue->index[start];
  546. index_end = queue->index[end];
  547. spin_unlock_irqrestore(&queue->lock, irqflags);
  548. /*
  549. * Start from the TX done pointer, this guarentees that we will
  550. * send out all frames in the correct order.
  551. */
  552. if (index_start < index_end) {
  553. for (i = index_start; i < index_end; i++)
  554. fn(&queue->entries[i]);
  555. } else {
  556. for (i = index_start; i < queue->limit; i++)
  557. fn(&queue->entries[i]);
  558. for (i = 0; i < index_end; i++)
  559. fn(&queue->entries[i]);
  560. }
  561. }
  562. EXPORT_SYMBOL_GPL(rt2x00queue_for_each_entry);
  563. struct data_queue *rt2x00queue_get_queue(struct rt2x00_dev *rt2x00dev,
  564. const enum data_queue_qid queue)
  565. {
  566. int atim = test_bit(DRIVER_REQUIRE_ATIM_QUEUE, &rt2x00dev->flags);
  567. if (queue == QID_RX)
  568. return rt2x00dev->rx;
  569. if (queue < rt2x00dev->ops->tx_queues && rt2x00dev->tx)
  570. return &rt2x00dev->tx[queue];
  571. if (!rt2x00dev->bcn)
  572. return NULL;
  573. if (queue == QID_BEACON)
  574. return &rt2x00dev->bcn[0];
  575. else if (queue == QID_ATIM && atim)
  576. return &rt2x00dev->bcn[1];
  577. return NULL;
  578. }
  579. EXPORT_SYMBOL_GPL(rt2x00queue_get_queue);
  580. struct queue_entry *rt2x00queue_get_entry(struct data_queue *queue,
  581. enum queue_index index)
  582. {
  583. struct queue_entry *entry;
  584. unsigned long irqflags;
  585. if (unlikely(index >= Q_INDEX_MAX)) {
  586. ERROR(queue->rt2x00dev,
  587. "Entry requested from invalid index type (%d)\n", index);
  588. return NULL;
  589. }
  590. spin_lock_irqsave(&queue->lock, irqflags);
  591. entry = &queue->entries[queue->index[index]];
  592. spin_unlock_irqrestore(&queue->lock, irqflags);
  593. return entry;
  594. }
  595. EXPORT_SYMBOL_GPL(rt2x00queue_get_entry);
  596. void rt2x00queue_index_inc(struct data_queue *queue, enum queue_index index)
  597. {
  598. unsigned long irqflags;
  599. if (unlikely(index >= Q_INDEX_MAX)) {
  600. ERROR(queue->rt2x00dev,
  601. "Index change on invalid index type (%d)\n", index);
  602. return;
  603. }
  604. spin_lock_irqsave(&queue->lock, irqflags);
  605. queue->index[index]++;
  606. if (queue->index[index] >= queue->limit)
  607. queue->index[index] = 0;
  608. queue->last_action[index] = jiffies;
  609. if (index == Q_INDEX) {
  610. queue->length++;
  611. } else if (index == Q_INDEX_DONE) {
  612. queue->length--;
  613. queue->count++;
  614. }
  615. spin_unlock_irqrestore(&queue->lock, irqflags);
  616. }
  617. static void rt2x00queue_reset(struct data_queue *queue)
  618. {
  619. unsigned long irqflags;
  620. unsigned int i;
  621. spin_lock_irqsave(&queue->lock, irqflags);
  622. queue->count = 0;
  623. queue->length = 0;
  624. for (i = 0; i < Q_INDEX_MAX; i++) {
  625. queue->index[i] = 0;
  626. queue->last_action[i] = jiffies;
  627. }
  628. spin_unlock_irqrestore(&queue->lock, irqflags);
  629. }
  630. void rt2x00queue_stop_queues(struct rt2x00_dev *rt2x00dev)
  631. {
  632. struct data_queue *queue;
  633. txall_queue_for_each(rt2x00dev, queue)
  634. rt2x00dev->ops->lib->kill_tx_queue(queue);
  635. }
  636. void rt2x00queue_init_queues(struct rt2x00_dev *rt2x00dev)
  637. {
  638. struct data_queue *queue;
  639. unsigned int i;
  640. queue_for_each(rt2x00dev, queue) {
  641. rt2x00queue_reset(queue);
  642. for (i = 0; i < queue->limit; i++) {
  643. rt2x00dev->ops->lib->clear_entry(&queue->entries[i]);
  644. if (queue->qid == QID_RX)
  645. rt2x00queue_index_inc(queue, Q_INDEX);
  646. }
  647. }
  648. }
  649. static int rt2x00queue_alloc_entries(struct data_queue *queue,
  650. const struct data_queue_desc *qdesc)
  651. {
  652. struct queue_entry *entries;
  653. unsigned int entry_size;
  654. unsigned int i;
  655. rt2x00queue_reset(queue);
  656. queue->limit = qdesc->entry_num;
  657. queue->threshold = DIV_ROUND_UP(qdesc->entry_num, 10);
  658. queue->data_size = qdesc->data_size;
  659. queue->desc_size = qdesc->desc_size;
  660. /*
  661. * Allocate all queue entries.
  662. */
  663. entry_size = sizeof(*entries) + qdesc->priv_size;
  664. entries = kcalloc(queue->limit, entry_size, GFP_KERNEL);
  665. if (!entries)
  666. return -ENOMEM;
  667. #define QUEUE_ENTRY_PRIV_OFFSET(__base, __index, __limit, __esize, __psize) \
  668. (((char *)(__base)) + ((__limit) * (__esize)) + \
  669. ((__index) * (__psize)))
  670. for (i = 0; i < queue->limit; i++) {
  671. entries[i].flags = 0;
  672. entries[i].queue = queue;
  673. entries[i].skb = NULL;
  674. entries[i].entry_idx = i;
  675. entries[i].priv_data =
  676. QUEUE_ENTRY_PRIV_OFFSET(entries, i, queue->limit,
  677. sizeof(*entries), qdesc->priv_size);
  678. }
  679. #undef QUEUE_ENTRY_PRIV_OFFSET
  680. queue->entries = entries;
  681. return 0;
  682. }
  683. static void rt2x00queue_free_skbs(struct data_queue *queue)
  684. {
  685. unsigned int i;
  686. if (!queue->entries)
  687. return;
  688. for (i = 0; i < queue->limit; i++) {
  689. rt2x00queue_free_skb(&queue->entries[i]);
  690. }
  691. }
  692. static int rt2x00queue_alloc_rxskbs(struct data_queue *queue)
  693. {
  694. unsigned int i;
  695. struct sk_buff *skb;
  696. for (i = 0; i < queue->limit; i++) {
  697. skb = rt2x00queue_alloc_rxskb(&queue->entries[i]);
  698. if (!skb)
  699. return -ENOMEM;
  700. queue->entries[i].skb = skb;
  701. }
  702. return 0;
  703. }
  704. int rt2x00queue_initialize(struct rt2x00_dev *rt2x00dev)
  705. {
  706. struct data_queue *queue;
  707. int status;
  708. status = rt2x00queue_alloc_entries(rt2x00dev->rx, rt2x00dev->ops->rx);
  709. if (status)
  710. goto exit;
  711. tx_queue_for_each(rt2x00dev, queue) {
  712. status = rt2x00queue_alloc_entries(queue, rt2x00dev->ops->tx);
  713. if (status)
  714. goto exit;
  715. }
  716. status = rt2x00queue_alloc_entries(rt2x00dev->bcn, rt2x00dev->ops->bcn);
  717. if (status)
  718. goto exit;
  719. if (test_bit(DRIVER_REQUIRE_ATIM_QUEUE, &rt2x00dev->flags)) {
  720. status = rt2x00queue_alloc_entries(&rt2x00dev->bcn[1],
  721. rt2x00dev->ops->atim);
  722. if (status)
  723. goto exit;
  724. }
  725. status = rt2x00queue_alloc_rxskbs(rt2x00dev->rx);
  726. if (status)
  727. goto exit;
  728. return 0;
  729. exit:
  730. ERROR(rt2x00dev, "Queue entries allocation failed.\n");
  731. rt2x00queue_uninitialize(rt2x00dev);
  732. return status;
  733. }
  734. void rt2x00queue_uninitialize(struct rt2x00_dev *rt2x00dev)
  735. {
  736. struct data_queue *queue;
  737. rt2x00queue_free_skbs(rt2x00dev->rx);
  738. queue_for_each(rt2x00dev, queue) {
  739. kfree(queue->entries);
  740. queue->entries = NULL;
  741. }
  742. }
  743. static void rt2x00queue_init(struct rt2x00_dev *rt2x00dev,
  744. struct data_queue *queue, enum data_queue_qid qid)
  745. {
  746. spin_lock_init(&queue->lock);
  747. queue->rt2x00dev = rt2x00dev;
  748. queue->qid = qid;
  749. queue->txop = 0;
  750. queue->aifs = 2;
  751. queue->cw_min = 5;
  752. queue->cw_max = 10;
  753. }
  754. int rt2x00queue_allocate(struct rt2x00_dev *rt2x00dev)
  755. {
  756. struct data_queue *queue;
  757. enum data_queue_qid qid;
  758. unsigned int req_atim =
  759. !!test_bit(DRIVER_REQUIRE_ATIM_QUEUE, &rt2x00dev->flags);
  760. /*
  761. * We need the following queues:
  762. * RX: 1
  763. * TX: ops->tx_queues
  764. * Beacon: 1
  765. * Atim: 1 (if required)
  766. */
  767. rt2x00dev->data_queues = 2 + rt2x00dev->ops->tx_queues + req_atim;
  768. queue = kcalloc(rt2x00dev->data_queues, sizeof(*queue), GFP_KERNEL);
  769. if (!queue) {
  770. ERROR(rt2x00dev, "Queue allocation failed.\n");
  771. return -ENOMEM;
  772. }
  773. /*
  774. * Initialize pointers
  775. */
  776. rt2x00dev->rx = queue;
  777. rt2x00dev->tx = &queue[1];
  778. rt2x00dev->bcn = &queue[1 + rt2x00dev->ops->tx_queues];
  779. /*
  780. * Initialize queue parameters.
  781. * RX: qid = QID_RX
  782. * TX: qid = QID_AC_BE + index
  783. * TX: cw_min: 2^5 = 32.
  784. * TX: cw_max: 2^10 = 1024.
  785. * BCN: qid = QID_BEACON
  786. * ATIM: qid = QID_ATIM
  787. */
  788. rt2x00queue_init(rt2x00dev, rt2x00dev->rx, QID_RX);
  789. qid = QID_AC_BE;
  790. tx_queue_for_each(rt2x00dev, queue)
  791. rt2x00queue_init(rt2x00dev, queue, qid++);
  792. rt2x00queue_init(rt2x00dev, &rt2x00dev->bcn[0], QID_BEACON);
  793. if (req_atim)
  794. rt2x00queue_init(rt2x00dev, &rt2x00dev->bcn[1], QID_ATIM);
  795. return 0;
  796. }
  797. void rt2x00queue_free(struct rt2x00_dev *rt2x00dev)
  798. {
  799. kfree(rt2x00dev->rx);
  800. rt2x00dev->rx = NULL;
  801. rt2x00dev->tx = NULL;
  802. rt2x00dev->bcn = NULL;
  803. }