soc-core.c 50 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886
  1. /*
  2. * soc-core.c -- ALSA SoC Audio Layer
  3. *
  4. * Copyright 2005 Wolfson Microelectronics PLC.
  5. * Copyright 2005 Openedhand Ltd.
  6. *
  7. * Author: Liam Girdwood
  8. * liam.girdwood@wolfsonmicro.com or linux@wolfsonmicro.com
  9. * with code, comments and ideas from :-
  10. * Richard Purdie <richard@openedhand.com>
  11. *
  12. * This program is free software; you can redistribute it and/or modify it
  13. * under the terms of the GNU General Public License as published by the
  14. * Free Software Foundation; either version 2 of the License, or (at your
  15. * option) any later version.
  16. *
  17. * TODO:
  18. * o Add hw rules to enforce rates, etc.
  19. * o More testing with other codecs/machines.
  20. * o Add more codecs and platforms to ensure good API coverage.
  21. * o Support TDM on PCM and I2S
  22. */
  23. #include <linux/module.h>
  24. #include <linux/moduleparam.h>
  25. #include <linux/init.h>
  26. #include <linux/delay.h>
  27. #include <linux/pm.h>
  28. #include <linux/bitops.h>
  29. #include <linux/platform_device.h>
  30. #include <sound/core.h>
  31. #include <sound/pcm.h>
  32. #include <sound/pcm_params.h>
  33. #include <sound/soc.h>
  34. #include <sound/soc-dapm.h>
  35. #include <sound/initval.h>
  36. /* debug */
  37. #define SOC_DEBUG 0
  38. #if SOC_DEBUG
  39. #define dbg(format, arg...) printk(format, ## arg)
  40. #else
  41. #define dbg(format, arg...)
  42. #endif
  43. static DEFINE_MUTEX(pcm_mutex);
  44. static DEFINE_MUTEX(io_mutex);
  45. static DECLARE_WAIT_QUEUE_HEAD(soc_pm_waitq);
  46. /*
  47. * This is a timeout to do a DAPM powerdown after a stream is closed().
  48. * It can be used to eliminate pops between different playback streams, e.g.
  49. * between two audio tracks.
  50. */
  51. static int pmdown_time = 5000;
  52. module_param(pmdown_time, int, 0);
  53. MODULE_PARM_DESC(pmdown_time, "DAPM stream powerdown time (msecs)");
  54. /*
  55. * This function forces any delayed work to be queued and run.
  56. */
  57. static int run_delayed_work(struct delayed_work *dwork)
  58. {
  59. int ret;
  60. /* cancel any work waiting to be queued. */
  61. ret = cancel_delayed_work(dwork);
  62. /* if there was any work waiting then we run it now and
  63. * wait for it's completion */
  64. if (ret) {
  65. schedule_delayed_work(dwork, 0);
  66. flush_scheduled_work();
  67. }
  68. return ret;
  69. }
  70. #ifdef CONFIG_SND_SOC_AC97_BUS
  71. /* unregister ac97 codec */
  72. static int soc_ac97_dev_unregister(struct snd_soc_codec *codec)
  73. {
  74. if (codec->ac97->dev.bus)
  75. device_unregister(&codec->ac97->dev);
  76. return 0;
  77. }
  78. /* stop no dev release warning */
  79. static void soc_ac97_device_release(struct device *dev){}
  80. /* register ac97 codec to bus */
  81. static int soc_ac97_dev_register(struct snd_soc_codec *codec)
  82. {
  83. int err;
  84. codec->ac97->dev.bus = &ac97_bus_type;
  85. codec->ac97->dev.parent = NULL;
  86. codec->ac97->dev.release = soc_ac97_device_release;
  87. snprintf(codec->ac97->dev.bus_id, BUS_ID_SIZE, "%d-%d:%s",
  88. codec->card->number, 0, codec->name);
  89. err = device_register(&codec->ac97->dev);
  90. if (err < 0) {
  91. snd_printk(KERN_ERR "Can't register ac97 bus\n");
  92. codec->ac97->dev.bus = NULL;
  93. return err;
  94. }
  95. return 0;
  96. }
  97. #endif
  98. static inline const char *get_dai_name(int type)
  99. {
  100. switch (type) {
  101. case SND_SOC_DAI_AC97_BUS:
  102. case SND_SOC_DAI_AC97:
  103. return "AC97";
  104. case SND_SOC_DAI_I2S:
  105. return "I2S";
  106. case SND_SOC_DAI_PCM:
  107. return "PCM";
  108. }
  109. return NULL;
  110. }
  111. /*
  112. * Called by ALSA when a PCM substream is opened, the runtime->hw record is
  113. * then initialized and any private data can be allocated. This also calls
  114. * startup for the cpu DAI, platform, machine and codec DAI.
  115. */
  116. static int soc_pcm_open(struct snd_pcm_substream *substream)
  117. {
  118. struct snd_soc_pcm_runtime *rtd = substream->private_data;
  119. struct snd_soc_device *socdev = rtd->socdev;
  120. struct snd_pcm_runtime *runtime = substream->runtime;
  121. struct snd_soc_dai_link *machine = rtd->dai;
  122. struct snd_soc_platform *platform = socdev->platform;
  123. struct snd_soc_dai *cpu_dai = machine->cpu_dai;
  124. struct snd_soc_dai *codec_dai = machine->codec_dai;
  125. int ret = 0;
  126. mutex_lock(&pcm_mutex);
  127. /* startup the audio subsystem */
  128. if (cpu_dai->ops.startup) {
  129. ret = cpu_dai->ops.startup(substream);
  130. if (ret < 0) {
  131. printk(KERN_ERR "asoc: can't open interface %s\n",
  132. cpu_dai->name);
  133. goto out;
  134. }
  135. }
  136. if (platform->pcm_ops->open) {
  137. ret = platform->pcm_ops->open(substream);
  138. if (ret < 0) {
  139. printk(KERN_ERR "asoc: can't open platform %s\n", platform->name);
  140. goto platform_err;
  141. }
  142. }
  143. if (codec_dai->ops.startup) {
  144. ret = codec_dai->ops.startup(substream);
  145. if (ret < 0) {
  146. printk(KERN_ERR "asoc: can't open codec %s\n",
  147. codec_dai->name);
  148. goto codec_dai_err;
  149. }
  150. }
  151. if (machine->ops && machine->ops->startup) {
  152. ret = machine->ops->startup(substream);
  153. if (ret < 0) {
  154. printk(KERN_ERR "asoc: %s startup failed\n", machine->name);
  155. goto machine_err;
  156. }
  157. }
  158. /* Check that the codec and cpu DAI's are compatible */
  159. if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
  160. runtime->hw.rate_min =
  161. max(codec_dai->playback.rate_min,
  162. cpu_dai->playback.rate_min);
  163. runtime->hw.rate_max =
  164. min(codec_dai->playback.rate_max,
  165. cpu_dai->playback.rate_max);
  166. runtime->hw.channels_min =
  167. max(codec_dai->playback.channels_min,
  168. cpu_dai->playback.channels_min);
  169. runtime->hw.channels_max =
  170. min(codec_dai->playback.channels_max,
  171. cpu_dai->playback.channels_max);
  172. runtime->hw.formats =
  173. codec_dai->playback.formats & cpu_dai->playback.formats;
  174. runtime->hw.rates =
  175. codec_dai->playback.rates & cpu_dai->playback.rates;
  176. } else {
  177. runtime->hw.rate_min =
  178. max(codec_dai->capture.rate_min,
  179. cpu_dai->capture.rate_min);
  180. runtime->hw.rate_max =
  181. min(codec_dai->capture.rate_max,
  182. cpu_dai->capture.rate_max);
  183. runtime->hw.channels_min =
  184. max(codec_dai->capture.channels_min,
  185. cpu_dai->capture.channels_min);
  186. runtime->hw.channels_max =
  187. min(codec_dai->capture.channels_max,
  188. cpu_dai->capture.channels_max);
  189. runtime->hw.formats =
  190. codec_dai->capture.formats & cpu_dai->capture.formats;
  191. runtime->hw.rates =
  192. codec_dai->capture.rates & cpu_dai->capture.rates;
  193. }
  194. snd_pcm_limit_hw_rates(runtime);
  195. if (!runtime->hw.rates) {
  196. printk(KERN_ERR "asoc: %s <-> %s No matching rates\n",
  197. codec_dai->name, cpu_dai->name);
  198. goto machine_err;
  199. }
  200. if (!runtime->hw.formats) {
  201. printk(KERN_ERR "asoc: %s <-> %s No matching formats\n",
  202. codec_dai->name, cpu_dai->name);
  203. goto machine_err;
  204. }
  205. if (!runtime->hw.channels_min || !runtime->hw.channels_max) {
  206. printk(KERN_ERR "asoc: %s <-> %s No matching channels\n",
  207. codec_dai->name, cpu_dai->name);
  208. goto machine_err;
  209. }
  210. dbg("asoc: %s <-> %s info:\n", codec_dai->name, cpu_dai->name);
  211. dbg("asoc: rate mask 0x%x\n", runtime->hw.rates);
  212. dbg("asoc: min ch %d max ch %d\n", runtime->hw.channels_min,
  213. runtime->hw.channels_max);
  214. dbg("asoc: min rate %d max rate %d\n", runtime->hw.rate_min,
  215. runtime->hw.rate_max);
  216. if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
  217. cpu_dai->playback.active = codec_dai->playback.active = 1;
  218. else
  219. cpu_dai->capture.active = codec_dai->capture.active = 1;
  220. cpu_dai->active = codec_dai->active = 1;
  221. cpu_dai->runtime = runtime;
  222. socdev->codec->active++;
  223. mutex_unlock(&pcm_mutex);
  224. return 0;
  225. machine_err:
  226. if (machine->ops && machine->ops->shutdown)
  227. machine->ops->shutdown(substream);
  228. codec_dai_err:
  229. if (platform->pcm_ops->close)
  230. platform->pcm_ops->close(substream);
  231. platform_err:
  232. if (cpu_dai->ops.shutdown)
  233. cpu_dai->ops.shutdown(substream);
  234. out:
  235. mutex_unlock(&pcm_mutex);
  236. return ret;
  237. }
  238. /*
  239. * Power down the audio subsystem pmdown_time msecs after close is called.
  240. * This is to ensure there are no pops or clicks in between any music tracks
  241. * due to DAPM power cycling.
  242. */
  243. static void close_delayed_work(struct work_struct *work)
  244. {
  245. struct snd_soc_device *socdev =
  246. container_of(work, struct snd_soc_device, delayed_work.work);
  247. struct snd_soc_codec *codec = socdev->codec;
  248. struct snd_soc_dai *codec_dai;
  249. int i;
  250. mutex_lock(&pcm_mutex);
  251. for (i = 0; i < codec->num_dai; i++) {
  252. codec_dai = &codec->dai[i];
  253. dbg("pop wq checking: %s status: %s waiting: %s\n",
  254. codec_dai->playback.stream_name,
  255. codec_dai->playback.active ? "active" : "inactive",
  256. codec_dai->pop_wait ? "yes" : "no");
  257. /* are we waiting on this codec DAI stream */
  258. if (codec_dai->pop_wait == 1) {
  259. /* Reduce power if no longer active */
  260. if (codec->active == 0) {
  261. dbg("pop wq D1 %s %s\n", codec->name,
  262. codec_dai->playback.stream_name);
  263. snd_soc_dapm_set_bias_level(socdev,
  264. SND_SOC_BIAS_PREPARE);
  265. }
  266. codec_dai->pop_wait = 0;
  267. snd_soc_dapm_stream_event(codec,
  268. codec_dai->playback.stream_name,
  269. SND_SOC_DAPM_STREAM_STOP);
  270. /* Fall into standby if no longer active */
  271. if (codec->active == 0) {
  272. dbg("pop wq D3 %s %s\n", codec->name,
  273. codec_dai->playback.stream_name);
  274. snd_soc_dapm_set_bias_level(socdev,
  275. SND_SOC_BIAS_STANDBY);
  276. }
  277. }
  278. }
  279. mutex_unlock(&pcm_mutex);
  280. }
  281. /*
  282. * Called by ALSA when a PCM substream is closed. Private data can be
  283. * freed here. The cpu DAI, codec DAI, machine and platform are also
  284. * shutdown.
  285. */
  286. static int soc_codec_close(struct snd_pcm_substream *substream)
  287. {
  288. struct snd_soc_pcm_runtime *rtd = substream->private_data;
  289. struct snd_soc_device *socdev = rtd->socdev;
  290. struct snd_soc_dai_link *machine = rtd->dai;
  291. struct snd_soc_platform *platform = socdev->platform;
  292. struct snd_soc_dai *cpu_dai = machine->cpu_dai;
  293. struct snd_soc_dai *codec_dai = machine->codec_dai;
  294. struct snd_soc_codec *codec = socdev->codec;
  295. mutex_lock(&pcm_mutex);
  296. if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
  297. cpu_dai->playback.active = codec_dai->playback.active = 0;
  298. else
  299. cpu_dai->capture.active = codec_dai->capture.active = 0;
  300. if (codec_dai->playback.active == 0 &&
  301. codec_dai->capture.active == 0) {
  302. cpu_dai->active = codec_dai->active = 0;
  303. }
  304. codec->active--;
  305. if (cpu_dai->ops.shutdown)
  306. cpu_dai->ops.shutdown(substream);
  307. if (codec_dai->ops.shutdown)
  308. codec_dai->ops.shutdown(substream);
  309. if (machine->ops && machine->ops->shutdown)
  310. machine->ops->shutdown(substream);
  311. if (platform->pcm_ops->close)
  312. platform->pcm_ops->close(substream);
  313. cpu_dai->runtime = NULL;
  314. if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
  315. /* start delayed pop wq here for playback streams */
  316. codec_dai->pop_wait = 1;
  317. schedule_delayed_work(&socdev->delayed_work,
  318. msecs_to_jiffies(pmdown_time));
  319. } else {
  320. /* capture streams can be powered down now */
  321. snd_soc_dapm_stream_event(codec,
  322. codec_dai->capture.stream_name,
  323. SND_SOC_DAPM_STREAM_STOP);
  324. if (codec->active == 0 && codec_dai->pop_wait == 0)
  325. snd_soc_dapm_set_bias_level(socdev,
  326. SND_SOC_BIAS_STANDBY);
  327. }
  328. mutex_unlock(&pcm_mutex);
  329. return 0;
  330. }
  331. /*
  332. * Called by ALSA when the PCM substream is prepared, can set format, sample
  333. * rate, etc. This function is non atomic and can be called multiple times,
  334. * it can refer to the runtime info.
  335. */
  336. static int soc_pcm_prepare(struct snd_pcm_substream *substream)
  337. {
  338. struct snd_soc_pcm_runtime *rtd = substream->private_data;
  339. struct snd_soc_device *socdev = rtd->socdev;
  340. struct snd_soc_dai_link *machine = rtd->dai;
  341. struct snd_soc_platform *platform = socdev->platform;
  342. struct snd_soc_dai *cpu_dai = machine->cpu_dai;
  343. struct snd_soc_dai *codec_dai = machine->codec_dai;
  344. struct snd_soc_codec *codec = socdev->codec;
  345. int ret = 0;
  346. mutex_lock(&pcm_mutex);
  347. if (machine->ops && machine->ops->prepare) {
  348. ret = machine->ops->prepare(substream);
  349. if (ret < 0) {
  350. printk(KERN_ERR "asoc: machine prepare error\n");
  351. goto out;
  352. }
  353. }
  354. if (platform->pcm_ops->prepare) {
  355. ret = platform->pcm_ops->prepare(substream);
  356. if (ret < 0) {
  357. printk(KERN_ERR "asoc: platform prepare error\n");
  358. goto out;
  359. }
  360. }
  361. if (codec_dai->ops.prepare) {
  362. ret = codec_dai->ops.prepare(substream);
  363. if (ret < 0) {
  364. printk(KERN_ERR "asoc: codec DAI prepare error\n");
  365. goto out;
  366. }
  367. }
  368. if (cpu_dai->ops.prepare) {
  369. ret = cpu_dai->ops.prepare(substream);
  370. if (ret < 0) {
  371. printk(KERN_ERR "asoc: cpu DAI prepare error\n");
  372. goto out;
  373. }
  374. }
  375. /* we only want to start a DAPM playback stream if we are not waiting
  376. * on an existing one stopping */
  377. if (codec_dai->pop_wait) {
  378. /* we are waiting for the delayed work to start */
  379. if (substream->stream == SNDRV_PCM_STREAM_CAPTURE)
  380. snd_soc_dapm_stream_event(socdev->codec,
  381. codec_dai->capture.stream_name,
  382. SND_SOC_DAPM_STREAM_START);
  383. else {
  384. codec_dai->pop_wait = 0;
  385. cancel_delayed_work(&socdev->delayed_work);
  386. snd_soc_dai_digital_mute(codec_dai, 0);
  387. }
  388. } else {
  389. /* no delayed work - do we need to power up codec */
  390. if (codec->bias_level != SND_SOC_BIAS_ON) {
  391. snd_soc_dapm_set_bias_level(socdev,
  392. SND_SOC_BIAS_PREPARE);
  393. if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
  394. snd_soc_dapm_stream_event(codec,
  395. codec_dai->playback.stream_name,
  396. SND_SOC_DAPM_STREAM_START);
  397. else
  398. snd_soc_dapm_stream_event(codec,
  399. codec_dai->capture.stream_name,
  400. SND_SOC_DAPM_STREAM_START);
  401. snd_soc_dapm_set_bias_level(socdev, SND_SOC_BIAS_ON);
  402. snd_soc_dai_digital_mute(codec_dai, 0);
  403. } else {
  404. /* codec already powered - power on widgets */
  405. if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
  406. snd_soc_dapm_stream_event(codec,
  407. codec_dai->playback.stream_name,
  408. SND_SOC_DAPM_STREAM_START);
  409. else
  410. snd_soc_dapm_stream_event(codec,
  411. codec_dai->capture.stream_name,
  412. SND_SOC_DAPM_STREAM_START);
  413. snd_soc_dai_digital_mute(codec_dai, 0);
  414. }
  415. }
  416. out:
  417. mutex_unlock(&pcm_mutex);
  418. return ret;
  419. }
  420. /*
  421. * Called by ALSA when the hardware params are set by application. This
  422. * function can also be called multiple times and can allocate buffers
  423. * (using snd_pcm_lib_* ). It's non-atomic.
  424. */
  425. static int soc_pcm_hw_params(struct snd_pcm_substream *substream,
  426. struct snd_pcm_hw_params *params)
  427. {
  428. struct snd_soc_pcm_runtime *rtd = substream->private_data;
  429. struct snd_soc_device *socdev = rtd->socdev;
  430. struct snd_soc_dai_link *machine = rtd->dai;
  431. struct snd_soc_platform *platform = socdev->platform;
  432. struct snd_soc_dai *cpu_dai = machine->cpu_dai;
  433. struct snd_soc_dai *codec_dai = machine->codec_dai;
  434. int ret = 0;
  435. mutex_lock(&pcm_mutex);
  436. if (machine->ops && machine->ops->hw_params) {
  437. ret = machine->ops->hw_params(substream, params);
  438. if (ret < 0) {
  439. printk(KERN_ERR "asoc: machine hw_params failed\n");
  440. goto out;
  441. }
  442. }
  443. if (codec_dai->ops.hw_params) {
  444. ret = codec_dai->ops.hw_params(substream, params);
  445. if (ret < 0) {
  446. printk(KERN_ERR "asoc: can't set codec %s hw params\n",
  447. codec_dai->name);
  448. goto codec_err;
  449. }
  450. }
  451. if (cpu_dai->ops.hw_params) {
  452. ret = cpu_dai->ops.hw_params(substream, params);
  453. if (ret < 0) {
  454. printk(KERN_ERR "asoc: interface %s hw params failed\n",
  455. cpu_dai->name);
  456. goto interface_err;
  457. }
  458. }
  459. if (platform->pcm_ops->hw_params) {
  460. ret = platform->pcm_ops->hw_params(substream, params);
  461. if (ret < 0) {
  462. printk(KERN_ERR "asoc: platform %s hw params failed\n",
  463. platform->name);
  464. goto platform_err;
  465. }
  466. }
  467. out:
  468. mutex_unlock(&pcm_mutex);
  469. return ret;
  470. platform_err:
  471. if (cpu_dai->ops.hw_free)
  472. cpu_dai->ops.hw_free(substream);
  473. interface_err:
  474. if (codec_dai->ops.hw_free)
  475. codec_dai->ops.hw_free(substream);
  476. codec_err:
  477. if (machine->ops && machine->ops->hw_free)
  478. machine->ops->hw_free(substream);
  479. mutex_unlock(&pcm_mutex);
  480. return ret;
  481. }
  482. /*
  483. * Free's resources allocated by hw_params, can be called multiple times
  484. */
  485. static int soc_pcm_hw_free(struct snd_pcm_substream *substream)
  486. {
  487. struct snd_soc_pcm_runtime *rtd = substream->private_data;
  488. struct snd_soc_device *socdev = rtd->socdev;
  489. struct snd_soc_dai_link *machine = rtd->dai;
  490. struct snd_soc_platform *platform = socdev->platform;
  491. struct snd_soc_dai *cpu_dai = machine->cpu_dai;
  492. struct snd_soc_dai *codec_dai = machine->codec_dai;
  493. struct snd_soc_codec *codec = socdev->codec;
  494. mutex_lock(&pcm_mutex);
  495. /* apply codec digital mute */
  496. if (!codec->active)
  497. snd_soc_dai_digital_mute(codec_dai, 1);
  498. /* free any machine hw params */
  499. if (machine->ops && machine->ops->hw_free)
  500. machine->ops->hw_free(substream);
  501. /* free any DMA resources */
  502. if (platform->pcm_ops->hw_free)
  503. platform->pcm_ops->hw_free(substream);
  504. /* now free hw params for the DAI's */
  505. if (codec_dai->ops.hw_free)
  506. codec_dai->ops.hw_free(substream);
  507. if (cpu_dai->ops.hw_free)
  508. cpu_dai->ops.hw_free(substream);
  509. mutex_unlock(&pcm_mutex);
  510. return 0;
  511. }
  512. static int soc_pcm_trigger(struct snd_pcm_substream *substream, int cmd)
  513. {
  514. struct snd_soc_pcm_runtime *rtd = substream->private_data;
  515. struct snd_soc_device *socdev = rtd->socdev;
  516. struct snd_soc_dai_link *machine = rtd->dai;
  517. struct snd_soc_platform *platform = socdev->platform;
  518. struct snd_soc_dai *cpu_dai = machine->cpu_dai;
  519. struct snd_soc_dai *codec_dai = machine->codec_dai;
  520. int ret;
  521. if (codec_dai->ops.trigger) {
  522. ret = codec_dai->ops.trigger(substream, cmd);
  523. if (ret < 0)
  524. return ret;
  525. }
  526. if (platform->pcm_ops->trigger) {
  527. ret = platform->pcm_ops->trigger(substream, cmd);
  528. if (ret < 0)
  529. return ret;
  530. }
  531. if (cpu_dai->ops.trigger) {
  532. ret = cpu_dai->ops.trigger(substream, cmd);
  533. if (ret < 0)
  534. return ret;
  535. }
  536. return 0;
  537. }
  538. /* ASoC PCM operations */
  539. static struct snd_pcm_ops soc_pcm_ops = {
  540. .open = soc_pcm_open,
  541. .close = soc_codec_close,
  542. .hw_params = soc_pcm_hw_params,
  543. .hw_free = soc_pcm_hw_free,
  544. .prepare = soc_pcm_prepare,
  545. .trigger = soc_pcm_trigger,
  546. };
  547. #ifdef CONFIG_PM
  548. /* powers down audio subsystem for suspend */
  549. static int soc_suspend(struct platform_device *pdev, pm_message_t state)
  550. {
  551. struct snd_soc_device *socdev = platform_get_drvdata(pdev);
  552. struct snd_soc_machine *machine = socdev->machine;
  553. struct snd_soc_platform *platform = socdev->platform;
  554. struct snd_soc_codec_device *codec_dev = socdev->codec_dev;
  555. struct snd_soc_codec *codec = socdev->codec;
  556. int i;
  557. /* Due to the resume being scheduled into a workqueue we could
  558. * suspend before that's finished - wait for it to complete.
  559. */
  560. snd_power_lock(codec->card);
  561. snd_power_wait(codec->card, SNDRV_CTL_POWER_D0);
  562. snd_power_unlock(codec->card);
  563. /* we're going to block userspace touching us until resume completes */
  564. snd_power_change_state(codec->card, SNDRV_CTL_POWER_D3hot);
  565. /* mute any active DAC's */
  566. for (i = 0; i < machine->num_links; i++) {
  567. struct snd_soc_dai *dai = machine->dai_link[i].codec_dai;
  568. if (dai->dai_ops.digital_mute && dai->playback.active)
  569. dai->dai_ops.digital_mute(dai, 1);
  570. }
  571. /* suspend all pcms */
  572. for (i = 0; i < machine->num_links; i++)
  573. snd_pcm_suspend_all(machine->dai_link[i].pcm);
  574. if (machine->suspend_pre)
  575. machine->suspend_pre(pdev, state);
  576. for (i = 0; i < machine->num_links; i++) {
  577. struct snd_soc_dai *cpu_dai = machine->dai_link[i].cpu_dai;
  578. if (cpu_dai->suspend && cpu_dai->type != SND_SOC_DAI_AC97)
  579. cpu_dai->suspend(pdev, cpu_dai);
  580. if (platform->suspend)
  581. platform->suspend(pdev, cpu_dai);
  582. }
  583. /* close any waiting streams and save state */
  584. run_delayed_work(&socdev->delayed_work);
  585. codec->suspend_bias_level = codec->bias_level;
  586. for (i = 0; i < codec->num_dai; i++) {
  587. char *stream = codec->dai[i].playback.stream_name;
  588. if (stream != NULL)
  589. snd_soc_dapm_stream_event(codec, stream,
  590. SND_SOC_DAPM_STREAM_SUSPEND);
  591. stream = codec->dai[i].capture.stream_name;
  592. if (stream != NULL)
  593. snd_soc_dapm_stream_event(codec, stream,
  594. SND_SOC_DAPM_STREAM_SUSPEND);
  595. }
  596. if (codec_dev->suspend)
  597. codec_dev->suspend(pdev, state);
  598. for (i = 0; i < machine->num_links; i++) {
  599. struct snd_soc_dai *cpu_dai = machine->dai_link[i].cpu_dai;
  600. if (cpu_dai->suspend && cpu_dai->type == SND_SOC_DAI_AC97)
  601. cpu_dai->suspend(pdev, cpu_dai);
  602. }
  603. if (machine->suspend_post)
  604. machine->suspend_post(pdev, state);
  605. return 0;
  606. }
  607. /* deferred resume work, so resume can complete before we finished
  608. * setting our codec back up, which can be very slow on I2C
  609. */
  610. static void soc_resume_deferred(struct work_struct *work)
  611. {
  612. struct snd_soc_device *socdev = container_of(work,
  613. struct snd_soc_device,
  614. deferred_resume_work);
  615. struct snd_soc_machine *machine = socdev->machine;
  616. struct snd_soc_platform *platform = socdev->platform;
  617. struct snd_soc_codec_device *codec_dev = socdev->codec_dev;
  618. struct snd_soc_codec *codec = socdev->codec;
  619. struct platform_device *pdev = to_platform_device(socdev->dev);
  620. int i;
  621. /* our power state is still SNDRV_CTL_POWER_D3hot from suspend time,
  622. * so userspace apps are blocked from touching us
  623. */
  624. dev_info(socdev->dev, "starting resume work\n");
  625. if (machine->resume_pre)
  626. machine->resume_pre(pdev);
  627. for (i = 0; i < machine->num_links; i++) {
  628. struct snd_soc_dai *cpu_dai = machine->dai_link[i].cpu_dai;
  629. if (cpu_dai->resume && cpu_dai->type == SND_SOC_DAI_AC97)
  630. cpu_dai->resume(pdev, cpu_dai);
  631. }
  632. if (codec_dev->resume)
  633. codec_dev->resume(pdev);
  634. for (i = 0; i < codec->num_dai; i++) {
  635. char *stream = codec->dai[i].playback.stream_name;
  636. if (stream != NULL)
  637. snd_soc_dapm_stream_event(codec, stream,
  638. SND_SOC_DAPM_STREAM_RESUME);
  639. stream = codec->dai[i].capture.stream_name;
  640. if (stream != NULL)
  641. snd_soc_dapm_stream_event(codec, stream,
  642. SND_SOC_DAPM_STREAM_RESUME);
  643. }
  644. /* unmute any active DACs */
  645. for (i = 0; i < machine->num_links; i++) {
  646. struct snd_soc_dai *dai = machine->dai_link[i].codec_dai;
  647. if (dai->dai_ops.digital_mute && dai->playback.active)
  648. dai->dai_ops.digital_mute(dai, 0);
  649. }
  650. for (i = 0; i < machine->num_links; i++) {
  651. struct snd_soc_dai *cpu_dai = machine->dai_link[i].cpu_dai;
  652. if (cpu_dai->resume && cpu_dai->type != SND_SOC_DAI_AC97)
  653. cpu_dai->resume(pdev, cpu_dai);
  654. if (platform->resume)
  655. platform->resume(pdev, cpu_dai);
  656. }
  657. if (machine->resume_post)
  658. machine->resume_post(pdev);
  659. dev_info(socdev->dev, "resume work completed\n");
  660. /* userspace can access us now we are back as we were before */
  661. snd_power_change_state(codec->card, SNDRV_CTL_POWER_D0);
  662. }
  663. /* powers up audio subsystem after a suspend */
  664. static int soc_resume(struct platform_device *pdev)
  665. {
  666. struct snd_soc_device *socdev = platform_get_drvdata(pdev);
  667. dev_info(socdev->dev, "scheduling resume work\n");
  668. if (!schedule_work(&socdev->deferred_resume_work))
  669. dev_err(socdev->dev, "work item may be lost\n");
  670. return 0;
  671. }
  672. #else
  673. #define soc_suspend NULL
  674. #define soc_resume NULL
  675. #endif
  676. /* probes a new socdev */
  677. static int soc_probe(struct platform_device *pdev)
  678. {
  679. int ret = 0, i;
  680. struct snd_soc_device *socdev = platform_get_drvdata(pdev);
  681. struct snd_soc_machine *machine = socdev->machine;
  682. struct snd_soc_platform *platform = socdev->platform;
  683. struct snd_soc_codec_device *codec_dev = socdev->codec_dev;
  684. if (machine->probe) {
  685. ret = machine->probe(pdev);
  686. if (ret < 0)
  687. return ret;
  688. }
  689. for (i = 0; i < machine->num_links; i++) {
  690. struct snd_soc_dai *cpu_dai = machine->dai_link[i].cpu_dai;
  691. if (cpu_dai->probe) {
  692. ret = cpu_dai->probe(pdev, cpu_dai);
  693. if (ret < 0)
  694. goto cpu_dai_err;
  695. }
  696. }
  697. if (codec_dev->probe) {
  698. ret = codec_dev->probe(pdev);
  699. if (ret < 0)
  700. goto cpu_dai_err;
  701. }
  702. if (platform->probe) {
  703. ret = platform->probe(pdev);
  704. if (ret < 0)
  705. goto platform_err;
  706. }
  707. /* DAPM stream work */
  708. INIT_DELAYED_WORK(&socdev->delayed_work, close_delayed_work);
  709. #ifdef CONFIG_PM
  710. /* deferred resume work */
  711. INIT_WORK(&socdev->deferred_resume_work, soc_resume_deferred);
  712. #endif
  713. return 0;
  714. platform_err:
  715. if (codec_dev->remove)
  716. codec_dev->remove(pdev);
  717. cpu_dai_err:
  718. for (i--; i >= 0; i--) {
  719. struct snd_soc_dai *cpu_dai = machine->dai_link[i].cpu_dai;
  720. if (cpu_dai->remove)
  721. cpu_dai->remove(pdev, cpu_dai);
  722. }
  723. if (machine->remove)
  724. machine->remove(pdev);
  725. return ret;
  726. }
  727. /* removes a socdev */
  728. static int soc_remove(struct platform_device *pdev)
  729. {
  730. int i;
  731. struct snd_soc_device *socdev = platform_get_drvdata(pdev);
  732. struct snd_soc_machine *machine = socdev->machine;
  733. struct snd_soc_platform *platform = socdev->platform;
  734. struct snd_soc_codec_device *codec_dev = socdev->codec_dev;
  735. run_delayed_work(&socdev->delayed_work);
  736. if (platform->remove)
  737. platform->remove(pdev);
  738. if (codec_dev->remove)
  739. codec_dev->remove(pdev);
  740. for (i = 0; i < machine->num_links; i++) {
  741. struct snd_soc_dai *cpu_dai = machine->dai_link[i].cpu_dai;
  742. if (cpu_dai->remove)
  743. cpu_dai->remove(pdev, cpu_dai);
  744. }
  745. if (machine->remove)
  746. machine->remove(pdev);
  747. return 0;
  748. }
  749. /* ASoC platform driver */
  750. static struct platform_driver soc_driver = {
  751. .driver = {
  752. .name = "soc-audio",
  753. .owner = THIS_MODULE,
  754. },
  755. .probe = soc_probe,
  756. .remove = soc_remove,
  757. .suspend = soc_suspend,
  758. .resume = soc_resume,
  759. };
  760. /* create a new pcm */
  761. static int soc_new_pcm(struct snd_soc_device *socdev,
  762. struct snd_soc_dai_link *dai_link, int num)
  763. {
  764. struct snd_soc_codec *codec = socdev->codec;
  765. struct snd_soc_dai *codec_dai = dai_link->codec_dai;
  766. struct snd_soc_dai *cpu_dai = dai_link->cpu_dai;
  767. struct snd_soc_pcm_runtime *rtd;
  768. struct snd_pcm *pcm;
  769. char new_name[64];
  770. int ret = 0, playback = 0, capture = 0;
  771. rtd = kzalloc(sizeof(struct snd_soc_pcm_runtime), GFP_KERNEL);
  772. if (rtd == NULL)
  773. return -ENOMEM;
  774. rtd->dai = dai_link;
  775. rtd->socdev = socdev;
  776. codec_dai->codec = socdev->codec;
  777. /* check client and interface hw capabilities */
  778. sprintf(new_name, "%s %s-%s-%d", dai_link->stream_name, codec_dai->name,
  779. get_dai_name(cpu_dai->type), num);
  780. if (codec_dai->playback.channels_min)
  781. playback = 1;
  782. if (codec_dai->capture.channels_min)
  783. capture = 1;
  784. ret = snd_pcm_new(codec->card, new_name, codec->pcm_devs++, playback,
  785. capture, &pcm);
  786. if (ret < 0) {
  787. printk(KERN_ERR "asoc: can't create pcm for codec %s\n",
  788. codec->name);
  789. kfree(rtd);
  790. return ret;
  791. }
  792. dai_link->pcm = pcm;
  793. pcm->private_data = rtd;
  794. soc_pcm_ops.mmap = socdev->platform->pcm_ops->mmap;
  795. soc_pcm_ops.pointer = socdev->platform->pcm_ops->pointer;
  796. soc_pcm_ops.ioctl = socdev->platform->pcm_ops->ioctl;
  797. soc_pcm_ops.copy = socdev->platform->pcm_ops->copy;
  798. soc_pcm_ops.silence = socdev->platform->pcm_ops->silence;
  799. soc_pcm_ops.ack = socdev->platform->pcm_ops->ack;
  800. soc_pcm_ops.page = socdev->platform->pcm_ops->page;
  801. if (playback)
  802. snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &soc_pcm_ops);
  803. if (capture)
  804. snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &soc_pcm_ops);
  805. ret = socdev->platform->pcm_new(codec->card, codec_dai, pcm);
  806. if (ret < 0) {
  807. printk(KERN_ERR "asoc: platform pcm constructor failed\n");
  808. kfree(rtd);
  809. return ret;
  810. }
  811. pcm->private_free = socdev->platform->pcm_free;
  812. printk(KERN_INFO "asoc: %s <-> %s mapping ok\n", codec_dai->name,
  813. cpu_dai->name);
  814. return ret;
  815. }
  816. /* codec register dump */
  817. static ssize_t codec_reg_show(struct device *dev,
  818. struct device_attribute *attr, char *buf)
  819. {
  820. struct snd_soc_device *devdata = dev_get_drvdata(dev);
  821. struct snd_soc_codec *codec = devdata->codec;
  822. int i, step = 1, count = 0;
  823. if (!codec->reg_cache_size)
  824. return 0;
  825. if (codec->reg_cache_step)
  826. step = codec->reg_cache_step;
  827. count += sprintf(buf, "%s registers\n", codec->name);
  828. for (i = 0; i < codec->reg_cache_size; i += step) {
  829. count += sprintf(buf + count, "%2x: ", i);
  830. if (count >= PAGE_SIZE - 1)
  831. break;
  832. if (codec->display_register)
  833. count += codec->display_register(codec, buf + count,
  834. PAGE_SIZE - count, i);
  835. else
  836. count += snprintf(buf + count, PAGE_SIZE - count,
  837. "%4x", codec->read(codec, i));
  838. if (count >= PAGE_SIZE - 1)
  839. break;
  840. count += snprintf(buf + count, PAGE_SIZE - count, "\n");
  841. if (count >= PAGE_SIZE - 1)
  842. break;
  843. }
  844. /* Truncate count; min() would cause a warning */
  845. if (count >= PAGE_SIZE)
  846. count = PAGE_SIZE - 1;
  847. return count;
  848. }
  849. static DEVICE_ATTR(codec_reg, 0444, codec_reg_show, NULL);
  850. /**
  851. * snd_soc_new_ac97_codec - initailise AC97 device
  852. * @codec: audio codec
  853. * @ops: AC97 bus operations
  854. * @num: AC97 codec number
  855. *
  856. * Initialises AC97 codec resources for use by ad-hoc devices only.
  857. */
  858. int snd_soc_new_ac97_codec(struct snd_soc_codec *codec,
  859. struct snd_ac97_bus_ops *ops, int num)
  860. {
  861. mutex_lock(&codec->mutex);
  862. codec->ac97 = kzalloc(sizeof(struct snd_ac97), GFP_KERNEL);
  863. if (codec->ac97 == NULL) {
  864. mutex_unlock(&codec->mutex);
  865. return -ENOMEM;
  866. }
  867. codec->ac97->bus = kzalloc(sizeof(struct snd_ac97_bus), GFP_KERNEL);
  868. if (codec->ac97->bus == NULL) {
  869. kfree(codec->ac97);
  870. codec->ac97 = NULL;
  871. mutex_unlock(&codec->mutex);
  872. return -ENOMEM;
  873. }
  874. codec->ac97->bus->ops = ops;
  875. codec->ac97->num = num;
  876. mutex_unlock(&codec->mutex);
  877. return 0;
  878. }
  879. EXPORT_SYMBOL_GPL(snd_soc_new_ac97_codec);
  880. /**
  881. * snd_soc_free_ac97_codec - free AC97 codec device
  882. * @codec: audio codec
  883. *
  884. * Frees AC97 codec device resources.
  885. */
  886. void snd_soc_free_ac97_codec(struct snd_soc_codec *codec)
  887. {
  888. mutex_lock(&codec->mutex);
  889. kfree(codec->ac97->bus);
  890. kfree(codec->ac97);
  891. codec->ac97 = NULL;
  892. mutex_unlock(&codec->mutex);
  893. }
  894. EXPORT_SYMBOL_GPL(snd_soc_free_ac97_codec);
  895. /**
  896. * snd_soc_update_bits - update codec register bits
  897. * @codec: audio codec
  898. * @reg: codec register
  899. * @mask: register mask
  900. * @value: new value
  901. *
  902. * Writes new register value.
  903. *
  904. * Returns 1 for change else 0.
  905. */
  906. int snd_soc_update_bits(struct snd_soc_codec *codec, unsigned short reg,
  907. unsigned short mask, unsigned short value)
  908. {
  909. int change;
  910. unsigned short old, new;
  911. mutex_lock(&io_mutex);
  912. old = snd_soc_read(codec, reg);
  913. new = (old & ~mask) | value;
  914. change = old != new;
  915. if (change)
  916. snd_soc_write(codec, reg, new);
  917. mutex_unlock(&io_mutex);
  918. return change;
  919. }
  920. EXPORT_SYMBOL_GPL(snd_soc_update_bits);
  921. /**
  922. * snd_soc_test_bits - test register for change
  923. * @codec: audio codec
  924. * @reg: codec register
  925. * @mask: register mask
  926. * @value: new value
  927. *
  928. * Tests a register with a new value and checks if the new value is
  929. * different from the old value.
  930. *
  931. * Returns 1 for change else 0.
  932. */
  933. int snd_soc_test_bits(struct snd_soc_codec *codec, unsigned short reg,
  934. unsigned short mask, unsigned short value)
  935. {
  936. int change;
  937. unsigned short old, new;
  938. mutex_lock(&io_mutex);
  939. old = snd_soc_read(codec, reg);
  940. new = (old & ~mask) | value;
  941. change = old != new;
  942. mutex_unlock(&io_mutex);
  943. return change;
  944. }
  945. EXPORT_SYMBOL_GPL(snd_soc_test_bits);
  946. /**
  947. * snd_soc_new_pcms - create new sound card and pcms
  948. * @socdev: the SoC audio device
  949. *
  950. * Create a new sound card based upon the codec and interface pcms.
  951. *
  952. * Returns 0 for success, else error.
  953. */
  954. int snd_soc_new_pcms(struct snd_soc_device *socdev, int idx, const char *xid)
  955. {
  956. struct snd_soc_codec *codec = socdev->codec;
  957. struct snd_soc_machine *machine = socdev->machine;
  958. int ret = 0, i;
  959. mutex_lock(&codec->mutex);
  960. /* register a sound card */
  961. codec->card = snd_card_new(idx, xid, codec->owner, 0);
  962. if (!codec->card) {
  963. printk(KERN_ERR "asoc: can't create sound card for codec %s\n",
  964. codec->name);
  965. mutex_unlock(&codec->mutex);
  966. return -ENODEV;
  967. }
  968. codec->card->dev = socdev->dev;
  969. codec->card->private_data = codec;
  970. strncpy(codec->card->driver, codec->name, sizeof(codec->card->driver));
  971. /* create the pcms */
  972. for (i = 0; i < machine->num_links; i++) {
  973. ret = soc_new_pcm(socdev, &machine->dai_link[i], i);
  974. if (ret < 0) {
  975. printk(KERN_ERR "asoc: can't create pcm %s\n",
  976. machine->dai_link[i].stream_name);
  977. mutex_unlock(&codec->mutex);
  978. return ret;
  979. }
  980. }
  981. mutex_unlock(&codec->mutex);
  982. return ret;
  983. }
  984. EXPORT_SYMBOL_GPL(snd_soc_new_pcms);
  985. /**
  986. * snd_soc_register_card - register sound card
  987. * @socdev: the SoC audio device
  988. *
  989. * Register a SoC sound card. Also registers an AC97 device if the
  990. * codec is AC97 for ad hoc devices.
  991. *
  992. * Returns 0 for success, else error.
  993. */
  994. int snd_soc_register_card(struct snd_soc_device *socdev)
  995. {
  996. struct snd_soc_codec *codec = socdev->codec;
  997. struct snd_soc_machine *machine = socdev->machine;
  998. int ret = 0, i, ac97 = 0, err = 0;
  999. for (i = 0; i < machine->num_links; i++) {
  1000. if (socdev->machine->dai_link[i].init) {
  1001. err = socdev->machine->dai_link[i].init(codec);
  1002. if (err < 0) {
  1003. printk(KERN_ERR "asoc: failed to init %s\n",
  1004. socdev->machine->dai_link[i].stream_name);
  1005. continue;
  1006. }
  1007. }
  1008. if (socdev->machine->dai_link[i].codec_dai->type ==
  1009. SND_SOC_DAI_AC97_BUS)
  1010. ac97 = 1;
  1011. }
  1012. snprintf(codec->card->shortname, sizeof(codec->card->shortname),
  1013. "%s", machine->name);
  1014. snprintf(codec->card->longname, sizeof(codec->card->longname),
  1015. "%s (%s)", machine->name, codec->name);
  1016. ret = snd_card_register(codec->card);
  1017. if (ret < 0) {
  1018. printk(KERN_ERR "asoc: failed to register soundcard for %s\n",
  1019. codec->name);
  1020. goto out;
  1021. }
  1022. mutex_lock(&codec->mutex);
  1023. #ifdef CONFIG_SND_SOC_AC97_BUS
  1024. if (ac97) {
  1025. ret = soc_ac97_dev_register(codec);
  1026. if (ret < 0) {
  1027. printk(KERN_ERR "asoc: AC97 device register failed\n");
  1028. snd_card_free(codec->card);
  1029. mutex_unlock(&codec->mutex);
  1030. goto out;
  1031. }
  1032. }
  1033. #endif
  1034. err = snd_soc_dapm_sys_add(socdev->dev);
  1035. if (err < 0)
  1036. printk(KERN_WARNING "asoc: failed to add dapm sysfs entries\n");
  1037. err = device_create_file(socdev->dev, &dev_attr_codec_reg);
  1038. if (err < 0)
  1039. printk(KERN_WARNING "asoc: failed to add codec sysfs files\n");
  1040. mutex_unlock(&codec->mutex);
  1041. out:
  1042. return ret;
  1043. }
  1044. EXPORT_SYMBOL_GPL(snd_soc_register_card);
  1045. /**
  1046. * snd_soc_free_pcms - free sound card and pcms
  1047. * @socdev: the SoC audio device
  1048. *
  1049. * Frees sound card and pcms associated with the socdev.
  1050. * Also unregister the codec if it is an AC97 device.
  1051. */
  1052. void snd_soc_free_pcms(struct snd_soc_device *socdev)
  1053. {
  1054. struct snd_soc_codec *codec = socdev->codec;
  1055. #ifdef CONFIG_SND_SOC_AC97_BUS
  1056. struct snd_soc_dai *codec_dai;
  1057. int i;
  1058. #endif
  1059. mutex_lock(&codec->mutex);
  1060. #ifdef CONFIG_SND_SOC_AC97_BUS
  1061. for (i = 0; i < codec->num_dai; i++) {
  1062. codec_dai = &codec->dai[i];
  1063. if (codec_dai->type == SND_SOC_DAI_AC97_BUS && codec->ac97) {
  1064. soc_ac97_dev_unregister(codec);
  1065. goto free_card;
  1066. }
  1067. }
  1068. free_card:
  1069. #endif
  1070. if (codec->card)
  1071. snd_card_free(codec->card);
  1072. device_remove_file(socdev->dev, &dev_attr_codec_reg);
  1073. mutex_unlock(&codec->mutex);
  1074. }
  1075. EXPORT_SYMBOL_GPL(snd_soc_free_pcms);
  1076. /**
  1077. * snd_soc_set_runtime_hwparams - set the runtime hardware parameters
  1078. * @substream: the pcm substream
  1079. * @hw: the hardware parameters
  1080. *
  1081. * Sets the substream runtime hardware parameters.
  1082. */
  1083. int snd_soc_set_runtime_hwparams(struct snd_pcm_substream *substream,
  1084. const struct snd_pcm_hardware *hw)
  1085. {
  1086. struct snd_pcm_runtime *runtime = substream->runtime;
  1087. runtime->hw.info = hw->info;
  1088. runtime->hw.formats = hw->formats;
  1089. runtime->hw.period_bytes_min = hw->period_bytes_min;
  1090. runtime->hw.period_bytes_max = hw->period_bytes_max;
  1091. runtime->hw.periods_min = hw->periods_min;
  1092. runtime->hw.periods_max = hw->periods_max;
  1093. runtime->hw.buffer_bytes_max = hw->buffer_bytes_max;
  1094. runtime->hw.fifo_size = hw->fifo_size;
  1095. return 0;
  1096. }
  1097. EXPORT_SYMBOL_GPL(snd_soc_set_runtime_hwparams);
  1098. /**
  1099. * snd_soc_cnew - create new control
  1100. * @_template: control template
  1101. * @data: control private data
  1102. * @lnng_name: control long name
  1103. *
  1104. * Create a new mixer control from a template control.
  1105. *
  1106. * Returns 0 for success, else error.
  1107. */
  1108. struct snd_kcontrol *snd_soc_cnew(const struct snd_kcontrol_new *_template,
  1109. void *data, char *long_name)
  1110. {
  1111. struct snd_kcontrol_new template;
  1112. memcpy(&template, _template, sizeof(template));
  1113. if (long_name)
  1114. template.name = long_name;
  1115. template.index = 0;
  1116. return snd_ctl_new1(&template, data);
  1117. }
  1118. EXPORT_SYMBOL_GPL(snd_soc_cnew);
  1119. /**
  1120. * snd_soc_info_enum_double - enumerated double mixer info callback
  1121. * @kcontrol: mixer control
  1122. * @uinfo: control element information
  1123. *
  1124. * Callback to provide information about a double enumerated
  1125. * mixer control.
  1126. *
  1127. * Returns 0 for success.
  1128. */
  1129. int snd_soc_info_enum_double(struct snd_kcontrol *kcontrol,
  1130. struct snd_ctl_elem_info *uinfo)
  1131. {
  1132. struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
  1133. uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
  1134. uinfo->count = e->shift_l == e->shift_r ? 1 : 2;
  1135. uinfo->value.enumerated.items = e->max;
  1136. if (uinfo->value.enumerated.item > e->max - 1)
  1137. uinfo->value.enumerated.item = e->max - 1;
  1138. strcpy(uinfo->value.enumerated.name,
  1139. e->texts[uinfo->value.enumerated.item]);
  1140. return 0;
  1141. }
  1142. EXPORT_SYMBOL_GPL(snd_soc_info_enum_double);
  1143. /**
  1144. * snd_soc_get_enum_double - enumerated double mixer get callback
  1145. * @kcontrol: mixer control
  1146. * @uinfo: control element information
  1147. *
  1148. * Callback to get the value of a double enumerated mixer.
  1149. *
  1150. * Returns 0 for success.
  1151. */
  1152. int snd_soc_get_enum_double(struct snd_kcontrol *kcontrol,
  1153. struct snd_ctl_elem_value *ucontrol)
  1154. {
  1155. struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
  1156. struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
  1157. unsigned short val, bitmask;
  1158. for (bitmask = 1; bitmask < e->max; bitmask <<= 1)
  1159. ;
  1160. val = snd_soc_read(codec, e->reg);
  1161. ucontrol->value.enumerated.item[0]
  1162. = (val >> e->shift_l) & (bitmask - 1);
  1163. if (e->shift_l != e->shift_r)
  1164. ucontrol->value.enumerated.item[1] =
  1165. (val >> e->shift_r) & (bitmask - 1);
  1166. return 0;
  1167. }
  1168. EXPORT_SYMBOL_GPL(snd_soc_get_enum_double);
  1169. /**
  1170. * snd_soc_put_enum_double - enumerated double mixer put callback
  1171. * @kcontrol: mixer control
  1172. * @uinfo: control element information
  1173. *
  1174. * Callback to set the value of a double enumerated mixer.
  1175. *
  1176. * Returns 0 for success.
  1177. */
  1178. int snd_soc_put_enum_double(struct snd_kcontrol *kcontrol,
  1179. struct snd_ctl_elem_value *ucontrol)
  1180. {
  1181. struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
  1182. struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
  1183. unsigned short val;
  1184. unsigned short mask, bitmask;
  1185. for (bitmask = 1; bitmask < e->max; bitmask <<= 1)
  1186. ;
  1187. if (ucontrol->value.enumerated.item[0] > e->max - 1)
  1188. return -EINVAL;
  1189. val = ucontrol->value.enumerated.item[0] << e->shift_l;
  1190. mask = (bitmask - 1) << e->shift_l;
  1191. if (e->shift_l != e->shift_r) {
  1192. if (ucontrol->value.enumerated.item[1] > e->max - 1)
  1193. return -EINVAL;
  1194. val |= ucontrol->value.enumerated.item[1] << e->shift_r;
  1195. mask |= (bitmask - 1) << e->shift_r;
  1196. }
  1197. return snd_soc_update_bits(codec, e->reg, mask, val);
  1198. }
  1199. EXPORT_SYMBOL_GPL(snd_soc_put_enum_double);
  1200. /**
  1201. * snd_soc_info_enum_ext - external enumerated single mixer info callback
  1202. * @kcontrol: mixer control
  1203. * @uinfo: control element information
  1204. *
  1205. * Callback to provide information about an external enumerated
  1206. * single mixer.
  1207. *
  1208. * Returns 0 for success.
  1209. */
  1210. int snd_soc_info_enum_ext(struct snd_kcontrol *kcontrol,
  1211. struct snd_ctl_elem_info *uinfo)
  1212. {
  1213. struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
  1214. uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
  1215. uinfo->count = 1;
  1216. uinfo->value.enumerated.items = e->max;
  1217. if (uinfo->value.enumerated.item > e->max - 1)
  1218. uinfo->value.enumerated.item = e->max - 1;
  1219. strcpy(uinfo->value.enumerated.name,
  1220. e->texts[uinfo->value.enumerated.item]);
  1221. return 0;
  1222. }
  1223. EXPORT_SYMBOL_GPL(snd_soc_info_enum_ext);
  1224. /**
  1225. * snd_soc_info_volsw_ext - external single mixer info callback
  1226. * @kcontrol: mixer control
  1227. * @uinfo: control element information
  1228. *
  1229. * Callback to provide information about a single external mixer control.
  1230. *
  1231. * Returns 0 for success.
  1232. */
  1233. int snd_soc_info_volsw_ext(struct snd_kcontrol *kcontrol,
  1234. struct snd_ctl_elem_info *uinfo)
  1235. {
  1236. int max = kcontrol->private_value;
  1237. if (max == 1)
  1238. uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
  1239. else
  1240. uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
  1241. uinfo->count = 1;
  1242. uinfo->value.integer.min = 0;
  1243. uinfo->value.integer.max = max;
  1244. return 0;
  1245. }
  1246. EXPORT_SYMBOL_GPL(snd_soc_info_volsw_ext);
  1247. /**
  1248. * snd_soc_info_volsw - single mixer info callback
  1249. * @kcontrol: mixer control
  1250. * @uinfo: control element information
  1251. *
  1252. * Callback to provide information about a single mixer control.
  1253. *
  1254. * Returns 0 for success.
  1255. */
  1256. int snd_soc_info_volsw(struct snd_kcontrol *kcontrol,
  1257. struct snd_ctl_elem_info *uinfo)
  1258. {
  1259. struct soc_mixer_control *mc =
  1260. (struct soc_mixer_control *)kcontrol->private_value;
  1261. int max = mc->max;
  1262. uint shift = mc->min;
  1263. uint rshift = mc->rshift;
  1264. if (max == 1)
  1265. uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
  1266. else
  1267. uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
  1268. uinfo->count = shift == rshift ? 1 : 2;
  1269. uinfo->value.integer.min = 0;
  1270. uinfo->value.integer.max = max;
  1271. return 0;
  1272. }
  1273. EXPORT_SYMBOL_GPL(snd_soc_info_volsw);
  1274. /**
  1275. * snd_soc_get_volsw - single mixer get callback
  1276. * @kcontrol: mixer control
  1277. * @uinfo: control element information
  1278. *
  1279. * Callback to get the value of a single mixer control.
  1280. *
  1281. * Returns 0 for success.
  1282. */
  1283. int snd_soc_get_volsw(struct snd_kcontrol *kcontrol,
  1284. struct snd_ctl_elem_value *ucontrol)
  1285. {
  1286. struct soc_mixer_control *mc =
  1287. (struct soc_mixer_control *)kcontrol->private_value;
  1288. struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
  1289. uint reg = mc->reg;
  1290. uint shift = mc->shift;
  1291. uint rshift = mc->rshift;
  1292. int max = mc->max;
  1293. uint mask = (1 << fls(max)) - 1;
  1294. uint invert = mc->invert;
  1295. ucontrol->value.integer.value[0] =
  1296. (snd_soc_read(codec, reg) >> shift) & mask;
  1297. if (shift != rshift)
  1298. ucontrol->value.integer.value[1] =
  1299. (snd_soc_read(codec, reg) >> rshift) & mask;
  1300. if (invert) {
  1301. ucontrol->value.integer.value[0] =
  1302. max - ucontrol->value.integer.value[0];
  1303. if (shift != rshift)
  1304. ucontrol->value.integer.value[1] =
  1305. max - ucontrol->value.integer.value[1];
  1306. }
  1307. return 0;
  1308. }
  1309. EXPORT_SYMBOL_GPL(snd_soc_get_volsw);
  1310. /**
  1311. * snd_soc_put_volsw - single mixer put callback
  1312. * @kcontrol: mixer control
  1313. * @uinfo: control element information
  1314. *
  1315. * Callback to set the value of a single mixer control.
  1316. *
  1317. * Returns 0 for success.
  1318. */
  1319. int snd_soc_put_volsw(struct snd_kcontrol *kcontrol,
  1320. struct snd_ctl_elem_value *ucontrol)
  1321. {
  1322. struct soc_mixer_control *mc =
  1323. (struct soc_mixer_control *)kcontrol->private_value;
  1324. struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
  1325. uint reg = mc->reg;
  1326. uint shift = mc->shift;
  1327. uint rshift = mc->rshift;
  1328. int max = mc->max;
  1329. uint mask = (1 << fls(max)) - 1;
  1330. uint invert = mc->invert;
  1331. unsigned short val, val2, val_mask;
  1332. val = (ucontrol->value.integer.value[0] & mask);
  1333. if (invert)
  1334. val = max - val;
  1335. val_mask = mask << shift;
  1336. val = val << shift;
  1337. if (shift != rshift) {
  1338. val2 = (ucontrol->value.integer.value[1] & mask);
  1339. if (invert)
  1340. val2 = max - val2;
  1341. val_mask |= mask << rshift;
  1342. val |= val2 << rshift;
  1343. }
  1344. return snd_soc_update_bits(codec, reg, val_mask, val);
  1345. }
  1346. EXPORT_SYMBOL_GPL(snd_soc_put_volsw);
  1347. /**
  1348. * snd_soc_info_volsw_2r - double mixer info callback
  1349. * @kcontrol: mixer control
  1350. * @uinfo: control element information
  1351. *
  1352. * Callback to provide information about a double mixer control that
  1353. * spans 2 codec registers.
  1354. *
  1355. * Returns 0 for success.
  1356. */
  1357. int snd_soc_info_volsw_2r(struct snd_kcontrol *kcontrol,
  1358. struct snd_ctl_elem_info *uinfo)
  1359. {
  1360. struct soc_mixer_control *mc =
  1361. (struct soc_mixer_control *)kcontrol->private_value;
  1362. int max = mc->max;
  1363. if (max == 1)
  1364. uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
  1365. else
  1366. uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
  1367. uinfo->count = 2;
  1368. uinfo->value.integer.min = 0;
  1369. uinfo->value.integer.max = max;
  1370. return 0;
  1371. }
  1372. EXPORT_SYMBOL_GPL(snd_soc_info_volsw_2r);
  1373. /**
  1374. * snd_soc_get_volsw_2r - double mixer get callback
  1375. * @kcontrol: mixer control
  1376. * @uinfo: control element information
  1377. *
  1378. * Callback to get the value of a double mixer control that spans 2 registers.
  1379. *
  1380. * Returns 0 for success.
  1381. */
  1382. int snd_soc_get_volsw_2r(struct snd_kcontrol *kcontrol,
  1383. struct snd_ctl_elem_value *ucontrol)
  1384. {
  1385. struct soc_mixer_control *mc =
  1386. (struct soc_mixer_control *)kcontrol->private_value;
  1387. struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
  1388. uint reg = mc->reg;
  1389. uint reg2 = mc->rreg;
  1390. uint shift = mc->shift;
  1391. int max = mc->max;
  1392. uint mask = (1<<fls(max))-1;
  1393. uint invert = mc->invert;
  1394. ucontrol->value.integer.value[0] =
  1395. (snd_soc_read(codec, reg) >> shift) & mask;
  1396. ucontrol->value.integer.value[1] =
  1397. (snd_soc_read(codec, reg2) >> shift) & mask;
  1398. if (invert) {
  1399. ucontrol->value.integer.value[0] =
  1400. max - ucontrol->value.integer.value[0];
  1401. ucontrol->value.integer.value[1] =
  1402. max - ucontrol->value.integer.value[1];
  1403. }
  1404. return 0;
  1405. }
  1406. EXPORT_SYMBOL_GPL(snd_soc_get_volsw_2r);
  1407. /**
  1408. * snd_soc_put_volsw_2r - double mixer set callback
  1409. * @kcontrol: mixer control
  1410. * @uinfo: control element information
  1411. *
  1412. * Callback to set the value of a double mixer control that spans 2 registers.
  1413. *
  1414. * Returns 0 for success.
  1415. */
  1416. int snd_soc_put_volsw_2r(struct snd_kcontrol *kcontrol,
  1417. struct snd_ctl_elem_value *ucontrol)
  1418. {
  1419. struct soc_mixer_control *mc =
  1420. (struct soc_mixer_control *)kcontrol->private_value;
  1421. struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
  1422. uint reg = mc->reg;
  1423. uint reg2 = mc->rreg;
  1424. uint shift = mc->shift;
  1425. int max = mc->max;
  1426. uint mask = (1 << fls(max)) - 1;
  1427. uint invert = mc->invert;
  1428. int err;
  1429. unsigned short val, val2, val_mask;
  1430. val_mask = mask << shift;
  1431. val = (ucontrol->value.integer.value[0] & mask);
  1432. val2 = (ucontrol->value.integer.value[1] & mask);
  1433. if (invert) {
  1434. val = max - val;
  1435. val2 = max - val2;
  1436. }
  1437. val = val << shift;
  1438. val2 = val2 << shift;
  1439. err = snd_soc_update_bits(codec, reg, val_mask, val);
  1440. if (err < 0)
  1441. return err;
  1442. err = snd_soc_update_bits(codec, reg2, val_mask, val2);
  1443. return err;
  1444. }
  1445. EXPORT_SYMBOL_GPL(snd_soc_put_volsw_2r);
  1446. /**
  1447. * snd_soc_info_volsw_s8 - signed mixer info callback
  1448. * @kcontrol: mixer control
  1449. * @uinfo: control element information
  1450. *
  1451. * Callback to provide information about a signed mixer control.
  1452. *
  1453. * Returns 0 for success.
  1454. */
  1455. int snd_soc_info_volsw_s8(struct snd_kcontrol *kcontrol,
  1456. struct snd_ctl_elem_info *uinfo)
  1457. {
  1458. struct soc_mixer_control *mc =
  1459. (struct soc_mixer_control *)kcontrol->private_value;
  1460. int max = mc->max;
  1461. int min = mc->min;
  1462. uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
  1463. uinfo->count = 2;
  1464. uinfo->value.integer.min = 0;
  1465. uinfo->value.integer.max = max-min;
  1466. return 0;
  1467. }
  1468. EXPORT_SYMBOL_GPL(snd_soc_info_volsw_s8);
  1469. /**
  1470. * snd_soc_get_volsw_s8 - signed mixer get callback
  1471. * @kcontrol: mixer control
  1472. * @uinfo: control element information
  1473. *
  1474. * Callback to get the value of a signed mixer control.
  1475. *
  1476. * Returns 0 for success.
  1477. */
  1478. int snd_soc_get_volsw_s8(struct snd_kcontrol *kcontrol,
  1479. struct snd_ctl_elem_value *ucontrol)
  1480. {
  1481. struct soc_mixer_control *mc =
  1482. (struct soc_mixer_control *)kcontrol->private_value;
  1483. struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
  1484. uint reg = mc->reg;
  1485. int min = mc->min;
  1486. int val = snd_soc_read(codec, reg);
  1487. ucontrol->value.integer.value[0] =
  1488. ((signed char)(val & 0xff))-min;
  1489. ucontrol->value.integer.value[1] =
  1490. ((signed char)((val >> 8) & 0xff))-min;
  1491. return 0;
  1492. }
  1493. EXPORT_SYMBOL_GPL(snd_soc_get_volsw_s8);
  1494. /**
  1495. * snd_soc_put_volsw_sgn - signed mixer put callback
  1496. * @kcontrol: mixer control
  1497. * @uinfo: control element information
  1498. *
  1499. * Callback to set the value of a signed mixer control.
  1500. *
  1501. * Returns 0 for success.
  1502. */
  1503. int snd_soc_put_volsw_s8(struct snd_kcontrol *kcontrol,
  1504. struct snd_ctl_elem_value *ucontrol)
  1505. {
  1506. struct soc_mixer_control *mc =
  1507. (struct soc_mixer_control *)kcontrol->private_value;
  1508. struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
  1509. uint reg = mc->reg;
  1510. int min = mc->min;
  1511. unsigned short val;
  1512. val = (ucontrol->value.integer.value[0]+min) & 0xff;
  1513. val |= ((ucontrol->value.integer.value[1]+min) & 0xff) << 8;
  1514. return snd_soc_update_bits(codec, reg, 0xffff, val);
  1515. }
  1516. EXPORT_SYMBOL_GPL(snd_soc_put_volsw_s8);
  1517. /**
  1518. * snd_soc_dai_set_sysclk - configure DAI system or master clock.
  1519. * @dai: DAI
  1520. * @clk_id: DAI specific clock ID
  1521. * @freq: new clock frequency in Hz
  1522. * @dir: new clock direction - input/output.
  1523. *
  1524. * Configures the DAI master (MCLK) or system (SYSCLK) clocking.
  1525. */
  1526. int snd_soc_dai_set_sysclk(struct snd_soc_dai *dai, int clk_id,
  1527. unsigned int freq, int dir)
  1528. {
  1529. if (dai->dai_ops.set_sysclk)
  1530. return dai->dai_ops.set_sysclk(dai, clk_id, freq, dir);
  1531. else
  1532. return -EINVAL;
  1533. }
  1534. EXPORT_SYMBOL_GPL(snd_soc_dai_set_sysclk);
  1535. /**
  1536. * snd_soc_dai_set_clkdiv - configure DAI clock dividers.
  1537. * @dai: DAI
  1538. * @clk_id: DAI specific clock divider ID
  1539. * @div: new clock divisor.
  1540. *
  1541. * Configures the clock dividers. This is used to derive the best DAI bit and
  1542. * frame clocks from the system or master clock. It's best to set the DAI bit
  1543. * and frame clocks as low as possible to save system power.
  1544. */
  1545. int snd_soc_dai_set_clkdiv(struct snd_soc_dai *dai,
  1546. int div_id, int div)
  1547. {
  1548. if (dai->dai_ops.set_clkdiv)
  1549. return dai->dai_ops.set_clkdiv(dai, div_id, div);
  1550. else
  1551. return -EINVAL;
  1552. }
  1553. EXPORT_SYMBOL_GPL(snd_soc_dai_set_clkdiv);
  1554. /**
  1555. * snd_soc_dai_set_pll - configure DAI PLL.
  1556. * @dai: DAI
  1557. * @pll_id: DAI specific PLL ID
  1558. * @freq_in: PLL input clock frequency in Hz
  1559. * @freq_out: requested PLL output clock frequency in Hz
  1560. *
  1561. * Configures and enables PLL to generate output clock based on input clock.
  1562. */
  1563. int snd_soc_dai_set_pll(struct snd_soc_dai *dai,
  1564. int pll_id, unsigned int freq_in, unsigned int freq_out)
  1565. {
  1566. if (dai->dai_ops.set_pll)
  1567. return dai->dai_ops.set_pll(dai, pll_id, freq_in, freq_out);
  1568. else
  1569. return -EINVAL;
  1570. }
  1571. EXPORT_SYMBOL_GPL(snd_soc_dai_set_pll);
  1572. /**
  1573. * snd_soc_dai_set_fmt - configure DAI hardware audio format.
  1574. * @dai: DAI
  1575. * @clk_id: DAI specific clock ID
  1576. * @fmt: SND_SOC_DAIFMT_ format value.
  1577. *
  1578. * Configures the DAI hardware format and clocking.
  1579. */
  1580. int snd_soc_dai_set_fmt(struct snd_soc_dai *dai, unsigned int fmt)
  1581. {
  1582. if (dai->dai_ops.set_fmt)
  1583. return dai->dai_ops.set_fmt(dai, fmt);
  1584. else
  1585. return -EINVAL;
  1586. }
  1587. EXPORT_SYMBOL_GPL(snd_soc_dai_set_fmt);
  1588. /**
  1589. * snd_soc_dai_set_tdm_slot - configure DAI TDM.
  1590. * @dai: DAI
  1591. * @mask: DAI specific mask representing used slots.
  1592. * @slots: Number of slots in use.
  1593. *
  1594. * Configures a DAI for TDM operation. Both mask and slots are codec and DAI
  1595. * specific.
  1596. */
  1597. int snd_soc_dai_set_tdm_slot(struct snd_soc_dai *dai,
  1598. unsigned int mask, int slots)
  1599. {
  1600. if (dai->dai_ops.set_sysclk)
  1601. return dai->dai_ops.set_tdm_slot(dai, mask, slots);
  1602. else
  1603. return -EINVAL;
  1604. }
  1605. EXPORT_SYMBOL_GPL(snd_soc_dai_set_tdm_slot);
  1606. /**
  1607. * snd_soc_dai_set_tristate - configure DAI system or master clock.
  1608. * @dai: DAI
  1609. * @tristate: tristate enable
  1610. *
  1611. * Tristates the DAI so that others can use it.
  1612. */
  1613. int snd_soc_dai_set_tristate(struct snd_soc_dai *dai, int tristate)
  1614. {
  1615. if (dai->dai_ops.set_sysclk)
  1616. return dai->dai_ops.set_tristate(dai, tristate);
  1617. else
  1618. return -EINVAL;
  1619. }
  1620. EXPORT_SYMBOL_GPL(snd_soc_dai_set_tristate);
  1621. /**
  1622. * snd_soc_dai_digital_mute - configure DAI system or master clock.
  1623. * @dai: DAI
  1624. * @mute: mute enable
  1625. *
  1626. * Mutes the DAI DAC.
  1627. */
  1628. int snd_soc_dai_digital_mute(struct snd_soc_dai *dai, int mute)
  1629. {
  1630. if (dai->dai_ops.digital_mute)
  1631. return dai->dai_ops.digital_mute(dai, mute);
  1632. else
  1633. return -EINVAL;
  1634. }
  1635. EXPORT_SYMBOL_GPL(snd_soc_dai_digital_mute);
  1636. static int __devinit snd_soc_init(void)
  1637. {
  1638. printk(KERN_INFO "ASoC version %s\n", SND_SOC_VERSION);
  1639. return platform_driver_register(&soc_driver);
  1640. }
  1641. static void snd_soc_exit(void)
  1642. {
  1643. platform_driver_unregister(&soc_driver);
  1644. }
  1645. module_init(snd_soc_init);
  1646. module_exit(snd_soc_exit);
  1647. /* Module information */
  1648. MODULE_AUTHOR("Liam Girdwood, liam.girdwood@wolfsonmicro.com, www.wolfsonmicro.com");
  1649. MODULE_DESCRIPTION("ALSA SoC Core");
  1650. MODULE_LICENSE("GPL");
  1651. MODULE_ALIAS("platform:soc-audio");