intel_dp.c 45 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730
  1. /*
  2. * Copyright © 2008 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Keith Packard <keithp@keithp.com>
  25. *
  26. */
  27. #include <linux/i2c.h>
  28. #include <linux/slab.h>
  29. #include "drmP.h"
  30. #include "drm.h"
  31. #include "drm_crtc.h"
  32. #include "drm_crtc_helper.h"
  33. #include "intel_drv.h"
  34. #include "i915_drm.h"
  35. #include "i915_drv.h"
  36. #include "drm_dp_helper.h"
  37. #define DP_LINK_STATUS_SIZE 6
  38. #define DP_LINK_CHECK_TIMEOUT (10 * 1000)
  39. #define DP_LINK_CONFIGURATION_SIZE 9
  40. #define IS_eDP(i) ((i)->base.type == INTEL_OUTPUT_EDP)
  41. #define IS_PCH_eDP(i) ((i)->is_pch_edp)
  42. struct intel_dp {
  43. struct intel_encoder base;
  44. uint32_t output_reg;
  45. uint32_t DP;
  46. uint8_t link_configuration[DP_LINK_CONFIGURATION_SIZE];
  47. bool has_audio;
  48. int dpms_mode;
  49. uint8_t link_bw;
  50. uint8_t lane_count;
  51. uint8_t dpcd[4];
  52. struct i2c_adapter adapter;
  53. struct i2c_algo_dp_aux_data algo;
  54. bool is_pch_edp;
  55. uint8_t train_set[4];
  56. uint8_t link_status[DP_LINK_STATUS_SIZE];
  57. };
  58. static struct intel_dp *enc_to_intel_dp(struct drm_encoder *encoder)
  59. {
  60. return container_of(encoder, struct intel_dp, base.base);
  61. }
  62. static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
  63. {
  64. return container_of(intel_attached_encoder(connector),
  65. struct intel_dp, base);
  66. }
  67. static void intel_dp_start_link_train(struct intel_dp *intel_dp);
  68. static void intel_dp_complete_link_train(struct intel_dp *intel_dp);
  69. static void intel_dp_link_down(struct intel_dp *intel_dp);
  70. void
  71. intel_edp_link_config (struct intel_encoder *intel_encoder,
  72. int *lane_num, int *link_bw)
  73. {
  74. struct intel_dp *intel_dp = container_of(intel_encoder, struct intel_dp, base);
  75. *lane_num = intel_dp->lane_count;
  76. if (intel_dp->link_bw == DP_LINK_BW_1_62)
  77. *link_bw = 162000;
  78. else if (intel_dp->link_bw == DP_LINK_BW_2_7)
  79. *link_bw = 270000;
  80. }
  81. static int
  82. intel_dp_max_lane_count(struct intel_dp *intel_dp)
  83. {
  84. int max_lane_count = 4;
  85. if (intel_dp->dpcd[0] >= 0x11) {
  86. max_lane_count = intel_dp->dpcd[2] & 0x1f;
  87. switch (max_lane_count) {
  88. case 1: case 2: case 4:
  89. break;
  90. default:
  91. max_lane_count = 4;
  92. }
  93. }
  94. return max_lane_count;
  95. }
  96. static int
  97. intel_dp_max_link_bw(struct intel_dp *intel_dp)
  98. {
  99. int max_link_bw = intel_dp->dpcd[1];
  100. switch (max_link_bw) {
  101. case DP_LINK_BW_1_62:
  102. case DP_LINK_BW_2_7:
  103. break;
  104. default:
  105. max_link_bw = DP_LINK_BW_1_62;
  106. break;
  107. }
  108. return max_link_bw;
  109. }
  110. static int
  111. intel_dp_link_clock(uint8_t link_bw)
  112. {
  113. if (link_bw == DP_LINK_BW_2_7)
  114. return 270000;
  115. else
  116. return 162000;
  117. }
  118. /* I think this is a fiction */
  119. static int
  120. intel_dp_link_required(struct drm_device *dev, struct intel_dp *intel_dp, int pixel_clock)
  121. {
  122. struct drm_i915_private *dev_priv = dev->dev_private;
  123. if (IS_eDP(intel_dp) || IS_PCH_eDP(intel_dp))
  124. return (pixel_clock * dev_priv->edp_bpp) / 8;
  125. else
  126. return pixel_clock * 3;
  127. }
  128. static int
  129. intel_dp_max_data_rate(int max_link_clock, int max_lanes)
  130. {
  131. return (max_link_clock * max_lanes * 8) / 10;
  132. }
  133. static int
  134. intel_dp_mode_valid(struct drm_connector *connector,
  135. struct drm_display_mode *mode)
  136. {
  137. struct intel_dp *intel_dp = intel_attached_dp(connector);
  138. struct drm_device *dev = connector->dev;
  139. struct drm_i915_private *dev_priv = dev->dev_private;
  140. int max_link_clock = intel_dp_link_clock(intel_dp_max_link_bw(intel_dp));
  141. int max_lanes = intel_dp_max_lane_count(intel_dp);
  142. if ((IS_eDP(intel_dp) || IS_PCH_eDP(intel_dp)) &&
  143. dev_priv->panel_fixed_mode) {
  144. if (mode->hdisplay > dev_priv->panel_fixed_mode->hdisplay)
  145. return MODE_PANEL;
  146. if (mode->vdisplay > dev_priv->panel_fixed_mode->vdisplay)
  147. return MODE_PANEL;
  148. }
  149. /* only refuse the mode on non eDP since we have seen some wierd eDP panels
  150. which are outside spec tolerances but somehow work by magic */
  151. if (!IS_eDP(intel_dp) &&
  152. (intel_dp_link_required(connector->dev, intel_dp, mode->clock)
  153. > intel_dp_max_data_rate(max_link_clock, max_lanes)))
  154. return MODE_CLOCK_HIGH;
  155. if (mode->clock < 10000)
  156. return MODE_CLOCK_LOW;
  157. return MODE_OK;
  158. }
  159. static uint32_t
  160. pack_aux(uint8_t *src, int src_bytes)
  161. {
  162. int i;
  163. uint32_t v = 0;
  164. if (src_bytes > 4)
  165. src_bytes = 4;
  166. for (i = 0; i < src_bytes; i++)
  167. v |= ((uint32_t) src[i]) << ((3-i) * 8);
  168. return v;
  169. }
  170. static void
  171. unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
  172. {
  173. int i;
  174. if (dst_bytes > 4)
  175. dst_bytes = 4;
  176. for (i = 0; i < dst_bytes; i++)
  177. dst[i] = src >> ((3-i) * 8);
  178. }
  179. /* hrawclock is 1/4 the FSB frequency */
  180. static int
  181. intel_hrawclk(struct drm_device *dev)
  182. {
  183. struct drm_i915_private *dev_priv = dev->dev_private;
  184. uint32_t clkcfg;
  185. clkcfg = I915_READ(CLKCFG);
  186. switch (clkcfg & CLKCFG_FSB_MASK) {
  187. case CLKCFG_FSB_400:
  188. return 100;
  189. case CLKCFG_FSB_533:
  190. return 133;
  191. case CLKCFG_FSB_667:
  192. return 166;
  193. case CLKCFG_FSB_800:
  194. return 200;
  195. case CLKCFG_FSB_1067:
  196. return 266;
  197. case CLKCFG_FSB_1333:
  198. return 333;
  199. /* these two are just a guess; one of them might be right */
  200. case CLKCFG_FSB_1600:
  201. case CLKCFG_FSB_1600_ALT:
  202. return 400;
  203. default:
  204. return 133;
  205. }
  206. }
  207. static int
  208. intel_dp_aux_ch(struct intel_dp *intel_dp,
  209. uint8_t *send, int send_bytes,
  210. uint8_t *recv, int recv_size)
  211. {
  212. uint32_t output_reg = intel_dp->output_reg;
  213. struct drm_device *dev = intel_dp->base.base.dev;
  214. struct drm_i915_private *dev_priv = dev->dev_private;
  215. uint32_t ch_ctl = output_reg + 0x10;
  216. uint32_t ch_data = ch_ctl + 4;
  217. int i;
  218. int recv_bytes;
  219. uint32_t status;
  220. uint32_t aux_clock_divider;
  221. int try, precharge;
  222. /* The clock divider is based off the hrawclk,
  223. * and would like to run at 2MHz. So, take the
  224. * hrawclk value and divide by 2 and use that
  225. *
  226. * Note that PCH attached eDP panels should use a 125MHz input
  227. * clock divider.
  228. */
  229. if (IS_eDP(intel_dp) && !IS_PCH_eDP(intel_dp)) {
  230. if (IS_GEN6(dev))
  231. aux_clock_divider = 200; /* SNB eDP input clock at 400Mhz */
  232. else
  233. aux_clock_divider = 225; /* eDP input clock at 450Mhz */
  234. } else if (HAS_PCH_SPLIT(dev))
  235. aux_clock_divider = 62; /* IRL input clock fixed at 125Mhz */
  236. else
  237. aux_clock_divider = intel_hrawclk(dev) / 2;
  238. if (IS_GEN6(dev))
  239. precharge = 3;
  240. else
  241. precharge = 5;
  242. if (I915_READ(ch_ctl) & DP_AUX_CH_CTL_SEND_BUSY) {
  243. DRM_ERROR("dp_aux_ch not started status 0x%08x\n",
  244. I915_READ(ch_ctl));
  245. return -EBUSY;
  246. }
  247. /* Must try at least 3 times according to DP spec */
  248. for (try = 0; try < 5; try++) {
  249. /* Load the send data into the aux channel data registers */
  250. for (i = 0; i < send_bytes; i += 4)
  251. I915_WRITE(ch_data + i,
  252. pack_aux(send + i, send_bytes - i));
  253. /* Send the command and wait for it to complete */
  254. I915_WRITE(ch_ctl,
  255. DP_AUX_CH_CTL_SEND_BUSY |
  256. DP_AUX_CH_CTL_TIME_OUT_400us |
  257. (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
  258. (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
  259. (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT) |
  260. DP_AUX_CH_CTL_DONE |
  261. DP_AUX_CH_CTL_TIME_OUT_ERROR |
  262. DP_AUX_CH_CTL_RECEIVE_ERROR);
  263. for (;;) {
  264. status = I915_READ(ch_ctl);
  265. if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
  266. break;
  267. udelay(100);
  268. }
  269. /* Clear done status and any errors */
  270. I915_WRITE(ch_ctl,
  271. status |
  272. DP_AUX_CH_CTL_DONE |
  273. DP_AUX_CH_CTL_TIME_OUT_ERROR |
  274. DP_AUX_CH_CTL_RECEIVE_ERROR);
  275. if (status & DP_AUX_CH_CTL_DONE)
  276. break;
  277. }
  278. if ((status & DP_AUX_CH_CTL_DONE) == 0) {
  279. DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
  280. return -EBUSY;
  281. }
  282. /* Check for timeout or receive error.
  283. * Timeouts occur when the sink is not connected
  284. */
  285. if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
  286. DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
  287. return -EIO;
  288. }
  289. /* Timeouts occur when the device isn't connected, so they're
  290. * "normal" -- don't fill the kernel log with these */
  291. if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
  292. DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
  293. return -ETIMEDOUT;
  294. }
  295. /* Unload any bytes sent back from the other side */
  296. recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
  297. DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
  298. if (recv_bytes > recv_size)
  299. recv_bytes = recv_size;
  300. for (i = 0; i < recv_bytes; i += 4)
  301. unpack_aux(I915_READ(ch_data + i),
  302. recv + i, recv_bytes - i);
  303. return recv_bytes;
  304. }
  305. /* Write data to the aux channel in native mode */
  306. static int
  307. intel_dp_aux_native_write(struct intel_dp *intel_dp,
  308. uint16_t address, uint8_t *send, int send_bytes)
  309. {
  310. int ret;
  311. uint8_t msg[20];
  312. int msg_bytes;
  313. uint8_t ack;
  314. if (send_bytes > 16)
  315. return -1;
  316. msg[0] = AUX_NATIVE_WRITE << 4;
  317. msg[1] = address >> 8;
  318. msg[2] = address & 0xff;
  319. msg[3] = send_bytes - 1;
  320. memcpy(&msg[4], send, send_bytes);
  321. msg_bytes = send_bytes + 4;
  322. for (;;) {
  323. ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes, &ack, 1);
  324. if (ret < 0)
  325. return ret;
  326. if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK)
  327. break;
  328. else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
  329. udelay(100);
  330. else
  331. return -EIO;
  332. }
  333. return send_bytes;
  334. }
  335. /* Write a single byte to the aux channel in native mode */
  336. static int
  337. intel_dp_aux_native_write_1(struct intel_dp *intel_dp,
  338. uint16_t address, uint8_t byte)
  339. {
  340. return intel_dp_aux_native_write(intel_dp, address, &byte, 1);
  341. }
  342. /* read bytes from a native aux channel */
  343. static int
  344. intel_dp_aux_native_read(struct intel_dp *intel_dp,
  345. uint16_t address, uint8_t *recv, int recv_bytes)
  346. {
  347. uint8_t msg[4];
  348. int msg_bytes;
  349. uint8_t reply[20];
  350. int reply_bytes;
  351. uint8_t ack;
  352. int ret;
  353. msg[0] = AUX_NATIVE_READ << 4;
  354. msg[1] = address >> 8;
  355. msg[2] = address & 0xff;
  356. msg[3] = recv_bytes - 1;
  357. msg_bytes = 4;
  358. reply_bytes = recv_bytes + 1;
  359. for (;;) {
  360. ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes,
  361. reply, reply_bytes);
  362. if (ret == 0)
  363. return -EPROTO;
  364. if (ret < 0)
  365. return ret;
  366. ack = reply[0];
  367. if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK) {
  368. memcpy(recv, reply + 1, ret - 1);
  369. return ret - 1;
  370. }
  371. else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
  372. udelay(100);
  373. else
  374. return -EIO;
  375. }
  376. }
  377. static int
  378. intel_dp_i2c_aux_ch(struct i2c_adapter *adapter, int mode,
  379. uint8_t write_byte, uint8_t *read_byte)
  380. {
  381. struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
  382. struct intel_dp *intel_dp = container_of(adapter,
  383. struct intel_dp,
  384. adapter);
  385. uint16_t address = algo_data->address;
  386. uint8_t msg[5];
  387. uint8_t reply[2];
  388. int msg_bytes;
  389. int reply_bytes;
  390. int ret;
  391. /* Set up the command byte */
  392. if (mode & MODE_I2C_READ)
  393. msg[0] = AUX_I2C_READ << 4;
  394. else
  395. msg[0] = AUX_I2C_WRITE << 4;
  396. if (!(mode & MODE_I2C_STOP))
  397. msg[0] |= AUX_I2C_MOT << 4;
  398. msg[1] = address >> 8;
  399. msg[2] = address;
  400. switch (mode) {
  401. case MODE_I2C_WRITE:
  402. msg[3] = 0;
  403. msg[4] = write_byte;
  404. msg_bytes = 5;
  405. reply_bytes = 1;
  406. break;
  407. case MODE_I2C_READ:
  408. msg[3] = 0;
  409. msg_bytes = 4;
  410. reply_bytes = 2;
  411. break;
  412. default:
  413. msg_bytes = 3;
  414. reply_bytes = 1;
  415. break;
  416. }
  417. for (;;) {
  418. ret = intel_dp_aux_ch(intel_dp,
  419. msg, msg_bytes,
  420. reply, reply_bytes);
  421. if (ret < 0) {
  422. DRM_DEBUG_KMS("aux_ch failed %d\n", ret);
  423. return ret;
  424. }
  425. switch (reply[0] & AUX_I2C_REPLY_MASK) {
  426. case AUX_I2C_REPLY_ACK:
  427. if (mode == MODE_I2C_READ) {
  428. *read_byte = reply[1];
  429. }
  430. return reply_bytes - 1;
  431. case AUX_I2C_REPLY_NACK:
  432. DRM_DEBUG_KMS("aux_ch nack\n");
  433. return -EREMOTEIO;
  434. case AUX_I2C_REPLY_DEFER:
  435. DRM_DEBUG_KMS("aux_ch defer\n");
  436. udelay(100);
  437. break;
  438. default:
  439. DRM_ERROR("aux_ch invalid reply 0x%02x\n", reply[0]);
  440. return -EREMOTEIO;
  441. }
  442. }
  443. }
  444. static int
  445. intel_dp_i2c_init(struct intel_dp *intel_dp,
  446. struct intel_connector *intel_connector, const char *name)
  447. {
  448. DRM_DEBUG_KMS("i2c_init %s\n", name);
  449. intel_dp->algo.running = false;
  450. intel_dp->algo.address = 0;
  451. intel_dp->algo.aux_ch = intel_dp_i2c_aux_ch;
  452. memset(&intel_dp->adapter, '\0', sizeof (intel_dp->adapter));
  453. intel_dp->adapter.owner = THIS_MODULE;
  454. intel_dp->adapter.class = I2C_CLASS_DDC;
  455. strncpy (intel_dp->adapter.name, name, sizeof(intel_dp->adapter.name) - 1);
  456. intel_dp->adapter.name[sizeof(intel_dp->adapter.name) - 1] = '\0';
  457. intel_dp->adapter.algo_data = &intel_dp->algo;
  458. intel_dp->adapter.dev.parent = &intel_connector->base.kdev;
  459. return i2c_dp_aux_add_bus(&intel_dp->adapter);
  460. }
  461. static bool
  462. intel_dp_mode_fixup(struct drm_encoder *encoder, struct drm_display_mode *mode,
  463. struct drm_display_mode *adjusted_mode)
  464. {
  465. struct drm_device *dev = encoder->dev;
  466. struct drm_i915_private *dev_priv = dev->dev_private;
  467. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  468. int lane_count, clock;
  469. int max_lane_count = intel_dp_max_lane_count(intel_dp);
  470. int max_clock = intel_dp_max_link_bw(intel_dp) == DP_LINK_BW_2_7 ? 1 : 0;
  471. static int bws[2] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7 };
  472. if ((IS_eDP(intel_dp) || IS_PCH_eDP(intel_dp)) &&
  473. dev_priv->panel_fixed_mode) {
  474. intel_fixed_panel_mode(dev_priv->panel_fixed_mode, adjusted_mode);
  475. intel_pch_panel_fitting(dev, DRM_MODE_SCALE_FULLSCREEN,
  476. mode, adjusted_mode);
  477. /*
  478. * the mode->clock is used to calculate the Data&Link M/N
  479. * of the pipe. For the eDP the fixed clock should be used.
  480. */
  481. mode->clock = dev_priv->panel_fixed_mode->clock;
  482. }
  483. for (lane_count = 1; lane_count <= max_lane_count; lane_count <<= 1) {
  484. for (clock = 0; clock <= max_clock; clock++) {
  485. int link_avail = intel_dp_max_data_rate(intel_dp_link_clock(bws[clock]), lane_count);
  486. if (intel_dp_link_required(encoder->dev, intel_dp, mode->clock)
  487. <= link_avail) {
  488. intel_dp->link_bw = bws[clock];
  489. intel_dp->lane_count = lane_count;
  490. adjusted_mode->clock = intel_dp_link_clock(intel_dp->link_bw);
  491. DRM_DEBUG_KMS("Display port link bw %02x lane "
  492. "count %d clock %d\n",
  493. intel_dp->link_bw, intel_dp->lane_count,
  494. adjusted_mode->clock);
  495. return true;
  496. }
  497. }
  498. }
  499. if (IS_eDP(intel_dp) || IS_PCH_eDP(intel_dp)) {
  500. /* okay we failed just pick the highest */
  501. intel_dp->lane_count = max_lane_count;
  502. intel_dp->link_bw = bws[max_clock];
  503. adjusted_mode->clock = intel_dp_link_clock(intel_dp->link_bw);
  504. DRM_DEBUG_KMS("Force picking display port link bw %02x lane "
  505. "count %d clock %d\n",
  506. intel_dp->link_bw, intel_dp->lane_count,
  507. adjusted_mode->clock);
  508. return true;
  509. }
  510. return false;
  511. }
  512. struct intel_dp_m_n {
  513. uint32_t tu;
  514. uint32_t gmch_m;
  515. uint32_t gmch_n;
  516. uint32_t link_m;
  517. uint32_t link_n;
  518. };
  519. static void
  520. intel_reduce_ratio(uint32_t *num, uint32_t *den)
  521. {
  522. while (*num > 0xffffff || *den > 0xffffff) {
  523. *num >>= 1;
  524. *den >>= 1;
  525. }
  526. }
  527. static void
  528. intel_dp_compute_m_n(int bpp,
  529. int nlanes,
  530. int pixel_clock,
  531. int link_clock,
  532. struct intel_dp_m_n *m_n)
  533. {
  534. m_n->tu = 64;
  535. m_n->gmch_m = (pixel_clock * bpp) >> 3;
  536. m_n->gmch_n = link_clock * nlanes;
  537. intel_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
  538. m_n->link_m = pixel_clock;
  539. m_n->link_n = link_clock;
  540. intel_reduce_ratio(&m_n->link_m, &m_n->link_n);
  541. }
  542. bool intel_pch_has_edp(struct drm_crtc *crtc)
  543. {
  544. struct drm_device *dev = crtc->dev;
  545. struct drm_mode_config *mode_config = &dev->mode_config;
  546. struct drm_encoder *encoder;
  547. list_for_each_entry(encoder, &mode_config->encoder_list, head) {
  548. struct intel_dp *intel_dp;
  549. if (encoder->crtc != crtc)
  550. continue;
  551. intel_dp = enc_to_intel_dp(encoder);
  552. if (intel_dp->base.type == INTEL_OUTPUT_DISPLAYPORT)
  553. return intel_dp->is_pch_edp;
  554. }
  555. return false;
  556. }
  557. void
  558. intel_dp_set_m_n(struct drm_crtc *crtc, struct drm_display_mode *mode,
  559. struct drm_display_mode *adjusted_mode)
  560. {
  561. struct drm_device *dev = crtc->dev;
  562. struct drm_mode_config *mode_config = &dev->mode_config;
  563. struct drm_encoder *encoder;
  564. struct drm_i915_private *dev_priv = dev->dev_private;
  565. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  566. int lane_count = 4, bpp = 24;
  567. struct intel_dp_m_n m_n;
  568. /*
  569. * Find the lane count in the intel_encoder private
  570. */
  571. list_for_each_entry(encoder, &mode_config->encoder_list, head) {
  572. struct intel_dp *intel_dp;
  573. if (encoder->crtc != crtc)
  574. continue;
  575. intel_dp = enc_to_intel_dp(encoder);
  576. if (intel_dp->base.type == INTEL_OUTPUT_DISPLAYPORT) {
  577. lane_count = intel_dp->lane_count;
  578. if (IS_PCH_eDP(intel_dp))
  579. bpp = dev_priv->edp_bpp;
  580. break;
  581. }
  582. }
  583. /*
  584. * Compute the GMCH and Link ratios. The '3' here is
  585. * the number of bytes_per_pixel post-LUT, which we always
  586. * set up for 8-bits of R/G/B, or 3 bytes total.
  587. */
  588. intel_dp_compute_m_n(bpp, lane_count,
  589. mode->clock, adjusted_mode->clock, &m_n);
  590. if (HAS_PCH_SPLIT(dev)) {
  591. if (intel_crtc->pipe == 0) {
  592. I915_WRITE(TRANSA_DATA_M1,
  593. ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
  594. m_n.gmch_m);
  595. I915_WRITE(TRANSA_DATA_N1, m_n.gmch_n);
  596. I915_WRITE(TRANSA_DP_LINK_M1, m_n.link_m);
  597. I915_WRITE(TRANSA_DP_LINK_N1, m_n.link_n);
  598. } else {
  599. I915_WRITE(TRANSB_DATA_M1,
  600. ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
  601. m_n.gmch_m);
  602. I915_WRITE(TRANSB_DATA_N1, m_n.gmch_n);
  603. I915_WRITE(TRANSB_DP_LINK_M1, m_n.link_m);
  604. I915_WRITE(TRANSB_DP_LINK_N1, m_n.link_n);
  605. }
  606. } else {
  607. if (intel_crtc->pipe == 0) {
  608. I915_WRITE(PIPEA_GMCH_DATA_M,
  609. ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
  610. m_n.gmch_m);
  611. I915_WRITE(PIPEA_GMCH_DATA_N,
  612. m_n.gmch_n);
  613. I915_WRITE(PIPEA_DP_LINK_M, m_n.link_m);
  614. I915_WRITE(PIPEA_DP_LINK_N, m_n.link_n);
  615. } else {
  616. I915_WRITE(PIPEB_GMCH_DATA_M,
  617. ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
  618. m_n.gmch_m);
  619. I915_WRITE(PIPEB_GMCH_DATA_N,
  620. m_n.gmch_n);
  621. I915_WRITE(PIPEB_DP_LINK_M, m_n.link_m);
  622. I915_WRITE(PIPEB_DP_LINK_N, m_n.link_n);
  623. }
  624. }
  625. }
  626. static void
  627. intel_dp_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode,
  628. struct drm_display_mode *adjusted_mode)
  629. {
  630. struct drm_device *dev = encoder->dev;
  631. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  632. struct drm_crtc *crtc = intel_dp->base.base.crtc;
  633. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  634. intel_dp->DP = (DP_VOLTAGE_0_4 |
  635. DP_PRE_EMPHASIS_0);
  636. if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
  637. intel_dp->DP |= DP_SYNC_HS_HIGH;
  638. if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
  639. intel_dp->DP |= DP_SYNC_VS_HIGH;
  640. if (HAS_PCH_CPT(dev) && !IS_eDP(intel_dp))
  641. intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
  642. else
  643. intel_dp->DP |= DP_LINK_TRAIN_OFF;
  644. switch (intel_dp->lane_count) {
  645. case 1:
  646. intel_dp->DP |= DP_PORT_WIDTH_1;
  647. break;
  648. case 2:
  649. intel_dp->DP |= DP_PORT_WIDTH_2;
  650. break;
  651. case 4:
  652. intel_dp->DP |= DP_PORT_WIDTH_4;
  653. break;
  654. }
  655. if (intel_dp->has_audio)
  656. intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
  657. memset(intel_dp->link_configuration, 0, DP_LINK_CONFIGURATION_SIZE);
  658. intel_dp->link_configuration[0] = intel_dp->link_bw;
  659. intel_dp->link_configuration[1] = intel_dp->lane_count;
  660. /*
  661. * Check for DPCD version > 1.1 and enhanced framing support
  662. */
  663. if (intel_dp->dpcd[0] >= 0x11 && (intel_dp->dpcd[2] & DP_ENHANCED_FRAME_CAP)) {
  664. intel_dp->link_configuration[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
  665. intel_dp->DP |= DP_ENHANCED_FRAMING;
  666. }
  667. /* CPT DP's pipe select is decided in TRANS_DP_CTL */
  668. if (intel_crtc->pipe == 1 && !HAS_PCH_CPT(dev))
  669. intel_dp->DP |= DP_PIPEB_SELECT;
  670. if (IS_eDP(intel_dp)) {
  671. /* don't miss out required setting for eDP */
  672. intel_dp->DP |= DP_PLL_ENABLE;
  673. if (adjusted_mode->clock < 200000)
  674. intel_dp->DP |= DP_PLL_FREQ_160MHZ;
  675. else
  676. intel_dp->DP |= DP_PLL_FREQ_270MHZ;
  677. }
  678. }
  679. /* Returns true if the panel was already on when called */
  680. static bool ironlake_edp_panel_on (struct drm_device *dev)
  681. {
  682. struct drm_i915_private *dev_priv = dev->dev_private;
  683. u32 pp;
  684. if (I915_READ(PCH_PP_STATUS) & PP_ON)
  685. return true;
  686. pp = I915_READ(PCH_PP_CONTROL);
  687. /* ILK workaround: disable reset around power sequence */
  688. pp &= ~PANEL_POWER_RESET;
  689. I915_WRITE(PCH_PP_CONTROL, pp);
  690. POSTING_READ(PCH_PP_CONTROL);
  691. pp |= POWER_TARGET_ON;
  692. I915_WRITE(PCH_PP_CONTROL, pp);
  693. if (wait_for(I915_READ(PCH_PP_STATUS) & PP_ON, 5000))
  694. DRM_ERROR("panel on wait timed out: 0x%08x\n",
  695. I915_READ(PCH_PP_STATUS));
  696. pp &= ~(PANEL_UNLOCK_REGS);
  697. pp |= PANEL_POWER_RESET; /* restore panel reset bit */
  698. I915_WRITE(PCH_PP_CONTROL, pp);
  699. POSTING_READ(PCH_PP_CONTROL);
  700. return false;
  701. }
  702. static void ironlake_edp_panel_off (struct drm_device *dev)
  703. {
  704. struct drm_i915_private *dev_priv = dev->dev_private;
  705. u32 pp;
  706. pp = I915_READ(PCH_PP_CONTROL);
  707. /* ILK workaround: disable reset around power sequence */
  708. pp &= ~PANEL_POWER_RESET;
  709. I915_WRITE(PCH_PP_CONTROL, pp);
  710. POSTING_READ(PCH_PP_CONTROL);
  711. pp &= ~POWER_TARGET_ON;
  712. I915_WRITE(PCH_PP_CONTROL, pp);
  713. if (wait_for((I915_READ(PCH_PP_STATUS) & PP_ON) == 0, 5000))
  714. DRM_ERROR("panel off wait timed out: 0x%08x\n",
  715. I915_READ(PCH_PP_STATUS));
  716. /* Make sure VDD is enabled so DP AUX will work */
  717. pp |= PANEL_POWER_RESET; /* restore panel reset bit */
  718. I915_WRITE(PCH_PP_CONTROL, pp);
  719. POSTING_READ(PCH_PP_CONTROL);
  720. }
  721. static void ironlake_edp_panel_vdd_on(struct drm_device *dev)
  722. {
  723. struct drm_i915_private *dev_priv = dev->dev_private;
  724. u32 pp;
  725. pp = I915_READ(PCH_PP_CONTROL);
  726. pp |= EDP_FORCE_VDD;
  727. I915_WRITE(PCH_PP_CONTROL, pp);
  728. POSTING_READ(PCH_PP_CONTROL);
  729. msleep(300);
  730. }
  731. static void ironlake_edp_panel_vdd_off(struct drm_device *dev)
  732. {
  733. struct drm_i915_private *dev_priv = dev->dev_private;
  734. u32 pp;
  735. pp = I915_READ(PCH_PP_CONTROL);
  736. pp &= ~EDP_FORCE_VDD;
  737. I915_WRITE(PCH_PP_CONTROL, pp);
  738. POSTING_READ(PCH_PP_CONTROL);
  739. msleep(300);
  740. }
  741. static void ironlake_edp_backlight_on (struct drm_device *dev)
  742. {
  743. struct drm_i915_private *dev_priv = dev->dev_private;
  744. u32 pp;
  745. DRM_DEBUG_KMS("\n");
  746. pp = I915_READ(PCH_PP_CONTROL);
  747. pp |= EDP_BLC_ENABLE;
  748. I915_WRITE(PCH_PP_CONTROL, pp);
  749. }
  750. static void ironlake_edp_backlight_off (struct drm_device *dev)
  751. {
  752. struct drm_i915_private *dev_priv = dev->dev_private;
  753. u32 pp;
  754. DRM_DEBUG_KMS("\n");
  755. pp = I915_READ(PCH_PP_CONTROL);
  756. pp &= ~EDP_BLC_ENABLE;
  757. I915_WRITE(PCH_PP_CONTROL, pp);
  758. }
  759. static void ironlake_edp_pll_on(struct drm_encoder *encoder)
  760. {
  761. struct drm_device *dev = encoder->dev;
  762. struct drm_i915_private *dev_priv = dev->dev_private;
  763. u32 dpa_ctl;
  764. DRM_DEBUG_KMS("\n");
  765. dpa_ctl = I915_READ(DP_A);
  766. dpa_ctl &= ~DP_PLL_ENABLE;
  767. I915_WRITE(DP_A, dpa_ctl);
  768. }
  769. static void ironlake_edp_pll_off(struct drm_encoder *encoder)
  770. {
  771. struct drm_device *dev = encoder->dev;
  772. struct drm_i915_private *dev_priv = dev->dev_private;
  773. u32 dpa_ctl;
  774. dpa_ctl = I915_READ(DP_A);
  775. dpa_ctl |= DP_PLL_ENABLE;
  776. I915_WRITE(DP_A, dpa_ctl);
  777. POSTING_READ(DP_A);
  778. udelay(200);
  779. }
  780. static void intel_dp_prepare(struct drm_encoder *encoder)
  781. {
  782. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  783. struct drm_device *dev = encoder->dev;
  784. struct drm_i915_private *dev_priv = dev->dev_private;
  785. uint32_t dp_reg = I915_READ(intel_dp->output_reg);
  786. if (IS_eDP(intel_dp) || IS_PCH_eDP(intel_dp)) {
  787. ironlake_edp_panel_off(dev);
  788. ironlake_edp_backlight_off(dev);
  789. ironlake_edp_panel_vdd_on(dev);
  790. ironlake_edp_pll_on(encoder);
  791. }
  792. if (dp_reg & DP_PORT_EN)
  793. intel_dp_link_down(intel_dp);
  794. }
  795. static void intel_dp_commit(struct drm_encoder *encoder)
  796. {
  797. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  798. struct drm_device *dev = encoder->dev;
  799. intel_dp_start_link_train(intel_dp);
  800. if (IS_eDP(intel_dp) || IS_PCH_eDP(intel_dp))
  801. ironlake_edp_panel_on(dev);
  802. intel_dp_complete_link_train(intel_dp);
  803. if (IS_eDP(intel_dp) || IS_PCH_eDP(intel_dp))
  804. ironlake_edp_backlight_on(dev);
  805. }
  806. static void
  807. intel_dp_dpms(struct drm_encoder *encoder, int mode)
  808. {
  809. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  810. struct drm_device *dev = encoder->dev;
  811. struct drm_i915_private *dev_priv = dev->dev_private;
  812. uint32_t dp_reg = I915_READ(intel_dp->output_reg);
  813. if (mode != DRM_MODE_DPMS_ON) {
  814. if (IS_eDP(intel_dp) || IS_PCH_eDP(intel_dp)) {
  815. ironlake_edp_backlight_off(dev);
  816. ironlake_edp_panel_off(dev);
  817. }
  818. if (dp_reg & DP_PORT_EN)
  819. intel_dp_link_down(intel_dp);
  820. if (IS_eDP(intel_dp) || IS_PCH_eDP(intel_dp))
  821. ironlake_edp_pll_off(encoder);
  822. } else {
  823. if (!(dp_reg & DP_PORT_EN)) {
  824. intel_dp_start_link_train(intel_dp);
  825. if (IS_eDP(intel_dp) || IS_PCH_eDP(intel_dp))
  826. ironlake_edp_panel_on(dev);
  827. intel_dp_complete_link_train(intel_dp);
  828. if (IS_eDP(intel_dp) || IS_PCH_eDP(intel_dp))
  829. ironlake_edp_backlight_on(dev);
  830. }
  831. }
  832. intel_dp->dpms_mode = mode;
  833. }
  834. /*
  835. * Fetch AUX CH registers 0x202 - 0x207 which contain
  836. * link status information
  837. */
  838. static bool
  839. intel_dp_get_link_status(struct intel_dp *intel_dp)
  840. {
  841. int ret;
  842. ret = intel_dp_aux_native_read(intel_dp,
  843. DP_LANE0_1_STATUS,
  844. intel_dp->link_status, DP_LINK_STATUS_SIZE);
  845. if (ret != DP_LINK_STATUS_SIZE)
  846. return false;
  847. return true;
  848. }
  849. static uint8_t
  850. intel_dp_link_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
  851. int r)
  852. {
  853. return link_status[r - DP_LANE0_1_STATUS];
  854. }
  855. static uint8_t
  856. intel_get_adjust_request_voltage(uint8_t link_status[DP_LINK_STATUS_SIZE],
  857. int lane)
  858. {
  859. int i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
  860. int s = ((lane & 1) ?
  861. DP_ADJUST_VOLTAGE_SWING_LANE1_SHIFT :
  862. DP_ADJUST_VOLTAGE_SWING_LANE0_SHIFT);
  863. uint8_t l = intel_dp_link_status(link_status, i);
  864. return ((l >> s) & 3) << DP_TRAIN_VOLTAGE_SWING_SHIFT;
  865. }
  866. static uint8_t
  867. intel_get_adjust_request_pre_emphasis(uint8_t link_status[DP_LINK_STATUS_SIZE],
  868. int lane)
  869. {
  870. int i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
  871. int s = ((lane & 1) ?
  872. DP_ADJUST_PRE_EMPHASIS_LANE1_SHIFT :
  873. DP_ADJUST_PRE_EMPHASIS_LANE0_SHIFT);
  874. uint8_t l = intel_dp_link_status(link_status, i);
  875. return ((l >> s) & 3) << DP_TRAIN_PRE_EMPHASIS_SHIFT;
  876. }
  877. #if 0
  878. static char *voltage_names[] = {
  879. "0.4V", "0.6V", "0.8V", "1.2V"
  880. };
  881. static char *pre_emph_names[] = {
  882. "0dB", "3.5dB", "6dB", "9.5dB"
  883. };
  884. static char *link_train_names[] = {
  885. "pattern 1", "pattern 2", "idle", "off"
  886. };
  887. #endif
  888. /*
  889. * These are source-specific values; current Intel hardware supports
  890. * a maximum voltage of 800mV and a maximum pre-emphasis of 6dB
  891. */
  892. #define I830_DP_VOLTAGE_MAX DP_TRAIN_VOLTAGE_SWING_800
  893. static uint8_t
  894. intel_dp_pre_emphasis_max(uint8_t voltage_swing)
  895. {
  896. switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
  897. case DP_TRAIN_VOLTAGE_SWING_400:
  898. return DP_TRAIN_PRE_EMPHASIS_6;
  899. case DP_TRAIN_VOLTAGE_SWING_600:
  900. return DP_TRAIN_PRE_EMPHASIS_6;
  901. case DP_TRAIN_VOLTAGE_SWING_800:
  902. return DP_TRAIN_PRE_EMPHASIS_3_5;
  903. case DP_TRAIN_VOLTAGE_SWING_1200:
  904. default:
  905. return DP_TRAIN_PRE_EMPHASIS_0;
  906. }
  907. }
  908. static void
  909. intel_get_adjust_train(struct intel_dp *intel_dp)
  910. {
  911. uint8_t v = 0;
  912. uint8_t p = 0;
  913. int lane;
  914. for (lane = 0; lane < intel_dp->lane_count; lane++) {
  915. uint8_t this_v = intel_get_adjust_request_voltage(intel_dp->link_status, lane);
  916. uint8_t this_p = intel_get_adjust_request_pre_emphasis(intel_dp->link_status, lane);
  917. if (this_v > v)
  918. v = this_v;
  919. if (this_p > p)
  920. p = this_p;
  921. }
  922. if (v >= I830_DP_VOLTAGE_MAX)
  923. v = I830_DP_VOLTAGE_MAX | DP_TRAIN_MAX_SWING_REACHED;
  924. if (p >= intel_dp_pre_emphasis_max(v))
  925. p = intel_dp_pre_emphasis_max(v) | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
  926. for (lane = 0; lane < 4; lane++)
  927. intel_dp->train_set[lane] = v | p;
  928. }
  929. static uint32_t
  930. intel_dp_signal_levels(uint8_t train_set, int lane_count)
  931. {
  932. uint32_t signal_levels = 0;
  933. switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
  934. case DP_TRAIN_VOLTAGE_SWING_400:
  935. default:
  936. signal_levels |= DP_VOLTAGE_0_4;
  937. break;
  938. case DP_TRAIN_VOLTAGE_SWING_600:
  939. signal_levels |= DP_VOLTAGE_0_6;
  940. break;
  941. case DP_TRAIN_VOLTAGE_SWING_800:
  942. signal_levels |= DP_VOLTAGE_0_8;
  943. break;
  944. case DP_TRAIN_VOLTAGE_SWING_1200:
  945. signal_levels |= DP_VOLTAGE_1_2;
  946. break;
  947. }
  948. switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
  949. case DP_TRAIN_PRE_EMPHASIS_0:
  950. default:
  951. signal_levels |= DP_PRE_EMPHASIS_0;
  952. break;
  953. case DP_TRAIN_PRE_EMPHASIS_3_5:
  954. signal_levels |= DP_PRE_EMPHASIS_3_5;
  955. break;
  956. case DP_TRAIN_PRE_EMPHASIS_6:
  957. signal_levels |= DP_PRE_EMPHASIS_6;
  958. break;
  959. case DP_TRAIN_PRE_EMPHASIS_9_5:
  960. signal_levels |= DP_PRE_EMPHASIS_9_5;
  961. break;
  962. }
  963. return signal_levels;
  964. }
  965. /* Gen6's DP voltage swing and pre-emphasis control */
  966. static uint32_t
  967. intel_gen6_edp_signal_levels(uint8_t train_set)
  968. {
  969. switch (train_set & (DP_TRAIN_VOLTAGE_SWING_MASK|DP_TRAIN_PRE_EMPHASIS_MASK)) {
  970. case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
  971. return EDP_LINK_TRAIN_400MV_0DB_SNB_B;
  972. case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
  973. return EDP_LINK_TRAIN_400MV_6DB_SNB_B;
  974. case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
  975. return EDP_LINK_TRAIN_600MV_3_5DB_SNB_B;
  976. case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
  977. return EDP_LINK_TRAIN_800MV_0DB_SNB_B;
  978. default:
  979. DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level\n");
  980. return EDP_LINK_TRAIN_400MV_0DB_SNB_B;
  981. }
  982. }
  983. static uint8_t
  984. intel_get_lane_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
  985. int lane)
  986. {
  987. int i = DP_LANE0_1_STATUS + (lane >> 1);
  988. int s = (lane & 1) * 4;
  989. uint8_t l = intel_dp_link_status(link_status, i);
  990. return (l >> s) & 0xf;
  991. }
  992. /* Check for clock recovery is done on all channels */
  993. static bool
  994. intel_clock_recovery_ok(uint8_t link_status[DP_LINK_STATUS_SIZE], int lane_count)
  995. {
  996. int lane;
  997. uint8_t lane_status;
  998. for (lane = 0; lane < lane_count; lane++) {
  999. lane_status = intel_get_lane_status(link_status, lane);
  1000. if ((lane_status & DP_LANE_CR_DONE) == 0)
  1001. return false;
  1002. }
  1003. return true;
  1004. }
  1005. /* Check to see if channel eq is done on all channels */
  1006. #define CHANNEL_EQ_BITS (DP_LANE_CR_DONE|\
  1007. DP_LANE_CHANNEL_EQ_DONE|\
  1008. DP_LANE_SYMBOL_LOCKED)
  1009. static bool
  1010. intel_channel_eq_ok(struct intel_dp *intel_dp)
  1011. {
  1012. uint8_t lane_align;
  1013. uint8_t lane_status;
  1014. int lane;
  1015. lane_align = intel_dp_link_status(intel_dp->link_status,
  1016. DP_LANE_ALIGN_STATUS_UPDATED);
  1017. if ((lane_align & DP_INTERLANE_ALIGN_DONE) == 0)
  1018. return false;
  1019. for (lane = 0; lane < intel_dp->lane_count; lane++) {
  1020. lane_status = intel_get_lane_status(intel_dp->link_status, lane);
  1021. if ((lane_status & CHANNEL_EQ_BITS) != CHANNEL_EQ_BITS)
  1022. return false;
  1023. }
  1024. return true;
  1025. }
  1026. static bool
  1027. intel_dp_set_link_train(struct intel_dp *intel_dp,
  1028. uint32_t dp_reg_value,
  1029. uint8_t dp_train_pat,
  1030. bool first)
  1031. {
  1032. struct drm_device *dev = intel_dp->base.base.dev;
  1033. struct drm_i915_private *dev_priv = dev->dev_private;
  1034. struct intel_crtc *intel_crtc = to_intel_crtc(intel_dp->base.base.crtc);
  1035. int ret;
  1036. I915_WRITE(intel_dp->output_reg, dp_reg_value);
  1037. POSTING_READ(intel_dp->output_reg);
  1038. if (first)
  1039. intel_wait_for_vblank(dev, intel_crtc->pipe);
  1040. intel_dp_aux_native_write_1(intel_dp,
  1041. DP_TRAINING_PATTERN_SET,
  1042. dp_train_pat);
  1043. ret = intel_dp_aux_native_write(intel_dp,
  1044. DP_TRAINING_LANE0_SET, intel_dp->train_set, 4);
  1045. if (ret != 4)
  1046. return false;
  1047. return true;
  1048. }
  1049. /* Enable corresponding port and start training pattern 1 */
  1050. static void
  1051. intel_dp_start_link_train(struct intel_dp *intel_dp)
  1052. {
  1053. struct drm_device *dev = intel_dp->base.base.dev;
  1054. int i;
  1055. uint8_t voltage;
  1056. bool clock_recovery = false;
  1057. bool first = true;
  1058. int tries;
  1059. u32 reg;
  1060. uint32_t DP = intel_dp->DP;
  1061. /* Write the link configuration data */
  1062. intel_dp_aux_native_write(intel_dp, DP_LINK_BW_SET,
  1063. intel_dp->link_configuration,
  1064. DP_LINK_CONFIGURATION_SIZE);
  1065. DP |= DP_PORT_EN;
  1066. if (HAS_PCH_CPT(dev) && !IS_eDP(intel_dp))
  1067. DP &= ~DP_LINK_TRAIN_MASK_CPT;
  1068. else
  1069. DP &= ~DP_LINK_TRAIN_MASK;
  1070. memset(intel_dp->train_set, 0, 4);
  1071. voltage = 0xff;
  1072. tries = 0;
  1073. clock_recovery = false;
  1074. for (;;) {
  1075. /* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
  1076. uint32_t signal_levels;
  1077. if (IS_GEN6(dev) && IS_eDP(intel_dp)) {
  1078. signal_levels = intel_gen6_edp_signal_levels(intel_dp->train_set[0]);
  1079. DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
  1080. } else {
  1081. signal_levels = intel_dp_signal_levels(intel_dp->train_set[0], intel_dp->lane_count);
  1082. DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
  1083. }
  1084. if (HAS_PCH_CPT(dev) && !IS_eDP(intel_dp))
  1085. reg = DP | DP_LINK_TRAIN_PAT_1_CPT;
  1086. else
  1087. reg = DP | DP_LINK_TRAIN_PAT_1;
  1088. if (!intel_dp_set_link_train(intel_dp, reg,
  1089. DP_TRAINING_PATTERN_1, first))
  1090. break;
  1091. first = false;
  1092. /* Set training pattern 1 */
  1093. udelay(100);
  1094. if (!intel_dp_get_link_status(intel_dp))
  1095. break;
  1096. if (intel_clock_recovery_ok(intel_dp->link_status, intel_dp->lane_count)) {
  1097. clock_recovery = true;
  1098. break;
  1099. }
  1100. /* Check to see if we've tried the max voltage */
  1101. for (i = 0; i < intel_dp->lane_count; i++)
  1102. if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
  1103. break;
  1104. if (i == intel_dp->lane_count)
  1105. break;
  1106. /* Check to see if we've tried the same voltage 5 times */
  1107. if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
  1108. ++tries;
  1109. if (tries == 5)
  1110. break;
  1111. } else
  1112. tries = 0;
  1113. voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
  1114. /* Compute new intel_dp->train_set as requested by target */
  1115. intel_get_adjust_train(intel_dp);
  1116. }
  1117. intel_dp->DP = DP;
  1118. }
  1119. static void
  1120. intel_dp_complete_link_train(struct intel_dp *intel_dp)
  1121. {
  1122. struct drm_device *dev = intel_dp->base.base.dev;
  1123. struct drm_i915_private *dev_priv = dev->dev_private;
  1124. bool channel_eq = false;
  1125. int tries;
  1126. u32 reg;
  1127. uint32_t DP = intel_dp->DP;
  1128. /* channel equalization */
  1129. tries = 0;
  1130. channel_eq = false;
  1131. for (;;) {
  1132. /* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
  1133. uint32_t signal_levels;
  1134. if (IS_GEN6(dev) && IS_eDP(intel_dp)) {
  1135. signal_levels = intel_gen6_edp_signal_levels(intel_dp->train_set[0]);
  1136. DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
  1137. } else {
  1138. signal_levels = intel_dp_signal_levels(intel_dp->train_set[0], intel_dp->lane_count);
  1139. DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
  1140. }
  1141. if (HAS_PCH_CPT(dev) && !IS_eDP(intel_dp))
  1142. reg = DP | DP_LINK_TRAIN_PAT_2_CPT;
  1143. else
  1144. reg = DP | DP_LINK_TRAIN_PAT_2;
  1145. /* channel eq pattern */
  1146. if (!intel_dp_set_link_train(intel_dp, reg,
  1147. DP_TRAINING_PATTERN_2,
  1148. false))
  1149. break;
  1150. udelay(400);
  1151. if (!intel_dp_get_link_status(intel_dp))
  1152. break;
  1153. if (intel_channel_eq_ok(intel_dp)) {
  1154. channel_eq = true;
  1155. break;
  1156. }
  1157. /* Try 5 times */
  1158. if (tries > 5)
  1159. break;
  1160. /* Compute new intel_dp->train_set as requested by target */
  1161. intel_get_adjust_train(intel_dp);
  1162. ++tries;
  1163. }
  1164. if (HAS_PCH_CPT(dev) && !IS_eDP(intel_dp))
  1165. reg = DP | DP_LINK_TRAIN_OFF_CPT;
  1166. else
  1167. reg = DP | DP_LINK_TRAIN_OFF;
  1168. I915_WRITE(intel_dp->output_reg, reg);
  1169. POSTING_READ(intel_dp->output_reg);
  1170. intel_dp_aux_native_write_1(intel_dp,
  1171. DP_TRAINING_PATTERN_SET, DP_TRAINING_PATTERN_DISABLE);
  1172. }
  1173. static void
  1174. intel_dp_link_down(struct intel_dp *intel_dp)
  1175. {
  1176. struct drm_device *dev = intel_dp->base.base.dev;
  1177. struct drm_i915_private *dev_priv = dev->dev_private;
  1178. uint32_t DP = intel_dp->DP;
  1179. DRM_DEBUG_KMS("\n");
  1180. if (IS_eDP(intel_dp)) {
  1181. DP &= ~DP_PLL_ENABLE;
  1182. I915_WRITE(intel_dp->output_reg, DP);
  1183. POSTING_READ(intel_dp->output_reg);
  1184. udelay(100);
  1185. }
  1186. if (HAS_PCH_CPT(dev) && !IS_eDP(intel_dp)) {
  1187. DP &= ~DP_LINK_TRAIN_MASK_CPT;
  1188. I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE_CPT);
  1189. } else {
  1190. DP &= ~DP_LINK_TRAIN_MASK;
  1191. I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
  1192. }
  1193. POSTING_READ(intel_dp->output_reg);
  1194. msleep(17);
  1195. if (IS_eDP(intel_dp))
  1196. DP |= DP_LINK_TRAIN_OFF;
  1197. I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
  1198. POSTING_READ(intel_dp->output_reg);
  1199. }
  1200. /*
  1201. * According to DP spec
  1202. * 5.1.2:
  1203. * 1. Read DPCD
  1204. * 2. Configure link according to Receiver Capabilities
  1205. * 3. Use Link Training from 2.5.3.3 and 3.5.1.3
  1206. * 4. Check link status on receipt of hot-plug interrupt
  1207. */
  1208. static void
  1209. intel_dp_check_link_status(struct intel_dp *intel_dp)
  1210. {
  1211. if (!intel_dp->base.base.crtc)
  1212. return;
  1213. if (!intel_dp_get_link_status(intel_dp)) {
  1214. intel_dp_link_down(intel_dp);
  1215. return;
  1216. }
  1217. if (!intel_channel_eq_ok(intel_dp)) {
  1218. intel_dp_start_link_train(intel_dp);
  1219. intel_dp_complete_link_train(intel_dp);
  1220. }
  1221. }
  1222. static enum drm_connector_status
  1223. ironlake_dp_detect(struct drm_connector *connector)
  1224. {
  1225. struct intel_dp *intel_dp = intel_attached_dp(connector);
  1226. enum drm_connector_status status;
  1227. /* Panel needs power for AUX to work */
  1228. if (IS_eDP(intel_dp) || IS_PCH_eDP(intel_dp))
  1229. ironlake_edp_panel_vdd_on(connector->dev);
  1230. status = connector_status_disconnected;
  1231. if (intel_dp_aux_native_read(intel_dp,
  1232. 0x000, intel_dp->dpcd,
  1233. sizeof (intel_dp->dpcd)) == sizeof (intel_dp->dpcd))
  1234. {
  1235. if (intel_dp->dpcd[0] != 0)
  1236. status = connector_status_connected;
  1237. }
  1238. DRM_DEBUG_KMS("DPCD: %hx%hx%hx%hx\n", intel_dp->dpcd[0],
  1239. intel_dp->dpcd[1], intel_dp->dpcd[2], intel_dp->dpcd[3]);
  1240. if (IS_eDP(intel_dp) || IS_PCH_eDP(intel_dp))
  1241. ironlake_edp_panel_vdd_off(connector->dev);
  1242. return status;
  1243. }
  1244. /**
  1245. * Uses CRT_HOTPLUG_EN and CRT_HOTPLUG_STAT to detect DP connection.
  1246. *
  1247. * \return true if DP port is connected.
  1248. * \return false if DP port is disconnected.
  1249. */
  1250. static enum drm_connector_status
  1251. intel_dp_detect(struct drm_connector *connector)
  1252. {
  1253. struct intel_dp *intel_dp = intel_attached_dp(connector);
  1254. struct drm_device *dev = intel_dp->base.base.dev;
  1255. struct drm_i915_private *dev_priv = dev->dev_private;
  1256. uint32_t temp, bit;
  1257. enum drm_connector_status status;
  1258. intel_dp->has_audio = false;
  1259. if (HAS_PCH_SPLIT(dev))
  1260. return ironlake_dp_detect(connector);
  1261. switch (intel_dp->output_reg) {
  1262. case DP_B:
  1263. bit = DPB_HOTPLUG_INT_STATUS;
  1264. break;
  1265. case DP_C:
  1266. bit = DPC_HOTPLUG_INT_STATUS;
  1267. break;
  1268. case DP_D:
  1269. bit = DPD_HOTPLUG_INT_STATUS;
  1270. break;
  1271. default:
  1272. return connector_status_unknown;
  1273. }
  1274. temp = I915_READ(PORT_HOTPLUG_STAT);
  1275. if ((temp & bit) == 0)
  1276. return connector_status_disconnected;
  1277. status = connector_status_disconnected;
  1278. if (intel_dp_aux_native_read(intel_dp,
  1279. 0x000, intel_dp->dpcd,
  1280. sizeof (intel_dp->dpcd)) == sizeof (intel_dp->dpcd))
  1281. {
  1282. if (intel_dp->dpcd[0] != 0)
  1283. status = connector_status_connected;
  1284. }
  1285. return status;
  1286. }
  1287. static int intel_dp_get_modes(struct drm_connector *connector)
  1288. {
  1289. struct intel_dp *intel_dp = intel_attached_dp(connector);
  1290. struct drm_device *dev = intel_dp->base.base.dev;
  1291. struct drm_i915_private *dev_priv = dev->dev_private;
  1292. int ret;
  1293. /* We should parse the EDID data and find out if it has an audio sink
  1294. */
  1295. ret = intel_ddc_get_modes(connector, &intel_dp->adapter);
  1296. if (ret) {
  1297. if ((IS_eDP(intel_dp) || IS_PCH_eDP(intel_dp)) &&
  1298. !dev_priv->panel_fixed_mode) {
  1299. struct drm_display_mode *newmode;
  1300. list_for_each_entry(newmode, &connector->probed_modes,
  1301. head) {
  1302. if (newmode->type & DRM_MODE_TYPE_PREFERRED) {
  1303. dev_priv->panel_fixed_mode =
  1304. drm_mode_duplicate(dev, newmode);
  1305. break;
  1306. }
  1307. }
  1308. }
  1309. return ret;
  1310. }
  1311. /* if eDP has no EDID, try to use fixed panel mode from VBT */
  1312. if (IS_eDP(intel_dp) || IS_PCH_eDP(intel_dp)) {
  1313. if (dev_priv->panel_fixed_mode != NULL) {
  1314. struct drm_display_mode *mode;
  1315. mode = drm_mode_duplicate(dev, dev_priv->panel_fixed_mode);
  1316. drm_mode_probed_add(connector, mode);
  1317. return 1;
  1318. }
  1319. }
  1320. return 0;
  1321. }
  1322. static void
  1323. intel_dp_destroy (struct drm_connector *connector)
  1324. {
  1325. drm_sysfs_connector_remove(connector);
  1326. drm_connector_cleanup(connector);
  1327. kfree(connector);
  1328. }
  1329. static void intel_dp_encoder_destroy(struct drm_encoder *encoder)
  1330. {
  1331. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  1332. i2c_del_adapter(&intel_dp->adapter);
  1333. drm_encoder_cleanup(encoder);
  1334. kfree(intel_dp);
  1335. }
  1336. static const struct drm_encoder_helper_funcs intel_dp_helper_funcs = {
  1337. .dpms = intel_dp_dpms,
  1338. .mode_fixup = intel_dp_mode_fixup,
  1339. .prepare = intel_dp_prepare,
  1340. .mode_set = intel_dp_mode_set,
  1341. .commit = intel_dp_commit,
  1342. };
  1343. static const struct drm_connector_funcs intel_dp_connector_funcs = {
  1344. .dpms = drm_helper_connector_dpms,
  1345. .detect = intel_dp_detect,
  1346. .fill_modes = drm_helper_probe_single_connector_modes,
  1347. .destroy = intel_dp_destroy,
  1348. };
  1349. static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
  1350. .get_modes = intel_dp_get_modes,
  1351. .mode_valid = intel_dp_mode_valid,
  1352. .best_encoder = intel_best_encoder,
  1353. };
  1354. static const struct drm_encoder_funcs intel_dp_enc_funcs = {
  1355. .destroy = intel_dp_encoder_destroy,
  1356. };
  1357. static void
  1358. intel_dp_hot_plug(struct intel_encoder *intel_encoder)
  1359. {
  1360. struct intel_dp *intel_dp = container_of(intel_encoder, struct intel_dp, base);
  1361. if (intel_dp->dpms_mode == DRM_MODE_DPMS_ON)
  1362. intel_dp_check_link_status(intel_dp);
  1363. }
  1364. /* Return which DP Port should be selected for Transcoder DP control */
  1365. int
  1366. intel_trans_dp_port_sel (struct drm_crtc *crtc)
  1367. {
  1368. struct drm_device *dev = crtc->dev;
  1369. struct drm_mode_config *mode_config = &dev->mode_config;
  1370. struct drm_encoder *encoder;
  1371. list_for_each_entry(encoder, &mode_config->encoder_list, head) {
  1372. struct intel_dp *intel_dp;
  1373. if (encoder->crtc != crtc)
  1374. continue;
  1375. intel_dp = enc_to_intel_dp(encoder);
  1376. if (intel_dp->base.type == INTEL_OUTPUT_DISPLAYPORT)
  1377. return intel_dp->output_reg;
  1378. }
  1379. return -1;
  1380. }
  1381. /* check the VBT to see whether the eDP is on DP-D port */
  1382. bool intel_dpd_is_edp(struct drm_device *dev)
  1383. {
  1384. struct drm_i915_private *dev_priv = dev->dev_private;
  1385. struct child_device_config *p_child;
  1386. int i;
  1387. if (!dev_priv->child_dev_num)
  1388. return false;
  1389. for (i = 0; i < dev_priv->child_dev_num; i++) {
  1390. p_child = dev_priv->child_dev + i;
  1391. if (p_child->dvo_port == PORT_IDPD &&
  1392. p_child->device_type == DEVICE_TYPE_eDP)
  1393. return true;
  1394. }
  1395. return false;
  1396. }
  1397. void
  1398. intel_dp_init(struct drm_device *dev, int output_reg)
  1399. {
  1400. struct drm_i915_private *dev_priv = dev->dev_private;
  1401. struct drm_connector *connector;
  1402. struct intel_dp *intel_dp;
  1403. struct intel_encoder *intel_encoder;
  1404. struct intel_connector *intel_connector;
  1405. const char *name = NULL;
  1406. int type;
  1407. intel_dp = kzalloc(sizeof(struct intel_dp), GFP_KERNEL);
  1408. if (!intel_dp)
  1409. return;
  1410. intel_connector = kzalloc(sizeof(struct intel_connector), GFP_KERNEL);
  1411. if (!intel_connector) {
  1412. kfree(intel_dp);
  1413. return;
  1414. }
  1415. intel_encoder = &intel_dp->base;
  1416. if (HAS_PCH_SPLIT(dev) && output_reg == PCH_DP_D)
  1417. if (intel_dpd_is_edp(dev))
  1418. intel_dp->is_pch_edp = true;
  1419. if (output_reg == DP_A || IS_PCH_eDP(intel_dp)) {
  1420. type = DRM_MODE_CONNECTOR_eDP;
  1421. intel_encoder->type = INTEL_OUTPUT_EDP;
  1422. } else {
  1423. type = DRM_MODE_CONNECTOR_DisplayPort;
  1424. intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
  1425. }
  1426. connector = &intel_connector->base;
  1427. drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
  1428. drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
  1429. connector->polled = DRM_CONNECTOR_POLL_HPD;
  1430. if (output_reg == DP_B || output_reg == PCH_DP_B)
  1431. intel_encoder->clone_mask = (1 << INTEL_DP_B_CLONE_BIT);
  1432. else if (output_reg == DP_C || output_reg == PCH_DP_C)
  1433. intel_encoder->clone_mask = (1 << INTEL_DP_C_CLONE_BIT);
  1434. else if (output_reg == DP_D || output_reg == PCH_DP_D)
  1435. intel_encoder->clone_mask = (1 << INTEL_DP_D_CLONE_BIT);
  1436. if (IS_eDP(intel_dp))
  1437. intel_encoder->clone_mask = (1 << INTEL_EDP_CLONE_BIT);
  1438. intel_encoder->crtc_mask = (1 << 0) | (1 << 1);
  1439. connector->interlace_allowed = true;
  1440. connector->doublescan_allowed = 0;
  1441. intel_dp->output_reg = output_reg;
  1442. intel_dp->has_audio = false;
  1443. intel_dp->dpms_mode = DRM_MODE_DPMS_ON;
  1444. drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
  1445. DRM_MODE_ENCODER_TMDS);
  1446. drm_encoder_helper_add(&intel_encoder->base, &intel_dp_helper_funcs);
  1447. intel_connector_attach_encoder(intel_connector, intel_encoder);
  1448. drm_sysfs_connector_add(connector);
  1449. /* Set up the DDC bus. */
  1450. switch (output_reg) {
  1451. case DP_A:
  1452. name = "DPDDC-A";
  1453. break;
  1454. case DP_B:
  1455. case PCH_DP_B:
  1456. dev_priv->hotplug_supported_mask |=
  1457. HDMIB_HOTPLUG_INT_STATUS;
  1458. name = "DPDDC-B";
  1459. break;
  1460. case DP_C:
  1461. case PCH_DP_C:
  1462. dev_priv->hotplug_supported_mask |=
  1463. HDMIC_HOTPLUG_INT_STATUS;
  1464. name = "DPDDC-C";
  1465. break;
  1466. case DP_D:
  1467. case PCH_DP_D:
  1468. dev_priv->hotplug_supported_mask |=
  1469. HDMID_HOTPLUG_INT_STATUS;
  1470. name = "DPDDC-D";
  1471. break;
  1472. }
  1473. intel_dp_i2c_init(intel_dp, intel_connector, name);
  1474. intel_encoder->hot_plug = intel_dp_hot_plug;
  1475. if (output_reg == DP_A || IS_PCH_eDP(intel_dp)) {
  1476. /* initialize panel mode from VBT if available for eDP */
  1477. if (dev_priv->lfp_lvds_vbt_mode) {
  1478. dev_priv->panel_fixed_mode =
  1479. drm_mode_duplicate(dev, dev_priv->lfp_lvds_vbt_mode);
  1480. if (dev_priv->panel_fixed_mode) {
  1481. dev_priv->panel_fixed_mode->type |=
  1482. DRM_MODE_TYPE_PREFERRED;
  1483. }
  1484. }
  1485. }
  1486. /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
  1487. * 0xd. Failure to do so will result in spurious interrupts being
  1488. * generated on the port when a cable is not attached.
  1489. */
  1490. if (IS_G4X(dev) && !IS_GM45(dev)) {
  1491. u32 temp = I915_READ(PEG_BAND_GAP_DATA);
  1492. I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
  1493. }
  1494. }