x86.c 140 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * derived from drivers/kvm/kvm_main.c
  5. *
  6. * Copyright (C) 2006 Qumranet, Inc.
  7. * Copyright (C) 2008 Qumranet, Inc.
  8. * Copyright IBM Corporation, 2008
  9. *
  10. * Authors:
  11. * Avi Kivity <avi@qumranet.com>
  12. * Yaniv Kamay <yaniv@qumranet.com>
  13. * Amit Shah <amit.shah@qumranet.com>
  14. * Ben-Ami Yassour <benami@il.ibm.com>
  15. *
  16. * This work is licensed under the terms of the GNU GPL, version 2. See
  17. * the COPYING file in the top-level directory.
  18. *
  19. */
  20. #include <linux/kvm_host.h>
  21. #include "irq.h"
  22. #include "mmu.h"
  23. #include "i8254.h"
  24. #include "tss.h"
  25. #include "kvm_cache_regs.h"
  26. #include "x86.h"
  27. #include <linux/clocksource.h>
  28. #include <linux/interrupt.h>
  29. #include <linux/kvm.h>
  30. #include <linux/fs.h>
  31. #include <linux/vmalloc.h>
  32. #include <linux/module.h>
  33. #include <linux/mman.h>
  34. #include <linux/highmem.h>
  35. #include <linux/iommu.h>
  36. #include <linux/intel-iommu.h>
  37. #include <linux/cpufreq.h>
  38. #include <linux/user-return-notifier.h>
  39. #include <linux/srcu.h>
  40. #include <trace/events/kvm.h>
  41. #undef TRACE_INCLUDE_FILE
  42. #define CREATE_TRACE_POINTS
  43. #include "trace.h"
  44. #include <asm/debugreg.h>
  45. #include <asm/uaccess.h>
  46. #include <asm/msr.h>
  47. #include <asm/desc.h>
  48. #include <asm/mtrr.h>
  49. #include <asm/mce.h>
  50. #define MAX_IO_MSRS 256
  51. #define CR0_RESERVED_BITS \
  52. (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
  53. | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
  54. | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
  55. #define CR4_RESERVED_BITS \
  56. (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
  57. | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \
  58. | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR \
  59. | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
  60. #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
  61. #define KVM_MAX_MCE_BANKS 32
  62. #define KVM_MCE_CAP_SUPPORTED MCG_CTL_P
  63. /* EFER defaults:
  64. * - enable syscall per default because its emulated by KVM
  65. * - enable LME and LMA per default on 64 bit KVM
  66. */
  67. #ifdef CONFIG_X86_64
  68. static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffafeULL;
  69. #else
  70. static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffffeULL;
  71. #endif
  72. #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
  73. #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
  74. static void update_cr8_intercept(struct kvm_vcpu *vcpu);
  75. static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
  76. struct kvm_cpuid_entry2 __user *entries);
  77. struct kvm_x86_ops *kvm_x86_ops;
  78. EXPORT_SYMBOL_GPL(kvm_x86_ops);
  79. int ignore_msrs = 0;
  80. module_param_named(ignore_msrs, ignore_msrs, bool, S_IRUGO | S_IWUSR);
  81. #define KVM_NR_SHARED_MSRS 16
  82. struct kvm_shared_msrs_global {
  83. int nr;
  84. u32 msrs[KVM_NR_SHARED_MSRS];
  85. };
  86. struct kvm_shared_msrs {
  87. struct user_return_notifier urn;
  88. bool registered;
  89. struct kvm_shared_msr_values {
  90. u64 host;
  91. u64 curr;
  92. } values[KVM_NR_SHARED_MSRS];
  93. };
  94. static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
  95. static DEFINE_PER_CPU(struct kvm_shared_msrs, shared_msrs);
  96. struct kvm_stats_debugfs_item debugfs_entries[] = {
  97. { "pf_fixed", VCPU_STAT(pf_fixed) },
  98. { "pf_guest", VCPU_STAT(pf_guest) },
  99. { "tlb_flush", VCPU_STAT(tlb_flush) },
  100. { "invlpg", VCPU_STAT(invlpg) },
  101. { "exits", VCPU_STAT(exits) },
  102. { "io_exits", VCPU_STAT(io_exits) },
  103. { "mmio_exits", VCPU_STAT(mmio_exits) },
  104. { "signal_exits", VCPU_STAT(signal_exits) },
  105. { "irq_window", VCPU_STAT(irq_window_exits) },
  106. { "nmi_window", VCPU_STAT(nmi_window_exits) },
  107. { "halt_exits", VCPU_STAT(halt_exits) },
  108. { "halt_wakeup", VCPU_STAT(halt_wakeup) },
  109. { "hypercalls", VCPU_STAT(hypercalls) },
  110. { "request_irq", VCPU_STAT(request_irq_exits) },
  111. { "irq_exits", VCPU_STAT(irq_exits) },
  112. { "host_state_reload", VCPU_STAT(host_state_reload) },
  113. { "efer_reload", VCPU_STAT(efer_reload) },
  114. { "fpu_reload", VCPU_STAT(fpu_reload) },
  115. { "insn_emulation", VCPU_STAT(insn_emulation) },
  116. { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
  117. { "irq_injections", VCPU_STAT(irq_injections) },
  118. { "nmi_injections", VCPU_STAT(nmi_injections) },
  119. { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
  120. { "mmu_pte_write", VM_STAT(mmu_pte_write) },
  121. { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
  122. { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
  123. { "mmu_flooded", VM_STAT(mmu_flooded) },
  124. { "mmu_recycled", VM_STAT(mmu_recycled) },
  125. { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
  126. { "mmu_unsync", VM_STAT(mmu_unsync) },
  127. { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
  128. { "largepages", VM_STAT(lpages) },
  129. { NULL }
  130. };
  131. static void kvm_on_user_return(struct user_return_notifier *urn)
  132. {
  133. unsigned slot;
  134. struct kvm_shared_msrs *locals
  135. = container_of(urn, struct kvm_shared_msrs, urn);
  136. struct kvm_shared_msr_values *values;
  137. for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
  138. values = &locals->values[slot];
  139. if (values->host != values->curr) {
  140. wrmsrl(shared_msrs_global.msrs[slot], values->host);
  141. values->curr = values->host;
  142. }
  143. }
  144. locals->registered = false;
  145. user_return_notifier_unregister(urn);
  146. }
  147. static void shared_msr_update(unsigned slot, u32 msr)
  148. {
  149. struct kvm_shared_msrs *smsr;
  150. u64 value;
  151. smsr = &__get_cpu_var(shared_msrs);
  152. /* only read, and nobody should modify it at this time,
  153. * so don't need lock */
  154. if (slot >= shared_msrs_global.nr) {
  155. printk(KERN_ERR "kvm: invalid MSR slot!");
  156. return;
  157. }
  158. rdmsrl_safe(msr, &value);
  159. smsr->values[slot].host = value;
  160. smsr->values[slot].curr = value;
  161. }
  162. void kvm_define_shared_msr(unsigned slot, u32 msr)
  163. {
  164. if (slot >= shared_msrs_global.nr)
  165. shared_msrs_global.nr = slot + 1;
  166. shared_msrs_global.msrs[slot] = msr;
  167. /* we need ensured the shared_msr_global have been updated */
  168. smp_wmb();
  169. }
  170. EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
  171. static void kvm_shared_msr_cpu_online(void)
  172. {
  173. unsigned i;
  174. for (i = 0; i < shared_msrs_global.nr; ++i)
  175. shared_msr_update(i, shared_msrs_global.msrs[i]);
  176. }
  177. void kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
  178. {
  179. struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
  180. if (((value ^ smsr->values[slot].curr) & mask) == 0)
  181. return;
  182. smsr->values[slot].curr = value;
  183. wrmsrl(shared_msrs_global.msrs[slot], value);
  184. if (!smsr->registered) {
  185. smsr->urn.on_user_return = kvm_on_user_return;
  186. user_return_notifier_register(&smsr->urn);
  187. smsr->registered = true;
  188. }
  189. }
  190. EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
  191. static void drop_user_return_notifiers(void *ignore)
  192. {
  193. struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
  194. if (smsr->registered)
  195. kvm_on_user_return(&smsr->urn);
  196. }
  197. unsigned long segment_base(u16 selector)
  198. {
  199. struct descriptor_table gdt;
  200. struct desc_struct *d;
  201. unsigned long table_base;
  202. unsigned long v;
  203. if (selector == 0)
  204. return 0;
  205. kvm_get_gdt(&gdt);
  206. table_base = gdt.base;
  207. if (selector & 4) { /* from ldt */
  208. u16 ldt_selector = kvm_read_ldt();
  209. table_base = segment_base(ldt_selector);
  210. }
  211. d = (struct desc_struct *)(table_base + (selector & ~7));
  212. v = get_desc_base(d);
  213. #ifdef CONFIG_X86_64
  214. if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
  215. v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
  216. #endif
  217. return v;
  218. }
  219. EXPORT_SYMBOL_GPL(segment_base);
  220. u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
  221. {
  222. if (irqchip_in_kernel(vcpu->kvm))
  223. return vcpu->arch.apic_base;
  224. else
  225. return vcpu->arch.apic_base;
  226. }
  227. EXPORT_SYMBOL_GPL(kvm_get_apic_base);
  228. void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
  229. {
  230. /* TODO: reserve bits check */
  231. if (irqchip_in_kernel(vcpu->kvm))
  232. kvm_lapic_set_base(vcpu, data);
  233. else
  234. vcpu->arch.apic_base = data;
  235. }
  236. EXPORT_SYMBOL_GPL(kvm_set_apic_base);
  237. #define EXCPT_BENIGN 0
  238. #define EXCPT_CONTRIBUTORY 1
  239. #define EXCPT_PF 2
  240. static int exception_class(int vector)
  241. {
  242. switch (vector) {
  243. case PF_VECTOR:
  244. return EXCPT_PF;
  245. case DE_VECTOR:
  246. case TS_VECTOR:
  247. case NP_VECTOR:
  248. case SS_VECTOR:
  249. case GP_VECTOR:
  250. return EXCPT_CONTRIBUTORY;
  251. default:
  252. break;
  253. }
  254. return EXCPT_BENIGN;
  255. }
  256. static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
  257. unsigned nr, bool has_error, u32 error_code)
  258. {
  259. u32 prev_nr;
  260. int class1, class2;
  261. if (!vcpu->arch.exception.pending) {
  262. queue:
  263. vcpu->arch.exception.pending = true;
  264. vcpu->arch.exception.has_error_code = has_error;
  265. vcpu->arch.exception.nr = nr;
  266. vcpu->arch.exception.error_code = error_code;
  267. return;
  268. }
  269. /* to check exception */
  270. prev_nr = vcpu->arch.exception.nr;
  271. if (prev_nr == DF_VECTOR) {
  272. /* triple fault -> shutdown */
  273. set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
  274. return;
  275. }
  276. class1 = exception_class(prev_nr);
  277. class2 = exception_class(nr);
  278. if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
  279. || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
  280. /* generate double fault per SDM Table 5-5 */
  281. vcpu->arch.exception.pending = true;
  282. vcpu->arch.exception.has_error_code = true;
  283. vcpu->arch.exception.nr = DF_VECTOR;
  284. vcpu->arch.exception.error_code = 0;
  285. } else
  286. /* replace previous exception with a new one in a hope
  287. that instruction re-execution will regenerate lost
  288. exception */
  289. goto queue;
  290. }
  291. void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
  292. {
  293. kvm_multiple_exception(vcpu, nr, false, 0);
  294. }
  295. EXPORT_SYMBOL_GPL(kvm_queue_exception);
  296. void kvm_inject_page_fault(struct kvm_vcpu *vcpu, unsigned long addr,
  297. u32 error_code)
  298. {
  299. ++vcpu->stat.pf_guest;
  300. vcpu->arch.cr2 = addr;
  301. kvm_queue_exception_e(vcpu, PF_VECTOR, error_code);
  302. }
  303. void kvm_inject_nmi(struct kvm_vcpu *vcpu)
  304. {
  305. vcpu->arch.nmi_pending = 1;
  306. }
  307. EXPORT_SYMBOL_GPL(kvm_inject_nmi);
  308. void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
  309. {
  310. kvm_multiple_exception(vcpu, nr, true, error_code);
  311. }
  312. EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
  313. /*
  314. * Checks if cpl <= required_cpl; if true, return true. Otherwise queue
  315. * a #GP and return false.
  316. */
  317. bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
  318. {
  319. if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
  320. return true;
  321. kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
  322. return false;
  323. }
  324. EXPORT_SYMBOL_GPL(kvm_require_cpl);
  325. /*
  326. * Load the pae pdptrs. Return true is they are all valid.
  327. */
  328. int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
  329. {
  330. gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
  331. unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
  332. int i;
  333. int ret;
  334. u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
  335. ret = kvm_read_guest_page(vcpu->kvm, pdpt_gfn, pdpte,
  336. offset * sizeof(u64), sizeof(pdpte));
  337. if (ret < 0) {
  338. ret = 0;
  339. goto out;
  340. }
  341. for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
  342. if (is_present_gpte(pdpte[i]) &&
  343. (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
  344. ret = 0;
  345. goto out;
  346. }
  347. }
  348. ret = 1;
  349. memcpy(vcpu->arch.pdptrs, pdpte, sizeof(vcpu->arch.pdptrs));
  350. __set_bit(VCPU_EXREG_PDPTR,
  351. (unsigned long *)&vcpu->arch.regs_avail);
  352. __set_bit(VCPU_EXREG_PDPTR,
  353. (unsigned long *)&vcpu->arch.regs_dirty);
  354. out:
  355. return ret;
  356. }
  357. EXPORT_SYMBOL_GPL(load_pdptrs);
  358. static bool pdptrs_changed(struct kvm_vcpu *vcpu)
  359. {
  360. u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
  361. bool changed = true;
  362. int r;
  363. if (is_long_mode(vcpu) || !is_pae(vcpu))
  364. return false;
  365. if (!test_bit(VCPU_EXREG_PDPTR,
  366. (unsigned long *)&vcpu->arch.regs_avail))
  367. return true;
  368. r = kvm_read_guest(vcpu->kvm, vcpu->arch.cr3 & ~31u, pdpte, sizeof(pdpte));
  369. if (r < 0)
  370. goto out;
  371. changed = memcmp(pdpte, vcpu->arch.pdptrs, sizeof(pdpte)) != 0;
  372. out:
  373. return changed;
  374. }
  375. void kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  376. {
  377. cr0 |= X86_CR0_ET;
  378. #ifdef CONFIG_X86_64
  379. if (cr0 & 0xffffffff00000000UL) {
  380. printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
  381. cr0, kvm_read_cr0(vcpu));
  382. kvm_inject_gp(vcpu, 0);
  383. return;
  384. }
  385. #endif
  386. cr0 &= ~CR0_RESERVED_BITS;
  387. if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) {
  388. printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n");
  389. kvm_inject_gp(vcpu, 0);
  390. return;
  391. }
  392. if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) {
  393. printk(KERN_DEBUG "set_cr0: #GP, set PG flag "
  394. "and a clear PE flag\n");
  395. kvm_inject_gp(vcpu, 0);
  396. return;
  397. }
  398. if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
  399. #ifdef CONFIG_X86_64
  400. if ((vcpu->arch.efer & EFER_LME)) {
  401. int cs_db, cs_l;
  402. if (!is_pae(vcpu)) {
  403. printk(KERN_DEBUG "set_cr0: #GP, start paging "
  404. "in long mode while PAE is disabled\n");
  405. kvm_inject_gp(vcpu, 0);
  406. return;
  407. }
  408. kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  409. if (cs_l) {
  410. printk(KERN_DEBUG "set_cr0: #GP, start paging "
  411. "in long mode while CS.L == 1\n");
  412. kvm_inject_gp(vcpu, 0);
  413. return;
  414. }
  415. } else
  416. #endif
  417. if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
  418. printk(KERN_DEBUG "set_cr0: #GP, pdptrs "
  419. "reserved bits\n");
  420. kvm_inject_gp(vcpu, 0);
  421. return;
  422. }
  423. }
  424. kvm_x86_ops->set_cr0(vcpu, cr0);
  425. vcpu->arch.cr0 = cr0;
  426. kvm_mmu_reset_context(vcpu);
  427. return;
  428. }
  429. EXPORT_SYMBOL_GPL(kvm_set_cr0);
  430. void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
  431. {
  432. kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0ful) | (msw & 0x0f));
  433. }
  434. EXPORT_SYMBOL_GPL(kvm_lmsw);
  435. void kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  436. {
  437. unsigned long old_cr4 = kvm_read_cr4(vcpu);
  438. unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE;
  439. if (cr4 & CR4_RESERVED_BITS) {
  440. printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n");
  441. kvm_inject_gp(vcpu, 0);
  442. return;
  443. }
  444. if (is_long_mode(vcpu)) {
  445. if (!(cr4 & X86_CR4_PAE)) {
  446. printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while "
  447. "in long mode\n");
  448. kvm_inject_gp(vcpu, 0);
  449. return;
  450. }
  451. } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
  452. && ((cr4 ^ old_cr4) & pdptr_bits)
  453. && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
  454. printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n");
  455. kvm_inject_gp(vcpu, 0);
  456. return;
  457. }
  458. if (cr4 & X86_CR4_VMXE) {
  459. printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n");
  460. kvm_inject_gp(vcpu, 0);
  461. return;
  462. }
  463. kvm_x86_ops->set_cr4(vcpu, cr4);
  464. vcpu->arch.cr4 = cr4;
  465. vcpu->arch.mmu.base_role.cr4_pge = (cr4 & X86_CR4_PGE) && !tdp_enabled;
  466. kvm_mmu_reset_context(vcpu);
  467. }
  468. EXPORT_SYMBOL_GPL(kvm_set_cr4);
  469. void kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
  470. {
  471. if (cr3 == vcpu->arch.cr3 && !pdptrs_changed(vcpu)) {
  472. kvm_mmu_sync_roots(vcpu);
  473. kvm_mmu_flush_tlb(vcpu);
  474. return;
  475. }
  476. if (is_long_mode(vcpu)) {
  477. if (cr3 & CR3_L_MODE_RESERVED_BITS) {
  478. printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
  479. kvm_inject_gp(vcpu, 0);
  480. return;
  481. }
  482. } else {
  483. if (is_pae(vcpu)) {
  484. if (cr3 & CR3_PAE_RESERVED_BITS) {
  485. printk(KERN_DEBUG
  486. "set_cr3: #GP, reserved bits\n");
  487. kvm_inject_gp(vcpu, 0);
  488. return;
  489. }
  490. if (is_paging(vcpu) && !load_pdptrs(vcpu, cr3)) {
  491. printk(KERN_DEBUG "set_cr3: #GP, pdptrs "
  492. "reserved bits\n");
  493. kvm_inject_gp(vcpu, 0);
  494. return;
  495. }
  496. }
  497. /*
  498. * We don't check reserved bits in nonpae mode, because
  499. * this isn't enforced, and VMware depends on this.
  500. */
  501. }
  502. /*
  503. * Does the new cr3 value map to physical memory? (Note, we
  504. * catch an invalid cr3 even in real-mode, because it would
  505. * cause trouble later on when we turn on paging anyway.)
  506. *
  507. * A real CPU would silently accept an invalid cr3 and would
  508. * attempt to use it - with largely undefined (and often hard
  509. * to debug) behavior on the guest side.
  510. */
  511. if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
  512. kvm_inject_gp(vcpu, 0);
  513. else {
  514. vcpu->arch.cr3 = cr3;
  515. vcpu->arch.mmu.new_cr3(vcpu);
  516. }
  517. }
  518. EXPORT_SYMBOL_GPL(kvm_set_cr3);
  519. void kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
  520. {
  521. if (cr8 & CR8_RESERVED_BITS) {
  522. printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8);
  523. kvm_inject_gp(vcpu, 0);
  524. return;
  525. }
  526. if (irqchip_in_kernel(vcpu->kvm))
  527. kvm_lapic_set_tpr(vcpu, cr8);
  528. else
  529. vcpu->arch.cr8 = cr8;
  530. }
  531. EXPORT_SYMBOL_GPL(kvm_set_cr8);
  532. unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
  533. {
  534. if (irqchip_in_kernel(vcpu->kvm))
  535. return kvm_lapic_get_cr8(vcpu);
  536. else
  537. return vcpu->arch.cr8;
  538. }
  539. EXPORT_SYMBOL_GPL(kvm_get_cr8);
  540. static inline u32 bit(int bitno)
  541. {
  542. return 1 << (bitno & 31);
  543. }
  544. /*
  545. * List of msr numbers which we expose to userspace through KVM_GET_MSRS
  546. * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
  547. *
  548. * This list is modified at module load time to reflect the
  549. * capabilities of the host cpu. This capabilities test skips MSRs that are
  550. * kvm-specific. Those are put in the beginning of the list.
  551. */
  552. #define KVM_SAVE_MSRS_BEGIN 5
  553. static u32 msrs_to_save[] = {
  554. MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
  555. HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
  556. HV_X64_MSR_APIC_ASSIST_PAGE,
  557. MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
  558. MSR_K6_STAR,
  559. #ifdef CONFIG_X86_64
  560. MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
  561. #endif
  562. MSR_IA32_TSC, MSR_IA32_PERF_STATUS, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA
  563. };
  564. static unsigned num_msrs_to_save;
  565. static u32 emulated_msrs[] = {
  566. MSR_IA32_MISC_ENABLE,
  567. };
  568. static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
  569. {
  570. if (efer & efer_reserved_bits) {
  571. printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n",
  572. efer);
  573. kvm_inject_gp(vcpu, 0);
  574. return;
  575. }
  576. if (is_paging(vcpu)
  577. && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME)) {
  578. printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n");
  579. kvm_inject_gp(vcpu, 0);
  580. return;
  581. }
  582. if (efer & EFER_FFXSR) {
  583. struct kvm_cpuid_entry2 *feat;
  584. feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
  585. if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT))) {
  586. printk(KERN_DEBUG "set_efer: #GP, enable FFXSR w/o CPUID capability\n");
  587. kvm_inject_gp(vcpu, 0);
  588. return;
  589. }
  590. }
  591. if (efer & EFER_SVME) {
  592. struct kvm_cpuid_entry2 *feat;
  593. feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
  594. if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM))) {
  595. printk(KERN_DEBUG "set_efer: #GP, enable SVM w/o SVM\n");
  596. kvm_inject_gp(vcpu, 0);
  597. return;
  598. }
  599. }
  600. kvm_x86_ops->set_efer(vcpu, efer);
  601. efer &= ~EFER_LMA;
  602. efer |= vcpu->arch.efer & EFER_LMA;
  603. vcpu->arch.efer = efer;
  604. vcpu->arch.mmu.base_role.nxe = (efer & EFER_NX) && !tdp_enabled;
  605. kvm_mmu_reset_context(vcpu);
  606. }
  607. void kvm_enable_efer_bits(u64 mask)
  608. {
  609. efer_reserved_bits &= ~mask;
  610. }
  611. EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
  612. /*
  613. * Writes msr value into into the appropriate "register".
  614. * Returns 0 on success, non-0 otherwise.
  615. * Assumes vcpu_load() was already called.
  616. */
  617. int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  618. {
  619. return kvm_x86_ops->set_msr(vcpu, msr_index, data);
  620. }
  621. /*
  622. * Adapt set_msr() to msr_io()'s calling convention
  623. */
  624. static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
  625. {
  626. return kvm_set_msr(vcpu, index, *data);
  627. }
  628. static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
  629. {
  630. static int version;
  631. struct pvclock_wall_clock wc;
  632. struct timespec boot;
  633. if (!wall_clock)
  634. return;
  635. version++;
  636. kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
  637. /*
  638. * The guest calculates current wall clock time by adding
  639. * system time (updated by kvm_write_guest_time below) to the
  640. * wall clock specified here. guest system time equals host
  641. * system time for us, thus we must fill in host boot time here.
  642. */
  643. getboottime(&boot);
  644. wc.sec = boot.tv_sec;
  645. wc.nsec = boot.tv_nsec;
  646. wc.version = version;
  647. kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
  648. version++;
  649. kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
  650. }
  651. static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
  652. {
  653. uint32_t quotient, remainder;
  654. /* Don't try to replace with do_div(), this one calculates
  655. * "(dividend << 32) / divisor" */
  656. __asm__ ( "divl %4"
  657. : "=a" (quotient), "=d" (remainder)
  658. : "0" (0), "1" (dividend), "r" (divisor) );
  659. return quotient;
  660. }
  661. static void kvm_set_time_scale(uint32_t tsc_khz, struct pvclock_vcpu_time_info *hv_clock)
  662. {
  663. uint64_t nsecs = 1000000000LL;
  664. int32_t shift = 0;
  665. uint64_t tps64;
  666. uint32_t tps32;
  667. tps64 = tsc_khz * 1000LL;
  668. while (tps64 > nsecs*2) {
  669. tps64 >>= 1;
  670. shift--;
  671. }
  672. tps32 = (uint32_t)tps64;
  673. while (tps32 <= (uint32_t)nsecs) {
  674. tps32 <<= 1;
  675. shift++;
  676. }
  677. hv_clock->tsc_shift = shift;
  678. hv_clock->tsc_to_system_mul = div_frac(nsecs, tps32);
  679. pr_debug("%s: tsc_khz %u, tsc_shift %d, tsc_mul %u\n",
  680. __func__, tsc_khz, hv_clock->tsc_shift,
  681. hv_clock->tsc_to_system_mul);
  682. }
  683. static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
  684. static void kvm_write_guest_time(struct kvm_vcpu *v)
  685. {
  686. struct timespec ts;
  687. unsigned long flags;
  688. struct kvm_vcpu_arch *vcpu = &v->arch;
  689. void *shared_kaddr;
  690. unsigned long this_tsc_khz;
  691. if ((!vcpu->time_page))
  692. return;
  693. this_tsc_khz = get_cpu_var(cpu_tsc_khz);
  694. if (unlikely(vcpu->hv_clock_tsc_khz != this_tsc_khz)) {
  695. kvm_set_time_scale(this_tsc_khz, &vcpu->hv_clock);
  696. vcpu->hv_clock_tsc_khz = this_tsc_khz;
  697. }
  698. put_cpu_var(cpu_tsc_khz);
  699. /* Keep irq disabled to prevent changes to the clock */
  700. local_irq_save(flags);
  701. kvm_get_msr(v, MSR_IA32_TSC, &vcpu->hv_clock.tsc_timestamp);
  702. ktime_get_ts(&ts);
  703. monotonic_to_bootbased(&ts);
  704. local_irq_restore(flags);
  705. /* With all the info we got, fill in the values */
  706. vcpu->hv_clock.system_time = ts.tv_nsec +
  707. (NSEC_PER_SEC * (u64)ts.tv_sec) + v->kvm->arch.kvmclock_offset;
  708. /*
  709. * The interface expects us to write an even number signaling that the
  710. * update is finished. Since the guest won't see the intermediate
  711. * state, we just increase by 2 at the end.
  712. */
  713. vcpu->hv_clock.version += 2;
  714. shared_kaddr = kmap_atomic(vcpu->time_page, KM_USER0);
  715. memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
  716. sizeof(vcpu->hv_clock));
  717. kunmap_atomic(shared_kaddr, KM_USER0);
  718. mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
  719. }
  720. static int kvm_request_guest_time_update(struct kvm_vcpu *v)
  721. {
  722. struct kvm_vcpu_arch *vcpu = &v->arch;
  723. if (!vcpu->time_page)
  724. return 0;
  725. set_bit(KVM_REQ_KVMCLOCK_UPDATE, &v->requests);
  726. return 1;
  727. }
  728. static bool msr_mtrr_valid(unsigned msr)
  729. {
  730. switch (msr) {
  731. case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
  732. case MSR_MTRRfix64K_00000:
  733. case MSR_MTRRfix16K_80000:
  734. case MSR_MTRRfix16K_A0000:
  735. case MSR_MTRRfix4K_C0000:
  736. case MSR_MTRRfix4K_C8000:
  737. case MSR_MTRRfix4K_D0000:
  738. case MSR_MTRRfix4K_D8000:
  739. case MSR_MTRRfix4K_E0000:
  740. case MSR_MTRRfix4K_E8000:
  741. case MSR_MTRRfix4K_F0000:
  742. case MSR_MTRRfix4K_F8000:
  743. case MSR_MTRRdefType:
  744. case MSR_IA32_CR_PAT:
  745. return true;
  746. case 0x2f8:
  747. return true;
  748. }
  749. return false;
  750. }
  751. static bool valid_pat_type(unsigned t)
  752. {
  753. return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
  754. }
  755. static bool valid_mtrr_type(unsigned t)
  756. {
  757. return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
  758. }
  759. static bool mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  760. {
  761. int i;
  762. if (!msr_mtrr_valid(msr))
  763. return false;
  764. if (msr == MSR_IA32_CR_PAT) {
  765. for (i = 0; i < 8; i++)
  766. if (!valid_pat_type((data >> (i * 8)) & 0xff))
  767. return false;
  768. return true;
  769. } else if (msr == MSR_MTRRdefType) {
  770. if (data & ~0xcff)
  771. return false;
  772. return valid_mtrr_type(data & 0xff);
  773. } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
  774. for (i = 0; i < 8 ; i++)
  775. if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
  776. return false;
  777. return true;
  778. }
  779. /* variable MTRRs */
  780. return valid_mtrr_type(data & 0xff);
  781. }
  782. static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  783. {
  784. u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
  785. if (!mtrr_valid(vcpu, msr, data))
  786. return 1;
  787. if (msr == MSR_MTRRdefType) {
  788. vcpu->arch.mtrr_state.def_type = data;
  789. vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
  790. } else if (msr == MSR_MTRRfix64K_00000)
  791. p[0] = data;
  792. else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
  793. p[1 + msr - MSR_MTRRfix16K_80000] = data;
  794. else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
  795. p[3 + msr - MSR_MTRRfix4K_C0000] = data;
  796. else if (msr == MSR_IA32_CR_PAT)
  797. vcpu->arch.pat = data;
  798. else { /* Variable MTRRs */
  799. int idx, is_mtrr_mask;
  800. u64 *pt;
  801. idx = (msr - 0x200) / 2;
  802. is_mtrr_mask = msr - 0x200 - 2 * idx;
  803. if (!is_mtrr_mask)
  804. pt =
  805. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
  806. else
  807. pt =
  808. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
  809. *pt = data;
  810. }
  811. kvm_mmu_reset_context(vcpu);
  812. return 0;
  813. }
  814. static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  815. {
  816. u64 mcg_cap = vcpu->arch.mcg_cap;
  817. unsigned bank_num = mcg_cap & 0xff;
  818. switch (msr) {
  819. case MSR_IA32_MCG_STATUS:
  820. vcpu->arch.mcg_status = data;
  821. break;
  822. case MSR_IA32_MCG_CTL:
  823. if (!(mcg_cap & MCG_CTL_P))
  824. return 1;
  825. if (data != 0 && data != ~(u64)0)
  826. return -1;
  827. vcpu->arch.mcg_ctl = data;
  828. break;
  829. default:
  830. if (msr >= MSR_IA32_MC0_CTL &&
  831. msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
  832. u32 offset = msr - MSR_IA32_MC0_CTL;
  833. /* only 0 or all 1s can be written to IA32_MCi_CTL */
  834. if ((offset & 0x3) == 0 &&
  835. data != 0 && data != ~(u64)0)
  836. return -1;
  837. vcpu->arch.mce_banks[offset] = data;
  838. break;
  839. }
  840. return 1;
  841. }
  842. return 0;
  843. }
  844. static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
  845. {
  846. struct kvm *kvm = vcpu->kvm;
  847. int lm = is_long_mode(vcpu);
  848. u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
  849. : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
  850. u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
  851. : kvm->arch.xen_hvm_config.blob_size_32;
  852. u32 page_num = data & ~PAGE_MASK;
  853. u64 page_addr = data & PAGE_MASK;
  854. u8 *page;
  855. int r;
  856. r = -E2BIG;
  857. if (page_num >= blob_size)
  858. goto out;
  859. r = -ENOMEM;
  860. page = kzalloc(PAGE_SIZE, GFP_KERNEL);
  861. if (!page)
  862. goto out;
  863. r = -EFAULT;
  864. if (copy_from_user(page, blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE))
  865. goto out_free;
  866. if (kvm_write_guest(kvm, page_addr, page, PAGE_SIZE))
  867. goto out_free;
  868. r = 0;
  869. out_free:
  870. kfree(page);
  871. out:
  872. return r;
  873. }
  874. static bool kvm_hv_hypercall_enabled(struct kvm *kvm)
  875. {
  876. return kvm->arch.hv_hypercall & HV_X64_MSR_HYPERCALL_ENABLE;
  877. }
  878. static bool kvm_hv_msr_partition_wide(u32 msr)
  879. {
  880. bool r = false;
  881. switch (msr) {
  882. case HV_X64_MSR_GUEST_OS_ID:
  883. case HV_X64_MSR_HYPERCALL:
  884. r = true;
  885. break;
  886. }
  887. return r;
  888. }
  889. static int set_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  890. {
  891. struct kvm *kvm = vcpu->kvm;
  892. switch (msr) {
  893. case HV_X64_MSR_GUEST_OS_ID:
  894. kvm->arch.hv_guest_os_id = data;
  895. /* setting guest os id to zero disables hypercall page */
  896. if (!kvm->arch.hv_guest_os_id)
  897. kvm->arch.hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE;
  898. break;
  899. case HV_X64_MSR_HYPERCALL: {
  900. u64 gfn;
  901. unsigned long addr;
  902. u8 instructions[4];
  903. /* if guest os id is not set hypercall should remain disabled */
  904. if (!kvm->arch.hv_guest_os_id)
  905. break;
  906. if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) {
  907. kvm->arch.hv_hypercall = data;
  908. break;
  909. }
  910. gfn = data >> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT;
  911. addr = gfn_to_hva(kvm, gfn);
  912. if (kvm_is_error_hva(addr))
  913. return 1;
  914. kvm_x86_ops->patch_hypercall(vcpu, instructions);
  915. ((unsigned char *)instructions)[3] = 0xc3; /* ret */
  916. if (copy_to_user((void __user *)addr, instructions, 4))
  917. return 1;
  918. kvm->arch.hv_hypercall = data;
  919. break;
  920. }
  921. default:
  922. pr_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
  923. "data 0x%llx\n", msr, data);
  924. return 1;
  925. }
  926. return 0;
  927. }
  928. static int set_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  929. {
  930. switch (msr) {
  931. case HV_X64_MSR_APIC_ASSIST_PAGE: {
  932. unsigned long addr;
  933. if (!(data & HV_X64_MSR_APIC_ASSIST_PAGE_ENABLE)) {
  934. vcpu->arch.hv_vapic = data;
  935. break;
  936. }
  937. addr = gfn_to_hva(vcpu->kvm, data >>
  938. HV_X64_MSR_APIC_ASSIST_PAGE_ADDRESS_SHIFT);
  939. if (kvm_is_error_hva(addr))
  940. return 1;
  941. if (clear_user((void __user *)addr, PAGE_SIZE))
  942. return 1;
  943. vcpu->arch.hv_vapic = data;
  944. break;
  945. }
  946. case HV_X64_MSR_EOI:
  947. return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data);
  948. case HV_X64_MSR_ICR:
  949. return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data);
  950. case HV_X64_MSR_TPR:
  951. return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data);
  952. default:
  953. pr_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
  954. "data 0x%llx\n", msr, data);
  955. return 1;
  956. }
  957. return 0;
  958. }
  959. int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  960. {
  961. switch (msr) {
  962. case MSR_EFER:
  963. set_efer(vcpu, data);
  964. break;
  965. case MSR_K7_HWCR:
  966. data &= ~(u64)0x40; /* ignore flush filter disable */
  967. if (data != 0) {
  968. pr_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
  969. data);
  970. return 1;
  971. }
  972. break;
  973. case MSR_FAM10H_MMIO_CONF_BASE:
  974. if (data != 0) {
  975. pr_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
  976. "0x%llx\n", data);
  977. return 1;
  978. }
  979. break;
  980. case MSR_AMD64_NB_CFG:
  981. break;
  982. case MSR_IA32_DEBUGCTLMSR:
  983. if (!data) {
  984. /* We support the non-activated case already */
  985. break;
  986. } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
  987. /* Values other than LBR and BTF are vendor-specific,
  988. thus reserved and should throw a #GP */
  989. return 1;
  990. }
  991. pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
  992. __func__, data);
  993. break;
  994. case MSR_IA32_UCODE_REV:
  995. case MSR_IA32_UCODE_WRITE:
  996. case MSR_VM_HSAVE_PA:
  997. case MSR_AMD64_PATCH_LOADER:
  998. break;
  999. case 0x200 ... 0x2ff:
  1000. return set_msr_mtrr(vcpu, msr, data);
  1001. case MSR_IA32_APICBASE:
  1002. kvm_set_apic_base(vcpu, data);
  1003. break;
  1004. case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
  1005. return kvm_x2apic_msr_write(vcpu, msr, data);
  1006. case MSR_IA32_MISC_ENABLE:
  1007. vcpu->arch.ia32_misc_enable_msr = data;
  1008. break;
  1009. case MSR_KVM_WALL_CLOCK:
  1010. vcpu->kvm->arch.wall_clock = data;
  1011. kvm_write_wall_clock(vcpu->kvm, data);
  1012. break;
  1013. case MSR_KVM_SYSTEM_TIME: {
  1014. if (vcpu->arch.time_page) {
  1015. kvm_release_page_dirty(vcpu->arch.time_page);
  1016. vcpu->arch.time_page = NULL;
  1017. }
  1018. vcpu->arch.time = data;
  1019. /* we verify if the enable bit is set... */
  1020. if (!(data & 1))
  1021. break;
  1022. /* ...but clean it before doing the actual write */
  1023. vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);
  1024. vcpu->arch.time_page =
  1025. gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
  1026. if (is_error_page(vcpu->arch.time_page)) {
  1027. kvm_release_page_clean(vcpu->arch.time_page);
  1028. vcpu->arch.time_page = NULL;
  1029. }
  1030. kvm_request_guest_time_update(vcpu);
  1031. break;
  1032. }
  1033. case MSR_IA32_MCG_CTL:
  1034. case MSR_IA32_MCG_STATUS:
  1035. case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
  1036. return set_msr_mce(vcpu, msr, data);
  1037. /* Performance counters are not protected by a CPUID bit,
  1038. * so we should check all of them in the generic path for the sake of
  1039. * cross vendor migration.
  1040. * Writing a zero into the event select MSRs disables them,
  1041. * which we perfectly emulate ;-). Any other value should be at least
  1042. * reported, some guests depend on them.
  1043. */
  1044. case MSR_P6_EVNTSEL0:
  1045. case MSR_P6_EVNTSEL1:
  1046. case MSR_K7_EVNTSEL0:
  1047. case MSR_K7_EVNTSEL1:
  1048. case MSR_K7_EVNTSEL2:
  1049. case MSR_K7_EVNTSEL3:
  1050. if (data != 0)
  1051. pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
  1052. "0x%x data 0x%llx\n", msr, data);
  1053. break;
  1054. /* at least RHEL 4 unconditionally writes to the perfctr registers,
  1055. * so we ignore writes to make it happy.
  1056. */
  1057. case MSR_P6_PERFCTR0:
  1058. case MSR_P6_PERFCTR1:
  1059. case MSR_K7_PERFCTR0:
  1060. case MSR_K7_PERFCTR1:
  1061. case MSR_K7_PERFCTR2:
  1062. case MSR_K7_PERFCTR3:
  1063. pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
  1064. "0x%x data 0x%llx\n", msr, data);
  1065. break;
  1066. case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
  1067. if (kvm_hv_msr_partition_wide(msr)) {
  1068. int r;
  1069. mutex_lock(&vcpu->kvm->lock);
  1070. r = set_msr_hyperv_pw(vcpu, msr, data);
  1071. mutex_unlock(&vcpu->kvm->lock);
  1072. return r;
  1073. } else
  1074. return set_msr_hyperv(vcpu, msr, data);
  1075. break;
  1076. default:
  1077. if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
  1078. return xen_hvm_config(vcpu, data);
  1079. if (!ignore_msrs) {
  1080. pr_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
  1081. msr, data);
  1082. return 1;
  1083. } else {
  1084. pr_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
  1085. msr, data);
  1086. break;
  1087. }
  1088. }
  1089. return 0;
  1090. }
  1091. EXPORT_SYMBOL_GPL(kvm_set_msr_common);
  1092. /*
  1093. * Reads an msr value (of 'msr_index') into 'pdata'.
  1094. * Returns 0 on success, non-0 otherwise.
  1095. * Assumes vcpu_load() was already called.
  1096. */
  1097. int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  1098. {
  1099. return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
  1100. }
  1101. static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  1102. {
  1103. u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
  1104. if (!msr_mtrr_valid(msr))
  1105. return 1;
  1106. if (msr == MSR_MTRRdefType)
  1107. *pdata = vcpu->arch.mtrr_state.def_type +
  1108. (vcpu->arch.mtrr_state.enabled << 10);
  1109. else if (msr == MSR_MTRRfix64K_00000)
  1110. *pdata = p[0];
  1111. else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
  1112. *pdata = p[1 + msr - MSR_MTRRfix16K_80000];
  1113. else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
  1114. *pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
  1115. else if (msr == MSR_IA32_CR_PAT)
  1116. *pdata = vcpu->arch.pat;
  1117. else { /* Variable MTRRs */
  1118. int idx, is_mtrr_mask;
  1119. u64 *pt;
  1120. idx = (msr - 0x200) / 2;
  1121. is_mtrr_mask = msr - 0x200 - 2 * idx;
  1122. if (!is_mtrr_mask)
  1123. pt =
  1124. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
  1125. else
  1126. pt =
  1127. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
  1128. *pdata = *pt;
  1129. }
  1130. return 0;
  1131. }
  1132. static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  1133. {
  1134. u64 data;
  1135. u64 mcg_cap = vcpu->arch.mcg_cap;
  1136. unsigned bank_num = mcg_cap & 0xff;
  1137. switch (msr) {
  1138. case MSR_IA32_P5_MC_ADDR:
  1139. case MSR_IA32_P5_MC_TYPE:
  1140. data = 0;
  1141. break;
  1142. case MSR_IA32_MCG_CAP:
  1143. data = vcpu->arch.mcg_cap;
  1144. break;
  1145. case MSR_IA32_MCG_CTL:
  1146. if (!(mcg_cap & MCG_CTL_P))
  1147. return 1;
  1148. data = vcpu->arch.mcg_ctl;
  1149. break;
  1150. case MSR_IA32_MCG_STATUS:
  1151. data = vcpu->arch.mcg_status;
  1152. break;
  1153. default:
  1154. if (msr >= MSR_IA32_MC0_CTL &&
  1155. msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
  1156. u32 offset = msr - MSR_IA32_MC0_CTL;
  1157. data = vcpu->arch.mce_banks[offset];
  1158. break;
  1159. }
  1160. return 1;
  1161. }
  1162. *pdata = data;
  1163. return 0;
  1164. }
  1165. static int get_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  1166. {
  1167. u64 data = 0;
  1168. struct kvm *kvm = vcpu->kvm;
  1169. switch (msr) {
  1170. case HV_X64_MSR_GUEST_OS_ID:
  1171. data = kvm->arch.hv_guest_os_id;
  1172. break;
  1173. case HV_X64_MSR_HYPERCALL:
  1174. data = kvm->arch.hv_hypercall;
  1175. break;
  1176. default:
  1177. pr_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
  1178. return 1;
  1179. }
  1180. *pdata = data;
  1181. return 0;
  1182. }
  1183. static int get_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  1184. {
  1185. u64 data = 0;
  1186. switch (msr) {
  1187. case HV_X64_MSR_VP_INDEX: {
  1188. int r;
  1189. struct kvm_vcpu *v;
  1190. kvm_for_each_vcpu(r, v, vcpu->kvm)
  1191. if (v == vcpu)
  1192. data = r;
  1193. break;
  1194. }
  1195. case HV_X64_MSR_EOI:
  1196. return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata);
  1197. case HV_X64_MSR_ICR:
  1198. return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata);
  1199. case HV_X64_MSR_TPR:
  1200. return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata);
  1201. default:
  1202. pr_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
  1203. return 1;
  1204. }
  1205. *pdata = data;
  1206. return 0;
  1207. }
  1208. int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  1209. {
  1210. u64 data;
  1211. switch (msr) {
  1212. case MSR_IA32_PLATFORM_ID:
  1213. case MSR_IA32_UCODE_REV:
  1214. case MSR_IA32_EBL_CR_POWERON:
  1215. case MSR_IA32_DEBUGCTLMSR:
  1216. case MSR_IA32_LASTBRANCHFROMIP:
  1217. case MSR_IA32_LASTBRANCHTOIP:
  1218. case MSR_IA32_LASTINTFROMIP:
  1219. case MSR_IA32_LASTINTTOIP:
  1220. case MSR_K8_SYSCFG:
  1221. case MSR_K7_HWCR:
  1222. case MSR_VM_HSAVE_PA:
  1223. case MSR_P6_PERFCTR0:
  1224. case MSR_P6_PERFCTR1:
  1225. case MSR_P6_EVNTSEL0:
  1226. case MSR_P6_EVNTSEL1:
  1227. case MSR_K7_EVNTSEL0:
  1228. case MSR_K7_PERFCTR0:
  1229. case MSR_K8_INT_PENDING_MSG:
  1230. case MSR_AMD64_NB_CFG:
  1231. case MSR_FAM10H_MMIO_CONF_BASE:
  1232. data = 0;
  1233. break;
  1234. case MSR_MTRRcap:
  1235. data = 0x500 | KVM_NR_VAR_MTRR;
  1236. break;
  1237. case 0x200 ... 0x2ff:
  1238. return get_msr_mtrr(vcpu, msr, pdata);
  1239. case 0xcd: /* fsb frequency */
  1240. data = 3;
  1241. break;
  1242. case MSR_IA32_APICBASE:
  1243. data = kvm_get_apic_base(vcpu);
  1244. break;
  1245. case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
  1246. return kvm_x2apic_msr_read(vcpu, msr, pdata);
  1247. break;
  1248. case MSR_IA32_MISC_ENABLE:
  1249. data = vcpu->arch.ia32_misc_enable_msr;
  1250. break;
  1251. case MSR_IA32_PERF_STATUS:
  1252. /* TSC increment by tick */
  1253. data = 1000ULL;
  1254. /* CPU multiplier */
  1255. data |= (((uint64_t)4ULL) << 40);
  1256. break;
  1257. case MSR_EFER:
  1258. data = vcpu->arch.efer;
  1259. break;
  1260. case MSR_KVM_WALL_CLOCK:
  1261. data = vcpu->kvm->arch.wall_clock;
  1262. break;
  1263. case MSR_KVM_SYSTEM_TIME:
  1264. data = vcpu->arch.time;
  1265. break;
  1266. case MSR_IA32_P5_MC_ADDR:
  1267. case MSR_IA32_P5_MC_TYPE:
  1268. case MSR_IA32_MCG_CAP:
  1269. case MSR_IA32_MCG_CTL:
  1270. case MSR_IA32_MCG_STATUS:
  1271. case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
  1272. return get_msr_mce(vcpu, msr, pdata);
  1273. case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
  1274. if (kvm_hv_msr_partition_wide(msr)) {
  1275. int r;
  1276. mutex_lock(&vcpu->kvm->lock);
  1277. r = get_msr_hyperv_pw(vcpu, msr, pdata);
  1278. mutex_unlock(&vcpu->kvm->lock);
  1279. return r;
  1280. } else
  1281. return get_msr_hyperv(vcpu, msr, pdata);
  1282. break;
  1283. default:
  1284. if (!ignore_msrs) {
  1285. pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
  1286. return 1;
  1287. } else {
  1288. pr_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr);
  1289. data = 0;
  1290. }
  1291. break;
  1292. }
  1293. *pdata = data;
  1294. return 0;
  1295. }
  1296. EXPORT_SYMBOL_GPL(kvm_get_msr_common);
  1297. /*
  1298. * Read or write a bunch of msrs. All parameters are kernel addresses.
  1299. *
  1300. * @return number of msrs set successfully.
  1301. */
  1302. static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
  1303. struct kvm_msr_entry *entries,
  1304. int (*do_msr)(struct kvm_vcpu *vcpu,
  1305. unsigned index, u64 *data))
  1306. {
  1307. int i, idx;
  1308. vcpu_load(vcpu);
  1309. idx = srcu_read_lock(&vcpu->kvm->srcu);
  1310. for (i = 0; i < msrs->nmsrs; ++i)
  1311. if (do_msr(vcpu, entries[i].index, &entries[i].data))
  1312. break;
  1313. srcu_read_unlock(&vcpu->kvm->srcu, idx);
  1314. vcpu_put(vcpu);
  1315. return i;
  1316. }
  1317. /*
  1318. * Read or write a bunch of msrs. Parameters are user addresses.
  1319. *
  1320. * @return number of msrs set successfully.
  1321. */
  1322. static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
  1323. int (*do_msr)(struct kvm_vcpu *vcpu,
  1324. unsigned index, u64 *data),
  1325. int writeback)
  1326. {
  1327. struct kvm_msrs msrs;
  1328. struct kvm_msr_entry *entries;
  1329. int r, n;
  1330. unsigned size;
  1331. r = -EFAULT;
  1332. if (copy_from_user(&msrs, user_msrs, sizeof msrs))
  1333. goto out;
  1334. r = -E2BIG;
  1335. if (msrs.nmsrs >= MAX_IO_MSRS)
  1336. goto out;
  1337. r = -ENOMEM;
  1338. size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
  1339. entries = vmalloc(size);
  1340. if (!entries)
  1341. goto out;
  1342. r = -EFAULT;
  1343. if (copy_from_user(entries, user_msrs->entries, size))
  1344. goto out_free;
  1345. r = n = __msr_io(vcpu, &msrs, entries, do_msr);
  1346. if (r < 0)
  1347. goto out_free;
  1348. r = -EFAULT;
  1349. if (writeback && copy_to_user(user_msrs->entries, entries, size))
  1350. goto out_free;
  1351. r = n;
  1352. out_free:
  1353. vfree(entries);
  1354. out:
  1355. return r;
  1356. }
  1357. int kvm_dev_ioctl_check_extension(long ext)
  1358. {
  1359. int r;
  1360. switch (ext) {
  1361. case KVM_CAP_IRQCHIP:
  1362. case KVM_CAP_HLT:
  1363. case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
  1364. case KVM_CAP_SET_TSS_ADDR:
  1365. case KVM_CAP_EXT_CPUID:
  1366. case KVM_CAP_CLOCKSOURCE:
  1367. case KVM_CAP_PIT:
  1368. case KVM_CAP_NOP_IO_DELAY:
  1369. case KVM_CAP_MP_STATE:
  1370. case KVM_CAP_SYNC_MMU:
  1371. case KVM_CAP_REINJECT_CONTROL:
  1372. case KVM_CAP_IRQ_INJECT_STATUS:
  1373. case KVM_CAP_ASSIGN_DEV_IRQ:
  1374. case KVM_CAP_IRQFD:
  1375. case KVM_CAP_IOEVENTFD:
  1376. case KVM_CAP_PIT2:
  1377. case KVM_CAP_PIT_STATE2:
  1378. case KVM_CAP_SET_IDENTITY_MAP_ADDR:
  1379. case KVM_CAP_XEN_HVM:
  1380. case KVM_CAP_ADJUST_CLOCK:
  1381. case KVM_CAP_VCPU_EVENTS:
  1382. case KVM_CAP_HYPERV:
  1383. case KVM_CAP_HYPERV_VAPIC:
  1384. case KVM_CAP_HYPERV_SPIN:
  1385. case KVM_CAP_PCI_SEGMENT:
  1386. r = 1;
  1387. break;
  1388. case KVM_CAP_COALESCED_MMIO:
  1389. r = KVM_COALESCED_MMIO_PAGE_OFFSET;
  1390. break;
  1391. case KVM_CAP_VAPIC:
  1392. r = !kvm_x86_ops->cpu_has_accelerated_tpr();
  1393. break;
  1394. case KVM_CAP_NR_VCPUS:
  1395. r = KVM_MAX_VCPUS;
  1396. break;
  1397. case KVM_CAP_NR_MEMSLOTS:
  1398. r = KVM_MEMORY_SLOTS;
  1399. break;
  1400. case KVM_CAP_PV_MMU: /* obsolete */
  1401. r = 0;
  1402. break;
  1403. case KVM_CAP_IOMMU:
  1404. r = iommu_found();
  1405. break;
  1406. case KVM_CAP_MCE:
  1407. r = KVM_MAX_MCE_BANKS;
  1408. break;
  1409. default:
  1410. r = 0;
  1411. break;
  1412. }
  1413. return r;
  1414. }
  1415. long kvm_arch_dev_ioctl(struct file *filp,
  1416. unsigned int ioctl, unsigned long arg)
  1417. {
  1418. void __user *argp = (void __user *)arg;
  1419. long r;
  1420. switch (ioctl) {
  1421. case KVM_GET_MSR_INDEX_LIST: {
  1422. struct kvm_msr_list __user *user_msr_list = argp;
  1423. struct kvm_msr_list msr_list;
  1424. unsigned n;
  1425. r = -EFAULT;
  1426. if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
  1427. goto out;
  1428. n = msr_list.nmsrs;
  1429. msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
  1430. if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
  1431. goto out;
  1432. r = -E2BIG;
  1433. if (n < msr_list.nmsrs)
  1434. goto out;
  1435. r = -EFAULT;
  1436. if (copy_to_user(user_msr_list->indices, &msrs_to_save,
  1437. num_msrs_to_save * sizeof(u32)))
  1438. goto out;
  1439. if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
  1440. &emulated_msrs,
  1441. ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
  1442. goto out;
  1443. r = 0;
  1444. break;
  1445. }
  1446. case KVM_GET_SUPPORTED_CPUID: {
  1447. struct kvm_cpuid2 __user *cpuid_arg = argp;
  1448. struct kvm_cpuid2 cpuid;
  1449. r = -EFAULT;
  1450. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  1451. goto out;
  1452. r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
  1453. cpuid_arg->entries);
  1454. if (r)
  1455. goto out;
  1456. r = -EFAULT;
  1457. if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
  1458. goto out;
  1459. r = 0;
  1460. break;
  1461. }
  1462. case KVM_X86_GET_MCE_CAP_SUPPORTED: {
  1463. u64 mce_cap;
  1464. mce_cap = KVM_MCE_CAP_SUPPORTED;
  1465. r = -EFAULT;
  1466. if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
  1467. goto out;
  1468. r = 0;
  1469. break;
  1470. }
  1471. default:
  1472. r = -EINVAL;
  1473. }
  1474. out:
  1475. return r;
  1476. }
  1477. void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
  1478. {
  1479. kvm_x86_ops->vcpu_load(vcpu, cpu);
  1480. if (unlikely(per_cpu(cpu_tsc_khz, cpu) == 0)) {
  1481. unsigned long khz = cpufreq_quick_get(cpu);
  1482. if (!khz)
  1483. khz = tsc_khz;
  1484. per_cpu(cpu_tsc_khz, cpu) = khz;
  1485. }
  1486. kvm_request_guest_time_update(vcpu);
  1487. }
  1488. void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
  1489. {
  1490. kvm_put_guest_fpu(vcpu);
  1491. kvm_x86_ops->vcpu_put(vcpu);
  1492. }
  1493. static int is_efer_nx(void)
  1494. {
  1495. unsigned long long efer = 0;
  1496. rdmsrl_safe(MSR_EFER, &efer);
  1497. return efer & EFER_NX;
  1498. }
  1499. static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
  1500. {
  1501. int i;
  1502. struct kvm_cpuid_entry2 *e, *entry;
  1503. entry = NULL;
  1504. for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
  1505. e = &vcpu->arch.cpuid_entries[i];
  1506. if (e->function == 0x80000001) {
  1507. entry = e;
  1508. break;
  1509. }
  1510. }
  1511. if (entry && (entry->edx & (1 << 20)) && !is_efer_nx()) {
  1512. entry->edx &= ~(1 << 20);
  1513. printk(KERN_INFO "kvm: guest NX capability removed\n");
  1514. }
  1515. }
  1516. /* when an old userspace process fills a new kernel module */
  1517. static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
  1518. struct kvm_cpuid *cpuid,
  1519. struct kvm_cpuid_entry __user *entries)
  1520. {
  1521. int r, i;
  1522. struct kvm_cpuid_entry *cpuid_entries;
  1523. r = -E2BIG;
  1524. if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
  1525. goto out;
  1526. r = -ENOMEM;
  1527. cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent);
  1528. if (!cpuid_entries)
  1529. goto out;
  1530. r = -EFAULT;
  1531. if (copy_from_user(cpuid_entries, entries,
  1532. cpuid->nent * sizeof(struct kvm_cpuid_entry)))
  1533. goto out_free;
  1534. for (i = 0; i < cpuid->nent; i++) {
  1535. vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
  1536. vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
  1537. vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
  1538. vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
  1539. vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
  1540. vcpu->arch.cpuid_entries[i].index = 0;
  1541. vcpu->arch.cpuid_entries[i].flags = 0;
  1542. vcpu->arch.cpuid_entries[i].padding[0] = 0;
  1543. vcpu->arch.cpuid_entries[i].padding[1] = 0;
  1544. vcpu->arch.cpuid_entries[i].padding[2] = 0;
  1545. }
  1546. vcpu->arch.cpuid_nent = cpuid->nent;
  1547. cpuid_fix_nx_cap(vcpu);
  1548. r = 0;
  1549. kvm_apic_set_version(vcpu);
  1550. kvm_x86_ops->cpuid_update(vcpu);
  1551. out_free:
  1552. vfree(cpuid_entries);
  1553. out:
  1554. return r;
  1555. }
  1556. static int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
  1557. struct kvm_cpuid2 *cpuid,
  1558. struct kvm_cpuid_entry2 __user *entries)
  1559. {
  1560. int r;
  1561. r = -E2BIG;
  1562. if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
  1563. goto out;
  1564. r = -EFAULT;
  1565. if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
  1566. cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
  1567. goto out;
  1568. vcpu->arch.cpuid_nent = cpuid->nent;
  1569. kvm_apic_set_version(vcpu);
  1570. kvm_x86_ops->cpuid_update(vcpu);
  1571. return 0;
  1572. out:
  1573. return r;
  1574. }
  1575. static int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
  1576. struct kvm_cpuid2 *cpuid,
  1577. struct kvm_cpuid_entry2 __user *entries)
  1578. {
  1579. int r;
  1580. r = -E2BIG;
  1581. if (cpuid->nent < vcpu->arch.cpuid_nent)
  1582. goto out;
  1583. r = -EFAULT;
  1584. if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
  1585. vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
  1586. goto out;
  1587. return 0;
  1588. out:
  1589. cpuid->nent = vcpu->arch.cpuid_nent;
  1590. return r;
  1591. }
  1592. static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
  1593. u32 index)
  1594. {
  1595. entry->function = function;
  1596. entry->index = index;
  1597. cpuid_count(entry->function, entry->index,
  1598. &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
  1599. entry->flags = 0;
  1600. }
  1601. #define F(x) bit(X86_FEATURE_##x)
  1602. static void do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
  1603. u32 index, int *nent, int maxnent)
  1604. {
  1605. unsigned f_nx = is_efer_nx() ? F(NX) : 0;
  1606. #ifdef CONFIG_X86_64
  1607. unsigned f_gbpages = (kvm_x86_ops->get_lpage_level() == PT_PDPE_LEVEL)
  1608. ? F(GBPAGES) : 0;
  1609. unsigned f_lm = F(LM);
  1610. #else
  1611. unsigned f_gbpages = 0;
  1612. unsigned f_lm = 0;
  1613. #endif
  1614. unsigned f_rdtscp = kvm_x86_ops->rdtscp_supported() ? F(RDTSCP) : 0;
  1615. /* cpuid 1.edx */
  1616. const u32 kvm_supported_word0_x86_features =
  1617. F(FPU) | F(VME) | F(DE) | F(PSE) |
  1618. F(TSC) | F(MSR) | F(PAE) | F(MCE) |
  1619. F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
  1620. F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
  1621. F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLSH) |
  1622. 0 /* Reserved, DS, ACPI */ | F(MMX) |
  1623. F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
  1624. 0 /* HTT, TM, Reserved, PBE */;
  1625. /* cpuid 0x80000001.edx */
  1626. const u32 kvm_supported_word1_x86_features =
  1627. F(FPU) | F(VME) | F(DE) | F(PSE) |
  1628. F(TSC) | F(MSR) | F(PAE) | F(MCE) |
  1629. F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
  1630. F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
  1631. F(PAT) | F(PSE36) | 0 /* Reserved */ |
  1632. f_nx | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
  1633. F(FXSR) | F(FXSR_OPT) | f_gbpages | f_rdtscp |
  1634. 0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW);
  1635. /* cpuid 1.ecx */
  1636. const u32 kvm_supported_word4_x86_features =
  1637. F(XMM3) | 0 /* Reserved, DTES64, MONITOR */ |
  1638. 0 /* DS-CPL, VMX, SMX, EST */ |
  1639. 0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
  1640. 0 /* Reserved */ | F(CX16) | 0 /* xTPR Update, PDCM */ |
  1641. 0 /* Reserved, DCA */ | F(XMM4_1) |
  1642. F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
  1643. 0 /* Reserved, XSAVE, OSXSAVE */;
  1644. /* cpuid 0x80000001.ecx */
  1645. const u32 kvm_supported_word6_x86_features =
  1646. F(LAHF_LM) | F(CMP_LEGACY) | F(SVM) | 0 /* ExtApicSpace */ |
  1647. F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
  1648. F(3DNOWPREFETCH) | 0 /* OSVW */ | 0 /* IBS */ | F(SSE5) |
  1649. 0 /* SKINIT */ | 0 /* WDT */;
  1650. /* all calls to cpuid_count() should be made on the same cpu */
  1651. get_cpu();
  1652. do_cpuid_1_ent(entry, function, index);
  1653. ++*nent;
  1654. switch (function) {
  1655. case 0:
  1656. entry->eax = min(entry->eax, (u32)0xb);
  1657. break;
  1658. case 1:
  1659. entry->edx &= kvm_supported_word0_x86_features;
  1660. entry->ecx &= kvm_supported_word4_x86_features;
  1661. /* we support x2apic emulation even if host does not support
  1662. * it since we emulate x2apic in software */
  1663. entry->ecx |= F(X2APIC);
  1664. break;
  1665. /* function 2 entries are STATEFUL. That is, repeated cpuid commands
  1666. * may return different values. This forces us to get_cpu() before
  1667. * issuing the first command, and also to emulate this annoying behavior
  1668. * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
  1669. case 2: {
  1670. int t, times = entry->eax & 0xff;
  1671. entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
  1672. entry->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
  1673. for (t = 1; t < times && *nent < maxnent; ++t) {
  1674. do_cpuid_1_ent(&entry[t], function, 0);
  1675. entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
  1676. ++*nent;
  1677. }
  1678. break;
  1679. }
  1680. /* function 4 and 0xb have additional index. */
  1681. case 4: {
  1682. int i, cache_type;
  1683. entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  1684. /* read more entries until cache_type is zero */
  1685. for (i = 1; *nent < maxnent; ++i) {
  1686. cache_type = entry[i - 1].eax & 0x1f;
  1687. if (!cache_type)
  1688. break;
  1689. do_cpuid_1_ent(&entry[i], function, i);
  1690. entry[i].flags |=
  1691. KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  1692. ++*nent;
  1693. }
  1694. break;
  1695. }
  1696. case 0xb: {
  1697. int i, level_type;
  1698. entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  1699. /* read more entries until level_type is zero */
  1700. for (i = 1; *nent < maxnent; ++i) {
  1701. level_type = entry[i - 1].ecx & 0xff00;
  1702. if (!level_type)
  1703. break;
  1704. do_cpuid_1_ent(&entry[i], function, i);
  1705. entry[i].flags |=
  1706. KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  1707. ++*nent;
  1708. }
  1709. break;
  1710. }
  1711. case 0x80000000:
  1712. entry->eax = min(entry->eax, 0x8000001a);
  1713. break;
  1714. case 0x80000001:
  1715. entry->edx &= kvm_supported_word1_x86_features;
  1716. entry->ecx &= kvm_supported_word6_x86_features;
  1717. break;
  1718. }
  1719. put_cpu();
  1720. }
  1721. #undef F
  1722. static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
  1723. struct kvm_cpuid_entry2 __user *entries)
  1724. {
  1725. struct kvm_cpuid_entry2 *cpuid_entries;
  1726. int limit, nent = 0, r = -E2BIG;
  1727. u32 func;
  1728. if (cpuid->nent < 1)
  1729. goto out;
  1730. if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
  1731. cpuid->nent = KVM_MAX_CPUID_ENTRIES;
  1732. r = -ENOMEM;
  1733. cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
  1734. if (!cpuid_entries)
  1735. goto out;
  1736. do_cpuid_ent(&cpuid_entries[0], 0, 0, &nent, cpuid->nent);
  1737. limit = cpuid_entries[0].eax;
  1738. for (func = 1; func <= limit && nent < cpuid->nent; ++func)
  1739. do_cpuid_ent(&cpuid_entries[nent], func, 0,
  1740. &nent, cpuid->nent);
  1741. r = -E2BIG;
  1742. if (nent >= cpuid->nent)
  1743. goto out_free;
  1744. do_cpuid_ent(&cpuid_entries[nent], 0x80000000, 0, &nent, cpuid->nent);
  1745. limit = cpuid_entries[nent - 1].eax;
  1746. for (func = 0x80000001; func <= limit && nent < cpuid->nent; ++func)
  1747. do_cpuid_ent(&cpuid_entries[nent], func, 0,
  1748. &nent, cpuid->nent);
  1749. r = -E2BIG;
  1750. if (nent >= cpuid->nent)
  1751. goto out_free;
  1752. r = -EFAULT;
  1753. if (copy_to_user(entries, cpuid_entries,
  1754. nent * sizeof(struct kvm_cpuid_entry2)))
  1755. goto out_free;
  1756. cpuid->nent = nent;
  1757. r = 0;
  1758. out_free:
  1759. vfree(cpuid_entries);
  1760. out:
  1761. return r;
  1762. }
  1763. static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
  1764. struct kvm_lapic_state *s)
  1765. {
  1766. vcpu_load(vcpu);
  1767. memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
  1768. vcpu_put(vcpu);
  1769. return 0;
  1770. }
  1771. static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
  1772. struct kvm_lapic_state *s)
  1773. {
  1774. vcpu_load(vcpu);
  1775. memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s);
  1776. kvm_apic_post_state_restore(vcpu);
  1777. update_cr8_intercept(vcpu);
  1778. vcpu_put(vcpu);
  1779. return 0;
  1780. }
  1781. static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
  1782. struct kvm_interrupt *irq)
  1783. {
  1784. if (irq->irq < 0 || irq->irq >= 256)
  1785. return -EINVAL;
  1786. if (irqchip_in_kernel(vcpu->kvm))
  1787. return -ENXIO;
  1788. vcpu_load(vcpu);
  1789. kvm_queue_interrupt(vcpu, irq->irq, false);
  1790. vcpu_put(vcpu);
  1791. return 0;
  1792. }
  1793. static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
  1794. {
  1795. vcpu_load(vcpu);
  1796. kvm_inject_nmi(vcpu);
  1797. vcpu_put(vcpu);
  1798. return 0;
  1799. }
  1800. static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
  1801. struct kvm_tpr_access_ctl *tac)
  1802. {
  1803. if (tac->flags)
  1804. return -EINVAL;
  1805. vcpu->arch.tpr_access_reporting = !!tac->enabled;
  1806. return 0;
  1807. }
  1808. static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
  1809. u64 mcg_cap)
  1810. {
  1811. int r;
  1812. unsigned bank_num = mcg_cap & 0xff, bank;
  1813. r = -EINVAL;
  1814. if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
  1815. goto out;
  1816. if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
  1817. goto out;
  1818. r = 0;
  1819. vcpu->arch.mcg_cap = mcg_cap;
  1820. /* Init IA32_MCG_CTL to all 1s */
  1821. if (mcg_cap & MCG_CTL_P)
  1822. vcpu->arch.mcg_ctl = ~(u64)0;
  1823. /* Init IA32_MCi_CTL to all 1s */
  1824. for (bank = 0; bank < bank_num; bank++)
  1825. vcpu->arch.mce_banks[bank*4] = ~(u64)0;
  1826. out:
  1827. return r;
  1828. }
  1829. static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
  1830. struct kvm_x86_mce *mce)
  1831. {
  1832. u64 mcg_cap = vcpu->arch.mcg_cap;
  1833. unsigned bank_num = mcg_cap & 0xff;
  1834. u64 *banks = vcpu->arch.mce_banks;
  1835. if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
  1836. return -EINVAL;
  1837. /*
  1838. * if IA32_MCG_CTL is not all 1s, the uncorrected error
  1839. * reporting is disabled
  1840. */
  1841. if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
  1842. vcpu->arch.mcg_ctl != ~(u64)0)
  1843. return 0;
  1844. banks += 4 * mce->bank;
  1845. /*
  1846. * if IA32_MCi_CTL is not all 1s, the uncorrected error
  1847. * reporting is disabled for the bank
  1848. */
  1849. if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
  1850. return 0;
  1851. if (mce->status & MCI_STATUS_UC) {
  1852. if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
  1853. !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
  1854. printk(KERN_DEBUG "kvm: set_mce: "
  1855. "injects mce exception while "
  1856. "previous one is in progress!\n");
  1857. set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
  1858. return 0;
  1859. }
  1860. if (banks[1] & MCI_STATUS_VAL)
  1861. mce->status |= MCI_STATUS_OVER;
  1862. banks[2] = mce->addr;
  1863. banks[3] = mce->misc;
  1864. vcpu->arch.mcg_status = mce->mcg_status;
  1865. banks[1] = mce->status;
  1866. kvm_queue_exception(vcpu, MC_VECTOR);
  1867. } else if (!(banks[1] & MCI_STATUS_VAL)
  1868. || !(banks[1] & MCI_STATUS_UC)) {
  1869. if (banks[1] & MCI_STATUS_VAL)
  1870. mce->status |= MCI_STATUS_OVER;
  1871. banks[2] = mce->addr;
  1872. banks[3] = mce->misc;
  1873. banks[1] = mce->status;
  1874. } else
  1875. banks[1] |= MCI_STATUS_OVER;
  1876. return 0;
  1877. }
  1878. static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
  1879. struct kvm_vcpu_events *events)
  1880. {
  1881. vcpu_load(vcpu);
  1882. events->exception.injected = vcpu->arch.exception.pending;
  1883. events->exception.nr = vcpu->arch.exception.nr;
  1884. events->exception.has_error_code = vcpu->arch.exception.has_error_code;
  1885. events->exception.error_code = vcpu->arch.exception.error_code;
  1886. events->interrupt.injected = vcpu->arch.interrupt.pending;
  1887. events->interrupt.nr = vcpu->arch.interrupt.nr;
  1888. events->interrupt.soft = vcpu->arch.interrupt.soft;
  1889. events->nmi.injected = vcpu->arch.nmi_injected;
  1890. events->nmi.pending = vcpu->arch.nmi_pending;
  1891. events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
  1892. events->sipi_vector = vcpu->arch.sipi_vector;
  1893. events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
  1894. | KVM_VCPUEVENT_VALID_SIPI_VECTOR);
  1895. vcpu_put(vcpu);
  1896. }
  1897. static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
  1898. struct kvm_vcpu_events *events)
  1899. {
  1900. if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
  1901. | KVM_VCPUEVENT_VALID_SIPI_VECTOR))
  1902. return -EINVAL;
  1903. vcpu_load(vcpu);
  1904. vcpu->arch.exception.pending = events->exception.injected;
  1905. vcpu->arch.exception.nr = events->exception.nr;
  1906. vcpu->arch.exception.has_error_code = events->exception.has_error_code;
  1907. vcpu->arch.exception.error_code = events->exception.error_code;
  1908. vcpu->arch.interrupt.pending = events->interrupt.injected;
  1909. vcpu->arch.interrupt.nr = events->interrupt.nr;
  1910. vcpu->arch.interrupt.soft = events->interrupt.soft;
  1911. if (vcpu->arch.interrupt.pending && irqchip_in_kernel(vcpu->kvm))
  1912. kvm_pic_clear_isr_ack(vcpu->kvm);
  1913. vcpu->arch.nmi_injected = events->nmi.injected;
  1914. if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
  1915. vcpu->arch.nmi_pending = events->nmi.pending;
  1916. kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
  1917. if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR)
  1918. vcpu->arch.sipi_vector = events->sipi_vector;
  1919. vcpu_put(vcpu);
  1920. return 0;
  1921. }
  1922. long kvm_arch_vcpu_ioctl(struct file *filp,
  1923. unsigned int ioctl, unsigned long arg)
  1924. {
  1925. struct kvm_vcpu *vcpu = filp->private_data;
  1926. void __user *argp = (void __user *)arg;
  1927. int r;
  1928. struct kvm_lapic_state *lapic = NULL;
  1929. switch (ioctl) {
  1930. case KVM_GET_LAPIC: {
  1931. r = -EINVAL;
  1932. if (!vcpu->arch.apic)
  1933. goto out;
  1934. lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
  1935. r = -ENOMEM;
  1936. if (!lapic)
  1937. goto out;
  1938. r = kvm_vcpu_ioctl_get_lapic(vcpu, lapic);
  1939. if (r)
  1940. goto out;
  1941. r = -EFAULT;
  1942. if (copy_to_user(argp, lapic, sizeof(struct kvm_lapic_state)))
  1943. goto out;
  1944. r = 0;
  1945. break;
  1946. }
  1947. case KVM_SET_LAPIC: {
  1948. r = -EINVAL;
  1949. if (!vcpu->arch.apic)
  1950. goto out;
  1951. lapic = kmalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
  1952. r = -ENOMEM;
  1953. if (!lapic)
  1954. goto out;
  1955. r = -EFAULT;
  1956. if (copy_from_user(lapic, argp, sizeof(struct kvm_lapic_state)))
  1957. goto out;
  1958. r = kvm_vcpu_ioctl_set_lapic(vcpu, lapic);
  1959. if (r)
  1960. goto out;
  1961. r = 0;
  1962. break;
  1963. }
  1964. case KVM_INTERRUPT: {
  1965. struct kvm_interrupt irq;
  1966. r = -EFAULT;
  1967. if (copy_from_user(&irq, argp, sizeof irq))
  1968. goto out;
  1969. r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
  1970. if (r)
  1971. goto out;
  1972. r = 0;
  1973. break;
  1974. }
  1975. case KVM_NMI: {
  1976. r = kvm_vcpu_ioctl_nmi(vcpu);
  1977. if (r)
  1978. goto out;
  1979. r = 0;
  1980. break;
  1981. }
  1982. case KVM_SET_CPUID: {
  1983. struct kvm_cpuid __user *cpuid_arg = argp;
  1984. struct kvm_cpuid cpuid;
  1985. r = -EFAULT;
  1986. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  1987. goto out;
  1988. r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
  1989. if (r)
  1990. goto out;
  1991. break;
  1992. }
  1993. case KVM_SET_CPUID2: {
  1994. struct kvm_cpuid2 __user *cpuid_arg = argp;
  1995. struct kvm_cpuid2 cpuid;
  1996. r = -EFAULT;
  1997. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  1998. goto out;
  1999. r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
  2000. cpuid_arg->entries);
  2001. if (r)
  2002. goto out;
  2003. break;
  2004. }
  2005. case KVM_GET_CPUID2: {
  2006. struct kvm_cpuid2 __user *cpuid_arg = argp;
  2007. struct kvm_cpuid2 cpuid;
  2008. r = -EFAULT;
  2009. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  2010. goto out;
  2011. r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
  2012. cpuid_arg->entries);
  2013. if (r)
  2014. goto out;
  2015. r = -EFAULT;
  2016. if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
  2017. goto out;
  2018. r = 0;
  2019. break;
  2020. }
  2021. case KVM_GET_MSRS:
  2022. r = msr_io(vcpu, argp, kvm_get_msr, 1);
  2023. break;
  2024. case KVM_SET_MSRS:
  2025. r = msr_io(vcpu, argp, do_set_msr, 0);
  2026. break;
  2027. case KVM_TPR_ACCESS_REPORTING: {
  2028. struct kvm_tpr_access_ctl tac;
  2029. r = -EFAULT;
  2030. if (copy_from_user(&tac, argp, sizeof tac))
  2031. goto out;
  2032. r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
  2033. if (r)
  2034. goto out;
  2035. r = -EFAULT;
  2036. if (copy_to_user(argp, &tac, sizeof tac))
  2037. goto out;
  2038. r = 0;
  2039. break;
  2040. };
  2041. case KVM_SET_VAPIC_ADDR: {
  2042. struct kvm_vapic_addr va;
  2043. r = -EINVAL;
  2044. if (!irqchip_in_kernel(vcpu->kvm))
  2045. goto out;
  2046. r = -EFAULT;
  2047. if (copy_from_user(&va, argp, sizeof va))
  2048. goto out;
  2049. r = 0;
  2050. kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
  2051. break;
  2052. }
  2053. case KVM_X86_SETUP_MCE: {
  2054. u64 mcg_cap;
  2055. r = -EFAULT;
  2056. if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
  2057. goto out;
  2058. r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
  2059. break;
  2060. }
  2061. case KVM_X86_SET_MCE: {
  2062. struct kvm_x86_mce mce;
  2063. r = -EFAULT;
  2064. if (copy_from_user(&mce, argp, sizeof mce))
  2065. goto out;
  2066. r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
  2067. break;
  2068. }
  2069. case KVM_GET_VCPU_EVENTS: {
  2070. struct kvm_vcpu_events events;
  2071. kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
  2072. r = -EFAULT;
  2073. if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
  2074. break;
  2075. r = 0;
  2076. break;
  2077. }
  2078. case KVM_SET_VCPU_EVENTS: {
  2079. struct kvm_vcpu_events events;
  2080. r = -EFAULT;
  2081. if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
  2082. break;
  2083. r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
  2084. break;
  2085. }
  2086. default:
  2087. r = -EINVAL;
  2088. }
  2089. out:
  2090. kfree(lapic);
  2091. return r;
  2092. }
  2093. static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
  2094. {
  2095. int ret;
  2096. if (addr > (unsigned int)(-3 * PAGE_SIZE))
  2097. return -1;
  2098. ret = kvm_x86_ops->set_tss_addr(kvm, addr);
  2099. return ret;
  2100. }
  2101. static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
  2102. u64 ident_addr)
  2103. {
  2104. kvm->arch.ept_identity_map_addr = ident_addr;
  2105. return 0;
  2106. }
  2107. static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
  2108. u32 kvm_nr_mmu_pages)
  2109. {
  2110. if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
  2111. return -EINVAL;
  2112. mutex_lock(&kvm->slots_lock);
  2113. spin_lock(&kvm->mmu_lock);
  2114. kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
  2115. kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
  2116. spin_unlock(&kvm->mmu_lock);
  2117. mutex_unlock(&kvm->slots_lock);
  2118. return 0;
  2119. }
  2120. static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
  2121. {
  2122. return kvm->arch.n_alloc_mmu_pages;
  2123. }
  2124. gfn_t unalias_gfn_instantiation(struct kvm *kvm, gfn_t gfn)
  2125. {
  2126. int i;
  2127. struct kvm_mem_alias *alias;
  2128. struct kvm_mem_aliases *aliases;
  2129. aliases = rcu_dereference(kvm->arch.aliases);
  2130. for (i = 0; i < aliases->naliases; ++i) {
  2131. alias = &aliases->aliases[i];
  2132. if (alias->flags & KVM_ALIAS_INVALID)
  2133. continue;
  2134. if (gfn >= alias->base_gfn
  2135. && gfn < alias->base_gfn + alias->npages)
  2136. return alias->target_gfn + gfn - alias->base_gfn;
  2137. }
  2138. return gfn;
  2139. }
  2140. gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
  2141. {
  2142. int i;
  2143. struct kvm_mem_alias *alias;
  2144. struct kvm_mem_aliases *aliases;
  2145. aliases = rcu_dereference(kvm->arch.aliases);
  2146. for (i = 0; i < aliases->naliases; ++i) {
  2147. alias = &aliases->aliases[i];
  2148. if (gfn >= alias->base_gfn
  2149. && gfn < alias->base_gfn + alias->npages)
  2150. return alias->target_gfn + gfn - alias->base_gfn;
  2151. }
  2152. return gfn;
  2153. }
  2154. /*
  2155. * Set a new alias region. Aliases map a portion of physical memory into
  2156. * another portion. This is useful for memory windows, for example the PC
  2157. * VGA region.
  2158. */
  2159. static int kvm_vm_ioctl_set_memory_alias(struct kvm *kvm,
  2160. struct kvm_memory_alias *alias)
  2161. {
  2162. int r, n;
  2163. struct kvm_mem_alias *p;
  2164. struct kvm_mem_aliases *aliases, *old_aliases;
  2165. r = -EINVAL;
  2166. /* General sanity checks */
  2167. if (alias->memory_size & (PAGE_SIZE - 1))
  2168. goto out;
  2169. if (alias->guest_phys_addr & (PAGE_SIZE - 1))
  2170. goto out;
  2171. if (alias->slot >= KVM_ALIAS_SLOTS)
  2172. goto out;
  2173. if (alias->guest_phys_addr + alias->memory_size
  2174. < alias->guest_phys_addr)
  2175. goto out;
  2176. if (alias->target_phys_addr + alias->memory_size
  2177. < alias->target_phys_addr)
  2178. goto out;
  2179. r = -ENOMEM;
  2180. aliases = kzalloc(sizeof(struct kvm_mem_aliases), GFP_KERNEL);
  2181. if (!aliases)
  2182. goto out;
  2183. mutex_lock(&kvm->slots_lock);
  2184. /* invalidate any gfn reference in case of deletion/shrinking */
  2185. memcpy(aliases, kvm->arch.aliases, sizeof(struct kvm_mem_aliases));
  2186. aliases->aliases[alias->slot].flags |= KVM_ALIAS_INVALID;
  2187. old_aliases = kvm->arch.aliases;
  2188. rcu_assign_pointer(kvm->arch.aliases, aliases);
  2189. synchronize_srcu_expedited(&kvm->srcu);
  2190. kvm_mmu_zap_all(kvm);
  2191. kfree(old_aliases);
  2192. r = -ENOMEM;
  2193. aliases = kzalloc(sizeof(struct kvm_mem_aliases), GFP_KERNEL);
  2194. if (!aliases)
  2195. goto out_unlock;
  2196. memcpy(aliases, kvm->arch.aliases, sizeof(struct kvm_mem_aliases));
  2197. p = &aliases->aliases[alias->slot];
  2198. p->base_gfn = alias->guest_phys_addr >> PAGE_SHIFT;
  2199. p->npages = alias->memory_size >> PAGE_SHIFT;
  2200. p->target_gfn = alias->target_phys_addr >> PAGE_SHIFT;
  2201. p->flags &= ~(KVM_ALIAS_INVALID);
  2202. for (n = KVM_ALIAS_SLOTS; n > 0; --n)
  2203. if (aliases->aliases[n - 1].npages)
  2204. break;
  2205. aliases->naliases = n;
  2206. old_aliases = kvm->arch.aliases;
  2207. rcu_assign_pointer(kvm->arch.aliases, aliases);
  2208. synchronize_srcu_expedited(&kvm->srcu);
  2209. kfree(old_aliases);
  2210. r = 0;
  2211. out_unlock:
  2212. mutex_unlock(&kvm->slots_lock);
  2213. out:
  2214. return r;
  2215. }
  2216. static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
  2217. {
  2218. int r;
  2219. r = 0;
  2220. switch (chip->chip_id) {
  2221. case KVM_IRQCHIP_PIC_MASTER:
  2222. memcpy(&chip->chip.pic,
  2223. &pic_irqchip(kvm)->pics[0],
  2224. sizeof(struct kvm_pic_state));
  2225. break;
  2226. case KVM_IRQCHIP_PIC_SLAVE:
  2227. memcpy(&chip->chip.pic,
  2228. &pic_irqchip(kvm)->pics[1],
  2229. sizeof(struct kvm_pic_state));
  2230. break;
  2231. case KVM_IRQCHIP_IOAPIC:
  2232. r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
  2233. break;
  2234. default:
  2235. r = -EINVAL;
  2236. break;
  2237. }
  2238. return r;
  2239. }
  2240. static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
  2241. {
  2242. int r;
  2243. r = 0;
  2244. switch (chip->chip_id) {
  2245. case KVM_IRQCHIP_PIC_MASTER:
  2246. spin_lock(&pic_irqchip(kvm)->lock);
  2247. memcpy(&pic_irqchip(kvm)->pics[0],
  2248. &chip->chip.pic,
  2249. sizeof(struct kvm_pic_state));
  2250. spin_unlock(&pic_irqchip(kvm)->lock);
  2251. break;
  2252. case KVM_IRQCHIP_PIC_SLAVE:
  2253. spin_lock(&pic_irqchip(kvm)->lock);
  2254. memcpy(&pic_irqchip(kvm)->pics[1],
  2255. &chip->chip.pic,
  2256. sizeof(struct kvm_pic_state));
  2257. spin_unlock(&pic_irqchip(kvm)->lock);
  2258. break;
  2259. case KVM_IRQCHIP_IOAPIC:
  2260. r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
  2261. break;
  2262. default:
  2263. r = -EINVAL;
  2264. break;
  2265. }
  2266. kvm_pic_update_irq(pic_irqchip(kvm));
  2267. return r;
  2268. }
  2269. static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
  2270. {
  2271. int r = 0;
  2272. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  2273. memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
  2274. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  2275. return r;
  2276. }
  2277. static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
  2278. {
  2279. int r = 0;
  2280. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  2281. memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
  2282. kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0);
  2283. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  2284. return r;
  2285. }
  2286. static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
  2287. {
  2288. int r = 0;
  2289. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  2290. memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
  2291. sizeof(ps->channels));
  2292. ps->flags = kvm->arch.vpit->pit_state.flags;
  2293. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  2294. return r;
  2295. }
  2296. static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
  2297. {
  2298. int r = 0, start = 0;
  2299. u32 prev_legacy, cur_legacy;
  2300. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  2301. prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
  2302. cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
  2303. if (!prev_legacy && cur_legacy)
  2304. start = 1;
  2305. memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
  2306. sizeof(kvm->arch.vpit->pit_state.channels));
  2307. kvm->arch.vpit->pit_state.flags = ps->flags;
  2308. kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start);
  2309. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  2310. return r;
  2311. }
  2312. static int kvm_vm_ioctl_reinject(struct kvm *kvm,
  2313. struct kvm_reinject_control *control)
  2314. {
  2315. if (!kvm->arch.vpit)
  2316. return -ENXIO;
  2317. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  2318. kvm->arch.vpit->pit_state.pit_timer.reinject = control->pit_reinject;
  2319. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  2320. return 0;
  2321. }
  2322. /*
  2323. * Get (and clear) the dirty memory log for a memory slot.
  2324. */
  2325. int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
  2326. struct kvm_dirty_log *log)
  2327. {
  2328. int r, n, i;
  2329. struct kvm_memory_slot *memslot;
  2330. unsigned long is_dirty = 0;
  2331. unsigned long *dirty_bitmap = NULL;
  2332. mutex_lock(&kvm->slots_lock);
  2333. r = -EINVAL;
  2334. if (log->slot >= KVM_MEMORY_SLOTS)
  2335. goto out;
  2336. memslot = &kvm->memslots->memslots[log->slot];
  2337. r = -ENOENT;
  2338. if (!memslot->dirty_bitmap)
  2339. goto out;
  2340. n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
  2341. r = -ENOMEM;
  2342. dirty_bitmap = vmalloc(n);
  2343. if (!dirty_bitmap)
  2344. goto out;
  2345. memset(dirty_bitmap, 0, n);
  2346. for (i = 0; !is_dirty && i < n/sizeof(long); i++)
  2347. is_dirty = memslot->dirty_bitmap[i];
  2348. /* If nothing is dirty, don't bother messing with page tables. */
  2349. if (is_dirty) {
  2350. struct kvm_memslots *slots, *old_slots;
  2351. spin_lock(&kvm->mmu_lock);
  2352. kvm_mmu_slot_remove_write_access(kvm, log->slot);
  2353. spin_unlock(&kvm->mmu_lock);
  2354. slots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
  2355. if (!slots)
  2356. goto out_free;
  2357. memcpy(slots, kvm->memslots, sizeof(struct kvm_memslots));
  2358. slots->memslots[log->slot].dirty_bitmap = dirty_bitmap;
  2359. old_slots = kvm->memslots;
  2360. rcu_assign_pointer(kvm->memslots, slots);
  2361. synchronize_srcu_expedited(&kvm->srcu);
  2362. dirty_bitmap = old_slots->memslots[log->slot].dirty_bitmap;
  2363. kfree(old_slots);
  2364. }
  2365. r = 0;
  2366. if (copy_to_user(log->dirty_bitmap, dirty_bitmap, n))
  2367. r = -EFAULT;
  2368. out_free:
  2369. vfree(dirty_bitmap);
  2370. out:
  2371. mutex_unlock(&kvm->slots_lock);
  2372. return r;
  2373. }
  2374. long kvm_arch_vm_ioctl(struct file *filp,
  2375. unsigned int ioctl, unsigned long arg)
  2376. {
  2377. struct kvm *kvm = filp->private_data;
  2378. void __user *argp = (void __user *)arg;
  2379. int r = -ENOTTY;
  2380. /*
  2381. * This union makes it completely explicit to gcc-3.x
  2382. * that these two variables' stack usage should be
  2383. * combined, not added together.
  2384. */
  2385. union {
  2386. struct kvm_pit_state ps;
  2387. struct kvm_pit_state2 ps2;
  2388. struct kvm_memory_alias alias;
  2389. struct kvm_pit_config pit_config;
  2390. } u;
  2391. switch (ioctl) {
  2392. case KVM_SET_TSS_ADDR:
  2393. r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
  2394. if (r < 0)
  2395. goto out;
  2396. break;
  2397. case KVM_SET_IDENTITY_MAP_ADDR: {
  2398. u64 ident_addr;
  2399. r = -EFAULT;
  2400. if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
  2401. goto out;
  2402. r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
  2403. if (r < 0)
  2404. goto out;
  2405. break;
  2406. }
  2407. case KVM_SET_MEMORY_REGION: {
  2408. struct kvm_memory_region kvm_mem;
  2409. struct kvm_userspace_memory_region kvm_userspace_mem;
  2410. r = -EFAULT;
  2411. if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
  2412. goto out;
  2413. kvm_userspace_mem.slot = kvm_mem.slot;
  2414. kvm_userspace_mem.flags = kvm_mem.flags;
  2415. kvm_userspace_mem.guest_phys_addr = kvm_mem.guest_phys_addr;
  2416. kvm_userspace_mem.memory_size = kvm_mem.memory_size;
  2417. r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 0);
  2418. if (r)
  2419. goto out;
  2420. break;
  2421. }
  2422. case KVM_SET_NR_MMU_PAGES:
  2423. r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
  2424. if (r)
  2425. goto out;
  2426. break;
  2427. case KVM_GET_NR_MMU_PAGES:
  2428. r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
  2429. break;
  2430. case KVM_SET_MEMORY_ALIAS:
  2431. r = -EFAULT;
  2432. if (copy_from_user(&u.alias, argp, sizeof(struct kvm_memory_alias)))
  2433. goto out;
  2434. r = kvm_vm_ioctl_set_memory_alias(kvm, &u.alias);
  2435. if (r)
  2436. goto out;
  2437. break;
  2438. case KVM_CREATE_IRQCHIP: {
  2439. struct kvm_pic *vpic;
  2440. mutex_lock(&kvm->lock);
  2441. r = -EEXIST;
  2442. if (kvm->arch.vpic)
  2443. goto create_irqchip_unlock;
  2444. r = -ENOMEM;
  2445. vpic = kvm_create_pic(kvm);
  2446. if (vpic) {
  2447. r = kvm_ioapic_init(kvm);
  2448. if (r) {
  2449. kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
  2450. &vpic->dev);
  2451. kfree(vpic);
  2452. goto create_irqchip_unlock;
  2453. }
  2454. } else
  2455. goto create_irqchip_unlock;
  2456. smp_wmb();
  2457. kvm->arch.vpic = vpic;
  2458. smp_wmb();
  2459. r = kvm_setup_default_irq_routing(kvm);
  2460. if (r) {
  2461. mutex_lock(&kvm->irq_lock);
  2462. kvm_ioapic_destroy(kvm);
  2463. kvm_destroy_pic(kvm);
  2464. mutex_unlock(&kvm->irq_lock);
  2465. }
  2466. create_irqchip_unlock:
  2467. mutex_unlock(&kvm->lock);
  2468. break;
  2469. }
  2470. case KVM_CREATE_PIT:
  2471. u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
  2472. goto create_pit;
  2473. case KVM_CREATE_PIT2:
  2474. r = -EFAULT;
  2475. if (copy_from_user(&u.pit_config, argp,
  2476. sizeof(struct kvm_pit_config)))
  2477. goto out;
  2478. create_pit:
  2479. mutex_lock(&kvm->slots_lock);
  2480. r = -EEXIST;
  2481. if (kvm->arch.vpit)
  2482. goto create_pit_unlock;
  2483. r = -ENOMEM;
  2484. kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
  2485. if (kvm->arch.vpit)
  2486. r = 0;
  2487. create_pit_unlock:
  2488. mutex_unlock(&kvm->slots_lock);
  2489. break;
  2490. case KVM_IRQ_LINE_STATUS:
  2491. case KVM_IRQ_LINE: {
  2492. struct kvm_irq_level irq_event;
  2493. r = -EFAULT;
  2494. if (copy_from_user(&irq_event, argp, sizeof irq_event))
  2495. goto out;
  2496. if (irqchip_in_kernel(kvm)) {
  2497. __s32 status;
  2498. status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
  2499. irq_event.irq, irq_event.level);
  2500. if (ioctl == KVM_IRQ_LINE_STATUS) {
  2501. irq_event.status = status;
  2502. if (copy_to_user(argp, &irq_event,
  2503. sizeof irq_event))
  2504. goto out;
  2505. }
  2506. r = 0;
  2507. }
  2508. break;
  2509. }
  2510. case KVM_GET_IRQCHIP: {
  2511. /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
  2512. struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
  2513. r = -ENOMEM;
  2514. if (!chip)
  2515. goto out;
  2516. r = -EFAULT;
  2517. if (copy_from_user(chip, argp, sizeof *chip))
  2518. goto get_irqchip_out;
  2519. r = -ENXIO;
  2520. if (!irqchip_in_kernel(kvm))
  2521. goto get_irqchip_out;
  2522. r = kvm_vm_ioctl_get_irqchip(kvm, chip);
  2523. if (r)
  2524. goto get_irqchip_out;
  2525. r = -EFAULT;
  2526. if (copy_to_user(argp, chip, sizeof *chip))
  2527. goto get_irqchip_out;
  2528. r = 0;
  2529. get_irqchip_out:
  2530. kfree(chip);
  2531. if (r)
  2532. goto out;
  2533. break;
  2534. }
  2535. case KVM_SET_IRQCHIP: {
  2536. /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
  2537. struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
  2538. r = -ENOMEM;
  2539. if (!chip)
  2540. goto out;
  2541. r = -EFAULT;
  2542. if (copy_from_user(chip, argp, sizeof *chip))
  2543. goto set_irqchip_out;
  2544. r = -ENXIO;
  2545. if (!irqchip_in_kernel(kvm))
  2546. goto set_irqchip_out;
  2547. r = kvm_vm_ioctl_set_irqchip(kvm, chip);
  2548. if (r)
  2549. goto set_irqchip_out;
  2550. r = 0;
  2551. set_irqchip_out:
  2552. kfree(chip);
  2553. if (r)
  2554. goto out;
  2555. break;
  2556. }
  2557. case KVM_GET_PIT: {
  2558. r = -EFAULT;
  2559. if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
  2560. goto out;
  2561. r = -ENXIO;
  2562. if (!kvm->arch.vpit)
  2563. goto out;
  2564. r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
  2565. if (r)
  2566. goto out;
  2567. r = -EFAULT;
  2568. if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
  2569. goto out;
  2570. r = 0;
  2571. break;
  2572. }
  2573. case KVM_SET_PIT: {
  2574. r = -EFAULT;
  2575. if (copy_from_user(&u.ps, argp, sizeof u.ps))
  2576. goto out;
  2577. r = -ENXIO;
  2578. if (!kvm->arch.vpit)
  2579. goto out;
  2580. r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
  2581. if (r)
  2582. goto out;
  2583. r = 0;
  2584. break;
  2585. }
  2586. case KVM_GET_PIT2: {
  2587. r = -ENXIO;
  2588. if (!kvm->arch.vpit)
  2589. goto out;
  2590. r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
  2591. if (r)
  2592. goto out;
  2593. r = -EFAULT;
  2594. if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
  2595. goto out;
  2596. r = 0;
  2597. break;
  2598. }
  2599. case KVM_SET_PIT2: {
  2600. r = -EFAULT;
  2601. if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
  2602. goto out;
  2603. r = -ENXIO;
  2604. if (!kvm->arch.vpit)
  2605. goto out;
  2606. r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
  2607. if (r)
  2608. goto out;
  2609. r = 0;
  2610. break;
  2611. }
  2612. case KVM_REINJECT_CONTROL: {
  2613. struct kvm_reinject_control control;
  2614. r = -EFAULT;
  2615. if (copy_from_user(&control, argp, sizeof(control)))
  2616. goto out;
  2617. r = kvm_vm_ioctl_reinject(kvm, &control);
  2618. if (r)
  2619. goto out;
  2620. r = 0;
  2621. break;
  2622. }
  2623. case KVM_XEN_HVM_CONFIG: {
  2624. r = -EFAULT;
  2625. if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
  2626. sizeof(struct kvm_xen_hvm_config)))
  2627. goto out;
  2628. r = -EINVAL;
  2629. if (kvm->arch.xen_hvm_config.flags)
  2630. goto out;
  2631. r = 0;
  2632. break;
  2633. }
  2634. case KVM_SET_CLOCK: {
  2635. struct timespec now;
  2636. struct kvm_clock_data user_ns;
  2637. u64 now_ns;
  2638. s64 delta;
  2639. r = -EFAULT;
  2640. if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
  2641. goto out;
  2642. r = -EINVAL;
  2643. if (user_ns.flags)
  2644. goto out;
  2645. r = 0;
  2646. ktime_get_ts(&now);
  2647. now_ns = timespec_to_ns(&now);
  2648. delta = user_ns.clock - now_ns;
  2649. kvm->arch.kvmclock_offset = delta;
  2650. break;
  2651. }
  2652. case KVM_GET_CLOCK: {
  2653. struct timespec now;
  2654. struct kvm_clock_data user_ns;
  2655. u64 now_ns;
  2656. ktime_get_ts(&now);
  2657. now_ns = timespec_to_ns(&now);
  2658. user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
  2659. user_ns.flags = 0;
  2660. r = -EFAULT;
  2661. if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
  2662. goto out;
  2663. r = 0;
  2664. break;
  2665. }
  2666. default:
  2667. ;
  2668. }
  2669. out:
  2670. return r;
  2671. }
  2672. static void kvm_init_msr_list(void)
  2673. {
  2674. u32 dummy[2];
  2675. unsigned i, j;
  2676. /* skip the first msrs in the list. KVM-specific */
  2677. for (i = j = KVM_SAVE_MSRS_BEGIN; i < ARRAY_SIZE(msrs_to_save); i++) {
  2678. if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
  2679. continue;
  2680. if (j < i)
  2681. msrs_to_save[j] = msrs_to_save[i];
  2682. j++;
  2683. }
  2684. num_msrs_to_save = j;
  2685. }
  2686. static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
  2687. const void *v)
  2688. {
  2689. if (vcpu->arch.apic &&
  2690. !kvm_iodevice_write(&vcpu->arch.apic->dev, addr, len, v))
  2691. return 0;
  2692. return kvm_io_bus_write(vcpu->kvm, KVM_MMIO_BUS, addr, len, v);
  2693. }
  2694. static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
  2695. {
  2696. if (vcpu->arch.apic &&
  2697. !kvm_iodevice_read(&vcpu->arch.apic->dev, addr, len, v))
  2698. return 0;
  2699. return kvm_io_bus_read(vcpu->kvm, KVM_MMIO_BUS, addr, len, v);
  2700. }
  2701. gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva, u32 *error)
  2702. {
  2703. u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
  2704. return vcpu->arch.mmu.gva_to_gpa(vcpu, gva, access, error);
  2705. }
  2706. gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva, u32 *error)
  2707. {
  2708. u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
  2709. access |= PFERR_FETCH_MASK;
  2710. return vcpu->arch.mmu.gva_to_gpa(vcpu, gva, access, error);
  2711. }
  2712. gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva, u32 *error)
  2713. {
  2714. u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
  2715. access |= PFERR_WRITE_MASK;
  2716. return vcpu->arch.mmu.gva_to_gpa(vcpu, gva, access, error);
  2717. }
  2718. /* uses this to access any guest's mapped memory without checking CPL */
  2719. gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva, u32 *error)
  2720. {
  2721. return vcpu->arch.mmu.gva_to_gpa(vcpu, gva, 0, error);
  2722. }
  2723. static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
  2724. struct kvm_vcpu *vcpu, u32 access,
  2725. u32 *error)
  2726. {
  2727. void *data = val;
  2728. int r = X86EMUL_CONTINUE;
  2729. while (bytes) {
  2730. gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr, access, error);
  2731. unsigned offset = addr & (PAGE_SIZE-1);
  2732. unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
  2733. int ret;
  2734. if (gpa == UNMAPPED_GVA) {
  2735. r = X86EMUL_PROPAGATE_FAULT;
  2736. goto out;
  2737. }
  2738. ret = kvm_read_guest(vcpu->kvm, gpa, data, toread);
  2739. if (ret < 0) {
  2740. r = X86EMUL_UNHANDLEABLE;
  2741. goto out;
  2742. }
  2743. bytes -= toread;
  2744. data += toread;
  2745. addr += toread;
  2746. }
  2747. out:
  2748. return r;
  2749. }
  2750. /* used for instruction fetching */
  2751. static int kvm_fetch_guest_virt(gva_t addr, void *val, unsigned int bytes,
  2752. struct kvm_vcpu *vcpu, u32 *error)
  2753. {
  2754. u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
  2755. return kvm_read_guest_virt_helper(addr, val, bytes, vcpu,
  2756. access | PFERR_FETCH_MASK, error);
  2757. }
  2758. static int kvm_read_guest_virt(gva_t addr, void *val, unsigned int bytes,
  2759. struct kvm_vcpu *vcpu, u32 *error)
  2760. {
  2761. u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
  2762. return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
  2763. error);
  2764. }
  2765. static int kvm_read_guest_virt_system(gva_t addr, void *val, unsigned int bytes,
  2766. struct kvm_vcpu *vcpu, u32 *error)
  2767. {
  2768. return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, error);
  2769. }
  2770. static int kvm_write_guest_virt(gva_t addr, void *val, unsigned int bytes,
  2771. struct kvm_vcpu *vcpu, u32 *error)
  2772. {
  2773. void *data = val;
  2774. int r = X86EMUL_CONTINUE;
  2775. while (bytes) {
  2776. gpa_t gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, error);
  2777. unsigned offset = addr & (PAGE_SIZE-1);
  2778. unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
  2779. int ret;
  2780. if (gpa == UNMAPPED_GVA) {
  2781. r = X86EMUL_PROPAGATE_FAULT;
  2782. goto out;
  2783. }
  2784. ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
  2785. if (ret < 0) {
  2786. r = X86EMUL_UNHANDLEABLE;
  2787. goto out;
  2788. }
  2789. bytes -= towrite;
  2790. data += towrite;
  2791. addr += towrite;
  2792. }
  2793. out:
  2794. return r;
  2795. }
  2796. static int emulator_read_emulated(unsigned long addr,
  2797. void *val,
  2798. unsigned int bytes,
  2799. struct kvm_vcpu *vcpu)
  2800. {
  2801. gpa_t gpa;
  2802. u32 error_code;
  2803. if (vcpu->mmio_read_completed) {
  2804. memcpy(val, vcpu->mmio_data, bytes);
  2805. trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
  2806. vcpu->mmio_phys_addr, *(u64 *)val);
  2807. vcpu->mmio_read_completed = 0;
  2808. return X86EMUL_CONTINUE;
  2809. }
  2810. gpa = kvm_mmu_gva_to_gpa_read(vcpu, addr, &error_code);
  2811. if (gpa == UNMAPPED_GVA) {
  2812. kvm_inject_page_fault(vcpu, addr, error_code);
  2813. return X86EMUL_PROPAGATE_FAULT;
  2814. }
  2815. /* For APIC access vmexit */
  2816. if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
  2817. goto mmio;
  2818. if (kvm_read_guest_virt(addr, val, bytes, vcpu, NULL)
  2819. == X86EMUL_CONTINUE)
  2820. return X86EMUL_CONTINUE;
  2821. mmio:
  2822. /*
  2823. * Is this MMIO handled locally?
  2824. */
  2825. if (!vcpu_mmio_read(vcpu, gpa, bytes, val)) {
  2826. trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes, gpa, *(u64 *)val);
  2827. return X86EMUL_CONTINUE;
  2828. }
  2829. trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
  2830. vcpu->mmio_needed = 1;
  2831. vcpu->mmio_phys_addr = gpa;
  2832. vcpu->mmio_size = bytes;
  2833. vcpu->mmio_is_write = 0;
  2834. return X86EMUL_UNHANDLEABLE;
  2835. }
  2836. int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
  2837. const void *val, int bytes)
  2838. {
  2839. int ret;
  2840. ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
  2841. if (ret < 0)
  2842. return 0;
  2843. kvm_mmu_pte_write(vcpu, gpa, val, bytes, 1);
  2844. return 1;
  2845. }
  2846. static int emulator_write_emulated_onepage(unsigned long addr,
  2847. const void *val,
  2848. unsigned int bytes,
  2849. struct kvm_vcpu *vcpu)
  2850. {
  2851. gpa_t gpa;
  2852. u32 error_code;
  2853. gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, &error_code);
  2854. if (gpa == UNMAPPED_GVA) {
  2855. kvm_inject_page_fault(vcpu, addr, error_code);
  2856. return X86EMUL_PROPAGATE_FAULT;
  2857. }
  2858. /* For APIC access vmexit */
  2859. if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
  2860. goto mmio;
  2861. if (emulator_write_phys(vcpu, gpa, val, bytes))
  2862. return X86EMUL_CONTINUE;
  2863. mmio:
  2864. trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
  2865. /*
  2866. * Is this MMIO handled locally?
  2867. */
  2868. if (!vcpu_mmio_write(vcpu, gpa, bytes, val))
  2869. return X86EMUL_CONTINUE;
  2870. vcpu->mmio_needed = 1;
  2871. vcpu->mmio_phys_addr = gpa;
  2872. vcpu->mmio_size = bytes;
  2873. vcpu->mmio_is_write = 1;
  2874. memcpy(vcpu->mmio_data, val, bytes);
  2875. return X86EMUL_CONTINUE;
  2876. }
  2877. int emulator_write_emulated(unsigned long addr,
  2878. const void *val,
  2879. unsigned int bytes,
  2880. struct kvm_vcpu *vcpu)
  2881. {
  2882. /* Crossing a page boundary? */
  2883. if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
  2884. int rc, now;
  2885. now = -addr & ~PAGE_MASK;
  2886. rc = emulator_write_emulated_onepage(addr, val, now, vcpu);
  2887. if (rc != X86EMUL_CONTINUE)
  2888. return rc;
  2889. addr += now;
  2890. val += now;
  2891. bytes -= now;
  2892. }
  2893. return emulator_write_emulated_onepage(addr, val, bytes, vcpu);
  2894. }
  2895. EXPORT_SYMBOL_GPL(emulator_write_emulated);
  2896. static int emulator_cmpxchg_emulated(unsigned long addr,
  2897. const void *old,
  2898. const void *new,
  2899. unsigned int bytes,
  2900. struct kvm_vcpu *vcpu)
  2901. {
  2902. printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
  2903. #ifndef CONFIG_X86_64
  2904. /* guests cmpxchg8b have to be emulated atomically */
  2905. if (bytes == 8) {
  2906. gpa_t gpa;
  2907. struct page *page;
  2908. char *kaddr;
  2909. u64 val;
  2910. gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
  2911. if (gpa == UNMAPPED_GVA ||
  2912. (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
  2913. goto emul_write;
  2914. if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
  2915. goto emul_write;
  2916. val = *(u64 *)new;
  2917. page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
  2918. kaddr = kmap_atomic(page, KM_USER0);
  2919. set_64bit((u64 *)(kaddr + offset_in_page(gpa)), val);
  2920. kunmap_atomic(kaddr, KM_USER0);
  2921. kvm_release_page_dirty(page);
  2922. }
  2923. emul_write:
  2924. #endif
  2925. return emulator_write_emulated(addr, new, bytes, vcpu);
  2926. }
  2927. static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
  2928. {
  2929. return kvm_x86_ops->get_segment_base(vcpu, seg);
  2930. }
  2931. int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
  2932. {
  2933. kvm_mmu_invlpg(vcpu, address);
  2934. return X86EMUL_CONTINUE;
  2935. }
  2936. int emulate_clts(struct kvm_vcpu *vcpu)
  2937. {
  2938. kvm_x86_ops->set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
  2939. kvm_x86_ops->fpu_activate(vcpu);
  2940. return X86EMUL_CONTINUE;
  2941. }
  2942. int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
  2943. {
  2944. return kvm_x86_ops->get_dr(ctxt->vcpu, dr, dest);
  2945. }
  2946. int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
  2947. {
  2948. unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
  2949. return kvm_x86_ops->set_dr(ctxt->vcpu, dr, value & mask);
  2950. }
  2951. void kvm_report_emulation_failure(struct kvm_vcpu *vcpu, const char *context)
  2952. {
  2953. u8 opcodes[4];
  2954. unsigned long rip = kvm_rip_read(vcpu);
  2955. unsigned long rip_linear;
  2956. if (!printk_ratelimit())
  2957. return;
  2958. rip_linear = rip + get_segment_base(vcpu, VCPU_SREG_CS);
  2959. kvm_read_guest_virt(rip_linear, (void *)opcodes, 4, vcpu, NULL);
  2960. printk(KERN_ERR "emulation failed (%s) rip %lx %02x %02x %02x %02x\n",
  2961. context, rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
  2962. }
  2963. EXPORT_SYMBOL_GPL(kvm_report_emulation_failure);
  2964. static struct x86_emulate_ops emulate_ops = {
  2965. .read_std = kvm_read_guest_virt_system,
  2966. .fetch = kvm_fetch_guest_virt,
  2967. .read_emulated = emulator_read_emulated,
  2968. .write_emulated = emulator_write_emulated,
  2969. .cmpxchg_emulated = emulator_cmpxchg_emulated,
  2970. };
  2971. static void cache_all_regs(struct kvm_vcpu *vcpu)
  2972. {
  2973. kvm_register_read(vcpu, VCPU_REGS_RAX);
  2974. kvm_register_read(vcpu, VCPU_REGS_RSP);
  2975. kvm_register_read(vcpu, VCPU_REGS_RIP);
  2976. vcpu->arch.regs_dirty = ~0;
  2977. }
  2978. int emulate_instruction(struct kvm_vcpu *vcpu,
  2979. unsigned long cr2,
  2980. u16 error_code,
  2981. int emulation_type)
  2982. {
  2983. int r, shadow_mask;
  2984. struct decode_cache *c;
  2985. struct kvm_run *run = vcpu->run;
  2986. kvm_clear_exception_queue(vcpu);
  2987. vcpu->arch.mmio_fault_cr2 = cr2;
  2988. /*
  2989. * TODO: fix emulate.c to use guest_read/write_register
  2990. * instead of direct ->regs accesses, can save hundred cycles
  2991. * on Intel for instructions that don't read/change RSP, for
  2992. * for example.
  2993. */
  2994. cache_all_regs(vcpu);
  2995. vcpu->mmio_is_write = 0;
  2996. vcpu->arch.pio.string = 0;
  2997. if (!(emulation_type & EMULTYPE_NO_DECODE)) {
  2998. int cs_db, cs_l;
  2999. kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  3000. vcpu->arch.emulate_ctxt.vcpu = vcpu;
  3001. vcpu->arch.emulate_ctxt.eflags = kvm_get_rflags(vcpu);
  3002. vcpu->arch.emulate_ctxt.mode =
  3003. (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL :
  3004. (vcpu->arch.emulate_ctxt.eflags & X86_EFLAGS_VM)
  3005. ? X86EMUL_MODE_VM86 : cs_l
  3006. ? X86EMUL_MODE_PROT64 : cs_db
  3007. ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
  3008. r = x86_decode_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
  3009. /* Only allow emulation of specific instructions on #UD
  3010. * (namely VMMCALL, sysenter, sysexit, syscall)*/
  3011. c = &vcpu->arch.emulate_ctxt.decode;
  3012. if (emulation_type & EMULTYPE_TRAP_UD) {
  3013. if (!c->twobyte)
  3014. return EMULATE_FAIL;
  3015. switch (c->b) {
  3016. case 0x01: /* VMMCALL */
  3017. if (c->modrm_mod != 3 || c->modrm_rm != 1)
  3018. return EMULATE_FAIL;
  3019. break;
  3020. case 0x34: /* sysenter */
  3021. case 0x35: /* sysexit */
  3022. if (c->modrm_mod != 0 || c->modrm_rm != 0)
  3023. return EMULATE_FAIL;
  3024. break;
  3025. case 0x05: /* syscall */
  3026. if (c->modrm_mod != 0 || c->modrm_rm != 0)
  3027. return EMULATE_FAIL;
  3028. break;
  3029. default:
  3030. return EMULATE_FAIL;
  3031. }
  3032. if (!(c->modrm_reg == 0 || c->modrm_reg == 3))
  3033. return EMULATE_FAIL;
  3034. }
  3035. ++vcpu->stat.insn_emulation;
  3036. if (r) {
  3037. ++vcpu->stat.insn_emulation_fail;
  3038. if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
  3039. return EMULATE_DONE;
  3040. return EMULATE_FAIL;
  3041. }
  3042. }
  3043. if (emulation_type & EMULTYPE_SKIP) {
  3044. kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.decode.eip);
  3045. return EMULATE_DONE;
  3046. }
  3047. r = x86_emulate_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
  3048. shadow_mask = vcpu->arch.emulate_ctxt.interruptibility;
  3049. if (r == 0)
  3050. kvm_x86_ops->set_interrupt_shadow(vcpu, shadow_mask);
  3051. if (vcpu->arch.pio.string)
  3052. return EMULATE_DO_MMIO;
  3053. if ((r || vcpu->mmio_is_write) && run) {
  3054. run->exit_reason = KVM_EXIT_MMIO;
  3055. run->mmio.phys_addr = vcpu->mmio_phys_addr;
  3056. memcpy(run->mmio.data, vcpu->mmio_data, 8);
  3057. run->mmio.len = vcpu->mmio_size;
  3058. run->mmio.is_write = vcpu->mmio_is_write;
  3059. }
  3060. if (r) {
  3061. if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
  3062. return EMULATE_DONE;
  3063. if (!vcpu->mmio_needed) {
  3064. kvm_report_emulation_failure(vcpu, "mmio");
  3065. return EMULATE_FAIL;
  3066. }
  3067. return EMULATE_DO_MMIO;
  3068. }
  3069. kvm_set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
  3070. if (vcpu->mmio_is_write) {
  3071. vcpu->mmio_needed = 0;
  3072. return EMULATE_DO_MMIO;
  3073. }
  3074. return EMULATE_DONE;
  3075. }
  3076. EXPORT_SYMBOL_GPL(emulate_instruction);
  3077. static int pio_copy_data(struct kvm_vcpu *vcpu)
  3078. {
  3079. void *p = vcpu->arch.pio_data;
  3080. gva_t q = vcpu->arch.pio.guest_gva;
  3081. unsigned bytes;
  3082. int ret;
  3083. u32 error_code;
  3084. bytes = vcpu->arch.pio.size * vcpu->arch.pio.cur_count;
  3085. if (vcpu->arch.pio.in)
  3086. ret = kvm_write_guest_virt(q, p, bytes, vcpu, &error_code);
  3087. else
  3088. ret = kvm_read_guest_virt(q, p, bytes, vcpu, &error_code);
  3089. if (ret == X86EMUL_PROPAGATE_FAULT)
  3090. kvm_inject_page_fault(vcpu, q, error_code);
  3091. return ret;
  3092. }
  3093. int complete_pio(struct kvm_vcpu *vcpu)
  3094. {
  3095. struct kvm_pio_request *io = &vcpu->arch.pio;
  3096. long delta;
  3097. int r;
  3098. unsigned long val;
  3099. if (!io->string) {
  3100. if (io->in) {
  3101. val = kvm_register_read(vcpu, VCPU_REGS_RAX);
  3102. memcpy(&val, vcpu->arch.pio_data, io->size);
  3103. kvm_register_write(vcpu, VCPU_REGS_RAX, val);
  3104. }
  3105. } else {
  3106. if (io->in) {
  3107. r = pio_copy_data(vcpu);
  3108. if (r)
  3109. goto out;
  3110. }
  3111. delta = 1;
  3112. if (io->rep) {
  3113. delta *= io->cur_count;
  3114. /*
  3115. * The size of the register should really depend on
  3116. * current address size.
  3117. */
  3118. val = kvm_register_read(vcpu, VCPU_REGS_RCX);
  3119. val -= delta;
  3120. kvm_register_write(vcpu, VCPU_REGS_RCX, val);
  3121. }
  3122. if (io->down)
  3123. delta = -delta;
  3124. delta *= io->size;
  3125. if (io->in) {
  3126. val = kvm_register_read(vcpu, VCPU_REGS_RDI);
  3127. val += delta;
  3128. kvm_register_write(vcpu, VCPU_REGS_RDI, val);
  3129. } else {
  3130. val = kvm_register_read(vcpu, VCPU_REGS_RSI);
  3131. val += delta;
  3132. kvm_register_write(vcpu, VCPU_REGS_RSI, val);
  3133. }
  3134. }
  3135. out:
  3136. io->count -= io->cur_count;
  3137. io->cur_count = 0;
  3138. return 0;
  3139. }
  3140. static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
  3141. {
  3142. /* TODO: String I/O for in kernel device */
  3143. int r;
  3144. if (vcpu->arch.pio.in)
  3145. r = kvm_io_bus_read(vcpu->kvm, KVM_PIO_BUS, vcpu->arch.pio.port,
  3146. vcpu->arch.pio.size, pd);
  3147. else
  3148. r = kvm_io_bus_write(vcpu->kvm, KVM_PIO_BUS,
  3149. vcpu->arch.pio.port, vcpu->arch.pio.size,
  3150. pd);
  3151. return r;
  3152. }
  3153. static int pio_string_write(struct kvm_vcpu *vcpu)
  3154. {
  3155. struct kvm_pio_request *io = &vcpu->arch.pio;
  3156. void *pd = vcpu->arch.pio_data;
  3157. int i, r = 0;
  3158. for (i = 0; i < io->cur_count; i++) {
  3159. if (kvm_io_bus_write(vcpu->kvm, KVM_PIO_BUS,
  3160. io->port, io->size, pd)) {
  3161. r = -EOPNOTSUPP;
  3162. break;
  3163. }
  3164. pd += io->size;
  3165. }
  3166. return r;
  3167. }
  3168. int kvm_emulate_pio(struct kvm_vcpu *vcpu, int in, int size, unsigned port)
  3169. {
  3170. unsigned long val;
  3171. trace_kvm_pio(!in, port, size, 1);
  3172. vcpu->run->exit_reason = KVM_EXIT_IO;
  3173. vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
  3174. vcpu->run->io.size = vcpu->arch.pio.size = size;
  3175. vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
  3176. vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = 1;
  3177. vcpu->run->io.port = vcpu->arch.pio.port = port;
  3178. vcpu->arch.pio.in = in;
  3179. vcpu->arch.pio.string = 0;
  3180. vcpu->arch.pio.down = 0;
  3181. vcpu->arch.pio.rep = 0;
  3182. if (!vcpu->arch.pio.in) {
  3183. val = kvm_register_read(vcpu, VCPU_REGS_RAX);
  3184. memcpy(vcpu->arch.pio_data, &val, 4);
  3185. }
  3186. if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
  3187. complete_pio(vcpu);
  3188. return 1;
  3189. }
  3190. return 0;
  3191. }
  3192. EXPORT_SYMBOL_GPL(kvm_emulate_pio);
  3193. int kvm_emulate_pio_string(struct kvm_vcpu *vcpu, int in,
  3194. int size, unsigned long count, int down,
  3195. gva_t address, int rep, unsigned port)
  3196. {
  3197. unsigned now, in_page;
  3198. int ret = 0;
  3199. trace_kvm_pio(!in, port, size, count);
  3200. vcpu->run->exit_reason = KVM_EXIT_IO;
  3201. vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
  3202. vcpu->run->io.size = vcpu->arch.pio.size = size;
  3203. vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
  3204. vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = count;
  3205. vcpu->run->io.port = vcpu->arch.pio.port = port;
  3206. vcpu->arch.pio.in = in;
  3207. vcpu->arch.pio.string = 1;
  3208. vcpu->arch.pio.down = down;
  3209. vcpu->arch.pio.rep = rep;
  3210. if (!count) {
  3211. kvm_x86_ops->skip_emulated_instruction(vcpu);
  3212. return 1;
  3213. }
  3214. if (!down)
  3215. in_page = PAGE_SIZE - offset_in_page(address);
  3216. else
  3217. in_page = offset_in_page(address) + size;
  3218. now = min(count, (unsigned long)in_page / size);
  3219. if (!now)
  3220. now = 1;
  3221. if (down) {
  3222. /*
  3223. * String I/O in reverse. Yuck. Kill the guest, fix later.
  3224. */
  3225. pr_unimpl(vcpu, "guest string pio down\n");
  3226. kvm_inject_gp(vcpu, 0);
  3227. return 1;
  3228. }
  3229. vcpu->run->io.count = now;
  3230. vcpu->arch.pio.cur_count = now;
  3231. if (vcpu->arch.pio.cur_count == vcpu->arch.pio.count)
  3232. kvm_x86_ops->skip_emulated_instruction(vcpu);
  3233. vcpu->arch.pio.guest_gva = address;
  3234. if (!vcpu->arch.pio.in) {
  3235. /* string PIO write */
  3236. ret = pio_copy_data(vcpu);
  3237. if (ret == X86EMUL_PROPAGATE_FAULT)
  3238. return 1;
  3239. if (ret == 0 && !pio_string_write(vcpu)) {
  3240. complete_pio(vcpu);
  3241. if (vcpu->arch.pio.count == 0)
  3242. ret = 1;
  3243. }
  3244. }
  3245. /* no string PIO read support yet */
  3246. return ret;
  3247. }
  3248. EXPORT_SYMBOL_GPL(kvm_emulate_pio_string);
  3249. static void bounce_off(void *info)
  3250. {
  3251. /* nothing */
  3252. }
  3253. static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
  3254. void *data)
  3255. {
  3256. struct cpufreq_freqs *freq = data;
  3257. struct kvm *kvm;
  3258. struct kvm_vcpu *vcpu;
  3259. int i, send_ipi = 0;
  3260. if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
  3261. return 0;
  3262. if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
  3263. return 0;
  3264. per_cpu(cpu_tsc_khz, freq->cpu) = freq->new;
  3265. spin_lock(&kvm_lock);
  3266. list_for_each_entry(kvm, &vm_list, vm_list) {
  3267. kvm_for_each_vcpu(i, vcpu, kvm) {
  3268. if (vcpu->cpu != freq->cpu)
  3269. continue;
  3270. if (!kvm_request_guest_time_update(vcpu))
  3271. continue;
  3272. if (vcpu->cpu != smp_processor_id())
  3273. send_ipi++;
  3274. }
  3275. }
  3276. spin_unlock(&kvm_lock);
  3277. if (freq->old < freq->new && send_ipi) {
  3278. /*
  3279. * We upscale the frequency. Must make the guest
  3280. * doesn't see old kvmclock values while running with
  3281. * the new frequency, otherwise we risk the guest sees
  3282. * time go backwards.
  3283. *
  3284. * In case we update the frequency for another cpu
  3285. * (which might be in guest context) send an interrupt
  3286. * to kick the cpu out of guest context. Next time
  3287. * guest context is entered kvmclock will be updated,
  3288. * so the guest will not see stale values.
  3289. */
  3290. smp_call_function_single(freq->cpu, bounce_off, NULL, 1);
  3291. }
  3292. return 0;
  3293. }
  3294. static struct notifier_block kvmclock_cpufreq_notifier_block = {
  3295. .notifier_call = kvmclock_cpufreq_notifier
  3296. };
  3297. static void kvm_timer_init(void)
  3298. {
  3299. int cpu;
  3300. if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
  3301. cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
  3302. CPUFREQ_TRANSITION_NOTIFIER);
  3303. for_each_online_cpu(cpu) {
  3304. unsigned long khz = cpufreq_get(cpu);
  3305. if (!khz)
  3306. khz = tsc_khz;
  3307. per_cpu(cpu_tsc_khz, cpu) = khz;
  3308. }
  3309. } else {
  3310. for_each_possible_cpu(cpu)
  3311. per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
  3312. }
  3313. }
  3314. int kvm_arch_init(void *opaque)
  3315. {
  3316. int r;
  3317. struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
  3318. if (kvm_x86_ops) {
  3319. printk(KERN_ERR "kvm: already loaded the other module\n");
  3320. r = -EEXIST;
  3321. goto out;
  3322. }
  3323. if (!ops->cpu_has_kvm_support()) {
  3324. printk(KERN_ERR "kvm: no hardware support\n");
  3325. r = -EOPNOTSUPP;
  3326. goto out;
  3327. }
  3328. if (ops->disabled_by_bios()) {
  3329. printk(KERN_ERR "kvm: disabled by bios\n");
  3330. r = -EOPNOTSUPP;
  3331. goto out;
  3332. }
  3333. r = kvm_mmu_module_init();
  3334. if (r)
  3335. goto out;
  3336. kvm_init_msr_list();
  3337. kvm_x86_ops = ops;
  3338. kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
  3339. kvm_mmu_set_base_ptes(PT_PRESENT_MASK);
  3340. kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
  3341. PT_DIRTY_MASK, PT64_NX_MASK, 0);
  3342. kvm_timer_init();
  3343. return 0;
  3344. out:
  3345. return r;
  3346. }
  3347. void kvm_arch_exit(void)
  3348. {
  3349. if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
  3350. cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
  3351. CPUFREQ_TRANSITION_NOTIFIER);
  3352. kvm_x86_ops = NULL;
  3353. kvm_mmu_module_exit();
  3354. }
  3355. int kvm_emulate_halt(struct kvm_vcpu *vcpu)
  3356. {
  3357. ++vcpu->stat.halt_exits;
  3358. if (irqchip_in_kernel(vcpu->kvm)) {
  3359. vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
  3360. return 1;
  3361. } else {
  3362. vcpu->run->exit_reason = KVM_EXIT_HLT;
  3363. return 0;
  3364. }
  3365. }
  3366. EXPORT_SYMBOL_GPL(kvm_emulate_halt);
  3367. static inline gpa_t hc_gpa(struct kvm_vcpu *vcpu, unsigned long a0,
  3368. unsigned long a1)
  3369. {
  3370. if (is_long_mode(vcpu))
  3371. return a0;
  3372. else
  3373. return a0 | ((gpa_t)a1 << 32);
  3374. }
  3375. int kvm_hv_hypercall(struct kvm_vcpu *vcpu)
  3376. {
  3377. u64 param, ingpa, outgpa, ret;
  3378. uint16_t code, rep_idx, rep_cnt, res = HV_STATUS_SUCCESS, rep_done = 0;
  3379. bool fast, longmode;
  3380. int cs_db, cs_l;
  3381. /*
  3382. * hypercall generates UD from non zero cpl and real mode
  3383. * per HYPER-V spec
  3384. */
  3385. if (kvm_x86_ops->get_cpl(vcpu) != 0 || !is_protmode(vcpu)) {
  3386. kvm_queue_exception(vcpu, UD_VECTOR);
  3387. return 0;
  3388. }
  3389. kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  3390. longmode = is_long_mode(vcpu) && cs_l == 1;
  3391. if (!longmode) {
  3392. param = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDX) << 32) |
  3393. (kvm_register_read(vcpu, VCPU_REGS_RAX) & 0xffffffff);
  3394. ingpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RBX) << 32) |
  3395. (kvm_register_read(vcpu, VCPU_REGS_RCX) & 0xffffffff);
  3396. outgpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDI) << 32) |
  3397. (kvm_register_read(vcpu, VCPU_REGS_RSI) & 0xffffffff);
  3398. }
  3399. #ifdef CONFIG_X86_64
  3400. else {
  3401. param = kvm_register_read(vcpu, VCPU_REGS_RCX);
  3402. ingpa = kvm_register_read(vcpu, VCPU_REGS_RDX);
  3403. outgpa = kvm_register_read(vcpu, VCPU_REGS_R8);
  3404. }
  3405. #endif
  3406. code = param & 0xffff;
  3407. fast = (param >> 16) & 0x1;
  3408. rep_cnt = (param >> 32) & 0xfff;
  3409. rep_idx = (param >> 48) & 0xfff;
  3410. trace_kvm_hv_hypercall(code, fast, rep_cnt, rep_idx, ingpa, outgpa);
  3411. switch (code) {
  3412. case HV_X64_HV_NOTIFY_LONG_SPIN_WAIT:
  3413. kvm_vcpu_on_spin(vcpu);
  3414. break;
  3415. default:
  3416. res = HV_STATUS_INVALID_HYPERCALL_CODE;
  3417. break;
  3418. }
  3419. ret = res | (((u64)rep_done & 0xfff) << 32);
  3420. if (longmode) {
  3421. kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
  3422. } else {
  3423. kvm_register_write(vcpu, VCPU_REGS_RDX, ret >> 32);
  3424. kvm_register_write(vcpu, VCPU_REGS_RAX, ret & 0xffffffff);
  3425. }
  3426. return 1;
  3427. }
  3428. int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
  3429. {
  3430. unsigned long nr, a0, a1, a2, a3, ret;
  3431. int r = 1;
  3432. if (kvm_hv_hypercall_enabled(vcpu->kvm))
  3433. return kvm_hv_hypercall(vcpu);
  3434. nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
  3435. a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
  3436. a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
  3437. a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
  3438. a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
  3439. trace_kvm_hypercall(nr, a0, a1, a2, a3);
  3440. if (!is_long_mode(vcpu)) {
  3441. nr &= 0xFFFFFFFF;
  3442. a0 &= 0xFFFFFFFF;
  3443. a1 &= 0xFFFFFFFF;
  3444. a2 &= 0xFFFFFFFF;
  3445. a3 &= 0xFFFFFFFF;
  3446. }
  3447. if (kvm_x86_ops->get_cpl(vcpu) != 0) {
  3448. ret = -KVM_EPERM;
  3449. goto out;
  3450. }
  3451. switch (nr) {
  3452. case KVM_HC_VAPIC_POLL_IRQ:
  3453. ret = 0;
  3454. break;
  3455. case KVM_HC_MMU_OP:
  3456. r = kvm_pv_mmu_op(vcpu, a0, hc_gpa(vcpu, a1, a2), &ret);
  3457. break;
  3458. default:
  3459. ret = -KVM_ENOSYS;
  3460. break;
  3461. }
  3462. out:
  3463. kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
  3464. ++vcpu->stat.hypercalls;
  3465. return r;
  3466. }
  3467. EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
  3468. int kvm_fix_hypercall(struct kvm_vcpu *vcpu)
  3469. {
  3470. char instruction[3];
  3471. unsigned long rip = kvm_rip_read(vcpu);
  3472. /*
  3473. * Blow out the MMU to ensure that no other VCPU has an active mapping
  3474. * to ensure that the updated hypercall appears atomically across all
  3475. * VCPUs.
  3476. */
  3477. kvm_mmu_zap_all(vcpu->kvm);
  3478. kvm_x86_ops->patch_hypercall(vcpu, instruction);
  3479. return emulator_write_emulated(rip, instruction, 3, vcpu);
  3480. }
  3481. static u64 mk_cr_64(u64 curr_cr, u32 new_val)
  3482. {
  3483. return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
  3484. }
  3485. void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  3486. {
  3487. struct descriptor_table dt = { limit, base };
  3488. kvm_x86_ops->set_gdt(vcpu, &dt);
  3489. }
  3490. void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  3491. {
  3492. struct descriptor_table dt = { limit, base };
  3493. kvm_x86_ops->set_idt(vcpu, &dt);
  3494. }
  3495. void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
  3496. unsigned long *rflags)
  3497. {
  3498. kvm_lmsw(vcpu, msw);
  3499. *rflags = kvm_get_rflags(vcpu);
  3500. }
  3501. unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
  3502. {
  3503. unsigned long value;
  3504. switch (cr) {
  3505. case 0:
  3506. value = kvm_read_cr0(vcpu);
  3507. break;
  3508. case 2:
  3509. value = vcpu->arch.cr2;
  3510. break;
  3511. case 3:
  3512. value = vcpu->arch.cr3;
  3513. break;
  3514. case 4:
  3515. value = kvm_read_cr4(vcpu);
  3516. break;
  3517. case 8:
  3518. value = kvm_get_cr8(vcpu);
  3519. break;
  3520. default:
  3521. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
  3522. return 0;
  3523. }
  3524. return value;
  3525. }
  3526. void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
  3527. unsigned long *rflags)
  3528. {
  3529. switch (cr) {
  3530. case 0:
  3531. kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
  3532. *rflags = kvm_get_rflags(vcpu);
  3533. break;
  3534. case 2:
  3535. vcpu->arch.cr2 = val;
  3536. break;
  3537. case 3:
  3538. kvm_set_cr3(vcpu, val);
  3539. break;
  3540. case 4:
  3541. kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
  3542. break;
  3543. case 8:
  3544. kvm_set_cr8(vcpu, val & 0xfUL);
  3545. break;
  3546. default:
  3547. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
  3548. }
  3549. }
  3550. static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
  3551. {
  3552. struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
  3553. int j, nent = vcpu->arch.cpuid_nent;
  3554. e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
  3555. /* when no next entry is found, the current entry[i] is reselected */
  3556. for (j = i + 1; ; j = (j + 1) % nent) {
  3557. struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j];
  3558. if (ej->function == e->function) {
  3559. ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
  3560. return j;
  3561. }
  3562. }
  3563. return 0; /* silence gcc, even though control never reaches here */
  3564. }
  3565. /* find an entry with matching function, matching index (if needed), and that
  3566. * should be read next (if it's stateful) */
  3567. static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
  3568. u32 function, u32 index)
  3569. {
  3570. if (e->function != function)
  3571. return 0;
  3572. if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
  3573. return 0;
  3574. if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
  3575. !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
  3576. return 0;
  3577. return 1;
  3578. }
  3579. struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
  3580. u32 function, u32 index)
  3581. {
  3582. int i;
  3583. struct kvm_cpuid_entry2 *best = NULL;
  3584. for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
  3585. struct kvm_cpuid_entry2 *e;
  3586. e = &vcpu->arch.cpuid_entries[i];
  3587. if (is_matching_cpuid_entry(e, function, index)) {
  3588. if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
  3589. move_to_next_stateful_cpuid_entry(vcpu, i);
  3590. best = e;
  3591. break;
  3592. }
  3593. /*
  3594. * Both basic or both extended?
  3595. */
  3596. if (((e->function ^ function) & 0x80000000) == 0)
  3597. if (!best || e->function > best->function)
  3598. best = e;
  3599. }
  3600. return best;
  3601. }
  3602. EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry);
  3603. int cpuid_maxphyaddr(struct kvm_vcpu *vcpu)
  3604. {
  3605. struct kvm_cpuid_entry2 *best;
  3606. best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
  3607. if (best)
  3608. return best->eax & 0xff;
  3609. return 36;
  3610. }
  3611. void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
  3612. {
  3613. u32 function, index;
  3614. struct kvm_cpuid_entry2 *best;
  3615. function = kvm_register_read(vcpu, VCPU_REGS_RAX);
  3616. index = kvm_register_read(vcpu, VCPU_REGS_RCX);
  3617. kvm_register_write(vcpu, VCPU_REGS_RAX, 0);
  3618. kvm_register_write(vcpu, VCPU_REGS_RBX, 0);
  3619. kvm_register_write(vcpu, VCPU_REGS_RCX, 0);
  3620. kvm_register_write(vcpu, VCPU_REGS_RDX, 0);
  3621. best = kvm_find_cpuid_entry(vcpu, function, index);
  3622. if (best) {
  3623. kvm_register_write(vcpu, VCPU_REGS_RAX, best->eax);
  3624. kvm_register_write(vcpu, VCPU_REGS_RBX, best->ebx);
  3625. kvm_register_write(vcpu, VCPU_REGS_RCX, best->ecx);
  3626. kvm_register_write(vcpu, VCPU_REGS_RDX, best->edx);
  3627. }
  3628. kvm_x86_ops->skip_emulated_instruction(vcpu);
  3629. trace_kvm_cpuid(function,
  3630. kvm_register_read(vcpu, VCPU_REGS_RAX),
  3631. kvm_register_read(vcpu, VCPU_REGS_RBX),
  3632. kvm_register_read(vcpu, VCPU_REGS_RCX),
  3633. kvm_register_read(vcpu, VCPU_REGS_RDX));
  3634. }
  3635. EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
  3636. /*
  3637. * Check if userspace requested an interrupt window, and that the
  3638. * interrupt window is open.
  3639. *
  3640. * No need to exit to userspace if we already have an interrupt queued.
  3641. */
  3642. static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
  3643. {
  3644. return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
  3645. vcpu->run->request_interrupt_window &&
  3646. kvm_arch_interrupt_allowed(vcpu));
  3647. }
  3648. static void post_kvm_run_save(struct kvm_vcpu *vcpu)
  3649. {
  3650. struct kvm_run *kvm_run = vcpu->run;
  3651. kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
  3652. kvm_run->cr8 = kvm_get_cr8(vcpu);
  3653. kvm_run->apic_base = kvm_get_apic_base(vcpu);
  3654. if (irqchip_in_kernel(vcpu->kvm))
  3655. kvm_run->ready_for_interrupt_injection = 1;
  3656. else
  3657. kvm_run->ready_for_interrupt_injection =
  3658. kvm_arch_interrupt_allowed(vcpu) &&
  3659. !kvm_cpu_has_interrupt(vcpu) &&
  3660. !kvm_event_needs_reinjection(vcpu);
  3661. }
  3662. static void vapic_enter(struct kvm_vcpu *vcpu)
  3663. {
  3664. struct kvm_lapic *apic = vcpu->arch.apic;
  3665. struct page *page;
  3666. if (!apic || !apic->vapic_addr)
  3667. return;
  3668. page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
  3669. vcpu->arch.apic->vapic_page = page;
  3670. }
  3671. static void vapic_exit(struct kvm_vcpu *vcpu)
  3672. {
  3673. struct kvm_lapic *apic = vcpu->arch.apic;
  3674. int idx;
  3675. if (!apic || !apic->vapic_addr)
  3676. return;
  3677. idx = srcu_read_lock(&vcpu->kvm->srcu);
  3678. kvm_release_page_dirty(apic->vapic_page);
  3679. mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
  3680. srcu_read_unlock(&vcpu->kvm->srcu, idx);
  3681. }
  3682. static void update_cr8_intercept(struct kvm_vcpu *vcpu)
  3683. {
  3684. int max_irr, tpr;
  3685. if (!kvm_x86_ops->update_cr8_intercept)
  3686. return;
  3687. if (!vcpu->arch.apic)
  3688. return;
  3689. if (!vcpu->arch.apic->vapic_addr)
  3690. max_irr = kvm_lapic_find_highest_irr(vcpu);
  3691. else
  3692. max_irr = -1;
  3693. if (max_irr != -1)
  3694. max_irr >>= 4;
  3695. tpr = kvm_lapic_get_cr8(vcpu);
  3696. kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
  3697. }
  3698. static void inject_pending_event(struct kvm_vcpu *vcpu)
  3699. {
  3700. /* try to reinject previous events if any */
  3701. if (vcpu->arch.exception.pending) {
  3702. kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
  3703. vcpu->arch.exception.has_error_code,
  3704. vcpu->arch.exception.error_code);
  3705. return;
  3706. }
  3707. if (vcpu->arch.nmi_injected) {
  3708. kvm_x86_ops->set_nmi(vcpu);
  3709. return;
  3710. }
  3711. if (vcpu->arch.interrupt.pending) {
  3712. kvm_x86_ops->set_irq(vcpu);
  3713. return;
  3714. }
  3715. /* try to inject new event if pending */
  3716. if (vcpu->arch.nmi_pending) {
  3717. if (kvm_x86_ops->nmi_allowed(vcpu)) {
  3718. vcpu->arch.nmi_pending = false;
  3719. vcpu->arch.nmi_injected = true;
  3720. kvm_x86_ops->set_nmi(vcpu);
  3721. }
  3722. } else if (kvm_cpu_has_interrupt(vcpu)) {
  3723. if (kvm_x86_ops->interrupt_allowed(vcpu)) {
  3724. kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
  3725. false);
  3726. kvm_x86_ops->set_irq(vcpu);
  3727. }
  3728. }
  3729. }
  3730. static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
  3731. {
  3732. int r;
  3733. bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
  3734. vcpu->run->request_interrupt_window;
  3735. if (vcpu->requests)
  3736. if (test_and_clear_bit(KVM_REQ_MMU_RELOAD, &vcpu->requests))
  3737. kvm_mmu_unload(vcpu);
  3738. r = kvm_mmu_reload(vcpu);
  3739. if (unlikely(r))
  3740. goto out;
  3741. if (vcpu->requests) {
  3742. if (test_and_clear_bit(KVM_REQ_MIGRATE_TIMER, &vcpu->requests))
  3743. __kvm_migrate_timers(vcpu);
  3744. if (test_and_clear_bit(KVM_REQ_KVMCLOCK_UPDATE, &vcpu->requests))
  3745. kvm_write_guest_time(vcpu);
  3746. if (test_and_clear_bit(KVM_REQ_MMU_SYNC, &vcpu->requests))
  3747. kvm_mmu_sync_roots(vcpu);
  3748. if (test_and_clear_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
  3749. kvm_x86_ops->tlb_flush(vcpu);
  3750. if (test_and_clear_bit(KVM_REQ_REPORT_TPR_ACCESS,
  3751. &vcpu->requests)) {
  3752. vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
  3753. r = 0;
  3754. goto out;
  3755. }
  3756. if (test_and_clear_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests)) {
  3757. vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
  3758. r = 0;
  3759. goto out;
  3760. }
  3761. if (test_and_clear_bit(KVM_REQ_DEACTIVATE_FPU, &vcpu->requests)) {
  3762. vcpu->fpu_active = 0;
  3763. kvm_x86_ops->fpu_deactivate(vcpu);
  3764. }
  3765. }
  3766. preempt_disable();
  3767. kvm_x86_ops->prepare_guest_switch(vcpu);
  3768. if (vcpu->fpu_active)
  3769. kvm_load_guest_fpu(vcpu);
  3770. local_irq_disable();
  3771. clear_bit(KVM_REQ_KICK, &vcpu->requests);
  3772. smp_mb__after_clear_bit();
  3773. if (vcpu->requests || need_resched() || signal_pending(current)) {
  3774. set_bit(KVM_REQ_KICK, &vcpu->requests);
  3775. local_irq_enable();
  3776. preempt_enable();
  3777. r = 1;
  3778. goto out;
  3779. }
  3780. inject_pending_event(vcpu);
  3781. /* enable NMI/IRQ window open exits if needed */
  3782. if (vcpu->arch.nmi_pending)
  3783. kvm_x86_ops->enable_nmi_window(vcpu);
  3784. else if (kvm_cpu_has_interrupt(vcpu) || req_int_win)
  3785. kvm_x86_ops->enable_irq_window(vcpu);
  3786. if (kvm_lapic_enabled(vcpu)) {
  3787. update_cr8_intercept(vcpu);
  3788. kvm_lapic_sync_to_vapic(vcpu);
  3789. }
  3790. srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
  3791. kvm_guest_enter();
  3792. if (unlikely(vcpu->arch.switch_db_regs)) {
  3793. set_debugreg(0, 7);
  3794. set_debugreg(vcpu->arch.eff_db[0], 0);
  3795. set_debugreg(vcpu->arch.eff_db[1], 1);
  3796. set_debugreg(vcpu->arch.eff_db[2], 2);
  3797. set_debugreg(vcpu->arch.eff_db[3], 3);
  3798. }
  3799. trace_kvm_entry(vcpu->vcpu_id);
  3800. kvm_x86_ops->run(vcpu);
  3801. /*
  3802. * If the guest has used debug registers, at least dr7
  3803. * will be disabled while returning to the host.
  3804. * If we don't have active breakpoints in the host, we don't
  3805. * care about the messed up debug address registers. But if
  3806. * we have some of them active, restore the old state.
  3807. */
  3808. if (hw_breakpoint_active())
  3809. hw_breakpoint_restore();
  3810. set_bit(KVM_REQ_KICK, &vcpu->requests);
  3811. local_irq_enable();
  3812. ++vcpu->stat.exits;
  3813. /*
  3814. * We must have an instruction between local_irq_enable() and
  3815. * kvm_guest_exit(), so the timer interrupt isn't delayed by
  3816. * the interrupt shadow. The stat.exits increment will do nicely.
  3817. * But we need to prevent reordering, hence this barrier():
  3818. */
  3819. barrier();
  3820. kvm_guest_exit();
  3821. preempt_enable();
  3822. vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
  3823. /*
  3824. * Profile KVM exit RIPs:
  3825. */
  3826. if (unlikely(prof_on == KVM_PROFILING)) {
  3827. unsigned long rip = kvm_rip_read(vcpu);
  3828. profile_hit(KVM_PROFILING, (void *)rip);
  3829. }
  3830. kvm_lapic_sync_from_vapic(vcpu);
  3831. r = kvm_x86_ops->handle_exit(vcpu);
  3832. out:
  3833. return r;
  3834. }
  3835. static int __vcpu_run(struct kvm_vcpu *vcpu)
  3836. {
  3837. int r;
  3838. struct kvm *kvm = vcpu->kvm;
  3839. if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) {
  3840. pr_debug("vcpu %d received sipi with vector # %x\n",
  3841. vcpu->vcpu_id, vcpu->arch.sipi_vector);
  3842. kvm_lapic_reset(vcpu);
  3843. r = kvm_arch_vcpu_reset(vcpu);
  3844. if (r)
  3845. return r;
  3846. vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  3847. }
  3848. vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
  3849. vapic_enter(vcpu);
  3850. r = 1;
  3851. while (r > 0) {
  3852. if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE)
  3853. r = vcpu_enter_guest(vcpu);
  3854. else {
  3855. srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
  3856. kvm_vcpu_block(vcpu);
  3857. vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
  3858. if (test_and_clear_bit(KVM_REQ_UNHALT, &vcpu->requests))
  3859. {
  3860. switch(vcpu->arch.mp_state) {
  3861. case KVM_MP_STATE_HALTED:
  3862. vcpu->arch.mp_state =
  3863. KVM_MP_STATE_RUNNABLE;
  3864. case KVM_MP_STATE_RUNNABLE:
  3865. break;
  3866. case KVM_MP_STATE_SIPI_RECEIVED:
  3867. default:
  3868. r = -EINTR;
  3869. break;
  3870. }
  3871. }
  3872. }
  3873. if (r <= 0)
  3874. break;
  3875. clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
  3876. if (kvm_cpu_has_pending_timer(vcpu))
  3877. kvm_inject_pending_timer_irqs(vcpu);
  3878. if (dm_request_for_irq_injection(vcpu)) {
  3879. r = -EINTR;
  3880. vcpu->run->exit_reason = KVM_EXIT_INTR;
  3881. ++vcpu->stat.request_irq_exits;
  3882. }
  3883. if (signal_pending(current)) {
  3884. r = -EINTR;
  3885. vcpu->run->exit_reason = KVM_EXIT_INTR;
  3886. ++vcpu->stat.signal_exits;
  3887. }
  3888. if (need_resched()) {
  3889. srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
  3890. kvm_resched(vcpu);
  3891. vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
  3892. }
  3893. }
  3894. srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
  3895. post_kvm_run_save(vcpu);
  3896. vapic_exit(vcpu);
  3897. return r;
  3898. }
  3899. int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  3900. {
  3901. int r;
  3902. sigset_t sigsaved;
  3903. vcpu_load(vcpu);
  3904. if (vcpu->sigset_active)
  3905. sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
  3906. if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
  3907. kvm_vcpu_block(vcpu);
  3908. clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
  3909. r = -EAGAIN;
  3910. goto out;
  3911. }
  3912. /* re-sync apic's tpr */
  3913. if (!irqchip_in_kernel(vcpu->kvm))
  3914. kvm_set_cr8(vcpu, kvm_run->cr8);
  3915. if (vcpu->arch.pio.cur_count) {
  3916. r = complete_pio(vcpu);
  3917. if (r)
  3918. goto out;
  3919. }
  3920. if (vcpu->mmio_needed) {
  3921. memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
  3922. vcpu->mmio_read_completed = 1;
  3923. vcpu->mmio_needed = 0;
  3924. vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
  3925. r = emulate_instruction(vcpu, vcpu->arch.mmio_fault_cr2, 0,
  3926. EMULTYPE_NO_DECODE);
  3927. srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
  3928. if (r == EMULATE_DO_MMIO) {
  3929. /*
  3930. * Read-modify-write. Back to userspace.
  3931. */
  3932. r = 0;
  3933. goto out;
  3934. }
  3935. }
  3936. if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL)
  3937. kvm_register_write(vcpu, VCPU_REGS_RAX,
  3938. kvm_run->hypercall.ret);
  3939. r = __vcpu_run(vcpu);
  3940. out:
  3941. if (vcpu->sigset_active)
  3942. sigprocmask(SIG_SETMASK, &sigsaved, NULL);
  3943. vcpu_put(vcpu);
  3944. return r;
  3945. }
  3946. int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
  3947. {
  3948. vcpu_load(vcpu);
  3949. regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
  3950. regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
  3951. regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
  3952. regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
  3953. regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
  3954. regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
  3955. regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
  3956. regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
  3957. #ifdef CONFIG_X86_64
  3958. regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
  3959. regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
  3960. regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
  3961. regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
  3962. regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
  3963. regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
  3964. regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
  3965. regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
  3966. #endif
  3967. regs->rip = kvm_rip_read(vcpu);
  3968. regs->rflags = kvm_get_rflags(vcpu);
  3969. vcpu_put(vcpu);
  3970. return 0;
  3971. }
  3972. int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
  3973. {
  3974. vcpu_load(vcpu);
  3975. kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
  3976. kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
  3977. kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
  3978. kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
  3979. kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
  3980. kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
  3981. kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
  3982. kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
  3983. #ifdef CONFIG_X86_64
  3984. kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
  3985. kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
  3986. kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
  3987. kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
  3988. kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
  3989. kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
  3990. kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
  3991. kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
  3992. #endif
  3993. kvm_rip_write(vcpu, regs->rip);
  3994. kvm_set_rflags(vcpu, regs->rflags);
  3995. vcpu->arch.exception.pending = false;
  3996. vcpu_put(vcpu);
  3997. return 0;
  3998. }
  3999. void kvm_get_segment(struct kvm_vcpu *vcpu,
  4000. struct kvm_segment *var, int seg)
  4001. {
  4002. kvm_x86_ops->get_segment(vcpu, var, seg);
  4003. }
  4004. void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
  4005. {
  4006. struct kvm_segment cs;
  4007. kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
  4008. *db = cs.db;
  4009. *l = cs.l;
  4010. }
  4011. EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
  4012. int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
  4013. struct kvm_sregs *sregs)
  4014. {
  4015. struct descriptor_table dt;
  4016. vcpu_load(vcpu);
  4017. kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  4018. kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  4019. kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  4020. kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  4021. kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  4022. kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  4023. kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  4024. kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  4025. kvm_x86_ops->get_idt(vcpu, &dt);
  4026. sregs->idt.limit = dt.limit;
  4027. sregs->idt.base = dt.base;
  4028. kvm_x86_ops->get_gdt(vcpu, &dt);
  4029. sregs->gdt.limit = dt.limit;
  4030. sregs->gdt.base = dt.base;
  4031. sregs->cr0 = kvm_read_cr0(vcpu);
  4032. sregs->cr2 = vcpu->arch.cr2;
  4033. sregs->cr3 = vcpu->arch.cr3;
  4034. sregs->cr4 = kvm_read_cr4(vcpu);
  4035. sregs->cr8 = kvm_get_cr8(vcpu);
  4036. sregs->efer = vcpu->arch.efer;
  4037. sregs->apic_base = kvm_get_apic_base(vcpu);
  4038. memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
  4039. if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
  4040. set_bit(vcpu->arch.interrupt.nr,
  4041. (unsigned long *)sregs->interrupt_bitmap);
  4042. vcpu_put(vcpu);
  4043. return 0;
  4044. }
  4045. int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
  4046. struct kvm_mp_state *mp_state)
  4047. {
  4048. vcpu_load(vcpu);
  4049. mp_state->mp_state = vcpu->arch.mp_state;
  4050. vcpu_put(vcpu);
  4051. return 0;
  4052. }
  4053. int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
  4054. struct kvm_mp_state *mp_state)
  4055. {
  4056. vcpu_load(vcpu);
  4057. vcpu->arch.mp_state = mp_state->mp_state;
  4058. vcpu_put(vcpu);
  4059. return 0;
  4060. }
  4061. static void kvm_set_segment(struct kvm_vcpu *vcpu,
  4062. struct kvm_segment *var, int seg)
  4063. {
  4064. kvm_x86_ops->set_segment(vcpu, var, seg);
  4065. }
  4066. static void seg_desct_to_kvm_desct(struct desc_struct *seg_desc, u16 selector,
  4067. struct kvm_segment *kvm_desct)
  4068. {
  4069. kvm_desct->base = get_desc_base(seg_desc);
  4070. kvm_desct->limit = get_desc_limit(seg_desc);
  4071. if (seg_desc->g) {
  4072. kvm_desct->limit <<= 12;
  4073. kvm_desct->limit |= 0xfff;
  4074. }
  4075. kvm_desct->selector = selector;
  4076. kvm_desct->type = seg_desc->type;
  4077. kvm_desct->present = seg_desc->p;
  4078. kvm_desct->dpl = seg_desc->dpl;
  4079. kvm_desct->db = seg_desc->d;
  4080. kvm_desct->s = seg_desc->s;
  4081. kvm_desct->l = seg_desc->l;
  4082. kvm_desct->g = seg_desc->g;
  4083. kvm_desct->avl = seg_desc->avl;
  4084. if (!selector)
  4085. kvm_desct->unusable = 1;
  4086. else
  4087. kvm_desct->unusable = 0;
  4088. kvm_desct->padding = 0;
  4089. }
  4090. static void get_segment_descriptor_dtable(struct kvm_vcpu *vcpu,
  4091. u16 selector,
  4092. struct descriptor_table *dtable)
  4093. {
  4094. if (selector & 1 << 2) {
  4095. struct kvm_segment kvm_seg;
  4096. kvm_get_segment(vcpu, &kvm_seg, VCPU_SREG_LDTR);
  4097. if (kvm_seg.unusable)
  4098. dtable->limit = 0;
  4099. else
  4100. dtable->limit = kvm_seg.limit;
  4101. dtable->base = kvm_seg.base;
  4102. }
  4103. else
  4104. kvm_x86_ops->get_gdt(vcpu, dtable);
  4105. }
  4106. /* allowed just for 8 bytes segments */
  4107. static int load_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
  4108. struct desc_struct *seg_desc)
  4109. {
  4110. struct descriptor_table dtable;
  4111. u16 index = selector >> 3;
  4112. get_segment_descriptor_dtable(vcpu, selector, &dtable);
  4113. if (dtable.limit < index * 8 + 7) {
  4114. kvm_queue_exception_e(vcpu, GP_VECTOR, selector & 0xfffc);
  4115. return X86EMUL_PROPAGATE_FAULT;
  4116. }
  4117. return kvm_read_guest_virt_system(dtable.base + index*8,
  4118. seg_desc, sizeof(*seg_desc),
  4119. vcpu, NULL);
  4120. }
  4121. /* allowed just for 8 bytes segments */
  4122. static int save_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
  4123. struct desc_struct *seg_desc)
  4124. {
  4125. struct descriptor_table dtable;
  4126. u16 index = selector >> 3;
  4127. get_segment_descriptor_dtable(vcpu, selector, &dtable);
  4128. if (dtable.limit < index * 8 + 7)
  4129. return 1;
  4130. return kvm_write_guest_virt(dtable.base + index*8, seg_desc, sizeof(*seg_desc), vcpu, NULL);
  4131. }
  4132. static gpa_t get_tss_base_addr_write(struct kvm_vcpu *vcpu,
  4133. struct desc_struct *seg_desc)
  4134. {
  4135. u32 base_addr = get_desc_base(seg_desc);
  4136. return kvm_mmu_gva_to_gpa_write(vcpu, base_addr, NULL);
  4137. }
  4138. static gpa_t get_tss_base_addr_read(struct kvm_vcpu *vcpu,
  4139. struct desc_struct *seg_desc)
  4140. {
  4141. u32 base_addr = get_desc_base(seg_desc);
  4142. return kvm_mmu_gva_to_gpa_read(vcpu, base_addr, NULL);
  4143. }
  4144. static u16 get_segment_selector(struct kvm_vcpu *vcpu, int seg)
  4145. {
  4146. struct kvm_segment kvm_seg;
  4147. kvm_get_segment(vcpu, &kvm_seg, seg);
  4148. return kvm_seg.selector;
  4149. }
  4150. static int kvm_load_realmode_segment(struct kvm_vcpu *vcpu, u16 selector, int seg)
  4151. {
  4152. struct kvm_segment segvar = {
  4153. .base = selector << 4,
  4154. .limit = 0xffff,
  4155. .selector = selector,
  4156. .type = 3,
  4157. .present = 1,
  4158. .dpl = 3,
  4159. .db = 0,
  4160. .s = 1,
  4161. .l = 0,
  4162. .g = 0,
  4163. .avl = 0,
  4164. .unusable = 0,
  4165. };
  4166. kvm_x86_ops->set_segment(vcpu, &segvar, seg);
  4167. return 0;
  4168. }
  4169. static int is_vm86_segment(struct kvm_vcpu *vcpu, int seg)
  4170. {
  4171. return (seg != VCPU_SREG_LDTR) &&
  4172. (seg != VCPU_SREG_TR) &&
  4173. (kvm_get_rflags(vcpu) & X86_EFLAGS_VM);
  4174. }
  4175. static void kvm_check_segment_descriptor(struct kvm_vcpu *vcpu, int seg,
  4176. u16 selector)
  4177. {
  4178. /* NULL selector is not valid for CS and SS */
  4179. if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
  4180. if (!selector)
  4181. kvm_queue_exception_e(vcpu, TS_VECTOR, selector >> 3);
  4182. }
  4183. int kvm_load_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
  4184. int type_bits, int seg)
  4185. {
  4186. struct kvm_segment kvm_seg;
  4187. struct desc_struct seg_desc;
  4188. if (is_vm86_segment(vcpu, seg) || !is_protmode(vcpu))
  4189. return kvm_load_realmode_segment(vcpu, selector, seg);
  4190. if (load_guest_segment_descriptor(vcpu, selector, &seg_desc))
  4191. return 1;
  4192. seg_desct_to_kvm_desct(&seg_desc, selector, &kvm_seg);
  4193. kvm_check_segment_descriptor(vcpu, seg, selector);
  4194. kvm_seg.type |= type_bits;
  4195. if (seg != VCPU_SREG_SS && seg != VCPU_SREG_CS &&
  4196. seg != VCPU_SREG_LDTR)
  4197. if (!kvm_seg.s)
  4198. kvm_seg.unusable = 1;
  4199. kvm_set_segment(vcpu, &kvm_seg, seg);
  4200. if (selector && !kvm_seg.unusable && kvm_seg.s) {
  4201. /* mark segment as accessed */
  4202. seg_desc.type |= 1;
  4203. save_guest_segment_descriptor(vcpu, selector, &seg_desc);
  4204. }
  4205. return 0;
  4206. }
  4207. static void save_state_to_tss32(struct kvm_vcpu *vcpu,
  4208. struct tss_segment_32 *tss)
  4209. {
  4210. tss->cr3 = vcpu->arch.cr3;
  4211. tss->eip = kvm_rip_read(vcpu);
  4212. tss->eflags = kvm_get_rflags(vcpu);
  4213. tss->eax = kvm_register_read(vcpu, VCPU_REGS_RAX);
  4214. tss->ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
  4215. tss->edx = kvm_register_read(vcpu, VCPU_REGS_RDX);
  4216. tss->ebx = kvm_register_read(vcpu, VCPU_REGS_RBX);
  4217. tss->esp = kvm_register_read(vcpu, VCPU_REGS_RSP);
  4218. tss->ebp = kvm_register_read(vcpu, VCPU_REGS_RBP);
  4219. tss->esi = kvm_register_read(vcpu, VCPU_REGS_RSI);
  4220. tss->edi = kvm_register_read(vcpu, VCPU_REGS_RDI);
  4221. tss->es = get_segment_selector(vcpu, VCPU_SREG_ES);
  4222. tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS);
  4223. tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS);
  4224. tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS);
  4225. tss->fs = get_segment_selector(vcpu, VCPU_SREG_FS);
  4226. tss->gs = get_segment_selector(vcpu, VCPU_SREG_GS);
  4227. tss->ldt_selector = get_segment_selector(vcpu, VCPU_SREG_LDTR);
  4228. }
  4229. static int load_state_from_tss32(struct kvm_vcpu *vcpu,
  4230. struct tss_segment_32 *tss)
  4231. {
  4232. kvm_set_cr3(vcpu, tss->cr3);
  4233. kvm_rip_write(vcpu, tss->eip);
  4234. kvm_set_rflags(vcpu, tss->eflags | 2);
  4235. kvm_register_write(vcpu, VCPU_REGS_RAX, tss->eax);
  4236. kvm_register_write(vcpu, VCPU_REGS_RCX, tss->ecx);
  4237. kvm_register_write(vcpu, VCPU_REGS_RDX, tss->edx);
  4238. kvm_register_write(vcpu, VCPU_REGS_RBX, tss->ebx);
  4239. kvm_register_write(vcpu, VCPU_REGS_RSP, tss->esp);
  4240. kvm_register_write(vcpu, VCPU_REGS_RBP, tss->ebp);
  4241. kvm_register_write(vcpu, VCPU_REGS_RSI, tss->esi);
  4242. kvm_register_write(vcpu, VCPU_REGS_RDI, tss->edi);
  4243. if (kvm_load_segment_descriptor(vcpu, tss->ldt_selector, 0, VCPU_SREG_LDTR))
  4244. return 1;
  4245. if (kvm_load_segment_descriptor(vcpu, tss->es, 1, VCPU_SREG_ES))
  4246. return 1;
  4247. if (kvm_load_segment_descriptor(vcpu, tss->cs, 9, VCPU_SREG_CS))
  4248. return 1;
  4249. if (kvm_load_segment_descriptor(vcpu, tss->ss, 1, VCPU_SREG_SS))
  4250. return 1;
  4251. if (kvm_load_segment_descriptor(vcpu, tss->ds, 1, VCPU_SREG_DS))
  4252. return 1;
  4253. if (kvm_load_segment_descriptor(vcpu, tss->fs, 1, VCPU_SREG_FS))
  4254. return 1;
  4255. if (kvm_load_segment_descriptor(vcpu, tss->gs, 1, VCPU_SREG_GS))
  4256. return 1;
  4257. return 0;
  4258. }
  4259. static void save_state_to_tss16(struct kvm_vcpu *vcpu,
  4260. struct tss_segment_16 *tss)
  4261. {
  4262. tss->ip = kvm_rip_read(vcpu);
  4263. tss->flag = kvm_get_rflags(vcpu);
  4264. tss->ax = kvm_register_read(vcpu, VCPU_REGS_RAX);
  4265. tss->cx = kvm_register_read(vcpu, VCPU_REGS_RCX);
  4266. tss->dx = kvm_register_read(vcpu, VCPU_REGS_RDX);
  4267. tss->bx = kvm_register_read(vcpu, VCPU_REGS_RBX);
  4268. tss->sp = kvm_register_read(vcpu, VCPU_REGS_RSP);
  4269. tss->bp = kvm_register_read(vcpu, VCPU_REGS_RBP);
  4270. tss->si = kvm_register_read(vcpu, VCPU_REGS_RSI);
  4271. tss->di = kvm_register_read(vcpu, VCPU_REGS_RDI);
  4272. tss->es = get_segment_selector(vcpu, VCPU_SREG_ES);
  4273. tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS);
  4274. tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS);
  4275. tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS);
  4276. tss->ldt = get_segment_selector(vcpu, VCPU_SREG_LDTR);
  4277. }
  4278. static int load_state_from_tss16(struct kvm_vcpu *vcpu,
  4279. struct tss_segment_16 *tss)
  4280. {
  4281. kvm_rip_write(vcpu, tss->ip);
  4282. kvm_set_rflags(vcpu, tss->flag | 2);
  4283. kvm_register_write(vcpu, VCPU_REGS_RAX, tss->ax);
  4284. kvm_register_write(vcpu, VCPU_REGS_RCX, tss->cx);
  4285. kvm_register_write(vcpu, VCPU_REGS_RDX, tss->dx);
  4286. kvm_register_write(vcpu, VCPU_REGS_RBX, tss->bx);
  4287. kvm_register_write(vcpu, VCPU_REGS_RSP, tss->sp);
  4288. kvm_register_write(vcpu, VCPU_REGS_RBP, tss->bp);
  4289. kvm_register_write(vcpu, VCPU_REGS_RSI, tss->si);
  4290. kvm_register_write(vcpu, VCPU_REGS_RDI, tss->di);
  4291. if (kvm_load_segment_descriptor(vcpu, tss->ldt, 0, VCPU_SREG_LDTR))
  4292. return 1;
  4293. if (kvm_load_segment_descriptor(vcpu, tss->es, 1, VCPU_SREG_ES))
  4294. return 1;
  4295. if (kvm_load_segment_descriptor(vcpu, tss->cs, 9, VCPU_SREG_CS))
  4296. return 1;
  4297. if (kvm_load_segment_descriptor(vcpu, tss->ss, 1, VCPU_SREG_SS))
  4298. return 1;
  4299. if (kvm_load_segment_descriptor(vcpu, tss->ds, 1, VCPU_SREG_DS))
  4300. return 1;
  4301. return 0;
  4302. }
  4303. static int kvm_task_switch_16(struct kvm_vcpu *vcpu, u16 tss_selector,
  4304. u16 old_tss_sel, u32 old_tss_base,
  4305. struct desc_struct *nseg_desc)
  4306. {
  4307. struct tss_segment_16 tss_segment_16;
  4308. int ret = 0;
  4309. if (kvm_read_guest(vcpu->kvm, old_tss_base, &tss_segment_16,
  4310. sizeof tss_segment_16))
  4311. goto out;
  4312. save_state_to_tss16(vcpu, &tss_segment_16);
  4313. if (kvm_write_guest(vcpu->kvm, old_tss_base, &tss_segment_16,
  4314. sizeof tss_segment_16))
  4315. goto out;
  4316. if (kvm_read_guest(vcpu->kvm, get_tss_base_addr_read(vcpu, nseg_desc),
  4317. &tss_segment_16, sizeof tss_segment_16))
  4318. goto out;
  4319. if (old_tss_sel != 0xffff) {
  4320. tss_segment_16.prev_task_link = old_tss_sel;
  4321. if (kvm_write_guest(vcpu->kvm,
  4322. get_tss_base_addr_write(vcpu, nseg_desc),
  4323. &tss_segment_16.prev_task_link,
  4324. sizeof tss_segment_16.prev_task_link))
  4325. goto out;
  4326. }
  4327. if (load_state_from_tss16(vcpu, &tss_segment_16))
  4328. goto out;
  4329. ret = 1;
  4330. out:
  4331. return ret;
  4332. }
  4333. static int kvm_task_switch_32(struct kvm_vcpu *vcpu, u16 tss_selector,
  4334. u16 old_tss_sel, u32 old_tss_base,
  4335. struct desc_struct *nseg_desc)
  4336. {
  4337. struct tss_segment_32 tss_segment_32;
  4338. int ret = 0;
  4339. if (kvm_read_guest(vcpu->kvm, old_tss_base, &tss_segment_32,
  4340. sizeof tss_segment_32))
  4341. goto out;
  4342. save_state_to_tss32(vcpu, &tss_segment_32);
  4343. if (kvm_write_guest(vcpu->kvm, old_tss_base, &tss_segment_32,
  4344. sizeof tss_segment_32))
  4345. goto out;
  4346. if (kvm_read_guest(vcpu->kvm, get_tss_base_addr_read(vcpu, nseg_desc),
  4347. &tss_segment_32, sizeof tss_segment_32))
  4348. goto out;
  4349. if (old_tss_sel != 0xffff) {
  4350. tss_segment_32.prev_task_link = old_tss_sel;
  4351. if (kvm_write_guest(vcpu->kvm,
  4352. get_tss_base_addr_write(vcpu, nseg_desc),
  4353. &tss_segment_32.prev_task_link,
  4354. sizeof tss_segment_32.prev_task_link))
  4355. goto out;
  4356. }
  4357. if (load_state_from_tss32(vcpu, &tss_segment_32))
  4358. goto out;
  4359. ret = 1;
  4360. out:
  4361. return ret;
  4362. }
  4363. int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int reason)
  4364. {
  4365. struct kvm_segment tr_seg;
  4366. struct desc_struct cseg_desc;
  4367. struct desc_struct nseg_desc;
  4368. int ret = 0;
  4369. u32 old_tss_base = get_segment_base(vcpu, VCPU_SREG_TR);
  4370. u16 old_tss_sel = get_segment_selector(vcpu, VCPU_SREG_TR);
  4371. old_tss_base = kvm_mmu_gva_to_gpa_write(vcpu, old_tss_base, NULL);
  4372. /* FIXME: Handle errors. Failure to read either TSS or their
  4373. * descriptors should generate a pagefault.
  4374. */
  4375. if (load_guest_segment_descriptor(vcpu, tss_selector, &nseg_desc))
  4376. goto out;
  4377. if (load_guest_segment_descriptor(vcpu, old_tss_sel, &cseg_desc))
  4378. goto out;
  4379. if (reason != TASK_SWITCH_IRET) {
  4380. int cpl;
  4381. cpl = kvm_x86_ops->get_cpl(vcpu);
  4382. if ((tss_selector & 3) > nseg_desc.dpl || cpl > nseg_desc.dpl) {
  4383. kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
  4384. return 1;
  4385. }
  4386. }
  4387. if (!nseg_desc.p || get_desc_limit(&nseg_desc) < 0x67) {
  4388. kvm_queue_exception_e(vcpu, TS_VECTOR, tss_selector & 0xfffc);
  4389. return 1;
  4390. }
  4391. if (reason == TASK_SWITCH_IRET || reason == TASK_SWITCH_JMP) {
  4392. cseg_desc.type &= ~(1 << 1); //clear the B flag
  4393. save_guest_segment_descriptor(vcpu, old_tss_sel, &cseg_desc);
  4394. }
  4395. if (reason == TASK_SWITCH_IRET) {
  4396. u32 eflags = kvm_get_rflags(vcpu);
  4397. kvm_set_rflags(vcpu, eflags & ~X86_EFLAGS_NT);
  4398. }
  4399. /* set back link to prev task only if NT bit is set in eflags
  4400. note that old_tss_sel is not used afetr this point */
  4401. if (reason != TASK_SWITCH_CALL && reason != TASK_SWITCH_GATE)
  4402. old_tss_sel = 0xffff;
  4403. if (nseg_desc.type & 8)
  4404. ret = kvm_task_switch_32(vcpu, tss_selector, old_tss_sel,
  4405. old_tss_base, &nseg_desc);
  4406. else
  4407. ret = kvm_task_switch_16(vcpu, tss_selector, old_tss_sel,
  4408. old_tss_base, &nseg_desc);
  4409. if (reason == TASK_SWITCH_CALL || reason == TASK_SWITCH_GATE) {
  4410. u32 eflags = kvm_get_rflags(vcpu);
  4411. kvm_set_rflags(vcpu, eflags | X86_EFLAGS_NT);
  4412. }
  4413. if (reason != TASK_SWITCH_IRET) {
  4414. nseg_desc.type |= (1 << 1);
  4415. save_guest_segment_descriptor(vcpu, tss_selector,
  4416. &nseg_desc);
  4417. }
  4418. kvm_x86_ops->set_cr0(vcpu, kvm_read_cr0(vcpu) | X86_CR0_TS);
  4419. seg_desct_to_kvm_desct(&nseg_desc, tss_selector, &tr_seg);
  4420. tr_seg.type = 11;
  4421. kvm_set_segment(vcpu, &tr_seg, VCPU_SREG_TR);
  4422. out:
  4423. return ret;
  4424. }
  4425. EXPORT_SYMBOL_GPL(kvm_task_switch);
  4426. int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
  4427. struct kvm_sregs *sregs)
  4428. {
  4429. int mmu_reset_needed = 0;
  4430. int pending_vec, max_bits;
  4431. struct descriptor_table dt;
  4432. vcpu_load(vcpu);
  4433. dt.limit = sregs->idt.limit;
  4434. dt.base = sregs->idt.base;
  4435. kvm_x86_ops->set_idt(vcpu, &dt);
  4436. dt.limit = sregs->gdt.limit;
  4437. dt.base = sregs->gdt.base;
  4438. kvm_x86_ops->set_gdt(vcpu, &dt);
  4439. vcpu->arch.cr2 = sregs->cr2;
  4440. mmu_reset_needed |= vcpu->arch.cr3 != sregs->cr3;
  4441. vcpu->arch.cr3 = sregs->cr3;
  4442. kvm_set_cr8(vcpu, sregs->cr8);
  4443. mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
  4444. kvm_x86_ops->set_efer(vcpu, sregs->efer);
  4445. kvm_set_apic_base(vcpu, sregs->apic_base);
  4446. mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
  4447. kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
  4448. vcpu->arch.cr0 = sregs->cr0;
  4449. mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
  4450. kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
  4451. if (!is_long_mode(vcpu) && is_pae(vcpu)) {
  4452. load_pdptrs(vcpu, vcpu->arch.cr3);
  4453. mmu_reset_needed = 1;
  4454. }
  4455. if (mmu_reset_needed)
  4456. kvm_mmu_reset_context(vcpu);
  4457. max_bits = (sizeof sregs->interrupt_bitmap) << 3;
  4458. pending_vec = find_first_bit(
  4459. (const unsigned long *)sregs->interrupt_bitmap, max_bits);
  4460. if (pending_vec < max_bits) {
  4461. kvm_queue_interrupt(vcpu, pending_vec, false);
  4462. pr_debug("Set back pending irq %d\n", pending_vec);
  4463. if (irqchip_in_kernel(vcpu->kvm))
  4464. kvm_pic_clear_isr_ack(vcpu->kvm);
  4465. }
  4466. kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  4467. kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  4468. kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  4469. kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  4470. kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  4471. kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  4472. kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  4473. kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  4474. update_cr8_intercept(vcpu);
  4475. /* Older userspace won't unhalt the vcpu on reset. */
  4476. if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
  4477. sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
  4478. !is_protmode(vcpu))
  4479. vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  4480. vcpu_put(vcpu);
  4481. return 0;
  4482. }
  4483. int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
  4484. struct kvm_guest_debug *dbg)
  4485. {
  4486. unsigned long rflags;
  4487. int i, r;
  4488. vcpu_load(vcpu);
  4489. if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
  4490. r = -EBUSY;
  4491. if (vcpu->arch.exception.pending)
  4492. goto unlock_out;
  4493. if (dbg->control & KVM_GUESTDBG_INJECT_DB)
  4494. kvm_queue_exception(vcpu, DB_VECTOR);
  4495. else
  4496. kvm_queue_exception(vcpu, BP_VECTOR);
  4497. }
  4498. /*
  4499. * Read rflags as long as potentially injected trace flags are still
  4500. * filtered out.
  4501. */
  4502. rflags = kvm_get_rflags(vcpu);
  4503. vcpu->guest_debug = dbg->control;
  4504. if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
  4505. vcpu->guest_debug = 0;
  4506. if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
  4507. for (i = 0; i < KVM_NR_DB_REGS; ++i)
  4508. vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
  4509. vcpu->arch.switch_db_regs =
  4510. (dbg->arch.debugreg[7] & DR7_BP_EN_MASK);
  4511. } else {
  4512. for (i = 0; i < KVM_NR_DB_REGS; i++)
  4513. vcpu->arch.eff_db[i] = vcpu->arch.db[i];
  4514. vcpu->arch.switch_db_regs = (vcpu->arch.dr7 & DR7_BP_EN_MASK);
  4515. }
  4516. if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
  4517. vcpu->arch.singlestep_cs =
  4518. get_segment_selector(vcpu, VCPU_SREG_CS);
  4519. vcpu->arch.singlestep_rip = kvm_rip_read(vcpu);
  4520. }
  4521. /*
  4522. * Trigger an rflags update that will inject or remove the trace
  4523. * flags.
  4524. */
  4525. kvm_set_rflags(vcpu, rflags);
  4526. kvm_x86_ops->set_guest_debug(vcpu, dbg);
  4527. r = 0;
  4528. unlock_out:
  4529. vcpu_put(vcpu);
  4530. return r;
  4531. }
  4532. /*
  4533. * fxsave fpu state. Taken from x86_64/processor.h. To be killed when
  4534. * we have asm/x86/processor.h
  4535. */
  4536. struct fxsave {
  4537. u16 cwd;
  4538. u16 swd;
  4539. u16 twd;
  4540. u16 fop;
  4541. u64 rip;
  4542. u64 rdp;
  4543. u32 mxcsr;
  4544. u32 mxcsr_mask;
  4545. u32 st_space[32]; /* 8*16 bytes for each FP-reg = 128 bytes */
  4546. #ifdef CONFIG_X86_64
  4547. u32 xmm_space[64]; /* 16*16 bytes for each XMM-reg = 256 bytes */
  4548. #else
  4549. u32 xmm_space[32]; /* 8*16 bytes for each XMM-reg = 128 bytes */
  4550. #endif
  4551. };
  4552. /*
  4553. * Translate a guest virtual address to a guest physical address.
  4554. */
  4555. int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
  4556. struct kvm_translation *tr)
  4557. {
  4558. unsigned long vaddr = tr->linear_address;
  4559. gpa_t gpa;
  4560. int idx;
  4561. vcpu_load(vcpu);
  4562. idx = srcu_read_lock(&vcpu->kvm->srcu);
  4563. gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
  4564. srcu_read_unlock(&vcpu->kvm->srcu, idx);
  4565. tr->physical_address = gpa;
  4566. tr->valid = gpa != UNMAPPED_GVA;
  4567. tr->writeable = 1;
  4568. tr->usermode = 0;
  4569. vcpu_put(vcpu);
  4570. return 0;
  4571. }
  4572. int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  4573. {
  4574. struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
  4575. vcpu_load(vcpu);
  4576. memcpy(fpu->fpr, fxsave->st_space, 128);
  4577. fpu->fcw = fxsave->cwd;
  4578. fpu->fsw = fxsave->swd;
  4579. fpu->ftwx = fxsave->twd;
  4580. fpu->last_opcode = fxsave->fop;
  4581. fpu->last_ip = fxsave->rip;
  4582. fpu->last_dp = fxsave->rdp;
  4583. memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
  4584. vcpu_put(vcpu);
  4585. return 0;
  4586. }
  4587. int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  4588. {
  4589. struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
  4590. vcpu_load(vcpu);
  4591. memcpy(fxsave->st_space, fpu->fpr, 128);
  4592. fxsave->cwd = fpu->fcw;
  4593. fxsave->swd = fpu->fsw;
  4594. fxsave->twd = fpu->ftwx;
  4595. fxsave->fop = fpu->last_opcode;
  4596. fxsave->rip = fpu->last_ip;
  4597. fxsave->rdp = fpu->last_dp;
  4598. memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
  4599. vcpu_put(vcpu);
  4600. return 0;
  4601. }
  4602. void fx_init(struct kvm_vcpu *vcpu)
  4603. {
  4604. unsigned after_mxcsr_mask;
  4605. /*
  4606. * Touch the fpu the first time in non atomic context as if
  4607. * this is the first fpu instruction the exception handler
  4608. * will fire before the instruction returns and it'll have to
  4609. * allocate ram with GFP_KERNEL.
  4610. */
  4611. if (!used_math())
  4612. kvm_fx_save(&vcpu->arch.host_fx_image);
  4613. /* Initialize guest FPU by resetting ours and saving into guest's */
  4614. preempt_disable();
  4615. kvm_fx_save(&vcpu->arch.host_fx_image);
  4616. kvm_fx_finit();
  4617. kvm_fx_save(&vcpu->arch.guest_fx_image);
  4618. kvm_fx_restore(&vcpu->arch.host_fx_image);
  4619. preempt_enable();
  4620. vcpu->arch.cr0 |= X86_CR0_ET;
  4621. after_mxcsr_mask = offsetof(struct i387_fxsave_struct, st_space);
  4622. vcpu->arch.guest_fx_image.mxcsr = 0x1f80;
  4623. memset((void *)&vcpu->arch.guest_fx_image + after_mxcsr_mask,
  4624. 0, sizeof(struct i387_fxsave_struct) - after_mxcsr_mask);
  4625. }
  4626. EXPORT_SYMBOL_GPL(fx_init);
  4627. void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
  4628. {
  4629. if (vcpu->guest_fpu_loaded)
  4630. return;
  4631. vcpu->guest_fpu_loaded = 1;
  4632. kvm_fx_save(&vcpu->arch.host_fx_image);
  4633. kvm_fx_restore(&vcpu->arch.guest_fx_image);
  4634. trace_kvm_fpu(1);
  4635. }
  4636. void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
  4637. {
  4638. if (!vcpu->guest_fpu_loaded)
  4639. return;
  4640. vcpu->guest_fpu_loaded = 0;
  4641. kvm_fx_save(&vcpu->arch.guest_fx_image);
  4642. kvm_fx_restore(&vcpu->arch.host_fx_image);
  4643. ++vcpu->stat.fpu_reload;
  4644. set_bit(KVM_REQ_DEACTIVATE_FPU, &vcpu->requests);
  4645. trace_kvm_fpu(0);
  4646. }
  4647. void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
  4648. {
  4649. if (vcpu->arch.time_page) {
  4650. kvm_release_page_dirty(vcpu->arch.time_page);
  4651. vcpu->arch.time_page = NULL;
  4652. }
  4653. kvm_x86_ops->vcpu_free(vcpu);
  4654. }
  4655. struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
  4656. unsigned int id)
  4657. {
  4658. return kvm_x86_ops->vcpu_create(kvm, id);
  4659. }
  4660. int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
  4661. {
  4662. int r;
  4663. /* We do fxsave: this must be aligned. */
  4664. BUG_ON((unsigned long)&vcpu->arch.host_fx_image & 0xF);
  4665. vcpu->arch.mtrr_state.have_fixed = 1;
  4666. vcpu_load(vcpu);
  4667. r = kvm_arch_vcpu_reset(vcpu);
  4668. if (r == 0)
  4669. r = kvm_mmu_setup(vcpu);
  4670. vcpu_put(vcpu);
  4671. if (r < 0)
  4672. goto free_vcpu;
  4673. return 0;
  4674. free_vcpu:
  4675. kvm_x86_ops->vcpu_free(vcpu);
  4676. return r;
  4677. }
  4678. void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
  4679. {
  4680. vcpu_load(vcpu);
  4681. kvm_mmu_unload(vcpu);
  4682. vcpu_put(vcpu);
  4683. kvm_x86_ops->vcpu_free(vcpu);
  4684. }
  4685. int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu)
  4686. {
  4687. vcpu->arch.nmi_pending = false;
  4688. vcpu->arch.nmi_injected = false;
  4689. vcpu->arch.switch_db_regs = 0;
  4690. memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
  4691. vcpu->arch.dr6 = DR6_FIXED_1;
  4692. vcpu->arch.dr7 = DR7_FIXED_1;
  4693. return kvm_x86_ops->vcpu_reset(vcpu);
  4694. }
  4695. int kvm_arch_hardware_enable(void *garbage)
  4696. {
  4697. /*
  4698. * Since this may be called from a hotplug notifcation,
  4699. * we can't get the CPU frequency directly.
  4700. */
  4701. if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
  4702. int cpu = raw_smp_processor_id();
  4703. per_cpu(cpu_tsc_khz, cpu) = 0;
  4704. }
  4705. kvm_shared_msr_cpu_online();
  4706. return kvm_x86_ops->hardware_enable(garbage);
  4707. }
  4708. void kvm_arch_hardware_disable(void *garbage)
  4709. {
  4710. kvm_x86_ops->hardware_disable(garbage);
  4711. drop_user_return_notifiers(garbage);
  4712. }
  4713. int kvm_arch_hardware_setup(void)
  4714. {
  4715. return kvm_x86_ops->hardware_setup();
  4716. }
  4717. void kvm_arch_hardware_unsetup(void)
  4718. {
  4719. kvm_x86_ops->hardware_unsetup();
  4720. }
  4721. void kvm_arch_check_processor_compat(void *rtn)
  4722. {
  4723. kvm_x86_ops->check_processor_compatibility(rtn);
  4724. }
  4725. int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
  4726. {
  4727. struct page *page;
  4728. struct kvm *kvm;
  4729. int r;
  4730. BUG_ON(vcpu->kvm == NULL);
  4731. kvm = vcpu->kvm;
  4732. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  4733. if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu))
  4734. vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  4735. else
  4736. vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
  4737. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  4738. if (!page) {
  4739. r = -ENOMEM;
  4740. goto fail;
  4741. }
  4742. vcpu->arch.pio_data = page_address(page);
  4743. r = kvm_mmu_create(vcpu);
  4744. if (r < 0)
  4745. goto fail_free_pio_data;
  4746. if (irqchip_in_kernel(kvm)) {
  4747. r = kvm_create_lapic(vcpu);
  4748. if (r < 0)
  4749. goto fail_mmu_destroy;
  4750. }
  4751. vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
  4752. GFP_KERNEL);
  4753. if (!vcpu->arch.mce_banks) {
  4754. r = -ENOMEM;
  4755. goto fail_free_lapic;
  4756. }
  4757. vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
  4758. return 0;
  4759. fail_free_lapic:
  4760. kvm_free_lapic(vcpu);
  4761. fail_mmu_destroy:
  4762. kvm_mmu_destroy(vcpu);
  4763. fail_free_pio_data:
  4764. free_page((unsigned long)vcpu->arch.pio_data);
  4765. fail:
  4766. return r;
  4767. }
  4768. void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
  4769. {
  4770. int idx;
  4771. kfree(vcpu->arch.mce_banks);
  4772. kvm_free_lapic(vcpu);
  4773. idx = srcu_read_lock(&vcpu->kvm->srcu);
  4774. kvm_mmu_destroy(vcpu);
  4775. srcu_read_unlock(&vcpu->kvm->srcu, idx);
  4776. free_page((unsigned long)vcpu->arch.pio_data);
  4777. }
  4778. struct kvm *kvm_arch_create_vm(void)
  4779. {
  4780. struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
  4781. if (!kvm)
  4782. return ERR_PTR(-ENOMEM);
  4783. kvm->arch.aliases = kzalloc(sizeof(struct kvm_mem_aliases), GFP_KERNEL);
  4784. if (!kvm->arch.aliases) {
  4785. kfree(kvm);
  4786. return ERR_PTR(-ENOMEM);
  4787. }
  4788. INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
  4789. INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
  4790. /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
  4791. set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
  4792. rdtscll(kvm->arch.vm_init_tsc);
  4793. return kvm;
  4794. }
  4795. static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
  4796. {
  4797. vcpu_load(vcpu);
  4798. kvm_mmu_unload(vcpu);
  4799. vcpu_put(vcpu);
  4800. }
  4801. static void kvm_free_vcpus(struct kvm *kvm)
  4802. {
  4803. unsigned int i;
  4804. struct kvm_vcpu *vcpu;
  4805. /*
  4806. * Unpin any mmu pages first.
  4807. */
  4808. kvm_for_each_vcpu(i, vcpu, kvm)
  4809. kvm_unload_vcpu_mmu(vcpu);
  4810. kvm_for_each_vcpu(i, vcpu, kvm)
  4811. kvm_arch_vcpu_free(vcpu);
  4812. mutex_lock(&kvm->lock);
  4813. for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
  4814. kvm->vcpus[i] = NULL;
  4815. atomic_set(&kvm->online_vcpus, 0);
  4816. mutex_unlock(&kvm->lock);
  4817. }
  4818. void kvm_arch_sync_events(struct kvm *kvm)
  4819. {
  4820. kvm_free_all_assigned_devices(kvm);
  4821. }
  4822. void kvm_arch_destroy_vm(struct kvm *kvm)
  4823. {
  4824. kvm_iommu_unmap_guest(kvm);
  4825. kvm_free_pit(kvm);
  4826. kfree(kvm->arch.vpic);
  4827. kfree(kvm->arch.vioapic);
  4828. kvm_free_vcpus(kvm);
  4829. kvm_free_physmem(kvm);
  4830. if (kvm->arch.apic_access_page)
  4831. put_page(kvm->arch.apic_access_page);
  4832. if (kvm->arch.ept_identity_pagetable)
  4833. put_page(kvm->arch.ept_identity_pagetable);
  4834. cleanup_srcu_struct(&kvm->srcu);
  4835. kfree(kvm->arch.aliases);
  4836. kfree(kvm);
  4837. }
  4838. int kvm_arch_prepare_memory_region(struct kvm *kvm,
  4839. struct kvm_memory_slot *memslot,
  4840. struct kvm_memory_slot old,
  4841. struct kvm_userspace_memory_region *mem,
  4842. int user_alloc)
  4843. {
  4844. int npages = memslot->npages;
  4845. /*To keep backward compatibility with older userspace,
  4846. *x86 needs to hanlde !user_alloc case.
  4847. */
  4848. if (!user_alloc) {
  4849. if (npages && !old.rmap) {
  4850. unsigned long userspace_addr;
  4851. down_write(&current->mm->mmap_sem);
  4852. userspace_addr = do_mmap(NULL, 0,
  4853. npages * PAGE_SIZE,
  4854. PROT_READ | PROT_WRITE,
  4855. MAP_PRIVATE | MAP_ANONYMOUS,
  4856. 0);
  4857. up_write(&current->mm->mmap_sem);
  4858. if (IS_ERR((void *)userspace_addr))
  4859. return PTR_ERR((void *)userspace_addr);
  4860. memslot->userspace_addr = userspace_addr;
  4861. }
  4862. }
  4863. return 0;
  4864. }
  4865. void kvm_arch_commit_memory_region(struct kvm *kvm,
  4866. struct kvm_userspace_memory_region *mem,
  4867. struct kvm_memory_slot old,
  4868. int user_alloc)
  4869. {
  4870. int npages = mem->memory_size >> PAGE_SHIFT;
  4871. if (!user_alloc && !old.user_alloc && old.rmap && !npages) {
  4872. int ret;
  4873. down_write(&current->mm->mmap_sem);
  4874. ret = do_munmap(current->mm, old.userspace_addr,
  4875. old.npages * PAGE_SIZE);
  4876. up_write(&current->mm->mmap_sem);
  4877. if (ret < 0)
  4878. printk(KERN_WARNING
  4879. "kvm_vm_ioctl_set_memory_region: "
  4880. "failed to munmap memory\n");
  4881. }
  4882. spin_lock(&kvm->mmu_lock);
  4883. if (!kvm->arch.n_requested_mmu_pages) {
  4884. unsigned int nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
  4885. kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
  4886. }
  4887. kvm_mmu_slot_remove_write_access(kvm, mem->slot);
  4888. spin_unlock(&kvm->mmu_lock);
  4889. }
  4890. void kvm_arch_flush_shadow(struct kvm *kvm)
  4891. {
  4892. kvm_mmu_zap_all(kvm);
  4893. kvm_reload_remote_mmus(kvm);
  4894. }
  4895. int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
  4896. {
  4897. return vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE
  4898. || vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED
  4899. || vcpu->arch.nmi_pending ||
  4900. (kvm_arch_interrupt_allowed(vcpu) &&
  4901. kvm_cpu_has_interrupt(vcpu));
  4902. }
  4903. void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
  4904. {
  4905. int me;
  4906. int cpu = vcpu->cpu;
  4907. if (waitqueue_active(&vcpu->wq)) {
  4908. wake_up_interruptible(&vcpu->wq);
  4909. ++vcpu->stat.halt_wakeup;
  4910. }
  4911. me = get_cpu();
  4912. if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
  4913. if (!test_and_set_bit(KVM_REQ_KICK, &vcpu->requests))
  4914. smp_send_reschedule(cpu);
  4915. put_cpu();
  4916. }
  4917. int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
  4918. {
  4919. return kvm_x86_ops->interrupt_allowed(vcpu);
  4920. }
  4921. unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
  4922. {
  4923. unsigned long rflags;
  4924. rflags = kvm_x86_ops->get_rflags(vcpu);
  4925. if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
  4926. rflags &= ~(unsigned long)(X86_EFLAGS_TF | X86_EFLAGS_RF);
  4927. return rflags;
  4928. }
  4929. EXPORT_SYMBOL_GPL(kvm_get_rflags);
  4930. void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
  4931. {
  4932. if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
  4933. vcpu->arch.singlestep_cs ==
  4934. get_segment_selector(vcpu, VCPU_SREG_CS) &&
  4935. vcpu->arch.singlestep_rip == kvm_rip_read(vcpu))
  4936. rflags |= X86_EFLAGS_TF | X86_EFLAGS_RF;
  4937. kvm_x86_ops->set_rflags(vcpu, rflags);
  4938. }
  4939. EXPORT_SYMBOL_GPL(kvm_set_rflags);
  4940. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
  4941. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
  4942. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
  4943. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
  4944. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
  4945. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
  4946. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
  4947. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
  4948. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
  4949. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
  4950. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);