disk-io.c 96 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569
  1. /*
  2. * Copyright (C) 2007 Oracle. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public
  6. * License v2 as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public
  14. * License along with this program; if not, write to the
  15. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16. * Boston, MA 021110-1307, USA.
  17. */
  18. #include <linux/fs.h>
  19. #include <linux/blkdev.h>
  20. #include <linux/scatterlist.h>
  21. #include <linux/swap.h>
  22. #include <linux/radix-tree.h>
  23. #include <linux/writeback.h>
  24. #include <linux/buffer_head.h>
  25. #include <linux/workqueue.h>
  26. #include <linux/kthread.h>
  27. #include <linux/freezer.h>
  28. #include <linux/crc32c.h>
  29. #include <linux/slab.h>
  30. #include <linux/migrate.h>
  31. #include <linux/ratelimit.h>
  32. #include <asm/unaligned.h>
  33. #include "compat.h"
  34. #include "ctree.h"
  35. #include "disk-io.h"
  36. #include "transaction.h"
  37. #include "btrfs_inode.h"
  38. #include "volumes.h"
  39. #include "print-tree.h"
  40. #include "async-thread.h"
  41. #include "locking.h"
  42. #include "tree-log.h"
  43. #include "free-space-cache.h"
  44. #include "inode-map.h"
  45. static struct extent_io_ops btree_extent_io_ops;
  46. static void end_workqueue_fn(struct btrfs_work *work);
  47. static void free_fs_root(struct btrfs_root *root);
  48. static void btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
  49. int read_only);
  50. static int btrfs_destroy_ordered_operations(struct btrfs_root *root);
  51. static int btrfs_destroy_ordered_extents(struct btrfs_root *root);
  52. static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
  53. struct btrfs_root *root);
  54. static int btrfs_destroy_pending_snapshots(struct btrfs_transaction *t);
  55. static int btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
  56. static int btrfs_destroy_marked_extents(struct btrfs_root *root,
  57. struct extent_io_tree *dirty_pages,
  58. int mark);
  59. static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
  60. struct extent_io_tree *pinned_extents);
  61. static int btrfs_cleanup_transaction(struct btrfs_root *root);
  62. /*
  63. * end_io_wq structs are used to do processing in task context when an IO is
  64. * complete. This is used during reads to verify checksums, and it is used
  65. * by writes to insert metadata for new file extents after IO is complete.
  66. */
  67. struct end_io_wq {
  68. struct bio *bio;
  69. bio_end_io_t *end_io;
  70. void *private;
  71. struct btrfs_fs_info *info;
  72. int error;
  73. int metadata;
  74. struct list_head list;
  75. struct btrfs_work work;
  76. };
  77. /*
  78. * async submit bios are used to offload expensive checksumming
  79. * onto the worker threads. They checksum file and metadata bios
  80. * just before they are sent down the IO stack.
  81. */
  82. struct async_submit_bio {
  83. struct inode *inode;
  84. struct bio *bio;
  85. struct list_head list;
  86. extent_submit_bio_hook_t *submit_bio_start;
  87. extent_submit_bio_hook_t *submit_bio_done;
  88. int rw;
  89. int mirror_num;
  90. unsigned long bio_flags;
  91. /*
  92. * bio_offset is optional, can be used if the pages in the bio
  93. * can't tell us where in the file the bio should go
  94. */
  95. u64 bio_offset;
  96. struct btrfs_work work;
  97. };
  98. /*
  99. * Lockdep class keys for extent_buffer->lock's in this root. For a given
  100. * eb, the lockdep key is determined by the btrfs_root it belongs to and
  101. * the level the eb occupies in the tree.
  102. *
  103. * Different roots are used for different purposes and may nest inside each
  104. * other and they require separate keysets. As lockdep keys should be
  105. * static, assign keysets according to the purpose of the root as indicated
  106. * by btrfs_root->objectid. This ensures that all special purpose roots
  107. * have separate keysets.
  108. *
  109. * Lock-nesting across peer nodes is always done with the immediate parent
  110. * node locked thus preventing deadlock. As lockdep doesn't know this, use
  111. * subclass to avoid triggering lockdep warning in such cases.
  112. *
  113. * The key is set by the readpage_end_io_hook after the buffer has passed
  114. * csum validation but before the pages are unlocked. It is also set by
  115. * btrfs_init_new_buffer on freshly allocated blocks.
  116. *
  117. * We also add a check to make sure the highest level of the tree is the
  118. * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
  119. * needs update as well.
  120. */
  121. #ifdef CONFIG_DEBUG_LOCK_ALLOC
  122. # if BTRFS_MAX_LEVEL != 8
  123. # error
  124. # endif
  125. static struct btrfs_lockdep_keyset {
  126. u64 id; /* root objectid */
  127. const char *name_stem; /* lock name stem */
  128. char names[BTRFS_MAX_LEVEL + 1][20];
  129. struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
  130. } btrfs_lockdep_keysets[] = {
  131. { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
  132. { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
  133. { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
  134. { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
  135. { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
  136. { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
  137. { .id = BTRFS_ORPHAN_OBJECTID, .name_stem = "orphan" },
  138. { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
  139. { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
  140. { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
  141. { .id = 0, .name_stem = "tree" },
  142. };
  143. void __init btrfs_init_lockdep(void)
  144. {
  145. int i, j;
  146. /* initialize lockdep class names */
  147. for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
  148. struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
  149. for (j = 0; j < ARRAY_SIZE(ks->names); j++)
  150. snprintf(ks->names[j], sizeof(ks->names[j]),
  151. "btrfs-%s-%02d", ks->name_stem, j);
  152. }
  153. }
  154. void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
  155. int level)
  156. {
  157. struct btrfs_lockdep_keyset *ks;
  158. BUG_ON(level >= ARRAY_SIZE(ks->keys));
  159. /* find the matching keyset, id 0 is the default entry */
  160. for (ks = btrfs_lockdep_keysets; ks->id; ks++)
  161. if (ks->id == objectid)
  162. break;
  163. lockdep_set_class_and_name(&eb->lock,
  164. &ks->keys[level], ks->names[level]);
  165. }
  166. #endif
  167. /*
  168. * extents on the btree inode are pretty simple, there's one extent
  169. * that covers the entire device
  170. */
  171. static struct extent_map *btree_get_extent(struct inode *inode,
  172. struct page *page, size_t pg_offset, u64 start, u64 len,
  173. int create)
  174. {
  175. struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
  176. struct extent_map *em;
  177. int ret;
  178. read_lock(&em_tree->lock);
  179. em = lookup_extent_mapping(em_tree, start, len);
  180. if (em) {
  181. em->bdev =
  182. BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
  183. read_unlock(&em_tree->lock);
  184. goto out;
  185. }
  186. read_unlock(&em_tree->lock);
  187. em = alloc_extent_map();
  188. if (!em) {
  189. em = ERR_PTR(-ENOMEM);
  190. goto out;
  191. }
  192. em->start = 0;
  193. em->len = (u64)-1;
  194. em->block_len = (u64)-1;
  195. em->block_start = 0;
  196. em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
  197. write_lock(&em_tree->lock);
  198. ret = add_extent_mapping(em_tree, em);
  199. if (ret == -EEXIST) {
  200. u64 failed_start = em->start;
  201. u64 failed_len = em->len;
  202. free_extent_map(em);
  203. em = lookup_extent_mapping(em_tree, start, len);
  204. if (em) {
  205. ret = 0;
  206. } else {
  207. em = lookup_extent_mapping(em_tree, failed_start,
  208. failed_len);
  209. ret = -EIO;
  210. }
  211. } else if (ret) {
  212. free_extent_map(em);
  213. em = NULL;
  214. }
  215. write_unlock(&em_tree->lock);
  216. if (ret)
  217. em = ERR_PTR(ret);
  218. out:
  219. return em;
  220. }
  221. u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len)
  222. {
  223. return crc32c(seed, data, len);
  224. }
  225. void btrfs_csum_final(u32 crc, char *result)
  226. {
  227. put_unaligned_le32(~crc, result);
  228. }
  229. /*
  230. * compute the csum for a btree block, and either verify it or write it
  231. * into the csum field of the block.
  232. */
  233. static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
  234. int verify)
  235. {
  236. u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
  237. char *result = NULL;
  238. unsigned long len;
  239. unsigned long cur_len;
  240. unsigned long offset = BTRFS_CSUM_SIZE;
  241. char *kaddr;
  242. unsigned long map_start;
  243. unsigned long map_len;
  244. int err;
  245. u32 crc = ~(u32)0;
  246. unsigned long inline_result;
  247. len = buf->len - offset;
  248. while (len > 0) {
  249. err = map_private_extent_buffer(buf, offset, 32,
  250. &kaddr, &map_start, &map_len);
  251. if (err)
  252. return 1;
  253. cur_len = min(len, map_len - (offset - map_start));
  254. crc = btrfs_csum_data(root, kaddr + offset - map_start,
  255. crc, cur_len);
  256. len -= cur_len;
  257. offset += cur_len;
  258. }
  259. if (csum_size > sizeof(inline_result)) {
  260. result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
  261. if (!result)
  262. return 1;
  263. } else {
  264. result = (char *)&inline_result;
  265. }
  266. btrfs_csum_final(crc, result);
  267. if (verify) {
  268. if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
  269. u32 val;
  270. u32 found = 0;
  271. memcpy(&found, result, csum_size);
  272. read_extent_buffer(buf, &val, 0, csum_size);
  273. printk_ratelimited(KERN_INFO "btrfs: %s checksum verify "
  274. "failed on %llu wanted %X found %X "
  275. "level %d\n",
  276. root->fs_info->sb->s_id,
  277. (unsigned long long)buf->start, val, found,
  278. btrfs_header_level(buf));
  279. if (result != (char *)&inline_result)
  280. kfree(result);
  281. return 1;
  282. }
  283. } else {
  284. write_extent_buffer(buf, result, 0, csum_size);
  285. }
  286. if (result != (char *)&inline_result)
  287. kfree(result);
  288. return 0;
  289. }
  290. /*
  291. * we can't consider a given block up to date unless the transid of the
  292. * block matches the transid in the parent node's pointer. This is how we
  293. * detect blocks that either didn't get written at all or got written
  294. * in the wrong place.
  295. */
  296. static int verify_parent_transid(struct extent_io_tree *io_tree,
  297. struct extent_buffer *eb, u64 parent_transid)
  298. {
  299. struct extent_state *cached_state = NULL;
  300. int ret;
  301. if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
  302. return 0;
  303. lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
  304. 0, &cached_state, GFP_NOFS);
  305. if (extent_buffer_uptodate(io_tree, eb, cached_state) &&
  306. btrfs_header_generation(eb) == parent_transid) {
  307. ret = 0;
  308. goto out;
  309. }
  310. printk_ratelimited("parent transid verify failed on %llu wanted %llu "
  311. "found %llu\n",
  312. (unsigned long long)eb->start,
  313. (unsigned long long)parent_transid,
  314. (unsigned long long)btrfs_header_generation(eb));
  315. ret = 1;
  316. clear_extent_buffer_uptodate(io_tree, eb, &cached_state);
  317. out:
  318. unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
  319. &cached_state, GFP_NOFS);
  320. return ret;
  321. }
  322. /*
  323. * helper to read a given tree block, doing retries as required when
  324. * the checksums don't match and we have alternate mirrors to try.
  325. */
  326. static int btree_read_extent_buffer_pages(struct btrfs_root *root,
  327. struct extent_buffer *eb,
  328. u64 start, u64 parent_transid)
  329. {
  330. struct extent_io_tree *io_tree;
  331. int ret;
  332. int num_copies = 0;
  333. int mirror_num = 0;
  334. clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
  335. io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
  336. while (1) {
  337. ret = read_extent_buffer_pages(io_tree, eb, start,
  338. WAIT_COMPLETE,
  339. btree_get_extent, mirror_num);
  340. if (!ret &&
  341. !verify_parent_transid(io_tree, eb, parent_transid))
  342. return ret;
  343. /*
  344. * This buffer's crc is fine, but its contents are corrupted, so
  345. * there is no reason to read the other copies, they won't be
  346. * any less wrong.
  347. */
  348. if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
  349. return ret;
  350. num_copies = btrfs_num_copies(&root->fs_info->mapping_tree,
  351. eb->start, eb->len);
  352. if (num_copies == 1)
  353. return ret;
  354. mirror_num++;
  355. if (mirror_num > num_copies)
  356. return ret;
  357. }
  358. return -EIO;
  359. }
  360. /*
  361. * checksum a dirty tree block before IO. This has extra checks to make sure
  362. * we only fill in the checksum field in the first page of a multi-page block
  363. */
  364. static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
  365. {
  366. struct extent_io_tree *tree;
  367. u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
  368. u64 found_start;
  369. unsigned long len;
  370. struct extent_buffer *eb;
  371. int ret;
  372. tree = &BTRFS_I(page->mapping->host)->io_tree;
  373. if (page->private == EXTENT_PAGE_PRIVATE) {
  374. WARN_ON(1);
  375. goto out;
  376. }
  377. if (!page->private) {
  378. WARN_ON(1);
  379. goto out;
  380. }
  381. len = page->private >> 2;
  382. WARN_ON(len == 0);
  383. eb = alloc_extent_buffer(tree, start, len, page);
  384. if (eb == NULL) {
  385. WARN_ON(1);
  386. goto out;
  387. }
  388. ret = btree_read_extent_buffer_pages(root, eb, start + PAGE_CACHE_SIZE,
  389. btrfs_header_generation(eb));
  390. BUG_ON(ret);
  391. WARN_ON(!btrfs_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN));
  392. found_start = btrfs_header_bytenr(eb);
  393. if (found_start != start) {
  394. WARN_ON(1);
  395. goto err;
  396. }
  397. if (eb->first_page != page) {
  398. WARN_ON(1);
  399. goto err;
  400. }
  401. if (!PageUptodate(page)) {
  402. WARN_ON(1);
  403. goto err;
  404. }
  405. csum_tree_block(root, eb, 0);
  406. err:
  407. free_extent_buffer(eb);
  408. out:
  409. return 0;
  410. }
  411. static int check_tree_block_fsid(struct btrfs_root *root,
  412. struct extent_buffer *eb)
  413. {
  414. struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
  415. u8 fsid[BTRFS_UUID_SIZE];
  416. int ret = 1;
  417. read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb),
  418. BTRFS_FSID_SIZE);
  419. while (fs_devices) {
  420. if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
  421. ret = 0;
  422. break;
  423. }
  424. fs_devices = fs_devices->seed;
  425. }
  426. return ret;
  427. }
  428. #define CORRUPT(reason, eb, root, slot) \
  429. printk(KERN_CRIT "btrfs: corrupt leaf, %s: block=%llu," \
  430. "root=%llu, slot=%d\n", reason, \
  431. (unsigned long long)btrfs_header_bytenr(eb), \
  432. (unsigned long long)root->objectid, slot)
  433. static noinline int check_leaf(struct btrfs_root *root,
  434. struct extent_buffer *leaf)
  435. {
  436. struct btrfs_key key;
  437. struct btrfs_key leaf_key;
  438. u32 nritems = btrfs_header_nritems(leaf);
  439. int slot;
  440. if (nritems == 0)
  441. return 0;
  442. /* Check the 0 item */
  443. if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
  444. BTRFS_LEAF_DATA_SIZE(root)) {
  445. CORRUPT("invalid item offset size pair", leaf, root, 0);
  446. return -EIO;
  447. }
  448. /*
  449. * Check to make sure each items keys are in the correct order and their
  450. * offsets make sense. We only have to loop through nritems-1 because
  451. * we check the current slot against the next slot, which verifies the
  452. * next slot's offset+size makes sense and that the current's slot
  453. * offset is correct.
  454. */
  455. for (slot = 0; slot < nritems - 1; slot++) {
  456. btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
  457. btrfs_item_key_to_cpu(leaf, &key, slot + 1);
  458. /* Make sure the keys are in the right order */
  459. if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
  460. CORRUPT("bad key order", leaf, root, slot);
  461. return -EIO;
  462. }
  463. /*
  464. * Make sure the offset and ends are right, remember that the
  465. * item data starts at the end of the leaf and grows towards the
  466. * front.
  467. */
  468. if (btrfs_item_offset_nr(leaf, slot) !=
  469. btrfs_item_end_nr(leaf, slot + 1)) {
  470. CORRUPT("slot offset bad", leaf, root, slot);
  471. return -EIO;
  472. }
  473. /*
  474. * Check to make sure that we don't point outside of the leaf,
  475. * just incase all the items are consistent to eachother, but
  476. * all point outside of the leaf.
  477. */
  478. if (btrfs_item_end_nr(leaf, slot) >
  479. BTRFS_LEAF_DATA_SIZE(root)) {
  480. CORRUPT("slot end outside of leaf", leaf, root, slot);
  481. return -EIO;
  482. }
  483. }
  484. return 0;
  485. }
  486. static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end,
  487. struct extent_state *state)
  488. {
  489. struct extent_io_tree *tree;
  490. u64 found_start;
  491. int found_level;
  492. unsigned long len;
  493. struct extent_buffer *eb;
  494. struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
  495. int ret = 0;
  496. tree = &BTRFS_I(page->mapping->host)->io_tree;
  497. if (page->private == EXTENT_PAGE_PRIVATE)
  498. goto out;
  499. if (!page->private)
  500. goto out;
  501. len = page->private >> 2;
  502. WARN_ON(len == 0);
  503. eb = alloc_extent_buffer(tree, start, len, page);
  504. if (eb == NULL) {
  505. ret = -EIO;
  506. goto out;
  507. }
  508. found_start = btrfs_header_bytenr(eb);
  509. if (found_start != start) {
  510. printk_ratelimited(KERN_INFO "btrfs bad tree block start "
  511. "%llu %llu\n",
  512. (unsigned long long)found_start,
  513. (unsigned long long)eb->start);
  514. ret = -EIO;
  515. goto err;
  516. }
  517. if (eb->first_page != page) {
  518. printk(KERN_INFO "btrfs bad first page %lu %lu\n",
  519. eb->first_page->index, page->index);
  520. WARN_ON(1);
  521. ret = -EIO;
  522. goto err;
  523. }
  524. if (check_tree_block_fsid(root, eb)) {
  525. printk_ratelimited(KERN_INFO "btrfs bad fsid on block %llu\n",
  526. (unsigned long long)eb->start);
  527. ret = -EIO;
  528. goto err;
  529. }
  530. found_level = btrfs_header_level(eb);
  531. btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
  532. eb, found_level);
  533. ret = csum_tree_block(root, eb, 1);
  534. if (ret) {
  535. ret = -EIO;
  536. goto err;
  537. }
  538. /*
  539. * If this is a leaf block and it is corrupt, set the corrupt bit so
  540. * that we don't try and read the other copies of this block, just
  541. * return -EIO.
  542. */
  543. if (found_level == 0 && check_leaf(root, eb)) {
  544. set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
  545. ret = -EIO;
  546. }
  547. end = min_t(u64, eb->len, PAGE_CACHE_SIZE);
  548. end = eb->start + end - 1;
  549. err:
  550. if (test_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) {
  551. clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags);
  552. btree_readahead_hook(root, eb, eb->start, ret);
  553. }
  554. free_extent_buffer(eb);
  555. out:
  556. return ret;
  557. }
  558. static int btree_io_failed_hook(struct bio *failed_bio,
  559. struct page *page, u64 start, u64 end,
  560. int mirror_num, struct extent_state *state)
  561. {
  562. struct extent_io_tree *tree;
  563. unsigned long len;
  564. struct extent_buffer *eb;
  565. struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
  566. tree = &BTRFS_I(page->mapping->host)->io_tree;
  567. if (page->private == EXTENT_PAGE_PRIVATE)
  568. goto out;
  569. if (!page->private)
  570. goto out;
  571. len = page->private >> 2;
  572. WARN_ON(len == 0);
  573. eb = alloc_extent_buffer(tree, start, len, page);
  574. if (eb == NULL)
  575. goto out;
  576. if (test_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) {
  577. clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags);
  578. btree_readahead_hook(root, eb, eb->start, -EIO);
  579. }
  580. free_extent_buffer(eb);
  581. out:
  582. return -EIO; /* we fixed nothing */
  583. }
  584. static void end_workqueue_bio(struct bio *bio, int err)
  585. {
  586. struct end_io_wq *end_io_wq = bio->bi_private;
  587. struct btrfs_fs_info *fs_info;
  588. fs_info = end_io_wq->info;
  589. end_io_wq->error = err;
  590. end_io_wq->work.func = end_workqueue_fn;
  591. end_io_wq->work.flags = 0;
  592. if (bio->bi_rw & REQ_WRITE) {
  593. if (end_io_wq->metadata == 1)
  594. btrfs_queue_worker(&fs_info->endio_meta_write_workers,
  595. &end_io_wq->work);
  596. else if (end_io_wq->metadata == 2)
  597. btrfs_queue_worker(&fs_info->endio_freespace_worker,
  598. &end_io_wq->work);
  599. else
  600. btrfs_queue_worker(&fs_info->endio_write_workers,
  601. &end_io_wq->work);
  602. } else {
  603. if (end_io_wq->metadata)
  604. btrfs_queue_worker(&fs_info->endio_meta_workers,
  605. &end_io_wq->work);
  606. else
  607. btrfs_queue_worker(&fs_info->endio_workers,
  608. &end_io_wq->work);
  609. }
  610. }
  611. /*
  612. * For the metadata arg you want
  613. *
  614. * 0 - if data
  615. * 1 - if normal metadta
  616. * 2 - if writing to the free space cache area
  617. */
  618. int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
  619. int metadata)
  620. {
  621. struct end_io_wq *end_io_wq;
  622. end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
  623. if (!end_io_wq)
  624. return -ENOMEM;
  625. end_io_wq->private = bio->bi_private;
  626. end_io_wq->end_io = bio->bi_end_io;
  627. end_io_wq->info = info;
  628. end_io_wq->error = 0;
  629. end_io_wq->bio = bio;
  630. end_io_wq->metadata = metadata;
  631. bio->bi_private = end_io_wq;
  632. bio->bi_end_io = end_workqueue_bio;
  633. return 0;
  634. }
  635. unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
  636. {
  637. unsigned long limit = min_t(unsigned long,
  638. info->workers.max_workers,
  639. info->fs_devices->open_devices);
  640. return 256 * limit;
  641. }
  642. static void run_one_async_start(struct btrfs_work *work)
  643. {
  644. struct async_submit_bio *async;
  645. async = container_of(work, struct async_submit_bio, work);
  646. async->submit_bio_start(async->inode, async->rw, async->bio,
  647. async->mirror_num, async->bio_flags,
  648. async->bio_offset);
  649. }
  650. static void run_one_async_done(struct btrfs_work *work)
  651. {
  652. struct btrfs_fs_info *fs_info;
  653. struct async_submit_bio *async;
  654. int limit;
  655. async = container_of(work, struct async_submit_bio, work);
  656. fs_info = BTRFS_I(async->inode)->root->fs_info;
  657. limit = btrfs_async_submit_limit(fs_info);
  658. limit = limit * 2 / 3;
  659. atomic_dec(&fs_info->nr_async_submits);
  660. if (atomic_read(&fs_info->nr_async_submits) < limit &&
  661. waitqueue_active(&fs_info->async_submit_wait))
  662. wake_up(&fs_info->async_submit_wait);
  663. async->submit_bio_done(async->inode, async->rw, async->bio,
  664. async->mirror_num, async->bio_flags,
  665. async->bio_offset);
  666. }
  667. static void run_one_async_free(struct btrfs_work *work)
  668. {
  669. struct async_submit_bio *async;
  670. async = container_of(work, struct async_submit_bio, work);
  671. kfree(async);
  672. }
  673. int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
  674. int rw, struct bio *bio, int mirror_num,
  675. unsigned long bio_flags,
  676. u64 bio_offset,
  677. extent_submit_bio_hook_t *submit_bio_start,
  678. extent_submit_bio_hook_t *submit_bio_done)
  679. {
  680. struct async_submit_bio *async;
  681. async = kmalloc(sizeof(*async), GFP_NOFS);
  682. if (!async)
  683. return -ENOMEM;
  684. async->inode = inode;
  685. async->rw = rw;
  686. async->bio = bio;
  687. async->mirror_num = mirror_num;
  688. async->submit_bio_start = submit_bio_start;
  689. async->submit_bio_done = submit_bio_done;
  690. async->work.func = run_one_async_start;
  691. async->work.ordered_func = run_one_async_done;
  692. async->work.ordered_free = run_one_async_free;
  693. async->work.flags = 0;
  694. async->bio_flags = bio_flags;
  695. async->bio_offset = bio_offset;
  696. atomic_inc(&fs_info->nr_async_submits);
  697. if (rw & REQ_SYNC)
  698. btrfs_set_work_high_prio(&async->work);
  699. btrfs_queue_worker(&fs_info->workers, &async->work);
  700. while (atomic_read(&fs_info->async_submit_draining) &&
  701. atomic_read(&fs_info->nr_async_submits)) {
  702. wait_event(fs_info->async_submit_wait,
  703. (atomic_read(&fs_info->nr_async_submits) == 0));
  704. }
  705. return 0;
  706. }
  707. static int btree_csum_one_bio(struct bio *bio)
  708. {
  709. struct bio_vec *bvec = bio->bi_io_vec;
  710. int bio_index = 0;
  711. struct btrfs_root *root;
  712. WARN_ON(bio->bi_vcnt <= 0);
  713. while (bio_index < bio->bi_vcnt) {
  714. root = BTRFS_I(bvec->bv_page->mapping->host)->root;
  715. csum_dirty_buffer(root, bvec->bv_page);
  716. bio_index++;
  717. bvec++;
  718. }
  719. return 0;
  720. }
  721. static int __btree_submit_bio_start(struct inode *inode, int rw,
  722. struct bio *bio, int mirror_num,
  723. unsigned long bio_flags,
  724. u64 bio_offset)
  725. {
  726. /*
  727. * when we're called for a write, we're already in the async
  728. * submission context. Just jump into btrfs_map_bio
  729. */
  730. btree_csum_one_bio(bio);
  731. return 0;
  732. }
  733. static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
  734. int mirror_num, unsigned long bio_flags,
  735. u64 bio_offset)
  736. {
  737. /*
  738. * when we're called for a write, we're already in the async
  739. * submission context. Just jump into btrfs_map_bio
  740. */
  741. return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
  742. }
  743. static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
  744. int mirror_num, unsigned long bio_flags,
  745. u64 bio_offset)
  746. {
  747. int ret;
  748. ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
  749. bio, 1);
  750. BUG_ON(ret);
  751. if (!(rw & REQ_WRITE)) {
  752. /*
  753. * called for a read, do the setup so that checksum validation
  754. * can happen in the async kernel threads
  755. */
  756. return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
  757. mirror_num, 0);
  758. }
  759. /*
  760. * kthread helpers are used to submit writes so that checksumming
  761. * can happen in parallel across all CPUs
  762. */
  763. return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
  764. inode, rw, bio, mirror_num, 0,
  765. bio_offset,
  766. __btree_submit_bio_start,
  767. __btree_submit_bio_done);
  768. }
  769. #ifdef CONFIG_MIGRATION
  770. static int btree_migratepage(struct address_space *mapping,
  771. struct page *newpage, struct page *page)
  772. {
  773. /*
  774. * we can't safely write a btree page from here,
  775. * we haven't done the locking hook
  776. */
  777. if (PageDirty(page))
  778. return -EAGAIN;
  779. /*
  780. * Buffers may be managed in a filesystem specific way.
  781. * We must have no buffers or drop them.
  782. */
  783. if (page_has_private(page) &&
  784. !try_to_release_page(page, GFP_KERNEL))
  785. return -EAGAIN;
  786. return migrate_page(mapping, newpage, page);
  787. }
  788. #endif
  789. static int btree_writepage(struct page *page, struct writeback_control *wbc)
  790. {
  791. struct extent_io_tree *tree;
  792. struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
  793. struct extent_buffer *eb;
  794. int was_dirty;
  795. tree = &BTRFS_I(page->mapping->host)->io_tree;
  796. if (!(current->flags & PF_MEMALLOC)) {
  797. return extent_write_full_page(tree, page,
  798. btree_get_extent, wbc);
  799. }
  800. redirty_page_for_writepage(wbc, page);
  801. eb = btrfs_find_tree_block(root, page_offset(page), PAGE_CACHE_SIZE);
  802. WARN_ON(!eb);
  803. was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
  804. if (!was_dirty) {
  805. spin_lock(&root->fs_info->delalloc_lock);
  806. root->fs_info->dirty_metadata_bytes += PAGE_CACHE_SIZE;
  807. spin_unlock(&root->fs_info->delalloc_lock);
  808. }
  809. free_extent_buffer(eb);
  810. unlock_page(page);
  811. return 0;
  812. }
  813. static int btree_writepages(struct address_space *mapping,
  814. struct writeback_control *wbc)
  815. {
  816. struct extent_io_tree *tree;
  817. tree = &BTRFS_I(mapping->host)->io_tree;
  818. if (wbc->sync_mode == WB_SYNC_NONE) {
  819. struct btrfs_root *root = BTRFS_I(mapping->host)->root;
  820. u64 num_dirty;
  821. unsigned long thresh = 32 * 1024 * 1024;
  822. if (wbc->for_kupdate)
  823. return 0;
  824. /* this is a bit racy, but that's ok */
  825. num_dirty = root->fs_info->dirty_metadata_bytes;
  826. if (num_dirty < thresh)
  827. return 0;
  828. }
  829. return extent_writepages(tree, mapping, btree_get_extent, wbc);
  830. }
  831. static int btree_readpage(struct file *file, struct page *page)
  832. {
  833. struct extent_io_tree *tree;
  834. tree = &BTRFS_I(page->mapping->host)->io_tree;
  835. return extent_read_full_page(tree, page, btree_get_extent, 0);
  836. }
  837. static int btree_releasepage(struct page *page, gfp_t gfp_flags)
  838. {
  839. struct extent_io_tree *tree;
  840. struct extent_map_tree *map;
  841. int ret;
  842. if (PageWriteback(page) || PageDirty(page))
  843. return 0;
  844. tree = &BTRFS_I(page->mapping->host)->io_tree;
  845. map = &BTRFS_I(page->mapping->host)->extent_tree;
  846. ret = try_release_extent_state(map, tree, page, gfp_flags);
  847. if (!ret)
  848. return 0;
  849. ret = try_release_extent_buffer(tree, page);
  850. if (ret == 1) {
  851. ClearPagePrivate(page);
  852. set_page_private(page, 0);
  853. page_cache_release(page);
  854. }
  855. return ret;
  856. }
  857. static void btree_invalidatepage(struct page *page, unsigned long offset)
  858. {
  859. struct extent_io_tree *tree;
  860. tree = &BTRFS_I(page->mapping->host)->io_tree;
  861. extent_invalidatepage(tree, page, offset);
  862. btree_releasepage(page, GFP_NOFS);
  863. if (PagePrivate(page)) {
  864. printk(KERN_WARNING "btrfs warning page private not zero "
  865. "on page %llu\n", (unsigned long long)page_offset(page));
  866. ClearPagePrivate(page);
  867. set_page_private(page, 0);
  868. page_cache_release(page);
  869. }
  870. }
  871. static const struct address_space_operations btree_aops = {
  872. .readpage = btree_readpage,
  873. .writepage = btree_writepage,
  874. .writepages = btree_writepages,
  875. .releasepage = btree_releasepage,
  876. .invalidatepage = btree_invalidatepage,
  877. #ifdef CONFIG_MIGRATION
  878. .migratepage = btree_migratepage,
  879. #endif
  880. };
  881. int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
  882. u64 parent_transid)
  883. {
  884. struct extent_buffer *buf = NULL;
  885. struct inode *btree_inode = root->fs_info->btree_inode;
  886. int ret = 0;
  887. buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
  888. if (!buf)
  889. return 0;
  890. read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
  891. buf, 0, WAIT_NONE, btree_get_extent, 0);
  892. free_extent_buffer(buf);
  893. return ret;
  894. }
  895. int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize,
  896. int mirror_num, struct extent_buffer **eb)
  897. {
  898. struct extent_buffer *buf = NULL;
  899. struct inode *btree_inode = root->fs_info->btree_inode;
  900. struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
  901. int ret;
  902. buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
  903. if (!buf)
  904. return 0;
  905. set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
  906. ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
  907. btree_get_extent, mirror_num);
  908. if (ret) {
  909. free_extent_buffer(buf);
  910. return ret;
  911. }
  912. if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
  913. free_extent_buffer(buf);
  914. return -EIO;
  915. } else if (extent_buffer_uptodate(io_tree, buf, NULL)) {
  916. *eb = buf;
  917. } else {
  918. free_extent_buffer(buf);
  919. }
  920. return 0;
  921. }
  922. struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
  923. u64 bytenr, u32 blocksize)
  924. {
  925. struct inode *btree_inode = root->fs_info->btree_inode;
  926. struct extent_buffer *eb;
  927. eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
  928. bytenr, blocksize);
  929. return eb;
  930. }
  931. struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
  932. u64 bytenr, u32 blocksize)
  933. {
  934. struct inode *btree_inode = root->fs_info->btree_inode;
  935. struct extent_buffer *eb;
  936. eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
  937. bytenr, blocksize, NULL);
  938. return eb;
  939. }
  940. int btrfs_write_tree_block(struct extent_buffer *buf)
  941. {
  942. return filemap_fdatawrite_range(buf->first_page->mapping, buf->start,
  943. buf->start + buf->len - 1);
  944. }
  945. int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
  946. {
  947. return filemap_fdatawait_range(buf->first_page->mapping,
  948. buf->start, buf->start + buf->len - 1);
  949. }
  950. struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
  951. u32 blocksize, u64 parent_transid)
  952. {
  953. struct extent_buffer *buf = NULL;
  954. int ret;
  955. buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
  956. if (!buf)
  957. return NULL;
  958. ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
  959. if (ret == 0)
  960. set_bit(EXTENT_BUFFER_UPTODATE, &buf->bflags);
  961. return buf;
  962. }
  963. int clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  964. struct extent_buffer *buf)
  965. {
  966. struct inode *btree_inode = root->fs_info->btree_inode;
  967. if (btrfs_header_generation(buf) ==
  968. root->fs_info->running_transaction->transid) {
  969. btrfs_assert_tree_locked(buf);
  970. if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
  971. spin_lock(&root->fs_info->delalloc_lock);
  972. if (root->fs_info->dirty_metadata_bytes >= buf->len)
  973. root->fs_info->dirty_metadata_bytes -= buf->len;
  974. else
  975. WARN_ON(1);
  976. spin_unlock(&root->fs_info->delalloc_lock);
  977. }
  978. /* ugh, clear_extent_buffer_dirty needs to lock the page */
  979. btrfs_set_lock_blocking(buf);
  980. clear_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree,
  981. buf);
  982. }
  983. return 0;
  984. }
  985. static int __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
  986. u32 stripesize, struct btrfs_root *root,
  987. struct btrfs_fs_info *fs_info,
  988. u64 objectid)
  989. {
  990. root->node = NULL;
  991. root->commit_root = NULL;
  992. root->sectorsize = sectorsize;
  993. root->nodesize = nodesize;
  994. root->leafsize = leafsize;
  995. root->stripesize = stripesize;
  996. root->ref_cows = 0;
  997. root->track_dirty = 0;
  998. root->in_radix = 0;
  999. root->orphan_item_inserted = 0;
  1000. root->orphan_cleanup_state = 0;
  1001. root->objectid = objectid;
  1002. root->last_trans = 0;
  1003. root->highest_objectid = 0;
  1004. root->name = NULL;
  1005. root->inode_tree = RB_ROOT;
  1006. INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
  1007. root->block_rsv = NULL;
  1008. root->orphan_block_rsv = NULL;
  1009. INIT_LIST_HEAD(&root->dirty_list);
  1010. INIT_LIST_HEAD(&root->orphan_list);
  1011. INIT_LIST_HEAD(&root->root_list);
  1012. spin_lock_init(&root->orphan_lock);
  1013. spin_lock_init(&root->inode_lock);
  1014. spin_lock_init(&root->accounting_lock);
  1015. mutex_init(&root->objectid_mutex);
  1016. mutex_init(&root->log_mutex);
  1017. init_waitqueue_head(&root->log_writer_wait);
  1018. init_waitqueue_head(&root->log_commit_wait[0]);
  1019. init_waitqueue_head(&root->log_commit_wait[1]);
  1020. atomic_set(&root->log_commit[0], 0);
  1021. atomic_set(&root->log_commit[1], 0);
  1022. atomic_set(&root->log_writers, 0);
  1023. root->log_batch = 0;
  1024. root->log_transid = 0;
  1025. root->last_log_commit = 0;
  1026. extent_io_tree_init(&root->dirty_log_pages,
  1027. fs_info->btree_inode->i_mapping);
  1028. memset(&root->root_key, 0, sizeof(root->root_key));
  1029. memset(&root->root_item, 0, sizeof(root->root_item));
  1030. memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
  1031. memset(&root->root_kobj, 0, sizeof(root->root_kobj));
  1032. root->defrag_trans_start = fs_info->generation;
  1033. init_completion(&root->kobj_unregister);
  1034. root->defrag_running = 0;
  1035. root->root_key.objectid = objectid;
  1036. root->anon_dev = 0;
  1037. return 0;
  1038. }
  1039. static int find_and_setup_root(struct btrfs_root *tree_root,
  1040. struct btrfs_fs_info *fs_info,
  1041. u64 objectid,
  1042. struct btrfs_root *root)
  1043. {
  1044. int ret;
  1045. u32 blocksize;
  1046. u64 generation;
  1047. __setup_root(tree_root->nodesize, tree_root->leafsize,
  1048. tree_root->sectorsize, tree_root->stripesize,
  1049. root, fs_info, objectid);
  1050. ret = btrfs_find_last_root(tree_root, objectid,
  1051. &root->root_item, &root->root_key);
  1052. if (ret > 0)
  1053. return -ENOENT;
  1054. BUG_ON(ret);
  1055. generation = btrfs_root_generation(&root->root_item);
  1056. blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
  1057. root->commit_root = NULL;
  1058. root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
  1059. blocksize, generation);
  1060. if (!root->node || !btrfs_buffer_uptodate(root->node, generation)) {
  1061. free_extent_buffer(root->node);
  1062. root->node = NULL;
  1063. return -EIO;
  1064. }
  1065. root->commit_root = btrfs_root_node(root);
  1066. return 0;
  1067. }
  1068. static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
  1069. {
  1070. struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
  1071. if (root)
  1072. root->fs_info = fs_info;
  1073. return root;
  1074. }
  1075. static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
  1076. struct btrfs_fs_info *fs_info)
  1077. {
  1078. struct btrfs_root *root;
  1079. struct btrfs_root *tree_root = fs_info->tree_root;
  1080. struct extent_buffer *leaf;
  1081. root = btrfs_alloc_root(fs_info);
  1082. if (!root)
  1083. return ERR_PTR(-ENOMEM);
  1084. __setup_root(tree_root->nodesize, tree_root->leafsize,
  1085. tree_root->sectorsize, tree_root->stripesize,
  1086. root, fs_info, BTRFS_TREE_LOG_OBJECTID);
  1087. root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
  1088. root->root_key.type = BTRFS_ROOT_ITEM_KEY;
  1089. root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
  1090. /*
  1091. * log trees do not get reference counted because they go away
  1092. * before a real commit is actually done. They do store pointers
  1093. * to file data extents, and those reference counts still get
  1094. * updated (along with back refs to the log tree).
  1095. */
  1096. root->ref_cows = 0;
  1097. leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
  1098. BTRFS_TREE_LOG_OBJECTID, NULL, 0, 0, 0);
  1099. if (IS_ERR(leaf)) {
  1100. kfree(root);
  1101. return ERR_CAST(leaf);
  1102. }
  1103. memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
  1104. btrfs_set_header_bytenr(leaf, leaf->start);
  1105. btrfs_set_header_generation(leaf, trans->transid);
  1106. btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
  1107. btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
  1108. root->node = leaf;
  1109. write_extent_buffer(root->node, root->fs_info->fsid,
  1110. (unsigned long)btrfs_header_fsid(root->node),
  1111. BTRFS_FSID_SIZE);
  1112. btrfs_mark_buffer_dirty(root->node);
  1113. btrfs_tree_unlock(root->node);
  1114. return root;
  1115. }
  1116. int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
  1117. struct btrfs_fs_info *fs_info)
  1118. {
  1119. struct btrfs_root *log_root;
  1120. log_root = alloc_log_tree(trans, fs_info);
  1121. if (IS_ERR(log_root))
  1122. return PTR_ERR(log_root);
  1123. WARN_ON(fs_info->log_root_tree);
  1124. fs_info->log_root_tree = log_root;
  1125. return 0;
  1126. }
  1127. int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
  1128. struct btrfs_root *root)
  1129. {
  1130. struct btrfs_root *log_root;
  1131. struct btrfs_inode_item *inode_item;
  1132. log_root = alloc_log_tree(trans, root->fs_info);
  1133. if (IS_ERR(log_root))
  1134. return PTR_ERR(log_root);
  1135. log_root->last_trans = trans->transid;
  1136. log_root->root_key.offset = root->root_key.objectid;
  1137. inode_item = &log_root->root_item.inode;
  1138. inode_item->generation = cpu_to_le64(1);
  1139. inode_item->size = cpu_to_le64(3);
  1140. inode_item->nlink = cpu_to_le32(1);
  1141. inode_item->nbytes = cpu_to_le64(root->leafsize);
  1142. inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
  1143. btrfs_set_root_node(&log_root->root_item, log_root->node);
  1144. WARN_ON(root->log_root);
  1145. root->log_root = log_root;
  1146. root->log_transid = 0;
  1147. root->last_log_commit = 0;
  1148. return 0;
  1149. }
  1150. struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root,
  1151. struct btrfs_key *location)
  1152. {
  1153. struct btrfs_root *root;
  1154. struct btrfs_fs_info *fs_info = tree_root->fs_info;
  1155. struct btrfs_path *path;
  1156. struct extent_buffer *l;
  1157. u64 generation;
  1158. u32 blocksize;
  1159. int ret = 0;
  1160. root = btrfs_alloc_root(fs_info);
  1161. if (!root)
  1162. return ERR_PTR(-ENOMEM);
  1163. if (location->offset == (u64)-1) {
  1164. ret = find_and_setup_root(tree_root, fs_info,
  1165. location->objectid, root);
  1166. if (ret) {
  1167. kfree(root);
  1168. return ERR_PTR(ret);
  1169. }
  1170. goto out;
  1171. }
  1172. __setup_root(tree_root->nodesize, tree_root->leafsize,
  1173. tree_root->sectorsize, tree_root->stripesize,
  1174. root, fs_info, location->objectid);
  1175. path = btrfs_alloc_path();
  1176. if (!path) {
  1177. kfree(root);
  1178. return ERR_PTR(-ENOMEM);
  1179. }
  1180. ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0);
  1181. if (ret == 0) {
  1182. l = path->nodes[0];
  1183. read_extent_buffer(l, &root->root_item,
  1184. btrfs_item_ptr_offset(l, path->slots[0]),
  1185. sizeof(root->root_item));
  1186. memcpy(&root->root_key, location, sizeof(*location));
  1187. }
  1188. btrfs_free_path(path);
  1189. if (ret) {
  1190. kfree(root);
  1191. if (ret > 0)
  1192. ret = -ENOENT;
  1193. return ERR_PTR(ret);
  1194. }
  1195. generation = btrfs_root_generation(&root->root_item);
  1196. blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
  1197. root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
  1198. blocksize, generation);
  1199. root->commit_root = btrfs_root_node(root);
  1200. BUG_ON(!root->node);
  1201. out:
  1202. if (location->objectid != BTRFS_TREE_LOG_OBJECTID) {
  1203. root->ref_cows = 1;
  1204. btrfs_check_and_init_root_item(&root->root_item);
  1205. }
  1206. return root;
  1207. }
  1208. struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
  1209. struct btrfs_key *location)
  1210. {
  1211. struct btrfs_root *root;
  1212. int ret;
  1213. if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
  1214. return fs_info->tree_root;
  1215. if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
  1216. return fs_info->extent_root;
  1217. if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
  1218. return fs_info->chunk_root;
  1219. if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
  1220. return fs_info->dev_root;
  1221. if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
  1222. return fs_info->csum_root;
  1223. again:
  1224. spin_lock(&fs_info->fs_roots_radix_lock);
  1225. root = radix_tree_lookup(&fs_info->fs_roots_radix,
  1226. (unsigned long)location->objectid);
  1227. spin_unlock(&fs_info->fs_roots_radix_lock);
  1228. if (root)
  1229. return root;
  1230. root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location);
  1231. if (IS_ERR(root))
  1232. return root;
  1233. root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
  1234. root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
  1235. GFP_NOFS);
  1236. if (!root->free_ino_pinned || !root->free_ino_ctl) {
  1237. ret = -ENOMEM;
  1238. goto fail;
  1239. }
  1240. btrfs_init_free_ino_ctl(root);
  1241. mutex_init(&root->fs_commit_mutex);
  1242. spin_lock_init(&root->cache_lock);
  1243. init_waitqueue_head(&root->cache_wait);
  1244. ret = get_anon_bdev(&root->anon_dev);
  1245. if (ret)
  1246. goto fail;
  1247. if (btrfs_root_refs(&root->root_item) == 0) {
  1248. ret = -ENOENT;
  1249. goto fail;
  1250. }
  1251. ret = btrfs_find_orphan_item(fs_info->tree_root, location->objectid);
  1252. if (ret < 0)
  1253. goto fail;
  1254. if (ret == 0)
  1255. root->orphan_item_inserted = 1;
  1256. ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
  1257. if (ret)
  1258. goto fail;
  1259. spin_lock(&fs_info->fs_roots_radix_lock);
  1260. ret = radix_tree_insert(&fs_info->fs_roots_radix,
  1261. (unsigned long)root->root_key.objectid,
  1262. root);
  1263. if (ret == 0)
  1264. root->in_radix = 1;
  1265. spin_unlock(&fs_info->fs_roots_radix_lock);
  1266. radix_tree_preload_end();
  1267. if (ret) {
  1268. if (ret == -EEXIST) {
  1269. free_fs_root(root);
  1270. goto again;
  1271. }
  1272. goto fail;
  1273. }
  1274. ret = btrfs_find_dead_roots(fs_info->tree_root,
  1275. root->root_key.objectid);
  1276. WARN_ON(ret);
  1277. return root;
  1278. fail:
  1279. free_fs_root(root);
  1280. return ERR_PTR(ret);
  1281. }
  1282. static int btrfs_congested_fn(void *congested_data, int bdi_bits)
  1283. {
  1284. struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
  1285. int ret = 0;
  1286. struct btrfs_device *device;
  1287. struct backing_dev_info *bdi;
  1288. rcu_read_lock();
  1289. list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
  1290. if (!device->bdev)
  1291. continue;
  1292. bdi = blk_get_backing_dev_info(device->bdev);
  1293. if (bdi && bdi_congested(bdi, bdi_bits)) {
  1294. ret = 1;
  1295. break;
  1296. }
  1297. }
  1298. rcu_read_unlock();
  1299. return ret;
  1300. }
  1301. /*
  1302. * If this fails, caller must call bdi_destroy() to get rid of the
  1303. * bdi again.
  1304. */
  1305. static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
  1306. {
  1307. int err;
  1308. bdi->capabilities = BDI_CAP_MAP_COPY;
  1309. err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
  1310. if (err)
  1311. return err;
  1312. bdi->ra_pages = default_backing_dev_info.ra_pages;
  1313. bdi->congested_fn = btrfs_congested_fn;
  1314. bdi->congested_data = info;
  1315. return 0;
  1316. }
  1317. static int bio_ready_for_csum(struct bio *bio)
  1318. {
  1319. u64 length = 0;
  1320. u64 buf_len = 0;
  1321. u64 start = 0;
  1322. struct page *page;
  1323. struct extent_io_tree *io_tree = NULL;
  1324. struct bio_vec *bvec;
  1325. int i;
  1326. int ret;
  1327. bio_for_each_segment(bvec, bio, i) {
  1328. page = bvec->bv_page;
  1329. if (page->private == EXTENT_PAGE_PRIVATE) {
  1330. length += bvec->bv_len;
  1331. continue;
  1332. }
  1333. if (!page->private) {
  1334. length += bvec->bv_len;
  1335. continue;
  1336. }
  1337. length = bvec->bv_len;
  1338. buf_len = page->private >> 2;
  1339. start = page_offset(page) + bvec->bv_offset;
  1340. io_tree = &BTRFS_I(page->mapping->host)->io_tree;
  1341. }
  1342. /* are we fully contained in this bio? */
  1343. if (buf_len <= length)
  1344. return 1;
  1345. ret = extent_range_uptodate(io_tree, start + length,
  1346. start + buf_len - 1);
  1347. return ret;
  1348. }
  1349. /*
  1350. * called by the kthread helper functions to finally call the bio end_io
  1351. * functions. This is where read checksum verification actually happens
  1352. */
  1353. static void end_workqueue_fn(struct btrfs_work *work)
  1354. {
  1355. struct bio *bio;
  1356. struct end_io_wq *end_io_wq;
  1357. struct btrfs_fs_info *fs_info;
  1358. int error;
  1359. end_io_wq = container_of(work, struct end_io_wq, work);
  1360. bio = end_io_wq->bio;
  1361. fs_info = end_io_wq->info;
  1362. /* metadata bio reads are special because the whole tree block must
  1363. * be checksummed at once. This makes sure the entire block is in
  1364. * ram and up to date before trying to verify things. For
  1365. * blocksize <= pagesize, it is basically a noop
  1366. */
  1367. if (!(bio->bi_rw & REQ_WRITE) && end_io_wq->metadata &&
  1368. !bio_ready_for_csum(bio)) {
  1369. btrfs_queue_worker(&fs_info->endio_meta_workers,
  1370. &end_io_wq->work);
  1371. return;
  1372. }
  1373. error = end_io_wq->error;
  1374. bio->bi_private = end_io_wq->private;
  1375. bio->bi_end_io = end_io_wq->end_io;
  1376. kfree(end_io_wq);
  1377. bio_endio(bio, error);
  1378. }
  1379. static int cleaner_kthread(void *arg)
  1380. {
  1381. struct btrfs_root *root = arg;
  1382. do {
  1383. vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
  1384. if (!(root->fs_info->sb->s_flags & MS_RDONLY) &&
  1385. mutex_trylock(&root->fs_info->cleaner_mutex)) {
  1386. btrfs_run_delayed_iputs(root);
  1387. btrfs_clean_old_snapshots(root);
  1388. mutex_unlock(&root->fs_info->cleaner_mutex);
  1389. btrfs_run_defrag_inodes(root->fs_info);
  1390. }
  1391. if (!try_to_freeze()) {
  1392. set_current_state(TASK_INTERRUPTIBLE);
  1393. if (!kthread_should_stop())
  1394. schedule();
  1395. __set_current_state(TASK_RUNNING);
  1396. }
  1397. } while (!kthread_should_stop());
  1398. return 0;
  1399. }
  1400. static int transaction_kthread(void *arg)
  1401. {
  1402. struct btrfs_root *root = arg;
  1403. struct btrfs_trans_handle *trans;
  1404. struct btrfs_transaction *cur;
  1405. u64 transid;
  1406. unsigned long now;
  1407. unsigned long delay;
  1408. int ret;
  1409. do {
  1410. delay = HZ * 30;
  1411. vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
  1412. mutex_lock(&root->fs_info->transaction_kthread_mutex);
  1413. spin_lock(&root->fs_info->trans_lock);
  1414. cur = root->fs_info->running_transaction;
  1415. if (!cur) {
  1416. spin_unlock(&root->fs_info->trans_lock);
  1417. goto sleep;
  1418. }
  1419. now = get_seconds();
  1420. if (!cur->blocked &&
  1421. (now < cur->start_time || now - cur->start_time < 30)) {
  1422. spin_unlock(&root->fs_info->trans_lock);
  1423. delay = HZ * 5;
  1424. goto sleep;
  1425. }
  1426. transid = cur->transid;
  1427. spin_unlock(&root->fs_info->trans_lock);
  1428. trans = btrfs_join_transaction(root);
  1429. BUG_ON(IS_ERR(trans));
  1430. if (transid == trans->transid) {
  1431. ret = btrfs_commit_transaction(trans, root);
  1432. BUG_ON(ret);
  1433. } else {
  1434. btrfs_end_transaction(trans, root);
  1435. }
  1436. sleep:
  1437. wake_up_process(root->fs_info->cleaner_kthread);
  1438. mutex_unlock(&root->fs_info->transaction_kthread_mutex);
  1439. if (!try_to_freeze()) {
  1440. set_current_state(TASK_INTERRUPTIBLE);
  1441. if (!kthread_should_stop() &&
  1442. !btrfs_transaction_blocked(root->fs_info))
  1443. schedule_timeout(delay);
  1444. __set_current_state(TASK_RUNNING);
  1445. }
  1446. } while (!kthread_should_stop());
  1447. return 0;
  1448. }
  1449. /*
  1450. * this will find the highest generation in the array of
  1451. * root backups. The index of the highest array is returned,
  1452. * or -1 if we can't find anything.
  1453. *
  1454. * We check to make sure the array is valid by comparing the
  1455. * generation of the latest root in the array with the generation
  1456. * in the super block. If they don't match we pitch it.
  1457. */
  1458. static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
  1459. {
  1460. u64 cur;
  1461. int newest_index = -1;
  1462. struct btrfs_root_backup *root_backup;
  1463. int i;
  1464. for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
  1465. root_backup = info->super_copy->super_roots + i;
  1466. cur = btrfs_backup_tree_root_gen(root_backup);
  1467. if (cur == newest_gen)
  1468. newest_index = i;
  1469. }
  1470. /* check to see if we actually wrapped around */
  1471. if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
  1472. root_backup = info->super_copy->super_roots;
  1473. cur = btrfs_backup_tree_root_gen(root_backup);
  1474. if (cur == newest_gen)
  1475. newest_index = 0;
  1476. }
  1477. return newest_index;
  1478. }
  1479. /*
  1480. * find the oldest backup so we know where to store new entries
  1481. * in the backup array. This will set the backup_root_index
  1482. * field in the fs_info struct
  1483. */
  1484. static void find_oldest_super_backup(struct btrfs_fs_info *info,
  1485. u64 newest_gen)
  1486. {
  1487. int newest_index = -1;
  1488. newest_index = find_newest_super_backup(info, newest_gen);
  1489. /* if there was garbage in there, just move along */
  1490. if (newest_index == -1) {
  1491. info->backup_root_index = 0;
  1492. } else {
  1493. info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
  1494. }
  1495. }
  1496. /*
  1497. * copy all the root pointers into the super backup array.
  1498. * this will bump the backup pointer by one when it is
  1499. * done
  1500. */
  1501. static void backup_super_roots(struct btrfs_fs_info *info)
  1502. {
  1503. int next_backup;
  1504. struct btrfs_root_backup *root_backup;
  1505. int last_backup;
  1506. next_backup = info->backup_root_index;
  1507. last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
  1508. BTRFS_NUM_BACKUP_ROOTS;
  1509. /*
  1510. * just overwrite the last backup if we're at the same generation
  1511. * this happens only at umount
  1512. */
  1513. root_backup = info->super_for_commit->super_roots + last_backup;
  1514. if (btrfs_backup_tree_root_gen(root_backup) ==
  1515. btrfs_header_generation(info->tree_root->node))
  1516. next_backup = last_backup;
  1517. root_backup = info->super_for_commit->super_roots + next_backup;
  1518. /*
  1519. * make sure all of our padding and empty slots get zero filled
  1520. * regardless of which ones we use today
  1521. */
  1522. memset(root_backup, 0, sizeof(*root_backup));
  1523. info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
  1524. btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
  1525. btrfs_set_backup_tree_root_gen(root_backup,
  1526. btrfs_header_generation(info->tree_root->node));
  1527. btrfs_set_backup_tree_root_level(root_backup,
  1528. btrfs_header_level(info->tree_root->node));
  1529. btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
  1530. btrfs_set_backup_chunk_root_gen(root_backup,
  1531. btrfs_header_generation(info->chunk_root->node));
  1532. btrfs_set_backup_chunk_root_level(root_backup,
  1533. btrfs_header_level(info->chunk_root->node));
  1534. btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
  1535. btrfs_set_backup_extent_root_gen(root_backup,
  1536. btrfs_header_generation(info->extent_root->node));
  1537. btrfs_set_backup_extent_root_level(root_backup,
  1538. btrfs_header_level(info->extent_root->node));
  1539. /*
  1540. * we might commit during log recovery, which happens before we set
  1541. * the fs_root. Make sure it is valid before we fill it in.
  1542. */
  1543. if (info->fs_root && info->fs_root->node) {
  1544. btrfs_set_backup_fs_root(root_backup,
  1545. info->fs_root->node->start);
  1546. btrfs_set_backup_fs_root_gen(root_backup,
  1547. btrfs_header_generation(info->fs_root->node));
  1548. btrfs_set_backup_fs_root_level(root_backup,
  1549. btrfs_header_level(info->fs_root->node));
  1550. }
  1551. btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
  1552. btrfs_set_backup_dev_root_gen(root_backup,
  1553. btrfs_header_generation(info->dev_root->node));
  1554. btrfs_set_backup_dev_root_level(root_backup,
  1555. btrfs_header_level(info->dev_root->node));
  1556. btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
  1557. btrfs_set_backup_csum_root_gen(root_backup,
  1558. btrfs_header_generation(info->csum_root->node));
  1559. btrfs_set_backup_csum_root_level(root_backup,
  1560. btrfs_header_level(info->csum_root->node));
  1561. btrfs_set_backup_total_bytes(root_backup,
  1562. btrfs_super_total_bytes(info->super_copy));
  1563. btrfs_set_backup_bytes_used(root_backup,
  1564. btrfs_super_bytes_used(info->super_copy));
  1565. btrfs_set_backup_num_devices(root_backup,
  1566. btrfs_super_num_devices(info->super_copy));
  1567. /*
  1568. * if we don't copy this out to the super_copy, it won't get remembered
  1569. * for the next commit
  1570. */
  1571. memcpy(&info->super_copy->super_roots,
  1572. &info->super_for_commit->super_roots,
  1573. sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
  1574. }
  1575. /*
  1576. * this copies info out of the root backup array and back into
  1577. * the in-memory super block. It is meant to help iterate through
  1578. * the array, so you send it the number of backups you've already
  1579. * tried and the last backup index you used.
  1580. *
  1581. * this returns -1 when it has tried all the backups
  1582. */
  1583. static noinline int next_root_backup(struct btrfs_fs_info *info,
  1584. struct btrfs_super_block *super,
  1585. int *num_backups_tried, int *backup_index)
  1586. {
  1587. struct btrfs_root_backup *root_backup;
  1588. int newest = *backup_index;
  1589. if (*num_backups_tried == 0) {
  1590. u64 gen = btrfs_super_generation(super);
  1591. newest = find_newest_super_backup(info, gen);
  1592. if (newest == -1)
  1593. return -1;
  1594. *backup_index = newest;
  1595. *num_backups_tried = 1;
  1596. } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
  1597. /* we've tried all the backups, all done */
  1598. return -1;
  1599. } else {
  1600. /* jump to the next oldest backup */
  1601. newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
  1602. BTRFS_NUM_BACKUP_ROOTS;
  1603. *backup_index = newest;
  1604. *num_backups_tried += 1;
  1605. }
  1606. root_backup = super->super_roots + newest;
  1607. btrfs_set_super_generation(super,
  1608. btrfs_backup_tree_root_gen(root_backup));
  1609. btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
  1610. btrfs_set_super_root_level(super,
  1611. btrfs_backup_tree_root_level(root_backup));
  1612. btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
  1613. /*
  1614. * fixme: the total bytes and num_devices need to match or we should
  1615. * need a fsck
  1616. */
  1617. btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
  1618. btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
  1619. return 0;
  1620. }
  1621. /* helper to cleanup tree roots */
  1622. static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
  1623. {
  1624. free_extent_buffer(info->tree_root->node);
  1625. free_extent_buffer(info->tree_root->commit_root);
  1626. free_extent_buffer(info->dev_root->node);
  1627. free_extent_buffer(info->dev_root->commit_root);
  1628. free_extent_buffer(info->extent_root->node);
  1629. free_extent_buffer(info->extent_root->commit_root);
  1630. free_extent_buffer(info->csum_root->node);
  1631. free_extent_buffer(info->csum_root->commit_root);
  1632. info->tree_root->node = NULL;
  1633. info->tree_root->commit_root = NULL;
  1634. info->dev_root->node = NULL;
  1635. info->dev_root->commit_root = NULL;
  1636. info->extent_root->node = NULL;
  1637. info->extent_root->commit_root = NULL;
  1638. info->csum_root->node = NULL;
  1639. info->csum_root->commit_root = NULL;
  1640. if (chunk_root) {
  1641. free_extent_buffer(info->chunk_root->node);
  1642. free_extent_buffer(info->chunk_root->commit_root);
  1643. info->chunk_root->node = NULL;
  1644. info->chunk_root->commit_root = NULL;
  1645. }
  1646. }
  1647. int open_ctree(struct super_block *sb,
  1648. struct btrfs_fs_devices *fs_devices,
  1649. char *options)
  1650. {
  1651. u32 sectorsize;
  1652. u32 nodesize;
  1653. u32 leafsize;
  1654. u32 blocksize;
  1655. u32 stripesize;
  1656. u64 generation;
  1657. u64 features;
  1658. struct btrfs_key location;
  1659. struct buffer_head *bh;
  1660. struct btrfs_super_block *disk_super;
  1661. struct btrfs_fs_info *fs_info = btrfs_sb(sb);
  1662. struct btrfs_root *tree_root;
  1663. struct btrfs_root *extent_root;
  1664. struct btrfs_root *csum_root;
  1665. struct btrfs_root *chunk_root;
  1666. struct btrfs_root *dev_root;
  1667. struct btrfs_root *log_tree_root;
  1668. int ret;
  1669. int err = -EINVAL;
  1670. int num_backups_tried = 0;
  1671. int backup_index = 0;
  1672. tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
  1673. extent_root = fs_info->extent_root = btrfs_alloc_root(fs_info);
  1674. csum_root = fs_info->csum_root = btrfs_alloc_root(fs_info);
  1675. chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
  1676. dev_root = fs_info->dev_root = btrfs_alloc_root(fs_info);
  1677. if (!tree_root || !extent_root || !csum_root ||
  1678. !chunk_root || !dev_root) {
  1679. err = -ENOMEM;
  1680. goto fail;
  1681. }
  1682. ret = init_srcu_struct(&fs_info->subvol_srcu);
  1683. if (ret) {
  1684. err = ret;
  1685. goto fail;
  1686. }
  1687. ret = setup_bdi(fs_info, &fs_info->bdi);
  1688. if (ret) {
  1689. err = ret;
  1690. goto fail_srcu;
  1691. }
  1692. fs_info->btree_inode = new_inode(sb);
  1693. if (!fs_info->btree_inode) {
  1694. err = -ENOMEM;
  1695. goto fail_bdi;
  1696. }
  1697. mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
  1698. INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
  1699. INIT_LIST_HEAD(&fs_info->trans_list);
  1700. INIT_LIST_HEAD(&fs_info->dead_roots);
  1701. INIT_LIST_HEAD(&fs_info->delayed_iputs);
  1702. INIT_LIST_HEAD(&fs_info->hashers);
  1703. INIT_LIST_HEAD(&fs_info->delalloc_inodes);
  1704. INIT_LIST_HEAD(&fs_info->ordered_operations);
  1705. INIT_LIST_HEAD(&fs_info->caching_block_groups);
  1706. spin_lock_init(&fs_info->delalloc_lock);
  1707. spin_lock_init(&fs_info->trans_lock);
  1708. spin_lock_init(&fs_info->ref_cache_lock);
  1709. spin_lock_init(&fs_info->fs_roots_radix_lock);
  1710. spin_lock_init(&fs_info->delayed_iput_lock);
  1711. spin_lock_init(&fs_info->defrag_inodes_lock);
  1712. spin_lock_init(&fs_info->free_chunk_lock);
  1713. mutex_init(&fs_info->reloc_mutex);
  1714. init_completion(&fs_info->kobj_unregister);
  1715. INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
  1716. INIT_LIST_HEAD(&fs_info->space_info);
  1717. btrfs_mapping_init(&fs_info->mapping_tree);
  1718. btrfs_init_block_rsv(&fs_info->global_block_rsv);
  1719. btrfs_init_block_rsv(&fs_info->delalloc_block_rsv);
  1720. btrfs_init_block_rsv(&fs_info->trans_block_rsv);
  1721. btrfs_init_block_rsv(&fs_info->chunk_block_rsv);
  1722. btrfs_init_block_rsv(&fs_info->empty_block_rsv);
  1723. btrfs_init_block_rsv(&fs_info->delayed_block_rsv);
  1724. atomic_set(&fs_info->nr_async_submits, 0);
  1725. atomic_set(&fs_info->async_delalloc_pages, 0);
  1726. atomic_set(&fs_info->async_submit_draining, 0);
  1727. atomic_set(&fs_info->nr_async_bios, 0);
  1728. atomic_set(&fs_info->defrag_running, 0);
  1729. fs_info->sb = sb;
  1730. fs_info->max_inline = 8192 * 1024;
  1731. fs_info->metadata_ratio = 0;
  1732. fs_info->defrag_inodes = RB_ROOT;
  1733. fs_info->trans_no_join = 0;
  1734. fs_info->free_chunk_space = 0;
  1735. /* readahead state */
  1736. INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
  1737. spin_lock_init(&fs_info->reada_lock);
  1738. fs_info->thread_pool_size = min_t(unsigned long,
  1739. num_online_cpus() + 2, 8);
  1740. INIT_LIST_HEAD(&fs_info->ordered_extents);
  1741. spin_lock_init(&fs_info->ordered_extent_lock);
  1742. fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
  1743. GFP_NOFS);
  1744. if (!fs_info->delayed_root) {
  1745. err = -ENOMEM;
  1746. goto fail_iput;
  1747. }
  1748. btrfs_init_delayed_root(fs_info->delayed_root);
  1749. mutex_init(&fs_info->scrub_lock);
  1750. atomic_set(&fs_info->scrubs_running, 0);
  1751. atomic_set(&fs_info->scrub_pause_req, 0);
  1752. atomic_set(&fs_info->scrubs_paused, 0);
  1753. atomic_set(&fs_info->scrub_cancel_req, 0);
  1754. init_waitqueue_head(&fs_info->scrub_pause_wait);
  1755. init_rwsem(&fs_info->scrub_super_lock);
  1756. fs_info->scrub_workers_refcnt = 0;
  1757. sb->s_blocksize = 4096;
  1758. sb->s_blocksize_bits = blksize_bits(4096);
  1759. sb->s_bdi = &fs_info->bdi;
  1760. fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
  1761. set_nlink(fs_info->btree_inode, 1);
  1762. /*
  1763. * we set the i_size on the btree inode to the max possible int.
  1764. * the real end of the address space is determined by all of
  1765. * the devices in the system
  1766. */
  1767. fs_info->btree_inode->i_size = OFFSET_MAX;
  1768. fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
  1769. fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
  1770. RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
  1771. extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
  1772. fs_info->btree_inode->i_mapping);
  1773. extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
  1774. BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
  1775. BTRFS_I(fs_info->btree_inode)->root = tree_root;
  1776. memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
  1777. sizeof(struct btrfs_key));
  1778. BTRFS_I(fs_info->btree_inode)->dummy_inode = 1;
  1779. insert_inode_hash(fs_info->btree_inode);
  1780. spin_lock_init(&fs_info->block_group_cache_lock);
  1781. fs_info->block_group_cache_tree = RB_ROOT;
  1782. extent_io_tree_init(&fs_info->freed_extents[0],
  1783. fs_info->btree_inode->i_mapping);
  1784. extent_io_tree_init(&fs_info->freed_extents[1],
  1785. fs_info->btree_inode->i_mapping);
  1786. fs_info->pinned_extents = &fs_info->freed_extents[0];
  1787. fs_info->do_barriers = 1;
  1788. mutex_init(&fs_info->ordered_operations_mutex);
  1789. mutex_init(&fs_info->tree_log_mutex);
  1790. mutex_init(&fs_info->chunk_mutex);
  1791. mutex_init(&fs_info->transaction_kthread_mutex);
  1792. mutex_init(&fs_info->cleaner_mutex);
  1793. mutex_init(&fs_info->volume_mutex);
  1794. init_rwsem(&fs_info->extent_commit_sem);
  1795. init_rwsem(&fs_info->cleanup_work_sem);
  1796. init_rwsem(&fs_info->subvol_sem);
  1797. btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
  1798. btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
  1799. init_waitqueue_head(&fs_info->transaction_throttle);
  1800. init_waitqueue_head(&fs_info->transaction_wait);
  1801. init_waitqueue_head(&fs_info->transaction_blocked_wait);
  1802. init_waitqueue_head(&fs_info->async_submit_wait);
  1803. __setup_root(4096, 4096, 4096, 4096, tree_root,
  1804. fs_info, BTRFS_ROOT_TREE_OBJECTID);
  1805. bh = btrfs_read_dev_super(fs_devices->latest_bdev);
  1806. if (!bh) {
  1807. err = -EINVAL;
  1808. goto fail_alloc;
  1809. }
  1810. memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
  1811. memcpy(fs_info->super_for_commit, fs_info->super_copy,
  1812. sizeof(*fs_info->super_for_commit));
  1813. brelse(bh);
  1814. memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
  1815. disk_super = fs_info->super_copy;
  1816. if (!btrfs_super_root(disk_super))
  1817. goto fail_alloc;
  1818. /* check FS state, whether FS is broken. */
  1819. fs_info->fs_state |= btrfs_super_flags(disk_super);
  1820. btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
  1821. /*
  1822. * run through our array of backup supers and setup
  1823. * our ring pointer to the oldest one
  1824. */
  1825. generation = btrfs_super_generation(disk_super);
  1826. find_oldest_super_backup(fs_info, generation);
  1827. /*
  1828. * In the long term, we'll store the compression type in the super
  1829. * block, and it'll be used for per file compression control.
  1830. */
  1831. fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
  1832. ret = btrfs_parse_options(tree_root, options);
  1833. if (ret) {
  1834. err = ret;
  1835. goto fail_alloc;
  1836. }
  1837. features = btrfs_super_incompat_flags(disk_super) &
  1838. ~BTRFS_FEATURE_INCOMPAT_SUPP;
  1839. if (features) {
  1840. printk(KERN_ERR "BTRFS: couldn't mount because of "
  1841. "unsupported optional features (%Lx).\n",
  1842. (unsigned long long)features);
  1843. err = -EINVAL;
  1844. goto fail_alloc;
  1845. }
  1846. features = btrfs_super_incompat_flags(disk_super);
  1847. features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
  1848. if (tree_root->fs_info->compress_type & BTRFS_COMPRESS_LZO)
  1849. features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
  1850. btrfs_set_super_incompat_flags(disk_super, features);
  1851. features = btrfs_super_compat_ro_flags(disk_super) &
  1852. ~BTRFS_FEATURE_COMPAT_RO_SUPP;
  1853. if (!(sb->s_flags & MS_RDONLY) && features) {
  1854. printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
  1855. "unsupported option features (%Lx).\n",
  1856. (unsigned long long)features);
  1857. err = -EINVAL;
  1858. goto fail_alloc;
  1859. }
  1860. btrfs_init_workers(&fs_info->generic_worker,
  1861. "genwork", 1, NULL);
  1862. btrfs_init_workers(&fs_info->workers, "worker",
  1863. fs_info->thread_pool_size,
  1864. &fs_info->generic_worker);
  1865. btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
  1866. fs_info->thread_pool_size,
  1867. &fs_info->generic_worker);
  1868. btrfs_init_workers(&fs_info->submit_workers, "submit",
  1869. min_t(u64, fs_devices->num_devices,
  1870. fs_info->thread_pool_size),
  1871. &fs_info->generic_worker);
  1872. btrfs_init_workers(&fs_info->caching_workers, "cache",
  1873. 2, &fs_info->generic_worker);
  1874. /* a higher idle thresh on the submit workers makes it much more
  1875. * likely that bios will be send down in a sane order to the
  1876. * devices
  1877. */
  1878. fs_info->submit_workers.idle_thresh = 64;
  1879. fs_info->workers.idle_thresh = 16;
  1880. fs_info->workers.ordered = 1;
  1881. fs_info->delalloc_workers.idle_thresh = 2;
  1882. fs_info->delalloc_workers.ordered = 1;
  1883. btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1,
  1884. &fs_info->generic_worker);
  1885. btrfs_init_workers(&fs_info->endio_workers, "endio",
  1886. fs_info->thread_pool_size,
  1887. &fs_info->generic_worker);
  1888. btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta",
  1889. fs_info->thread_pool_size,
  1890. &fs_info->generic_worker);
  1891. btrfs_init_workers(&fs_info->endio_meta_write_workers,
  1892. "endio-meta-write", fs_info->thread_pool_size,
  1893. &fs_info->generic_worker);
  1894. btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
  1895. fs_info->thread_pool_size,
  1896. &fs_info->generic_worker);
  1897. btrfs_init_workers(&fs_info->endio_freespace_worker, "freespace-write",
  1898. 1, &fs_info->generic_worker);
  1899. btrfs_init_workers(&fs_info->delayed_workers, "delayed-meta",
  1900. fs_info->thread_pool_size,
  1901. &fs_info->generic_worker);
  1902. btrfs_init_workers(&fs_info->readahead_workers, "readahead",
  1903. fs_info->thread_pool_size,
  1904. &fs_info->generic_worker);
  1905. /*
  1906. * endios are largely parallel and should have a very
  1907. * low idle thresh
  1908. */
  1909. fs_info->endio_workers.idle_thresh = 4;
  1910. fs_info->endio_meta_workers.idle_thresh = 4;
  1911. fs_info->endio_write_workers.idle_thresh = 2;
  1912. fs_info->endio_meta_write_workers.idle_thresh = 2;
  1913. fs_info->readahead_workers.idle_thresh = 2;
  1914. /*
  1915. * btrfs_start_workers can really only fail because of ENOMEM so just
  1916. * return -ENOMEM if any of these fail.
  1917. */
  1918. ret = btrfs_start_workers(&fs_info->workers);
  1919. ret |= btrfs_start_workers(&fs_info->generic_worker);
  1920. ret |= btrfs_start_workers(&fs_info->submit_workers);
  1921. ret |= btrfs_start_workers(&fs_info->delalloc_workers);
  1922. ret |= btrfs_start_workers(&fs_info->fixup_workers);
  1923. ret |= btrfs_start_workers(&fs_info->endio_workers);
  1924. ret |= btrfs_start_workers(&fs_info->endio_meta_workers);
  1925. ret |= btrfs_start_workers(&fs_info->endio_meta_write_workers);
  1926. ret |= btrfs_start_workers(&fs_info->endio_write_workers);
  1927. ret |= btrfs_start_workers(&fs_info->endio_freespace_worker);
  1928. ret |= btrfs_start_workers(&fs_info->delayed_workers);
  1929. ret |= btrfs_start_workers(&fs_info->caching_workers);
  1930. ret |= btrfs_start_workers(&fs_info->readahead_workers);
  1931. if (ret) {
  1932. ret = -ENOMEM;
  1933. goto fail_sb_buffer;
  1934. }
  1935. fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
  1936. fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
  1937. 4 * 1024 * 1024 / PAGE_CACHE_SIZE);
  1938. nodesize = btrfs_super_nodesize(disk_super);
  1939. leafsize = btrfs_super_leafsize(disk_super);
  1940. sectorsize = btrfs_super_sectorsize(disk_super);
  1941. stripesize = btrfs_super_stripesize(disk_super);
  1942. tree_root->nodesize = nodesize;
  1943. tree_root->leafsize = leafsize;
  1944. tree_root->sectorsize = sectorsize;
  1945. tree_root->stripesize = stripesize;
  1946. sb->s_blocksize = sectorsize;
  1947. sb->s_blocksize_bits = blksize_bits(sectorsize);
  1948. if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
  1949. sizeof(disk_super->magic))) {
  1950. printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id);
  1951. goto fail_sb_buffer;
  1952. }
  1953. mutex_lock(&fs_info->chunk_mutex);
  1954. ret = btrfs_read_sys_array(tree_root);
  1955. mutex_unlock(&fs_info->chunk_mutex);
  1956. if (ret) {
  1957. printk(KERN_WARNING "btrfs: failed to read the system "
  1958. "array on %s\n", sb->s_id);
  1959. goto fail_sb_buffer;
  1960. }
  1961. blocksize = btrfs_level_size(tree_root,
  1962. btrfs_super_chunk_root_level(disk_super));
  1963. generation = btrfs_super_chunk_root_generation(disk_super);
  1964. __setup_root(nodesize, leafsize, sectorsize, stripesize,
  1965. chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
  1966. chunk_root->node = read_tree_block(chunk_root,
  1967. btrfs_super_chunk_root(disk_super),
  1968. blocksize, generation);
  1969. BUG_ON(!chunk_root->node);
  1970. if (!test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
  1971. printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n",
  1972. sb->s_id);
  1973. goto fail_tree_roots;
  1974. }
  1975. btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
  1976. chunk_root->commit_root = btrfs_root_node(chunk_root);
  1977. read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
  1978. (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node),
  1979. BTRFS_UUID_SIZE);
  1980. mutex_lock(&fs_info->chunk_mutex);
  1981. ret = btrfs_read_chunk_tree(chunk_root);
  1982. mutex_unlock(&fs_info->chunk_mutex);
  1983. if (ret) {
  1984. printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n",
  1985. sb->s_id);
  1986. goto fail_tree_roots;
  1987. }
  1988. btrfs_close_extra_devices(fs_devices);
  1989. retry_root_backup:
  1990. blocksize = btrfs_level_size(tree_root,
  1991. btrfs_super_root_level(disk_super));
  1992. generation = btrfs_super_generation(disk_super);
  1993. tree_root->node = read_tree_block(tree_root,
  1994. btrfs_super_root(disk_super),
  1995. blocksize, generation);
  1996. if (!tree_root->node ||
  1997. !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
  1998. printk(KERN_WARNING "btrfs: failed to read tree root on %s\n",
  1999. sb->s_id);
  2000. goto recovery_tree_root;
  2001. }
  2002. btrfs_set_root_node(&tree_root->root_item, tree_root->node);
  2003. tree_root->commit_root = btrfs_root_node(tree_root);
  2004. ret = find_and_setup_root(tree_root, fs_info,
  2005. BTRFS_EXTENT_TREE_OBJECTID, extent_root);
  2006. if (ret)
  2007. goto recovery_tree_root;
  2008. extent_root->track_dirty = 1;
  2009. ret = find_and_setup_root(tree_root, fs_info,
  2010. BTRFS_DEV_TREE_OBJECTID, dev_root);
  2011. if (ret)
  2012. goto recovery_tree_root;
  2013. dev_root->track_dirty = 1;
  2014. ret = find_and_setup_root(tree_root, fs_info,
  2015. BTRFS_CSUM_TREE_OBJECTID, csum_root);
  2016. if (ret)
  2017. goto recovery_tree_root;
  2018. csum_root->track_dirty = 1;
  2019. fs_info->generation = generation;
  2020. fs_info->last_trans_committed = generation;
  2021. fs_info->data_alloc_profile = (u64)-1;
  2022. fs_info->metadata_alloc_profile = (u64)-1;
  2023. fs_info->system_alloc_profile = fs_info->metadata_alloc_profile;
  2024. ret = btrfs_init_space_info(fs_info);
  2025. if (ret) {
  2026. printk(KERN_ERR "Failed to initial space info: %d\n", ret);
  2027. goto fail_block_groups;
  2028. }
  2029. ret = btrfs_read_block_groups(extent_root);
  2030. if (ret) {
  2031. printk(KERN_ERR "Failed to read block groups: %d\n", ret);
  2032. goto fail_block_groups;
  2033. }
  2034. fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
  2035. "btrfs-cleaner");
  2036. if (IS_ERR(fs_info->cleaner_kthread))
  2037. goto fail_block_groups;
  2038. fs_info->transaction_kthread = kthread_run(transaction_kthread,
  2039. tree_root,
  2040. "btrfs-transaction");
  2041. if (IS_ERR(fs_info->transaction_kthread))
  2042. goto fail_cleaner;
  2043. if (!btrfs_test_opt(tree_root, SSD) &&
  2044. !btrfs_test_opt(tree_root, NOSSD) &&
  2045. !fs_info->fs_devices->rotating) {
  2046. printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD "
  2047. "mode\n");
  2048. btrfs_set_opt(fs_info->mount_opt, SSD);
  2049. }
  2050. /* do not make disk changes in broken FS */
  2051. if (btrfs_super_log_root(disk_super) != 0 &&
  2052. !(fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)) {
  2053. u64 bytenr = btrfs_super_log_root(disk_super);
  2054. if (fs_devices->rw_devices == 0) {
  2055. printk(KERN_WARNING "Btrfs log replay required "
  2056. "on RO media\n");
  2057. err = -EIO;
  2058. goto fail_trans_kthread;
  2059. }
  2060. blocksize =
  2061. btrfs_level_size(tree_root,
  2062. btrfs_super_log_root_level(disk_super));
  2063. log_tree_root = btrfs_alloc_root(fs_info);
  2064. if (!log_tree_root) {
  2065. err = -ENOMEM;
  2066. goto fail_trans_kthread;
  2067. }
  2068. __setup_root(nodesize, leafsize, sectorsize, stripesize,
  2069. log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
  2070. log_tree_root->node = read_tree_block(tree_root, bytenr,
  2071. blocksize,
  2072. generation + 1);
  2073. ret = btrfs_recover_log_trees(log_tree_root);
  2074. BUG_ON(ret);
  2075. if (sb->s_flags & MS_RDONLY) {
  2076. ret = btrfs_commit_super(tree_root);
  2077. BUG_ON(ret);
  2078. }
  2079. }
  2080. ret = btrfs_find_orphan_roots(tree_root);
  2081. BUG_ON(ret);
  2082. if (!(sb->s_flags & MS_RDONLY)) {
  2083. ret = btrfs_cleanup_fs_roots(fs_info);
  2084. BUG_ON(ret);
  2085. ret = btrfs_recover_relocation(tree_root);
  2086. if (ret < 0) {
  2087. printk(KERN_WARNING
  2088. "btrfs: failed to recover relocation\n");
  2089. err = -EINVAL;
  2090. goto fail_trans_kthread;
  2091. }
  2092. }
  2093. location.objectid = BTRFS_FS_TREE_OBJECTID;
  2094. location.type = BTRFS_ROOT_ITEM_KEY;
  2095. location.offset = (u64)-1;
  2096. fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
  2097. if (!fs_info->fs_root)
  2098. goto fail_trans_kthread;
  2099. if (IS_ERR(fs_info->fs_root)) {
  2100. err = PTR_ERR(fs_info->fs_root);
  2101. goto fail_trans_kthread;
  2102. }
  2103. if (!(sb->s_flags & MS_RDONLY)) {
  2104. down_read(&fs_info->cleanup_work_sem);
  2105. err = btrfs_orphan_cleanup(fs_info->fs_root);
  2106. if (!err)
  2107. err = btrfs_orphan_cleanup(fs_info->tree_root);
  2108. up_read(&fs_info->cleanup_work_sem);
  2109. if (err) {
  2110. close_ctree(tree_root);
  2111. return err;
  2112. }
  2113. }
  2114. return 0;
  2115. fail_trans_kthread:
  2116. kthread_stop(fs_info->transaction_kthread);
  2117. fail_cleaner:
  2118. kthread_stop(fs_info->cleaner_kthread);
  2119. /*
  2120. * make sure we're done with the btree inode before we stop our
  2121. * kthreads
  2122. */
  2123. filemap_write_and_wait(fs_info->btree_inode->i_mapping);
  2124. invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
  2125. fail_block_groups:
  2126. btrfs_free_block_groups(fs_info);
  2127. fail_tree_roots:
  2128. free_root_pointers(fs_info, 1);
  2129. fail_sb_buffer:
  2130. btrfs_stop_workers(&fs_info->generic_worker);
  2131. btrfs_stop_workers(&fs_info->readahead_workers);
  2132. btrfs_stop_workers(&fs_info->fixup_workers);
  2133. btrfs_stop_workers(&fs_info->delalloc_workers);
  2134. btrfs_stop_workers(&fs_info->workers);
  2135. btrfs_stop_workers(&fs_info->endio_workers);
  2136. btrfs_stop_workers(&fs_info->endio_meta_workers);
  2137. btrfs_stop_workers(&fs_info->endio_meta_write_workers);
  2138. btrfs_stop_workers(&fs_info->endio_write_workers);
  2139. btrfs_stop_workers(&fs_info->endio_freespace_worker);
  2140. btrfs_stop_workers(&fs_info->submit_workers);
  2141. btrfs_stop_workers(&fs_info->delayed_workers);
  2142. btrfs_stop_workers(&fs_info->caching_workers);
  2143. fail_alloc:
  2144. fail_iput:
  2145. btrfs_mapping_tree_free(&fs_info->mapping_tree);
  2146. invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
  2147. iput(fs_info->btree_inode);
  2148. fail_bdi:
  2149. bdi_destroy(&fs_info->bdi);
  2150. fail_srcu:
  2151. cleanup_srcu_struct(&fs_info->subvol_srcu);
  2152. fail:
  2153. btrfs_close_devices(fs_info->fs_devices);
  2154. return err;
  2155. recovery_tree_root:
  2156. if (!btrfs_test_opt(tree_root, RECOVERY))
  2157. goto fail_tree_roots;
  2158. free_root_pointers(fs_info, 0);
  2159. /* don't use the log in recovery mode, it won't be valid */
  2160. btrfs_set_super_log_root(disk_super, 0);
  2161. /* we can't trust the free space cache either */
  2162. btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
  2163. ret = next_root_backup(fs_info, fs_info->super_copy,
  2164. &num_backups_tried, &backup_index);
  2165. if (ret == -1)
  2166. goto fail_block_groups;
  2167. goto retry_root_backup;
  2168. }
  2169. static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
  2170. {
  2171. char b[BDEVNAME_SIZE];
  2172. if (uptodate) {
  2173. set_buffer_uptodate(bh);
  2174. } else {
  2175. printk_ratelimited(KERN_WARNING "lost page write due to "
  2176. "I/O error on %s\n",
  2177. bdevname(bh->b_bdev, b));
  2178. /* note, we dont' set_buffer_write_io_error because we have
  2179. * our own ways of dealing with the IO errors
  2180. */
  2181. clear_buffer_uptodate(bh);
  2182. }
  2183. unlock_buffer(bh);
  2184. put_bh(bh);
  2185. }
  2186. struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
  2187. {
  2188. struct buffer_head *bh;
  2189. struct buffer_head *latest = NULL;
  2190. struct btrfs_super_block *super;
  2191. int i;
  2192. u64 transid = 0;
  2193. u64 bytenr;
  2194. /* we would like to check all the supers, but that would make
  2195. * a btrfs mount succeed after a mkfs from a different FS.
  2196. * So, we need to add a special mount option to scan for
  2197. * later supers, using BTRFS_SUPER_MIRROR_MAX instead
  2198. */
  2199. for (i = 0; i < 1; i++) {
  2200. bytenr = btrfs_sb_offset(i);
  2201. if (bytenr + 4096 >= i_size_read(bdev->bd_inode))
  2202. break;
  2203. bh = __bread(bdev, bytenr / 4096, 4096);
  2204. if (!bh)
  2205. continue;
  2206. super = (struct btrfs_super_block *)bh->b_data;
  2207. if (btrfs_super_bytenr(super) != bytenr ||
  2208. strncmp((char *)(&super->magic), BTRFS_MAGIC,
  2209. sizeof(super->magic))) {
  2210. brelse(bh);
  2211. continue;
  2212. }
  2213. if (!latest || btrfs_super_generation(super) > transid) {
  2214. brelse(latest);
  2215. latest = bh;
  2216. transid = btrfs_super_generation(super);
  2217. } else {
  2218. brelse(bh);
  2219. }
  2220. }
  2221. return latest;
  2222. }
  2223. /*
  2224. * this should be called twice, once with wait == 0 and
  2225. * once with wait == 1. When wait == 0 is done, all the buffer heads
  2226. * we write are pinned.
  2227. *
  2228. * They are released when wait == 1 is done.
  2229. * max_mirrors must be the same for both runs, and it indicates how
  2230. * many supers on this one device should be written.
  2231. *
  2232. * max_mirrors == 0 means to write them all.
  2233. */
  2234. static int write_dev_supers(struct btrfs_device *device,
  2235. struct btrfs_super_block *sb,
  2236. int do_barriers, int wait, int max_mirrors)
  2237. {
  2238. struct buffer_head *bh;
  2239. int i;
  2240. int ret;
  2241. int errors = 0;
  2242. u32 crc;
  2243. u64 bytenr;
  2244. if (max_mirrors == 0)
  2245. max_mirrors = BTRFS_SUPER_MIRROR_MAX;
  2246. for (i = 0; i < max_mirrors; i++) {
  2247. bytenr = btrfs_sb_offset(i);
  2248. if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
  2249. break;
  2250. if (wait) {
  2251. bh = __find_get_block(device->bdev, bytenr / 4096,
  2252. BTRFS_SUPER_INFO_SIZE);
  2253. BUG_ON(!bh);
  2254. wait_on_buffer(bh);
  2255. if (!buffer_uptodate(bh))
  2256. errors++;
  2257. /* drop our reference */
  2258. brelse(bh);
  2259. /* drop the reference from the wait == 0 run */
  2260. brelse(bh);
  2261. continue;
  2262. } else {
  2263. btrfs_set_super_bytenr(sb, bytenr);
  2264. crc = ~(u32)0;
  2265. crc = btrfs_csum_data(NULL, (char *)sb +
  2266. BTRFS_CSUM_SIZE, crc,
  2267. BTRFS_SUPER_INFO_SIZE -
  2268. BTRFS_CSUM_SIZE);
  2269. btrfs_csum_final(crc, sb->csum);
  2270. /*
  2271. * one reference for us, and we leave it for the
  2272. * caller
  2273. */
  2274. bh = __getblk(device->bdev, bytenr / 4096,
  2275. BTRFS_SUPER_INFO_SIZE);
  2276. memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
  2277. /* one reference for submit_bh */
  2278. get_bh(bh);
  2279. set_buffer_uptodate(bh);
  2280. lock_buffer(bh);
  2281. bh->b_end_io = btrfs_end_buffer_write_sync;
  2282. }
  2283. /*
  2284. * we fua the first super. The others we allow
  2285. * to go down lazy.
  2286. */
  2287. ret = submit_bh(WRITE_FUA, bh);
  2288. if (ret)
  2289. errors++;
  2290. }
  2291. return errors < i ? 0 : -1;
  2292. }
  2293. /*
  2294. * endio for the write_dev_flush, this will wake anyone waiting
  2295. * for the barrier when it is done
  2296. */
  2297. static void btrfs_end_empty_barrier(struct bio *bio, int err)
  2298. {
  2299. if (err) {
  2300. if (err == -EOPNOTSUPP)
  2301. set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
  2302. clear_bit(BIO_UPTODATE, &bio->bi_flags);
  2303. }
  2304. if (bio->bi_private)
  2305. complete(bio->bi_private);
  2306. bio_put(bio);
  2307. }
  2308. /*
  2309. * trigger flushes for one the devices. If you pass wait == 0, the flushes are
  2310. * sent down. With wait == 1, it waits for the previous flush.
  2311. *
  2312. * any device where the flush fails with eopnotsupp are flagged as not-barrier
  2313. * capable
  2314. */
  2315. static int write_dev_flush(struct btrfs_device *device, int wait)
  2316. {
  2317. struct bio *bio;
  2318. int ret = 0;
  2319. if (device->nobarriers)
  2320. return 0;
  2321. if (wait) {
  2322. bio = device->flush_bio;
  2323. if (!bio)
  2324. return 0;
  2325. wait_for_completion(&device->flush_wait);
  2326. if (bio_flagged(bio, BIO_EOPNOTSUPP)) {
  2327. printk("btrfs: disabling barriers on dev %s\n",
  2328. device->name);
  2329. device->nobarriers = 1;
  2330. }
  2331. if (!bio_flagged(bio, BIO_UPTODATE)) {
  2332. ret = -EIO;
  2333. }
  2334. /* drop the reference from the wait == 0 run */
  2335. bio_put(bio);
  2336. device->flush_bio = NULL;
  2337. return ret;
  2338. }
  2339. /*
  2340. * one reference for us, and we leave it for the
  2341. * caller
  2342. */
  2343. device->flush_bio = NULL;;
  2344. bio = bio_alloc(GFP_NOFS, 0);
  2345. if (!bio)
  2346. return -ENOMEM;
  2347. bio->bi_end_io = btrfs_end_empty_barrier;
  2348. bio->bi_bdev = device->bdev;
  2349. init_completion(&device->flush_wait);
  2350. bio->bi_private = &device->flush_wait;
  2351. device->flush_bio = bio;
  2352. bio_get(bio);
  2353. submit_bio(WRITE_FLUSH, bio);
  2354. return 0;
  2355. }
  2356. /*
  2357. * send an empty flush down to each device in parallel,
  2358. * then wait for them
  2359. */
  2360. static int barrier_all_devices(struct btrfs_fs_info *info)
  2361. {
  2362. struct list_head *head;
  2363. struct btrfs_device *dev;
  2364. int errors = 0;
  2365. int ret;
  2366. /* send down all the barriers */
  2367. head = &info->fs_devices->devices;
  2368. list_for_each_entry_rcu(dev, head, dev_list) {
  2369. if (!dev->bdev) {
  2370. errors++;
  2371. continue;
  2372. }
  2373. if (!dev->in_fs_metadata || !dev->writeable)
  2374. continue;
  2375. ret = write_dev_flush(dev, 0);
  2376. if (ret)
  2377. errors++;
  2378. }
  2379. /* wait for all the barriers */
  2380. list_for_each_entry_rcu(dev, head, dev_list) {
  2381. if (!dev->bdev) {
  2382. errors++;
  2383. continue;
  2384. }
  2385. if (!dev->in_fs_metadata || !dev->writeable)
  2386. continue;
  2387. ret = write_dev_flush(dev, 1);
  2388. if (ret)
  2389. errors++;
  2390. }
  2391. if (errors)
  2392. return -EIO;
  2393. return 0;
  2394. }
  2395. int write_all_supers(struct btrfs_root *root, int max_mirrors)
  2396. {
  2397. struct list_head *head;
  2398. struct btrfs_device *dev;
  2399. struct btrfs_super_block *sb;
  2400. struct btrfs_dev_item *dev_item;
  2401. int ret;
  2402. int do_barriers;
  2403. int max_errors;
  2404. int total_errors = 0;
  2405. u64 flags;
  2406. max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
  2407. do_barriers = !btrfs_test_opt(root, NOBARRIER);
  2408. backup_super_roots(root->fs_info);
  2409. sb = root->fs_info->super_for_commit;
  2410. dev_item = &sb->dev_item;
  2411. mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
  2412. head = &root->fs_info->fs_devices->devices;
  2413. if (do_barriers)
  2414. barrier_all_devices(root->fs_info);
  2415. list_for_each_entry_rcu(dev, head, dev_list) {
  2416. if (!dev->bdev) {
  2417. total_errors++;
  2418. continue;
  2419. }
  2420. if (!dev->in_fs_metadata || !dev->writeable)
  2421. continue;
  2422. btrfs_set_stack_device_generation(dev_item, 0);
  2423. btrfs_set_stack_device_type(dev_item, dev->type);
  2424. btrfs_set_stack_device_id(dev_item, dev->devid);
  2425. btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
  2426. btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
  2427. btrfs_set_stack_device_io_align(dev_item, dev->io_align);
  2428. btrfs_set_stack_device_io_width(dev_item, dev->io_width);
  2429. btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
  2430. memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
  2431. memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
  2432. flags = btrfs_super_flags(sb);
  2433. btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
  2434. ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
  2435. if (ret)
  2436. total_errors++;
  2437. }
  2438. if (total_errors > max_errors) {
  2439. printk(KERN_ERR "btrfs: %d errors while writing supers\n",
  2440. total_errors);
  2441. BUG();
  2442. }
  2443. total_errors = 0;
  2444. list_for_each_entry_rcu(dev, head, dev_list) {
  2445. if (!dev->bdev)
  2446. continue;
  2447. if (!dev->in_fs_metadata || !dev->writeable)
  2448. continue;
  2449. ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
  2450. if (ret)
  2451. total_errors++;
  2452. }
  2453. mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
  2454. if (total_errors > max_errors) {
  2455. printk(KERN_ERR "btrfs: %d errors while writing supers\n",
  2456. total_errors);
  2457. BUG();
  2458. }
  2459. return 0;
  2460. }
  2461. int write_ctree_super(struct btrfs_trans_handle *trans,
  2462. struct btrfs_root *root, int max_mirrors)
  2463. {
  2464. int ret;
  2465. ret = write_all_supers(root, max_mirrors);
  2466. return ret;
  2467. }
  2468. int btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
  2469. {
  2470. spin_lock(&fs_info->fs_roots_radix_lock);
  2471. radix_tree_delete(&fs_info->fs_roots_radix,
  2472. (unsigned long)root->root_key.objectid);
  2473. spin_unlock(&fs_info->fs_roots_radix_lock);
  2474. if (btrfs_root_refs(&root->root_item) == 0)
  2475. synchronize_srcu(&fs_info->subvol_srcu);
  2476. __btrfs_remove_free_space_cache(root->free_ino_pinned);
  2477. __btrfs_remove_free_space_cache(root->free_ino_ctl);
  2478. free_fs_root(root);
  2479. return 0;
  2480. }
  2481. static void free_fs_root(struct btrfs_root *root)
  2482. {
  2483. iput(root->cache_inode);
  2484. WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
  2485. if (root->anon_dev)
  2486. free_anon_bdev(root->anon_dev);
  2487. free_extent_buffer(root->node);
  2488. free_extent_buffer(root->commit_root);
  2489. kfree(root->free_ino_ctl);
  2490. kfree(root->free_ino_pinned);
  2491. kfree(root->name);
  2492. kfree(root);
  2493. }
  2494. static int del_fs_roots(struct btrfs_fs_info *fs_info)
  2495. {
  2496. int ret;
  2497. struct btrfs_root *gang[8];
  2498. int i;
  2499. while (!list_empty(&fs_info->dead_roots)) {
  2500. gang[0] = list_entry(fs_info->dead_roots.next,
  2501. struct btrfs_root, root_list);
  2502. list_del(&gang[0]->root_list);
  2503. if (gang[0]->in_radix) {
  2504. btrfs_free_fs_root(fs_info, gang[0]);
  2505. } else {
  2506. free_extent_buffer(gang[0]->node);
  2507. free_extent_buffer(gang[0]->commit_root);
  2508. kfree(gang[0]);
  2509. }
  2510. }
  2511. while (1) {
  2512. ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
  2513. (void **)gang, 0,
  2514. ARRAY_SIZE(gang));
  2515. if (!ret)
  2516. break;
  2517. for (i = 0; i < ret; i++)
  2518. btrfs_free_fs_root(fs_info, gang[i]);
  2519. }
  2520. return 0;
  2521. }
  2522. int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
  2523. {
  2524. u64 root_objectid = 0;
  2525. struct btrfs_root *gang[8];
  2526. int i;
  2527. int ret;
  2528. while (1) {
  2529. ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
  2530. (void **)gang, root_objectid,
  2531. ARRAY_SIZE(gang));
  2532. if (!ret)
  2533. break;
  2534. root_objectid = gang[ret - 1]->root_key.objectid + 1;
  2535. for (i = 0; i < ret; i++) {
  2536. int err;
  2537. root_objectid = gang[i]->root_key.objectid;
  2538. err = btrfs_orphan_cleanup(gang[i]);
  2539. if (err)
  2540. return err;
  2541. }
  2542. root_objectid++;
  2543. }
  2544. return 0;
  2545. }
  2546. int btrfs_commit_super(struct btrfs_root *root)
  2547. {
  2548. struct btrfs_trans_handle *trans;
  2549. int ret;
  2550. mutex_lock(&root->fs_info->cleaner_mutex);
  2551. btrfs_run_delayed_iputs(root);
  2552. btrfs_clean_old_snapshots(root);
  2553. mutex_unlock(&root->fs_info->cleaner_mutex);
  2554. /* wait until ongoing cleanup work done */
  2555. down_write(&root->fs_info->cleanup_work_sem);
  2556. up_write(&root->fs_info->cleanup_work_sem);
  2557. trans = btrfs_join_transaction(root);
  2558. if (IS_ERR(trans))
  2559. return PTR_ERR(trans);
  2560. ret = btrfs_commit_transaction(trans, root);
  2561. BUG_ON(ret);
  2562. /* run commit again to drop the original snapshot */
  2563. trans = btrfs_join_transaction(root);
  2564. if (IS_ERR(trans))
  2565. return PTR_ERR(trans);
  2566. btrfs_commit_transaction(trans, root);
  2567. ret = btrfs_write_and_wait_transaction(NULL, root);
  2568. BUG_ON(ret);
  2569. ret = write_ctree_super(NULL, root, 0);
  2570. return ret;
  2571. }
  2572. int close_ctree(struct btrfs_root *root)
  2573. {
  2574. struct btrfs_fs_info *fs_info = root->fs_info;
  2575. int ret;
  2576. fs_info->closing = 1;
  2577. smp_mb();
  2578. btrfs_scrub_cancel(root);
  2579. /* wait for any defraggers to finish */
  2580. wait_event(fs_info->transaction_wait,
  2581. (atomic_read(&fs_info->defrag_running) == 0));
  2582. /* clear out the rbtree of defraggable inodes */
  2583. btrfs_run_defrag_inodes(fs_info);
  2584. /*
  2585. * Here come 2 situations when btrfs is broken to flip readonly:
  2586. *
  2587. * 1. when btrfs flips readonly somewhere else before
  2588. * btrfs_commit_super, sb->s_flags has MS_RDONLY flag,
  2589. * and btrfs will skip to write sb directly to keep
  2590. * ERROR state on disk.
  2591. *
  2592. * 2. when btrfs flips readonly just in btrfs_commit_super,
  2593. * and in such case, btrfs cannot write sb via btrfs_commit_super,
  2594. * and since fs_state has been set BTRFS_SUPER_FLAG_ERROR flag,
  2595. * btrfs will cleanup all FS resources first and write sb then.
  2596. */
  2597. if (!(fs_info->sb->s_flags & MS_RDONLY)) {
  2598. ret = btrfs_commit_super(root);
  2599. if (ret)
  2600. printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
  2601. }
  2602. if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
  2603. ret = btrfs_error_commit_super(root);
  2604. if (ret)
  2605. printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
  2606. }
  2607. btrfs_put_block_group_cache(fs_info);
  2608. kthread_stop(fs_info->transaction_kthread);
  2609. kthread_stop(fs_info->cleaner_kthread);
  2610. fs_info->closing = 2;
  2611. smp_mb();
  2612. if (fs_info->delalloc_bytes) {
  2613. printk(KERN_INFO "btrfs: at unmount delalloc count %llu\n",
  2614. (unsigned long long)fs_info->delalloc_bytes);
  2615. }
  2616. if (fs_info->total_ref_cache_size) {
  2617. printk(KERN_INFO "btrfs: at umount reference cache size %llu\n",
  2618. (unsigned long long)fs_info->total_ref_cache_size);
  2619. }
  2620. free_extent_buffer(fs_info->extent_root->node);
  2621. free_extent_buffer(fs_info->extent_root->commit_root);
  2622. free_extent_buffer(fs_info->tree_root->node);
  2623. free_extent_buffer(fs_info->tree_root->commit_root);
  2624. free_extent_buffer(fs_info->chunk_root->node);
  2625. free_extent_buffer(fs_info->chunk_root->commit_root);
  2626. free_extent_buffer(fs_info->dev_root->node);
  2627. free_extent_buffer(fs_info->dev_root->commit_root);
  2628. free_extent_buffer(fs_info->csum_root->node);
  2629. free_extent_buffer(fs_info->csum_root->commit_root);
  2630. btrfs_free_block_groups(fs_info);
  2631. del_fs_roots(fs_info);
  2632. iput(fs_info->btree_inode);
  2633. btrfs_stop_workers(&fs_info->generic_worker);
  2634. btrfs_stop_workers(&fs_info->fixup_workers);
  2635. btrfs_stop_workers(&fs_info->delalloc_workers);
  2636. btrfs_stop_workers(&fs_info->workers);
  2637. btrfs_stop_workers(&fs_info->endio_workers);
  2638. btrfs_stop_workers(&fs_info->endio_meta_workers);
  2639. btrfs_stop_workers(&fs_info->endio_meta_write_workers);
  2640. btrfs_stop_workers(&fs_info->endio_write_workers);
  2641. btrfs_stop_workers(&fs_info->endio_freespace_worker);
  2642. btrfs_stop_workers(&fs_info->submit_workers);
  2643. btrfs_stop_workers(&fs_info->delayed_workers);
  2644. btrfs_stop_workers(&fs_info->caching_workers);
  2645. btrfs_stop_workers(&fs_info->readahead_workers);
  2646. btrfs_close_devices(fs_info->fs_devices);
  2647. btrfs_mapping_tree_free(&fs_info->mapping_tree);
  2648. bdi_destroy(&fs_info->bdi);
  2649. cleanup_srcu_struct(&fs_info->subvol_srcu);
  2650. return 0;
  2651. }
  2652. int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid)
  2653. {
  2654. int ret;
  2655. struct inode *btree_inode = buf->first_page->mapping->host;
  2656. ret = extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree, buf,
  2657. NULL);
  2658. if (!ret)
  2659. return ret;
  2660. ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
  2661. parent_transid);
  2662. return !ret;
  2663. }
  2664. int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
  2665. {
  2666. struct inode *btree_inode = buf->first_page->mapping->host;
  2667. return set_extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree,
  2668. buf);
  2669. }
  2670. void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
  2671. {
  2672. struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
  2673. u64 transid = btrfs_header_generation(buf);
  2674. struct inode *btree_inode = root->fs_info->btree_inode;
  2675. int was_dirty;
  2676. btrfs_assert_tree_locked(buf);
  2677. if (transid != root->fs_info->generation) {
  2678. printk(KERN_CRIT "btrfs transid mismatch buffer %llu, "
  2679. "found %llu running %llu\n",
  2680. (unsigned long long)buf->start,
  2681. (unsigned long long)transid,
  2682. (unsigned long long)root->fs_info->generation);
  2683. WARN_ON(1);
  2684. }
  2685. was_dirty = set_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree,
  2686. buf);
  2687. if (!was_dirty) {
  2688. spin_lock(&root->fs_info->delalloc_lock);
  2689. root->fs_info->dirty_metadata_bytes += buf->len;
  2690. spin_unlock(&root->fs_info->delalloc_lock);
  2691. }
  2692. }
  2693. void btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
  2694. {
  2695. /*
  2696. * looks as though older kernels can get into trouble with
  2697. * this code, they end up stuck in balance_dirty_pages forever
  2698. */
  2699. u64 num_dirty;
  2700. unsigned long thresh = 32 * 1024 * 1024;
  2701. if (current->flags & PF_MEMALLOC)
  2702. return;
  2703. btrfs_balance_delayed_items(root);
  2704. num_dirty = root->fs_info->dirty_metadata_bytes;
  2705. if (num_dirty > thresh) {
  2706. balance_dirty_pages_ratelimited_nr(
  2707. root->fs_info->btree_inode->i_mapping, 1);
  2708. }
  2709. return;
  2710. }
  2711. void __btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
  2712. {
  2713. /*
  2714. * looks as though older kernels can get into trouble with
  2715. * this code, they end up stuck in balance_dirty_pages forever
  2716. */
  2717. u64 num_dirty;
  2718. unsigned long thresh = 32 * 1024 * 1024;
  2719. if (current->flags & PF_MEMALLOC)
  2720. return;
  2721. num_dirty = root->fs_info->dirty_metadata_bytes;
  2722. if (num_dirty > thresh) {
  2723. balance_dirty_pages_ratelimited_nr(
  2724. root->fs_info->btree_inode->i_mapping, 1);
  2725. }
  2726. return;
  2727. }
  2728. int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
  2729. {
  2730. struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
  2731. int ret;
  2732. ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
  2733. if (ret == 0)
  2734. set_bit(EXTENT_BUFFER_UPTODATE, &buf->bflags);
  2735. return ret;
  2736. }
  2737. static int btree_lock_page_hook(struct page *page, void *data,
  2738. void (*flush_fn)(void *))
  2739. {
  2740. struct inode *inode = page->mapping->host;
  2741. struct btrfs_root *root = BTRFS_I(inode)->root;
  2742. struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
  2743. struct extent_buffer *eb;
  2744. unsigned long len;
  2745. u64 bytenr = page_offset(page);
  2746. if (page->private == EXTENT_PAGE_PRIVATE)
  2747. goto out;
  2748. len = page->private >> 2;
  2749. eb = find_extent_buffer(io_tree, bytenr, len);
  2750. if (!eb)
  2751. goto out;
  2752. if (!btrfs_try_tree_write_lock(eb)) {
  2753. flush_fn(data);
  2754. btrfs_tree_lock(eb);
  2755. }
  2756. btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
  2757. if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
  2758. spin_lock(&root->fs_info->delalloc_lock);
  2759. if (root->fs_info->dirty_metadata_bytes >= eb->len)
  2760. root->fs_info->dirty_metadata_bytes -= eb->len;
  2761. else
  2762. WARN_ON(1);
  2763. spin_unlock(&root->fs_info->delalloc_lock);
  2764. }
  2765. btrfs_tree_unlock(eb);
  2766. free_extent_buffer(eb);
  2767. out:
  2768. if (!trylock_page(page)) {
  2769. flush_fn(data);
  2770. lock_page(page);
  2771. }
  2772. return 0;
  2773. }
  2774. static void btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
  2775. int read_only)
  2776. {
  2777. if (read_only)
  2778. return;
  2779. if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)
  2780. printk(KERN_WARNING "warning: mount fs with errors, "
  2781. "running btrfsck is recommended\n");
  2782. }
  2783. int btrfs_error_commit_super(struct btrfs_root *root)
  2784. {
  2785. int ret;
  2786. mutex_lock(&root->fs_info->cleaner_mutex);
  2787. btrfs_run_delayed_iputs(root);
  2788. mutex_unlock(&root->fs_info->cleaner_mutex);
  2789. down_write(&root->fs_info->cleanup_work_sem);
  2790. up_write(&root->fs_info->cleanup_work_sem);
  2791. /* cleanup FS via transaction */
  2792. btrfs_cleanup_transaction(root);
  2793. ret = write_ctree_super(NULL, root, 0);
  2794. return ret;
  2795. }
  2796. static int btrfs_destroy_ordered_operations(struct btrfs_root *root)
  2797. {
  2798. struct btrfs_inode *btrfs_inode;
  2799. struct list_head splice;
  2800. INIT_LIST_HEAD(&splice);
  2801. mutex_lock(&root->fs_info->ordered_operations_mutex);
  2802. spin_lock(&root->fs_info->ordered_extent_lock);
  2803. list_splice_init(&root->fs_info->ordered_operations, &splice);
  2804. while (!list_empty(&splice)) {
  2805. btrfs_inode = list_entry(splice.next, struct btrfs_inode,
  2806. ordered_operations);
  2807. list_del_init(&btrfs_inode->ordered_operations);
  2808. btrfs_invalidate_inodes(btrfs_inode->root);
  2809. }
  2810. spin_unlock(&root->fs_info->ordered_extent_lock);
  2811. mutex_unlock(&root->fs_info->ordered_operations_mutex);
  2812. return 0;
  2813. }
  2814. static int btrfs_destroy_ordered_extents(struct btrfs_root *root)
  2815. {
  2816. struct list_head splice;
  2817. struct btrfs_ordered_extent *ordered;
  2818. struct inode *inode;
  2819. INIT_LIST_HEAD(&splice);
  2820. spin_lock(&root->fs_info->ordered_extent_lock);
  2821. list_splice_init(&root->fs_info->ordered_extents, &splice);
  2822. while (!list_empty(&splice)) {
  2823. ordered = list_entry(splice.next, struct btrfs_ordered_extent,
  2824. root_extent_list);
  2825. list_del_init(&ordered->root_extent_list);
  2826. atomic_inc(&ordered->refs);
  2827. /* the inode may be getting freed (in sys_unlink path). */
  2828. inode = igrab(ordered->inode);
  2829. spin_unlock(&root->fs_info->ordered_extent_lock);
  2830. if (inode)
  2831. iput(inode);
  2832. atomic_set(&ordered->refs, 1);
  2833. btrfs_put_ordered_extent(ordered);
  2834. spin_lock(&root->fs_info->ordered_extent_lock);
  2835. }
  2836. spin_unlock(&root->fs_info->ordered_extent_lock);
  2837. return 0;
  2838. }
  2839. static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
  2840. struct btrfs_root *root)
  2841. {
  2842. struct rb_node *node;
  2843. struct btrfs_delayed_ref_root *delayed_refs;
  2844. struct btrfs_delayed_ref_node *ref;
  2845. int ret = 0;
  2846. delayed_refs = &trans->delayed_refs;
  2847. spin_lock(&delayed_refs->lock);
  2848. if (delayed_refs->num_entries == 0) {
  2849. spin_unlock(&delayed_refs->lock);
  2850. printk(KERN_INFO "delayed_refs has NO entry\n");
  2851. return ret;
  2852. }
  2853. node = rb_first(&delayed_refs->root);
  2854. while (node) {
  2855. ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
  2856. node = rb_next(node);
  2857. ref->in_tree = 0;
  2858. rb_erase(&ref->rb_node, &delayed_refs->root);
  2859. delayed_refs->num_entries--;
  2860. atomic_set(&ref->refs, 1);
  2861. if (btrfs_delayed_ref_is_head(ref)) {
  2862. struct btrfs_delayed_ref_head *head;
  2863. head = btrfs_delayed_node_to_head(ref);
  2864. mutex_lock(&head->mutex);
  2865. kfree(head->extent_op);
  2866. delayed_refs->num_heads--;
  2867. if (list_empty(&head->cluster))
  2868. delayed_refs->num_heads_ready--;
  2869. list_del_init(&head->cluster);
  2870. mutex_unlock(&head->mutex);
  2871. }
  2872. spin_unlock(&delayed_refs->lock);
  2873. btrfs_put_delayed_ref(ref);
  2874. cond_resched();
  2875. spin_lock(&delayed_refs->lock);
  2876. }
  2877. spin_unlock(&delayed_refs->lock);
  2878. return ret;
  2879. }
  2880. static int btrfs_destroy_pending_snapshots(struct btrfs_transaction *t)
  2881. {
  2882. struct btrfs_pending_snapshot *snapshot;
  2883. struct list_head splice;
  2884. INIT_LIST_HEAD(&splice);
  2885. list_splice_init(&t->pending_snapshots, &splice);
  2886. while (!list_empty(&splice)) {
  2887. snapshot = list_entry(splice.next,
  2888. struct btrfs_pending_snapshot,
  2889. list);
  2890. list_del_init(&snapshot->list);
  2891. kfree(snapshot);
  2892. }
  2893. return 0;
  2894. }
  2895. static int btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
  2896. {
  2897. struct btrfs_inode *btrfs_inode;
  2898. struct list_head splice;
  2899. INIT_LIST_HEAD(&splice);
  2900. spin_lock(&root->fs_info->delalloc_lock);
  2901. list_splice_init(&root->fs_info->delalloc_inodes, &splice);
  2902. while (!list_empty(&splice)) {
  2903. btrfs_inode = list_entry(splice.next, struct btrfs_inode,
  2904. delalloc_inodes);
  2905. list_del_init(&btrfs_inode->delalloc_inodes);
  2906. btrfs_invalidate_inodes(btrfs_inode->root);
  2907. }
  2908. spin_unlock(&root->fs_info->delalloc_lock);
  2909. return 0;
  2910. }
  2911. static int btrfs_destroy_marked_extents(struct btrfs_root *root,
  2912. struct extent_io_tree *dirty_pages,
  2913. int mark)
  2914. {
  2915. int ret;
  2916. struct page *page;
  2917. struct inode *btree_inode = root->fs_info->btree_inode;
  2918. struct extent_buffer *eb;
  2919. u64 start = 0;
  2920. u64 end;
  2921. u64 offset;
  2922. unsigned long index;
  2923. while (1) {
  2924. ret = find_first_extent_bit(dirty_pages, start, &start, &end,
  2925. mark);
  2926. if (ret)
  2927. break;
  2928. clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
  2929. while (start <= end) {
  2930. index = start >> PAGE_CACHE_SHIFT;
  2931. start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
  2932. page = find_get_page(btree_inode->i_mapping, index);
  2933. if (!page)
  2934. continue;
  2935. offset = page_offset(page);
  2936. spin_lock(&dirty_pages->buffer_lock);
  2937. eb = radix_tree_lookup(
  2938. &(&BTRFS_I(page->mapping->host)->io_tree)->buffer,
  2939. offset >> PAGE_CACHE_SHIFT);
  2940. spin_unlock(&dirty_pages->buffer_lock);
  2941. if (eb) {
  2942. ret = test_and_clear_bit(EXTENT_BUFFER_DIRTY,
  2943. &eb->bflags);
  2944. atomic_set(&eb->refs, 1);
  2945. }
  2946. if (PageWriteback(page))
  2947. end_page_writeback(page);
  2948. lock_page(page);
  2949. if (PageDirty(page)) {
  2950. clear_page_dirty_for_io(page);
  2951. spin_lock_irq(&page->mapping->tree_lock);
  2952. radix_tree_tag_clear(&page->mapping->page_tree,
  2953. page_index(page),
  2954. PAGECACHE_TAG_DIRTY);
  2955. spin_unlock_irq(&page->mapping->tree_lock);
  2956. }
  2957. page->mapping->a_ops->invalidatepage(page, 0);
  2958. unlock_page(page);
  2959. }
  2960. }
  2961. return ret;
  2962. }
  2963. static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
  2964. struct extent_io_tree *pinned_extents)
  2965. {
  2966. struct extent_io_tree *unpin;
  2967. u64 start;
  2968. u64 end;
  2969. int ret;
  2970. unpin = pinned_extents;
  2971. while (1) {
  2972. ret = find_first_extent_bit(unpin, 0, &start, &end,
  2973. EXTENT_DIRTY);
  2974. if (ret)
  2975. break;
  2976. /* opt_discard */
  2977. if (btrfs_test_opt(root, DISCARD))
  2978. ret = btrfs_error_discard_extent(root, start,
  2979. end + 1 - start,
  2980. NULL);
  2981. clear_extent_dirty(unpin, start, end, GFP_NOFS);
  2982. btrfs_error_unpin_extent_range(root, start, end);
  2983. cond_resched();
  2984. }
  2985. return 0;
  2986. }
  2987. static int btrfs_cleanup_transaction(struct btrfs_root *root)
  2988. {
  2989. struct btrfs_transaction *t;
  2990. LIST_HEAD(list);
  2991. WARN_ON(1);
  2992. mutex_lock(&root->fs_info->transaction_kthread_mutex);
  2993. spin_lock(&root->fs_info->trans_lock);
  2994. list_splice_init(&root->fs_info->trans_list, &list);
  2995. root->fs_info->trans_no_join = 1;
  2996. spin_unlock(&root->fs_info->trans_lock);
  2997. while (!list_empty(&list)) {
  2998. t = list_entry(list.next, struct btrfs_transaction, list);
  2999. if (!t)
  3000. break;
  3001. btrfs_destroy_ordered_operations(root);
  3002. btrfs_destroy_ordered_extents(root);
  3003. btrfs_destroy_delayed_refs(t, root);
  3004. btrfs_block_rsv_release(root,
  3005. &root->fs_info->trans_block_rsv,
  3006. t->dirty_pages.dirty_bytes);
  3007. /* FIXME: cleanup wait for commit */
  3008. t->in_commit = 1;
  3009. t->blocked = 1;
  3010. if (waitqueue_active(&root->fs_info->transaction_blocked_wait))
  3011. wake_up(&root->fs_info->transaction_blocked_wait);
  3012. t->blocked = 0;
  3013. if (waitqueue_active(&root->fs_info->transaction_wait))
  3014. wake_up(&root->fs_info->transaction_wait);
  3015. t->commit_done = 1;
  3016. if (waitqueue_active(&t->commit_wait))
  3017. wake_up(&t->commit_wait);
  3018. btrfs_destroy_pending_snapshots(t);
  3019. btrfs_destroy_delalloc_inodes(root);
  3020. spin_lock(&root->fs_info->trans_lock);
  3021. root->fs_info->running_transaction = NULL;
  3022. spin_unlock(&root->fs_info->trans_lock);
  3023. btrfs_destroy_marked_extents(root, &t->dirty_pages,
  3024. EXTENT_DIRTY);
  3025. btrfs_destroy_pinned_extent(root,
  3026. root->fs_info->pinned_extents);
  3027. atomic_set(&t->use_count, 0);
  3028. list_del_init(&t->list);
  3029. memset(t, 0, sizeof(*t));
  3030. kmem_cache_free(btrfs_transaction_cachep, t);
  3031. }
  3032. spin_lock(&root->fs_info->trans_lock);
  3033. root->fs_info->trans_no_join = 0;
  3034. spin_unlock(&root->fs_info->trans_lock);
  3035. mutex_unlock(&root->fs_info->transaction_kthread_mutex);
  3036. return 0;
  3037. }
  3038. static struct extent_io_ops btree_extent_io_ops = {
  3039. .write_cache_pages_lock_hook = btree_lock_page_hook,
  3040. .readpage_end_io_hook = btree_readpage_end_io_hook,
  3041. .readpage_io_failed_hook = btree_io_failed_hook,
  3042. .submit_bio_hook = btree_submit_bio_hook,
  3043. /* note we're sharing with inode.c for the merge bio hook */
  3044. .merge_bio_hook = btrfs_merge_bio_hook,
  3045. };