ctree.c 96 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717
  1. /*
  2. * Copyright (C) 2007,2008 Oracle. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public
  6. * License v2 as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public
  14. * License along with this program; if not, write to the
  15. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16. * Boston, MA 021110-1307, USA.
  17. */
  18. #include <linux/sched.h>
  19. #include "ctree.h"
  20. #include "disk-io.h"
  21. #include "transaction.h"
  22. #include "print-tree.h"
  23. #include "locking.h"
  24. static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
  25. *root, struct btrfs_path *path, int level);
  26. static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
  27. *root, struct btrfs_key *ins_key,
  28. struct btrfs_path *path, int data_size, int extend);
  29. static int push_node_left(struct btrfs_trans_handle *trans,
  30. struct btrfs_root *root, struct extent_buffer *dst,
  31. struct extent_buffer *src, int empty);
  32. static int balance_node_right(struct btrfs_trans_handle *trans,
  33. struct btrfs_root *root,
  34. struct extent_buffer *dst_buf,
  35. struct extent_buffer *src_buf);
  36. static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  37. struct btrfs_path *path, int level, int slot);
  38. inline void btrfs_init_path(struct btrfs_path *p)
  39. {
  40. memset(p, 0, sizeof(*p));
  41. }
  42. struct btrfs_path *btrfs_alloc_path(void)
  43. {
  44. struct btrfs_path *path;
  45. path = kmem_cache_alloc(btrfs_path_cachep, GFP_NOFS);
  46. if (path) {
  47. btrfs_init_path(path);
  48. path->reada = 1;
  49. }
  50. return path;
  51. }
  52. /* this also releases the path */
  53. void btrfs_free_path(struct btrfs_path *p)
  54. {
  55. btrfs_release_path(NULL, p);
  56. kmem_cache_free(btrfs_path_cachep, p);
  57. }
  58. /*
  59. * path release drops references on the extent buffers in the path
  60. * and it drops any locks held by this path
  61. *
  62. * It is safe to call this on paths that no locks or extent buffers held.
  63. */
  64. void noinline btrfs_release_path(struct btrfs_root *root, struct btrfs_path *p)
  65. {
  66. int i;
  67. for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
  68. p->slots[i] = 0;
  69. if (!p->nodes[i])
  70. continue;
  71. if (p->locks[i]) {
  72. btrfs_tree_unlock(p->nodes[i]);
  73. p->locks[i] = 0;
  74. }
  75. free_extent_buffer(p->nodes[i]);
  76. p->nodes[i] = NULL;
  77. }
  78. }
  79. /*
  80. * safely gets a reference on the root node of a tree. A lock
  81. * is not taken, so a concurrent writer may put a different node
  82. * at the root of the tree. See btrfs_lock_root_node for the
  83. * looping required.
  84. *
  85. * The extent buffer returned by this has a reference taken, so
  86. * it won't disappear. It may stop being the root of the tree
  87. * at any time because there are no locks held.
  88. */
  89. struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
  90. {
  91. struct extent_buffer *eb;
  92. spin_lock(&root->node_lock);
  93. eb = root->node;
  94. extent_buffer_get(eb);
  95. spin_unlock(&root->node_lock);
  96. return eb;
  97. }
  98. /* loop around taking references on and locking the root node of the
  99. * tree until you end up with a lock on the root. A locked buffer
  100. * is returned, with a reference held.
  101. */
  102. struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
  103. {
  104. struct extent_buffer *eb;
  105. while(1) {
  106. eb = btrfs_root_node(root);
  107. btrfs_tree_lock(eb);
  108. spin_lock(&root->node_lock);
  109. if (eb == root->node) {
  110. spin_unlock(&root->node_lock);
  111. break;
  112. }
  113. spin_unlock(&root->node_lock);
  114. btrfs_tree_unlock(eb);
  115. free_extent_buffer(eb);
  116. }
  117. return eb;
  118. }
  119. /* cowonly root (everything not a reference counted cow subvolume), just get
  120. * put onto a simple dirty list. transaction.c walks this to make sure they
  121. * get properly updated on disk.
  122. */
  123. static void add_root_to_dirty_list(struct btrfs_root *root)
  124. {
  125. if (root->track_dirty && list_empty(&root->dirty_list)) {
  126. list_add(&root->dirty_list,
  127. &root->fs_info->dirty_cowonly_roots);
  128. }
  129. }
  130. /*
  131. * used by snapshot creation to make a copy of a root for a tree with
  132. * a given objectid. The buffer with the new root node is returned in
  133. * cow_ret, and this func returns zero on success or a negative error code.
  134. */
  135. int btrfs_copy_root(struct btrfs_trans_handle *trans,
  136. struct btrfs_root *root,
  137. struct extent_buffer *buf,
  138. struct extent_buffer **cow_ret, u64 new_root_objectid)
  139. {
  140. struct extent_buffer *cow;
  141. u32 nritems;
  142. int ret = 0;
  143. int level;
  144. struct btrfs_root *new_root;
  145. new_root = kmalloc(sizeof(*new_root), GFP_NOFS);
  146. if (!new_root)
  147. return -ENOMEM;
  148. memcpy(new_root, root, sizeof(*new_root));
  149. new_root->root_key.objectid = new_root_objectid;
  150. WARN_ON(root->ref_cows && trans->transid !=
  151. root->fs_info->running_transaction->transid);
  152. WARN_ON(root->ref_cows && trans->transid != root->last_trans);
  153. level = btrfs_header_level(buf);
  154. nritems = btrfs_header_nritems(buf);
  155. cow = btrfs_alloc_free_block(trans, new_root, buf->len, 0,
  156. new_root_objectid, trans->transid,
  157. level, buf->start, 0);
  158. if (IS_ERR(cow)) {
  159. kfree(new_root);
  160. return PTR_ERR(cow);
  161. }
  162. copy_extent_buffer(cow, buf, 0, 0, cow->len);
  163. btrfs_set_header_bytenr(cow, cow->start);
  164. btrfs_set_header_generation(cow, trans->transid);
  165. btrfs_set_header_owner(cow, new_root_objectid);
  166. btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN);
  167. WARN_ON(btrfs_header_generation(buf) > trans->transid);
  168. ret = btrfs_inc_ref(trans, new_root, buf, cow, NULL);
  169. kfree(new_root);
  170. if (ret)
  171. return ret;
  172. btrfs_mark_buffer_dirty(cow);
  173. *cow_ret = cow;
  174. return 0;
  175. }
  176. /*
  177. * does the dirty work in cow of a single block. The parent block
  178. * (if supplied) is updated to point to the new cow copy. The new
  179. * buffer is marked dirty and returned locked. If you modify the block
  180. * it needs to be marked dirty again.
  181. *
  182. * search_start -- an allocation hint for the new block
  183. *
  184. * empty_size -- a hint that you plan on doing more cow. This is the size in bytes
  185. * the allocator should try to find free next to the block it returns. This is
  186. * just a hint and may be ignored by the allocator.
  187. *
  188. * prealloc_dest -- if you have already reserved a destination for the cow,
  189. * this uses that block instead of allocating a new one. btrfs_alloc_reserved_extent
  190. * is used to finish the allocation.
  191. */
  192. int noinline __btrfs_cow_block(struct btrfs_trans_handle *trans,
  193. struct btrfs_root *root,
  194. struct extent_buffer *buf,
  195. struct extent_buffer *parent, int parent_slot,
  196. struct extent_buffer **cow_ret,
  197. u64 search_start, u64 empty_size,
  198. u64 prealloc_dest)
  199. {
  200. u64 parent_start;
  201. struct extent_buffer *cow;
  202. u32 nritems;
  203. int ret = 0;
  204. int level;
  205. int unlock_orig = 0;
  206. if (*cow_ret == buf)
  207. unlock_orig = 1;
  208. WARN_ON(!btrfs_tree_locked(buf));
  209. if (parent)
  210. parent_start = parent->start;
  211. else
  212. parent_start = 0;
  213. WARN_ON(root->ref_cows && trans->transid !=
  214. root->fs_info->running_transaction->transid);
  215. WARN_ON(root->ref_cows && trans->transid != root->last_trans);
  216. level = btrfs_header_level(buf);
  217. nritems = btrfs_header_nritems(buf);
  218. if (prealloc_dest) {
  219. struct btrfs_key ins;
  220. ins.objectid = prealloc_dest;
  221. ins.offset = buf->len;
  222. ins.type = BTRFS_EXTENT_ITEM_KEY;
  223. ret = btrfs_alloc_reserved_extent(trans, root, parent_start,
  224. root->root_key.objectid,
  225. trans->transid, level, &ins);
  226. BUG_ON(ret);
  227. cow = btrfs_init_new_buffer(trans, root, prealloc_dest,
  228. buf->len);
  229. } else {
  230. cow = btrfs_alloc_free_block(trans, root, buf->len,
  231. parent_start,
  232. root->root_key.objectid,
  233. trans->transid, level,
  234. search_start, empty_size);
  235. }
  236. if (IS_ERR(cow))
  237. return PTR_ERR(cow);
  238. copy_extent_buffer(cow, buf, 0, 0, cow->len);
  239. btrfs_set_header_bytenr(cow, cow->start);
  240. btrfs_set_header_generation(cow, trans->transid);
  241. btrfs_set_header_owner(cow, root->root_key.objectid);
  242. btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN);
  243. WARN_ON(btrfs_header_generation(buf) > trans->transid);
  244. if (btrfs_header_generation(buf) != trans->transid) {
  245. u32 nr_extents;
  246. ret = btrfs_inc_ref(trans, root, buf, cow, &nr_extents);
  247. if (ret)
  248. return ret;
  249. ret = btrfs_cache_ref(trans, root, buf, nr_extents);
  250. WARN_ON(ret);
  251. } else if (btrfs_header_owner(buf) == BTRFS_TREE_RELOC_OBJECTID) {
  252. /*
  253. * There are only two places that can drop reference to
  254. * tree blocks owned by living reloc trees, one is here,
  255. * the other place is btrfs_drop_subtree. In both places,
  256. * we check reference count while tree block is locked.
  257. * Furthermore, if reference count is one, it won't get
  258. * increased by someone else.
  259. */
  260. u32 refs;
  261. ret = btrfs_lookup_extent_ref(trans, root, buf->start,
  262. buf->len, &refs);
  263. BUG_ON(ret);
  264. if (refs == 1) {
  265. ret = btrfs_update_ref(trans, root, buf, cow,
  266. 0, nritems);
  267. clean_tree_block(trans, root, buf);
  268. } else {
  269. ret = btrfs_inc_ref(trans, root, buf, cow, NULL);
  270. }
  271. BUG_ON(ret);
  272. } else {
  273. ret = btrfs_update_ref(trans, root, buf, cow, 0, nritems);
  274. if (ret)
  275. return ret;
  276. clean_tree_block(trans, root, buf);
  277. }
  278. if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
  279. ret = btrfs_reloc_tree_cache_ref(trans, root, cow, buf->start);
  280. WARN_ON(ret);
  281. }
  282. if (buf == root->node) {
  283. WARN_ON(parent && parent != buf);
  284. spin_lock(&root->node_lock);
  285. root->node = cow;
  286. extent_buffer_get(cow);
  287. spin_unlock(&root->node_lock);
  288. if (buf != root->commit_root) {
  289. btrfs_free_extent(trans, root, buf->start,
  290. buf->len, buf->start,
  291. root->root_key.objectid,
  292. btrfs_header_generation(buf),
  293. level, 1);
  294. }
  295. free_extent_buffer(buf);
  296. add_root_to_dirty_list(root);
  297. } else {
  298. btrfs_set_node_blockptr(parent, parent_slot,
  299. cow->start);
  300. WARN_ON(trans->transid == 0);
  301. btrfs_set_node_ptr_generation(parent, parent_slot,
  302. trans->transid);
  303. btrfs_mark_buffer_dirty(parent);
  304. WARN_ON(btrfs_header_generation(parent) != trans->transid);
  305. btrfs_free_extent(trans, root, buf->start, buf->len,
  306. parent_start, btrfs_header_owner(parent),
  307. btrfs_header_generation(parent), level, 1);
  308. }
  309. if (unlock_orig)
  310. btrfs_tree_unlock(buf);
  311. free_extent_buffer(buf);
  312. btrfs_mark_buffer_dirty(cow);
  313. *cow_ret = cow;
  314. return 0;
  315. }
  316. /*
  317. * cows a single block, see __btrfs_cow_block for the real work.
  318. * This version of it has extra checks so that a block isn't cow'd more than
  319. * once per transaction, as long as it hasn't been written yet
  320. */
  321. int noinline btrfs_cow_block(struct btrfs_trans_handle *trans,
  322. struct btrfs_root *root, struct extent_buffer *buf,
  323. struct extent_buffer *parent, int parent_slot,
  324. struct extent_buffer **cow_ret, u64 prealloc_dest)
  325. {
  326. u64 search_start;
  327. int ret;
  328. if (trans->transaction != root->fs_info->running_transaction) {
  329. printk(KERN_CRIT "trans %Lu running %Lu\n", trans->transid,
  330. root->fs_info->running_transaction->transid);
  331. WARN_ON(1);
  332. }
  333. if (trans->transid != root->fs_info->generation) {
  334. printk(KERN_CRIT "trans %Lu running %Lu\n", trans->transid,
  335. root->fs_info->generation);
  336. WARN_ON(1);
  337. }
  338. spin_lock(&root->fs_info->hash_lock);
  339. if (btrfs_header_generation(buf) == trans->transid &&
  340. btrfs_header_owner(buf) == root->root_key.objectid &&
  341. !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
  342. *cow_ret = buf;
  343. spin_unlock(&root->fs_info->hash_lock);
  344. WARN_ON(prealloc_dest);
  345. return 0;
  346. }
  347. spin_unlock(&root->fs_info->hash_lock);
  348. search_start = buf->start & ~((u64)(1024 * 1024 * 1024) - 1);
  349. ret = __btrfs_cow_block(trans, root, buf, parent,
  350. parent_slot, cow_ret, search_start, 0,
  351. prealloc_dest);
  352. return ret;
  353. }
  354. /*
  355. * helper function for defrag to decide if two blocks pointed to by a
  356. * node are actually close by
  357. */
  358. static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
  359. {
  360. if (blocknr < other && other - (blocknr + blocksize) < 32768)
  361. return 1;
  362. if (blocknr > other && blocknr - (other + blocksize) < 32768)
  363. return 1;
  364. return 0;
  365. }
  366. /*
  367. * compare two keys in a memcmp fashion
  368. */
  369. static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2)
  370. {
  371. struct btrfs_key k1;
  372. btrfs_disk_key_to_cpu(&k1, disk);
  373. if (k1.objectid > k2->objectid)
  374. return 1;
  375. if (k1.objectid < k2->objectid)
  376. return -1;
  377. if (k1.type > k2->type)
  378. return 1;
  379. if (k1.type < k2->type)
  380. return -1;
  381. if (k1.offset > k2->offset)
  382. return 1;
  383. if (k1.offset < k2->offset)
  384. return -1;
  385. return 0;
  386. }
  387. /*
  388. * this is used by the defrag code to go through all the
  389. * leaves pointed to by a node and reallocate them so that
  390. * disk order is close to key order
  391. */
  392. int btrfs_realloc_node(struct btrfs_trans_handle *trans,
  393. struct btrfs_root *root, struct extent_buffer *parent,
  394. int start_slot, int cache_only, u64 *last_ret,
  395. struct btrfs_key *progress)
  396. {
  397. struct extent_buffer *cur;
  398. u64 blocknr;
  399. u64 gen;
  400. u64 search_start = *last_ret;
  401. u64 last_block = 0;
  402. u64 other;
  403. u32 parent_nritems;
  404. int end_slot;
  405. int i;
  406. int err = 0;
  407. int parent_level;
  408. int uptodate;
  409. u32 blocksize;
  410. int progress_passed = 0;
  411. struct btrfs_disk_key disk_key;
  412. parent_level = btrfs_header_level(parent);
  413. if (cache_only && parent_level != 1)
  414. return 0;
  415. if (trans->transaction != root->fs_info->running_transaction) {
  416. printk(KERN_CRIT "trans %Lu running %Lu\n", trans->transid,
  417. root->fs_info->running_transaction->transid);
  418. WARN_ON(1);
  419. }
  420. if (trans->transid != root->fs_info->generation) {
  421. printk(KERN_CRIT "trans %Lu running %Lu\n", trans->transid,
  422. root->fs_info->generation);
  423. WARN_ON(1);
  424. }
  425. parent_nritems = btrfs_header_nritems(parent);
  426. blocksize = btrfs_level_size(root, parent_level - 1);
  427. end_slot = parent_nritems;
  428. if (parent_nritems == 1)
  429. return 0;
  430. for (i = start_slot; i < end_slot; i++) {
  431. int close = 1;
  432. if (!parent->map_token) {
  433. map_extent_buffer(parent,
  434. btrfs_node_key_ptr_offset(i),
  435. sizeof(struct btrfs_key_ptr),
  436. &parent->map_token, &parent->kaddr,
  437. &parent->map_start, &parent->map_len,
  438. KM_USER1);
  439. }
  440. btrfs_node_key(parent, &disk_key, i);
  441. if (!progress_passed && comp_keys(&disk_key, progress) < 0)
  442. continue;
  443. progress_passed = 1;
  444. blocknr = btrfs_node_blockptr(parent, i);
  445. gen = btrfs_node_ptr_generation(parent, i);
  446. if (last_block == 0)
  447. last_block = blocknr;
  448. if (i > 0) {
  449. other = btrfs_node_blockptr(parent, i - 1);
  450. close = close_blocks(blocknr, other, blocksize);
  451. }
  452. if (!close && i < end_slot - 2) {
  453. other = btrfs_node_blockptr(parent, i + 1);
  454. close = close_blocks(blocknr, other, blocksize);
  455. }
  456. if (close) {
  457. last_block = blocknr;
  458. continue;
  459. }
  460. if (parent->map_token) {
  461. unmap_extent_buffer(parent, parent->map_token,
  462. KM_USER1);
  463. parent->map_token = NULL;
  464. }
  465. cur = btrfs_find_tree_block(root, blocknr, blocksize);
  466. if (cur)
  467. uptodate = btrfs_buffer_uptodate(cur, gen);
  468. else
  469. uptodate = 0;
  470. if (!cur || !uptodate) {
  471. if (cache_only) {
  472. free_extent_buffer(cur);
  473. continue;
  474. }
  475. if (!cur) {
  476. cur = read_tree_block(root, blocknr,
  477. blocksize, gen);
  478. } else if (!uptodate) {
  479. btrfs_read_buffer(cur, gen);
  480. }
  481. }
  482. if (search_start == 0)
  483. search_start = last_block;
  484. btrfs_tree_lock(cur);
  485. err = __btrfs_cow_block(trans, root, cur, parent, i,
  486. &cur, search_start,
  487. min(16 * blocksize,
  488. (end_slot - i) * blocksize), 0);
  489. if (err) {
  490. btrfs_tree_unlock(cur);
  491. free_extent_buffer(cur);
  492. break;
  493. }
  494. search_start = cur->start;
  495. last_block = cur->start;
  496. *last_ret = search_start;
  497. btrfs_tree_unlock(cur);
  498. free_extent_buffer(cur);
  499. }
  500. if (parent->map_token) {
  501. unmap_extent_buffer(parent, parent->map_token,
  502. KM_USER1);
  503. parent->map_token = NULL;
  504. }
  505. return err;
  506. }
  507. /*
  508. * The leaf data grows from end-to-front in the node.
  509. * this returns the address of the start of the last item,
  510. * which is the stop of the leaf data stack
  511. */
  512. static inline unsigned int leaf_data_end(struct btrfs_root *root,
  513. struct extent_buffer *leaf)
  514. {
  515. u32 nr = btrfs_header_nritems(leaf);
  516. if (nr == 0)
  517. return BTRFS_LEAF_DATA_SIZE(root);
  518. return btrfs_item_offset_nr(leaf, nr - 1);
  519. }
  520. /*
  521. * extra debugging checks to make sure all the items in a key are
  522. * well formed and in the proper order
  523. */
  524. static int check_node(struct btrfs_root *root, struct btrfs_path *path,
  525. int level)
  526. {
  527. struct extent_buffer *parent = NULL;
  528. struct extent_buffer *node = path->nodes[level];
  529. struct btrfs_disk_key parent_key;
  530. struct btrfs_disk_key node_key;
  531. int parent_slot;
  532. int slot;
  533. struct btrfs_key cpukey;
  534. u32 nritems = btrfs_header_nritems(node);
  535. if (path->nodes[level + 1])
  536. parent = path->nodes[level + 1];
  537. slot = path->slots[level];
  538. BUG_ON(nritems == 0);
  539. if (parent) {
  540. parent_slot = path->slots[level + 1];
  541. btrfs_node_key(parent, &parent_key, parent_slot);
  542. btrfs_node_key(node, &node_key, 0);
  543. BUG_ON(memcmp(&parent_key, &node_key,
  544. sizeof(struct btrfs_disk_key)));
  545. BUG_ON(btrfs_node_blockptr(parent, parent_slot) !=
  546. btrfs_header_bytenr(node));
  547. }
  548. BUG_ON(nritems > BTRFS_NODEPTRS_PER_BLOCK(root));
  549. if (slot != 0) {
  550. btrfs_node_key_to_cpu(node, &cpukey, slot - 1);
  551. btrfs_node_key(node, &node_key, slot);
  552. BUG_ON(comp_keys(&node_key, &cpukey) <= 0);
  553. }
  554. if (slot < nritems - 1) {
  555. btrfs_node_key_to_cpu(node, &cpukey, slot + 1);
  556. btrfs_node_key(node, &node_key, slot);
  557. BUG_ON(comp_keys(&node_key, &cpukey) >= 0);
  558. }
  559. return 0;
  560. }
  561. /*
  562. * extra checking to make sure all the items in a leaf are
  563. * well formed and in the proper order
  564. */
  565. static int check_leaf(struct btrfs_root *root, struct btrfs_path *path,
  566. int level)
  567. {
  568. struct extent_buffer *leaf = path->nodes[level];
  569. struct extent_buffer *parent = NULL;
  570. int parent_slot;
  571. struct btrfs_key cpukey;
  572. struct btrfs_disk_key parent_key;
  573. struct btrfs_disk_key leaf_key;
  574. int slot = path->slots[0];
  575. u32 nritems = btrfs_header_nritems(leaf);
  576. if (path->nodes[level + 1])
  577. parent = path->nodes[level + 1];
  578. if (nritems == 0)
  579. return 0;
  580. if (parent) {
  581. parent_slot = path->slots[level + 1];
  582. btrfs_node_key(parent, &parent_key, parent_slot);
  583. btrfs_item_key(leaf, &leaf_key, 0);
  584. BUG_ON(memcmp(&parent_key, &leaf_key,
  585. sizeof(struct btrfs_disk_key)));
  586. BUG_ON(btrfs_node_blockptr(parent, parent_slot) !=
  587. btrfs_header_bytenr(leaf));
  588. }
  589. #if 0
  590. for (i = 0; nritems > 1 && i < nritems - 2; i++) {
  591. btrfs_item_key_to_cpu(leaf, &cpukey, i + 1);
  592. btrfs_item_key(leaf, &leaf_key, i);
  593. if (comp_keys(&leaf_key, &cpukey) >= 0) {
  594. btrfs_print_leaf(root, leaf);
  595. printk("slot %d offset bad key\n", i);
  596. BUG_ON(1);
  597. }
  598. if (btrfs_item_offset_nr(leaf, i) !=
  599. btrfs_item_end_nr(leaf, i + 1)) {
  600. btrfs_print_leaf(root, leaf);
  601. printk("slot %d offset bad\n", i);
  602. BUG_ON(1);
  603. }
  604. if (i == 0) {
  605. if (btrfs_item_offset_nr(leaf, i) +
  606. btrfs_item_size_nr(leaf, i) !=
  607. BTRFS_LEAF_DATA_SIZE(root)) {
  608. btrfs_print_leaf(root, leaf);
  609. printk("slot %d first offset bad\n", i);
  610. BUG_ON(1);
  611. }
  612. }
  613. }
  614. if (nritems > 0) {
  615. if (btrfs_item_size_nr(leaf, nritems - 1) > 4096) {
  616. btrfs_print_leaf(root, leaf);
  617. printk("slot %d bad size \n", nritems - 1);
  618. BUG_ON(1);
  619. }
  620. }
  621. #endif
  622. if (slot != 0 && slot < nritems - 1) {
  623. btrfs_item_key(leaf, &leaf_key, slot);
  624. btrfs_item_key_to_cpu(leaf, &cpukey, slot - 1);
  625. if (comp_keys(&leaf_key, &cpukey) <= 0) {
  626. btrfs_print_leaf(root, leaf);
  627. printk("slot %d offset bad key\n", slot);
  628. BUG_ON(1);
  629. }
  630. if (btrfs_item_offset_nr(leaf, slot - 1) !=
  631. btrfs_item_end_nr(leaf, slot)) {
  632. btrfs_print_leaf(root, leaf);
  633. printk("slot %d offset bad\n", slot);
  634. BUG_ON(1);
  635. }
  636. }
  637. if (slot < nritems - 1) {
  638. btrfs_item_key(leaf, &leaf_key, slot);
  639. btrfs_item_key_to_cpu(leaf, &cpukey, slot + 1);
  640. BUG_ON(comp_keys(&leaf_key, &cpukey) >= 0);
  641. if (btrfs_item_offset_nr(leaf, slot) !=
  642. btrfs_item_end_nr(leaf, slot + 1)) {
  643. btrfs_print_leaf(root, leaf);
  644. printk("slot %d offset bad\n", slot);
  645. BUG_ON(1);
  646. }
  647. }
  648. BUG_ON(btrfs_item_offset_nr(leaf, 0) +
  649. btrfs_item_size_nr(leaf, 0) != BTRFS_LEAF_DATA_SIZE(root));
  650. return 0;
  651. }
  652. static int noinline check_block(struct btrfs_root *root,
  653. struct btrfs_path *path, int level)
  654. {
  655. u64 found_start;
  656. return 0;
  657. if (btrfs_header_level(path->nodes[level]) != level)
  658. printk("warning: bad level %Lu wanted %d found %d\n",
  659. path->nodes[level]->start, level,
  660. btrfs_header_level(path->nodes[level]));
  661. found_start = btrfs_header_bytenr(path->nodes[level]);
  662. if (found_start != path->nodes[level]->start) {
  663. printk("warning: bad bytentr %Lu found %Lu\n",
  664. path->nodes[level]->start, found_start);
  665. }
  666. #if 0
  667. struct extent_buffer *buf = path->nodes[level];
  668. if (memcmp_extent_buffer(buf, root->fs_info->fsid,
  669. (unsigned long)btrfs_header_fsid(buf),
  670. BTRFS_FSID_SIZE)) {
  671. printk("warning bad block %Lu\n", buf->start);
  672. return 1;
  673. }
  674. #endif
  675. if (level == 0)
  676. return check_leaf(root, path, level);
  677. return check_node(root, path, level);
  678. }
  679. /*
  680. * search for key in the extent_buffer. The items start at offset p,
  681. * and they are item_size apart. There are 'max' items in p.
  682. *
  683. * the slot in the array is returned via slot, and it points to
  684. * the place where you would insert key if it is not found in
  685. * the array.
  686. *
  687. * slot may point to max if the key is bigger than all of the keys
  688. */
  689. static noinline int generic_bin_search(struct extent_buffer *eb,
  690. unsigned long p,
  691. int item_size, struct btrfs_key *key,
  692. int max, int *slot)
  693. {
  694. int low = 0;
  695. int high = max;
  696. int mid;
  697. int ret;
  698. struct btrfs_disk_key *tmp = NULL;
  699. struct btrfs_disk_key unaligned;
  700. unsigned long offset;
  701. char *map_token = NULL;
  702. char *kaddr = NULL;
  703. unsigned long map_start = 0;
  704. unsigned long map_len = 0;
  705. int err;
  706. while(low < high) {
  707. mid = (low + high) / 2;
  708. offset = p + mid * item_size;
  709. if (!map_token || offset < map_start ||
  710. (offset + sizeof(struct btrfs_disk_key)) >
  711. map_start + map_len) {
  712. if (map_token) {
  713. unmap_extent_buffer(eb, map_token, KM_USER0);
  714. map_token = NULL;
  715. }
  716. err = map_extent_buffer(eb, offset,
  717. sizeof(struct btrfs_disk_key),
  718. &map_token, &kaddr,
  719. &map_start, &map_len, KM_USER0);
  720. if (!err) {
  721. tmp = (struct btrfs_disk_key *)(kaddr + offset -
  722. map_start);
  723. } else {
  724. read_extent_buffer(eb, &unaligned,
  725. offset, sizeof(unaligned));
  726. tmp = &unaligned;
  727. }
  728. } else {
  729. tmp = (struct btrfs_disk_key *)(kaddr + offset -
  730. map_start);
  731. }
  732. ret = comp_keys(tmp, key);
  733. if (ret < 0)
  734. low = mid + 1;
  735. else if (ret > 0)
  736. high = mid;
  737. else {
  738. *slot = mid;
  739. if (map_token)
  740. unmap_extent_buffer(eb, map_token, KM_USER0);
  741. return 0;
  742. }
  743. }
  744. *slot = low;
  745. if (map_token)
  746. unmap_extent_buffer(eb, map_token, KM_USER0);
  747. return 1;
  748. }
  749. /*
  750. * simple bin_search frontend that does the right thing for
  751. * leaves vs nodes
  752. */
  753. static int bin_search(struct extent_buffer *eb, struct btrfs_key *key,
  754. int level, int *slot)
  755. {
  756. if (level == 0) {
  757. return generic_bin_search(eb,
  758. offsetof(struct btrfs_leaf, items),
  759. sizeof(struct btrfs_item),
  760. key, btrfs_header_nritems(eb),
  761. slot);
  762. } else {
  763. return generic_bin_search(eb,
  764. offsetof(struct btrfs_node, ptrs),
  765. sizeof(struct btrfs_key_ptr),
  766. key, btrfs_header_nritems(eb),
  767. slot);
  768. }
  769. return -1;
  770. }
  771. /* given a node and slot number, this reads the blocks it points to. The
  772. * extent buffer is returned with a reference taken (but unlocked).
  773. * NULL is returned on error.
  774. */
  775. static noinline struct extent_buffer *read_node_slot(struct btrfs_root *root,
  776. struct extent_buffer *parent, int slot)
  777. {
  778. int level = btrfs_header_level(parent);
  779. if (slot < 0)
  780. return NULL;
  781. if (slot >= btrfs_header_nritems(parent))
  782. return NULL;
  783. BUG_ON(level == 0);
  784. return read_tree_block(root, btrfs_node_blockptr(parent, slot),
  785. btrfs_level_size(root, level - 1),
  786. btrfs_node_ptr_generation(parent, slot));
  787. }
  788. /*
  789. * node level balancing, used to make sure nodes are in proper order for
  790. * item deletion. We balance from the top down, so we have to make sure
  791. * that a deletion won't leave an node completely empty later on.
  792. */
  793. static noinline int balance_level(struct btrfs_trans_handle *trans,
  794. struct btrfs_root *root,
  795. struct btrfs_path *path, int level)
  796. {
  797. struct extent_buffer *right = NULL;
  798. struct extent_buffer *mid;
  799. struct extent_buffer *left = NULL;
  800. struct extent_buffer *parent = NULL;
  801. int ret = 0;
  802. int wret;
  803. int pslot;
  804. int orig_slot = path->slots[level];
  805. int err_on_enospc = 0;
  806. u64 orig_ptr;
  807. if (level == 0)
  808. return 0;
  809. mid = path->nodes[level];
  810. WARN_ON(!path->locks[level]);
  811. WARN_ON(btrfs_header_generation(mid) != trans->transid);
  812. orig_ptr = btrfs_node_blockptr(mid, orig_slot);
  813. if (level < BTRFS_MAX_LEVEL - 1)
  814. parent = path->nodes[level + 1];
  815. pslot = path->slots[level + 1];
  816. /*
  817. * deal with the case where there is only one pointer in the root
  818. * by promoting the node below to a root
  819. */
  820. if (!parent) {
  821. struct extent_buffer *child;
  822. if (btrfs_header_nritems(mid) != 1)
  823. return 0;
  824. /* promote the child to a root */
  825. child = read_node_slot(root, mid, 0);
  826. btrfs_tree_lock(child);
  827. BUG_ON(!child);
  828. ret = btrfs_cow_block(trans, root, child, mid, 0, &child, 0);
  829. BUG_ON(ret);
  830. spin_lock(&root->node_lock);
  831. root->node = child;
  832. spin_unlock(&root->node_lock);
  833. ret = btrfs_update_extent_ref(trans, root, child->start,
  834. mid->start, child->start,
  835. root->root_key.objectid,
  836. trans->transid, level - 1);
  837. BUG_ON(ret);
  838. add_root_to_dirty_list(root);
  839. btrfs_tree_unlock(child);
  840. path->locks[level] = 0;
  841. path->nodes[level] = NULL;
  842. clean_tree_block(trans, root, mid);
  843. btrfs_tree_unlock(mid);
  844. /* once for the path */
  845. free_extent_buffer(mid);
  846. ret = btrfs_free_extent(trans, root, mid->start, mid->len,
  847. mid->start, root->root_key.objectid,
  848. btrfs_header_generation(mid),
  849. level, 1);
  850. /* once for the root ptr */
  851. free_extent_buffer(mid);
  852. return ret;
  853. }
  854. if (btrfs_header_nritems(mid) >
  855. BTRFS_NODEPTRS_PER_BLOCK(root) / 4)
  856. return 0;
  857. if (btrfs_header_nritems(mid) < 2)
  858. err_on_enospc = 1;
  859. left = read_node_slot(root, parent, pslot - 1);
  860. if (left) {
  861. btrfs_tree_lock(left);
  862. wret = btrfs_cow_block(trans, root, left,
  863. parent, pslot - 1, &left, 0);
  864. if (wret) {
  865. ret = wret;
  866. goto enospc;
  867. }
  868. }
  869. right = read_node_slot(root, parent, pslot + 1);
  870. if (right) {
  871. btrfs_tree_lock(right);
  872. wret = btrfs_cow_block(trans, root, right,
  873. parent, pslot + 1, &right, 0);
  874. if (wret) {
  875. ret = wret;
  876. goto enospc;
  877. }
  878. }
  879. /* first, try to make some room in the middle buffer */
  880. if (left) {
  881. orig_slot += btrfs_header_nritems(left);
  882. wret = push_node_left(trans, root, left, mid, 1);
  883. if (wret < 0)
  884. ret = wret;
  885. if (btrfs_header_nritems(mid) < 2)
  886. err_on_enospc = 1;
  887. }
  888. /*
  889. * then try to empty the right most buffer into the middle
  890. */
  891. if (right) {
  892. wret = push_node_left(trans, root, mid, right, 1);
  893. if (wret < 0 && wret != -ENOSPC)
  894. ret = wret;
  895. if (btrfs_header_nritems(right) == 0) {
  896. u64 bytenr = right->start;
  897. u64 generation = btrfs_header_generation(parent);
  898. u32 blocksize = right->len;
  899. clean_tree_block(trans, root, right);
  900. btrfs_tree_unlock(right);
  901. free_extent_buffer(right);
  902. right = NULL;
  903. wret = del_ptr(trans, root, path, level + 1, pslot +
  904. 1);
  905. if (wret)
  906. ret = wret;
  907. wret = btrfs_free_extent(trans, root, bytenr,
  908. blocksize, parent->start,
  909. btrfs_header_owner(parent),
  910. generation, level, 1);
  911. if (wret)
  912. ret = wret;
  913. } else {
  914. struct btrfs_disk_key right_key;
  915. btrfs_node_key(right, &right_key, 0);
  916. btrfs_set_node_key(parent, &right_key, pslot + 1);
  917. btrfs_mark_buffer_dirty(parent);
  918. }
  919. }
  920. if (btrfs_header_nritems(mid) == 1) {
  921. /*
  922. * we're not allowed to leave a node with one item in the
  923. * tree during a delete. A deletion from lower in the tree
  924. * could try to delete the only pointer in this node.
  925. * So, pull some keys from the left.
  926. * There has to be a left pointer at this point because
  927. * otherwise we would have pulled some pointers from the
  928. * right
  929. */
  930. BUG_ON(!left);
  931. wret = balance_node_right(trans, root, mid, left);
  932. if (wret < 0) {
  933. ret = wret;
  934. goto enospc;
  935. }
  936. if (wret == 1) {
  937. wret = push_node_left(trans, root, left, mid, 1);
  938. if (wret < 0)
  939. ret = wret;
  940. }
  941. BUG_ON(wret == 1);
  942. }
  943. if (btrfs_header_nritems(mid) == 0) {
  944. /* we've managed to empty the middle node, drop it */
  945. u64 root_gen = btrfs_header_generation(parent);
  946. u64 bytenr = mid->start;
  947. u32 blocksize = mid->len;
  948. clean_tree_block(trans, root, mid);
  949. btrfs_tree_unlock(mid);
  950. free_extent_buffer(mid);
  951. mid = NULL;
  952. wret = del_ptr(trans, root, path, level + 1, pslot);
  953. if (wret)
  954. ret = wret;
  955. wret = btrfs_free_extent(trans, root, bytenr, blocksize,
  956. parent->start,
  957. btrfs_header_owner(parent),
  958. root_gen, level, 1);
  959. if (wret)
  960. ret = wret;
  961. } else {
  962. /* update the parent key to reflect our changes */
  963. struct btrfs_disk_key mid_key;
  964. btrfs_node_key(mid, &mid_key, 0);
  965. btrfs_set_node_key(parent, &mid_key, pslot);
  966. btrfs_mark_buffer_dirty(parent);
  967. }
  968. /* update the path */
  969. if (left) {
  970. if (btrfs_header_nritems(left) > orig_slot) {
  971. extent_buffer_get(left);
  972. /* left was locked after cow */
  973. path->nodes[level] = left;
  974. path->slots[level + 1] -= 1;
  975. path->slots[level] = orig_slot;
  976. if (mid) {
  977. btrfs_tree_unlock(mid);
  978. free_extent_buffer(mid);
  979. }
  980. } else {
  981. orig_slot -= btrfs_header_nritems(left);
  982. path->slots[level] = orig_slot;
  983. }
  984. }
  985. /* double check we haven't messed things up */
  986. check_block(root, path, level);
  987. if (orig_ptr !=
  988. btrfs_node_blockptr(path->nodes[level], path->slots[level]))
  989. BUG();
  990. enospc:
  991. if (right) {
  992. btrfs_tree_unlock(right);
  993. free_extent_buffer(right);
  994. }
  995. if (left) {
  996. if (path->nodes[level] != left)
  997. btrfs_tree_unlock(left);
  998. free_extent_buffer(left);
  999. }
  1000. return ret;
  1001. }
  1002. /* Node balancing for insertion. Here we only split or push nodes around
  1003. * when they are completely full. This is also done top down, so we
  1004. * have to be pessimistic.
  1005. */
  1006. static int noinline push_nodes_for_insert(struct btrfs_trans_handle *trans,
  1007. struct btrfs_root *root,
  1008. struct btrfs_path *path, int level)
  1009. {
  1010. struct extent_buffer *right = NULL;
  1011. struct extent_buffer *mid;
  1012. struct extent_buffer *left = NULL;
  1013. struct extent_buffer *parent = NULL;
  1014. int ret = 0;
  1015. int wret;
  1016. int pslot;
  1017. int orig_slot = path->slots[level];
  1018. u64 orig_ptr;
  1019. if (level == 0)
  1020. return 1;
  1021. mid = path->nodes[level];
  1022. WARN_ON(btrfs_header_generation(mid) != trans->transid);
  1023. orig_ptr = btrfs_node_blockptr(mid, orig_slot);
  1024. if (level < BTRFS_MAX_LEVEL - 1)
  1025. parent = path->nodes[level + 1];
  1026. pslot = path->slots[level + 1];
  1027. if (!parent)
  1028. return 1;
  1029. left = read_node_slot(root, parent, pslot - 1);
  1030. /* first, try to make some room in the middle buffer */
  1031. if (left) {
  1032. u32 left_nr;
  1033. btrfs_tree_lock(left);
  1034. left_nr = btrfs_header_nritems(left);
  1035. if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
  1036. wret = 1;
  1037. } else {
  1038. ret = btrfs_cow_block(trans, root, left, parent,
  1039. pslot - 1, &left, 0);
  1040. if (ret)
  1041. wret = 1;
  1042. else {
  1043. wret = push_node_left(trans, root,
  1044. left, mid, 0);
  1045. }
  1046. }
  1047. if (wret < 0)
  1048. ret = wret;
  1049. if (wret == 0) {
  1050. struct btrfs_disk_key disk_key;
  1051. orig_slot += left_nr;
  1052. btrfs_node_key(mid, &disk_key, 0);
  1053. btrfs_set_node_key(parent, &disk_key, pslot);
  1054. btrfs_mark_buffer_dirty(parent);
  1055. if (btrfs_header_nritems(left) > orig_slot) {
  1056. path->nodes[level] = left;
  1057. path->slots[level + 1] -= 1;
  1058. path->slots[level] = orig_slot;
  1059. btrfs_tree_unlock(mid);
  1060. free_extent_buffer(mid);
  1061. } else {
  1062. orig_slot -=
  1063. btrfs_header_nritems(left);
  1064. path->slots[level] = orig_slot;
  1065. btrfs_tree_unlock(left);
  1066. free_extent_buffer(left);
  1067. }
  1068. return 0;
  1069. }
  1070. btrfs_tree_unlock(left);
  1071. free_extent_buffer(left);
  1072. }
  1073. right = read_node_slot(root, parent, pslot + 1);
  1074. /*
  1075. * then try to empty the right most buffer into the middle
  1076. */
  1077. if (right) {
  1078. u32 right_nr;
  1079. btrfs_tree_lock(right);
  1080. right_nr = btrfs_header_nritems(right);
  1081. if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
  1082. wret = 1;
  1083. } else {
  1084. ret = btrfs_cow_block(trans, root, right,
  1085. parent, pslot + 1,
  1086. &right, 0);
  1087. if (ret)
  1088. wret = 1;
  1089. else {
  1090. wret = balance_node_right(trans, root,
  1091. right, mid);
  1092. }
  1093. }
  1094. if (wret < 0)
  1095. ret = wret;
  1096. if (wret == 0) {
  1097. struct btrfs_disk_key disk_key;
  1098. btrfs_node_key(right, &disk_key, 0);
  1099. btrfs_set_node_key(parent, &disk_key, pslot + 1);
  1100. btrfs_mark_buffer_dirty(parent);
  1101. if (btrfs_header_nritems(mid) <= orig_slot) {
  1102. path->nodes[level] = right;
  1103. path->slots[level + 1] += 1;
  1104. path->slots[level] = orig_slot -
  1105. btrfs_header_nritems(mid);
  1106. btrfs_tree_unlock(mid);
  1107. free_extent_buffer(mid);
  1108. } else {
  1109. btrfs_tree_unlock(right);
  1110. free_extent_buffer(right);
  1111. }
  1112. return 0;
  1113. }
  1114. btrfs_tree_unlock(right);
  1115. free_extent_buffer(right);
  1116. }
  1117. return 1;
  1118. }
  1119. /*
  1120. * readahead one full node of leaves, finding things that are close
  1121. * to the block in 'slot', and triggering ra on them.
  1122. */
  1123. static noinline void reada_for_search(struct btrfs_root *root,
  1124. struct btrfs_path *path,
  1125. int level, int slot, u64 objectid)
  1126. {
  1127. struct extent_buffer *node;
  1128. struct btrfs_disk_key disk_key;
  1129. u32 nritems;
  1130. u64 search;
  1131. u64 lowest_read;
  1132. u64 highest_read;
  1133. u64 nread = 0;
  1134. int direction = path->reada;
  1135. struct extent_buffer *eb;
  1136. u32 nr;
  1137. u32 blocksize;
  1138. u32 nscan = 0;
  1139. if (level != 1)
  1140. return;
  1141. if (!path->nodes[level])
  1142. return;
  1143. node = path->nodes[level];
  1144. search = btrfs_node_blockptr(node, slot);
  1145. blocksize = btrfs_level_size(root, level - 1);
  1146. eb = btrfs_find_tree_block(root, search, blocksize);
  1147. if (eb) {
  1148. free_extent_buffer(eb);
  1149. return;
  1150. }
  1151. highest_read = search;
  1152. lowest_read = search;
  1153. nritems = btrfs_header_nritems(node);
  1154. nr = slot;
  1155. while(1) {
  1156. if (direction < 0) {
  1157. if (nr == 0)
  1158. break;
  1159. nr--;
  1160. } else if (direction > 0) {
  1161. nr++;
  1162. if (nr >= nritems)
  1163. break;
  1164. }
  1165. if (path->reada < 0 && objectid) {
  1166. btrfs_node_key(node, &disk_key, nr);
  1167. if (btrfs_disk_key_objectid(&disk_key) != objectid)
  1168. break;
  1169. }
  1170. search = btrfs_node_blockptr(node, nr);
  1171. if ((search >= lowest_read && search <= highest_read) ||
  1172. (search < lowest_read && lowest_read - search <= 32768) ||
  1173. (search > highest_read && search - highest_read <= 32768)) {
  1174. readahead_tree_block(root, search, blocksize,
  1175. btrfs_node_ptr_generation(node, nr));
  1176. nread += blocksize;
  1177. }
  1178. nscan++;
  1179. if (path->reada < 2 && (nread > (256 * 1024) || nscan > 32))
  1180. break;
  1181. if(nread > (1024 * 1024) || nscan > 128)
  1182. break;
  1183. if (search < lowest_read)
  1184. lowest_read = search;
  1185. if (search > highest_read)
  1186. highest_read = search;
  1187. }
  1188. }
  1189. /*
  1190. * when we walk down the tree, it is usually safe to unlock the higher layers in
  1191. * the tree. The exceptions are when our path goes through slot 0, because operations
  1192. * on the tree might require changing key pointers higher up in the tree.
  1193. *
  1194. * callers might also have set path->keep_locks, which tells this code to
  1195. * keep the lock if the path points to the last slot in the block. This is
  1196. * part of walking through the tree, and selecting the next slot in the higher
  1197. * block.
  1198. *
  1199. * lowest_unlock sets the lowest level in the tree we're allowed to unlock.
  1200. * so if lowest_unlock is 1, level 0 won't be unlocked
  1201. */
  1202. static noinline void unlock_up(struct btrfs_path *path, int level,
  1203. int lowest_unlock)
  1204. {
  1205. int i;
  1206. int skip_level = level;
  1207. int no_skips = 0;
  1208. struct extent_buffer *t;
  1209. for (i = level; i < BTRFS_MAX_LEVEL; i++) {
  1210. if (!path->nodes[i])
  1211. break;
  1212. if (!path->locks[i])
  1213. break;
  1214. if (!no_skips && path->slots[i] == 0) {
  1215. skip_level = i + 1;
  1216. continue;
  1217. }
  1218. if (!no_skips && path->keep_locks) {
  1219. u32 nritems;
  1220. t = path->nodes[i];
  1221. nritems = btrfs_header_nritems(t);
  1222. if (nritems < 1 || path->slots[i] >= nritems - 1) {
  1223. skip_level = i + 1;
  1224. continue;
  1225. }
  1226. }
  1227. if (skip_level < i && i >= lowest_unlock)
  1228. no_skips = 1;
  1229. t = path->nodes[i];
  1230. if (i >= lowest_unlock && i > skip_level && path->locks[i]) {
  1231. btrfs_tree_unlock(t);
  1232. path->locks[i] = 0;
  1233. }
  1234. }
  1235. }
  1236. /*
  1237. * look for key in the tree. path is filled in with nodes along the way
  1238. * if key is found, we return zero and you can find the item in the leaf
  1239. * level of the path (level 0)
  1240. *
  1241. * If the key isn't found, the path points to the slot where it should
  1242. * be inserted, and 1 is returned. If there are other errors during the
  1243. * search a negative error number is returned.
  1244. *
  1245. * if ins_len > 0, nodes and leaves will be split as we walk down the
  1246. * tree. if ins_len < 0, nodes will be merged as we walk down the tree (if
  1247. * possible)
  1248. */
  1249. int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
  1250. *root, struct btrfs_key *key, struct btrfs_path *p, int
  1251. ins_len, int cow)
  1252. {
  1253. struct extent_buffer *b;
  1254. struct extent_buffer *tmp;
  1255. int slot;
  1256. int ret;
  1257. int level;
  1258. int should_reada = p->reada;
  1259. int lowest_unlock = 1;
  1260. int blocksize;
  1261. u8 lowest_level = 0;
  1262. u64 blocknr;
  1263. u64 gen;
  1264. struct btrfs_key prealloc_block;
  1265. lowest_level = p->lowest_level;
  1266. WARN_ON(lowest_level && ins_len > 0);
  1267. WARN_ON(p->nodes[0] != NULL);
  1268. WARN_ON(cow && root == root->fs_info->extent_root &&
  1269. !mutex_is_locked(&root->fs_info->alloc_mutex));
  1270. if (ins_len < 0)
  1271. lowest_unlock = 2;
  1272. prealloc_block.objectid = 0;
  1273. again:
  1274. if (p->skip_locking)
  1275. b = btrfs_root_node(root);
  1276. else
  1277. b = btrfs_lock_root_node(root);
  1278. while (b) {
  1279. level = btrfs_header_level(b);
  1280. /*
  1281. * setup the path here so we can release it under lock
  1282. * contention with the cow code
  1283. */
  1284. p->nodes[level] = b;
  1285. if (!p->skip_locking)
  1286. p->locks[level] = 1;
  1287. if (cow) {
  1288. int wret;
  1289. /* is a cow on this block not required */
  1290. spin_lock(&root->fs_info->hash_lock);
  1291. if (btrfs_header_generation(b) == trans->transid &&
  1292. btrfs_header_owner(b) == root->root_key.objectid &&
  1293. !btrfs_header_flag(b, BTRFS_HEADER_FLAG_WRITTEN)) {
  1294. spin_unlock(&root->fs_info->hash_lock);
  1295. goto cow_done;
  1296. }
  1297. spin_unlock(&root->fs_info->hash_lock);
  1298. /* ok, we have to cow, is our old prealloc the right
  1299. * size?
  1300. */
  1301. if (prealloc_block.objectid &&
  1302. prealloc_block.offset != b->len) {
  1303. btrfs_free_reserved_extent(root,
  1304. prealloc_block.objectid,
  1305. prealloc_block.offset);
  1306. prealloc_block.objectid = 0;
  1307. }
  1308. /*
  1309. * for higher level blocks, try not to allocate blocks
  1310. * with the block and the parent locks held.
  1311. */
  1312. if (level > 1 && !prealloc_block.objectid &&
  1313. btrfs_path_lock_waiting(p, level)) {
  1314. u32 size = b->len;
  1315. u64 hint = b->start;
  1316. btrfs_release_path(root, p);
  1317. ret = btrfs_reserve_extent(trans, root,
  1318. size, size, 0,
  1319. hint, (u64)-1,
  1320. &prealloc_block, 0);
  1321. BUG_ON(ret);
  1322. goto again;
  1323. }
  1324. wret = btrfs_cow_block(trans, root, b,
  1325. p->nodes[level + 1],
  1326. p->slots[level + 1],
  1327. &b, prealloc_block.objectid);
  1328. prealloc_block.objectid = 0;
  1329. if (wret) {
  1330. free_extent_buffer(b);
  1331. ret = wret;
  1332. goto done;
  1333. }
  1334. }
  1335. cow_done:
  1336. BUG_ON(!cow && ins_len);
  1337. if (level != btrfs_header_level(b))
  1338. WARN_ON(1);
  1339. level = btrfs_header_level(b);
  1340. p->nodes[level] = b;
  1341. if (!p->skip_locking)
  1342. p->locks[level] = 1;
  1343. ret = check_block(root, p, level);
  1344. if (ret) {
  1345. ret = -1;
  1346. goto done;
  1347. }
  1348. ret = bin_search(b, key, level, &slot);
  1349. if (level != 0) {
  1350. if (ret && slot > 0)
  1351. slot -= 1;
  1352. p->slots[level] = slot;
  1353. if (ins_len > 0 && btrfs_header_nritems(b) >=
  1354. BTRFS_NODEPTRS_PER_BLOCK(root) - 3) {
  1355. int sret = split_node(trans, root, p, level);
  1356. BUG_ON(sret > 0);
  1357. if (sret) {
  1358. ret = sret;
  1359. goto done;
  1360. }
  1361. b = p->nodes[level];
  1362. slot = p->slots[level];
  1363. } else if (ins_len < 0) {
  1364. int sret = balance_level(trans, root, p,
  1365. level);
  1366. if (sret) {
  1367. ret = sret;
  1368. goto done;
  1369. }
  1370. b = p->nodes[level];
  1371. if (!b) {
  1372. btrfs_release_path(NULL, p);
  1373. goto again;
  1374. }
  1375. slot = p->slots[level];
  1376. BUG_ON(btrfs_header_nritems(b) == 1);
  1377. }
  1378. unlock_up(p, level, lowest_unlock);
  1379. /* this is only true while dropping a snapshot */
  1380. if (level == lowest_level) {
  1381. ret = 0;
  1382. goto done;
  1383. }
  1384. blocknr = btrfs_node_blockptr(b, slot);
  1385. gen = btrfs_node_ptr_generation(b, slot);
  1386. blocksize = btrfs_level_size(root, level - 1);
  1387. tmp = btrfs_find_tree_block(root, blocknr, blocksize);
  1388. if (tmp && btrfs_buffer_uptodate(tmp, gen)) {
  1389. b = tmp;
  1390. } else {
  1391. /*
  1392. * reduce lock contention at high levels
  1393. * of the btree by dropping locks before
  1394. * we read.
  1395. */
  1396. if (level > 1) {
  1397. btrfs_release_path(NULL, p);
  1398. if (tmp)
  1399. free_extent_buffer(tmp);
  1400. if (should_reada)
  1401. reada_for_search(root, p,
  1402. level, slot,
  1403. key->objectid);
  1404. tmp = read_tree_block(root, blocknr,
  1405. blocksize, gen);
  1406. if (tmp)
  1407. free_extent_buffer(tmp);
  1408. goto again;
  1409. } else {
  1410. if (tmp)
  1411. free_extent_buffer(tmp);
  1412. if (should_reada)
  1413. reada_for_search(root, p,
  1414. level, slot,
  1415. key->objectid);
  1416. b = read_node_slot(root, b, slot);
  1417. }
  1418. }
  1419. if (!p->skip_locking)
  1420. btrfs_tree_lock(b);
  1421. } else {
  1422. p->slots[level] = slot;
  1423. if (ins_len > 0 && btrfs_leaf_free_space(root, b) <
  1424. sizeof(struct btrfs_item) + ins_len) {
  1425. int sret = split_leaf(trans, root, key,
  1426. p, ins_len, ret == 0);
  1427. BUG_ON(sret > 0);
  1428. if (sret) {
  1429. ret = sret;
  1430. goto done;
  1431. }
  1432. }
  1433. unlock_up(p, level, lowest_unlock);
  1434. goto done;
  1435. }
  1436. }
  1437. ret = 1;
  1438. done:
  1439. if (prealloc_block.objectid) {
  1440. btrfs_free_reserved_extent(root,
  1441. prealloc_block.objectid,
  1442. prealloc_block.offset);
  1443. }
  1444. return ret;
  1445. }
  1446. int btrfs_merge_path(struct btrfs_trans_handle *trans,
  1447. struct btrfs_root *root,
  1448. struct btrfs_key *node_keys,
  1449. u64 *nodes, int lowest_level)
  1450. {
  1451. struct extent_buffer *eb;
  1452. struct extent_buffer *parent;
  1453. struct btrfs_key key;
  1454. u64 bytenr;
  1455. u64 generation;
  1456. u32 blocksize;
  1457. int level;
  1458. int slot;
  1459. int key_match;
  1460. int ret;
  1461. eb = btrfs_lock_root_node(root);
  1462. ret = btrfs_cow_block(trans, root, eb, NULL, 0, &eb, 0);
  1463. BUG_ON(ret);
  1464. parent = eb;
  1465. while (1) {
  1466. level = btrfs_header_level(parent);
  1467. if (level == 0 || level <= lowest_level)
  1468. break;
  1469. ret = bin_search(parent, &node_keys[lowest_level], level,
  1470. &slot);
  1471. if (ret && slot > 0)
  1472. slot--;
  1473. bytenr = btrfs_node_blockptr(parent, slot);
  1474. if (nodes[level - 1] == bytenr)
  1475. break;
  1476. blocksize = btrfs_level_size(root, level - 1);
  1477. generation = btrfs_node_ptr_generation(parent, slot);
  1478. btrfs_node_key_to_cpu(eb, &key, slot);
  1479. key_match = !memcmp(&key, &node_keys[level - 1], sizeof(key));
  1480. if (generation == trans->transid) {
  1481. eb = read_tree_block(root, bytenr, blocksize,
  1482. generation);
  1483. btrfs_tree_lock(eb);
  1484. }
  1485. /*
  1486. * if node keys match and node pointer hasn't been modified
  1487. * in the running transaction, we can merge the path. for
  1488. * blocks owened by reloc trees, the node pointer check is
  1489. * skipped, this is because these blocks are fully controlled
  1490. * by the space balance code, no one else can modify them.
  1491. */
  1492. if (!nodes[level - 1] || !key_match ||
  1493. (generation == trans->transid &&
  1494. btrfs_header_owner(eb) != BTRFS_TREE_RELOC_OBJECTID)) {
  1495. if (level == 1 || level == lowest_level + 1) {
  1496. if (generation == trans->transid) {
  1497. btrfs_tree_unlock(eb);
  1498. free_extent_buffer(eb);
  1499. }
  1500. break;
  1501. }
  1502. if (generation != trans->transid) {
  1503. eb = read_tree_block(root, bytenr, blocksize,
  1504. generation);
  1505. btrfs_tree_lock(eb);
  1506. }
  1507. ret = btrfs_cow_block(trans, root, eb, parent, slot,
  1508. &eb, 0);
  1509. BUG_ON(ret);
  1510. if (root->root_key.objectid ==
  1511. BTRFS_TREE_RELOC_OBJECTID) {
  1512. if (!nodes[level - 1]) {
  1513. nodes[level - 1] = eb->start;
  1514. memcpy(&node_keys[level - 1], &key,
  1515. sizeof(node_keys[0]));
  1516. } else {
  1517. WARN_ON(1);
  1518. }
  1519. }
  1520. btrfs_tree_unlock(parent);
  1521. free_extent_buffer(parent);
  1522. parent = eb;
  1523. continue;
  1524. }
  1525. btrfs_set_node_blockptr(parent, slot, nodes[level - 1]);
  1526. btrfs_set_node_ptr_generation(parent, slot, trans->transid);
  1527. btrfs_mark_buffer_dirty(parent);
  1528. ret = btrfs_inc_extent_ref(trans, root,
  1529. nodes[level - 1],
  1530. blocksize, parent->start,
  1531. btrfs_header_owner(parent),
  1532. btrfs_header_generation(parent),
  1533. level - 1);
  1534. BUG_ON(ret);
  1535. /*
  1536. * If the block was created in the running transaction,
  1537. * it's possible this is the last reference to it, so we
  1538. * should drop the subtree.
  1539. */
  1540. if (generation == trans->transid) {
  1541. ret = btrfs_drop_subtree(trans, root, eb, parent);
  1542. BUG_ON(ret);
  1543. btrfs_tree_unlock(eb);
  1544. free_extent_buffer(eb);
  1545. } else {
  1546. ret = btrfs_free_extent(trans, root, bytenr,
  1547. blocksize, parent->start,
  1548. btrfs_header_owner(parent),
  1549. btrfs_header_generation(parent),
  1550. level - 1, 1);
  1551. BUG_ON(ret);
  1552. }
  1553. break;
  1554. }
  1555. btrfs_tree_unlock(parent);
  1556. free_extent_buffer(parent);
  1557. return 0;
  1558. }
  1559. /*
  1560. * adjust the pointers going up the tree, starting at level
  1561. * making sure the right key of each node is points to 'key'.
  1562. * This is used after shifting pointers to the left, so it stops
  1563. * fixing up pointers when a given leaf/node is not in slot 0 of the
  1564. * higher levels
  1565. *
  1566. * If this fails to write a tree block, it returns -1, but continues
  1567. * fixing up the blocks in ram so the tree is consistent.
  1568. */
  1569. static int fixup_low_keys(struct btrfs_trans_handle *trans,
  1570. struct btrfs_root *root, struct btrfs_path *path,
  1571. struct btrfs_disk_key *key, int level)
  1572. {
  1573. int i;
  1574. int ret = 0;
  1575. struct extent_buffer *t;
  1576. for (i = level; i < BTRFS_MAX_LEVEL; i++) {
  1577. int tslot = path->slots[i];
  1578. if (!path->nodes[i])
  1579. break;
  1580. t = path->nodes[i];
  1581. btrfs_set_node_key(t, key, tslot);
  1582. btrfs_mark_buffer_dirty(path->nodes[i]);
  1583. if (tslot != 0)
  1584. break;
  1585. }
  1586. return ret;
  1587. }
  1588. /*
  1589. * update item key.
  1590. *
  1591. * This function isn't completely safe. It's the caller's responsibility
  1592. * that the new key won't break the order
  1593. */
  1594. int btrfs_set_item_key_safe(struct btrfs_trans_handle *trans,
  1595. struct btrfs_root *root, struct btrfs_path *path,
  1596. struct btrfs_key *new_key)
  1597. {
  1598. struct btrfs_disk_key disk_key;
  1599. struct extent_buffer *eb;
  1600. int slot;
  1601. eb = path->nodes[0];
  1602. slot = path->slots[0];
  1603. if (slot > 0) {
  1604. btrfs_item_key(eb, &disk_key, slot - 1);
  1605. if (comp_keys(&disk_key, new_key) >= 0)
  1606. return -1;
  1607. }
  1608. if (slot < btrfs_header_nritems(eb) - 1) {
  1609. btrfs_item_key(eb, &disk_key, slot + 1);
  1610. if (comp_keys(&disk_key, new_key) <= 0)
  1611. return -1;
  1612. }
  1613. btrfs_cpu_key_to_disk(&disk_key, new_key);
  1614. btrfs_set_item_key(eb, &disk_key, slot);
  1615. btrfs_mark_buffer_dirty(eb);
  1616. if (slot == 0)
  1617. fixup_low_keys(trans, root, path, &disk_key, 1);
  1618. return 0;
  1619. }
  1620. /*
  1621. * try to push data from one node into the next node left in the
  1622. * tree.
  1623. *
  1624. * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
  1625. * error, and > 0 if there was no room in the left hand block.
  1626. */
  1627. static int push_node_left(struct btrfs_trans_handle *trans,
  1628. struct btrfs_root *root, struct extent_buffer *dst,
  1629. struct extent_buffer *src, int empty)
  1630. {
  1631. int push_items = 0;
  1632. int src_nritems;
  1633. int dst_nritems;
  1634. int ret = 0;
  1635. src_nritems = btrfs_header_nritems(src);
  1636. dst_nritems = btrfs_header_nritems(dst);
  1637. push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
  1638. WARN_ON(btrfs_header_generation(src) != trans->transid);
  1639. WARN_ON(btrfs_header_generation(dst) != trans->transid);
  1640. if (!empty && src_nritems <= 8)
  1641. return 1;
  1642. if (push_items <= 0) {
  1643. return 1;
  1644. }
  1645. if (empty) {
  1646. push_items = min(src_nritems, push_items);
  1647. if (push_items < src_nritems) {
  1648. /* leave at least 8 pointers in the node if
  1649. * we aren't going to empty it
  1650. */
  1651. if (src_nritems - push_items < 8) {
  1652. if (push_items <= 8)
  1653. return 1;
  1654. push_items -= 8;
  1655. }
  1656. }
  1657. } else
  1658. push_items = min(src_nritems - 8, push_items);
  1659. copy_extent_buffer(dst, src,
  1660. btrfs_node_key_ptr_offset(dst_nritems),
  1661. btrfs_node_key_ptr_offset(0),
  1662. push_items * sizeof(struct btrfs_key_ptr));
  1663. if (push_items < src_nritems) {
  1664. memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
  1665. btrfs_node_key_ptr_offset(push_items),
  1666. (src_nritems - push_items) *
  1667. sizeof(struct btrfs_key_ptr));
  1668. }
  1669. btrfs_set_header_nritems(src, src_nritems - push_items);
  1670. btrfs_set_header_nritems(dst, dst_nritems + push_items);
  1671. btrfs_mark_buffer_dirty(src);
  1672. btrfs_mark_buffer_dirty(dst);
  1673. ret = btrfs_update_ref(trans, root, src, dst, dst_nritems, push_items);
  1674. BUG_ON(ret);
  1675. return ret;
  1676. }
  1677. /*
  1678. * try to push data from one node into the next node right in the
  1679. * tree.
  1680. *
  1681. * returns 0 if some ptrs were pushed, < 0 if there was some horrible
  1682. * error, and > 0 if there was no room in the right hand block.
  1683. *
  1684. * this will only push up to 1/2 the contents of the left node over
  1685. */
  1686. static int balance_node_right(struct btrfs_trans_handle *trans,
  1687. struct btrfs_root *root,
  1688. struct extent_buffer *dst,
  1689. struct extent_buffer *src)
  1690. {
  1691. int push_items = 0;
  1692. int max_push;
  1693. int src_nritems;
  1694. int dst_nritems;
  1695. int ret = 0;
  1696. WARN_ON(btrfs_header_generation(src) != trans->transid);
  1697. WARN_ON(btrfs_header_generation(dst) != trans->transid);
  1698. src_nritems = btrfs_header_nritems(src);
  1699. dst_nritems = btrfs_header_nritems(dst);
  1700. push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
  1701. if (push_items <= 0) {
  1702. return 1;
  1703. }
  1704. if (src_nritems < 4) {
  1705. return 1;
  1706. }
  1707. max_push = src_nritems / 2 + 1;
  1708. /* don't try to empty the node */
  1709. if (max_push >= src_nritems) {
  1710. return 1;
  1711. }
  1712. if (max_push < push_items)
  1713. push_items = max_push;
  1714. memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
  1715. btrfs_node_key_ptr_offset(0),
  1716. (dst_nritems) *
  1717. sizeof(struct btrfs_key_ptr));
  1718. copy_extent_buffer(dst, src,
  1719. btrfs_node_key_ptr_offset(0),
  1720. btrfs_node_key_ptr_offset(src_nritems - push_items),
  1721. push_items * sizeof(struct btrfs_key_ptr));
  1722. btrfs_set_header_nritems(src, src_nritems - push_items);
  1723. btrfs_set_header_nritems(dst, dst_nritems + push_items);
  1724. btrfs_mark_buffer_dirty(src);
  1725. btrfs_mark_buffer_dirty(dst);
  1726. ret = btrfs_update_ref(trans, root, src, dst, 0, push_items);
  1727. BUG_ON(ret);
  1728. return ret;
  1729. }
  1730. /*
  1731. * helper function to insert a new root level in the tree.
  1732. * A new node is allocated, and a single item is inserted to
  1733. * point to the existing root
  1734. *
  1735. * returns zero on success or < 0 on failure.
  1736. */
  1737. static int noinline insert_new_root(struct btrfs_trans_handle *trans,
  1738. struct btrfs_root *root,
  1739. struct btrfs_path *path, int level)
  1740. {
  1741. u64 lower_gen;
  1742. struct extent_buffer *lower;
  1743. struct extent_buffer *c;
  1744. struct extent_buffer *old;
  1745. struct btrfs_disk_key lower_key;
  1746. int ret;
  1747. BUG_ON(path->nodes[level]);
  1748. BUG_ON(path->nodes[level-1] != root->node);
  1749. lower = path->nodes[level-1];
  1750. if (level == 1)
  1751. btrfs_item_key(lower, &lower_key, 0);
  1752. else
  1753. btrfs_node_key(lower, &lower_key, 0);
  1754. c = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
  1755. root->root_key.objectid, trans->transid,
  1756. level, root->node->start, 0);
  1757. if (IS_ERR(c))
  1758. return PTR_ERR(c);
  1759. memset_extent_buffer(c, 0, 0, root->nodesize);
  1760. btrfs_set_header_nritems(c, 1);
  1761. btrfs_set_header_level(c, level);
  1762. btrfs_set_header_bytenr(c, c->start);
  1763. btrfs_set_header_generation(c, trans->transid);
  1764. btrfs_set_header_owner(c, root->root_key.objectid);
  1765. write_extent_buffer(c, root->fs_info->fsid,
  1766. (unsigned long)btrfs_header_fsid(c),
  1767. BTRFS_FSID_SIZE);
  1768. write_extent_buffer(c, root->fs_info->chunk_tree_uuid,
  1769. (unsigned long)btrfs_header_chunk_tree_uuid(c),
  1770. BTRFS_UUID_SIZE);
  1771. btrfs_set_node_key(c, &lower_key, 0);
  1772. btrfs_set_node_blockptr(c, 0, lower->start);
  1773. lower_gen = btrfs_header_generation(lower);
  1774. WARN_ON(lower_gen != trans->transid);
  1775. btrfs_set_node_ptr_generation(c, 0, lower_gen);
  1776. btrfs_mark_buffer_dirty(c);
  1777. spin_lock(&root->node_lock);
  1778. old = root->node;
  1779. root->node = c;
  1780. spin_unlock(&root->node_lock);
  1781. ret = btrfs_update_extent_ref(trans, root, lower->start,
  1782. lower->start, c->start,
  1783. root->root_key.objectid,
  1784. trans->transid, level - 1);
  1785. BUG_ON(ret);
  1786. /* the super has an extra ref to root->node */
  1787. free_extent_buffer(old);
  1788. add_root_to_dirty_list(root);
  1789. extent_buffer_get(c);
  1790. path->nodes[level] = c;
  1791. path->locks[level] = 1;
  1792. path->slots[level] = 0;
  1793. return 0;
  1794. }
  1795. /*
  1796. * worker function to insert a single pointer in a node.
  1797. * the node should have enough room for the pointer already
  1798. *
  1799. * slot and level indicate where you want the key to go, and
  1800. * blocknr is the block the key points to.
  1801. *
  1802. * returns zero on success and < 0 on any error
  1803. */
  1804. static int insert_ptr(struct btrfs_trans_handle *trans, struct btrfs_root
  1805. *root, struct btrfs_path *path, struct btrfs_disk_key
  1806. *key, u64 bytenr, int slot, int level)
  1807. {
  1808. struct extent_buffer *lower;
  1809. int nritems;
  1810. BUG_ON(!path->nodes[level]);
  1811. lower = path->nodes[level];
  1812. nritems = btrfs_header_nritems(lower);
  1813. if (slot > nritems)
  1814. BUG();
  1815. if (nritems == BTRFS_NODEPTRS_PER_BLOCK(root))
  1816. BUG();
  1817. if (slot != nritems) {
  1818. memmove_extent_buffer(lower,
  1819. btrfs_node_key_ptr_offset(slot + 1),
  1820. btrfs_node_key_ptr_offset(slot),
  1821. (nritems - slot) * sizeof(struct btrfs_key_ptr));
  1822. }
  1823. btrfs_set_node_key(lower, key, slot);
  1824. btrfs_set_node_blockptr(lower, slot, bytenr);
  1825. WARN_ON(trans->transid == 0);
  1826. btrfs_set_node_ptr_generation(lower, slot, trans->transid);
  1827. btrfs_set_header_nritems(lower, nritems + 1);
  1828. btrfs_mark_buffer_dirty(lower);
  1829. return 0;
  1830. }
  1831. /*
  1832. * split the node at the specified level in path in two.
  1833. * The path is corrected to point to the appropriate node after the split
  1834. *
  1835. * Before splitting this tries to make some room in the node by pushing
  1836. * left and right, if either one works, it returns right away.
  1837. *
  1838. * returns 0 on success and < 0 on failure
  1839. */
  1840. static noinline int split_node(struct btrfs_trans_handle *trans,
  1841. struct btrfs_root *root,
  1842. struct btrfs_path *path, int level)
  1843. {
  1844. struct extent_buffer *c;
  1845. struct extent_buffer *split;
  1846. struct btrfs_disk_key disk_key;
  1847. int mid;
  1848. int ret;
  1849. int wret;
  1850. u32 c_nritems;
  1851. c = path->nodes[level];
  1852. WARN_ON(btrfs_header_generation(c) != trans->transid);
  1853. if (c == root->node) {
  1854. /* trying to split the root, lets make a new one */
  1855. ret = insert_new_root(trans, root, path, level + 1);
  1856. if (ret)
  1857. return ret;
  1858. } else {
  1859. ret = push_nodes_for_insert(trans, root, path, level);
  1860. c = path->nodes[level];
  1861. if (!ret && btrfs_header_nritems(c) <
  1862. BTRFS_NODEPTRS_PER_BLOCK(root) - 3)
  1863. return 0;
  1864. if (ret < 0)
  1865. return ret;
  1866. }
  1867. c_nritems = btrfs_header_nritems(c);
  1868. split = btrfs_alloc_free_block(trans, root, root->nodesize,
  1869. path->nodes[level + 1]->start,
  1870. root->root_key.objectid,
  1871. trans->transid, level, c->start, 0);
  1872. if (IS_ERR(split))
  1873. return PTR_ERR(split);
  1874. btrfs_set_header_flags(split, btrfs_header_flags(c));
  1875. btrfs_set_header_level(split, btrfs_header_level(c));
  1876. btrfs_set_header_bytenr(split, split->start);
  1877. btrfs_set_header_generation(split, trans->transid);
  1878. btrfs_set_header_owner(split, root->root_key.objectid);
  1879. btrfs_set_header_flags(split, 0);
  1880. write_extent_buffer(split, root->fs_info->fsid,
  1881. (unsigned long)btrfs_header_fsid(split),
  1882. BTRFS_FSID_SIZE);
  1883. write_extent_buffer(split, root->fs_info->chunk_tree_uuid,
  1884. (unsigned long)btrfs_header_chunk_tree_uuid(split),
  1885. BTRFS_UUID_SIZE);
  1886. mid = (c_nritems + 1) / 2;
  1887. copy_extent_buffer(split, c,
  1888. btrfs_node_key_ptr_offset(0),
  1889. btrfs_node_key_ptr_offset(mid),
  1890. (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
  1891. btrfs_set_header_nritems(split, c_nritems - mid);
  1892. btrfs_set_header_nritems(c, mid);
  1893. ret = 0;
  1894. btrfs_mark_buffer_dirty(c);
  1895. btrfs_mark_buffer_dirty(split);
  1896. btrfs_node_key(split, &disk_key, 0);
  1897. wret = insert_ptr(trans, root, path, &disk_key, split->start,
  1898. path->slots[level + 1] + 1,
  1899. level + 1);
  1900. if (wret)
  1901. ret = wret;
  1902. ret = btrfs_update_ref(trans, root, c, split, 0, c_nritems - mid);
  1903. BUG_ON(ret);
  1904. if (path->slots[level] >= mid) {
  1905. path->slots[level] -= mid;
  1906. btrfs_tree_unlock(c);
  1907. free_extent_buffer(c);
  1908. path->nodes[level] = split;
  1909. path->slots[level + 1] += 1;
  1910. } else {
  1911. btrfs_tree_unlock(split);
  1912. free_extent_buffer(split);
  1913. }
  1914. return ret;
  1915. }
  1916. /*
  1917. * how many bytes are required to store the items in a leaf. start
  1918. * and nr indicate which items in the leaf to check. This totals up the
  1919. * space used both by the item structs and the item data
  1920. */
  1921. static int leaf_space_used(struct extent_buffer *l, int start, int nr)
  1922. {
  1923. int data_len;
  1924. int nritems = btrfs_header_nritems(l);
  1925. int end = min(nritems, start + nr) - 1;
  1926. if (!nr)
  1927. return 0;
  1928. data_len = btrfs_item_end_nr(l, start);
  1929. data_len = data_len - btrfs_item_offset_nr(l, end);
  1930. data_len += sizeof(struct btrfs_item) * nr;
  1931. WARN_ON(data_len < 0);
  1932. return data_len;
  1933. }
  1934. /*
  1935. * The space between the end of the leaf items and
  1936. * the start of the leaf data. IOW, how much room
  1937. * the leaf has left for both items and data
  1938. */
  1939. int noinline btrfs_leaf_free_space(struct btrfs_root *root,
  1940. struct extent_buffer *leaf)
  1941. {
  1942. int nritems = btrfs_header_nritems(leaf);
  1943. int ret;
  1944. ret = BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems);
  1945. if (ret < 0) {
  1946. printk("leaf free space ret %d, leaf data size %lu, used %d nritems %d\n",
  1947. ret, (unsigned long) BTRFS_LEAF_DATA_SIZE(root),
  1948. leaf_space_used(leaf, 0, nritems), nritems);
  1949. }
  1950. return ret;
  1951. }
  1952. /*
  1953. * push some data in the path leaf to the right, trying to free up at
  1954. * least data_size bytes. returns zero if the push worked, nonzero otherwise
  1955. *
  1956. * returns 1 if the push failed because the other node didn't have enough
  1957. * room, 0 if everything worked out and < 0 if there were major errors.
  1958. */
  1959. static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
  1960. *root, struct btrfs_path *path, int data_size,
  1961. int empty)
  1962. {
  1963. struct extent_buffer *left = path->nodes[0];
  1964. struct extent_buffer *right;
  1965. struct extent_buffer *upper;
  1966. struct btrfs_disk_key disk_key;
  1967. int slot;
  1968. u32 i;
  1969. int free_space;
  1970. int push_space = 0;
  1971. int push_items = 0;
  1972. struct btrfs_item *item;
  1973. u32 left_nritems;
  1974. u32 nr;
  1975. u32 right_nritems;
  1976. u32 data_end;
  1977. u32 this_item_size;
  1978. int ret;
  1979. slot = path->slots[1];
  1980. if (!path->nodes[1]) {
  1981. return 1;
  1982. }
  1983. upper = path->nodes[1];
  1984. if (slot >= btrfs_header_nritems(upper) - 1)
  1985. return 1;
  1986. WARN_ON(!btrfs_tree_locked(path->nodes[1]));
  1987. right = read_node_slot(root, upper, slot + 1);
  1988. btrfs_tree_lock(right);
  1989. free_space = btrfs_leaf_free_space(root, right);
  1990. if (free_space < data_size + sizeof(struct btrfs_item))
  1991. goto out_unlock;
  1992. /* cow and double check */
  1993. ret = btrfs_cow_block(trans, root, right, upper,
  1994. slot + 1, &right, 0);
  1995. if (ret)
  1996. goto out_unlock;
  1997. free_space = btrfs_leaf_free_space(root, right);
  1998. if (free_space < data_size + sizeof(struct btrfs_item))
  1999. goto out_unlock;
  2000. left_nritems = btrfs_header_nritems(left);
  2001. if (left_nritems == 0)
  2002. goto out_unlock;
  2003. if (empty)
  2004. nr = 0;
  2005. else
  2006. nr = 1;
  2007. if (path->slots[0] >= left_nritems)
  2008. push_space += data_size + sizeof(*item);
  2009. i = left_nritems - 1;
  2010. while (i >= nr) {
  2011. item = btrfs_item_nr(left, i);
  2012. if (!empty && push_items > 0) {
  2013. if (path->slots[0] > i)
  2014. break;
  2015. if (path->slots[0] == i) {
  2016. int space = btrfs_leaf_free_space(root, left);
  2017. if (space + push_space * 2 > free_space)
  2018. break;
  2019. }
  2020. }
  2021. if (path->slots[0] == i)
  2022. push_space += data_size + sizeof(*item);
  2023. if (!left->map_token) {
  2024. map_extent_buffer(left, (unsigned long)item,
  2025. sizeof(struct btrfs_item),
  2026. &left->map_token, &left->kaddr,
  2027. &left->map_start, &left->map_len,
  2028. KM_USER1);
  2029. }
  2030. this_item_size = btrfs_item_size(left, item);
  2031. if (this_item_size + sizeof(*item) + push_space > free_space)
  2032. break;
  2033. push_items++;
  2034. push_space += this_item_size + sizeof(*item);
  2035. if (i == 0)
  2036. break;
  2037. i--;
  2038. }
  2039. if (left->map_token) {
  2040. unmap_extent_buffer(left, left->map_token, KM_USER1);
  2041. left->map_token = NULL;
  2042. }
  2043. if (push_items == 0)
  2044. goto out_unlock;
  2045. if (!empty && push_items == left_nritems)
  2046. WARN_ON(1);
  2047. /* push left to right */
  2048. right_nritems = btrfs_header_nritems(right);
  2049. push_space = btrfs_item_end_nr(left, left_nritems - push_items);
  2050. push_space -= leaf_data_end(root, left);
  2051. /* make room in the right data area */
  2052. data_end = leaf_data_end(root, right);
  2053. memmove_extent_buffer(right,
  2054. btrfs_leaf_data(right) + data_end - push_space,
  2055. btrfs_leaf_data(right) + data_end,
  2056. BTRFS_LEAF_DATA_SIZE(root) - data_end);
  2057. /* copy from the left data area */
  2058. copy_extent_buffer(right, left, btrfs_leaf_data(right) +
  2059. BTRFS_LEAF_DATA_SIZE(root) - push_space,
  2060. btrfs_leaf_data(left) + leaf_data_end(root, left),
  2061. push_space);
  2062. memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
  2063. btrfs_item_nr_offset(0),
  2064. right_nritems * sizeof(struct btrfs_item));
  2065. /* copy the items from left to right */
  2066. copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
  2067. btrfs_item_nr_offset(left_nritems - push_items),
  2068. push_items * sizeof(struct btrfs_item));
  2069. /* update the item pointers */
  2070. right_nritems += push_items;
  2071. btrfs_set_header_nritems(right, right_nritems);
  2072. push_space = BTRFS_LEAF_DATA_SIZE(root);
  2073. for (i = 0; i < right_nritems; i++) {
  2074. item = btrfs_item_nr(right, i);
  2075. if (!right->map_token) {
  2076. map_extent_buffer(right, (unsigned long)item,
  2077. sizeof(struct btrfs_item),
  2078. &right->map_token, &right->kaddr,
  2079. &right->map_start, &right->map_len,
  2080. KM_USER1);
  2081. }
  2082. push_space -= btrfs_item_size(right, item);
  2083. btrfs_set_item_offset(right, item, push_space);
  2084. }
  2085. if (right->map_token) {
  2086. unmap_extent_buffer(right, right->map_token, KM_USER1);
  2087. right->map_token = NULL;
  2088. }
  2089. left_nritems -= push_items;
  2090. btrfs_set_header_nritems(left, left_nritems);
  2091. if (left_nritems)
  2092. btrfs_mark_buffer_dirty(left);
  2093. btrfs_mark_buffer_dirty(right);
  2094. ret = btrfs_update_ref(trans, root, left, right, 0, push_items);
  2095. BUG_ON(ret);
  2096. btrfs_item_key(right, &disk_key, 0);
  2097. btrfs_set_node_key(upper, &disk_key, slot + 1);
  2098. btrfs_mark_buffer_dirty(upper);
  2099. /* then fixup the leaf pointer in the path */
  2100. if (path->slots[0] >= left_nritems) {
  2101. path->slots[0] -= left_nritems;
  2102. if (btrfs_header_nritems(path->nodes[0]) == 0)
  2103. clean_tree_block(trans, root, path->nodes[0]);
  2104. btrfs_tree_unlock(path->nodes[0]);
  2105. free_extent_buffer(path->nodes[0]);
  2106. path->nodes[0] = right;
  2107. path->slots[1] += 1;
  2108. } else {
  2109. btrfs_tree_unlock(right);
  2110. free_extent_buffer(right);
  2111. }
  2112. return 0;
  2113. out_unlock:
  2114. btrfs_tree_unlock(right);
  2115. free_extent_buffer(right);
  2116. return 1;
  2117. }
  2118. /*
  2119. * push some data in the path leaf to the left, trying to free up at
  2120. * least data_size bytes. returns zero if the push worked, nonzero otherwise
  2121. */
  2122. static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
  2123. *root, struct btrfs_path *path, int data_size,
  2124. int empty)
  2125. {
  2126. struct btrfs_disk_key disk_key;
  2127. struct extent_buffer *right = path->nodes[0];
  2128. struct extent_buffer *left;
  2129. int slot;
  2130. int i;
  2131. int free_space;
  2132. int push_space = 0;
  2133. int push_items = 0;
  2134. struct btrfs_item *item;
  2135. u32 old_left_nritems;
  2136. u32 right_nritems;
  2137. u32 nr;
  2138. int ret = 0;
  2139. int wret;
  2140. u32 this_item_size;
  2141. u32 old_left_item_size;
  2142. slot = path->slots[1];
  2143. if (slot == 0)
  2144. return 1;
  2145. if (!path->nodes[1])
  2146. return 1;
  2147. right_nritems = btrfs_header_nritems(right);
  2148. if (right_nritems == 0) {
  2149. return 1;
  2150. }
  2151. WARN_ON(!btrfs_tree_locked(path->nodes[1]));
  2152. left = read_node_slot(root, path->nodes[1], slot - 1);
  2153. btrfs_tree_lock(left);
  2154. free_space = btrfs_leaf_free_space(root, left);
  2155. if (free_space < data_size + sizeof(struct btrfs_item)) {
  2156. ret = 1;
  2157. goto out;
  2158. }
  2159. /* cow and double check */
  2160. ret = btrfs_cow_block(trans, root, left,
  2161. path->nodes[1], slot - 1, &left, 0);
  2162. if (ret) {
  2163. /* we hit -ENOSPC, but it isn't fatal here */
  2164. ret = 1;
  2165. goto out;
  2166. }
  2167. free_space = btrfs_leaf_free_space(root, left);
  2168. if (free_space < data_size + sizeof(struct btrfs_item)) {
  2169. ret = 1;
  2170. goto out;
  2171. }
  2172. if (empty)
  2173. nr = right_nritems;
  2174. else
  2175. nr = right_nritems - 1;
  2176. for (i = 0; i < nr; i++) {
  2177. item = btrfs_item_nr(right, i);
  2178. if (!right->map_token) {
  2179. map_extent_buffer(right, (unsigned long)item,
  2180. sizeof(struct btrfs_item),
  2181. &right->map_token, &right->kaddr,
  2182. &right->map_start, &right->map_len,
  2183. KM_USER1);
  2184. }
  2185. if (!empty && push_items > 0) {
  2186. if (path->slots[0] < i)
  2187. break;
  2188. if (path->slots[0] == i) {
  2189. int space = btrfs_leaf_free_space(root, right);
  2190. if (space + push_space * 2 > free_space)
  2191. break;
  2192. }
  2193. }
  2194. if (path->slots[0] == i)
  2195. push_space += data_size + sizeof(*item);
  2196. this_item_size = btrfs_item_size(right, item);
  2197. if (this_item_size + sizeof(*item) + push_space > free_space)
  2198. break;
  2199. push_items++;
  2200. push_space += this_item_size + sizeof(*item);
  2201. }
  2202. if (right->map_token) {
  2203. unmap_extent_buffer(right, right->map_token, KM_USER1);
  2204. right->map_token = NULL;
  2205. }
  2206. if (push_items == 0) {
  2207. ret = 1;
  2208. goto out;
  2209. }
  2210. if (!empty && push_items == btrfs_header_nritems(right))
  2211. WARN_ON(1);
  2212. /* push data from right to left */
  2213. copy_extent_buffer(left, right,
  2214. btrfs_item_nr_offset(btrfs_header_nritems(left)),
  2215. btrfs_item_nr_offset(0),
  2216. push_items * sizeof(struct btrfs_item));
  2217. push_space = BTRFS_LEAF_DATA_SIZE(root) -
  2218. btrfs_item_offset_nr(right, push_items -1);
  2219. copy_extent_buffer(left, right, btrfs_leaf_data(left) +
  2220. leaf_data_end(root, left) - push_space,
  2221. btrfs_leaf_data(right) +
  2222. btrfs_item_offset_nr(right, push_items - 1),
  2223. push_space);
  2224. old_left_nritems = btrfs_header_nritems(left);
  2225. BUG_ON(old_left_nritems < 0);
  2226. old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
  2227. for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
  2228. u32 ioff;
  2229. item = btrfs_item_nr(left, i);
  2230. if (!left->map_token) {
  2231. map_extent_buffer(left, (unsigned long)item,
  2232. sizeof(struct btrfs_item),
  2233. &left->map_token, &left->kaddr,
  2234. &left->map_start, &left->map_len,
  2235. KM_USER1);
  2236. }
  2237. ioff = btrfs_item_offset(left, item);
  2238. btrfs_set_item_offset(left, item,
  2239. ioff - (BTRFS_LEAF_DATA_SIZE(root) - old_left_item_size));
  2240. }
  2241. btrfs_set_header_nritems(left, old_left_nritems + push_items);
  2242. if (left->map_token) {
  2243. unmap_extent_buffer(left, left->map_token, KM_USER1);
  2244. left->map_token = NULL;
  2245. }
  2246. /* fixup right node */
  2247. if (push_items > right_nritems) {
  2248. printk("push items %d nr %u\n", push_items, right_nritems);
  2249. WARN_ON(1);
  2250. }
  2251. if (push_items < right_nritems) {
  2252. push_space = btrfs_item_offset_nr(right, push_items - 1) -
  2253. leaf_data_end(root, right);
  2254. memmove_extent_buffer(right, btrfs_leaf_data(right) +
  2255. BTRFS_LEAF_DATA_SIZE(root) - push_space,
  2256. btrfs_leaf_data(right) +
  2257. leaf_data_end(root, right), push_space);
  2258. memmove_extent_buffer(right, btrfs_item_nr_offset(0),
  2259. btrfs_item_nr_offset(push_items),
  2260. (btrfs_header_nritems(right) - push_items) *
  2261. sizeof(struct btrfs_item));
  2262. }
  2263. right_nritems -= push_items;
  2264. btrfs_set_header_nritems(right, right_nritems);
  2265. push_space = BTRFS_LEAF_DATA_SIZE(root);
  2266. for (i = 0; i < right_nritems; i++) {
  2267. item = btrfs_item_nr(right, i);
  2268. if (!right->map_token) {
  2269. map_extent_buffer(right, (unsigned long)item,
  2270. sizeof(struct btrfs_item),
  2271. &right->map_token, &right->kaddr,
  2272. &right->map_start, &right->map_len,
  2273. KM_USER1);
  2274. }
  2275. push_space = push_space - btrfs_item_size(right, item);
  2276. btrfs_set_item_offset(right, item, push_space);
  2277. }
  2278. if (right->map_token) {
  2279. unmap_extent_buffer(right, right->map_token, KM_USER1);
  2280. right->map_token = NULL;
  2281. }
  2282. btrfs_mark_buffer_dirty(left);
  2283. if (right_nritems)
  2284. btrfs_mark_buffer_dirty(right);
  2285. ret = btrfs_update_ref(trans, root, right, left,
  2286. old_left_nritems, push_items);
  2287. BUG_ON(ret);
  2288. btrfs_item_key(right, &disk_key, 0);
  2289. wret = fixup_low_keys(trans, root, path, &disk_key, 1);
  2290. if (wret)
  2291. ret = wret;
  2292. /* then fixup the leaf pointer in the path */
  2293. if (path->slots[0] < push_items) {
  2294. path->slots[0] += old_left_nritems;
  2295. if (btrfs_header_nritems(path->nodes[0]) == 0)
  2296. clean_tree_block(trans, root, path->nodes[0]);
  2297. btrfs_tree_unlock(path->nodes[0]);
  2298. free_extent_buffer(path->nodes[0]);
  2299. path->nodes[0] = left;
  2300. path->slots[1] -= 1;
  2301. } else {
  2302. btrfs_tree_unlock(left);
  2303. free_extent_buffer(left);
  2304. path->slots[0] -= push_items;
  2305. }
  2306. BUG_ON(path->slots[0] < 0);
  2307. return ret;
  2308. out:
  2309. btrfs_tree_unlock(left);
  2310. free_extent_buffer(left);
  2311. return ret;
  2312. }
  2313. /*
  2314. * split the path's leaf in two, making sure there is at least data_size
  2315. * available for the resulting leaf level of the path.
  2316. *
  2317. * returns 0 if all went well and < 0 on failure.
  2318. */
  2319. static noinline int split_leaf(struct btrfs_trans_handle *trans,
  2320. struct btrfs_root *root,
  2321. struct btrfs_key *ins_key,
  2322. struct btrfs_path *path, int data_size,
  2323. int extend)
  2324. {
  2325. struct extent_buffer *l;
  2326. u32 nritems;
  2327. int mid;
  2328. int slot;
  2329. struct extent_buffer *right;
  2330. int space_needed = data_size + sizeof(struct btrfs_item);
  2331. int data_copy_size;
  2332. int rt_data_off;
  2333. int i;
  2334. int ret = 0;
  2335. int wret;
  2336. int double_split;
  2337. int num_doubles = 0;
  2338. struct btrfs_disk_key disk_key;
  2339. if (extend)
  2340. space_needed = data_size;
  2341. /* first try to make some room by pushing left and right */
  2342. if (ins_key->type != BTRFS_DIR_ITEM_KEY) {
  2343. wret = push_leaf_right(trans, root, path, data_size, 0);
  2344. if (wret < 0) {
  2345. return wret;
  2346. }
  2347. if (wret) {
  2348. wret = push_leaf_left(trans, root, path, data_size, 0);
  2349. if (wret < 0)
  2350. return wret;
  2351. }
  2352. l = path->nodes[0];
  2353. /* did the pushes work? */
  2354. if (btrfs_leaf_free_space(root, l) >= space_needed)
  2355. return 0;
  2356. }
  2357. if (!path->nodes[1]) {
  2358. ret = insert_new_root(trans, root, path, 1);
  2359. if (ret)
  2360. return ret;
  2361. }
  2362. again:
  2363. double_split = 0;
  2364. l = path->nodes[0];
  2365. slot = path->slots[0];
  2366. nritems = btrfs_header_nritems(l);
  2367. mid = (nritems + 1)/ 2;
  2368. right = btrfs_alloc_free_block(trans, root, root->leafsize,
  2369. path->nodes[1]->start,
  2370. root->root_key.objectid,
  2371. trans->transid, 0, l->start, 0);
  2372. if (IS_ERR(right)) {
  2373. BUG_ON(1);
  2374. return PTR_ERR(right);
  2375. }
  2376. memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header));
  2377. btrfs_set_header_bytenr(right, right->start);
  2378. btrfs_set_header_generation(right, trans->transid);
  2379. btrfs_set_header_owner(right, root->root_key.objectid);
  2380. btrfs_set_header_level(right, 0);
  2381. write_extent_buffer(right, root->fs_info->fsid,
  2382. (unsigned long)btrfs_header_fsid(right),
  2383. BTRFS_FSID_SIZE);
  2384. write_extent_buffer(right, root->fs_info->chunk_tree_uuid,
  2385. (unsigned long)btrfs_header_chunk_tree_uuid(right),
  2386. BTRFS_UUID_SIZE);
  2387. if (mid <= slot) {
  2388. if (nritems == 1 ||
  2389. leaf_space_used(l, mid, nritems - mid) + space_needed >
  2390. BTRFS_LEAF_DATA_SIZE(root)) {
  2391. if (slot >= nritems) {
  2392. btrfs_cpu_key_to_disk(&disk_key, ins_key);
  2393. btrfs_set_header_nritems(right, 0);
  2394. wret = insert_ptr(trans, root, path,
  2395. &disk_key, right->start,
  2396. path->slots[1] + 1, 1);
  2397. if (wret)
  2398. ret = wret;
  2399. btrfs_tree_unlock(path->nodes[0]);
  2400. free_extent_buffer(path->nodes[0]);
  2401. path->nodes[0] = right;
  2402. path->slots[0] = 0;
  2403. path->slots[1] += 1;
  2404. btrfs_mark_buffer_dirty(right);
  2405. return ret;
  2406. }
  2407. mid = slot;
  2408. if (mid != nritems &&
  2409. leaf_space_used(l, mid, nritems - mid) +
  2410. space_needed > BTRFS_LEAF_DATA_SIZE(root)) {
  2411. double_split = 1;
  2412. }
  2413. }
  2414. } else {
  2415. if (leaf_space_used(l, 0, mid + 1) + space_needed >
  2416. BTRFS_LEAF_DATA_SIZE(root)) {
  2417. if (!extend && slot == 0) {
  2418. btrfs_cpu_key_to_disk(&disk_key, ins_key);
  2419. btrfs_set_header_nritems(right, 0);
  2420. wret = insert_ptr(trans, root, path,
  2421. &disk_key,
  2422. right->start,
  2423. path->slots[1], 1);
  2424. if (wret)
  2425. ret = wret;
  2426. btrfs_tree_unlock(path->nodes[0]);
  2427. free_extent_buffer(path->nodes[0]);
  2428. path->nodes[0] = right;
  2429. path->slots[0] = 0;
  2430. if (path->slots[1] == 0) {
  2431. wret = fixup_low_keys(trans, root,
  2432. path, &disk_key, 1);
  2433. if (wret)
  2434. ret = wret;
  2435. }
  2436. btrfs_mark_buffer_dirty(right);
  2437. return ret;
  2438. } else if (extend && slot == 0) {
  2439. mid = 1;
  2440. } else {
  2441. mid = slot;
  2442. if (mid != nritems &&
  2443. leaf_space_used(l, mid, nritems - mid) +
  2444. space_needed > BTRFS_LEAF_DATA_SIZE(root)) {
  2445. double_split = 1;
  2446. }
  2447. }
  2448. }
  2449. }
  2450. nritems = nritems - mid;
  2451. btrfs_set_header_nritems(right, nritems);
  2452. data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(root, l);
  2453. copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
  2454. btrfs_item_nr_offset(mid),
  2455. nritems * sizeof(struct btrfs_item));
  2456. copy_extent_buffer(right, l,
  2457. btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) -
  2458. data_copy_size, btrfs_leaf_data(l) +
  2459. leaf_data_end(root, l), data_copy_size);
  2460. rt_data_off = BTRFS_LEAF_DATA_SIZE(root) -
  2461. btrfs_item_end_nr(l, mid);
  2462. for (i = 0; i < nritems; i++) {
  2463. struct btrfs_item *item = btrfs_item_nr(right, i);
  2464. u32 ioff;
  2465. if (!right->map_token) {
  2466. map_extent_buffer(right, (unsigned long)item,
  2467. sizeof(struct btrfs_item),
  2468. &right->map_token, &right->kaddr,
  2469. &right->map_start, &right->map_len,
  2470. KM_USER1);
  2471. }
  2472. ioff = btrfs_item_offset(right, item);
  2473. btrfs_set_item_offset(right, item, ioff + rt_data_off);
  2474. }
  2475. if (right->map_token) {
  2476. unmap_extent_buffer(right, right->map_token, KM_USER1);
  2477. right->map_token = NULL;
  2478. }
  2479. btrfs_set_header_nritems(l, mid);
  2480. ret = 0;
  2481. btrfs_item_key(right, &disk_key, 0);
  2482. wret = insert_ptr(trans, root, path, &disk_key, right->start,
  2483. path->slots[1] + 1, 1);
  2484. if (wret)
  2485. ret = wret;
  2486. btrfs_mark_buffer_dirty(right);
  2487. btrfs_mark_buffer_dirty(l);
  2488. BUG_ON(path->slots[0] != slot);
  2489. ret = btrfs_update_ref(trans, root, l, right, 0, nritems);
  2490. BUG_ON(ret);
  2491. if (mid <= slot) {
  2492. btrfs_tree_unlock(path->nodes[0]);
  2493. free_extent_buffer(path->nodes[0]);
  2494. path->nodes[0] = right;
  2495. path->slots[0] -= mid;
  2496. path->slots[1] += 1;
  2497. } else {
  2498. btrfs_tree_unlock(right);
  2499. free_extent_buffer(right);
  2500. }
  2501. BUG_ON(path->slots[0] < 0);
  2502. if (double_split) {
  2503. BUG_ON(num_doubles != 0);
  2504. num_doubles++;
  2505. goto again;
  2506. }
  2507. return ret;
  2508. }
  2509. /*
  2510. * make the item pointed to by the path smaller. new_size indicates
  2511. * how small to make it, and from_end tells us if we just chop bytes
  2512. * off the end of the item or if we shift the item to chop bytes off
  2513. * the front.
  2514. */
  2515. int btrfs_truncate_item(struct btrfs_trans_handle *trans,
  2516. struct btrfs_root *root,
  2517. struct btrfs_path *path,
  2518. u32 new_size, int from_end)
  2519. {
  2520. int ret = 0;
  2521. int slot;
  2522. int slot_orig;
  2523. struct extent_buffer *leaf;
  2524. struct btrfs_item *item;
  2525. u32 nritems;
  2526. unsigned int data_end;
  2527. unsigned int old_data_start;
  2528. unsigned int old_size;
  2529. unsigned int size_diff;
  2530. int i;
  2531. slot_orig = path->slots[0];
  2532. leaf = path->nodes[0];
  2533. slot = path->slots[0];
  2534. old_size = btrfs_item_size_nr(leaf, slot);
  2535. if (old_size == new_size)
  2536. return 0;
  2537. nritems = btrfs_header_nritems(leaf);
  2538. data_end = leaf_data_end(root, leaf);
  2539. old_data_start = btrfs_item_offset_nr(leaf, slot);
  2540. size_diff = old_size - new_size;
  2541. BUG_ON(slot < 0);
  2542. BUG_ON(slot >= nritems);
  2543. /*
  2544. * item0..itemN ... dataN.offset..dataN.size .. data0.size
  2545. */
  2546. /* first correct the data pointers */
  2547. for (i = slot; i < nritems; i++) {
  2548. u32 ioff;
  2549. item = btrfs_item_nr(leaf, i);
  2550. if (!leaf->map_token) {
  2551. map_extent_buffer(leaf, (unsigned long)item,
  2552. sizeof(struct btrfs_item),
  2553. &leaf->map_token, &leaf->kaddr,
  2554. &leaf->map_start, &leaf->map_len,
  2555. KM_USER1);
  2556. }
  2557. ioff = btrfs_item_offset(leaf, item);
  2558. btrfs_set_item_offset(leaf, item, ioff + size_diff);
  2559. }
  2560. if (leaf->map_token) {
  2561. unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
  2562. leaf->map_token = NULL;
  2563. }
  2564. /* shift the data */
  2565. if (from_end) {
  2566. memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
  2567. data_end + size_diff, btrfs_leaf_data(leaf) +
  2568. data_end, old_data_start + new_size - data_end);
  2569. } else {
  2570. struct btrfs_disk_key disk_key;
  2571. u64 offset;
  2572. btrfs_item_key(leaf, &disk_key, slot);
  2573. if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
  2574. unsigned long ptr;
  2575. struct btrfs_file_extent_item *fi;
  2576. fi = btrfs_item_ptr(leaf, slot,
  2577. struct btrfs_file_extent_item);
  2578. fi = (struct btrfs_file_extent_item *)(
  2579. (unsigned long)fi - size_diff);
  2580. if (btrfs_file_extent_type(leaf, fi) ==
  2581. BTRFS_FILE_EXTENT_INLINE) {
  2582. ptr = btrfs_item_ptr_offset(leaf, slot);
  2583. memmove_extent_buffer(leaf, ptr,
  2584. (unsigned long)fi,
  2585. offsetof(struct btrfs_file_extent_item,
  2586. disk_bytenr));
  2587. }
  2588. }
  2589. memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
  2590. data_end + size_diff, btrfs_leaf_data(leaf) +
  2591. data_end, old_data_start - data_end);
  2592. offset = btrfs_disk_key_offset(&disk_key);
  2593. btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
  2594. btrfs_set_item_key(leaf, &disk_key, slot);
  2595. if (slot == 0)
  2596. fixup_low_keys(trans, root, path, &disk_key, 1);
  2597. }
  2598. item = btrfs_item_nr(leaf, slot);
  2599. btrfs_set_item_size(leaf, item, new_size);
  2600. btrfs_mark_buffer_dirty(leaf);
  2601. ret = 0;
  2602. if (btrfs_leaf_free_space(root, leaf) < 0) {
  2603. btrfs_print_leaf(root, leaf);
  2604. BUG();
  2605. }
  2606. return ret;
  2607. }
  2608. /*
  2609. * make the item pointed to by the path bigger, data_size is the new size.
  2610. */
  2611. int btrfs_extend_item(struct btrfs_trans_handle *trans,
  2612. struct btrfs_root *root, struct btrfs_path *path,
  2613. u32 data_size)
  2614. {
  2615. int ret = 0;
  2616. int slot;
  2617. int slot_orig;
  2618. struct extent_buffer *leaf;
  2619. struct btrfs_item *item;
  2620. u32 nritems;
  2621. unsigned int data_end;
  2622. unsigned int old_data;
  2623. unsigned int old_size;
  2624. int i;
  2625. slot_orig = path->slots[0];
  2626. leaf = path->nodes[0];
  2627. nritems = btrfs_header_nritems(leaf);
  2628. data_end = leaf_data_end(root, leaf);
  2629. if (btrfs_leaf_free_space(root, leaf) < data_size) {
  2630. btrfs_print_leaf(root, leaf);
  2631. BUG();
  2632. }
  2633. slot = path->slots[0];
  2634. old_data = btrfs_item_end_nr(leaf, slot);
  2635. BUG_ON(slot < 0);
  2636. if (slot >= nritems) {
  2637. btrfs_print_leaf(root, leaf);
  2638. printk("slot %d too large, nritems %d\n", slot, nritems);
  2639. BUG_ON(1);
  2640. }
  2641. /*
  2642. * item0..itemN ... dataN.offset..dataN.size .. data0.size
  2643. */
  2644. /* first correct the data pointers */
  2645. for (i = slot; i < nritems; i++) {
  2646. u32 ioff;
  2647. item = btrfs_item_nr(leaf, i);
  2648. if (!leaf->map_token) {
  2649. map_extent_buffer(leaf, (unsigned long)item,
  2650. sizeof(struct btrfs_item),
  2651. &leaf->map_token, &leaf->kaddr,
  2652. &leaf->map_start, &leaf->map_len,
  2653. KM_USER1);
  2654. }
  2655. ioff = btrfs_item_offset(leaf, item);
  2656. btrfs_set_item_offset(leaf, item, ioff - data_size);
  2657. }
  2658. if (leaf->map_token) {
  2659. unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
  2660. leaf->map_token = NULL;
  2661. }
  2662. /* shift the data */
  2663. memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
  2664. data_end - data_size, btrfs_leaf_data(leaf) +
  2665. data_end, old_data - data_end);
  2666. data_end = old_data;
  2667. old_size = btrfs_item_size_nr(leaf, slot);
  2668. item = btrfs_item_nr(leaf, slot);
  2669. btrfs_set_item_size(leaf, item, old_size + data_size);
  2670. btrfs_mark_buffer_dirty(leaf);
  2671. ret = 0;
  2672. if (btrfs_leaf_free_space(root, leaf) < 0) {
  2673. btrfs_print_leaf(root, leaf);
  2674. BUG();
  2675. }
  2676. return ret;
  2677. }
  2678. /*
  2679. * Given a key and some data, insert items into the tree.
  2680. * This does all the path init required, making room in the tree if needed.
  2681. */
  2682. int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
  2683. struct btrfs_root *root,
  2684. struct btrfs_path *path,
  2685. struct btrfs_key *cpu_key, u32 *data_size,
  2686. int nr)
  2687. {
  2688. struct extent_buffer *leaf;
  2689. struct btrfs_item *item;
  2690. int ret = 0;
  2691. int slot;
  2692. int slot_orig;
  2693. int i;
  2694. u32 nritems;
  2695. u32 total_size = 0;
  2696. u32 total_data = 0;
  2697. unsigned int data_end;
  2698. struct btrfs_disk_key disk_key;
  2699. for (i = 0; i < nr; i++) {
  2700. total_data += data_size[i];
  2701. }
  2702. total_size = total_data + (nr * sizeof(struct btrfs_item));
  2703. ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
  2704. if (ret == 0)
  2705. return -EEXIST;
  2706. if (ret < 0)
  2707. goto out;
  2708. slot_orig = path->slots[0];
  2709. leaf = path->nodes[0];
  2710. nritems = btrfs_header_nritems(leaf);
  2711. data_end = leaf_data_end(root, leaf);
  2712. if (btrfs_leaf_free_space(root, leaf) < total_size) {
  2713. btrfs_print_leaf(root, leaf);
  2714. printk("not enough freespace need %u have %d\n",
  2715. total_size, btrfs_leaf_free_space(root, leaf));
  2716. BUG();
  2717. }
  2718. slot = path->slots[0];
  2719. BUG_ON(slot < 0);
  2720. if (slot != nritems) {
  2721. unsigned int old_data = btrfs_item_end_nr(leaf, slot);
  2722. if (old_data < data_end) {
  2723. btrfs_print_leaf(root, leaf);
  2724. printk("slot %d old_data %d data_end %d\n",
  2725. slot, old_data, data_end);
  2726. BUG_ON(1);
  2727. }
  2728. /*
  2729. * item0..itemN ... dataN.offset..dataN.size .. data0.size
  2730. */
  2731. /* first correct the data pointers */
  2732. WARN_ON(leaf->map_token);
  2733. for (i = slot; i < nritems; i++) {
  2734. u32 ioff;
  2735. item = btrfs_item_nr(leaf, i);
  2736. if (!leaf->map_token) {
  2737. map_extent_buffer(leaf, (unsigned long)item,
  2738. sizeof(struct btrfs_item),
  2739. &leaf->map_token, &leaf->kaddr,
  2740. &leaf->map_start, &leaf->map_len,
  2741. KM_USER1);
  2742. }
  2743. ioff = btrfs_item_offset(leaf, item);
  2744. btrfs_set_item_offset(leaf, item, ioff - total_data);
  2745. }
  2746. if (leaf->map_token) {
  2747. unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
  2748. leaf->map_token = NULL;
  2749. }
  2750. /* shift the items */
  2751. memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
  2752. btrfs_item_nr_offset(slot),
  2753. (nritems - slot) * sizeof(struct btrfs_item));
  2754. /* shift the data */
  2755. memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
  2756. data_end - total_data, btrfs_leaf_data(leaf) +
  2757. data_end, old_data - data_end);
  2758. data_end = old_data;
  2759. }
  2760. /* setup the item for the new data */
  2761. for (i = 0; i < nr; i++) {
  2762. btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
  2763. btrfs_set_item_key(leaf, &disk_key, slot + i);
  2764. item = btrfs_item_nr(leaf, slot + i);
  2765. btrfs_set_item_offset(leaf, item, data_end - data_size[i]);
  2766. data_end -= data_size[i];
  2767. btrfs_set_item_size(leaf, item, data_size[i]);
  2768. }
  2769. btrfs_set_header_nritems(leaf, nritems + nr);
  2770. btrfs_mark_buffer_dirty(leaf);
  2771. ret = 0;
  2772. if (slot == 0) {
  2773. btrfs_cpu_key_to_disk(&disk_key, cpu_key);
  2774. ret = fixup_low_keys(trans, root, path, &disk_key, 1);
  2775. }
  2776. if (btrfs_leaf_free_space(root, leaf) < 0) {
  2777. btrfs_print_leaf(root, leaf);
  2778. BUG();
  2779. }
  2780. out:
  2781. return ret;
  2782. }
  2783. /*
  2784. * Given a key and some data, insert an item into the tree.
  2785. * This does all the path init required, making room in the tree if needed.
  2786. */
  2787. int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
  2788. *root, struct btrfs_key *cpu_key, void *data, u32
  2789. data_size)
  2790. {
  2791. int ret = 0;
  2792. struct btrfs_path *path;
  2793. struct extent_buffer *leaf;
  2794. unsigned long ptr;
  2795. path = btrfs_alloc_path();
  2796. BUG_ON(!path);
  2797. ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
  2798. if (!ret) {
  2799. leaf = path->nodes[0];
  2800. ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
  2801. write_extent_buffer(leaf, data, ptr, data_size);
  2802. btrfs_mark_buffer_dirty(leaf);
  2803. }
  2804. btrfs_free_path(path);
  2805. return ret;
  2806. }
  2807. /*
  2808. * delete the pointer from a given node.
  2809. *
  2810. * the tree should have been previously balanced so the deletion does not
  2811. * empty a node.
  2812. */
  2813. static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  2814. struct btrfs_path *path, int level, int slot)
  2815. {
  2816. struct extent_buffer *parent = path->nodes[level];
  2817. u32 nritems;
  2818. int ret = 0;
  2819. int wret;
  2820. nritems = btrfs_header_nritems(parent);
  2821. if (slot != nritems -1) {
  2822. memmove_extent_buffer(parent,
  2823. btrfs_node_key_ptr_offset(slot),
  2824. btrfs_node_key_ptr_offset(slot + 1),
  2825. sizeof(struct btrfs_key_ptr) *
  2826. (nritems - slot - 1));
  2827. }
  2828. nritems--;
  2829. btrfs_set_header_nritems(parent, nritems);
  2830. if (nritems == 0 && parent == root->node) {
  2831. BUG_ON(btrfs_header_level(root->node) != 1);
  2832. /* just turn the root into a leaf and break */
  2833. btrfs_set_header_level(root->node, 0);
  2834. } else if (slot == 0) {
  2835. struct btrfs_disk_key disk_key;
  2836. btrfs_node_key(parent, &disk_key, 0);
  2837. wret = fixup_low_keys(trans, root, path, &disk_key, level + 1);
  2838. if (wret)
  2839. ret = wret;
  2840. }
  2841. btrfs_mark_buffer_dirty(parent);
  2842. return ret;
  2843. }
  2844. /*
  2845. * a helper function to delete the leaf pointed to by path->slots[1] and
  2846. * path->nodes[1]. bytenr is the node block pointer, but since the callers
  2847. * already know it, it is faster to have them pass it down than to
  2848. * read it out of the node again.
  2849. *
  2850. * This deletes the pointer in path->nodes[1] and frees the leaf
  2851. * block extent. zero is returned if it all worked out, < 0 otherwise.
  2852. *
  2853. * The path must have already been setup for deleting the leaf, including
  2854. * all the proper balancing. path->nodes[1] must be locked.
  2855. */
  2856. noinline int btrfs_del_leaf(struct btrfs_trans_handle *trans,
  2857. struct btrfs_root *root,
  2858. struct btrfs_path *path, u64 bytenr)
  2859. {
  2860. int ret;
  2861. u64 root_gen = btrfs_header_generation(path->nodes[1]);
  2862. ret = del_ptr(trans, root, path, 1, path->slots[1]);
  2863. if (ret)
  2864. return ret;
  2865. ret = btrfs_free_extent(trans, root, bytenr,
  2866. btrfs_level_size(root, 0),
  2867. path->nodes[1]->start,
  2868. btrfs_header_owner(path->nodes[1]),
  2869. root_gen, 0, 1);
  2870. return ret;
  2871. }
  2872. /*
  2873. * delete the item at the leaf level in path. If that empties
  2874. * the leaf, remove it from the tree
  2875. */
  2876. int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  2877. struct btrfs_path *path, int slot, int nr)
  2878. {
  2879. struct extent_buffer *leaf;
  2880. struct btrfs_item *item;
  2881. int last_off;
  2882. int dsize = 0;
  2883. int ret = 0;
  2884. int wret;
  2885. int i;
  2886. u32 nritems;
  2887. leaf = path->nodes[0];
  2888. last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
  2889. for (i = 0; i < nr; i++)
  2890. dsize += btrfs_item_size_nr(leaf, slot + i);
  2891. nritems = btrfs_header_nritems(leaf);
  2892. if (slot + nr != nritems) {
  2893. int data_end = leaf_data_end(root, leaf);
  2894. memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
  2895. data_end + dsize,
  2896. btrfs_leaf_data(leaf) + data_end,
  2897. last_off - data_end);
  2898. for (i = slot + nr; i < nritems; i++) {
  2899. u32 ioff;
  2900. item = btrfs_item_nr(leaf, i);
  2901. if (!leaf->map_token) {
  2902. map_extent_buffer(leaf, (unsigned long)item,
  2903. sizeof(struct btrfs_item),
  2904. &leaf->map_token, &leaf->kaddr,
  2905. &leaf->map_start, &leaf->map_len,
  2906. KM_USER1);
  2907. }
  2908. ioff = btrfs_item_offset(leaf, item);
  2909. btrfs_set_item_offset(leaf, item, ioff + dsize);
  2910. }
  2911. if (leaf->map_token) {
  2912. unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
  2913. leaf->map_token = NULL;
  2914. }
  2915. memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
  2916. btrfs_item_nr_offset(slot + nr),
  2917. sizeof(struct btrfs_item) *
  2918. (nritems - slot - nr));
  2919. }
  2920. btrfs_set_header_nritems(leaf, nritems - nr);
  2921. nritems -= nr;
  2922. /* delete the leaf if we've emptied it */
  2923. if (nritems == 0) {
  2924. if (leaf == root->node) {
  2925. btrfs_set_header_level(leaf, 0);
  2926. } else {
  2927. ret = btrfs_del_leaf(trans, root, path, leaf->start);
  2928. BUG_ON(ret);
  2929. }
  2930. } else {
  2931. int used = leaf_space_used(leaf, 0, nritems);
  2932. if (slot == 0) {
  2933. struct btrfs_disk_key disk_key;
  2934. btrfs_item_key(leaf, &disk_key, 0);
  2935. wret = fixup_low_keys(trans, root, path,
  2936. &disk_key, 1);
  2937. if (wret)
  2938. ret = wret;
  2939. }
  2940. /* delete the leaf if it is mostly empty */
  2941. if (used < BTRFS_LEAF_DATA_SIZE(root) / 4) {
  2942. /* push_leaf_left fixes the path.
  2943. * make sure the path still points to our leaf
  2944. * for possible call to del_ptr below
  2945. */
  2946. slot = path->slots[1];
  2947. extent_buffer_get(leaf);
  2948. wret = push_leaf_left(trans, root, path, 1, 1);
  2949. if (wret < 0 && wret != -ENOSPC)
  2950. ret = wret;
  2951. if (path->nodes[0] == leaf &&
  2952. btrfs_header_nritems(leaf)) {
  2953. wret = push_leaf_right(trans, root, path, 1, 1);
  2954. if (wret < 0 && wret != -ENOSPC)
  2955. ret = wret;
  2956. }
  2957. if (btrfs_header_nritems(leaf) == 0) {
  2958. path->slots[1] = slot;
  2959. ret = btrfs_del_leaf(trans, root, path, leaf->start);
  2960. BUG_ON(ret);
  2961. free_extent_buffer(leaf);
  2962. } else {
  2963. /* if we're still in the path, make sure
  2964. * we're dirty. Otherwise, one of the
  2965. * push_leaf functions must have already
  2966. * dirtied this buffer
  2967. */
  2968. if (path->nodes[0] == leaf)
  2969. btrfs_mark_buffer_dirty(leaf);
  2970. free_extent_buffer(leaf);
  2971. }
  2972. } else {
  2973. btrfs_mark_buffer_dirty(leaf);
  2974. }
  2975. }
  2976. return ret;
  2977. }
  2978. /*
  2979. * search the tree again to find a leaf with lesser keys
  2980. * returns 0 if it found something or 1 if there are no lesser leaves.
  2981. * returns < 0 on io errors.
  2982. *
  2983. * This may release the path, and so you may lose any locks held at the
  2984. * time you call it.
  2985. */
  2986. int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
  2987. {
  2988. struct btrfs_key key;
  2989. struct btrfs_disk_key found_key;
  2990. int ret;
  2991. btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
  2992. if (key.offset > 0)
  2993. key.offset--;
  2994. else if (key.type > 0)
  2995. key.type--;
  2996. else if (key.objectid > 0)
  2997. key.objectid--;
  2998. else
  2999. return 1;
  3000. btrfs_release_path(root, path);
  3001. ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
  3002. if (ret < 0)
  3003. return ret;
  3004. btrfs_item_key(path->nodes[0], &found_key, 0);
  3005. ret = comp_keys(&found_key, &key);
  3006. if (ret < 0)
  3007. return 0;
  3008. return 1;
  3009. }
  3010. /*
  3011. * A helper function to walk down the tree starting at min_key, and looking
  3012. * for nodes or leaves that are either in cache or have a minimum
  3013. * transaction id. This is used by the btree defrag code, and tree logging
  3014. *
  3015. * This does not cow, but it does stuff the starting key it finds back
  3016. * into min_key, so you can call btrfs_search_slot with cow=1 on the
  3017. * key and get a writable path.
  3018. *
  3019. * This does lock as it descends, and path->keep_locks should be set
  3020. * to 1 by the caller.
  3021. *
  3022. * This honors path->lowest_level to prevent descent past a given level
  3023. * of the tree.
  3024. *
  3025. * min_trans indicates the oldest transaction that you are interested
  3026. * in walking through. Any nodes or leaves older than min_trans are
  3027. * skipped over (without reading them).
  3028. *
  3029. * returns zero if something useful was found, < 0 on error and 1 if there
  3030. * was nothing in the tree that matched the search criteria.
  3031. */
  3032. int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
  3033. struct btrfs_key *max_key,
  3034. struct btrfs_path *path, int cache_only,
  3035. u64 min_trans)
  3036. {
  3037. struct extent_buffer *cur;
  3038. struct btrfs_key found_key;
  3039. int slot;
  3040. int sret;
  3041. u32 nritems;
  3042. int level;
  3043. int ret = 1;
  3044. again:
  3045. cur = btrfs_lock_root_node(root);
  3046. level = btrfs_header_level(cur);
  3047. WARN_ON(path->nodes[level]);
  3048. path->nodes[level] = cur;
  3049. path->locks[level] = 1;
  3050. if (btrfs_header_generation(cur) < min_trans) {
  3051. ret = 1;
  3052. goto out;
  3053. }
  3054. while(1) {
  3055. nritems = btrfs_header_nritems(cur);
  3056. level = btrfs_header_level(cur);
  3057. sret = bin_search(cur, min_key, level, &slot);
  3058. /* at the lowest level, we're done, setup the path and exit */
  3059. if (level == path->lowest_level) {
  3060. if (slot >= nritems)
  3061. goto find_next_key;
  3062. ret = 0;
  3063. path->slots[level] = slot;
  3064. btrfs_item_key_to_cpu(cur, &found_key, slot);
  3065. goto out;
  3066. }
  3067. if (sret && slot > 0)
  3068. slot--;
  3069. /*
  3070. * check this node pointer against the cache_only and
  3071. * min_trans parameters. If it isn't in cache or is too
  3072. * old, skip to the next one.
  3073. */
  3074. while(slot < nritems) {
  3075. u64 blockptr;
  3076. u64 gen;
  3077. struct extent_buffer *tmp;
  3078. struct btrfs_disk_key disk_key;
  3079. blockptr = btrfs_node_blockptr(cur, slot);
  3080. gen = btrfs_node_ptr_generation(cur, slot);
  3081. if (gen < min_trans) {
  3082. slot++;
  3083. continue;
  3084. }
  3085. if (!cache_only)
  3086. break;
  3087. if (max_key) {
  3088. btrfs_node_key(cur, &disk_key, slot);
  3089. if (comp_keys(&disk_key, max_key) >= 0) {
  3090. ret = 1;
  3091. goto out;
  3092. }
  3093. }
  3094. tmp = btrfs_find_tree_block(root, blockptr,
  3095. btrfs_level_size(root, level - 1));
  3096. if (tmp && btrfs_buffer_uptodate(tmp, gen)) {
  3097. free_extent_buffer(tmp);
  3098. break;
  3099. }
  3100. if (tmp)
  3101. free_extent_buffer(tmp);
  3102. slot++;
  3103. }
  3104. find_next_key:
  3105. /*
  3106. * we didn't find a candidate key in this node, walk forward
  3107. * and find another one
  3108. */
  3109. if (slot >= nritems) {
  3110. path->slots[level] = slot;
  3111. sret = btrfs_find_next_key(root, path, min_key, level,
  3112. cache_only, min_trans);
  3113. if (sret == 0) {
  3114. btrfs_release_path(root, path);
  3115. goto again;
  3116. } else {
  3117. goto out;
  3118. }
  3119. }
  3120. /* save our key for returning back */
  3121. btrfs_node_key_to_cpu(cur, &found_key, slot);
  3122. path->slots[level] = slot;
  3123. if (level == path->lowest_level) {
  3124. ret = 0;
  3125. unlock_up(path, level, 1);
  3126. goto out;
  3127. }
  3128. cur = read_node_slot(root, cur, slot);
  3129. btrfs_tree_lock(cur);
  3130. path->locks[level - 1] = 1;
  3131. path->nodes[level - 1] = cur;
  3132. unlock_up(path, level, 1);
  3133. }
  3134. out:
  3135. if (ret == 0)
  3136. memcpy(min_key, &found_key, sizeof(found_key));
  3137. return ret;
  3138. }
  3139. /*
  3140. * this is similar to btrfs_next_leaf, but does not try to preserve
  3141. * and fixup the path. It looks for and returns the next key in the
  3142. * tree based on the current path and the cache_only and min_trans
  3143. * parameters.
  3144. *
  3145. * 0 is returned if another key is found, < 0 if there are any errors
  3146. * and 1 is returned if there are no higher keys in the tree
  3147. *
  3148. * path->keep_locks should be set to 1 on the search made before
  3149. * calling this function.
  3150. */
  3151. int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
  3152. struct btrfs_key *key, int lowest_level,
  3153. int cache_only, u64 min_trans)
  3154. {
  3155. int level = lowest_level;
  3156. int slot;
  3157. struct extent_buffer *c;
  3158. while(level < BTRFS_MAX_LEVEL) {
  3159. if (!path->nodes[level])
  3160. return 1;
  3161. slot = path->slots[level] + 1;
  3162. c = path->nodes[level];
  3163. next:
  3164. if (slot >= btrfs_header_nritems(c)) {
  3165. level++;
  3166. if (level == BTRFS_MAX_LEVEL) {
  3167. return 1;
  3168. }
  3169. continue;
  3170. }
  3171. if (level == 0)
  3172. btrfs_item_key_to_cpu(c, key, slot);
  3173. else {
  3174. u64 blockptr = btrfs_node_blockptr(c, slot);
  3175. u64 gen = btrfs_node_ptr_generation(c, slot);
  3176. if (cache_only) {
  3177. struct extent_buffer *cur;
  3178. cur = btrfs_find_tree_block(root, blockptr,
  3179. btrfs_level_size(root, level - 1));
  3180. if (!cur || !btrfs_buffer_uptodate(cur, gen)) {
  3181. slot++;
  3182. if (cur)
  3183. free_extent_buffer(cur);
  3184. goto next;
  3185. }
  3186. free_extent_buffer(cur);
  3187. }
  3188. if (gen < min_trans) {
  3189. slot++;
  3190. goto next;
  3191. }
  3192. btrfs_node_key_to_cpu(c, key, slot);
  3193. }
  3194. return 0;
  3195. }
  3196. return 1;
  3197. }
  3198. /*
  3199. * search the tree again to find a leaf with greater keys
  3200. * returns 0 if it found something or 1 if there are no greater leaves.
  3201. * returns < 0 on io errors.
  3202. */
  3203. int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
  3204. {
  3205. int slot;
  3206. int level = 1;
  3207. struct extent_buffer *c;
  3208. struct extent_buffer *next = NULL;
  3209. struct btrfs_key key;
  3210. u32 nritems;
  3211. int ret;
  3212. nritems = btrfs_header_nritems(path->nodes[0]);
  3213. if (nritems == 0) {
  3214. return 1;
  3215. }
  3216. btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
  3217. btrfs_release_path(root, path);
  3218. path->keep_locks = 1;
  3219. ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
  3220. path->keep_locks = 0;
  3221. if (ret < 0)
  3222. return ret;
  3223. nritems = btrfs_header_nritems(path->nodes[0]);
  3224. /*
  3225. * by releasing the path above we dropped all our locks. A balance
  3226. * could have added more items next to the key that used to be
  3227. * at the very end of the block. So, check again here and
  3228. * advance the path if there are now more items available.
  3229. */
  3230. if (nritems > 0 && path->slots[0] < nritems - 1) {
  3231. path->slots[0]++;
  3232. goto done;
  3233. }
  3234. while(level < BTRFS_MAX_LEVEL) {
  3235. if (!path->nodes[level])
  3236. return 1;
  3237. slot = path->slots[level] + 1;
  3238. c = path->nodes[level];
  3239. if (slot >= btrfs_header_nritems(c)) {
  3240. level++;
  3241. if (level == BTRFS_MAX_LEVEL) {
  3242. return 1;
  3243. }
  3244. continue;
  3245. }
  3246. if (next) {
  3247. btrfs_tree_unlock(next);
  3248. free_extent_buffer(next);
  3249. }
  3250. if (level == 1 && (path->locks[1] || path->skip_locking) &&
  3251. path->reada)
  3252. reada_for_search(root, path, level, slot, 0);
  3253. next = read_node_slot(root, c, slot);
  3254. if (!path->skip_locking) {
  3255. WARN_ON(!btrfs_tree_locked(c));
  3256. btrfs_tree_lock(next);
  3257. }
  3258. break;
  3259. }
  3260. path->slots[level] = slot;
  3261. while(1) {
  3262. level--;
  3263. c = path->nodes[level];
  3264. if (path->locks[level])
  3265. btrfs_tree_unlock(c);
  3266. free_extent_buffer(c);
  3267. path->nodes[level] = next;
  3268. path->slots[level] = 0;
  3269. if (!path->skip_locking)
  3270. path->locks[level] = 1;
  3271. if (!level)
  3272. break;
  3273. if (level == 1 && path->locks[1] && path->reada)
  3274. reada_for_search(root, path, level, slot, 0);
  3275. next = read_node_slot(root, next, 0);
  3276. if (!path->skip_locking) {
  3277. WARN_ON(!btrfs_tree_locked(path->nodes[level]));
  3278. btrfs_tree_lock(next);
  3279. }
  3280. }
  3281. done:
  3282. unlock_up(path, 0, 1);
  3283. return 0;
  3284. }
  3285. /*
  3286. * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
  3287. * searching until it gets past min_objectid or finds an item of 'type'
  3288. *
  3289. * returns 0 if something is found, 1 if nothing was found and < 0 on error
  3290. */
  3291. int btrfs_previous_item(struct btrfs_root *root,
  3292. struct btrfs_path *path, u64 min_objectid,
  3293. int type)
  3294. {
  3295. struct btrfs_key found_key;
  3296. struct extent_buffer *leaf;
  3297. u32 nritems;
  3298. int ret;
  3299. while(1) {
  3300. if (path->slots[0] == 0) {
  3301. ret = btrfs_prev_leaf(root, path);
  3302. if (ret != 0)
  3303. return ret;
  3304. } else {
  3305. path->slots[0]--;
  3306. }
  3307. leaf = path->nodes[0];
  3308. nritems = btrfs_header_nritems(leaf);
  3309. if (nritems == 0)
  3310. return 1;
  3311. if (path->slots[0] == nritems)
  3312. path->slots[0]--;
  3313. btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
  3314. if (found_key.type == type)
  3315. return 0;
  3316. if (found_key.objectid < min_objectid)
  3317. break;
  3318. if (found_key.objectid == min_objectid &&
  3319. found_key.type < type)
  3320. break;
  3321. }
  3322. return 1;
  3323. }