namespace.c 63 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595
  1. /*
  2. * linux/fs/namespace.c
  3. *
  4. * (C) Copyright Al Viro 2000, 2001
  5. * Released under GPL v2.
  6. *
  7. * Based on code from fs/super.c, copyright Linus Torvalds and others.
  8. * Heavily rewritten.
  9. */
  10. #include <linux/syscalls.h>
  11. #include <linux/slab.h>
  12. #include <linux/sched.h>
  13. #include <linux/spinlock.h>
  14. #include <linux/percpu.h>
  15. #include <linux/init.h>
  16. #include <linux/kernel.h>
  17. #include <linux/acct.h>
  18. #include <linux/capability.h>
  19. #include <linux/cpumask.h>
  20. #include <linux/module.h>
  21. #include <linux/sysfs.h>
  22. #include <linux/seq_file.h>
  23. #include <linux/mnt_namespace.h>
  24. #include <linux/namei.h>
  25. #include <linux/nsproxy.h>
  26. #include <linux/security.h>
  27. #include <linux/mount.h>
  28. #include <linux/ramfs.h>
  29. #include <linux/log2.h>
  30. #include <linux/idr.h>
  31. #include <linux/fs_struct.h>
  32. #include <linux/fsnotify.h>
  33. #include <asm/uaccess.h>
  34. #include <asm/unistd.h>
  35. #include "pnode.h"
  36. #include "internal.h"
  37. #define HASH_SHIFT ilog2(PAGE_SIZE / sizeof(struct list_head))
  38. #define HASH_SIZE (1UL << HASH_SHIFT)
  39. static int event;
  40. static DEFINE_IDA(mnt_id_ida);
  41. static DEFINE_IDA(mnt_group_ida);
  42. static DEFINE_SPINLOCK(mnt_id_lock);
  43. static int mnt_id_start = 0;
  44. static int mnt_group_start = 1;
  45. static struct list_head *mount_hashtable __read_mostly;
  46. static struct kmem_cache *mnt_cache __read_mostly;
  47. static struct rw_semaphore namespace_sem;
  48. /* /sys/fs */
  49. struct kobject *fs_kobj;
  50. EXPORT_SYMBOL_GPL(fs_kobj);
  51. /*
  52. * vfsmount lock may be taken for read to prevent changes to the
  53. * vfsmount hash, ie. during mountpoint lookups or walking back
  54. * up the tree.
  55. *
  56. * It should be taken for write in all cases where the vfsmount
  57. * tree or hash is modified or when a vfsmount structure is modified.
  58. */
  59. DEFINE_BRLOCK(vfsmount_lock);
  60. static inline unsigned long hash(struct vfsmount *mnt, struct dentry *dentry)
  61. {
  62. unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
  63. tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
  64. tmp = tmp + (tmp >> HASH_SHIFT);
  65. return tmp & (HASH_SIZE - 1);
  66. }
  67. #define MNT_WRITER_UNDERFLOW_LIMIT -(1<<16)
  68. /*
  69. * allocation is serialized by namespace_sem, but we need the spinlock to
  70. * serialize with freeing.
  71. */
  72. static int mnt_alloc_id(struct vfsmount *mnt)
  73. {
  74. int res;
  75. retry:
  76. ida_pre_get(&mnt_id_ida, GFP_KERNEL);
  77. spin_lock(&mnt_id_lock);
  78. res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
  79. if (!res)
  80. mnt_id_start = mnt->mnt_id + 1;
  81. spin_unlock(&mnt_id_lock);
  82. if (res == -EAGAIN)
  83. goto retry;
  84. return res;
  85. }
  86. static void mnt_free_id(struct vfsmount *mnt)
  87. {
  88. int id = mnt->mnt_id;
  89. spin_lock(&mnt_id_lock);
  90. ida_remove(&mnt_id_ida, id);
  91. if (mnt_id_start > id)
  92. mnt_id_start = id;
  93. spin_unlock(&mnt_id_lock);
  94. }
  95. /*
  96. * Allocate a new peer group ID
  97. *
  98. * mnt_group_ida is protected by namespace_sem
  99. */
  100. static int mnt_alloc_group_id(struct vfsmount *mnt)
  101. {
  102. int res;
  103. if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
  104. return -ENOMEM;
  105. res = ida_get_new_above(&mnt_group_ida,
  106. mnt_group_start,
  107. &mnt->mnt_group_id);
  108. if (!res)
  109. mnt_group_start = mnt->mnt_group_id + 1;
  110. return res;
  111. }
  112. /*
  113. * Release a peer group ID
  114. */
  115. void mnt_release_group_id(struct vfsmount *mnt)
  116. {
  117. int id = mnt->mnt_group_id;
  118. ida_remove(&mnt_group_ida, id);
  119. if (mnt_group_start > id)
  120. mnt_group_start = id;
  121. mnt->mnt_group_id = 0;
  122. }
  123. /*
  124. * vfsmount lock must be held for read
  125. */
  126. static inline void mnt_add_count(struct vfsmount *mnt, int n)
  127. {
  128. #ifdef CONFIG_SMP
  129. this_cpu_add(mnt->mnt_pcp->mnt_count, n);
  130. #else
  131. preempt_disable();
  132. mnt->mnt_count += n;
  133. preempt_enable();
  134. #endif
  135. }
  136. static inline void mnt_set_count(struct vfsmount *mnt, int n)
  137. {
  138. #ifdef CONFIG_SMP
  139. this_cpu_write(mnt->mnt_pcp->mnt_count, n);
  140. #else
  141. mnt->mnt_count = n;
  142. #endif
  143. }
  144. /*
  145. * vfsmount lock must be held for read
  146. */
  147. static inline void mnt_inc_count(struct vfsmount *mnt)
  148. {
  149. mnt_add_count(mnt, 1);
  150. }
  151. /*
  152. * vfsmount lock must be held for read
  153. */
  154. static inline void mnt_dec_count(struct vfsmount *mnt)
  155. {
  156. mnt_add_count(mnt, -1);
  157. }
  158. /*
  159. * vfsmount lock must be held for write
  160. */
  161. unsigned int mnt_get_count(struct vfsmount *mnt)
  162. {
  163. #ifdef CONFIG_SMP
  164. unsigned int count = 0;
  165. int cpu;
  166. for_each_possible_cpu(cpu) {
  167. count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
  168. }
  169. return count;
  170. #else
  171. return mnt->mnt_count;
  172. #endif
  173. }
  174. struct vfsmount *alloc_vfsmnt(const char *name)
  175. {
  176. struct vfsmount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
  177. if (mnt) {
  178. int err;
  179. err = mnt_alloc_id(mnt);
  180. if (err)
  181. goto out_free_cache;
  182. if (name) {
  183. mnt->mnt_devname = kstrdup(name, GFP_KERNEL);
  184. if (!mnt->mnt_devname)
  185. goto out_free_id;
  186. }
  187. #ifdef CONFIG_SMP
  188. mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
  189. if (!mnt->mnt_pcp)
  190. goto out_free_devname;
  191. this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
  192. #else
  193. mnt->mnt_count = 1;
  194. mnt->mnt_writers = 0;
  195. #endif
  196. INIT_LIST_HEAD(&mnt->mnt_hash);
  197. INIT_LIST_HEAD(&mnt->mnt_child);
  198. INIT_LIST_HEAD(&mnt->mnt_mounts);
  199. INIT_LIST_HEAD(&mnt->mnt_list);
  200. INIT_LIST_HEAD(&mnt->mnt_expire);
  201. INIT_LIST_HEAD(&mnt->mnt_share);
  202. INIT_LIST_HEAD(&mnt->mnt_slave_list);
  203. INIT_LIST_HEAD(&mnt->mnt_slave);
  204. #ifdef CONFIG_FSNOTIFY
  205. INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks);
  206. #endif
  207. }
  208. return mnt;
  209. #ifdef CONFIG_SMP
  210. out_free_devname:
  211. kfree(mnt->mnt_devname);
  212. #endif
  213. out_free_id:
  214. mnt_free_id(mnt);
  215. out_free_cache:
  216. kmem_cache_free(mnt_cache, mnt);
  217. return NULL;
  218. }
  219. /*
  220. * Most r/o checks on a fs are for operations that take
  221. * discrete amounts of time, like a write() or unlink().
  222. * We must keep track of when those operations start
  223. * (for permission checks) and when they end, so that
  224. * we can determine when writes are able to occur to
  225. * a filesystem.
  226. */
  227. /*
  228. * __mnt_is_readonly: check whether a mount is read-only
  229. * @mnt: the mount to check for its write status
  230. *
  231. * This shouldn't be used directly ouside of the VFS.
  232. * It does not guarantee that the filesystem will stay
  233. * r/w, just that it is right *now*. This can not and
  234. * should not be used in place of IS_RDONLY(inode).
  235. * mnt_want/drop_write() will _keep_ the filesystem
  236. * r/w.
  237. */
  238. int __mnt_is_readonly(struct vfsmount *mnt)
  239. {
  240. if (mnt->mnt_flags & MNT_READONLY)
  241. return 1;
  242. if (mnt->mnt_sb->s_flags & MS_RDONLY)
  243. return 1;
  244. return 0;
  245. }
  246. EXPORT_SYMBOL_GPL(__mnt_is_readonly);
  247. static inline void mnt_inc_writers(struct vfsmount *mnt)
  248. {
  249. #ifdef CONFIG_SMP
  250. this_cpu_inc(mnt->mnt_pcp->mnt_writers);
  251. #else
  252. mnt->mnt_writers++;
  253. #endif
  254. }
  255. static inline void mnt_dec_writers(struct vfsmount *mnt)
  256. {
  257. #ifdef CONFIG_SMP
  258. this_cpu_dec(mnt->mnt_pcp->mnt_writers);
  259. #else
  260. mnt->mnt_writers--;
  261. #endif
  262. }
  263. static unsigned int mnt_get_writers(struct vfsmount *mnt)
  264. {
  265. #ifdef CONFIG_SMP
  266. unsigned int count = 0;
  267. int cpu;
  268. for_each_possible_cpu(cpu) {
  269. count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
  270. }
  271. return count;
  272. #else
  273. return mnt->mnt_writers;
  274. #endif
  275. }
  276. /*
  277. * Most r/o checks on a fs are for operations that take
  278. * discrete amounts of time, like a write() or unlink().
  279. * We must keep track of when those operations start
  280. * (for permission checks) and when they end, so that
  281. * we can determine when writes are able to occur to
  282. * a filesystem.
  283. */
  284. /**
  285. * mnt_want_write - get write access to a mount
  286. * @mnt: the mount on which to take a write
  287. *
  288. * This tells the low-level filesystem that a write is
  289. * about to be performed to it, and makes sure that
  290. * writes are allowed before returning success. When
  291. * the write operation is finished, mnt_drop_write()
  292. * must be called. This is effectively a refcount.
  293. */
  294. int mnt_want_write(struct vfsmount *mnt)
  295. {
  296. int ret = 0;
  297. preempt_disable();
  298. mnt_inc_writers(mnt);
  299. /*
  300. * The store to mnt_inc_writers must be visible before we pass
  301. * MNT_WRITE_HOLD loop below, so that the slowpath can see our
  302. * incremented count after it has set MNT_WRITE_HOLD.
  303. */
  304. smp_mb();
  305. while (mnt->mnt_flags & MNT_WRITE_HOLD)
  306. cpu_relax();
  307. /*
  308. * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
  309. * be set to match its requirements. So we must not load that until
  310. * MNT_WRITE_HOLD is cleared.
  311. */
  312. smp_rmb();
  313. if (__mnt_is_readonly(mnt)) {
  314. mnt_dec_writers(mnt);
  315. ret = -EROFS;
  316. goto out;
  317. }
  318. out:
  319. preempt_enable();
  320. return ret;
  321. }
  322. EXPORT_SYMBOL_GPL(mnt_want_write);
  323. /**
  324. * mnt_clone_write - get write access to a mount
  325. * @mnt: the mount on which to take a write
  326. *
  327. * This is effectively like mnt_want_write, except
  328. * it must only be used to take an extra write reference
  329. * on a mountpoint that we already know has a write reference
  330. * on it. This allows some optimisation.
  331. *
  332. * After finished, mnt_drop_write must be called as usual to
  333. * drop the reference.
  334. */
  335. int mnt_clone_write(struct vfsmount *mnt)
  336. {
  337. /* superblock may be r/o */
  338. if (__mnt_is_readonly(mnt))
  339. return -EROFS;
  340. preempt_disable();
  341. mnt_inc_writers(mnt);
  342. preempt_enable();
  343. return 0;
  344. }
  345. EXPORT_SYMBOL_GPL(mnt_clone_write);
  346. /**
  347. * mnt_want_write_file - get write access to a file's mount
  348. * @file: the file who's mount on which to take a write
  349. *
  350. * This is like mnt_want_write, but it takes a file and can
  351. * do some optimisations if the file is open for write already
  352. */
  353. int mnt_want_write_file(struct file *file)
  354. {
  355. struct inode *inode = file->f_dentry->d_inode;
  356. if (!(file->f_mode & FMODE_WRITE) || special_file(inode->i_mode))
  357. return mnt_want_write(file->f_path.mnt);
  358. else
  359. return mnt_clone_write(file->f_path.mnt);
  360. }
  361. EXPORT_SYMBOL_GPL(mnt_want_write_file);
  362. /**
  363. * mnt_drop_write - give up write access to a mount
  364. * @mnt: the mount on which to give up write access
  365. *
  366. * Tells the low-level filesystem that we are done
  367. * performing writes to it. Must be matched with
  368. * mnt_want_write() call above.
  369. */
  370. void mnt_drop_write(struct vfsmount *mnt)
  371. {
  372. preempt_disable();
  373. mnt_dec_writers(mnt);
  374. preempt_enable();
  375. }
  376. EXPORT_SYMBOL_GPL(mnt_drop_write);
  377. static int mnt_make_readonly(struct vfsmount *mnt)
  378. {
  379. int ret = 0;
  380. br_write_lock(vfsmount_lock);
  381. mnt->mnt_flags |= MNT_WRITE_HOLD;
  382. /*
  383. * After storing MNT_WRITE_HOLD, we'll read the counters. This store
  384. * should be visible before we do.
  385. */
  386. smp_mb();
  387. /*
  388. * With writers on hold, if this value is zero, then there are
  389. * definitely no active writers (although held writers may subsequently
  390. * increment the count, they'll have to wait, and decrement it after
  391. * seeing MNT_READONLY).
  392. *
  393. * It is OK to have counter incremented on one CPU and decremented on
  394. * another: the sum will add up correctly. The danger would be when we
  395. * sum up each counter, if we read a counter before it is incremented,
  396. * but then read another CPU's count which it has been subsequently
  397. * decremented from -- we would see more decrements than we should.
  398. * MNT_WRITE_HOLD protects against this scenario, because
  399. * mnt_want_write first increments count, then smp_mb, then spins on
  400. * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
  401. * we're counting up here.
  402. */
  403. if (mnt_get_writers(mnt) > 0)
  404. ret = -EBUSY;
  405. else
  406. mnt->mnt_flags |= MNT_READONLY;
  407. /*
  408. * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
  409. * that become unheld will see MNT_READONLY.
  410. */
  411. smp_wmb();
  412. mnt->mnt_flags &= ~MNT_WRITE_HOLD;
  413. br_write_unlock(vfsmount_lock);
  414. return ret;
  415. }
  416. static void __mnt_unmake_readonly(struct vfsmount *mnt)
  417. {
  418. br_write_lock(vfsmount_lock);
  419. mnt->mnt_flags &= ~MNT_READONLY;
  420. br_write_unlock(vfsmount_lock);
  421. }
  422. void simple_set_mnt(struct vfsmount *mnt, struct super_block *sb)
  423. {
  424. mnt->mnt_sb = sb;
  425. mnt->mnt_root = dget(sb->s_root);
  426. }
  427. EXPORT_SYMBOL(simple_set_mnt);
  428. void free_vfsmnt(struct vfsmount *mnt)
  429. {
  430. kfree(mnt->mnt_devname);
  431. mnt_free_id(mnt);
  432. #ifdef CONFIG_SMP
  433. free_percpu(mnt->mnt_pcp);
  434. #endif
  435. kmem_cache_free(mnt_cache, mnt);
  436. }
  437. /*
  438. * find the first or last mount at @dentry on vfsmount @mnt depending on
  439. * @dir. If @dir is set return the first mount else return the last mount.
  440. * vfsmount_lock must be held for read or write.
  441. */
  442. struct vfsmount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry,
  443. int dir)
  444. {
  445. struct list_head *head = mount_hashtable + hash(mnt, dentry);
  446. struct list_head *tmp = head;
  447. struct vfsmount *p, *found = NULL;
  448. for (;;) {
  449. tmp = dir ? tmp->next : tmp->prev;
  450. p = NULL;
  451. if (tmp == head)
  452. break;
  453. p = list_entry(tmp, struct vfsmount, mnt_hash);
  454. if (p->mnt_parent == mnt && p->mnt_mountpoint == dentry) {
  455. found = p;
  456. break;
  457. }
  458. }
  459. return found;
  460. }
  461. /*
  462. * lookup_mnt increments the ref count before returning
  463. * the vfsmount struct.
  464. */
  465. struct vfsmount *lookup_mnt(struct path *path)
  466. {
  467. struct vfsmount *child_mnt;
  468. br_read_lock(vfsmount_lock);
  469. if ((child_mnt = __lookup_mnt(path->mnt, path->dentry, 1)))
  470. mntget(child_mnt);
  471. br_read_unlock(vfsmount_lock);
  472. return child_mnt;
  473. }
  474. static inline int check_mnt(struct vfsmount *mnt)
  475. {
  476. return mnt->mnt_ns == current->nsproxy->mnt_ns;
  477. }
  478. /*
  479. * vfsmount lock must be held for write
  480. */
  481. static void touch_mnt_namespace(struct mnt_namespace *ns)
  482. {
  483. if (ns) {
  484. ns->event = ++event;
  485. wake_up_interruptible(&ns->poll);
  486. }
  487. }
  488. /*
  489. * vfsmount lock must be held for write
  490. */
  491. static void __touch_mnt_namespace(struct mnt_namespace *ns)
  492. {
  493. if (ns && ns->event != event) {
  494. ns->event = event;
  495. wake_up_interruptible(&ns->poll);
  496. }
  497. }
  498. /*
  499. * Clear dentry's mounted state if it has no remaining mounts.
  500. * vfsmount_lock must be held for write.
  501. */
  502. static void dentry_reset_mounted(struct vfsmount *mnt, struct dentry *dentry)
  503. {
  504. unsigned u;
  505. for (u = 0; u < HASH_SIZE; u++) {
  506. struct vfsmount *p;
  507. list_for_each_entry(p, &mount_hashtable[u], mnt_hash) {
  508. if (p->mnt_mountpoint == dentry)
  509. return;
  510. }
  511. }
  512. spin_lock(&dentry->d_lock);
  513. dentry->d_flags &= ~DCACHE_MOUNTED;
  514. spin_unlock(&dentry->d_lock);
  515. }
  516. /*
  517. * vfsmount lock must be held for write
  518. */
  519. static void detach_mnt(struct vfsmount *mnt, struct path *old_path)
  520. {
  521. old_path->dentry = mnt->mnt_mountpoint;
  522. old_path->mnt = mnt->mnt_parent;
  523. mnt->mnt_parent = mnt;
  524. mnt->mnt_mountpoint = mnt->mnt_root;
  525. list_del_init(&mnt->mnt_child);
  526. list_del_init(&mnt->mnt_hash);
  527. dentry_reset_mounted(old_path->mnt, old_path->dentry);
  528. }
  529. /*
  530. * vfsmount lock must be held for write
  531. */
  532. void mnt_set_mountpoint(struct vfsmount *mnt, struct dentry *dentry,
  533. struct vfsmount *child_mnt)
  534. {
  535. child_mnt->mnt_parent = mntget(mnt);
  536. child_mnt->mnt_mountpoint = dget(dentry);
  537. spin_lock(&dentry->d_lock);
  538. dentry->d_flags |= DCACHE_MOUNTED;
  539. spin_unlock(&dentry->d_lock);
  540. }
  541. /*
  542. * vfsmount lock must be held for write
  543. */
  544. static void attach_mnt(struct vfsmount *mnt, struct path *path)
  545. {
  546. mnt_set_mountpoint(path->mnt, path->dentry, mnt);
  547. list_add_tail(&mnt->mnt_hash, mount_hashtable +
  548. hash(path->mnt, path->dentry));
  549. list_add_tail(&mnt->mnt_child, &path->mnt->mnt_mounts);
  550. }
  551. /*
  552. * vfsmount lock must be held for write
  553. */
  554. static void commit_tree(struct vfsmount *mnt)
  555. {
  556. struct vfsmount *parent = mnt->mnt_parent;
  557. struct vfsmount *m;
  558. LIST_HEAD(head);
  559. struct mnt_namespace *n = parent->mnt_ns;
  560. BUG_ON(parent == mnt);
  561. list_add_tail(&head, &mnt->mnt_list);
  562. list_for_each_entry(m, &head, mnt_list) {
  563. m->mnt_ns = n;
  564. atomic_inc(&m->mnt_longterm);
  565. }
  566. list_splice(&head, n->list.prev);
  567. list_add_tail(&mnt->mnt_hash, mount_hashtable +
  568. hash(parent, mnt->mnt_mountpoint));
  569. list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
  570. touch_mnt_namespace(n);
  571. }
  572. static struct vfsmount *next_mnt(struct vfsmount *p, struct vfsmount *root)
  573. {
  574. struct list_head *next = p->mnt_mounts.next;
  575. if (next == &p->mnt_mounts) {
  576. while (1) {
  577. if (p == root)
  578. return NULL;
  579. next = p->mnt_child.next;
  580. if (next != &p->mnt_parent->mnt_mounts)
  581. break;
  582. p = p->mnt_parent;
  583. }
  584. }
  585. return list_entry(next, struct vfsmount, mnt_child);
  586. }
  587. static struct vfsmount *skip_mnt_tree(struct vfsmount *p)
  588. {
  589. struct list_head *prev = p->mnt_mounts.prev;
  590. while (prev != &p->mnt_mounts) {
  591. p = list_entry(prev, struct vfsmount, mnt_child);
  592. prev = p->mnt_mounts.prev;
  593. }
  594. return p;
  595. }
  596. static struct vfsmount *clone_mnt(struct vfsmount *old, struct dentry *root,
  597. int flag)
  598. {
  599. struct super_block *sb = old->mnt_sb;
  600. struct vfsmount *mnt = alloc_vfsmnt(old->mnt_devname);
  601. if (mnt) {
  602. if (flag & (CL_SLAVE | CL_PRIVATE))
  603. mnt->mnt_group_id = 0; /* not a peer of original */
  604. else
  605. mnt->mnt_group_id = old->mnt_group_id;
  606. if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
  607. int err = mnt_alloc_group_id(mnt);
  608. if (err)
  609. goto out_free;
  610. }
  611. mnt->mnt_flags = old->mnt_flags & ~MNT_WRITE_HOLD;
  612. atomic_inc(&sb->s_active);
  613. mnt->mnt_sb = sb;
  614. mnt->mnt_root = dget(root);
  615. mnt->mnt_mountpoint = mnt->mnt_root;
  616. mnt->mnt_parent = mnt;
  617. if (flag & CL_SLAVE) {
  618. list_add(&mnt->mnt_slave, &old->mnt_slave_list);
  619. mnt->mnt_master = old;
  620. CLEAR_MNT_SHARED(mnt);
  621. } else if (!(flag & CL_PRIVATE)) {
  622. if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
  623. list_add(&mnt->mnt_share, &old->mnt_share);
  624. if (IS_MNT_SLAVE(old))
  625. list_add(&mnt->mnt_slave, &old->mnt_slave);
  626. mnt->mnt_master = old->mnt_master;
  627. }
  628. if (flag & CL_MAKE_SHARED)
  629. set_mnt_shared(mnt);
  630. /* stick the duplicate mount on the same expiry list
  631. * as the original if that was on one */
  632. if (flag & CL_EXPIRE) {
  633. if (!list_empty(&old->mnt_expire))
  634. list_add(&mnt->mnt_expire, &old->mnt_expire);
  635. }
  636. }
  637. return mnt;
  638. out_free:
  639. free_vfsmnt(mnt);
  640. return NULL;
  641. }
  642. static inline void mntfree(struct vfsmount *mnt)
  643. {
  644. struct super_block *sb = mnt->mnt_sb;
  645. /*
  646. * This probably indicates that somebody messed
  647. * up a mnt_want/drop_write() pair. If this
  648. * happens, the filesystem was probably unable
  649. * to make r/w->r/o transitions.
  650. */
  651. /*
  652. * The locking used to deal with mnt_count decrement provides barriers,
  653. * so mnt_get_writers() below is safe.
  654. */
  655. WARN_ON(mnt_get_writers(mnt));
  656. fsnotify_vfsmount_delete(mnt);
  657. dput(mnt->mnt_root);
  658. free_vfsmnt(mnt);
  659. deactivate_super(sb);
  660. }
  661. static void mntput_no_expire(struct vfsmount *mnt)
  662. {
  663. put_again:
  664. #ifdef CONFIG_SMP
  665. br_read_lock(vfsmount_lock);
  666. if (likely(atomic_read(&mnt->mnt_longterm))) {
  667. mnt_dec_count(mnt);
  668. br_read_unlock(vfsmount_lock);
  669. return;
  670. }
  671. br_read_unlock(vfsmount_lock);
  672. br_write_lock(vfsmount_lock);
  673. mnt_dec_count(mnt);
  674. if (mnt_get_count(mnt)) {
  675. br_write_unlock(vfsmount_lock);
  676. return;
  677. }
  678. #else
  679. mnt_dec_count(mnt);
  680. if (likely(mnt_get_count(mnt)))
  681. return;
  682. br_write_lock(vfsmount_lock);
  683. #endif
  684. if (unlikely(mnt->mnt_pinned)) {
  685. mnt_add_count(mnt, mnt->mnt_pinned + 1);
  686. mnt->mnt_pinned = 0;
  687. br_write_unlock(vfsmount_lock);
  688. acct_auto_close_mnt(mnt);
  689. goto put_again;
  690. }
  691. br_write_unlock(vfsmount_lock);
  692. mntfree(mnt);
  693. }
  694. void mntput(struct vfsmount *mnt)
  695. {
  696. if (mnt) {
  697. /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
  698. if (unlikely(mnt->mnt_expiry_mark))
  699. mnt->mnt_expiry_mark = 0;
  700. mntput_no_expire(mnt);
  701. }
  702. }
  703. EXPORT_SYMBOL(mntput);
  704. struct vfsmount *mntget(struct vfsmount *mnt)
  705. {
  706. if (mnt)
  707. mnt_inc_count(mnt);
  708. return mnt;
  709. }
  710. EXPORT_SYMBOL(mntget);
  711. void mnt_pin(struct vfsmount *mnt)
  712. {
  713. br_write_lock(vfsmount_lock);
  714. mnt->mnt_pinned++;
  715. br_write_unlock(vfsmount_lock);
  716. }
  717. EXPORT_SYMBOL(mnt_pin);
  718. void mnt_unpin(struct vfsmount *mnt)
  719. {
  720. br_write_lock(vfsmount_lock);
  721. if (mnt->mnt_pinned) {
  722. mnt_inc_count(mnt);
  723. mnt->mnt_pinned--;
  724. }
  725. br_write_unlock(vfsmount_lock);
  726. }
  727. EXPORT_SYMBOL(mnt_unpin);
  728. static inline void mangle(struct seq_file *m, const char *s)
  729. {
  730. seq_escape(m, s, " \t\n\\");
  731. }
  732. /*
  733. * Simple .show_options callback for filesystems which don't want to
  734. * implement more complex mount option showing.
  735. *
  736. * See also save_mount_options().
  737. */
  738. int generic_show_options(struct seq_file *m, struct vfsmount *mnt)
  739. {
  740. const char *options;
  741. rcu_read_lock();
  742. options = rcu_dereference(mnt->mnt_sb->s_options);
  743. if (options != NULL && options[0]) {
  744. seq_putc(m, ',');
  745. mangle(m, options);
  746. }
  747. rcu_read_unlock();
  748. return 0;
  749. }
  750. EXPORT_SYMBOL(generic_show_options);
  751. /*
  752. * If filesystem uses generic_show_options(), this function should be
  753. * called from the fill_super() callback.
  754. *
  755. * The .remount_fs callback usually needs to be handled in a special
  756. * way, to make sure, that previous options are not overwritten if the
  757. * remount fails.
  758. *
  759. * Also note, that if the filesystem's .remount_fs function doesn't
  760. * reset all options to their default value, but changes only newly
  761. * given options, then the displayed options will not reflect reality
  762. * any more.
  763. */
  764. void save_mount_options(struct super_block *sb, char *options)
  765. {
  766. BUG_ON(sb->s_options);
  767. rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL));
  768. }
  769. EXPORT_SYMBOL(save_mount_options);
  770. void replace_mount_options(struct super_block *sb, char *options)
  771. {
  772. char *old = sb->s_options;
  773. rcu_assign_pointer(sb->s_options, options);
  774. if (old) {
  775. synchronize_rcu();
  776. kfree(old);
  777. }
  778. }
  779. EXPORT_SYMBOL(replace_mount_options);
  780. #ifdef CONFIG_PROC_FS
  781. /* iterator */
  782. static void *m_start(struct seq_file *m, loff_t *pos)
  783. {
  784. struct proc_mounts *p = m->private;
  785. down_read(&namespace_sem);
  786. return seq_list_start(&p->ns->list, *pos);
  787. }
  788. static void *m_next(struct seq_file *m, void *v, loff_t *pos)
  789. {
  790. struct proc_mounts *p = m->private;
  791. return seq_list_next(v, &p->ns->list, pos);
  792. }
  793. static void m_stop(struct seq_file *m, void *v)
  794. {
  795. up_read(&namespace_sem);
  796. }
  797. int mnt_had_events(struct proc_mounts *p)
  798. {
  799. struct mnt_namespace *ns = p->ns;
  800. int res = 0;
  801. br_read_lock(vfsmount_lock);
  802. if (p->event != ns->event) {
  803. p->event = ns->event;
  804. res = 1;
  805. }
  806. br_read_unlock(vfsmount_lock);
  807. return res;
  808. }
  809. struct proc_fs_info {
  810. int flag;
  811. const char *str;
  812. };
  813. static int show_sb_opts(struct seq_file *m, struct super_block *sb)
  814. {
  815. static const struct proc_fs_info fs_info[] = {
  816. { MS_SYNCHRONOUS, ",sync" },
  817. { MS_DIRSYNC, ",dirsync" },
  818. { MS_MANDLOCK, ",mand" },
  819. { 0, NULL }
  820. };
  821. const struct proc_fs_info *fs_infop;
  822. for (fs_infop = fs_info; fs_infop->flag; fs_infop++) {
  823. if (sb->s_flags & fs_infop->flag)
  824. seq_puts(m, fs_infop->str);
  825. }
  826. return security_sb_show_options(m, sb);
  827. }
  828. static void show_mnt_opts(struct seq_file *m, struct vfsmount *mnt)
  829. {
  830. static const struct proc_fs_info mnt_info[] = {
  831. { MNT_NOSUID, ",nosuid" },
  832. { MNT_NODEV, ",nodev" },
  833. { MNT_NOEXEC, ",noexec" },
  834. { MNT_NOATIME, ",noatime" },
  835. { MNT_NODIRATIME, ",nodiratime" },
  836. { MNT_RELATIME, ",relatime" },
  837. { 0, NULL }
  838. };
  839. const struct proc_fs_info *fs_infop;
  840. for (fs_infop = mnt_info; fs_infop->flag; fs_infop++) {
  841. if (mnt->mnt_flags & fs_infop->flag)
  842. seq_puts(m, fs_infop->str);
  843. }
  844. }
  845. static void show_type(struct seq_file *m, struct super_block *sb)
  846. {
  847. mangle(m, sb->s_type->name);
  848. if (sb->s_subtype && sb->s_subtype[0]) {
  849. seq_putc(m, '.');
  850. mangle(m, sb->s_subtype);
  851. }
  852. }
  853. static int show_vfsmnt(struct seq_file *m, void *v)
  854. {
  855. struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
  856. int err = 0;
  857. struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
  858. mangle(m, mnt->mnt_devname ? mnt->mnt_devname : "none");
  859. seq_putc(m, ' ');
  860. seq_path(m, &mnt_path, " \t\n\\");
  861. seq_putc(m, ' ');
  862. show_type(m, mnt->mnt_sb);
  863. seq_puts(m, __mnt_is_readonly(mnt) ? " ro" : " rw");
  864. err = show_sb_opts(m, mnt->mnt_sb);
  865. if (err)
  866. goto out;
  867. show_mnt_opts(m, mnt);
  868. if (mnt->mnt_sb->s_op->show_options)
  869. err = mnt->mnt_sb->s_op->show_options(m, mnt);
  870. seq_puts(m, " 0 0\n");
  871. out:
  872. return err;
  873. }
  874. const struct seq_operations mounts_op = {
  875. .start = m_start,
  876. .next = m_next,
  877. .stop = m_stop,
  878. .show = show_vfsmnt
  879. };
  880. static int show_mountinfo(struct seq_file *m, void *v)
  881. {
  882. struct proc_mounts *p = m->private;
  883. struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
  884. struct super_block *sb = mnt->mnt_sb;
  885. struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
  886. struct path root = p->root;
  887. int err = 0;
  888. seq_printf(m, "%i %i %u:%u ", mnt->mnt_id, mnt->mnt_parent->mnt_id,
  889. MAJOR(sb->s_dev), MINOR(sb->s_dev));
  890. seq_dentry(m, mnt->mnt_root, " \t\n\\");
  891. seq_putc(m, ' ');
  892. seq_path_root(m, &mnt_path, &root, " \t\n\\");
  893. if (root.mnt != p->root.mnt || root.dentry != p->root.dentry) {
  894. /*
  895. * Mountpoint is outside root, discard that one. Ugly,
  896. * but less so than trying to do that in iterator in a
  897. * race-free way (due to renames).
  898. */
  899. return SEQ_SKIP;
  900. }
  901. seq_puts(m, mnt->mnt_flags & MNT_READONLY ? " ro" : " rw");
  902. show_mnt_opts(m, mnt);
  903. /* Tagged fields ("foo:X" or "bar") */
  904. if (IS_MNT_SHARED(mnt))
  905. seq_printf(m, " shared:%i", mnt->mnt_group_id);
  906. if (IS_MNT_SLAVE(mnt)) {
  907. int master = mnt->mnt_master->mnt_group_id;
  908. int dom = get_dominating_id(mnt, &p->root);
  909. seq_printf(m, " master:%i", master);
  910. if (dom && dom != master)
  911. seq_printf(m, " propagate_from:%i", dom);
  912. }
  913. if (IS_MNT_UNBINDABLE(mnt))
  914. seq_puts(m, " unbindable");
  915. /* Filesystem specific data */
  916. seq_puts(m, " - ");
  917. show_type(m, sb);
  918. seq_putc(m, ' ');
  919. mangle(m, mnt->mnt_devname ? mnt->mnt_devname : "none");
  920. seq_puts(m, sb->s_flags & MS_RDONLY ? " ro" : " rw");
  921. err = show_sb_opts(m, sb);
  922. if (err)
  923. goto out;
  924. if (sb->s_op->show_options)
  925. err = sb->s_op->show_options(m, mnt);
  926. seq_putc(m, '\n');
  927. out:
  928. return err;
  929. }
  930. const struct seq_operations mountinfo_op = {
  931. .start = m_start,
  932. .next = m_next,
  933. .stop = m_stop,
  934. .show = show_mountinfo,
  935. };
  936. static int show_vfsstat(struct seq_file *m, void *v)
  937. {
  938. struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
  939. struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
  940. int err = 0;
  941. /* device */
  942. if (mnt->mnt_devname) {
  943. seq_puts(m, "device ");
  944. mangle(m, mnt->mnt_devname);
  945. } else
  946. seq_puts(m, "no device");
  947. /* mount point */
  948. seq_puts(m, " mounted on ");
  949. seq_path(m, &mnt_path, " \t\n\\");
  950. seq_putc(m, ' ');
  951. /* file system type */
  952. seq_puts(m, "with fstype ");
  953. show_type(m, mnt->mnt_sb);
  954. /* optional statistics */
  955. if (mnt->mnt_sb->s_op->show_stats) {
  956. seq_putc(m, ' ');
  957. err = mnt->mnt_sb->s_op->show_stats(m, mnt);
  958. }
  959. seq_putc(m, '\n');
  960. return err;
  961. }
  962. const struct seq_operations mountstats_op = {
  963. .start = m_start,
  964. .next = m_next,
  965. .stop = m_stop,
  966. .show = show_vfsstat,
  967. };
  968. #endif /* CONFIG_PROC_FS */
  969. /**
  970. * may_umount_tree - check if a mount tree is busy
  971. * @mnt: root of mount tree
  972. *
  973. * This is called to check if a tree of mounts has any
  974. * open files, pwds, chroots or sub mounts that are
  975. * busy.
  976. */
  977. int may_umount_tree(struct vfsmount *mnt)
  978. {
  979. int actual_refs = 0;
  980. int minimum_refs = 0;
  981. struct vfsmount *p;
  982. /* write lock needed for mnt_get_count */
  983. br_write_lock(vfsmount_lock);
  984. for (p = mnt; p; p = next_mnt(p, mnt)) {
  985. actual_refs += mnt_get_count(p);
  986. minimum_refs += 2;
  987. }
  988. br_write_unlock(vfsmount_lock);
  989. if (actual_refs > minimum_refs)
  990. return 0;
  991. return 1;
  992. }
  993. EXPORT_SYMBOL(may_umount_tree);
  994. /**
  995. * may_umount - check if a mount point is busy
  996. * @mnt: root of mount
  997. *
  998. * This is called to check if a mount point has any
  999. * open files, pwds, chroots or sub mounts. If the
  1000. * mount has sub mounts this will return busy
  1001. * regardless of whether the sub mounts are busy.
  1002. *
  1003. * Doesn't take quota and stuff into account. IOW, in some cases it will
  1004. * give false negatives. The main reason why it's here is that we need
  1005. * a non-destructive way to look for easily umountable filesystems.
  1006. */
  1007. int may_umount(struct vfsmount *mnt)
  1008. {
  1009. int ret = 1;
  1010. down_read(&namespace_sem);
  1011. br_write_lock(vfsmount_lock);
  1012. if (propagate_mount_busy(mnt, 2))
  1013. ret = 0;
  1014. br_write_unlock(vfsmount_lock);
  1015. up_read(&namespace_sem);
  1016. return ret;
  1017. }
  1018. EXPORT_SYMBOL(may_umount);
  1019. void release_mounts(struct list_head *head)
  1020. {
  1021. struct vfsmount *mnt;
  1022. while (!list_empty(head)) {
  1023. mnt = list_first_entry(head, struct vfsmount, mnt_hash);
  1024. list_del_init(&mnt->mnt_hash);
  1025. if (mnt->mnt_parent != mnt) {
  1026. struct dentry *dentry;
  1027. struct vfsmount *m;
  1028. br_write_lock(vfsmount_lock);
  1029. dentry = mnt->mnt_mountpoint;
  1030. m = mnt->mnt_parent;
  1031. mnt->mnt_mountpoint = mnt->mnt_root;
  1032. mnt->mnt_parent = mnt;
  1033. m->mnt_ghosts--;
  1034. br_write_unlock(vfsmount_lock);
  1035. dput(dentry);
  1036. mntput(m);
  1037. }
  1038. mntput(mnt);
  1039. }
  1040. }
  1041. /*
  1042. * vfsmount lock must be held for write
  1043. * namespace_sem must be held for write
  1044. */
  1045. void umount_tree(struct vfsmount *mnt, int propagate, struct list_head *kill)
  1046. {
  1047. LIST_HEAD(tmp_list);
  1048. struct vfsmount *p;
  1049. for (p = mnt; p; p = next_mnt(p, mnt))
  1050. list_move(&p->mnt_hash, &tmp_list);
  1051. if (propagate)
  1052. propagate_umount(&tmp_list);
  1053. list_for_each_entry(p, &tmp_list, mnt_hash) {
  1054. list_del_init(&p->mnt_expire);
  1055. list_del_init(&p->mnt_list);
  1056. __touch_mnt_namespace(p->mnt_ns);
  1057. p->mnt_ns = NULL;
  1058. atomic_dec(&p->mnt_longterm);
  1059. list_del_init(&p->mnt_child);
  1060. if (p->mnt_parent != p) {
  1061. p->mnt_parent->mnt_ghosts++;
  1062. dentry_reset_mounted(p->mnt_parent, p->mnt_mountpoint);
  1063. }
  1064. change_mnt_propagation(p, MS_PRIVATE);
  1065. }
  1066. list_splice(&tmp_list, kill);
  1067. }
  1068. static void shrink_submounts(struct vfsmount *mnt, struct list_head *umounts);
  1069. static int do_umount(struct vfsmount *mnt, int flags)
  1070. {
  1071. struct super_block *sb = mnt->mnt_sb;
  1072. int retval;
  1073. LIST_HEAD(umount_list);
  1074. retval = security_sb_umount(mnt, flags);
  1075. if (retval)
  1076. return retval;
  1077. /*
  1078. * Allow userspace to request a mountpoint be expired rather than
  1079. * unmounting unconditionally. Unmount only happens if:
  1080. * (1) the mark is already set (the mark is cleared by mntput())
  1081. * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
  1082. */
  1083. if (flags & MNT_EXPIRE) {
  1084. if (mnt == current->fs->root.mnt ||
  1085. flags & (MNT_FORCE | MNT_DETACH))
  1086. return -EINVAL;
  1087. /*
  1088. * probably don't strictly need the lock here if we examined
  1089. * all race cases, but it's a slowpath.
  1090. */
  1091. br_write_lock(vfsmount_lock);
  1092. if (mnt_get_count(mnt) != 2) {
  1093. br_write_lock(vfsmount_lock);
  1094. return -EBUSY;
  1095. }
  1096. br_write_unlock(vfsmount_lock);
  1097. if (!xchg(&mnt->mnt_expiry_mark, 1))
  1098. return -EAGAIN;
  1099. }
  1100. /*
  1101. * If we may have to abort operations to get out of this
  1102. * mount, and they will themselves hold resources we must
  1103. * allow the fs to do things. In the Unix tradition of
  1104. * 'Gee thats tricky lets do it in userspace' the umount_begin
  1105. * might fail to complete on the first run through as other tasks
  1106. * must return, and the like. Thats for the mount program to worry
  1107. * about for the moment.
  1108. */
  1109. if (flags & MNT_FORCE && sb->s_op->umount_begin) {
  1110. sb->s_op->umount_begin(sb);
  1111. }
  1112. /*
  1113. * No sense to grab the lock for this test, but test itself looks
  1114. * somewhat bogus. Suggestions for better replacement?
  1115. * Ho-hum... In principle, we might treat that as umount + switch
  1116. * to rootfs. GC would eventually take care of the old vfsmount.
  1117. * Actually it makes sense, especially if rootfs would contain a
  1118. * /reboot - static binary that would close all descriptors and
  1119. * call reboot(9). Then init(8) could umount root and exec /reboot.
  1120. */
  1121. if (mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
  1122. /*
  1123. * Special case for "unmounting" root ...
  1124. * we just try to remount it readonly.
  1125. */
  1126. down_write(&sb->s_umount);
  1127. if (!(sb->s_flags & MS_RDONLY))
  1128. retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
  1129. up_write(&sb->s_umount);
  1130. return retval;
  1131. }
  1132. down_write(&namespace_sem);
  1133. br_write_lock(vfsmount_lock);
  1134. event++;
  1135. if (!(flags & MNT_DETACH))
  1136. shrink_submounts(mnt, &umount_list);
  1137. retval = -EBUSY;
  1138. if (flags & MNT_DETACH || !propagate_mount_busy(mnt, 2)) {
  1139. if (!list_empty(&mnt->mnt_list))
  1140. umount_tree(mnt, 1, &umount_list);
  1141. retval = 0;
  1142. }
  1143. br_write_unlock(vfsmount_lock);
  1144. up_write(&namespace_sem);
  1145. release_mounts(&umount_list);
  1146. return retval;
  1147. }
  1148. /*
  1149. * Now umount can handle mount points as well as block devices.
  1150. * This is important for filesystems which use unnamed block devices.
  1151. *
  1152. * We now support a flag for forced unmount like the other 'big iron'
  1153. * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
  1154. */
  1155. SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
  1156. {
  1157. struct path path;
  1158. int retval;
  1159. int lookup_flags = 0;
  1160. if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
  1161. return -EINVAL;
  1162. if (!(flags & UMOUNT_NOFOLLOW))
  1163. lookup_flags |= LOOKUP_FOLLOW;
  1164. retval = user_path_at(AT_FDCWD, name, lookup_flags, &path);
  1165. if (retval)
  1166. goto out;
  1167. retval = -EINVAL;
  1168. if (path.dentry != path.mnt->mnt_root)
  1169. goto dput_and_out;
  1170. if (!check_mnt(path.mnt))
  1171. goto dput_and_out;
  1172. retval = -EPERM;
  1173. if (!capable(CAP_SYS_ADMIN))
  1174. goto dput_and_out;
  1175. retval = do_umount(path.mnt, flags);
  1176. dput_and_out:
  1177. /* we mustn't call path_put() as that would clear mnt_expiry_mark */
  1178. dput(path.dentry);
  1179. mntput_no_expire(path.mnt);
  1180. out:
  1181. return retval;
  1182. }
  1183. #ifdef __ARCH_WANT_SYS_OLDUMOUNT
  1184. /*
  1185. * The 2.0 compatible umount. No flags.
  1186. */
  1187. SYSCALL_DEFINE1(oldumount, char __user *, name)
  1188. {
  1189. return sys_umount(name, 0);
  1190. }
  1191. #endif
  1192. static int mount_is_safe(struct path *path)
  1193. {
  1194. if (capable(CAP_SYS_ADMIN))
  1195. return 0;
  1196. return -EPERM;
  1197. #ifdef notyet
  1198. if (S_ISLNK(path->dentry->d_inode->i_mode))
  1199. return -EPERM;
  1200. if (path->dentry->d_inode->i_mode & S_ISVTX) {
  1201. if (current_uid() != path->dentry->d_inode->i_uid)
  1202. return -EPERM;
  1203. }
  1204. if (inode_permission(path->dentry->d_inode, MAY_WRITE))
  1205. return -EPERM;
  1206. return 0;
  1207. #endif
  1208. }
  1209. struct vfsmount *copy_tree(struct vfsmount *mnt, struct dentry *dentry,
  1210. int flag)
  1211. {
  1212. struct vfsmount *res, *p, *q, *r, *s;
  1213. struct path path;
  1214. if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(mnt))
  1215. return NULL;
  1216. res = q = clone_mnt(mnt, dentry, flag);
  1217. if (!q)
  1218. goto Enomem;
  1219. q->mnt_mountpoint = mnt->mnt_mountpoint;
  1220. p = mnt;
  1221. list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
  1222. if (!is_subdir(r->mnt_mountpoint, dentry))
  1223. continue;
  1224. for (s = r; s; s = next_mnt(s, r)) {
  1225. if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(s)) {
  1226. s = skip_mnt_tree(s);
  1227. continue;
  1228. }
  1229. while (p != s->mnt_parent) {
  1230. p = p->mnt_parent;
  1231. q = q->mnt_parent;
  1232. }
  1233. p = s;
  1234. path.mnt = q;
  1235. path.dentry = p->mnt_mountpoint;
  1236. q = clone_mnt(p, p->mnt_root, flag);
  1237. if (!q)
  1238. goto Enomem;
  1239. br_write_lock(vfsmount_lock);
  1240. list_add_tail(&q->mnt_list, &res->mnt_list);
  1241. attach_mnt(q, &path);
  1242. br_write_unlock(vfsmount_lock);
  1243. }
  1244. }
  1245. return res;
  1246. Enomem:
  1247. if (res) {
  1248. LIST_HEAD(umount_list);
  1249. br_write_lock(vfsmount_lock);
  1250. umount_tree(res, 0, &umount_list);
  1251. br_write_unlock(vfsmount_lock);
  1252. release_mounts(&umount_list);
  1253. }
  1254. return NULL;
  1255. }
  1256. struct vfsmount *collect_mounts(struct path *path)
  1257. {
  1258. struct vfsmount *tree;
  1259. down_write(&namespace_sem);
  1260. tree = copy_tree(path->mnt, path->dentry, CL_COPY_ALL | CL_PRIVATE);
  1261. up_write(&namespace_sem);
  1262. return tree;
  1263. }
  1264. void drop_collected_mounts(struct vfsmount *mnt)
  1265. {
  1266. LIST_HEAD(umount_list);
  1267. down_write(&namespace_sem);
  1268. br_write_lock(vfsmount_lock);
  1269. umount_tree(mnt, 0, &umount_list);
  1270. br_write_unlock(vfsmount_lock);
  1271. up_write(&namespace_sem);
  1272. release_mounts(&umount_list);
  1273. }
  1274. int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
  1275. struct vfsmount *root)
  1276. {
  1277. struct vfsmount *mnt;
  1278. int res = f(root, arg);
  1279. if (res)
  1280. return res;
  1281. list_for_each_entry(mnt, &root->mnt_list, mnt_list) {
  1282. res = f(mnt, arg);
  1283. if (res)
  1284. return res;
  1285. }
  1286. return 0;
  1287. }
  1288. static void cleanup_group_ids(struct vfsmount *mnt, struct vfsmount *end)
  1289. {
  1290. struct vfsmount *p;
  1291. for (p = mnt; p != end; p = next_mnt(p, mnt)) {
  1292. if (p->mnt_group_id && !IS_MNT_SHARED(p))
  1293. mnt_release_group_id(p);
  1294. }
  1295. }
  1296. static int invent_group_ids(struct vfsmount *mnt, bool recurse)
  1297. {
  1298. struct vfsmount *p;
  1299. for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
  1300. if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
  1301. int err = mnt_alloc_group_id(p);
  1302. if (err) {
  1303. cleanup_group_ids(mnt, p);
  1304. return err;
  1305. }
  1306. }
  1307. }
  1308. return 0;
  1309. }
  1310. /*
  1311. * @source_mnt : mount tree to be attached
  1312. * @nd : place the mount tree @source_mnt is attached
  1313. * @parent_nd : if non-null, detach the source_mnt from its parent and
  1314. * store the parent mount and mountpoint dentry.
  1315. * (done when source_mnt is moved)
  1316. *
  1317. * NOTE: in the table below explains the semantics when a source mount
  1318. * of a given type is attached to a destination mount of a given type.
  1319. * ---------------------------------------------------------------------------
  1320. * | BIND MOUNT OPERATION |
  1321. * |**************************************************************************
  1322. * | source-->| shared | private | slave | unbindable |
  1323. * | dest | | | | |
  1324. * | | | | | | |
  1325. * | v | | | | |
  1326. * |**************************************************************************
  1327. * | shared | shared (++) | shared (+) | shared(+++)| invalid |
  1328. * | | | | | |
  1329. * |non-shared| shared (+) | private | slave (*) | invalid |
  1330. * ***************************************************************************
  1331. * A bind operation clones the source mount and mounts the clone on the
  1332. * destination mount.
  1333. *
  1334. * (++) the cloned mount is propagated to all the mounts in the propagation
  1335. * tree of the destination mount and the cloned mount is added to
  1336. * the peer group of the source mount.
  1337. * (+) the cloned mount is created under the destination mount and is marked
  1338. * as shared. The cloned mount is added to the peer group of the source
  1339. * mount.
  1340. * (+++) the mount is propagated to all the mounts in the propagation tree
  1341. * of the destination mount and the cloned mount is made slave
  1342. * of the same master as that of the source mount. The cloned mount
  1343. * is marked as 'shared and slave'.
  1344. * (*) the cloned mount is made a slave of the same master as that of the
  1345. * source mount.
  1346. *
  1347. * ---------------------------------------------------------------------------
  1348. * | MOVE MOUNT OPERATION |
  1349. * |**************************************************************************
  1350. * | source-->| shared | private | slave | unbindable |
  1351. * | dest | | | | |
  1352. * | | | | | | |
  1353. * | v | | | | |
  1354. * |**************************************************************************
  1355. * | shared | shared (+) | shared (+) | shared(+++) | invalid |
  1356. * | | | | | |
  1357. * |non-shared| shared (+*) | private | slave (*) | unbindable |
  1358. * ***************************************************************************
  1359. *
  1360. * (+) the mount is moved to the destination. And is then propagated to
  1361. * all the mounts in the propagation tree of the destination mount.
  1362. * (+*) the mount is moved to the destination.
  1363. * (+++) the mount is moved to the destination and is then propagated to
  1364. * all the mounts belonging to the destination mount's propagation tree.
  1365. * the mount is marked as 'shared and slave'.
  1366. * (*) the mount continues to be a slave at the new location.
  1367. *
  1368. * if the source mount is a tree, the operations explained above is
  1369. * applied to each mount in the tree.
  1370. * Must be called without spinlocks held, since this function can sleep
  1371. * in allocations.
  1372. */
  1373. static int attach_recursive_mnt(struct vfsmount *source_mnt,
  1374. struct path *path, struct path *parent_path)
  1375. {
  1376. LIST_HEAD(tree_list);
  1377. struct vfsmount *dest_mnt = path->mnt;
  1378. struct dentry *dest_dentry = path->dentry;
  1379. struct vfsmount *child, *p;
  1380. int err;
  1381. if (IS_MNT_SHARED(dest_mnt)) {
  1382. err = invent_group_ids(source_mnt, true);
  1383. if (err)
  1384. goto out;
  1385. }
  1386. err = propagate_mnt(dest_mnt, dest_dentry, source_mnt, &tree_list);
  1387. if (err)
  1388. goto out_cleanup_ids;
  1389. br_write_lock(vfsmount_lock);
  1390. if (IS_MNT_SHARED(dest_mnt)) {
  1391. for (p = source_mnt; p; p = next_mnt(p, source_mnt))
  1392. set_mnt_shared(p);
  1393. }
  1394. if (parent_path) {
  1395. detach_mnt(source_mnt, parent_path);
  1396. attach_mnt(source_mnt, path);
  1397. touch_mnt_namespace(parent_path->mnt->mnt_ns);
  1398. } else {
  1399. mnt_set_mountpoint(dest_mnt, dest_dentry, source_mnt);
  1400. commit_tree(source_mnt);
  1401. }
  1402. list_for_each_entry_safe(child, p, &tree_list, mnt_hash) {
  1403. list_del_init(&child->mnt_hash);
  1404. commit_tree(child);
  1405. }
  1406. br_write_unlock(vfsmount_lock);
  1407. return 0;
  1408. out_cleanup_ids:
  1409. if (IS_MNT_SHARED(dest_mnt))
  1410. cleanup_group_ids(source_mnt, NULL);
  1411. out:
  1412. return err;
  1413. }
  1414. static int graft_tree(struct vfsmount *mnt, struct path *path)
  1415. {
  1416. int err;
  1417. if (mnt->mnt_sb->s_flags & MS_NOUSER)
  1418. return -EINVAL;
  1419. if (S_ISDIR(path->dentry->d_inode->i_mode) !=
  1420. S_ISDIR(mnt->mnt_root->d_inode->i_mode))
  1421. return -ENOTDIR;
  1422. err = -ENOENT;
  1423. mutex_lock(&path->dentry->d_inode->i_mutex);
  1424. if (cant_mount(path->dentry))
  1425. goto out_unlock;
  1426. if (!d_unlinked(path->dentry))
  1427. err = attach_recursive_mnt(mnt, path, NULL);
  1428. out_unlock:
  1429. mutex_unlock(&path->dentry->d_inode->i_mutex);
  1430. return err;
  1431. }
  1432. /*
  1433. * Sanity check the flags to change_mnt_propagation.
  1434. */
  1435. static int flags_to_propagation_type(int flags)
  1436. {
  1437. int type = flags & ~MS_REC;
  1438. /* Fail if any non-propagation flags are set */
  1439. if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
  1440. return 0;
  1441. /* Only one propagation flag should be set */
  1442. if (!is_power_of_2(type))
  1443. return 0;
  1444. return type;
  1445. }
  1446. /*
  1447. * recursively change the type of the mountpoint.
  1448. */
  1449. static int do_change_type(struct path *path, int flag)
  1450. {
  1451. struct vfsmount *m, *mnt = path->mnt;
  1452. int recurse = flag & MS_REC;
  1453. int type;
  1454. int err = 0;
  1455. if (!capable(CAP_SYS_ADMIN))
  1456. return -EPERM;
  1457. if (path->dentry != path->mnt->mnt_root)
  1458. return -EINVAL;
  1459. type = flags_to_propagation_type(flag);
  1460. if (!type)
  1461. return -EINVAL;
  1462. down_write(&namespace_sem);
  1463. if (type == MS_SHARED) {
  1464. err = invent_group_ids(mnt, recurse);
  1465. if (err)
  1466. goto out_unlock;
  1467. }
  1468. br_write_lock(vfsmount_lock);
  1469. for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
  1470. change_mnt_propagation(m, type);
  1471. br_write_unlock(vfsmount_lock);
  1472. out_unlock:
  1473. up_write(&namespace_sem);
  1474. return err;
  1475. }
  1476. /*
  1477. * do loopback mount.
  1478. */
  1479. static int do_loopback(struct path *path, char *old_name,
  1480. int recurse)
  1481. {
  1482. struct path old_path;
  1483. struct vfsmount *mnt = NULL;
  1484. int err = mount_is_safe(path);
  1485. if (err)
  1486. return err;
  1487. if (!old_name || !*old_name)
  1488. return -EINVAL;
  1489. err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
  1490. if (err)
  1491. return err;
  1492. down_write(&namespace_sem);
  1493. err = -EINVAL;
  1494. if (IS_MNT_UNBINDABLE(old_path.mnt))
  1495. goto out;
  1496. if (!check_mnt(path->mnt) || !check_mnt(old_path.mnt))
  1497. goto out;
  1498. err = -ENOMEM;
  1499. if (recurse)
  1500. mnt = copy_tree(old_path.mnt, old_path.dentry, 0);
  1501. else
  1502. mnt = clone_mnt(old_path.mnt, old_path.dentry, 0);
  1503. if (!mnt)
  1504. goto out;
  1505. err = graft_tree(mnt, path);
  1506. if (err) {
  1507. LIST_HEAD(umount_list);
  1508. br_write_lock(vfsmount_lock);
  1509. umount_tree(mnt, 0, &umount_list);
  1510. br_write_unlock(vfsmount_lock);
  1511. release_mounts(&umount_list);
  1512. }
  1513. out:
  1514. up_write(&namespace_sem);
  1515. path_put(&old_path);
  1516. return err;
  1517. }
  1518. static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
  1519. {
  1520. int error = 0;
  1521. int readonly_request = 0;
  1522. if (ms_flags & MS_RDONLY)
  1523. readonly_request = 1;
  1524. if (readonly_request == __mnt_is_readonly(mnt))
  1525. return 0;
  1526. if (readonly_request)
  1527. error = mnt_make_readonly(mnt);
  1528. else
  1529. __mnt_unmake_readonly(mnt);
  1530. return error;
  1531. }
  1532. /*
  1533. * change filesystem flags. dir should be a physical root of filesystem.
  1534. * If you've mounted a non-root directory somewhere and want to do remount
  1535. * on it - tough luck.
  1536. */
  1537. static int do_remount(struct path *path, int flags, int mnt_flags,
  1538. void *data)
  1539. {
  1540. int err;
  1541. struct super_block *sb = path->mnt->mnt_sb;
  1542. if (!capable(CAP_SYS_ADMIN))
  1543. return -EPERM;
  1544. if (!check_mnt(path->mnt))
  1545. return -EINVAL;
  1546. if (path->dentry != path->mnt->mnt_root)
  1547. return -EINVAL;
  1548. down_write(&sb->s_umount);
  1549. if (flags & MS_BIND)
  1550. err = change_mount_flags(path->mnt, flags);
  1551. else
  1552. err = do_remount_sb(sb, flags, data, 0);
  1553. if (!err) {
  1554. br_write_lock(vfsmount_lock);
  1555. mnt_flags |= path->mnt->mnt_flags & MNT_PROPAGATION_MASK;
  1556. path->mnt->mnt_flags = mnt_flags;
  1557. br_write_unlock(vfsmount_lock);
  1558. }
  1559. up_write(&sb->s_umount);
  1560. if (!err) {
  1561. br_write_lock(vfsmount_lock);
  1562. touch_mnt_namespace(path->mnt->mnt_ns);
  1563. br_write_unlock(vfsmount_lock);
  1564. }
  1565. return err;
  1566. }
  1567. static inline int tree_contains_unbindable(struct vfsmount *mnt)
  1568. {
  1569. struct vfsmount *p;
  1570. for (p = mnt; p; p = next_mnt(p, mnt)) {
  1571. if (IS_MNT_UNBINDABLE(p))
  1572. return 1;
  1573. }
  1574. return 0;
  1575. }
  1576. static int do_move_mount(struct path *path, char *old_name)
  1577. {
  1578. struct path old_path, parent_path;
  1579. struct vfsmount *p;
  1580. int err = 0;
  1581. if (!capable(CAP_SYS_ADMIN))
  1582. return -EPERM;
  1583. if (!old_name || !*old_name)
  1584. return -EINVAL;
  1585. err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
  1586. if (err)
  1587. return err;
  1588. down_write(&namespace_sem);
  1589. err = follow_down(path, true);
  1590. if (err < 0)
  1591. goto out;
  1592. err = -EINVAL;
  1593. if (!check_mnt(path->mnt) || !check_mnt(old_path.mnt))
  1594. goto out;
  1595. err = -ENOENT;
  1596. mutex_lock(&path->dentry->d_inode->i_mutex);
  1597. if (cant_mount(path->dentry))
  1598. goto out1;
  1599. if (d_unlinked(path->dentry))
  1600. goto out1;
  1601. err = -EINVAL;
  1602. if (old_path.dentry != old_path.mnt->mnt_root)
  1603. goto out1;
  1604. if (old_path.mnt == old_path.mnt->mnt_parent)
  1605. goto out1;
  1606. if (S_ISDIR(path->dentry->d_inode->i_mode) !=
  1607. S_ISDIR(old_path.dentry->d_inode->i_mode))
  1608. goto out1;
  1609. /*
  1610. * Don't move a mount residing in a shared parent.
  1611. */
  1612. if (old_path.mnt->mnt_parent &&
  1613. IS_MNT_SHARED(old_path.mnt->mnt_parent))
  1614. goto out1;
  1615. /*
  1616. * Don't move a mount tree containing unbindable mounts to a destination
  1617. * mount which is shared.
  1618. */
  1619. if (IS_MNT_SHARED(path->mnt) &&
  1620. tree_contains_unbindable(old_path.mnt))
  1621. goto out1;
  1622. err = -ELOOP;
  1623. for (p = path->mnt; p->mnt_parent != p; p = p->mnt_parent)
  1624. if (p == old_path.mnt)
  1625. goto out1;
  1626. err = attach_recursive_mnt(old_path.mnt, path, &parent_path);
  1627. if (err)
  1628. goto out1;
  1629. /* if the mount is moved, it should no longer be expire
  1630. * automatically */
  1631. list_del_init(&old_path.mnt->mnt_expire);
  1632. out1:
  1633. mutex_unlock(&path->dentry->d_inode->i_mutex);
  1634. out:
  1635. up_write(&namespace_sem);
  1636. if (!err)
  1637. path_put(&parent_path);
  1638. path_put(&old_path);
  1639. return err;
  1640. }
  1641. /*
  1642. * create a new mount for userspace and request it to be added into the
  1643. * namespace's tree
  1644. */
  1645. static int do_new_mount(struct path *path, char *type, int flags,
  1646. int mnt_flags, char *name, void *data)
  1647. {
  1648. struct vfsmount *mnt;
  1649. if (!type)
  1650. return -EINVAL;
  1651. /* we need capabilities... */
  1652. if (!capable(CAP_SYS_ADMIN))
  1653. return -EPERM;
  1654. mnt = do_kern_mount(type, flags, name, data);
  1655. if (IS_ERR(mnt))
  1656. return PTR_ERR(mnt);
  1657. return do_add_mount(mnt, path, mnt_flags);
  1658. }
  1659. /*
  1660. * add a mount into a namespace's mount tree
  1661. * - this unconditionally eats one of the caller's references to newmnt.
  1662. */
  1663. int do_add_mount(struct vfsmount *newmnt, struct path *path, int mnt_flags)
  1664. {
  1665. int err;
  1666. mnt_flags &= ~(MNT_SHARED | MNT_WRITE_HOLD | MNT_INTERNAL);
  1667. down_write(&namespace_sem);
  1668. /* Something was mounted here while we slept */
  1669. err = follow_down(path, true);
  1670. if (err < 0)
  1671. goto unlock;
  1672. err = -EINVAL;
  1673. if (!(mnt_flags & MNT_SHRINKABLE) && !check_mnt(path->mnt))
  1674. goto unlock;
  1675. /* Refuse the same filesystem on the same mount point */
  1676. err = -EBUSY;
  1677. if (path->mnt->mnt_sb == newmnt->mnt_sb &&
  1678. path->mnt->mnt_root == path->dentry)
  1679. goto unlock;
  1680. err = -EINVAL;
  1681. if (S_ISLNK(newmnt->mnt_root->d_inode->i_mode))
  1682. goto unlock;
  1683. newmnt->mnt_flags = mnt_flags;
  1684. if ((err = graft_tree(newmnt, path)))
  1685. goto unlock;
  1686. up_write(&namespace_sem);
  1687. return 0;
  1688. unlock:
  1689. up_write(&namespace_sem);
  1690. mntput(newmnt);
  1691. return err;
  1692. }
  1693. /**
  1694. * mnt_set_expiry - Put a mount on an expiration list
  1695. * @mnt: The mount to list.
  1696. * @expiry_list: The list to add the mount to.
  1697. */
  1698. void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
  1699. {
  1700. down_write(&namespace_sem);
  1701. br_write_lock(vfsmount_lock);
  1702. list_add_tail(&mnt->mnt_expire, expiry_list);
  1703. br_write_unlock(vfsmount_lock);
  1704. up_write(&namespace_sem);
  1705. }
  1706. EXPORT_SYMBOL(mnt_set_expiry);
  1707. /*
  1708. * Remove a vfsmount from any expiration list it may be on
  1709. */
  1710. void mnt_clear_expiry(struct vfsmount *mnt)
  1711. {
  1712. if (!list_empty(&mnt->mnt_expire)) {
  1713. down_write(&namespace_sem);
  1714. br_write_lock(vfsmount_lock);
  1715. list_del_init(&mnt->mnt_expire);
  1716. br_write_unlock(vfsmount_lock);
  1717. up_write(&namespace_sem);
  1718. }
  1719. }
  1720. /*
  1721. * process a list of expirable mountpoints with the intent of discarding any
  1722. * mountpoints that aren't in use and haven't been touched since last we came
  1723. * here
  1724. */
  1725. void mark_mounts_for_expiry(struct list_head *mounts)
  1726. {
  1727. struct vfsmount *mnt, *next;
  1728. LIST_HEAD(graveyard);
  1729. LIST_HEAD(umounts);
  1730. if (list_empty(mounts))
  1731. return;
  1732. down_write(&namespace_sem);
  1733. br_write_lock(vfsmount_lock);
  1734. /* extract from the expiration list every vfsmount that matches the
  1735. * following criteria:
  1736. * - only referenced by its parent vfsmount
  1737. * - still marked for expiry (marked on the last call here; marks are
  1738. * cleared by mntput())
  1739. */
  1740. list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
  1741. if (!xchg(&mnt->mnt_expiry_mark, 1) ||
  1742. propagate_mount_busy(mnt, 1))
  1743. continue;
  1744. list_move(&mnt->mnt_expire, &graveyard);
  1745. }
  1746. while (!list_empty(&graveyard)) {
  1747. mnt = list_first_entry(&graveyard, struct vfsmount, mnt_expire);
  1748. touch_mnt_namespace(mnt->mnt_ns);
  1749. umount_tree(mnt, 1, &umounts);
  1750. }
  1751. br_write_unlock(vfsmount_lock);
  1752. up_write(&namespace_sem);
  1753. release_mounts(&umounts);
  1754. }
  1755. EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
  1756. /*
  1757. * Ripoff of 'select_parent()'
  1758. *
  1759. * search the list of submounts for a given mountpoint, and move any
  1760. * shrinkable submounts to the 'graveyard' list.
  1761. */
  1762. static int select_submounts(struct vfsmount *parent, struct list_head *graveyard)
  1763. {
  1764. struct vfsmount *this_parent = parent;
  1765. struct list_head *next;
  1766. int found = 0;
  1767. repeat:
  1768. next = this_parent->mnt_mounts.next;
  1769. resume:
  1770. while (next != &this_parent->mnt_mounts) {
  1771. struct list_head *tmp = next;
  1772. struct vfsmount *mnt = list_entry(tmp, struct vfsmount, mnt_child);
  1773. next = tmp->next;
  1774. if (!(mnt->mnt_flags & MNT_SHRINKABLE))
  1775. continue;
  1776. /*
  1777. * Descend a level if the d_mounts list is non-empty.
  1778. */
  1779. if (!list_empty(&mnt->mnt_mounts)) {
  1780. this_parent = mnt;
  1781. goto repeat;
  1782. }
  1783. if (!propagate_mount_busy(mnt, 1)) {
  1784. list_move_tail(&mnt->mnt_expire, graveyard);
  1785. found++;
  1786. }
  1787. }
  1788. /*
  1789. * All done at this level ... ascend and resume the search
  1790. */
  1791. if (this_parent != parent) {
  1792. next = this_parent->mnt_child.next;
  1793. this_parent = this_parent->mnt_parent;
  1794. goto resume;
  1795. }
  1796. return found;
  1797. }
  1798. /*
  1799. * process a list of expirable mountpoints with the intent of discarding any
  1800. * submounts of a specific parent mountpoint
  1801. *
  1802. * vfsmount_lock must be held for write
  1803. */
  1804. static void shrink_submounts(struct vfsmount *mnt, struct list_head *umounts)
  1805. {
  1806. LIST_HEAD(graveyard);
  1807. struct vfsmount *m;
  1808. /* extract submounts of 'mountpoint' from the expiration list */
  1809. while (select_submounts(mnt, &graveyard)) {
  1810. while (!list_empty(&graveyard)) {
  1811. m = list_first_entry(&graveyard, struct vfsmount,
  1812. mnt_expire);
  1813. touch_mnt_namespace(m->mnt_ns);
  1814. umount_tree(m, 1, umounts);
  1815. }
  1816. }
  1817. }
  1818. /*
  1819. * Some copy_from_user() implementations do not return the exact number of
  1820. * bytes remaining to copy on a fault. But copy_mount_options() requires that.
  1821. * Note that this function differs from copy_from_user() in that it will oops
  1822. * on bad values of `to', rather than returning a short copy.
  1823. */
  1824. static long exact_copy_from_user(void *to, const void __user * from,
  1825. unsigned long n)
  1826. {
  1827. char *t = to;
  1828. const char __user *f = from;
  1829. char c;
  1830. if (!access_ok(VERIFY_READ, from, n))
  1831. return n;
  1832. while (n) {
  1833. if (__get_user(c, f)) {
  1834. memset(t, 0, n);
  1835. break;
  1836. }
  1837. *t++ = c;
  1838. f++;
  1839. n--;
  1840. }
  1841. return n;
  1842. }
  1843. int copy_mount_options(const void __user * data, unsigned long *where)
  1844. {
  1845. int i;
  1846. unsigned long page;
  1847. unsigned long size;
  1848. *where = 0;
  1849. if (!data)
  1850. return 0;
  1851. if (!(page = __get_free_page(GFP_KERNEL)))
  1852. return -ENOMEM;
  1853. /* We only care that *some* data at the address the user
  1854. * gave us is valid. Just in case, we'll zero
  1855. * the remainder of the page.
  1856. */
  1857. /* copy_from_user cannot cross TASK_SIZE ! */
  1858. size = TASK_SIZE - (unsigned long)data;
  1859. if (size > PAGE_SIZE)
  1860. size = PAGE_SIZE;
  1861. i = size - exact_copy_from_user((void *)page, data, size);
  1862. if (!i) {
  1863. free_page(page);
  1864. return -EFAULT;
  1865. }
  1866. if (i != PAGE_SIZE)
  1867. memset((char *)page + i, 0, PAGE_SIZE - i);
  1868. *where = page;
  1869. return 0;
  1870. }
  1871. int copy_mount_string(const void __user *data, char **where)
  1872. {
  1873. char *tmp;
  1874. if (!data) {
  1875. *where = NULL;
  1876. return 0;
  1877. }
  1878. tmp = strndup_user(data, PAGE_SIZE);
  1879. if (IS_ERR(tmp))
  1880. return PTR_ERR(tmp);
  1881. *where = tmp;
  1882. return 0;
  1883. }
  1884. /*
  1885. * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
  1886. * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
  1887. *
  1888. * data is a (void *) that can point to any structure up to
  1889. * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
  1890. * information (or be NULL).
  1891. *
  1892. * Pre-0.97 versions of mount() didn't have a flags word.
  1893. * When the flags word was introduced its top half was required
  1894. * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
  1895. * Therefore, if this magic number is present, it carries no information
  1896. * and must be discarded.
  1897. */
  1898. long do_mount(char *dev_name, char *dir_name, char *type_page,
  1899. unsigned long flags, void *data_page)
  1900. {
  1901. struct path path;
  1902. int retval = 0;
  1903. int mnt_flags = 0;
  1904. /* Discard magic */
  1905. if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
  1906. flags &= ~MS_MGC_MSK;
  1907. /* Basic sanity checks */
  1908. if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE))
  1909. return -EINVAL;
  1910. if (data_page)
  1911. ((char *)data_page)[PAGE_SIZE - 1] = 0;
  1912. /* ... and get the mountpoint */
  1913. retval = kern_path(dir_name, LOOKUP_FOLLOW, &path);
  1914. if (retval)
  1915. return retval;
  1916. retval = security_sb_mount(dev_name, &path,
  1917. type_page, flags, data_page);
  1918. if (retval)
  1919. goto dput_out;
  1920. /* Default to relatime unless overriden */
  1921. if (!(flags & MS_NOATIME))
  1922. mnt_flags |= MNT_RELATIME;
  1923. /* Separate the per-mountpoint flags */
  1924. if (flags & MS_NOSUID)
  1925. mnt_flags |= MNT_NOSUID;
  1926. if (flags & MS_NODEV)
  1927. mnt_flags |= MNT_NODEV;
  1928. if (flags & MS_NOEXEC)
  1929. mnt_flags |= MNT_NOEXEC;
  1930. if (flags & MS_NOATIME)
  1931. mnt_flags |= MNT_NOATIME;
  1932. if (flags & MS_NODIRATIME)
  1933. mnt_flags |= MNT_NODIRATIME;
  1934. if (flags & MS_STRICTATIME)
  1935. mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
  1936. if (flags & MS_RDONLY)
  1937. mnt_flags |= MNT_READONLY;
  1938. flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN |
  1939. MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT |
  1940. MS_STRICTATIME);
  1941. if (flags & MS_REMOUNT)
  1942. retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
  1943. data_page);
  1944. else if (flags & MS_BIND)
  1945. retval = do_loopback(&path, dev_name, flags & MS_REC);
  1946. else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
  1947. retval = do_change_type(&path, flags);
  1948. else if (flags & MS_MOVE)
  1949. retval = do_move_mount(&path, dev_name);
  1950. else
  1951. retval = do_new_mount(&path, type_page, flags, mnt_flags,
  1952. dev_name, data_page);
  1953. dput_out:
  1954. path_put(&path);
  1955. return retval;
  1956. }
  1957. static struct mnt_namespace *alloc_mnt_ns(void)
  1958. {
  1959. struct mnt_namespace *new_ns;
  1960. new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
  1961. if (!new_ns)
  1962. return ERR_PTR(-ENOMEM);
  1963. atomic_set(&new_ns->count, 1);
  1964. new_ns->root = NULL;
  1965. INIT_LIST_HEAD(&new_ns->list);
  1966. init_waitqueue_head(&new_ns->poll);
  1967. new_ns->event = 0;
  1968. return new_ns;
  1969. }
  1970. void mnt_make_longterm(struct vfsmount *mnt)
  1971. {
  1972. atomic_inc(&mnt->mnt_longterm);
  1973. }
  1974. void mnt_make_shortterm(struct vfsmount *mnt)
  1975. {
  1976. if (atomic_add_unless(&mnt->mnt_longterm, -1, 1))
  1977. return;
  1978. br_write_lock(vfsmount_lock);
  1979. atomic_dec(&mnt->mnt_longterm);
  1980. br_write_unlock(vfsmount_lock);
  1981. }
  1982. /*
  1983. * Allocate a new namespace structure and populate it with contents
  1984. * copied from the namespace of the passed in task structure.
  1985. */
  1986. static struct mnt_namespace *dup_mnt_ns(struct mnt_namespace *mnt_ns,
  1987. struct fs_struct *fs)
  1988. {
  1989. struct mnt_namespace *new_ns;
  1990. struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
  1991. struct vfsmount *p, *q;
  1992. new_ns = alloc_mnt_ns();
  1993. if (IS_ERR(new_ns))
  1994. return new_ns;
  1995. down_write(&namespace_sem);
  1996. /* First pass: copy the tree topology */
  1997. new_ns->root = copy_tree(mnt_ns->root, mnt_ns->root->mnt_root,
  1998. CL_COPY_ALL | CL_EXPIRE);
  1999. if (!new_ns->root) {
  2000. up_write(&namespace_sem);
  2001. kfree(new_ns);
  2002. return ERR_PTR(-ENOMEM);
  2003. }
  2004. br_write_lock(vfsmount_lock);
  2005. list_add_tail(&new_ns->list, &new_ns->root->mnt_list);
  2006. br_write_unlock(vfsmount_lock);
  2007. /*
  2008. * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
  2009. * as belonging to new namespace. We have already acquired a private
  2010. * fs_struct, so tsk->fs->lock is not needed.
  2011. */
  2012. p = mnt_ns->root;
  2013. q = new_ns->root;
  2014. while (p) {
  2015. q->mnt_ns = new_ns;
  2016. atomic_inc(&q->mnt_longterm);
  2017. if (fs) {
  2018. if (p == fs->root.mnt) {
  2019. fs->root.mnt = mntget(q);
  2020. atomic_inc(&q->mnt_longterm);
  2021. mnt_make_shortterm(p);
  2022. rootmnt = p;
  2023. }
  2024. if (p == fs->pwd.mnt) {
  2025. fs->pwd.mnt = mntget(q);
  2026. atomic_inc(&q->mnt_longterm);
  2027. mnt_make_shortterm(p);
  2028. pwdmnt = p;
  2029. }
  2030. }
  2031. p = next_mnt(p, mnt_ns->root);
  2032. q = next_mnt(q, new_ns->root);
  2033. }
  2034. up_write(&namespace_sem);
  2035. if (rootmnt)
  2036. mntput(rootmnt);
  2037. if (pwdmnt)
  2038. mntput(pwdmnt);
  2039. return new_ns;
  2040. }
  2041. struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
  2042. struct fs_struct *new_fs)
  2043. {
  2044. struct mnt_namespace *new_ns;
  2045. BUG_ON(!ns);
  2046. get_mnt_ns(ns);
  2047. if (!(flags & CLONE_NEWNS))
  2048. return ns;
  2049. new_ns = dup_mnt_ns(ns, new_fs);
  2050. put_mnt_ns(ns);
  2051. return new_ns;
  2052. }
  2053. /**
  2054. * create_mnt_ns - creates a private namespace and adds a root filesystem
  2055. * @mnt: pointer to the new root filesystem mountpoint
  2056. */
  2057. struct mnt_namespace *create_mnt_ns(struct vfsmount *mnt)
  2058. {
  2059. struct mnt_namespace *new_ns;
  2060. new_ns = alloc_mnt_ns();
  2061. if (!IS_ERR(new_ns)) {
  2062. mnt->mnt_ns = new_ns;
  2063. atomic_inc(&mnt->mnt_longterm);
  2064. new_ns->root = mnt;
  2065. list_add(&new_ns->list, &new_ns->root->mnt_list);
  2066. }
  2067. return new_ns;
  2068. }
  2069. EXPORT_SYMBOL(create_mnt_ns);
  2070. SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
  2071. char __user *, type, unsigned long, flags, void __user *, data)
  2072. {
  2073. int ret;
  2074. char *kernel_type;
  2075. char *kernel_dir;
  2076. char *kernel_dev;
  2077. unsigned long data_page;
  2078. ret = copy_mount_string(type, &kernel_type);
  2079. if (ret < 0)
  2080. goto out_type;
  2081. kernel_dir = getname(dir_name);
  2082. if (IS_ERR(kernel_dir)) {
  2083. ret = PTR_ERR(kernel_dir);
  2084. goto out_dir;
  2085. }
  2086. ret = copy_mount_string(dev_name, &kernel_dev);
  2087. if (ret < 0)
  2088. goto out_dev;
  2089. ret = copy_mount_options(data, &data_page);
  2090. if (ret < 0)
  2091. goto out_data;
  2092. ret = do_mount(kernel_dev, kernel_dir, kernel_type, flags,
  2093. (void *) data_page);
  2094. free_page(data_page);
  2095. out_data:
  2096. kfree(kernel_dev);
  2097. out_dev:
  2098. putname(kernel_dir);
  2099. out_dir:
  2100. kfree(kernel_type);
  2101. out_type:
  2102. return ret;
  2103. }
  2104. /*
  2105. * pivot_root Semantics:
  2106. * Moves the root file system of the current process to the directory put_old,
  2107. * makes new_root as the new root file system of the current process, and sets
  2108. * root/cwd of all processes which had them on the current root to new_root.
  2109. *
  2110. * Restrictions:
  2111. * The new_root and put_old must be directories, and must not be on the
  2112. * same file system as the current process root. The put_old must be
  2113. * underneath new_root, i.e. adding a non-zero number of /.. to the string
  2114. * pointed to by put_old must yield the same directory as new_root. No other
  2115. * file system may be mounted on put_old. After all, new_root is a mountpoint.
  2116. *
  2117. * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
  2118. * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
  2119. * in this situation.
  2120. *
  2121. * Notes:
  2122. * - we don't move root/cwd if they are not at the root (reason: if something
  2123. * cared enough to change them, it's probably wrong to force them elsewhere)
  2124. * - it's okay to pick a root that isn't the root of a file system, e.g.
  2125. * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
  2126. * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
  2127. * first.
  2128. */
  2129. SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
  2130. const char __user *, put_old)
  2131. {
  2132. struct vfsmount *tmp;
  2133. struct path new, old, parent_path, root_parent, root;
  2134. int error;
  2135. if (!capable(CAP_SYS_ADMIN))
  2136. return -EPERM;
  2137. error = user_path_dir(new_root, &new);
  2138. if (error)
  2139. goto out0;
  2140. error = -EINVAL;
  2141. if (!check_mnt(new.mnt))
  2142. goto out1;
  2143. error = user_path_dir(put_old, &old);
  2144. if (error)
  2145. goto out1;
  2146. error = security_sb_pivotroot(&old, &new);
  2147. if (error) {
  2148. path_put(&old);
  2149. goto out1;
  2150. }
  2151. get_fs_root(current->fs, &root);
  2152. down_write(&namespace_sem);
  2153. mutex_lock(&old.dentry->d_inode->i_mutex);
  2154. error = -EINVAL;
  2155. if (IS_MNT_SHARED(old.mnt) ||
  2156. IS_MNT_SHARED(new.mnt->mnt_parent) ||
  2157. IS_MNT_SHARED(root.mnt->mnt_parent))
  2158. goto out2;
  2159. if (!check_mnt(root.mnt))
  2160. goto out2;
  2161. error = -ENOENT;
  2162. if (cant_mount(old.dentry))
  2163. goto out2;
  2164. if (d_unlinked(new.dentry))
  2165. goto out2;
  2166. if (d_unlinked(old.dentry))
  2167. goto out2;
  2168. error = -EBUSY;
  2169. if (new.mnt == root.mnt ||
  2170. old.mnt == root.mnt)
  2171. goto out2; /* loop, on the same file system */
  2172. error = -EINVAL;
  2173. if (root.mnt->mnt_root != root.dentry)
  2174. goto out2; /* not a mountpoint */
  2175. if (root.mnt->mnt_parent == root.mnt)
  2176. goto out2; /* not attached */
  2177. if (new.mnt->mnt_root != new.dentry)
  2178. goto out2; /* not a mountpoint */
  2179. if (new.mnt->mnt_parent == new.mnt)
  2180. goto out2; /* not attached */
  2181. /* make sure we can reach put_old from new_root */
  2182. tmp = old.mnt;
  2183. br_write_lock(vfsmount_lock);
  2184. if (tmp != new.mnt) {
  2185. for (;;) {
  2186. if (tmp->mnt_parent == tmp)
  2187. goto out3; /* already mounted on put_old */
  2188. if (tmp->mnt_parent == new.mnt)
  2189. break;
  2190. tmp = tmp->mnt_parent;
  2191. }
  2192. if (!is_subdir(tmp->mnt_mountpoint, new.dentry))
  2193. goto out3;
  2194. } else if (!is_subdir(old.dentry, new.dentry))
  2195. goto out3;
  2196. detach_mnt(new.mnt, &parent_path);
  2197. detach_mnt(root.mnt, &root_parent);
  2198. /* mount old root on put_old */
  2199. attach_mnt(root.mnt, &old);
  2200. /* mount new_root on / */
  2201. attach_mnt(new.mnt, &root_parent);
  2202. touch_mnt_namespace(current->nsproxy->mnt_ns);
  2203. br_write_unlock(vfsmount_lock);
  2204. chroot_fs_refs(&root, &new);
  2205. error = 0;
  2206. path_put(&root_parent);
  2207. path_put(&parent_path);
  2208. out2:
  2209. mutex_unlock(&old.dentry->d_inode->i_mutex);
  2210. up_write(&namespace_sem);
  2211. path_put(&root);
  2212. path_put(&old);
  2213. out1:
  2214. path_put(&new);
  2215. out0:
  2216. return error;
  2217. out3:
  2218. br_write_unlock(vfsmount_lock);
  2219. goto out2;
  2220. }
  2221. static void __init init_mount_tree(void)
  2222. {
  2223. struct vfsmount *mnt;
  2224. struct mnt_namespace *ns;
  2225. struct path root;
  2226. mnt = do_kern_mount("rootfs", 0, "rootfs", NULL);
  2227. if (IS_ERR(mnt))
  2228. panic("Can't create rootfs");
  2229. ns = create_mnt_ns(mnt);
  2230. if (IS_ERR(ns))
  2231. panic("Can't allocate initial namespace");
  2232. init_task.nsproxy->mnt_ns = ns;
  2233. get_mnt_ns(ns);
  2234. root.mnt = ns->root;
  2235. root.dentry = ns->root->mnt_root;
  2236. set_fs_pwd(current->fs, &root);
  2237. set_fs_root(current->fs, &root);
  2238. }
  2239. void __init mnt_init(void)
  2240. {
  2241. unsigned u;
  2242. int err;
  2243. init_rwsem(&namespace_sem);
  2244. mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct vfsmount),
  2245. 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
  2246. mount_hashtable = (struct list_head *)__get_free_page(GFP_ATOMIC);
  2247. if (!mount_hashtable)
  2248. panic("Failed to allocate mount hash table\n");
  2249. printk("Mount-cache hash table entries: %lu\n", HASH_SIZE);
  2250. for (u = 0; u < HASH_SIZE; u++)
  2251. INIT_LIST_HEAD(&mount_hashtable[u]);
  2252. br_lock_init(vfsmount_lock);
  2253. err = sysfs_init();
  2254. if (err)
  2255. printk(KERN_WARNING "%s: sysfs_init error: %d\n",
  2256. __func__, err);
  2257. fs_kobj = kobject_create_and_add("fs", NULL);
  2258. if (!fs_kobj)
  2259. printk(KERN_WARNING "%s: kobj create error\n", __func__);
  2260. init_rootfs();
  2261. init_mount_tree();
  2262. }
  2263. void put_mnt_ns(struct mnt_namespace *ns)
  2264. {
  2265. LIST_HEAD(umount_list);
  2266. if (!atomic_dec_and_test(&ns->count))
  2267. return;
  2268. down_write(&namespace_sem);
  2269. br_write_lock(vfsmount_lock);
  2270. umount_tree(ns->root, 0, &umount_list);
  2271. br_write_unlock(vfsmount_lock);
  2272. up_write(&namespace_sem);
  2273. release_mounts(&umount_list);
  2274. kfree(ns);
  2275. }
  2276. EXPORT_SYMBOL(put_mnt_ns);