intel_display.c 265 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949895089518952895389548955895689578958895989608961896289638964896589668967896889698970897189728973897489758976897789788979898089818982898389848985898689878988898989908991899289938994899589968997899889999000900190029003900490059006900790089009901090119012901390149015901690179018901990209021902290239024902590269027902890299030903190329033903490359036903790389039904090419042904390449045904690479048904990509051905290539054905590569057905890599060906190629063906490659066906790689069907090719072907390749075907690779078907990809081908290839084908590869087908890899090909190929093909490959096909790989099910091019102910391049105910691079108910991109111911291139114911591169117911891199120912191229123912491259126912791289129913091319132913391349135913691379138913991409141914291439144914591469147914891499150915191529153915491559156915791589159916091619162916391649165916691679168916991709171917291739174917591769177917891799180918191829183918491859186918791889189919091919192919391949195919691979198919992009201920292039204920592069207920892099210921192129213921492159216921792189219922092219222922392249225922692279228922992309231923292339234923592369237923892399240924192429243924492459246924792489249925092519252925392549255925692579258925992609261926292639264926592669267926892699270927192729273927492759276927792789279928092819282928392849285928692879288928992909291929292939294929592969297929892999300930193029303930493059306930793089309931093119312931393149315931693179318931993209321932293239324932593269327932893299330933193329333933493359336933793389339934093419342934393449345934693479348934993509351935293539354935593569357935893599360936193629363936493659366936793689369937093719372937393749375937693779378937993809381938293839384938593869387938893899390939193929393939493959396939793989399940094019402940394049405940694079408940994109411941294139414941594169417941894199420942194229423942494259426942794289429943094319432943394349435943694379438943994409441944294439444944594469447944894499450945194529453945494559456945794589459946094619462946394649465946694679468946994709471947294739474947594769477947894799480948194829483948494859486948794889489949094919492949394949495949694979498949995009501950295039504950595069507950895099510951195129513951495159516951795189519952095219522952395249525952695279528952995309531953295339534953595369537953895399540954195429543954495459546954795489549955095519552955395549555955695579558955995609561956295639564956595669567956895699570957195729573957495759576957795789579958095819582958395849585958695879588958995909591959295939594959595969597959895999600960196029603960496059606960796089609961096119612961396149615961696179618961996209621962296239624962596269627962896299630963196329633963496359636963796389639964096419642964396449645964696479648964996509651965296539654965596569657965896599660966196629663966496659666966796689669967096719672967396749675967696779678967996809681968296839684968596869687968896899690969196929693969496959696969796989699970097019702970397049705970697079708970997109711971297139714971597169717971897199720972197229723972497259726972797289729973097319732973397349735973697379738973997409741974297439744974597469747974897499750975197529753975497559756975797589759976097619762976397649765976697679768976997709771977297739774977597769777977897799780978197829783978497859786978797889789979097919792979397949795979697979798979998009801980298039804980598069807
  1. /*
  2. * Copyright © 2006-2007 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
  21. * DEALINGS IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. */
  26. #include <linux/dmi.h>
  27. #include <linux/cpufreq.h>
  28. #include <linux/module.h>
  29. #include <linux/input.h>
  30. #include <linux/i2c.h>
  31. #include <linux/kernel.h>
  32. #include <linux/slab.h>
  33. #include <linux/vgaarb.h>
  34. #include <drm/drm_edid.h>
  35. #include "drmP.h"
  36. #include "intel_drv.h"
  37. #include "i915_drm.h"
  38. #include "i915_drv.h"
  39. #include "i915_trace.h"
  40. #include "drm_dp_helper.h"
  41. #include "drm_crtc_helper.h"
  42. #include <linux/dma_remapping.h>
  43. #define HAS_eDP (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
  44. bool intel_pipe_has_type(struct drm_crtc *crtc, int type);
  45. static void intel_update_watermarks(struct drm_device *dev);
  46. static void intel_increase_pllclock(struct drm_crtc *crtc);
  47. static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
  48. typedef struct {
  49. /* given values */
  50. int n;
  51. int m1, m2;
  52. int p1, p2;
  53. /* derived values */
  54. int dot;
  55. int vco;
  56. int m;
  57. int p;
  58. } intel_clock_t;
  59. typedef struct {
  60. int min, max;
  61. } intel_range_t;
  62. typedef struct {
  63. int dot_limit;
  64. int p2_slow, p2_fast;
  65. } intel_p2_t;
  66. #define INTEL_P2_NUM 2
  67. typedef struct intel_limit intel_limit_t;
  68. struct intel_limit {
  69. intel_range_t dot, vco, n, m, m1, m2, p, p1;
  70. intel_p2_t p2;
  71. bool (* find_pll)(const intel_limit_t *, struct drm_crtc *,
  72. int, int, intel_clock_t *, intel_clock_t *);
  73. };
  74. /* FDI */
  75. #define IRONLAKE_FDI_FREQ 2700000 /* in kHz for mode->clock */
  76. static bool
  77. intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
  78. int target, int refclk, intel_clock_t *match_clock,
  79. intel_clock_t *best_clock);
  80. static bool
  81. intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
  82. int target, int refclk, intel_clock_t *match_clock,
  83. intel_clock_t *best_clock);
  84. static bool
  85. intel_find_pll_g4x_dp(const intel_limit_t *, struct drm_crtc *crtc,
  86. int target, int refclk, intel_clock_t *match_clock,
  87. intel_clock_t *best_clock);
  88. static bool
  89. intel_find_pll_ironlake_dp(const intel_limit_t *, struct drm_crtc *crtc,
  90. int target, int refclk, intel_clock_t *match_clock,
  91. intel_clock_t *best_clock);
  92. static inline u32 /* units of 100MHz */
  93. intel_fdi_link_freq(struct drm_device *dev)
  94. {
  95. if (IS_GEN5(dev)) {
  96. struct drm_i915_private *dev_priv = dev->dev_private;
  97. return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
  98. } else
  99. return 27;
  100. }
  101. static const intel_limit_t intel_limits_i8xx_dvo = {
  102. .dot = { .min = 25000, .max = 350000 },
  103. .vco = { .min = 930000, .max = 1400000 },
  104. .n = { .min = 3, .max = 16 },
  105. .m = { .min = 96, .max = 140 },
  106. .m1 = { .min = 18, .max = 26 },
  107. .m2 = { .min = 6, .max = 16 },
  108. .p = { .min = 4, .max = 128 },
  109. .p1 = { .min = 2, .max = 33 },
  110. .p2 = { .dot_limit = 165000,
  111. .p2_slow = 4, .p2_fast = 2 },
  112. .find_pll = intel_find_best_PLL,
  113. };
  114. static const intel_limit_t intel_limits_i8xx_lvds = {
  115. .dot = { .min = 25000, .max = 350000 },
  116. .vco = { .min = 930000, .max = 1400000 },
  117. .n = { .min = 3, .max = 16 },
  118. .m = { .min = 96, .max = 140 },
  119. .m1 = { .min = 18, .max = 26 },
  120. .m2 = { .min = 6, .max = 16 },
  121. .p = { .min = 4, .max = 128 },
  122. .p1 = { .min = 1, .max = 6 },
  123. .p2 = { .dot_limit = 165000,
  124. .p2_slow = 14, .p2_fast = 7 },
  125. .find_pll = intel_find_best_PLL,
  126. };
  127. static const intel_limit_t intel_limits_i9xx_sdvo = {
  128. .dot = { .min = 20000, .max = 400000 },
  129. .vco = { .min = 1400000, .max = 2800000 },
  130. .n = { .min = 1, .max = 6 },
  131. .m = { .min = 70, .max = 120 },
  132. .m1 = { .min = 10, .max = 22 },
  133. .m2 = { .min = 5, .max = 9 },
  134. .p = { .min = 5, .max = 80 },
  135. .p1 = { .min = 1, .max = 8 },
  136. .p2 = { .dot_limit = 200000,
  137. .p2_slow = 10, .p2_fast = 5 },
  138. .find_pll = intel_find_best_PLL,
  139. };
  140. static const intel_limit_t intel_limits_i9xx_lvds = {
  141. .dot = { .min = 20000, .max = 400000 },
  142. .vco = { .min = 1400000, .max = 2800000 },
  143. .n = { .min = 1, .max = 6 },
  144. .m = { .min = 70, .max = 120 },
  145. .m1 = { .min = 10, .max = 22 },
  146. .m2 = { .min = 5, .max = 9 },
  147. .p = { .min = 7, .max = 98 },
  148. .p1 = { .min = 1, .max = 8 },
  149. .p2 = { .dot_limit = 112000,
  150. .p2_slow = 14, .p2_fast = 7 },
  151. .find_pll = intel_find_best_PLL,
  152. };
  153. static const intel_limit_t intel_limits_g4x_sdvo = {
  154. .dot = { .min = 25000, .max = 270000 },
  155. .vco = { .min = 1750000, .max = 3500000},
  156. .n = { .min = 1, .max = 4 },
  157. .m = { .min = 104, .max = 138 },
  158. .m1 = { .min = 17, .max = 23 },
  159. .m2 = { .min = 5, .max = 11 },
  160. .p = { .min = 10, .max = 30 },
  161. .p1 = { .min = 1, .max = 3},
  162. .p2 = { .dot_limit = 270000,
  163. .p2_slow = 10,
  164. .p2_fast = 10
  165. },
  166. .find_pll = intel_g4x_find_best_PLL,
  167. };
  168. static const intel_limit_t intel_limits_g4x_hdmi = {
  169. .dot = { .min = 22000, .max = 400000 },
  170. .vco = { .min = 1750000, .max = 3500000},
  171. .n = { .min = 1, .max = 4 },
  172. .m = { .min = 104, .max = 138 },
  173. .m1 = { .min = 16, .max = 23 },
  174. .m2 = { .min = 5, .max = 11 },
  175. .p = { .min = 5, .max = 80 },
  176. .p1 = { .min = 1, .max = 8},
  177. .p2 = { .dot_limit = 165000,
  178. .p2_slow = 10, .p2_fast = 5 },
  179. .find_pll = intel_g4x_find_best_PLL,
  180. };
  181. static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
  182. .dot = { .min = 20000, .max = 115000 },
  183. .vco = { .min = 1750000, .max = 3500000 },
  184. .n = { .min = 1, .max = 3 },
  185. .m = { .min = 104, .max = 138 },
  186. .m1 = { .min = 17, .max = 23 },
  187. .m2 = { .min = 5, .max = 11 },
  188. .p = { .min = 28, .max = 112 },
  189. .p1 = { .min = 2, .max = 8 },
  190. .p2 = { .dot_limit = 0,
  191. .p2_slow = 14, .p2_fast = 14
  192. },
  193. .find_pll = intel_g4x_find_best_PLL,
  194. };
  195. static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
  196. .dot = { .min = 80000, .max = 224000 },
  197. .vco = { .min = 1750000, .max = 3500000 },
  198. .n = { .min = 1, .max = 3 },
  199. .m = { .min = 104, .max = 138 },
  200. .m1 = { .min = 17, .max = 23 },
  201. .m2 = { .min = 5, .max = 11 },
  202. .p = { .min = 14, .max = 42 },
  203. .p1 = { .min = 2, .max = 6 },
  204. .p2 = { .dot_limit = 0,
  205. .p2_slow = 7, .p2_fast = 7
  206. },
  207. .find_pll = intel_g4x_find_best_PLL,
  208. };
  209. static const intel_limit_t intel_limits_g4x_display_port = {
  210. .dot = { .min = 161670, .max = 227000 },
  211. .vco = { .min = 1750000, .max = 3500000},
  212. .n = { .min = 1, .max = 2 },
  213. .m = { .min = 97, .max = 108 },
  214. .m1 = { .min = 0x10, .max = 0x12 },
  215. .m2 = { .min = 0x05, .max = 0x06 },
  216. .p = { .min = 10, .max = 20 },
  217. .p1 = { .min = 1, .max = 2},
  218. .p2 = { .dot_limit = 0,
  219. .p2_slow = 10, .p2_fast = 10 },
  220. .find_pll = intel_find_pll_g4x_dp,
  221. };
  222. static const intel_limit_t intel_limits_pineview_sdvo = {
  223. .dot = { .min = 20000, .max = 400000},
  224. .vco = { .min = 1700000, .max = 3500000 },
  225. /* Pineview's Ncounter is a ring counter */
  226. .n = { .min = 3, .max = 6 },
  227. .m = { .min = 2, .max = 256 },
  228. /* Pineview only has one combined m divider, which we treat as m2. */
  229. .m1 = { .min = 0, .max = 0 },
  230. .m2 = { .min = 0, .max = 254 },
  231. .p = { .min = 5, .max = 80 },
  232. .p1 = { .min = 1, .max = 8 },
  233. .p2 = { .dot_limit = 200000,
  234. .p2_slow = 10, .p2_fast = 5 },
  235. .find_pll = intel_find_best_PLL,
  236. };
  237. static const intel_limit_t intel_limits_pineview_lvds = {
  238. .dot = { .min = 20000, .max = 400000 },
  239. .vco = { .min = 1700000, .max = 3500000 },
  240. .n = { .min = 3, .max = 6 },
  241. .m = { .min = 2, .max = 256 },
  242. .m1 = { .min = 0, .max = 0 },
  243. .m2 = { .min = 0, .max = 254 },
  244. .p = { .min = 7, .max = 112 },
  245. .p1 = { .min = 1, .max = 8 },
  246. .p2 = { .dot_limit = 112000,
  247. .p2_slow = 14, .p2_fast = 14 },
  248. .find_pll = intel_find_best_PLL,
  249. };
  250. /* Ironlake / Sandybridge
  251. *
  252. * We calculate clock using (register_value + 2) for N/M1/M2, so here
  253. * the range value for them is (actual_value - 2).
  254. */
  255. static const intel_limit_t intel_limits_ironlake_dac = {
  256. .dot = { .min = 25000, .max = 350000 },
  257. .vco = { .min = 1760000, .max = 3510000 },
  258. .n = { .min = 1, .max = 5 },
  259. .m = { .min = 79, .max = 127 },
  260. .m1 = { .min = 12, .max = 22 },
  261. .m2 = { .min = 5, .max = 9 },
  262. .p = { .min = 5, .max = 80 },
  263. .p1 = { .min = 1, .max = 8 },
  264. .p2 = { .dot_limit = 225000,
  265. .p2_slow = 10, .p2_fast = 5 },
  266. .find_pll = intel_g4x_find_best_PLL,
  267. };
  268. static const intel_limit_t intel_limits_ironlake_single_lvds = {
  269. .dot = { .min = 25000, .max = 350000 },
  270. .vco = { .min = 1760000, .max = 3510000 },
  271. .n = { .min = 1, .max = 3 },
  272. .m = { .min = 79, .max = 118 },
  273. .m1 = { .min = 12, .max = 22 },
  274. .m2 = { .min = 5, .max = 9 },
  275. .p = { .min = 28, .max = 112 },
  276. .p1 = { .min = 2, .max = 8 },
  277. .p2 = { .dot_limit = 225000,
  278. .p2_slow = 14, .p2_fast = 14 },
  279. .find_pll = intel_g4x_find_best_PLL,
  280. };
  281. static const intel_limit_t intel_limits_ironlake_dual_lvds = {
  282. .dot = { .min = 25000, .max = 350000 },
  283. .vco = { .min = 1760000, .max = 3510000 },
  284. .n = { .min = 1, .max = 3 },
  285. .m = { .min = 79, .max = 127 },
  286. .m1 = { .min = 12, .max = 22 },
  287. .m2 = { .min = 5, .max = 9 },
  288. .p = { .min = 14, .max = 56 },
  289. .p1 = { .min = 2, .max = 8 },
  290. .p2 = { .dot_limit = 225000,
  291. .p2_slow = 7, .p2_fast = 7 },
  292. .find_pll = intel_g4x_find_best_PLL,
  293. };
  294. /* LVDS 100mhz refclk limits. */
  295. static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
  296. .dot = { .min = 25000, .max = 350000 },
  297. .vco = { .min = 1760000, .max = 3510000 },
  298. .n = { .min = 1, .max = 2 },
  299. .m = { .min = 79, .max = 126 },
  300. .m1 = { .min = 12, .max = 22 },
  301. .m2 = { .min = 5, .max = 9 },
  302. .p = { .min = 28, .max = 112 },
  303. .p1 = { .min = 2, .max = 8 },
  304. .p2 = { .dot_limit = 225000,
  305. .p2_slow = 14, .p2_fast = 14 },
  306. .find_pll = intel_g4x_find_best_PLL,
  307. };
  308. static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
  309. .dot = { .min = 25000, .max = 350000 },
  310. .vco = { .min = 1760000, .max = 3510000 },
  311. .n = { .min = 1, .max = 3 },
  312. .m = { .min = 79, .max = 126 },
  313. .m1 = { .min = 12, .max = 22 },
  314. .m2 = { .min = 5, .max = 9 },
  315. .p = { .min = 14, .max = 42 },
  316. .p1 = { .min = 2, .max = 6 },
  317. .p2 = { .dot_limit = 225000,
  318. .p2_slow = 7, .p2_fast = 7 },
  319. .find_pll = intel_g4x_find_best_PLL,
  320. };
  321. static const intel_limit_t intel_limits_ironlake_display_port = {
  322. .dot = { .min = 25000, .max = 350000 },
  323. .vco = { .min = 1760000, .max = 3510000},
  324. .n = { .min = 1, .max = 2 },
  325. .m = { .min = 81, .max = 90 },
  326. .m1 = { .min = 12, .max = 22 },
  327. .m2 = { .min = 5, .max = 9 },
  328. .p = { .min = 10, .max = 20 },
  329. .p1 = { .min = 1, .max = 2},
  330. .p2 = { .dot_limit = 0,
  331. .p2_slow = 10, .p2_fast = 10 },
  332. .find_pll = intel_find_pll_ironlake_dp,
  333. };
  334. u32 intel_dpio_read(struct drm_i915_private *dev_priv, int reg)
  335. {
  336. unsigned long flags;
  337. u32 val = 0;
  338. spin_lock_irqsave(&dev_priv->dpio_lock, flags);
  339. if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
  340. DRM_ERROR("DPIO idle wait timed out\n");
  341. goto out_unlock;
  342. }
  343. I915_WRITE(DPIO_REG, reg);
  344. I915_WRITE(DPIO_PKT, DPIO_RID | DPIO_OP_READ | DPIO_PORTID |
  345. DPIO_BYTE);
  346. if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
  347. DRM_ERROR("DPIO read wait timed out\n");
  348. goto out_unlock;
  349. }
  350. val = I915_READ(DPIO_DATA);
  351. out_unlock:
  352. spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
  353. return val;
  354. }
  355. static void intel_dpio_write(struct drm_i915_private *dev_priv, int reg,
  356. u32 val)
  357. {
  358. unsigned long flags;
  359. spin_lock_irqsave(&dev_priv->dpio_lock, flags);
  360. if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
  361. DRM_ERROR("DPIO idle wait timed out\n");
  362. goto out_unlock;
  363. }
  364. I915_WRITE(DPIO_DATA, val);
  365. I915_WRITE(DPIO_REG, reg);
  366. I915_WRITE(DPIO_PKT, DPIO_RID | DPIO_OP_WRITE | DPIO_PORTID |
  367. DPIO_BYTE);
  368. if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100))
  369. DRM_ERROR("DPIO write wait timed out\n");
  370. out_unlock:
  371. spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
  372. }
  373. static void vlv_init_dpio(struct drm_device *dev)
  374. {
  375. struct drm_i915_private *dev_priv = dev->dev_private;
  376. /* Reset the DPIO config */
  377. I915_WRITE(DPIO_CTL, 0);
  378. POSTING_READ(DPIO_CTL);
  379. I915_WRITE(DPIO_CTL, 1);
  380. POSTING_READ(DPIO_CTL);
  381. }
  382. static int intel_dual_link_lvds_callback(const struct dmi_system_id *id)
  383. {
  384. DRM_INFO("Forcing lvds to dual link mode on %s\n", id->ident);
  385. return 1;
  386. }
  387. static const struct dmi_system_id intel_dual_link_lvds[] = {
  388. {
  389. .callback = intel_dual_link_lvds_callback,
  390. .ident = "Apple MacBook Pro (Core i5/i7 Series)",
  391. .matches = {
  392. DMI_MATCH(DMI_SYS_VENDOR, "Apple Inc."),
  393. DMI_MATCH(DMI_PRODUCT_NAME, "MacBookPro8,2"),
  394. },
  395. },
  396. { } /* terminating entry */
  397. };
  398. static bool is_dual_link_lvds(struct drm_i915_private *dev_priv,
  399. unsigned int reg)
  400. {
  401. unsigned int val;
  402. /* use the module option value if specified */
  403. if (i915_lvds_channel_mode > 0)
  404. return i915_lvds_channel_mode == 2;
  405. if (dmi_check_system(intel_dual_link_lvds))
  406. return true;
  407. if (dev_priv->lvds_val)
  408. val = dev_priv->lvds_val;
  409. else {
  410. /* BIOS should set the proper LVDS register value at boot, but
  411. * in reality, it doesn't set the value when the lid is closed;
  412. * we need to check "the value to be set" in VBT when LVDS
  413. * register is uninitialized.
  414. */
  415. val = I915_READ(reg);
  416. if (!(val & ~LVDS_DETECTED))
  417. val = dev_priv->bios_lvds_val;
  418. dev_priv->lvds_val = val;
  419. }
  420. return (val & LVDS_CLKB_POWER_MASK) == LVDS_CLKB_POWER_UP;
  421. }
  422. static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
  423. int refclk)
  424. {
  425. struct drm_device *dev = crtc->dev;
  426. struct drm_i915_private *dev_priv = dev->dev_private;
  427. const intel_limit_t *limit;
  428. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  429. if (is_dual_link_lvds(dev_priv, PCH_LVDS)) {
  430. /* LVDS dual channel */
  431. if (refclk == 100000)
  432. limit = &intel_limits_ironlake_dual_lvds_100m;
  433. else
  434. limit = &intel_limits_ironlake_dual_lvds;
  435. } else {
  436. if (refclk == 100000)
  437. limit = &intel_limits_ironlake_single_lvds_100m;
  438. else
  439. limit = &intel_limits_ironlake_single_lvds;
  440. }
  441. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
  442. HAS_eDP)
  443. limit = &intel_limits_ironlake_display_port;
  444. else
  445. limit = &intel_limits_ironlake_dac;
  446. return limit;
  447. }
  448. static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
  449. {
  450. struct drm_device *dev = crtc->dev;
  451. struct drm_i915_private *dev_priv = dev->dev_private;
  452. const intel_limit_t *limit;
  453. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  454. if (is_dual_link_lvds(dev_priv, LVDS))
  455. /* LVDS with dual channel */
  456. limit = &intel_limits_g4x_dual_channel_lvds;
  457. else
  458. /* LVDS with dual channel */
  459. limit = &intel_limits_g4x_single_channel_lvds;
  460. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
  461. intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
  462. limit = &intel_limits_g4x_hdmi;
  463. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
  464. limit = &intel_limits_g4x_sdvo;
  465. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
  466. limit = &intel_limits_g4x_display_port;
  467. } else /* The option is for other outputs */
  468. limit = &intel_limits_i9xx_sdvo;
  469. return limit;
  470. }
  471. static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
  472. {
  473. struct drm_device *dev = crtc->dev;
  474. const intel_limit_t *limit;
  475. if (HAS_PCH_SPLIT(dev))
  476. limit = intel_ironlake_limit(crtc, refclk);
  477. else if (IS_G4X(dev)) {
  478. limit = intel_g4x_limit(crtc);
  479. } else if (IS_PINEVIEW(dev)) {
  480. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  481. limit = &intel_limits_pineview_lvds;
  482. else
  483. limit = &intel_limits_pineview_sdvo;
  484. } else if (!IS_GEN2(dev)) {
  485. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  486. limit = &intel_limits_i9xx_lvds;
  487. else
  488. limit = &intel_limits_i9xx_sdvo;
  489. } else {
  490. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  491. limit = &intel_limits_i8xx_lvds;
  492. else
  493. limit = &intel_limits_i8xx_dvo;
  494. }
  495. return limit;
  496. }
  497. /* m1 is reserved as 0 in Pineview, n is a ring counter */
  498. static void pineview_clock(int refclk, intel_clock_t *clock)
  499. {
  500. clock->m = clock->m2 + 2;
  501. clock->p = clock->p1 * clock->p2;
  502. clock->vco = refclk * clock->m / clock->n;
  503. clock->dot = clock->vco / clock->p;
  504. }
  505. static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
  506. {
  507. if (IS_PINEVIEW(dev)) {
  508. pineview_clock(refclk, clock);
  509. return;
  510. }
  511. clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
  512. clock->p = clock->p1 * clock->p2;
  513. clock->vco = refclk * clock->m / (clock->n + 2);
  514. clock->dot = clock->vco / clock->p;
  515. }
  516. /**
  517. * Returns whether any output on the specified pipe is of the specified type
  518. */
  519. bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
  520. {
  521. struct drm_device *dev = crtc->dev;
  522. struct drm_mode_config *mode_config = &dev->mode_config;
  523. struct intel_encoder *encoder;
  524. list_for_each_entry(encoder, &mode_config->encoder_list, base.head)
  525. if (encoder->base.crtc == crtc && encoder->type == type)
  526. return true;
  527. return false;
  528. }
  529. #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
  530. /**
  531. * Returns whether the given set of divisors are valid for a given refclk with
  532. * the given connectors.
  533. */
  534. static bool intel_PLL_is_valid(struct drm_device *dev,
  535. const intel_limit_t *limit,
  536. const intel_clock_t *clock)
  537. {
  538. if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
  539. INTELPllInvalid("p1 out of range\n");
  540. if (clock->p < limit->p.min || limit->p.max < clock->p)
  541. INTELPllInvalid("p out of range\n");
  542. if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
  543. INTELPllInvalid("m2 out of range\n");
  544. if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
  545. INTELPllInvalid("m1 out of range\n");
  546. if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
  547. INTELPllInvalid("m1 <= m2\n");
  548. if (clock->m < limit->m.min || limit->m.max < clock->m)
  549. INTELPllInvalid("m out of range\n");
  550. if (clock->n < limit->n.min || limit->n.max < clock->n)
  551. INTELPllInvalid("n out of range\n");
  552. if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
  553. INTELPllInvalid("vco out of range\n");
  554. /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
  555. * connector, etc., rather than just a single range.
  556. */
  557. if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
  558. INTELPllInvalid("dot out of range\n");
  559. return true;
  560. }
  561. static bool
  562. intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
  563. int target, int refclk, intel_clock_t *match_clock,
  564. intel_clock_t *best_clock)
  565. {
  566. struct drm_device *dev = crtc->dev;
  567. struct drm_i915_private *dev_priv = dev->dev_private;
  568. intel_clock_t clock;
  569. int err = target;
  570. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
  571. (I915_READ(LVDS)) != 0) {
  572. /*
  573. * For LVDS, if the panel is on, just rely on its current
  574. * settings for dual-channel. We haven't figured out how to
  575. * reliably set up different single/dual channel state, if we
  576. * even can.
  577. */
  578. if (is_dual_link_lvds(dev_priv, LVDS))
  579. clock.p2 = limit->p2.p2_fast;
  580. else
  581. clock.p2 = limit->p2.p2_slow;
  582. } else {
  583. if (target < limit->p2.dot_limit)
  584. clock.p2 = limit->p2.p2_slow;
  585. else
  586. clock.p2 = limit->p2.p2_fast;
  587. }
  588. memset(best_clock, 0, sizeof(*best_clock));
  589. for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
  590. clock.m1++) {
  591. for (clock.m2 = limit->m2.min;
  592. clock.m2 <= limit->m2.max; clock.m2++) {
  593. /* m1 is always 0 in Pineview */
  594. if (clock.m2 >= clock.m1 && !IS_PINEVIEW(dev))
  595. break;
  596. for (clock.n = limit->n.min;
  597. clock.n <= limit->n.max; clock.n++) {
  598. for (clock.p1 = limit->p1.min;
  599. clock.p1 <= limit->p1.max; clock.p1++) {
  600. int this_err;
  601. intel_clock(dev, refclk, &clock);
  602. if (!intel_PLL_is_valid(dev, limit,
  603. &clock))
  604. continue;
  605. if (match_clock &&
  606. clock.p != match_clock->p)
  607. continue;
  608. this_err = abs(clock.dot - target);
  609. if (this_err < err) {
  610. *best_clock = clock;
  611. err = this_err;
  612. }
  613. }
  614. }
  615. }
  616. }
  617. return (err != target);
  618. }
  619. static bool
  620. intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
  621. int target, int refclk, intel_clock_t *match_clock,
  622. intel_clock_t *best_clock)
  623. {
  624. struct drm_device *dev = crtc->dev;
  625. struct drm_i915_private *dev_priv = dev->dev_private;
  626. intel_clock_t clock;
  627. int max_n;
  628. bool found;
  629. /* approximately equals target * 0.00585 */
  630. int err_most = (target >> 8) + (target >> 9);
  631. found = false;
  632. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  633. int lvds_reg;
  634. if (HAS_PCH_SPLIT(dev))
  635. lvds_reg = PCH_LVDS;
  636. else
  637. lvds_reg = LVDS;
  638. if ((I915_READ(lvds_reg) & LVDS_CLKB_POWER_MASK) ==
  639. LVDS_CLKB_POWER_UP)
  640. clock.p2 = limit->p2.p2_fast;
  641. else
  642. clock.p2 = limit->p2.p2_slow;
  643. } else {
  644. if (target < limit->p2.dot_limit)
  645. clock.p2 = limit->p2.p2_slow;
  646. else
  647. clock.p2 = limit->p2.p2_fast;
  648. }
  649. memset(best_clock, 0, sizeof(*best_clock));
  650. max_n = limit->n.max;
  651. /* based on hardware requirement, prefer smaller n to precision */
  652. for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
  653. /* based on hardware requirement, prefere larger m1,m2 */
  654. for (clock.m1 = limit->m1.max;
  655. clock.m1 >= limit->m1.min; clock.m1--) {
  656. for (clock.m2 = limit->m2.max;
  657. clock.m2 >= limit->m2.min; clock.m2--) {
  658. for (clock.p1 = limit->p1.max;
  659. clock.p1 >= limit->p1.min; clock.p1--) {
  660. int this_err;
  661. intel_clock(dev, refclk, &clock);
  662. if (!intel_PLL_is_valid(dev, limit,
  663. &clock))
  664. continue;
  665. if (match_clock &&
  666. clock.p != match_clock->p)
  667. continue;
  668. this_err = abs(clock.dot - target);
  669. if (this_err < err_most) {
  670. *best_clock = clock;
  671. err_most = this_err;
  672. max_n = clock.n;
  673. found = true;
  674. }
  675. }
  676. }
  677. }
  678. }
  679. return found;
  680. }
  681. static bool
  682. intel_find_pll_ironlake_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
  683. int target, int refclk, intel_clock_t *match_clock,
  684. intel_clock_t *best_clock)
  685. {
  686. struct drm_device *dev = crtc->dev;
  687. intel_clock_t clock;
  688. if (target < 200000) {
  689. clock.n = 1;
  690. clock.p1 = 2;
  691. clock.p2 = 10;
  692. clock.m1 = 12;
  693. clock.m2 = 9;
  694. } else {
  695. clock.n = 2;
  696. clock.p1 = 1;
  697. clock.p2 = 10;
  698. clock.m1 = 14;
  699. clock.m2 = 8;
  700. }
  701. intel_clock(dev, refclk, &clock);
  702. memcpy(best_clock, &clock, sizeof(intel_clock_t));
  703. return true;
  704. }
  705. /* DisplayPort has only two frequencies, 162MHz and 270MHz */
  706. static bool
  707. intel_find_pll_g4x_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
  708. int target, int refclk, intel_clock_t *match_clock,
  709. intel_clock_t *best_clock)
  710. {
  711. intel_clock_t clock;
  712. if (target < 200000) {
  713. clock.p1 = 2;
  714. clock.p2 = 10;
  715. clock.n = 2;
  716. clock.m1 = 23;
  717. clock.m2 = 8;
  718. } else {
  719. clock.p1 = 1;
  720. clock.p2 = 10;
  721. clock.n = 1;
  722. clock.m1 = 14;
  723. clock.m2 = 2;
  724. }
  725. clock.m = 5 * (clock.m1 + 2) + (clock.m2 + 2);
  726. clock.p = (clock.p1 * clock.p2);
  727. clock.dot = 96000 * clock.m / (clock.n + 2) / clock.p;
  728. clock.vco = 0;
  729. memcpy(best_clock, &clock, sizeof(intel_clock_t));
  730. return true;
  731. }
  732. /**
  733. * intel_wait_for_vblank - wait for vblank on a given pipe
  734. * @dev: drm device
  735. * @pipe: pipe to wait for
  736. *
  737. * Wait for vblank to occur on a given pipe. Needed for various bits of
  738. * mode setting code.
  739. */
  740. void intel_wait_for_vblank(struct drm_device *dev, int pipe)
  741. {
  742. struct drm_i915_private *dev_priv = dev->dev_private;
  743. int pipestat_reg = PIPESTAT(pipe);
  744. /* Clear existing vblank status. Note this will clear any other
  745. * sticky status fields as well.
  746. *
  747. * This races with i915_driver_irq_handler() with the result
  748. * that either function could miss a vblank event. Here it is not
  749. * fatal, as we will either wait upon the next vblank interrupt or
  750. * timeout. Generally speaking intel_wait_for_vblank() is only
  751. * called during modeset at which time the GPU should be idle and
  752. * should *not* be performing page flips and thus not waiting on
  753. * vblanks...
  754. * Currently, the result of us stealing a vblank from the irq
  755. * handler is that a single frame will be skipped during swapbuffers.
  756. */
  757. I915_WRITE(pipestat_reg,
  758. I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
  759. /* Wait for vblank interrupt bit to set */
  760. if (wait_for(I915_READ(pipestat_reg) &
  761. PIPE_VBLANK_INTERRUPT_STATUS,
  762. 50))
  763. DRM_DEBUG_KMS("vblank wait timed out\n");
  764. }
  765. /*
  766. * intel_wait_for_pipe_off - wait for pipe to turn off
  767. * @dev: drm device
  768. * @pipe: pipe to wait for
  769. *
  770. * After disabling a pipe, we can't wait for vblank in the usual way,
  771. * spinning on the vblank interrupt status bit, since we won't actually
  772. * see an interrupt when the pipe is disabled.
  773. *
  774. * On Gen4 and above:
  775. * wait for the pipe register state bit to turn off
  776. *
  777. * Otherwise:
  778. * wait for the display line value to settle (it usually
  779. * ends up stopping at the start of the next frame).
  780. *
  781. */
  782. void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
  783. {
  784. struct drm_i915_private *dev_priv = dev->dev_private;
  785. if (INTEL_INFO(dev)->gen >= 4) {
  786. int reg = PIPECONF(pipe);
  787. /* Wait for the Pipe State to go off */
  788. if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
  789. 100))
  790. DRM_DEBUG_KMS("pipe_off wait timed out\n");
  791. } else {
  792. u32 last_line;
  793. int reg = PIPEDSL(pipe);
  794. unsigned long timeout = jiffies + msecs_to_jiffies(100);
  795. /* Wait for the display line to settle */
  796. do {
  797. last_line = I915_READ(reg) & DSL_LINEMASK;
  798. mdelay(5);
  799. } while (((I915_READ(reg) & DSL_LINEMASK) != last_line) &&
  800. time_after(timeout, jiffies));
  801. if (time_after(jiffies, timeout))
  802. DRM_DEBUG_KMS("pipe_off wait timed out\n");
  803. }
  804. }
  805. static const char *state_string(bool enabled)
  806. {
  807. return enabled ? "on" : "off";
  808. }
  809. /* Only for pre-ILK configs */
  810. static void assert_pll(struct drm_i915_private *dev_priv,
  811. enum pipe pipe, bool state)
  812. {
  813. int reg;
  814. u32 val;
  815. bool cur_state;
  816. reg = DPLL(pipe);
  817. val = I915_READ(reg);
  818. cur_state = !!(val & DPLL_VCO_ENABLE);
  819. WARN(cur_state != state,
  820. "PLL state assertion failure (expected %s, current %s)\n",
  821. state_string(state), state_string(cur_state));
  822. }
  823. #define assert_pll_enabled(d, p) assert_pll(d, p, true)
  824. #define assert_pll_disabled(d, p) assert_pll(d, p, false)
  825. /* For ILK+ */
  826. static void assert_pch_pll(struct drm_i915_private *dev_priv,
  827. enum pipe pipe, bool state)
  828. {
  829. int reg;
  830. u32 val;
  831. bool cur_state;
  832. if (HAS_PCH_CPT(dev_priv->dev)) {
  833. u32 pch_dpll;
  834. pch_dpll = I915_READ(PCH_DPLL_SEL);
  835. /* Make sure the selected PLL is enabled to the transcoder */
  836. WARN(!((pch_dpll >> (4 * pipe)) & 8),
  837. "transcoder %d PLL not enabled\n", pipe);
  838. /* Convert the transcoder pipe number to a pll pipe number */
  839. pipe = (pch_dpll >> (4 * pipe)) & 1;
  840. }
  841. reg = PCH_DPLL(pipe);
  842. val = I915_READ(reg);
  843. cur_state = !!(val & DPLL_VCO_ENABLE);
  844. WARN(cur_state != state,
  845. "PCH PLL state assertion failure (expected %s, current %s)\n",
  846. state_string(state), state_string(cur_state));
  847. }
  848. #define assert_pch_pll_enabled(d, p) assert_pch_pll(d, p, true)
  849. #define assert_pch_pll_disabled(d, p) assert_pch_pll(d, p, false)
  850. static void assert_fdi_tx(struct drm_i915_private *dev_priv,
  851. enum pipe pipe, bool state)
  852. {
  853. int reg;
  854. u32 val;
  855. bool cur_state;
  856. reg = FDI_TX_CTL(pipe);
  857. val = I915_READ(reg);
  858. cur_state = !!(val & FDI_TX_ENABLE);
  859. WARN(cur_state != state,
  860. "FDI TX state assertion failure (expected %s, current %s)\n",
  861. state_string(state), state_string(cur_state));
  862. }
  863. #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
  864. #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
  865. static void assert_fdi_rx(struct drm_i915_private *dev_priv,
  866. enum pipe pipe, bool state)
  867. {
  868. int reg;
  869. u32 val;
  870. bool cur_state;
  871. reg = FDI_RX_CTL(pipe);
  872. val = I915_READ(reg);
  873. cur_state = !!(val & FDI_RX_ENABLE);
  874. WARN(cur_state != state,
  875. "FDI RX state assertion failure (expected %s, current %s)\n",
  876. state_string(state), state_string(cur_state));
  877. }
  878. #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
  879. #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
  880. static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
  881. enum pipe pipe)
  882. {
  883. int reg;
  884. u32 val;
  885. /* ILK FDI PLL is always enabled */
  886. if (dev_priv->info->gen == 5)
  887. return;
  888. reg = FDI_TX_CTL(pipe);
  889. val = I915_READ(reg);
  890. WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
  891. }
  892. static void assert_fdi_rx_pll_enabled(struct drm_i915_private *dev_priv,
  893. enum pipe pipe)
  894. {
  895. int reg;
  896. u32 val;
  897. reg = FDI_RX_CTL(pipe);
  898. val = I915_READ(reg);
  899. WARN(!(val & FDI_RX_PLL_ENABLE), "FDI RX PLL assertion failure, should be active but is disabled\n");
  900. }
  901. static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
  902. enum pipe pipe)
  903. {
  904. int pp_reg, lvds_reg;
  905. u32 val;
  906. enum pipe panel_pipe = PIPE_A;
  907. bool locked = true;
  908. if (HAS_PCH_SPLIT(dev_priv->dev)) {
  909. pp_reg = PCH_PP_CONTROL;
  910. lvds_reg = PCH_LVDS;
  911. } else {
  912. pp_reg = PP_CONTROL;
  913. lvds_reg = LVDS;
  914. }
  915. val = I915_READ(pp_reg);
  916. if (!(val & PANEL_POWER_ON) ||
  917. ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
  918. locked = false;
  919. if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
  920. panel_pipe = PIPE_B;
  921. WARN(panel_pipe == pipe && locked,
  922. "panel assertion failure, pipe %c regs locked\n",
  923. pipe_name(pipe));
  924. }
  925. void assert_pipe(struct drm_i915_private *dev_priv,
  926. enum pipe pipe, bool state)
  927. {
  928. int reg;
  929. u32 val;
  930. bool cur_state;
  931. /* if we need the pipe A quirk it must be always on */
  932. if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
  933. state = true;
  934. reg = PIPECONF(pipe);
  935. val = I915_READ(reg);
  936. cur_state = !!(val & PIPECONF_ENABLE);
  937. WARN(cur_state != state,
  938. "pipe %c assertion failure (expected %s, current %s)\n",
  939. pipe_name(pipe), state_string(state), state_string(cur_state));
  940. }
  941. static void assert_plane(struct drm_i915_private *dev_priv,
  942. enum plane plane, bool state)
  943. {
  944. int reg;
  945. u32 val;
  946. bool cur_state;
  947. reg = DSPCNTR(plane);
  948. val = I915_READ(reg);
  949. cur_state = !!(val & DISPLAY_PLANE_ENABLE);
  950. WARN(cur_state != state,
  951. "plane %c assertion failure (expected %s, current %s)\n",
  952. plane_name(plane), state_string(state), state_string(cur_state));
  953. }
  954. #define assert_plane_enabled(d, p) assert_plane(d, p, true)
  955. #define assert_plane_disabled(d, p) assert_plane(d, p, false)
  956. static void assert_planes_disabled(struct drm_i915_private *dev_priv,
  957. enum pipe pipe)
  958. {
  959. int reg, i;
  960. u32 val;
  961. int cur_pipe;
  962. /* Planes are fixed to pipes on ILK+ */
  963. if (HAS_PCH_SPLIT(dev_priv->dev)) {
  964. reg = DSPCNTR(pipe);
  965. val = I915_READ(reg);
  966. WARN((val & DISPLAY_PLANE_ENABLE),
  967. "plane %c assertion failure, should be disabled but not\n",
  968. plane_name(pipe));
  969. return;
  970. }
  971. /* Need to check both planes against the pipe */
  972. for (i = 0; i < 2; i++) {
  973. reg = DSPCNTR(i);
  974. val = I915_READ(reg);
  975. cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
  976. DISPPLANE_SEL_PIPE_SHIFT;
  977. WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
  978. "plane %c assertion failure, should be off on pipe %c but is still active\n",
  979. plane_name(i), pipe_name(pipe));
  980. }
  981. }
  982. static void assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
  983. {
  984. u32 val;
  985. bool enabled;
  986. val = I915_READ(PCH_DREF_CONTROL);
  987. enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
  988. DREF_SUPERSPREAD_SOURCE_MASK));
  989. WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
  990. }
  991. static void assert_transcoder_disabled(struct drm_i915_private *dev_priv,
  992. enum pipe pipe)
  993. {
  994. int reg;
  995. u32 val;
  996. bool enabled;
  997. reg = TRANSCONF(pipe);
  998. val = I915_READ(reg);
  999. enabled = !!(val & TRANS_ENABLE);
  1000. WARN(enabled,
  1001. "transcoder assertion failed, should be off on pipe %c but is still active\n",
  1002. pipe_name(pipe));
  1003. }
  1004. static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
  1005. enum pipe pipe, u32 port_sel, u32 val)
  1006. {
  1007. if ((val & DP_PORT_EN) == 0)
  1008. return false;
  1009. if (HAS_PCH_CPT(dev_priv->dev)) {
  1010. u32 trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
  1011. u32 trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
  1012. if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
  1013. return false;
  1014. } else {
  1015. if ((val & DP_PIPE_MASK) != (pipe << 30))
  1016. return false;
  1017. }
  1018. return true;
  1019. }
  1020. static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
  1021. enum pipe pipe, u32 val)
  1022. {
  1023. if ((val & PORT_ENABLE) == 0)
  1024. return false;
  1025. if (HAS_PCH_CPT(dev_priv->dev)) {
  1026. if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
  1027. return false;
  1028. } else {
  1029. if ((val & TRANSCODER_MASK) != TRANSCODER(pipe))
  1030. return false;
  1031. }
  1032. return true;
  1033. }
  1034. static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
  1035. enum pipe pipe, u32 val)
  1036. {
  1037. if ((val & LVDS_PORT_EN) == 0)
  1038. return false;
  1039. if (HAS_PCH_CPT(dev_priv->dev)) {
  1040. if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
  1041. return false;
  1042. } else {
  1043. if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
  1044. return false;
  1045. }
  1046. return true;
  1047. }
  1048. static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
  1049. enum pipe pipe, u32 val)
  1050. {
  1051. if ((val & ADPA_DAC_ENABLE) == 0)
  1052. return false;
  1053. if (HAS_PCH_CPT(dev_priv->dev)) {
  1054. if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
  1055. return false;
  1056. } else {
  1057. if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
  1058. return false;
  1059. }
  1060. return true;
  1061. }
  1062. static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
  1063. enum pipe pipe, int reg, u32 port_sel)
  1064. {
  1065. u32 val = I915_READ(reg);
  1066. WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
  1067. "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
  1068. reg, pipe_name(pipe));
  1069. }
  1070. static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
  1071. enum pipe pipe, int reg)
  1072. {
  1073. u32 val = I915_READ(reg);
  1074. WARN(hdmi_pipe_enabled(dev_priv, val, pipe),
  1075. "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
  1076. reg, pipe_name(pipe));
  1077. }
  1078. static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
  1079. enum pipe pipe)
  1080. {
  1081. int reg;
  1082. u32 val;
  1083. assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
  1084. assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
  1085. assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
  1086. reg = PCH_ADPA;
  1087. val = I915_READ(reg);
  1088. WARN(adpa_pipe_enabled(dev_priv, val, pipe),
  1089. "PCH VGA enabled on transcoder %c, should be disabled\n",
  1090. pipe_name(pipe));
  1091. reg = PCH_LVDS;
  1092. val = I915_READ(reg);
  1093. WARN(lvds_pipe_enabled(dev_priv, val, pipe),
  1094. "PCH LVDS enabled on transcoder %c, should be disabled\n",
  1095. pipe_name(pipe));
  1096. assert_pch_hdmi_disabled(dev_priv, pipe, HDMIB);
  1097. assert_pch_hdmi_disabled(dev_priv, pipe, HDMIC);
  1098. assert_pch_hdmi_disabled(dev_priv, pipe, HDMID);
  1099. }
  1100. /**
  1101. * intel_enable_pll - enable a PLL
  1102. * @dev_priv: i915 private structure
  1103. * @pipe: pipe PLL to enable
  1104. *
  1105. * Enable @pipe's PLL so we can start pumping pixels from a plane. Check to
  1106. * make sure the PLL reg is writable first though, since the panel write
  1107. * protect mechanism may be enabled.
  1108. *
  1109. * Note! This is for pre-ILK only.
  1110. */
  1111. static void intel_enable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
  1112. {
  1113. int reg;
  1114. u32 val;
  1115. /* No really, not for ILK+ */
  1116. BUG_ON(dev_priv->info->gen >= 5);
  1117. /* PLL is protected by panel, make sure we can write it */
  1118. if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
  1119. assert_panel_unlocked(dev_priv, pipe);
  1120. reg = DPLL(pipe);
  1121. val = I915_READ(reg);
  1122. val |= DPLL_VCO_ENABLE;
  1123. /* We do this three times for luck */
  1124. I915_WRITE(reg, val);
  1125. POSTING_READ(reg);
  1126. udelay(150); /* wait for warmup */
  1127. I915_WRITE(reg, val);
  1128. POSTING_READ(reg);
  1129. udelay(150); /* wait for warmup */
  1130. I915_WRITE(reg, val);
  1131. POSTING_READ(reg);
  1132. udelay(150); /* wait for warmup */
  1133. }
  1134. /**
  1135. * intel_disable_pll - disable a PLL
  1136. * @dev_priv: i915 private structure
  1137. * @pipe: pipe PLL to disable
  1138. *
  1139. * Disable the PLL for @pipe, making sure the pipe is off first.
  1140. *
  1141. * Note! This is for pre-ILK only.
  1142. */
  1143. static void intel_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
  1144. {
  1145. int reg;
  1146. u32 val;
  1147. /* Don't disable pipe A or pipe A PLLs if needed */
  1148. if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
  1149. return;
  1150. /* Make sure the pipe isn't still relying on us */
  1151. assert_pipe_disabled(dev_priv, pipe);
  1152. reg = DPLL(pipe);
  1153. val = I915_READ(reg);
  1154. val &= ~DPLL_VCO_ENABLE;
  1155. I915_WRITE(reg, val);
  1156. POSTING_READ(reg);
  1157. }
  1158. /**
  1159. * intel_enable_pch_pll - enable PCH PLL
  1160. * @dev_priv: i915 private structure
  1161. * @pipe: pipe PLL to enable
  1162. *
  1163. * The PCH PLL needs to be enabled before the PCH transcoder, since it
  1164. * drives the transcoder clock.
  1165. */
  1166. static void intel_enable_pch_pll(struct drm_i915_private *dev_priv,
  1167. enum pipe pipe)
  1168. {
  1169. int reg;
  1170. u32 val;
  1171. if (pipe > 1)
  1172. return;
  1173. /* PCH only available on ILK+ */
  1174. BUG_ON(dev_priv->info->gen < 5);
  1175. /* PCH refclock must be enabled first */
  1176. assert_pch_refclk_enabled(dev_priv);
  1177. reg = PCH_DPLL(pipe);
  1178. val = I915_READ(reg);
  1179. val |= DPLL_VCO_ENABLE;
  1180. I915_WRITE(reg, val);
  1181. POSTING_READ(reg);
  1182. udelay(200);
  1183. }
  1184. static void intel_disable_pch_pll(struct drm_i915_private *dev_priv,
  1185. enum pipe pipe)
  1186. {
  1187. int reg;
  1188. u32 val, pll_mask = TRANSC_DPLL_ENABLE | TRANSC_DPLLB_SEL,
  1189. pll_sel = TRANSC_DPLL_ENABLE;
  1190. if (pipe > 1)
  1191. return;
  1192. /* PCH only available on ILK+ */
  1193. BUG_ON(dev_priv->info->gen < 5);
  1194. /* Make sure transcoder isn't still depending on us */
  1195. assert_transcoder_disabled(dev_priv, pipe);
  1196. if (pipe == 0)
  1197. pll_sel |= TRANSC_DPLLA_SEL;
  1198. else if (pipe == 1)
  1199. pll_sel |= TRANSC_DPLLB_SEL;
  1200. if ((I915_READ(PCH_DPLL_SEL) & pll_mask) == pll_sel)
  1201. return;
  1202. reg = PCH_DPLL(pipe);
  1203. val = I915_READ(reg);
  1204. val &= ~DPLL_VCO_ENABLE;
  1205. I915_WRITE(reg, val);
  1206. POSTING_READ(reg);
  1207. udelay(200);
  1208. }
  1209. static void intel_enable_transcoder(struct drm_i915_private *dev_priv,
  1210. enum pipe pipe)
  1211. {
  1212. int reg;
  1213. u32 val, pipeconf_val;
  1214. struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
  1215. /* PCH only available on ILK+ */
  1216. BUG_ON(dev_priv->info->gen < 5);
  1217. /* Make sure PCH DPLL is enabled */
  1218. assert_pch_pll_enabled(dev_priv, pipe);
  1219. /* FDI must be feeding us bits for PCH ports */
  1220. assert_fdi_tx_enabled(dev_priv, pipe);
  1221. assert_fdi_rx_enabled(dev_priv, pipe);
  1222. reg = TRANSCONF(pipe);
  1223. val = I915_READ(reg);
  1224. pipeconf_val = I915_READ(PIPECONF(pipe));
  1225. if (HAS_PCH_IBX(dev_priv->dev)) {
  1226. /*
  1227. * make the BPC in transcoder be consistent with
  1228. * that in pipeconf reg.
  1229. */
  1230. val &= ~PIPE_BPC_MASK;
  1231. val |= pipeconf_val & PIPE_BPC_MASK;
  1232. }
  1233. val &= ~TRANS_INTERLACE_MASK;
  1234. if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
  1235. if (HAS_PCH_IBX(dev_priv->dev) &&
  1236. intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
  1237. val |= TRANS_LEGACY_INTERLACED_ILK;
  1238. else
  1239. val |= TRANS_INTERLACED;
  1240. else
  1241. val |= TRANS_PROGRESSIVE;
  1242. I915_WRITE(reg, val | TRANS_ENABLE);
  1243. if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
  1244. DRM_ERROR("failed to enable transcoder %d\n", pipe);
  1245. }
  1246. static void intel_disable_transcoder(struct drm_i915_private *dev_priv,
  1247. enum pipe pipe)
  1248. {
  1249. int reg;
  1250. u32 val;
  1251. /* FDI relies on the transcoder */
  1252. assert_fdi_tx_disabled(dev_priv, pipe);
  1253. assert_fdi_rx_disabled(dev_priv, pipe);
  1254. /* Ports must be off as well */
  1255. assert_pch_ports_disabled(dev_priv, pipe);
  1256. reg = TRANSCONF(pipe);
  1257. val = I915_READ(reg);
  1258. val &= ~TRANS_ENABLE;
  1259. I915_WRITE(reg, val);
  1260. /* wait for PCH transcoder off, transcoder state */
  1261. if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
  1262. DRM_ERROR("failed to disable transcoder %d\n", pipe);
  1263. }
  1264. /**
  1265. * intel_enable_pipe - enable a pipe, asserting requirements
  1266. * @dev_priv: i915 private structure
  1267. * @pipe: pipe to enable
  1268. * @pch_port: on ILK+, is this pipe driving a PCH port or not
  1269. *
  1270. * Enable @pipe, making sure that various hardware specific requirements
  1271. * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
  1272. *
  1273. * @pipe should be %PIPE_A or %PIPE_B.
  1274. *
  1275. * Will wait until the pipe is actually running (i.e. first vblank) before
  1276. * returning.
  1277. */
  1278. static void intel_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe,
  1279. bool pch_port)
  1280. {
  1281. int reg;
  1282. u32 val;
  1283. /*
  1284. * A pipe without a PLL won't actually be able to drive bits from
  1285. * a plane. On ILK+ the pipe PLLs are integrated, so we don't
  1286. * need the check.
  1287. */
  1288. if (!HAS_PCH_SPLIT(dev_priv->dev))
  1289. assert_pll_enabled(dev_priv, pipe);
  1290. else {
  1291. if (pch_port) {
  1292. /* if driving the PCH, we need FDI enabled */
  1293. assert_fdi_rx_pll_enabled(dev_priv, pipe);
  1294. assert_fdi_tx_pll_enabled(dev_priv, pipe);
  1295. }
  1296. /* FIXME: assert CPU port conditions for SNB+ */
  1297. }
  1298. reg = PIPECONF(pipe);
  1299. val = I915_READ(reg);
  1300. if (val & PIPECONF_ENABLE)
  1301. return;
  1302. I915_WRITE(reg, val | PIPECONF_ENABLE);
  1303. intel_wait_for_vblank(dev_priv->dev, pipe);
  1304. }
  1305. /**
  1306. * intel_disable_pipe - disable a pipe, asserting requirements
  1307. * @dev_priv: i915 private structure
  1308. * @pipe: pipe to disable
  1309. *
  1310. * Disable @pipe, making sure that various hardware specific requirements
  1311. * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
  1312. *
  1313. * @pipe should be %PIPE_A or %PIPE_B.
  1314. *
  1315. * Will wait until the pipe has shut down before returning.
  1316. */
  1317. static void intel_disable_pipe(struct drm_i915_private *dev_priv,
  1318. enum pipe pipe)
  1319. {
  1320. int reg;
  1321. u32 val;
  1322. /*
  1323. * Make sure planes won't keep trying to pump pixels to us,
  1324. * or we might hang the display.
  1325. */
  1326. assert_planes_disabled(dev_priv, pipe);
  1327. /* Don't disable pipe A or pipe A PLLs if needed */
  1328. if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
  1329. return;
  1330. reg = PIPECONF(pipe);
  1331. val = I915_READ(reg);
  1332. if ((val & PIPECONF_ENABLE) == 0)
  1333. return;
  1334. I915_WRITE(reg, val & ~PIPECONF_ENABLE);
  1335. intel_wait_for_pipe_off(dev_priv->dev, pipe);
  1336. }
  1337. /*
  1338. * Plane regs are double buffered, going from enabled->disabled needs a
  1339. * trigger in order to latch. The display address reg provides this.
  1340. */
  1341. static void intel_flush_display_plane(struct drm_i915_private *dev_priv,
  1342. enum plane plane)
  1343. {
  1344. I915_WRITE(DSPADDR(plane), I915_READ(DSPADDR(plane)));
  1345. I915_WRITE(DSPSURF(plane), I915_READ(DSPSURF(plane)));
  1346. }
  1347. /**
  1348. * intel_enable_plane - enable a display plane on a given pipe
  1349. * @dev_priv: i915 private structure
  1350. * @plane: plane to enable
  1351. * @pipe: pipe being fed
  1352. *
  1353. * Enable @plane on @pipe, making sure that @pipe is running first.
  1354. */
  1355. static void intel_enable_plane(struct drm_i915_private *dev_priv,
  1356. enum plane plane, enum pipe pipe)
  1357. {
  1358. int reg;
  1359. u32 val;
  1360. /* If the pipe isn't enabled, we can't pump pixels and may hang */
  1361. assert_pipe_enabled(dev_priv, pipe);
  1362. reg = DSPCNTR(plane);
  1363. val = I915_READ(reg);
  1364. if (val & DISPLAY_PLANE_ENABLE)
  1365. return;
  1366. I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
  1367. intel_flush_display_plane(dev_priv, plane);
  1368. intel_wait_for_vblank(dev_priv->dev, pipe);
  1369. }
  1370. /**
  1371. * intel_disable_plane - disable a display plane
  1372. * @dev_priv: i915 private structure
  1373. * @plane: plane to disable
  1374. * @pipe: pipe consuming the data
  1375. *
  1376. * Disable @plane; should be an independent operation.
  1377. */
  1378. static void intel_disable_plane(struct drm_i915_private *dev_priv,
  1379. enum plane plane, enum pipe pipe)
  1380. {
  1381. int reg;
  1382. u32 val;
  1383. reg = DSPCNTR(plane);
  1384. val = I915_READ(reg);
  1385. if ((val & DISPLAY_PLANE_ENABLE) == 0)
  1386. return;
  1387. I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
  1388. intel_flush_display_plane(dev_priv, plane);
  1389. intel_wait_for_vblank(dev_priv->dev, pipe);
  1390. }
  1391. static void disable_pch_dp(struct drm_i915_private *dev_priv,
  1392. enum pipe pipe, int reg, u32 port_sel)
  1393. {
  1394. u32 val = I915_READ(reg);
  1395. if (dp_pipe_enabled(dev_priv, pipe, port_sel, val)) {
  1396. DRM_DEBUG_KMS("Disabling pch dp %x on pipe %d\n", reg, pipe);
  1397. I915_WRITE(reg, val & ~DP_PORT_EN);
  1398. }
  1399. }
  1400. static void disable_pch_hdmi(struct drm_i915_private *dev_priv,
  1401. enum pipe pipe, int reg)
  1402. {
  1403. u32 val = I915_READ(reg);
  1404. if (hdmi_pipe_enabled(dev_priv, val, pipe)) {
  1405. DRM_DEBUG_KMS("Disabling pch HDMI %x on pipe %d\n",
  1406. reg, pipe);
  1407. I915_WRITE(reg, val & ~PORT_ENABLE);
  1408. }
  1409. }
  1410. /* Disable any ports connected to this transcoder */
  1411. static void intel_disable_pch_ports(struct drm_i915_private *dev_priv,
  1412. enum pipe pipe)
  1413. {
  1414. u32 reg, val;
  1415. val = I915_READ(PCH_PP_CONTROL);
  1416. I915_WRITE(PCH_PP_CONTROL, val | PANEL_UNLOCK_REGS);
  1417. disable_pch_dp(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
  1418. disable_pch_dp(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
  1419. disable_pch_dp(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
  1420. reg = PCH_ADPA;
  1421. val = I915_READ(reg);
  1422. if (adpa_pipe_enabled(dev_priv, val, pipe))
  1423. I915_WRITE(reg, val & ~ADPA_DAC_ENABLE);
  1424. reg = PCH_LVDS;
  1425. val = I915_READ(reg);
  1426. if (lvds_pipe_enabled(dev_priv, val, pipe)) {
  1427. DRM_DEBUG_KMS("disable lvds on pipe %d val 0x%08x\n", pipe, val);
  1428. I915_WRITE(reg, val & ~LVDS_PORT_EN);
  1429. POSTING_READ(reg);
  1430. udelay(100);
  1431. }
  1432. disable_pch_hdmi(dev_priv, pipe, HDMIB);
  1433. disable_pch_hdmi(dev_priv, pipe, HDMIC);
  1434. disable_pch_hdmi(dev_priv, pipe, HDMID);
  1435. }
  1436. static void i8xx_disable_fbc(struct drm_device *dev)
  1437. {
  1438. struct drm_i915_private *dev_priv = dev->dev_private;
  1439. u32 fbc_ctl;
  1440. /* Disable compression */
  1441. fbc_ctl = I915_READ(FBC_CONTROL);
  1442. if ((fbc_ctl & FBC_CTL_EN) == 0)
  1443. return;
  1444. fbc_ctl &= ~FBC_CTL_EN;
  1445. I915_WRITE(FBC_CONTROL, fbc_ctl);
  1446. /* Wait for compressing bit to clear */
  1447. if (wait_for((I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) == 0, 10)) {
  1448. DRM_DEBUG_KMS("FBC idle timed out\n");
  1449. return;
  1450. }
  1451. DRM_DEBUG_KMS("disabled FBC\n");
  1452. }
  1453. static void i8xx_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
  1454. {
  1455. struct drm_device *dev = crtc->dev;
  1456. struct drm_i915_private *dev_priv = dev->dev_private;
  1457. struct drm_framebuffer *fb = crtc->fb;
  1458. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  1459. struct drm_i915_gem_object *obj = intel_fb->obj;
  1460. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1461. int cfb_pitch;
  1462. int plane, i;
  1463. u32 fbc_ctl, fbc_ctl2;
  1464. cfb_pitch = dev_priv->cfb_size / FBC_LL_SIZE;
  1465. if (fb->pitches[0] < cfb_pitch)
  1466. cfb_pitch = fb->pitches[0];
  1467. /* FBC_CTL wants 64B units */
  1468. cfb_pitch = (cfb_pitch / 64) - 1;
  1469. plane = intel_crtc->plane == 0 ? FBC_CTL_PLANEA : FBC_CTL_PLANEB;
  1470. /* Clear old tags */
  1471. for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
  1472. I915_WRITE(FBC_TAG + (i * 4), 0);
  1473. /* Set it up... */
  1474. fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | FBC_CTL_CPU_FENCE;
  1475. fbc_ctl2 |= plane;
  1476. I915_WRITE(FBC_CONTROL2, fbc_ctl2);
  1477. I915_WRITE(FBC_FENCE_OFF, crtc->y);
  1478. /* enable it... */
  1479. fbc_ctl = FBC_CTL_EN | FBC_CTL_PERIODIC;
  1480. if (IS_I945GM(dev))
  1481. fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
  1482. fbc_ctl |= (cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
  1483. fbc_ctl |= (interval & 0x2fff) << FBC_CTL_INTERVAL_SHIFT;
  1484. fbc_ctl |= obj->fence_reg;
  1485. I915_WRITE(FBC_CONTROL, fbc_ctl);
  1486. DRM_DEBUG_KMS("enabled FBC, pitch %d, yoff %d, plane %d, ",
  1487. cfb_pitch, crtc->y, intel_crtc->plane);
  1488. }
  1489. static bool i8xx_fbc_enabled(struct drm_device *dev)
  1490. {
  1491. struct drm_i915_private *dev_priv = dev->dev_private;
  1492. return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
  1493. }
  1494. static void g4x_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
  1495. {
  1496. struct drm_device *dev = crtc->dev;
  1497. struct drm_i915_private *dev_priv = dev->dev_private;
  1498. struct drm_framebuffer *fb = crtc->fb;
  1499. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  1500. struct drm_i915_gem_object *obj = intel_fb->obj;
  1501. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1502. int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
  1503. unsigned long stall_watermark = 200;
  1504. u32 dpfc_ctl;
  1505. dpfc_ctl = plane | DPFC_SR_EN | DPFC_CTL_LIMIT_1X;
  1506. dpfc_ctl |= DPFC_CTL_FENCE_EN | obj->fence_reg;
  1507. I915_WRITE(DPFC_CHICKEN, DPFC_HT_MODIFY);
  1508. I915_WRITE(DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
  1509. (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
  1510. (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
  1511. I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
  1512. /* enable it... */
  1513. I915_WRITE(DPFC_CONTROL, I915_READ(DPFC_CONTROL) | DPFC_CTL_EN);
  1514. DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
  1515. }
  1516. static void g4x_disable_fbc(struct drm_device *dev)
  1517. {
  1518. struct drm_i915_private *dev_priv = dev->dev_private;
  1519. u32 dpfc_ctl;
  1520. /* Disable compression */
  1521. dpfc_ctl = I915_READ(DPFC_CONTROL);
  1522. if (dpfc_ctl & DPFC_CTL_EN) {
  1523. dpfc_ctl &= ~DPFC_CTL_EN;
  1524. I915_WRITE(DPFC_CONTROL, dpfc_ctl);
  1525. DRM_DEBUG_KMS("disabled FBC\n");
  1526. }
  1527. }
  1528. static bool g4x_fbc_enabled(struct drm_device *dev)
  1529. {
  1530. struct drm_i915_private *dev_priv = dev->dev_private;
  1531. return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
  1532. }
  1533. static void sandybridge_blit_fbc_update(struct drm_device *dev)
  1534. {
  1535. struct drm_i915_private *dev_priv = dev->dev_private;
  1536. u32 blt_ecoskpd;
  1537. /* Make sure blitter notifies FBC of writes */
  1538. gen6_gt_force_wake_get(dev_priv);
  1539. blt_ecoskpd = I915_READ(GEN6_BLITTER_ECOSKPD);
  1540. blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY <<
  1541. GEN6_BLITTER_LOCK_SHIFT;
  1542. I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
  1543. blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY;
  1544. I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
  1545. blt_ecoskpd &= ~(GEN6_BLITTER_FBC_NOTIFY <<
  1546. GEN6_BLITTER_LOCK_SHIFT);
  1547. I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
  1548. POSTING_READ(GEN6_BLITTER_ECOSKPD);
  1549. gen6_gt_force_wake_put(dev_priv);
  1550. }
  1551. static void ironlake_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
  1552. {
  1553. struct drm_device *dev = crtc->dev;
  1554. struct drm_i915_private *dev_priv = dev->dev_private;
  1555. struct drm_framebuffer *fb = crtc->fb;
  1556. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  1557. struct drm_i915_gem_object *obj = intel_fb->obj;
  1558. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1559. int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
  1560. unsigned long stall_watermark = 200;
  1561. u32 dpfc_ctl;
  1562. dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
  1563. dpfc_ctl &= DPFC_RESERVED;
  1564. dpfc_ctl |= (plane | DPFC_CTL_LIMIT_1X);
  1565. /* Set persistent mode for front-buffer rendering, ala X. */
  1566. dpfc_ctl |= DPFC_CTL_PERSISTENT_MODE;
  1567. dpfc_ctl |= (DPFC_CTL_FENCE_EN | obj->fence_reg);
  1568. I915_WRITE(ILK_DPFC_CHICKEN, DPFC_HT_MODIFY);
  1569. I915_WRITE(ILK_DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
  1570. (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
  1571. (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
  1572. I915_WRITE(ILK_DPFC_FENCE_YOFF, crtc->y);
  1573. I915_WRITE(ILK_FBC_RT_BASE, obj->gtt_offset | ILK_FBC_RT_VALID);
  1574. /* enable it... */
  1575. I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
  1576. if (IS_GEN6(dev)) {
  1577. I915_WRITE(SNB_DPFC_CTL_SA,
  1578. SNB_CPU_FENCE_ENABLE | obj->fence_reg);
  1579. I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
  1580. sandybridge_blit_fbc_update(dev);
  1581. }
  1582. DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
  1583. }
  1584. static void ironlake_disable_fbc(struct drm_device *dev)
  1585. {
  1586. struct drm_i915_private *dev_priv = dev->dev_private;
  1587. u32 dpfc_ctl;
  1588. /* Disable compression */
  1589. dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
  1590. if (dpfc_ctl & DPFC_CTL_EN) {
  1591. dpfc_ctl &= ~DPFC_CTL_EN;
  1592. I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);
  1593. DRM_DEBUG_KMS("disabled FBC\n");
  1594. }
  1595. }
  1596. static bool ironlake_fbc_enabled(struct drm_device *dev)
  1597. {
  1598. struct drm_i915_private *dev_priv = dev->dev_private;
  1599. return I915_READ(ILK_DPFC_CONTROL) & DPFC_CTL_EN;
  1600. }
  1601. bool intel_fbc_enabled(struct drm_device *dev)
  1602. {
  1603. struct drm_i915_private *dev_priv = dev->dev_private;
  1604. if (!dev_priv->display.fbc_enabled)
  1605. return false;
  1606. return dev_priv->display.fbc_enabled(dev);
  1607. }
  1608. static void intel_fbc_work_fn(struct work_struct *__work)
  1609. {
  1610. struct intel_fbc_work *work =
  1611. container_of(to_delayed_work(__work),
  1612. struct intel_fbc_work, work);
  1613. struct drm_device *dev = work->crtc->dev;
  1614. struct drm_i915_private *dev_priv = dev->dev_private;
  1615. mutex_lock(&dev->struct_mutex);
  1616. if (work == dev_priv->fbc_work) {
  1617. /* Double check that we haven't switched fb without cancelling
  1618. * the prior work.
  1619. */
  1620. if (work->crtc->fb == work->fb) {
  1621. dev_priv->display.enable_fbc(work->crtc,
  1622. work->interval);
  1623. dev_priv->cfb_plane = to_intel_crtc(work->crtc)->plane;
  1624. dev_priv->cfb_fb = work->crtc->fb->base.id;
  1625. dev_priv->cfb_y = work->crtc->y;
  1626. }
  1627. dev_priv->fbc_work = NULL;
  1628. }
  1629. mutex_unlock(&dev->struct_mutex);
  1630. kfree(work);
  1631. }
  1632. static void intel_cancel_fbc_work(struct drm_i915_private *dev_priv)
  1633. {
  1634. if (dev_priv->fbc_work == NULL)
  1635. return;
  1636. DRM_DEBUG_KMS("cancelling pending FBC enable\n");
  1637. /* Synchronisation is provided by struct_mutex and checking of
  1638. * dev_priv->fbc_work, so we can perform the cancellation
  1639. * entirely asynchronously.
  1640. */
  1641. if (cancel_delayed_work(&dev_priv->fbc_work->work))
  1642. /* tasklet was killed before being run, clean up */
  1643. kfree(dev_priv->fbc_work);
  1644. /* Mark the work as no longer wanted so that if it does
  1645. * wake-up (because the work was already running and waiting
  1646. * for our mutex), it will discover that is no longer
  1647. * necessary to run.
  1648. */
  1649. dev_priv->fbc_work = NULL;
  1650. }
  1651. static void intel_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
  1652. {
  1653. struct intel_fbc_work *work;
  1654. struct drm_device *dev = crtc->dev;
  1655. struct drm_i915_private *dev_priv = dev->dev_private;
  1656. if (!dev_priv->display.enable_fbc)
  1657. return;
  1658. intel_cancel_fbc_work(dev_priv);
  1659. work = kzalloc(sizeof *work, GFP_KERNEL);
  1660. if (work == NULL) {
  1661. dev_priv->display.enable_fbc(crtc, interval);
  1662. return;
  1663. }
  1664. work->crtc = crtc;
  1665. work->fb = crtc->fb;
  1666. work->interval = interval;
  1667. INIT_DELAYED_WORK(&work->work, intel_fbc_work_fn);
  1668. dev_priv->fbc_work = work;
  1669. DRM_DEBUG_KMS("scheduling delayed FBC enable\n");
  1670. /* Delay the actual enabling to let pageflipping cease and the
  1671. * display to settle before starting the compression. Note that
  1672. * this delay also serves a second purpose: it allows for a
  1673. * vblank to pass after disabling the FBC before we attempt
  1674. * to modify the control registers.
  1675. *
  1676. * A more complicated solution would involve tracking vblanks
  1677. * following the termination of the page-flipping sequence
  1678. * and indeed performing the enable as a co-routine and not
  1679. * waiting synchronously upon the vblank.
  1680. */
  1681. schedule_delayed_work(&work->work, msecs_to_jiffies(50));
  1682. }
  1683. void intel_disable_fbc(struct drm_device *dev)
  1684. {
  1685. struct drm_i915_private *dev_priv = dev->dev_private;
  1686. intel_cancel_fbc_work(dev_priv);
  1687. if (!dev_priv->display.disable_fbc)
  1688. return;
  1689. dev_priv->display.disable_fbc(dev);
  1690. dev_priv->cfb_plane = -1;
  1691. }
  1692. /**
  1693. * intel_update_fbc - enable/disable FBC as needed
  1694. * @dev: the drm_device
  1695. *
  1696. * Set up the framebuffer compression hardware at mode set time. We
  1697. * enable it if possible:
  1698. * - plane A only (on pre-965)
  1699. * - no pixel mulitply/line duplication
  1700. * - no alpha buffer discard
  1701. * - no dual wide
  1702. * - framebuffer <= 2048 in width, 1536 in height
  1703. *
  1704. * We can't assume that any compression will take place (worst case),
  1705. * so the compressed buffer has to be the same size as the uncompressed
  1706. * one. It also must reside (along with the line length buffer) in
  1707. * stolen memory.
  1708. *
  1709. * We need to enable/disable FBC on a global basis.
  1710. */
  1711. static void intel_update_fbc(struct drm_device *dev)
  1712. {
  1713. struct drm_i915_private *dev_priv = dev->dev_private;
  1714. struct drm_crtc *crtc = NULL, *tmp_crtc;
  1715. struct intel_crtc *intel_crtc;
  1716. struct drm_framebuffer *fb;
  1717. struct intel_framebuffer *intel_fb;
  1718. struct drm_i915_gem_object *obj;
  1719. int enable_fbc;
  1720. DRM_DEBUG_KMS("\n");
  1721. if (!i915_powersave)
  1722. return;
  1723. if (!I915_HAS_FBC(dev))
  1724. return;
  1725. /*
  1726. * If FBC is already on, we just have to verify that we can
  1727. * keep it that way...
  1728. * Need to disable if:
  1729. * - more than one pipe is active
  1730. * - changing FBC params (stride, fence, mode)
  1731. * - new fb is too large to fit in compressed buffer
  1732. * - going to an unsupported config (interlace, pixel multiply, etc.)
  1733. */
  1734. list_for_each_entry(tmp_crtc, &dev->mode_config.crtc_list, head) {
  1735. if (tmp_crtc->enabled && tmp_crtc->fb) {
  1736. if (crtc) {
  1737. DRM_DEBUG_KMS("more than one pipe active, disabling compression\n");
  1738. dev_priv->no_fbc_reason = FBC_MULTIPLE_PIPES;
  1739. goto out_disable;
  1740. }
  1741. crtc = tmp_crtc;
  1742. }
  1743. }
  1744. if (!crtc || crtc->fb == NULL) {
  1745. DRM_DEBUG_KMS("no output, disabling\n");
  1746. dev_priv->no_fbc_reason = FBC_NO_OUTPUT;
  1747. goto out_disable;
  1748. }
  1749. intel_crtc = to_intel_crtc(crtc);
  1750. fb = crtc->fb;
  1751. intel_fb = to_intel_framebuffer(fb);
  1752. obj = intel_fb->obj;
  1753. enable_fbc = i915_enable_fbc;
  1754. if (enable_fbc < 0) {
  1755. DRM_DEBUG_KMS("fbc set to per-chip default\n");
  1756. enable_fbc = 1;
  1757. if (INTEL_INFO(dev)->gen <= 6)
  1758. enable_fbc = 0;
  1759. }
  1760. if (!enable_fbc) {
  1761. DRM_DEBUG_KMS("fbc disabled per module param\n");
  1762. dev_priv->no_fbc_reason = FBC_MODULE_PARAM;
  1763. goto out_disable;
  1764. }
  1765. if (intel_fb->obj->base.size > dev_priv->cfb_size) {
  1766. DRM_DEBUG_KMS("framebuffer too large, disabling "
  1767. "compression\n");
  1768. dev_priv->no_fbc_reason = FBC_STOLEN_TOO_SMALL;
  1769. goto out_disable;
  1770. }
  1771. if ((crtc->mode.flags & DRM_MODE_FLAG_INTERLACE) ||
  1772. (crtc->mode.flags & DRM_MODE_FLAG_DBLSCAN)) {
  1773. DRM_DEBUG_KMS("mode incompatible with compression, "
  1774. "disabling\n");
  1775. dev_priv->no_fbc_reason = FBC_UNSUPPORTED_MODE;
  1776. goto out_disable;
  1777. }
  1778. if ((crtc->mode.hdisplay > 2048) ||
  1779. (crtc->mode.vdisplay > 1536)) {
  1780. DRM_DEBUG_KMS("mode too large for compression, disabling\n");
  1781. dev_priv->no_fbc_reason = FBC_MODE_TOO_LARGE;
  1782. goto out_disable;
  1783. }
  1784. if ((IS_I915GM(dev) || IS_I945GM(dev)) && intel_crtc->plane != 0) {
  1785. DRM_DEBUG_KMS("plane not 0, disabling compression\n");
  1786. dev_priv->no_fbc_reason = FBC_BAD_PLANE;
  1787. goto out_disable;
  1788. }
  1789. /* The use of a CPU fence is mandatory in order to detect writes
  1790. * by the CPU to the scanout and trigger updates to the FBC.
  1791. */
  1792. if (obj->tiling_mode != I915_TILING_X ||
  1793. obj->fence_reg == I915_FENCE_REG_NONE) {
  1794. DRM_DEBUG_KMS("framebuffer not tiled or fenced, disabling compression\n");
  1795. dev_priv->no_fbc_reason = FBC_NOT_TILED;
  1796. goto out_disable;
  1797. }
  1798. /* If the kernel debugger is active, always disable compression */
  1799. if (in_dbg_master())
  1800. goto out_disable;
  1801. /* If the scanout has not changed, don't modify the FBC settings.
  1802. * Note that we make the fundamental assumption that the fb->obj
  1803. * cannot be unpinned (and have its GTT offset and fence revoked)
  1804. * without first being decoupled from the scanout and FBC disabled.
  1805. */
  1806. if (dev_priv->cfb_plane == intel_crtc->plane &&
  1807. dev_priv->cfb_fb == fb->base.id &&
  1808. dev_priv->cfb_y == crtc->y)
  1809. return;
  1810. if (intel_fbc_enabled(dev)) {
  1811. /* We update FBC along two paths, after changing fb/crtc
  1812. * configuration (modeswitching) and after page-flipping
  1813. * finishes. For the latter, we know that not only did
  1814. * we disable the FBC at the start of the page-flip
  1815. * sequence, but also more than one vblank has passed.
  1816. *
  1817. * For the former case of modeswitching, it is possible
  1818. * to switch between two FBC valid configurations
  1819. * instantaneously so we do need to disable the FBC
  1820. * before we can modify its control registers. We also
  1821. * have to wait for the next vblank for that to take
  1822. * effect. However, since we delay enabling FBC we can
  1823. * assume that a vblank has passed since disabling and
  1824. * that we can safely alter the registers in the deferred
  1825. * callback.
  1826. *
  1827. * In the scenario that we go from a valid to invalid
  1828. * and then back to valid FBC configuration we have
  1829. * no strict enforcement that a vblank occurred since
  1830. * disabling the FBC. However, along all current pipe
  1831. * disabling paths we do need to wait for a vblank at
  1832. * some point. And we wait before enabling FBC anyway.
  1833. */
  1834. DRM_DEBUG_KMS("disabling active FBC for update\n");
  1835. intel_disable_fbc(dev);
  1836. }
  1837. intel_enable_fbc(crtc, 500);
  1838. return;
  1839. out_disable:
  1840. /* Multiple disables should be harmless */
  1841. if (intel_fbc_enabled(dev)) {
  1842. DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
  1843. intel_disable_fbc(dev);
  1844. }
  1845. }
  1846. int
  1847. intel_pin_and_fence_fb_obj(struct drm_device *dev,
  1848. struct drm_i915_gem_object *obj,
  1849. struct intel_ring_buffer *pipelined)
  1850. {
  1851. struct drm_i915_private *dev_priv = dev->dev_private;
  1852. u32 alignment;
  1853. int ret;
  1854. switch (obj->tiling_mode) {
  1855. case I915_TILING_NONE:
  1856. if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
  1857. alignment = 128 * 1024;
  1858. else if (INTEL_INFO(dev)->gen >= 4)
  1859. alignment = 4 * 1024;
  1860. else
  1861. alignment = 64 * 1024;
  1862. break;
  1863. case I915_TILING_X:
  1864. /* pin() will align the object as required by fence */
  1865. alignment = 0;
  1866. break;
  1867. case I915_TILING_Y:
  1868. /* FIXME: Is this true? */
  1869. DRM_ERROR("Y tiled not allowed for scan out buffers\n");
  1870. return -EINVAL;
  1871. default:
  1872. BUG();
  1873. }
  1874. dev_priv->mm.interruptible = false;
  1875. ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
  1876. if (ret)
  1877. goto err_interruptible;
  1878. /* Install a fence for tiled scan-out. Pre-i965 always needs a
  1879. * fence, whereas 965+ only requires a fence if using
  1880. * framebuffer compression. For simplicity, we always install
  1881. * a fence as the cost is not that onerous.
  1882. */
  1883. ret = i915_gem_object_get_fence(obj, pipelined);
  1884. if (ret)
  1885. goto err_unpin;
  1886. i915_gem_object_pin_fence(obj);
  1887. dev_priv->mm.interruptible = true;
  1888. return 0;
  1889. err_unpin:
  1890. i915_gem_object_unpin(obj);
  1891. err_interruptible:
  1892. dev_priv->mm.interruptible = true;
  1893. return ret;
  1894. }
  1895. void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
  1896. {
  1897. i915_gem_object_unpin_fence(obj);
  1898. i915_gem_object_unpin(obj);
  1899. }
  1900. static int i9xx_update_plane(struct drm_crtc *crtc, struct drm_framebuffer *fb,
  1901. int x, int y)
  1902. {
  1903. struct drm_device *dev = crtc->dev;
  1904. struct drm_i915_private *dev_priv = dev->dev_private;
  1905. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1906. struct intel_framebuffer *intel_fb;
  1907. struct drm_i915_gem_object *obj;
  1908. int plane = intel_crtc->plane;
  1909. unsigned long Start, Offset;
  1910. u32 dspcntr;
  1911. u32 reg;
  1912. switch (plane) {
  1913. case 0:
  1914. case 1:
  1915. break;
  1916. default:
  1917. DRM_ERROR("Can't update plane %d in SAREA\n", plane);
  1918. return -EINVAL;
  1919. }
  1920. intel_fb = to_intel_framebuffer(fb);
  1921. obj = intel_fb->obj;
  1922. reg = DSPCNTR(plane);
  1923. dspcntr = I915_READ(reg);
  1924. /* Mask out pixel format bits in case we change it */
  1925. dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
  1926. switch (fb->bits_per_pixel) {
  1927. case 8:
  1928. dspcntr |= DISPPLANE_8BPP;
  1929. break;
  1930. case 16:
  1931. if (fb->depth == 15)
  1932. dspcntr |= DISPPLANE_15_16BPP;
  1933. else
  1934. dspcntr |= DISPPLANE_16BPP;
  1935. break;
  1936. case 24:
  1937. case 32:
  1938. dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
  1939. break;
  1940. default:
  1941. DRM_ERROR("Unknown color depth %d\n", fb->bits_per_pixel);
  1942. return -EINVAL;
  1943. }
  1944. if (INTEL_INFO(dev)->gen >= 4) {
  1945. if (obj->tiling_mode != I915_TILING_NONE)
  1946. dspcntr |= DISPPLANE_TILED;
  1947. else
  1948. dspcntr &= ~DISPPLANE_TILED;
  1949. }
  1950. I915_WRITE(reg, dspcntr);
  1951. Start = obj->gtt_offset;
  1952. Offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
  1953. DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
  1954. Start, Offset, x, y, fb->pitches[0]);
  1955. I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
  1956. if (INTEL_INFO(dev)->gen >= 4) {
  1957. I915_WRITE(DSPSURF(plane), Start);
  1958. I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
  1959. I915_WRITE(DSPADDR(plane), Offset);
  1960. } else
  1961. I915_WRITE(DSPADDR(plane), Start + Offset);
  1962. POSTING_READ(reg);
  1963. return 0;
  1964. }
  1965. static int ironlake_update_plane(struct drm_crtc *crtc,
  1966. struct drm_framebuffer *fb, int x, int y)
  1967. {
  1968. struct drm_device *dev = crtc->dev;
  1969. struct drm_i915_private *dev_priv = dev->dev_private;
  1970. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1971. struct intel_framebuffer *intel_fb;
  1972. struct drm_i915_gem_object *obj;
  1973. int plane = intel_crtc->plane;
  1974. unsigned long Start, Offset;
  1975. u32 dspcntr;
  1976. u32 reg;
  1977. switch (plane) {
  1978. case 0:
  1979. case 1:
  1980. case 2:
  1981. break;
  1982. default:
  1983. DRM_ERROR("Can't update plane %d in SAREA\n", plane);
  1984. return -EINVAL;
  1985. }
  1986. intel_fb = to_intel_framebuffer(fb);
  1987. obj = intel_fb->obj;
  1988. reg = DSPCNTR(plane);
  1989. dspcntr = I915_READ(reg);
  1990. /* Mask out pixel format bits in case we change it */
  1991. dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
  1992. switch (fb->bits_per_pixel) {
  1993. case 8:
  1994. dspcntr |= DISPPLANE_8BPP;
  1995. break;
  1996. case 16:
  1997. if (fb->depth != 16)
  1998. return -EINVAL;
  1999. dspcntr |= DISPPLANE_16BPP;
  2000. break;
  2001. case 24:
  2002. case 32:
  2003. if (fb->depth == 24)
  2004. dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
  2005. else if (fb->depth == 30)
  2006. dspcntr |= DISPPLANE_32BPP_30BIT_NO_ALPHA;
  2007. else
  2008. return -EINVAL;
  2009. break;
  2010. default:
  2011. DRM_ERROR("Unknown color depth %d\n", fb->bits_per_pixel);
  2012. return -EINVAL;
  2013. }
  2014. if (obj->tiling_mode != I915_TILING_NONE)
  2015. dspcntr |= DISPPLANE_TILED;
  2016. else
  2017. dspcntr &= ~DISPPLANE_TILED;
  2018. /* must disable */
  2019. dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
  2020. I915_WRITE(reg, dspcntr);
  2021. Start = obj->gtt_offset;
  2022. Offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
  2023. DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
  2024. Start, Offset, x, y, fb->pitches[0]);
  2025. I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
  2026. I915_WRITE(DSPSURF(plane), Start);
  2027. I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
  2028. I915_WRITE(DSPADDR(plane), Offset);
  2029. POSTING_READ(reg);
  2030. return 0;
  2031. }
  2032. /* Assume fb object is pinned & idle & fenced and just update base pointers */
  2033. static int
  2034. intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
  2035. int x, int y, enum mode_set_atomic state)
  2036. {
  2037. struct drm_device *dev = crtc->dev;
  2038. struct drm_i915_private *dev_priv = dev->dev_private;
  2039. int ret;
  2040. ret = dev_priv->display.update_plane(crtc, fb, x, y);
  2041. if (ret)
  2042. return ret;
  2043. intel_update_fbc(dev);
  2044. intel_increase_pllclock(crtc);
  2045. return 0;
  2046. }
  2047. static int
  2048. intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
  2049. struct drm_framebuffer *old_fb)
  2050. {
  2051. struct drm_device *dev = crtc->dev;
  2052. struct drm_i915_master_private *master_priv;
  2053. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2054. int ret;
  2055. /* no fb bound */
  2056. if (!crtc->fb) {
  2057. DRM_ERROR("No FB bound\n");
  2058. return 0;
  2059. }
  2060. switch (intel_crtc->plane) {
  2061. case 0:
  2062. case 1:
  2063. break;
  2064. case 2:
  2065. if (IS_IVYBRIDGE(dev))
  2066. break;
  2067. /* fall through otherwise */
  2068. default:
  2069. DRM_ERROR("no plane for crtc\n");
  2070. return -EINVAL;
  2071. }
  2072. mutex_lock(&dev->struct_mutex);
  2073. ret = intel_pin_and_fence_fb_obj(dev,
  2074. to_intel_framebuffer(crtc->fb)->obj,
  2075. NULL);
  2076. if (ret != 0) {
  2077. mutex_unlock(&dev->struct_mutex);
  2078. DRM_ERROR("pin & fence failed\n");
  2079. return ret;
  2080. }
  2081. if (old_fb) {
  2082. struct drm_i915_private *dev_priv = dev->dev_private;
  2083. struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
  2084. wait_event(dev_priv->pending_flip_queue,
  2085. atomic_read(&dev_priv->mm.wedged) ||
  2086. atomic_read(&obj->pending_flip) == 0);
  2087. /* Big Hammer, we also need to ensure that any pending
  2088. * MI_WAIT_FOR_EVENT inside a user batch buffer on the
  2089. * current scanout is retired before unpinning the old
  2090. * framebuffer.
  2091. *
  2092. * This should only fail upon a hung GPU, in which case we
  2093. * can safely continue.
  2094. */
  2095. ret = i915_gem_object_finish_gpu(obj);
  2096. (void) ret;
  2097. }
  2098. ret = intel_pipe_set_base_atomic(crtc, crtc->fb, x, y,
  2099. LEAVE_ATOMIC_MODE_SET);
  2100. if (ret) {
  2101. intel_unpin_fb_obj(to_intel_framebuffer(crtc->fb)->obj);
  2102. mutex_unlock(&dev->struct_mutex);
  2103. DRM_ERROR("failed to update base address\n");
  2104. return ret;
  2105. }
  2106. if (old_fb) {
  2107. intel_wait_for_vblank(dev, intel_crtc->pipe);
  2108. intel_unpin_fb_obj(to_intel_framebuffer(old_fb)->obj);
  2109. }
  2110. mutex_unlock(&dev->struct_mutex);
  2111. if (!dev->primary->master)
  2112. return 0;
  2113. master_priv = dev->primary->master->driver_priv;
  2114. if (!master_priv->sarea_priv)
  2115. return 0;
  2116. if (intel_crtc->pipe) {
  2117. master_priv->sarea_priv->pipeB_x = x;
  2118. master_priv->sarea_priv->pipeB_y = y;
  2119. } else {
  2120. master_priv->sarea_priv->pipeA_x = x;
  2121. master_priv->sarea_priv->pipeA_y = y;
  2122. }
  2123. return 0;
  2124. }
  2125. static void ironlake_set_pll_edp(struct drm_crtc *crtc, int clock)
  2126. {
  2127. struct drm_device *dev = crtc->dev;
  2128. struct drm_i915_private *dev_priv = dev->dev_private;
  2129. u32 dpa_ctl;
  2130. DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", clock);
  2131. dpa_ctl = I915_READ(DP_A);
  2132. dpa_ctl &= ~DP_PLL_FREQ_MASK;
  2133. if (clock < 200000) {
  2134. u32 temp;
  2135. dpa_ctl |= DP_PLL_FREQ_160MHZ;
  2136. /* workaround for 160Mhz:
  2137. 1) program 0x4600c bits 15:0 = 0x8124
  2138. 2) program 0x46010 bit 0 = 1
  2139. 3) program 0x46034 bit 24 = 1
  2140. 4) program 0x64000 bit 14 = 1
  2141. */
  2142. temp = I915_READ(0x4600c);
  2143. temp &= 0xffff0000;
  2144. I915_WRITE(0x4600c, temp | 0x8124);
  2145. temp = I915_READ(0x46010);
  2146. I915_WRITE(0x46010, temp | 1);
  2147. temp = I915_READ(0x46034);
  2148. I915_WRITE(0x46034, temp | (1 << 24));
  2149. } else {
  2150. dpa_ctl |= DP_PLL_FREQ_270MHZ;
  2151. }
  2152. I915_WRITE(DP_A, dpa_ctl);
  2153. POSTING_READ(DP_A);
  2154. udelay(500);
  2155. }
  2156. static void intel_fdi_normal_train(struct drm_crtc *crtc)
  2157. {
  2158. struct drm_device *dev = crtc->dev;
  2159. struct drm_i915_private *dev_priv = dev->dev_private;
  2160. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2161. int pipe = intel_crtc->pipe;
  2162. u32 reg, temp;
  2163. /* enable normal train */
  2164. reg = FDI_TX_CTL(pipe);
  2165. temp = I915_READ(reg);
  2166. if (IS_IVYBRIDGE(dev)) {
  2167. temp &= ~FDI_LINK_TRAIN_NONE_IVB;
  2168. temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
  2169. } else {
  2170. temp &= ~FDI_LINK_TRAIN_NONE;
  2171. temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
  2172. }
  2173. I915_WRITE(reg, temp);
  2174. reg = FDI_RX_CTL(pipe);
  2175. temp = I915_READ(reg);
  2176. if (HAS_PCH_CPT(dev)) {
  2177. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2178. temp |= FDI_LINK_TRAIN_NORMAL_CPT;
  2179. } else {
  2180. temp &= ~FDI_LINK_TRAIN_NONE;
  2181. temp |= FDI_LINK_TRAIN_NONE;
  2182. }
  2183. I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
  2184. /* wait one idle pattern time */
  2185. POSTING_READ(reg);
  2186. udelay(1000);
  2187. /* IVB wants error correction enabled */
  2188. if (IS_IVYBRIDGE(dev))
  2189. I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
  2190. FDI_FE_ERRC_ENABLE);
  2191. }
  2192. static void cpt_phase_pointer_enable(struct drm_device *dev, int pipe)
  2193. {
  2194. struct drm_i915_private *dev_priv = dev->dev_private;
  2195. u32 flags = I915_READ(SOUTH_CHICKEN1);
  2196. flags |= FDI_PHASE_SYNC_OVR(pipe);
  2197. I915_WRITE(SOUTH_CHICKEN1, flags); /* once to unlock... */
  2198. flags |= FDI_PHASE_SYNC_EN(pipe);
  2199. I915_WRITE(SOUTH_CHICKEN1, flags); /* then again to enable */
  2200. POSTING_READ(SOUTH_CHICKEN1);
  2201. }
  2202. /* The FDI link training functions for ILK/Ibexpeak. */
  2203. static void ironlake_fdi_link_train(struct drm_crtc *crtc)
  2204. {
  2205. struct drm_device *dev = crtc->dev;
  2206. struct drm_i915_private *dev_priv = dev->dev_private;
  2207. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2208. int pipe = intel_crtc->pipe;
  2209. int plane = intel_crtc->plane;
  2210. u32 reg, temp, tries;
  2211. /* FDI needs bits from pipe & plane first */
  2212. assert_pipe_enabled(dev_priv, pipe);
  2213. assert_plane_enabled(dev_priv, plane);
  2214. /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
  2215. for train result */
  2216. reg = FDI_RX_IMR(pipe);
  2217. temp = I915_READ(reg);
  2218. temp &= ~FDI_RX_SYMBOL_LOCK;
  2219. temp &= ~FDI_RX_BIT_LOCK;
  2220. I915_WRITE(reg, temp);
  2221. I915_READ(reg);
  2222. udelay(150);
  2223. /* enable CPU FDI TX and PCH FDI RX */
  2224. reg = FDI_TX_CTL(pipe);
  2225. temp = I915_READ(reg);
  2226. temp &= ~(7 << 19);
  2227. temp |= (intel_crtc->fdi_lanes - 1) << 19;
  2228. temp &= ~FDI_LINK_TRAIN_NONE;
  2229. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2230. I915_WRITE(reg, temp | FDI_TX_ENABLE);
  2231. reg = FDI_RX_CTL(pipe);
  2232. temp = I915_READ(reg);
  2233. temp &= ~FDI_LINK_TRAIN_NONE;
  2234. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2235. I915_WRITE(reg, temp | FDI_RX_ENABLE);
  2236. POSTING_READ(reg);
  2237. udelay(150);
  2238. /* Ironlake workaround, enable clock pointer after FDI enable*/
  2239. if (HAS_PCH_IBX(dev)) {
  2240. I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
  2241. I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
  2242. FDI_RX_PHASE_SYNC_POINTER_EN);
  2243. }
  2244. reg = FDI_RX_IIR(pipe);
  2245. for (tries = 0; tries < 5; tries++) {
  2246. temp = I915_READ(reg);
  2247. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2248. if ((temp & FDI_RX_BIT_LOCK)) {
  2249. DRM_DEBUG_KMS("FDI train 1 done.\n");
  2250. I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
  2251. break;
  2252. }
  2253. }
  2254. if (tries == 5)
  2255. DRM_ERROR("FDI train 1 fail!\n");
  2256. /* Train 2 */
  2257. reg = FDI_TX_CTL(pipe);
  2258. temp = I915_READ(reg);
  2259. temp &= ~FDI_LINK_TRAIN_NONE;
  2260. temp |= FDI_LINK_TRAIN_PATTERN_2;
  2261. I915_WRITE(reg, temp);
  2262. reg = FDI_RX_CTL(pipe);
  2263. temp = I915_READ(reg);
  2264. temp &= ~FDI_LINK_TRAIN_NONE;
  2265. temp |= FDI_LINK_TRAIN_PATTERN_2;
  2266. I915_WRITE(reg, temp);
  2267. POSTING_READ(reg);
  2268. udelay(150);
  2269. reg = FDI_RX_IIR(pipe);
  2270. for (tries = 0; tries < 5; tries++) {
  2271. temp = I915_READ(reg);
  2272. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2273. if (temp & FDI_RX_SYMBOL_LOCK) {
  2274. I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
  2275. DRM_DEBUG_KMS("FDI train 2 done.\n");
  2276. break;
  2277. }
  2278. }
  2279. if (tries == 5)
  2280. DRM_ERROR("FDI train 2 fail!\n");
  2281. DRM_DEBUG_KMS("FDI train done\n");
  2282. }
  2283. static const int snb_b_fdi_train_param[] = {
  2284. FDI_LINK_TRAIN_400MV_0DB_SNB_B,
  2285. FDI_LINK_TRAIN_400MV_6DB_SNB_B,
  2286. FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
  2287. FDI_LINK_TRAIN_800MV_0DB_SNB_B,
  2288. };
  2289. /* The FDI link training functions for SNB/Cougarpoint. */
  2290. static void gen6_fdi_link_train(struct drm_crtc *crtc)
  2291. {
  2292. struct drm_device *dev = crtc->dev;
  2293. struct drm_i915_private *dev_priv = dev->dev_private;
  2294. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2295. int pipe = intel_crtc->pipe;
  2296. u32 reg, temp, i, retry;
  2297. /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
  2298. for train result */
  2299. reg = FDI_RX_IMR(pipe);
  2300. temp = I915_READ(reg);
  2301. temp &= ~FDI_RX_SYMBOL_LOCK;
  2302. temp &= ~FDI_RX_BIT_LOCK;
  2303. I915_WRITE(reg, temp);
  2304. POSTING_READ(reg);
  2305. udelay(150);
  2306. /* enable CPU FDI TX and PCH FDI RX */
  2307. reg = FDI_TX_CTL(pipe);
  2308. temp = I915_READ(reg);
  2309. temp &= ~(7 << 19);
  2310. temp |= (intel_crtc->fdi_lanes - 1) << 19;
  2311. temp &= ~FDI_LINK_TRAIN_NONE;
  2312. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2313. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2314. /* SNB-B */
  2315. temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
  2316. I915_WRITE(reg, temp | FDI_TX_ENABLE);
  2317. reg = FDI_RX_CTL(pipe);
  2318. temp = I915_READ(reg);
  2319. if (HAS_PCH_CPT(dev)) {
  2320. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2321. temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
  2322. } else {
  2323. temp &= ~FDI_LINK_TRAIN_NONE;
  2324. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2325. }
  2326. I915_WRITE(reg, temp | FDI_RX_ENABLE);
  2327. POSTING_READ(reg);
  2328. udelay(150);
  2329. if (HAS_PCH_CPT(dev))
  2330. cpt_phase_pointer_enable(dev, pipe);
  2331. for (i = 0; i < 4; i++) {
  2332. reg = FDI_TX_CTL(pipe);
  2333. temp = I915_READ(reg);
  2334. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2335. temp |= snb_b_fdi_train_param[i];
  2336. I915_WRITE(reg, temp);
  2337. POSTING_READ(reg);
  2338. udelay(500);
  2339. for (retry = 0; retry < 5; retry++) {
  2340. reg = FDI_RX_IIR(pipe);
  2341. temp = I915_READ(reg);
  2342. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2343. if (temp & FDI_RX_BIT_LOCK) {
  2344. I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
  2345. DRM_DEBUG_KMS("FDI train 1 done.\n");
  2346. break;
  2347. }
  2348. udelay(50);
  2349. }
  2350. if (retry < 5)
  2351. break;
  2352. }
  2353. if (i == 4)
  2354. DRM_ERROR("FDI train 1 fail!\n");
  2355. /* Train 2 */
  2356. reg = FDI_TX_CTL(pipe);
  2357. temp = I915_READ(reg);
  2358. temp &= ~FDI_LINK_TRAIN_NONE;
  2359. temp |= FDI_LINK_TRAIN_PATTERN_2;
  2360. if (IS_GEN6(dev)) {
  2361. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2362. /* SNB-B */
  2363. temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
  2364. }
  2365. I915_WRITE(reg, temp);
  2366. reg = FDI_RX_CTL(pipe);
  2367. temp = I915_READ(reg);
  2368. if (HAS_PCH_CPT(dev)) {
  2369. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2370. temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
  2371. } else {
  2372. temp &= ~FDI_LINK_TRAIN_NONE;
  2373. temp |= FDI_LINK_TRAIN_PATTERN_2;
  2374. }
  2375. I915_WRITE(reg, temp);
  2376. POSTING_READ(reg);
  2377. udelay(150);
  2378. for (i = 0; i < 4; i++) {
  2379. reg = FDI_TX_CTL(pipe);
  2380. temp = I915_READ(reg);
  2381. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2382. temp |= snb_b_fdi_train_param[i];
  2383. I915_WRITE(reg, temp);
  2384. POSTING_READ(reg);
  2385. udelay(500);
  2386. for (retry = 0; retry < 5; retry++) {
  2387. reg = FDI_RX_IIR(pipe);
  2388. temp = I915_READ(reg);
  2389. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2390. if (temp & FDI_RX_SYMBOL_LOCK) {
  2391. I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
  2392. DRM_DEBUG_KMS("FDI train 2 done.\n");
  2393. break;
  2394. }
  2395. udelay(50);
  2396. }
  2397. if (retry < 5)
  2398. break;
  2399. }
  2400. if (i == 4)
  2401. DRM_ERROR("FDI train 2 fail!\n");
  2402. DRM_DEBUG_KMS("FDI train done.\n");
  2403. }
  2404. /* Manual link training for Ivy Bridge A0 parts */
  2405. static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
  2406. {
  2407. struct drm_device *dev = crtc->dev;
  2408. struct drm_i915_private *dev_priv = dev->dev_private;
  2409. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2410. int pipe = intel_crtc->pipe;
  2411. u32 reg, temp, i;
  2412. /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
  2413. for train result */
  2414. reg = FDI_RX_IMR(pipe);
  2415. temp = I915_READ(reg);
  2416. temp &= ~FDI_RX_SYMBOL_LOCK;
  2417. temp &= ~FDI_RX_BIT_LOCK;
  2418. I915_WRITE(reg, temp);
  2419. POSTING_READ(reg);
  2420. udelay(150);
  2421. /* enable CPU FDI TX and PCH FDI RX */
  2422. reg = FDI_TX_CTL(pipe);
  2423. temp = I915_READ(reg);
  2424. temp &= ~(7 << 19);
  2425. temp |= (intel_crtc->fdi_lanes - 1) << 19;
  2426. temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
  2427. temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
  2428. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2429. temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
  2430. temp |= FDI_COMPOSITE_SYNC;
  2431. I915_WRITE(reg, temp | FDI_TX_ENABLE);
  2432. reg = FDI_RX_CTL(pipe);
  2433. temp = I915_READ(reg);
  2434. temp &= ~FDI_LINK_TRAIN_AUTO;
  2435. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2436. temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
  2437. temp |= FDI_COMPOSITE_SYNC;
  2438. I915_WRITE(reg, temp | FDI_RX_ENABLE);
  2439. POSTING_READ(reg);
  2440. udelay(150);
  2441. if (HAS_PCH_CPT(dev))
  2442. cpt_phase_pointer_enable(dev, pipe);
  2443. for (i = 0; i < 4; i++) {
  2444. reg = FDI_TX_CTL(pipe);
  2445. temp = I915_READ(reg);
  2446. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2447. temp |= snb_b_fdi_train_param[i];
  2448. I915_WRITE(reg, temp);
  2449. POSTING_READ(reg);
  2450. udelay(500);
  2451. reg = FDI_RX_IIR(pipe);
  2452. temp = I915_READ(reg);
  2453. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2454. if (temp & FDI_RX_BIT_LOCK ||
  2455. (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
  2456. I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
  2457. DRM_DEBUG_KMS("FDI train 1 done.\n");
  2458. break;
  2459. }
  2460. }
  2461. if (i == 4)
  2462. DRM_ERROR("FDI train 1 fail!\n");
  2463. /* Train 2 */
  2464. reg = FDI_TX_CTL(pipe);
  2465. temp = I915_READ(reg);
  2466. temp &= ~FDI_LINK_TRAIN_NONE_IVB;
  2467. temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
  2468. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2469. temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
  2470. I915_WRITE(reg, temp);
  2471. reg = FDI_RX_CTL(pipe);
  2472. temp = I915_READ(reg);
  2473. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2474. temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
  2475. I915_WRITE(reg, temp);
  2476. POSTING_READ(reg);
  2477. udelay(150);
  2478. for (i = 0; i < 4; i++) {
  2479. reg = FDI_TX_CTL(pipe);
  2480. temp = I915_READ(reg);
  2481. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2482. temp |= snb_b_fdi_train_param[i];
  2483. I915_WRITE(reg, temp);
  2484. POSTING_READ(reg);
  2485. udelay(500);
  2486. reg = FDI_RX_IIR(pipe);
  2487. temp = I915_READ(reg);
  2488. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2489. if (temp & FDI_RX_SYMBOL_LOCK) {
  2490. I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
  2491. DRM_DEBUG_KMS("FDI train 2 done.\n");
  2492. break;
  2493. }
  2494. }
  2495. if (i == 4)
  2496. DRM_ERROR("FDI train 2 fail!\n");
  2497. DRM_DEBUG_KMS("FDI train done.\n");
  2498. }
  2499. static void ironlake_fdi_pll_enable(struct drm_crtc *crtc)
  2500. {
  2501. struct drm_device *dev = crtc->dev;
  2502. struct drm_i915_private *dev_priv = dev->dev_private;
  2503. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2504. int pipe = intel_crtc->pipe;
  2505. u32 reg, temp;
  2506. /* Write the TU size bits so error detection works */
  2507. I915_WRITE(FDI_RX_TUSIZE1(pipe),
  2508. I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
  2509. /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
  2510. reg = FDI_RX_CTL(pipe);
  2511. temp = I915_READ(reg);
  2512. temp &= ~((0x7 << 19) | (0x7 << 16));
  2513. temp |= (intel_crtc->fdi_lanes - 1) << 19;
  2514. temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
  2515. I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
  2516. POSTING_READ(reg);
  2517. udelay(200);
  2518. /* Switch from Rawclk to PCDclk */
  2519. temp = I915_READ(reg);
  2520. I915_WRITE(reg, temp | FDI_PCDCLK);
  2521. POSTING_READ(reg);
  2522. udelay(200);
  2523. /* Enable CPU FDI TX PLL, always on for Ironlake */
  2524. reg = FDI_TX_CTL(pipe);
  2525. temp = I915_READ(reg);
  2526. if ((temp & FDI_TX_PLL_ENABLE) == 0) {
  2527. I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
  2528. POSTING_READ(reg);
  2529. udelay(100);
  2530. }
  2531. }
  2532. static void cpt_phase_pointer_disable(struct drm_device *dev, int pipe)
  2533. {
  2534. struct drm_i915_private *dev_priv = dev->dev_private;
  2535. u32 flags = I915_READ(SOUTH_CHICKEN1);
  2536. flags &= ~(FDI_PHASE_SYNC_EN(pipe));
  2537. I915_WRITE(SOUTH_CHICKEN1, flags); /* once to disable... */
  2538. flags &= ~(FDI_PHASE_SYNC_OVR(pipe));
  2539. I915_WRITE(SOUTH_CHICKEN1, flags); /* then again to lock */
  2540. POSTING_READ(SOUTH_CHICKEN1);
  2541. }
  2542. static void ironlake_fdi_disable(struct drm_crtc *crtc)
  2543. {
  2544. struct drm_device *dev = crtc->dev;
  2545. struct drm_i915_private *dev_priv = dev->dev_private;
  2546. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2547. int pipe = intel_crtc->pipe;
  2548. u32 reg, temp;
  2549. /* disable CPU FDI tx and PCH FDI rx */
  2550. reg = FDI_TX_CTL(pipe);
  2551. temp = I915_READ(reg);
  2552. I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
  2553. POSTING_READ(reg);
  2554. reg = FDI_RX_CTL(pipe);
  2555. temp = I915_READ(reg);
  2556. temp &= ~(0x7 << 16);
  2557. temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
  2558. I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
  2559. POSTING_READ(reg);
  2560. udelay(100);
  2561. /* Ironlake workaround, disable clock pointer after downing FDI */
  2562. if (HAS_PCH_IBX(dev)) {
  2563. I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
  2564. I915_WRITE(FDI_RX_CHICKEN(pipe),
  2565. I915_READ(FDI_RX_CHICKEN(pipe) &
  2566. ~FDI_RX_PHASE_SYNC_POINTER_EN));
  2567. } else if (HAS_PCH_CPT(dev)) {
  2568. cpt_phase_pointer_disable(dev, pipe);
  2569. }
  2570. /* still set train pattern 1 */
  2571. reg = FDI_TX_CTL(pipe);
  2572. temp = I915_READ(reg);
  2573. temp &= ~FDI_LINK_TRAIN_NONE;
  2574. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2575. I915_WRITE(reg, temp);
  2576. reg = FDI_RX_CTL(pipe);
  2577. temp = I915_READ(reg);
  2578. if (HAS_PCH_CPT(dev)) {
  2579. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2580. temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
  2581. } else {
  2582. temp &= ~FDI_LINK_TRAIN_NONE;
  2583. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2584. }
  2585. /* BPC in FDI rx is consistent with that in PIPECONF */
  2586. temp &= ~(0x07 << 16);
  2587. temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
  2588. I915_WRITE(reg, temp);
  2589. POSTING_READ(reg);
  2590. udelay(100);
  2591. }
  2592. /*
  2593. * When we disable a pipe, we need to clear any pending scanline wait events
  2594. * to avoid hanging the ring, which we assume we are waiting on.
  2595. */
  2596. static void intel_clear_scanline_wait(struct drm_device *dev)
  2597. {
  2598. struct drm_i915_private *dev_priv = dev->dev_private;
  2599. struct intel_ring_buffer *ring;
  2600. u32 tmp;
  2601. if (IS_GEN2(dev))
  2602. /* Can't break the hang on i8xx */
  2603. return;
  2604. ring = LP_RING(dev_priv);
  2605. tmp = I915_READ_CTL(ring);
  2606. if (tmp & RING_WAIT)
  2607. I915_WRITE_CTL(ring, tmp);
  2608. }
  2609. static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
  2610. {
  2611. struct drm_i915_gem_object *obj;
  2612. struct drm_i915_private *dev_priv;
  2613. if (crtc->fb == NULL)
  2614. return;
  2615. obj = to_intel_framebuffer(crtc->fb)->obj;
  2616. dev_priv = crtc->dev->dev_private;
  2617. wait_event(dev_priv->pending_flip_queue,
  2618. atomic_read(&obj->pending_flip) == 0);
  2619. }
  2620. static bool intel_crtc_driving_pch(struct drm_crtc *crtc)
  2621. {
  2622. struct drm_device *dev = crtc->dev;
  2623. struct drm_mode_config *mode_config = &dev->mode_config;
  2624. struct intel_encoder *encoder;
  2625. /*
  2626. * If there's a non-PCH eDP on this crtc, it must be DP_A, and that
  2627. * must be driven by its own crtc; no sharing is possible.
  2628. */
  2629. list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
  2630. if (encoder->base.crtc != crtc)
  2631. continue;
  2632. switch (encoder->type) {
  2633. case INTEL_OUTPUT_EDP:
  2634. if (!intel_encoder_is_pch_edp(&encoder->base))
  2635. return false;
  2636. continue;
  2637. }
  2638. }
  2639. return true;
  2640. }
  2641. /*
  2642. * Enable PCH resources required for PCH ports:
  2643. * - PCH PLLs
  2644. * - FDI training & RX/TX
  2645. * - update transcoder timings
  2646. * - DP transcoding bits
  2647. * - transcoder
  2648. */
  2649. static void ironlake_pch_enable(struct drm_crtc *crtc)
  2650. {
  2651. struct drm_device *dev = crtc->dev;
  2652. struct drm_i915_private *dev_priv = dev->dev_private;
  2653. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2654. int pipe = intel_crtc->pipe;
  2655. u32 reg, temp, transc_sel;
  2656. /* For PCH output, training FDI link */
  2657. dev_priv->display.fdi_link_train(crtc);
  2658. intel_enable_pch_pll(dev_priv, pipe);
  2659. if (HAS_PCH_CPT(dev)) {
  2660. transc_sel = intel_crtc->use_pll_a ? TRANSC_DPLLA_SEL :
  2661. TRANSC_DPLLB_SEL;
  2662. /* Be sure PCH DPLL SEL is set */
  2663. temp = I915_READ(PCH_DPLL_SEL);
  2664. if (pipe == 0) {
  2665. temp &= ~(TRANSA_DPLLB_SEL);
  2666. temp |= (TRANSA_DPLL_ENABLE | TRANSA_DPLLA_SEL);
  2667. } else if (pipe == 1) {
  2668. temp &= ~(TRANSB_DPLLB_SEL);
  2669. temp |= (TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
  2670. } else if (pipe == 2) {
  2671. temp &= ~(TRANSC_DPLLB_SEL);
  2672. temp |= (TRANSC_DPLL_ENABLE | transc_sel);
  2673. }
  2674. I915_WRITE(PCH_DPLL_SEL, temp);
  2675. }
  2676. /* set transcoder timing, panel must allow it */
  2677. assert_panel_unlocked(dev_priv, pipe);
  2678. I915_WRITE(TRANS_HTOTAL(pipe), I915_READ(HTOTAL(pipe)));
  2679. I915_WRITE(TRANS_HBLANK(pipe), I915_READ(HBLANK(pipe)));
  2680. I915_WRITE(TRANS_HSYNC(pipe), I915_READ(HSYNC(pipe)));
  2681. I915_WRITE(TRANS_VTOTAL(pipe), I915_READ(VTOTAL(pipe)));
  2682. I915_WRITE(TRANS_VBLANK(pipe), I915_READ(VBLANK(pipe)));
  2683. I915_WRITE(TRANS_VSYNC(pipe), I915_READ(VSYNC(pipe)));
  2684. I915_WRITE(TRANS_VSYNCSHIFT(pipe), I915_READ(VSYNCSHIFT(pipe)));
  2685. intel_fdi_normal_train(crtc);
  2686. /* For PCH DP, enable TRANS_DP_CTL */
  2687. if (HAS_PCH_CPT(dev) &&
  2688. (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
  2689. intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
  2690. u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) >> 5;
  2691. reg = TRANS_DP_CTL(pipe);
  2692. temp = I915_READ(reg);
  2693. temp &= ~(TRANS_DP_PORT_SEL_MASK |
  2694. TRANS_DP_SYNC_MASK |
  2695. TRANS_DP_BPC_MASK);
  2696. temp |= (TRANS_DP_OUTPUT_ENABLE |
  2697. TRANS_DP_ENH_FRAMING);
  2698. temp |= bpc << 9; /* same format but at 11:9 */
  2699. if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
  2700. temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
  2701. if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
  2702. temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
  2703. switch (intel_trans_dp_port_sel(crtc)) {
  2704. case PCH_DP_B:
  2705. temp |= TRANS_DP_PORT_SEL_B;
  2706. break;
  2707. case PCH_DP_C:
  2708. temp |= TRANS_DP_PORT_SEL_C;
  2709. break;
  2710. case PCH_DP_D:
  2711. temp |= TRANS_DP_PORT_SEL_D;
  2712. break;
  2713. default:
  2714. DRM_DEBUG_KMS("Wrong PCH DP port return. Guess port B\n");
  2715. temp |= TRANS_DP_PORT_SEL_B;
  2716. break;
  2717. }
  2718. I915_WRITE(reg, temp);
  2719. }
  2720. intel_enable_transcoder(dev_priv, pipe);
  2721. }
  2722. void intel_cpt_verify_modeset(struct drm_device *dev, int pipe)
  2723. {
  2724. struct drm_i915_private *dev_priv = dev->dev_private;
  2725. int dslreg = PIPEDSL(pipe), tc2reg = TRANS_CHICKEN2(pipe);
  2726. u32 temp;
  2727. temp = I915_READ(dslreg);
  2728. udelay(500);
  2729. if (wait_for(I915_READ(dslreg) != temp, 5)) {
  2730. /* Without this, mode sets may fail silently on FDI */
  2731. I915_WRITE(tc2reg, TRANS_AUTOTRAIN_GEN_STALL_DIS);
  2732. udelay(250);
  2733. I915_WRITE(tc2reg, 0);
  2734. if (wait_for(I915_READ(dslreg) != temp, 5))
  2735. DRM_ERROR("mode set failed: pipe %d stuck\n", pipe);
  2736. }
  2737. }
  2738. static void ironlake_crtc_enable(struct drm_crtc *crtc)
  2739. {
  2740. struct drm_device *dev = crtc->dev;
  2741. struct drm_i915_private *dev_priv = dev->dev_private;
  2742. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2743. int pipe = intel_crtc->pipe;
  2744. int plane = intel_crtc->plane;
  2745. u32 temp;
  2746. bool is_pch_port;
  2747. if (intel_crtc->active)
  2748. return;
  2749. intel_crtc->active = true;
  2750. intel_update_watermarks(dev);
  2751. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  2752. temp = I915_READ(PCH_LVDS);
  2753. if ((temp & LVDS_PORT_EN) == 0)
  2754. I915_WRITE(PCH_LVDS, temp | LVDS_PORT_EN);
  2755. }
  2756. is_pch_port = intel_crtc_driving_pch(crtc);
  2757. if (is_pch_port)
  2758. ironlake_fdi_pll_enable(crtc);
  2759. else
  2760. ironlake_fdi_disable(crtc);
  2761. /* Enable panel fitting for LVDS */
  2762. if (dev_priv->pch_pf_size &&
  2763. (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) || HAS_eDP)) {
  2764. /* Force use of hard-coded filter coefficients
  2765. * as some pre-programmed values are broken,
  2766. * e.g. x201.
  2767. */
  2768. I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
  2769. I915_WRITE(PF_WIN_POS(pipe), dev_priv->pch_pf_pos);
  2770. I915_WRITE(PF_WIN_SZ(pipe), dev_priv->pch_pf_size);
  2771. }
  2772. /*
  2773. * On ILK+ LUT must be loaded before the pipe is running but with
  2774. * clocks enabled
  2775. */
  2776. intel_crtc_load_lut(crtc);
  2777. intel_enable_pipe(dev_priv, pipe, is_pch_port);
  2778. intel_enable_plane(dev_priv, plane, pipe);
  2779. if (is_pch_port)
  2780. ironlake_pch_enable(crtc);
  2781. mutex_lock(&dev->struct_mutex);
  2782. intel_update_fbc(dev);
  2783. mutex_unlock(&dev->struct_mutex);
  2784. intel_crtc_update_cursor(crtc, true);
  2785. }
  2786. static void ironlake_crtc_disable(struct drm_crtc *crtc)
  2787. {
  2788. struct drm_device *dev = crtc->dev;
  2789. struct drm_i915_private *dev_priv = dev->dev_private;
  2790. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2791. int pipe = intel_crtc->pipe;
  2792. int plane = intel_crtc->plane;
  2793. u32 reg, temp;
  2794. if (!intel_crtc->active)
  2795. return;
  2796. intel_crtc_wait_for_pending_flips(crtc);
  2797. drm_vblank_off(dev, pipe);
  2798. intel_crtc_update_cursor(crtc, false);
  2799. intel_disable_plane(dev_priv, plane, pipe);
  2800. if (dev_priv->cfb_plane == plane)
  2801. intel_disable_fbc(dev);
  2802. intel_disable_pipe(dev_priv, pipe);
  2803. /* Disable PF */
  2804. I915_WRITE(PF_CTL(pipe), 0);
  2805. I915_WRITE(PF_WIN_SZ(pipe), 0);
  2806. ironlake_fdi_disable(crtc);
  2807. /* This is a horrible layering violation; we should be doing this in
  2808. * the connector/encoder ->prepare instead, but we don't always have
  2809. * enough information there about the config to know whether it will
  2810. * actually be necessary or just cause undesired flicker.
  2811. */
  2812. intel_disable_pch_ports(dev_priv, pipe);
  2813. intel_disable_transcoder(dev_priv, pipe);
  2814. if (HAS_PCH_CPT(dev)) {
  2815. /* disable TRANS_DP_CTL */
  2816. reg = TRANS_DP_CTL(pipe);
  2817. temp = I915_READ(reg);
  2818. temp &= ~(TRANS_DP_OUTPUT_ENABLE | TRANS_DP_PORT_SEL_MASK);
  2819. temp |= TRANS_DP_PORT_SEL_NONE;
  2820. I915_WRITE(reg, temp);
  2821. /* disable DPLL_SEL */
  2822. temp = I915_READ(PCH_DPLL_SEL);
  2823. switch (pipe) {
  2824. case 0:
  2825. temp &= ~(TRANSA_DPLL_ENABLE | TRANSA_DPLLB_SEL);
  2826. break;
  2827. case 1:
  2828. temp &= ~(TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
  2829. break;
  2830. case 2:
  2831. /* C shares PLL A or B */
  2832. temp &= ~(TRANSC_DPLL_ENABLE | TRANSC_DPLLB_SEL);
  2833. break;
  2834. default:
  2835. BUG(); /* wtf */
  2836. }
  2837. I915_WRITE(PCH_DPLL_SEL, temp);
  2838. }
  2839. /* disable PCH DPLL */
  2840. if (!intel_crtc->no_pll)
  2841. intel_disable_pch_pll(dev_priv, pipe);
  2842. /* Switch from PCDclk to Rawclk */
  2843. reg = FDI_RX_CTL(pipe);
  2844. temp = I915_READ(reg);
  2845. I915_WRITE(reg, temp & ~FDI_PCDCLK);
  2846. /* Disable CPU FDI TX PLL */
  2847. reg = FDI_TX_CTL(pipe);
  2848. temp = I915_READ(reg);
  2849. I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
  2850. POSTING_READ(reg);
  2851. udelay(100);
  2852. reg = FDI_RX_CTL(pipe);
  2853. temp = I915_READ(reg);
  2854. I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
  2855. /* Wait for the clocks to turn off. */
  2856. POSTING_READ(reg);
  2857. udelay(100);
  2858. intel_crtc->active = false;
  2859. intel_update_watermarks(dev);
  2860. mutex_lock(&dev->struct_mutex);
  2861. intel_update_fbc(dev);
  2862. intel_clear_scanline_wait(dev);
  2863. mutex_unlock(&dev->struct_mutex);
  2864. }
  2865. static void ironlake_crtc_dpms(struct drm_crtc *crtc, int mode)
  2866. {
  2867. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2868. int pipe = intel_crtc->pipe;
  2869. int plane = intel_crtc->plane;
  2870. /* XXX: When our outputs are all unaware of DPMS modes other than off
  2871. * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
  2872. */
  2873. switch (mode) {
  2874. case DRM_MODE_DPMS_ON:
  2875. case DRM_MODE_DPMS_STANDBY:
  2876. case DRM_MODE_DPMS_SUSPEND:
  2877. DRM_DEBUG_KMS("crtc %d/%d dpms on\n", pipe, plane);
  2878. ironlake_crtc_enable(crtc);
  2879. break;
  2880. case DRM_MODE_DPMS_OFF:
  2881. DRM_DEBUG_KMS("crtc %d/%d dpms off\n", pipe, plane);
  2882. ironlake_crtc_disable(crtc);
  2883. break;
  2884. }
  2885. }
  2886. static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
  2887. {
  2888. if (!enable && intel_crtc->overlay) {
  2889. struct drm_device *dev = intel_crtc->base.dev;
  2890. struct drm_i915_private *dev_priv = dev->dev_private;
  2891. mutex_lock(&dev->struct_mutex);
  2892. dev_priv->mm.interruptible = false;
  2893. (void) intel_overlay_switch_off(intel_crtc->overlay);
  2894. dev_priv->mm.interruptible = true;
  2895. mutex_unlock(&dev->struct_mutex);
  2896. }
  2897. /* Let userspace switch the overlay on again. In most cases userspace
  2898. * has to recompute where to put it anyway.
  2899. */
  2900. }
  2901. static void i9xx_crtc_enable(struct drm_crtc *crtc)
  2902. {
  2903. struct drm_device *dev = crtc->dev;
  2904. struct drm_i915_private *dev_priv = dev->dev_private;
  2905. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2906. int pipe = intel_crtc->pipe;
  2907. int plane = intel_crtc->plane;
  2908. if (intel_crtc->active)
  2909. return;
  2910. intel_crtc->active = true;
  2911. intel_update_watermarks(dev);
  2912. intel_enable_pll(dev_priv, pipe);
  2913. intel_enable_pipe(dev_priv, pipe, false);
  2914. intel_enable_plane(dev_priv, plane, pipe);
  2915. intel_crtc_load_lut(crtc);
  2916. intel_update_fbc(dev);
  2917. /* Give the overlay scaler a chance to enable if it's on this pipe */
  2918. intel_crtc_dpms_overlay(intel_crtc, true);
  2919. intel_crtc_update_cursor(crtc, true);
  2920. }
  2921. static void i9xx_crtc_disable(struct drm_crtc *crtc)
  2922. {
  2923. struct drm_device *dev = crtc->dev;
  2924. struct drm_i915_private *dev_priv = dev->dev_private;
  2925. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2926. int pipe = intel_crtc->pipe;
  2927. int plane = intel_crtc->plane;
  2928. if (!intel_crtc->active)
  2929. return;
  2930. /* Give the overlay scaler a chance to disable if it's on this pipe */
  2931. intel_crtc_wait_for_pending_flips(crtc);
  2932. drm_vblank_off(dev, pipe);
  2933. intel_crtc_dpms_overlay(intel_crtc, false);
  2934. intel_crtc_update_cursor(crtc, false);
  2935. if (dev_priv->cfb_plane == plane)
  2936. intel_disable_fbc(dev);
  2937. intel_disable_plane(dev_priv, plane, pipe);
  2938. intel_disable_pipe(dev_priv, pipe);
  2939. intel_disable_pll(dev_priv, pipe);
  2940. intel_crtc->active = false;
  2941. intel_update_fbc(dev);
  2942. intel_update_watermarks(dev);
  2943. intel_clear_scanline_wait(dev);
  2944. }
  2945. static void i9xx_crtc_dpms(struct drm_crtc *crtc, int mode)
  2946. {
  2947. /* XXX: When our outputs are all unaware of DPMS modes other than off
  2948. * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
  2949. */
  2950. switch (mode) {
  2951. case DRM_MODE_DPMS_ON:
  2952. case DRM_MODE_DPMS_STANDBY:
  2953. case DRM_MODE_DPMS_SUSPEND:
  2954. i9xx_crtc_enable(crtc);
  2955. break;
  2956. case DRM_MODE_DPMS_OFF:
  2957. i9xx_crtc_disable(crtc);
  2958. break;
  2959. }
  2960. }
  2961. /**
  2962. * Sets the power management mode of the pipe and plane.
  2963. */
  2964. static void intel_crtc_dpms(struct drm_crtc *crtc, int mode)
  2965. {
  2966. struct drm_device *dev = crtc->dev;
  2967. struct drm_i915_private *dev_priv = dev->dev_private;
  2968. struct drm_i915_master_private *master_priv;
  2969. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2970. int pipe = intel_crtc->pipe;
  2971. bool enabled;
  2972. if (intel_crtc->dpms_mode == mode)
  2973. return;
  2974. intel_crtc->dpms_mode = mode;
  2975. dev_priv->display.dpms(crtc, mode);
  2976. if (!dev->primary->master)
  2977. return;
  2978. master_priv = dev->primary->master->driver_priv;
  2979. if (!master_priv->sarea_priv)
  2980. return;
  2981. enabled = crtc->enabled && mode != DRM_MODE_DPMS_OFF;
  2982. switch (pipe) {
  2983. case 0:
  2984. master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
  2985. master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
  2986. break;
  2987. case 1:
  2988. master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
  2989. master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
  2990. break;
  2991. default:
  2992. DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
  2993. break;
  2994. }
  2995. }
  2996. static void intel_crtc_disable(struct drm_crtc *crtc)
  2997. {
  2998. struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
  2999. struct drm_device *dev = crtc->dev;
  3000. crtc_funcs->dpms(crtc, DRM_MODE_DPMS_OFF);
  3001. assert_plane_disabled(dev->dev_private, to_intel_crtc(crtc)->plane);
  3002. assert_pipe_disabled(dev->dev_private, to_intel_crtc(crtc)->pipe);
  3003. if (crtc->fb) {
  3004. mutex_lock(&dev->struct_mutex);
  3005. intel_unpin_fb_obj(to_intel_framebuffer(crtc->fb)->obj);
  3006. mutex_unlock(&dev->struct_mutex);
  3007. }
  3008. }
  3009. /* Prepare for a mode set.
  3010. *
  3011. * Note we could be a lot smarter here. We need to figure out which outputs
  3012. * will be enabled, which disabled (in short, how the config will changes)
  3013. * and perform the minimum necessary steps to accomplish that, e.g. updating
  3014. * watermarks, FBC configuration, making sure PLLs are programmed correctly,
  3015. * panel fitting is in the proper state, etc.
  3016. */
  3017. static void i9xx_crtc_prepare(struct drm_crtc *crtc)
  3018. {
  3019. i9xx_crtc_disable(crtc);
  3020. }
  3021. static void i9xx_crtc_commit(struct drm_crtc *crtc)
  3022. {
  3023. i9xx_crtc_enable(crtc);
  3024. }
  3025. static void ironlake_crtc_prepare(struct drm_crtc *crtc)
  3026. {
  3027. ironlake_crtc_disable(crtc);
  3028. }
  3029. static void ironlake_crtc_commit(struct drm_crtc *crtc)
  3030. {
  3031. ironlake_crtc_enable(crtc);
  3032. }
  3033. void intel_encoder_prepare(struct drm_encoder *encoder)
  3034. {
  3035. struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
  3036. /* lvds has its own version of prepare see intel_lvds_prepare */
  3037. encoder_funcs->dpms(encoder, DRM_MODE_DPMS_OFF);
  3038. }
  3039. void intel_encoder_commit(struct drm_encoder *encoder)
  3040. {
  3041. struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
  3042. struct drm_device *dev = encoder->dev;
  3043. struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
  3044. struct intel_crtc *intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
  3045. /* lvds has its own version of commit see intel_lvds_commit */
  3046. encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
  3047. if (HAS_PCH_CPT(dev))
  3048. intel_cpt_verify_modeset(dev, intel_crtc->pipe);
  3049. }
  3050. void intel_encoder_destroy(struct drm_encoder *encoder)
  3051. {
  3052. struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
  3053. drm_encoder_cleanup(encoder);
  3054. kfree(intel_encoder);
  3055. }
  3056. static bool intel_crtc_mode_fixup(struct drm_crtc *crtc,
  3057. struct drm_display_mode *mode,
  3058. struct drm_display_mode *adjusted_mode)
  3059. {
  3060. struct drm_device *dev = crtc->dev;
  3061. if (HAS_PCH_SPLIT(dev)) {
  3062. /* FDI link clock is fixed at 2.7G */
  3063. if (mode->clock * 3 > IRONLAKE_FDI_FREQ * 4)
  3064. return false;
  3065. }
  3066. /* All interlaced capable intel hw wants timings in frames. */
  3067. drm_mode_set_crtcinfo(adjusted_mode, 0);
  3068. return true;
  3069. }
  3070. static int valleyview_get_display_clock_speed(struct drm_device *dev)
  3071. {
  3072. return 400000; /* FIXME */
  3073. }
  3074. static int i945_get_display_clock_speed(struct drm_device *dev)
  3075. {
  3076. return 400000;
  3077. }
  3078. static int i915_get_display_clock_speed(struct drm_device *dev)
  3079. {
  3080. return 333000;
  3081. }
  3082. static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
  3083. {
  3084. return 200000;
  3085. }
  3086. static int i915gm_get_display_clock_speed(struct drm_device *dev)
  3087. {
  3088. u16 gcfgc = 0;
  3089. pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
  3090. if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
  3091. return 133000;
  3092. else {
  3093. switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
  3094. case GC_DISPLAY_CLOCK_333_MHZ:
  3095. return 333000;
  3096. default:
  3097. case GC_DISPLAY_CLOCK_190_200_MHZ:
  3098. return 190000;
  3099. }
  3100. }
  3101. }
  3102. static int i865_get_display_clock_speed(struct drm_device *dev)
  3103. {
  3104. return 266000;
  3105. }
  3106. static int i855_get_display_clock_speed(struct drm_device *dev)
  3107. {
  3108. u16 hpllcc = 0;
  3109. /* Assume that the hardware is in the high speed state. This
  3110. * should be the default.
  3111. */
  3112. switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
  3113. case GC_CLOCK_133_200:
  3114. case GC_CLOCK_100_200:
  3115. return 200000;
  3116. case GC_CLOCK_166_250:
  3117. return 250000;
  3118. case GC_CLOCK_100_133:
  3119. return 133000;
  3120. }
  3121. /* Shouldn't happen */
  3122. return 0;
  3123. }
  3124. static int i830_get_display_clock_speed(struct drm_device *dev)
  3125. {
  3126. return 133000;
  3127. }
  3128. struct fdi_m_n {
  3129. u32 tu;
  3130. u32 gmch_m;
  3131. u32 gmch_n;
  3132. u32 link_m;
  3133. u32 link_n;
  3134. };
  3135. static void
  3136. fdi_reduce_ratio(u32 *num, u32 *den)
  3137. {
  3138. while (*num > 0xffffff || *den > 0xffffff) {
  3139. *num >>= 1;
  3140. *den >>= 1;
  3141. }
  3142. }
  3143. static void
  3144. ironlake_compute_m_n(int bits_per_pixel, int nlanes, int pixel_clock,
  3145. int link_clock, struct fdi_m_n *m_n)
  3146. {
  3147. m_n->tu = 64; /* default size */
  3148. /* BUG_ON(pixel_clock > INT_MAX / 36); */
  3149. m_n->gmch_m = bits_per_pixel * pixel_clock;
  3150. m_n->gmch_n = link_clock * nlanes * 8;
  3151. fdi_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
  3152. m_n->link_m = pixel_clock;
  3153. m_n->link_n = link_clock;
  3154. fdi_reduce_ratio(&m_n->link_m, &m_n->link_n);
  3155. }
  3156. struct intel_watermark_params {
  3157. unsigned long fifo_size;
  3158. unsigned long max_wm;
  3159. unsigned long default_wm;
  3160. unsigned long guard_size;
  3161. unsigned long cacheline_size;
  3162. };
  3163. /* Pineview has different values for various configs */
  3164. static const struct intel_watermark_params pineview_display_wm = {
  3165. PINEVIEW_DISPLAY_FIFO,
  3166. PINEVIEW_MAX_WM,
  3167. PINEVIEW_DFT_WM,
  3168. PINEVIEW_GUARD_WM,
  3169. PINEVIEW_FIFO_LINE_SIZE
  3170. };
  3171. static const struct intel_watermark_params pineview_display_hplloff_wm = {
  3172. PINEVIEW_DISPLAY_FIFO,
  3173. PINEVIEW_MAX_WM,
  3174. PINEVIEW_DFT_HPLLOFF_WM,
  3175. PINEVIEW_GUARD_WM,
  3176. PINEVIEW_FIFO_LINE_SIZE
  3177. };
  3178. static const struct intel_watermark_params pineview_cursor_wm = {
  3179. PINEVIEW_CURSOR_FIFO,
  3180. PINEVIEW_CURSOR_MAX_WM,
  3181. PINEVIEW_CURSOR_DFT_WM,
  3182. PINEVIEW_CURSOR_GUARD_WM,
  3183. PINEVIEW_FIFO_LINE_SIZE,
  3184. };
  3185. static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
  3186. PINEVIEW_CURSOR_FIFO,
  3187. PINEVIEW_CURSOR_MAX_WM,
  3188. PINEVIEW_CURSOR_DFT_WM,
  3189. PINEVIEW_CURSOR_GUARD_WM,
  3190. PINEVIEW_FIFO_LINE_SIZE
  3191. };
  3192. static const struct intel_watermark_params g4x_wm_info = {
  3193. G4X_FIFO_SIZE,
  3194. G4X_MAX_WM,
  3195. G4X_MAX_WM,
  3196. 2,
  3197. G4X_FIFO_LINE_SIZE,
  3198. };
  3199. static const struct intel_watermark_params g4x_cursor_wm_info = {
  3200. I965_CURSOR_FIFO,
  3201. I965_CURSOR_MAX_WM,
  3202. I965_CURSOR_DFT_WM,
  3203. 2,
  3204. G4X_FIFO_LINE_SIZE,
  3205. };
  3206. static const struct intel_watermark_params valleyview_wm_info = {
  3207. VALLEYVIEW_FIFO_SIZE,
  3208. VALLEYVIEW_MAX_WM,
  3209. VALLEYVIEW_MAX_WM,
  3210. 2,
  3211. G4X_FIFO_LINE_SIZE,
  3212. };
  3213. static const struct intel_watermark_params valleyview_cursor_wm_info = {
  3214. I965_CURSOR_FIFO,
  3215. VALLEYVIEW_CURSOR_MAX_WM,
  3216. I965_CURSOR_DFT_WM,
  3217. 2,
  3218. G4X_FIFO_LINE_SIZE,
  3219. };
  3220. static const struct intel_watermark_params i965_cursor_wm_info = {
  3221. I965_CURSOR_FIFO,
  3222. I965_CURSOR_MAX_WM,
  3223. I965_CURSOR_DFT_WM,
  3224. 2,
  3225. I915_FIFO_LINE_SIZE,
  3226. };
  3227. static const struct intel_watermark_params i945_wm_info = {
  3228. I945_FIFO_SIZE,
  3229. I915_MAX_WM,
  3230. 1,
  3231. 2,
  3232. I915_FIFO_LINE_SIZE
  3233. };
  3234. static const struct intel_watermark_params i915_wm_info = {
  3235. I915_FIFO_SIZE,
  3236. I915_MAX_WM,
  3237. 1,
  3238. 2,
  3239. I915_FIFO_LINE_SIZE
  3240. };
  3241. static const struct intel_watermark_params i855_wm_info = {
  3242. I855GM_FIFO_SIZE,
  3243. I915_MAX_WM,
  3244. 1,
  3245. 2,
  3246. I830_FIFO_LINE_SIZE
  3247. };
  3248. static const struct intel_watermark_params i830_wm_info = {
  3249. I830_FIFO_SIZE,
  3250. I915_MAX_WM,
  3251. 1,
  3252. 2,
  3253. I830_FIFO_LINE_SIZE
  3254. };
  3255. static const struct intel_watermark_params ironlake_display_wm_info = {
  3256. ILK_DISPLAY_FIFO,
  3257. ILK_DISPLAY_MAXWM,
  3258. ILK_DISPLAY_DFTWM,
  3259. 2,
  3260. ILK_FIFO_LINE_SIZE
  3261. };
  3262. static const struct intel_watermark_params ironlake_cursor_wm_info = {
  3263. ILK_CURSOR_FIFO,
  3264. ILK_CURSOR_MAXWM,
  3265. ILK_CURSOR_DFTWM,
  3266. 2,
  3267. ILK_FIFO_LINE_SIZE
  3268. };
  3269. static const struct intel_watermark_params ironlake_display_srwm_info = {
  3270. ILK_DISPLAY_SR_FIFO,
  3271. ILK_DISPLAY_MAX_SRWM,
  3272. ILK_DISPLAY_DFT_SRWM,
  3273. 2,
  3274. ILK_FIFO_LINE_SIZE
  3275. };
  3276. static const struct intel_watermark_params ironlake_cursor_srwm_info = {
  3277. ILK_CURSOR_SR_FIFO,
  3278. ILK_CURSOR_MAX_SRWM,
  3279. ILK_CURSOR_DFT_SRWM,
  3280. 2,
  3281. ILK_FIFO_LINE_SIZE
  3282. };
  3283. static const struct intel_watermark_params sandybridge_display_wm_info = {
  3284. SNB_DISPLAY_FIFO,
  3285. SNB_DISPLAY_MAXWM,
  3286. SNB_DISPLAY_DFTWM,
  3287. 2,
  3288. SNB_FIFO_LINE_SIZE
  3289. };
  3290. static const struct intel_watermark_params sandybridge_cursor_wm_info = {
  3291. SNB_CURSOR_FIFO,
  3292. SNB_CURSOR_MAXWM,
  3293. SNB_CURSOR_DFTWM,
  3294. 2,
  3295. SNB_FIFO_LINE_SIZE
  3296. };
  3297. static const struct intel_watermark_params sandybridge_display_srwm_info = {
  3298. SNB_DISPLAY_SR_FIFO,
  3299. SNB_DISPLAY_MAX_SRWM,
  3300. SNB_DISPLAY_DFT_SRWM,
  3301. 2,
  3302. SNB_FIFO_LINE_SIZE
  3303. };
  3304. static const struct intel_watermark_params sandybridge_cursor_srwm_info = {
  3305. SNB_CURSOR_SR_FIFO,
  3306. SNB_CURSOR_MAX_SRWM,
  3307. SNB_CURSOR_DFT_SRWM,
  3308. 2,
  3309. SNB_FIFO_LINE_SIZE
  3310. };
  3311. /**
  3312. * intel_calculate_wm - calculate watermark level
  3313. * @clock_in_khz: pixel clock
  3314. * @wm: chip FIFO params
  3315. * @pixel_size: display pixel size
  3316. * @latency_ns: memory latency for the platform
  3317. *
  3318. * Calculate the watermark level (the level at which the display plane will
  3319. * start fetching from memory again). Each chip has a different display
  3320. * FIFO size and allocation, so the caller needs to figure that out and pass
  3321. * in the correct intel_watermark_params structure.
  3322. *
  3323. * As the pixel clock runs, the FIFO will be drained at a rate that depends
  3324. * on the pixel size. When it reaches the watermark level, it'll start
  3325. * fetching FIFO line sized based chunks from memory until the FIFO fills
  3326. * past the watermark point. If the FIFO drains completely, a FIFO underrun
  3327. * will occur, and a display engine hang could result.
  3328. */
  3329. static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
  3330. const struct intel_watermark_params *wm,
  3331. int fifo_size,
  3332. int pixel_size,
  3333. unsigned long latency_ns)
  3334. {
  3335. long entries_required, wm_size;
  3336. /*
  3337. * Note: we need to make sure we don't overflow for various clock &
  3338. * latency values.
  3339. * clocks go from a few thousand to several hundred thousand.
  3340. * latency is usually a few thousand
  3341. */
  3342. entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
  3343. 1000;
  3344. entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
  3345. DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
  3346. wm_size = fifo_size - (entries_required + wm->guard_size);
  3347. DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
  3348. /* Don't promote wm_size to unsigned... */
  3349. if (wm_size > (long)wm->max_wm)
  3350. wm_size = wm->max_wm;
  3351. if (wm_size <= 0)
  3352. wm_size = wm->default_wm;
  3353. return wm_size;
  3354. }
  3355. struct cxsr_latency {
  3356. int is_desktop;
  3357. int is_ddr3;
  3358. unsigned long fsb_freq;
  3359. unsigned long mem_freq;
  3360. unsigned long display_sr;
  3361. unsigned long display_hpll_disable;
  3362. unsigned long cursor_sr;
  3363. unsigned long cursor_hpll_disable;
  3364. };
  3365. static const struct cxsr_latency cxsr_latency_table[] = {
  3366. {1, 0, 800, 400, 3382, 33382, 3983, 33983}, /* DDR2-400 SC */
  3367. {1, 0, 800, 667, 3354, 33354, 3807, 33807}, /* DDR2-667 SC */
  3368. {1, 0, 800, 800, 3347, 33347, 3763, 33763}, /* DDR2-800 SC */
  3369. {1, 1, 800, 667, 6420, 36420, 6873, 36873}, /* DDR3-667 SC */
  3370. {1, 1, 800, 800, 5902, 35902, 6318, 36318}, /* DDR3-800 SC */
  3371. {1, 0, 667, 400, 3400, 33400, 4021, 34021}, /* DDR2-400 SC */
  3372. {1, 0, 667, 667, 3372, 33372, 3845, 33845}, /* DDR2-667 SC */
  3373. {1, 0, 667, 800, 3386, 33386, 3822, 33822}, /* DDR2-800 SC */
  3374. {1, 1, 667, 667, 6438, 36438, 6911, 36911}, /* DDR3-667 SC */
  3375. {1, 1, 667, 800, 5941, 35941, 6377, 36377}, /* DDR3-800 SC */
  3376. {1, 0, 400, 400, 3472, 33472, 4173, 34173}, /* DDR2-400 SC */
  3377. {1, 0, 400, 667, 3443, 33443, 3996, 33996}, /* DDR2-667 SC */
  3378. {1, 0, 400, 800, 3430, 33430, 3946, 33946}, /* DDR2-800 SC */
  3379. {1, 1, 400, 667, 6509, 36509, 7062, 37062}, /* DDR3-667 SC */
  3380. {1, 1, 400, 800, 5985, 35985, 6501, 36501}, /* DDR3-800 SC */
  3381. {0, 0, 800, 400, 3438, 33438, 4065, 34065}, /* DDR2-400 SC */
  3382. {0, 0, 800, 667, 3410, 33410, 3889, 33889}, /* DDR2-667 SC */
  3383. {0, 0, 800, 800, 3403, 33403, 3845, 33845}, /* DDR2-800 SC */
  3384. {0, 1, 800, 667, 6476, 36476, 6955, 36955}, /* DDR3-667 SC */
  3385. {0, 1, 800, 800, 5958, 35958, 6400, 36400}, /* DDR3-800 SC */
  3386. {0, 0, 667, 400, 3456, 33456, 4103, 34106}, /* DDR2-400 SC */
  3387. {0, 0, 667, 667, 3428, 33428, 3927, 33927}, /* DDR2-667 SC */
  3388. {0, 0, 667, 800, 3443, 33443, 3905, 33905}, /* DDR2-800 SC */
  3389. {0, 1, 667, 667, 6494, 36494, 6993, 36993}, /* DDR3-667 SC */
  3390. {0, 1, 667, 800, 5998, 35998, 6460, 36460}, /* DDR3-800 SC */
  3391. {0, 0, 400, 400, 3528, 33528, 4255, 34255}, /* DDR2-400 SC */
  3392. {0, 0, 400, 667, 3500, 33500, 4079, 34079}, /* DDR2-667 SC */
  3393. {0, 0, 400, 800, 3487, 33487, 4029, 34029}, /* DDR2-800 SC */
  3394. {0, 1, 400, 667, 6566, 36566, 7145, 37145}, /* DDR3-667 SC */
  3395. {0, 1, 400, 800, 6042, 36042, 6584, 36584}, /* DDR3-800 SC */
  3396. };
  3397. static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
  3398. int is_ddr3,
  3399. int fsb,
  3400. int mem)
  3401. {
  3402. const struct cxsr_latency *latency;
  3403. int i;
  3404. if (fsb == 0 || mem == 0)
  3405. return NULL;
  3406. for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
  3407. latency = &cxsr_latency_table[i];
  3408. if (is_desktop == latency->is_desktop &&
  3409. is_ddr3 == latency->is_ddr3 &&
  3410. fsb == latency->fsb_freq && mem == latency->mem_freq)
  3411. return latency;
  3412. }
  3413. DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
  3414. return NULL;
  3415. }
  3416. static void pineview_disable_cxsr(struct drm_device *dev)
  3417. {
  3418. struct drm_i915_private *dev_priv = dev->dev_private;
  3419. /* deactivate cxsr */
  3420. I915_WRITE(DSPFW3, I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN);
  3421. }
  3422. /*
  3423. * Latency for FIFO fetches is dependent on several factors:
  3424. * - memory configuration (speed, channels)
  3425. * - chipset
  3426. * - current MCH state
  3427. * It can be fairly high in some situations, so here we assume a fairly
  3428. * pessimal value. It's a tradeoff between extra memory fetches (if we
  3429. * set this value too high, the FIFO will fetch frequently to stay full)
  3430. * and power consumption (set it too low to save power and we might see
  3431. * FIFO underruns and display "flicker").
  3432. *
  3433. * A value of 5us seems to be a good balance; safe for very low end
  3434. * platforms but not overly aggressive on lower latency configs.
  3435. */
  3436. static const int latency_ns = 5000;
  3437. static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
  3438. {
  3439. struct drm_i915_private *dev_priv = dev->dev_private;
  3440. uint32_t dsparb = I915_READ(DSPARB);
  3441. int size;
  3442. size = dsparb & 0x7f;
  3443. if (plane)
  3444. size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
  3445. DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
  3446. plane ? "B" : "A", size);
  3447. return size;
  3448. }
  3449. static int i85x_get_fifo_size(struct drm_device *dev, int plane)
  3450. {
  3451. struct drm_i915_private *dev_priv = dev->dev_private;
  3452. uint32_t dsparb = I915_READ(DSPARB);
  3453. int size;
  3454. size = dsparb & 0x1ff;
  3455. if (plane)
  3456. size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
  3457. size >>= 1; /* Convert to cachelines */
  3458. DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
  3459. plane ? "B" : "A", size);
  3460. return size;
  3461. }
  3462. static int i845_get_fifo_size(struct drm_device *dev, int plane)
  3463. {
  3464. struct drm_i915_private *dev_priv = dev->dev_private;
  3465. uint32_t dsparb = I915_READ(DSPARB);
  3466. int size;
  3467. size = dsparb & 0x7f;
  3468. size >>= 2; /* Convert to cachelines */
  3469. DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
  3470. plane ? "B" : "A",
  3471. size);
  3472. return size;
  3473. }
  3474. static int i830_get_fifo_size(struct drm_device *dev, int plane)
  3475. {
  3476. struct drm_i915_private *dev_priv = dev->dev_private;
  3477. uint32_t dsparb = I915_READ(DSPARB);
  3478. int size;
  3479. size = dsparb & 0x7f;
  3480. size >>= 1; /* Convert to cachelines */
  3481. DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
  3482. plane ? "B" : "A", size);
  3483. return size;
  3484. }
  3485. static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
  3486. {
  3487. struct drm_crtc *crtc, *enabled = NULL;
  3488. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  3489. if (crtc->enabled && crtc->fb) {
  3490. if (enabled)
  3491. return NULL;
  3492. enabled = crtc;
  3493. }
  3494. }
  3495. return enabled;
  3496. }
  3497. static void pineview_update_wm(struct drm_device *dev)
  3498. {
  3499. struct drm_i915_private *dev_priv = dev->dev_private;
  3500. struct drm_crtc *crtc;
  3501. const struct cxsr_latency *latency;
  3502. u32 reg;
  3503. unsigned long wm;
  3504. latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
  3505. dev_priv->fsb_freq, dev_priv->mem_freq);
  3506. if (!latency) {
  3507. DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
  3508. pineview_disable_cxsr(dev);
  3509. return;
  3510. }
  3511. crtc = single_enabled_crtc(dev);
  3512. if (crtc) {
  3513. int clock = crtc->mode.clock;
  3514. int pixel_size = crtc->fb->bits_per_pixel / 8;
  3515. /* Display SR */
  3516. wm = intel_calculate_wm(clock, &pineview_display_wm,
  3517. pineview_display_wm.fifo_size,
  3518. pixel_size, latency->display_sr);
  3519. reg = I915_READ(DSPFW1);
  3520. reg &= ~DSPFW_SR_MASK;
  3521. reg |= wm << DSPFW_SR_SHIFT;
  3522. I915_WRITE(DSPFW1, reg);
  3523. DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
  3524. /* cursor SR */
  3525. wm = intel_calculate_wm(clock, &pineview_cursor_wm,
  3526. pineview_display_wm.fifo_size,
  3527. pixel_size, latency->cursor_sr);
  3528. reg = I915_READ(DSPFW3);
  3529. reg &= ~DSPFW_CURSOR_SR_MASK;
  3530. reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
  3531. I915_WRITE(DSPFW3, reg);
  3532. /* Display HPLL off SR */
  3533. wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
  3534. pineview_display_hplloff_wm.fifo_size,
  3535. pixel_size, latency->display_hpll_disable);
  3536. reg = I915_READ(DSPFW3);
  3537. reg &= ~DSPFW_HPLL_SR_MASK;
  3538. reg |= wm & DSPFW_HPLL_SR_MASK;
  3539. I915_WRITE(DSPFW3, reg);
  3540. /* cursor HPLL off SR */
  3541. wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
  3542. pineview_display_hplloff_wm.fifo_size,
  3543. pixel_size, latency->cursor_hpll_disable);
  3544. reg = I915_READ(DSPFW3);
  3545. reg &= ~DSPFW_HPLL_CURSOR_MASK;
  3546. reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
  3547. I915_WRITE(DSPFW3, reg);
  3548. DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
  3549. /* activate cxsr */
  3550. I915_WRITE(DSPFW3,
  3551. I915_READ(DSPFW3) | PINEVIEW_SELF_REFRESH_EN);
  3552. DRM_DEBUG_KMS("Self-refresh is enabled\n");
  3553. } else {
  3554. pineview_disable_cxsr(dev);
  3555. DRM_DEBUG_KMS("Self-refresh is disabled\n");
  3556. }
  3557. }
  3558. static bool g4x_compute_wm0(struct drm_device *dev,
  3559. int plane,
  3560. const struct intel_watermark_params *display,
  3561. int display_latency_ns,
  3562. const struct intel_watermark_params *cursor,
  3563. int cursor_latency_ns,
  3564. int *plane_wm,
  3565. int *cursor_wm)
  3566. {
  3567. struct drm_crtc *crtc;
  3568. int htotal, hdisplay, clock, pixel_size;
  3569. int line_time_us, line_count;
  3570. int entries, tlb_miss;
  3571. crtc = intel_get_crtc_for_plane(dev, plane);
  3572. if (crtc->fb == NULL || !crtc->enabled) {
  3573. *cursor_wm = cursor->guard_size;
  3574. *plane_wm = display->guard_size;
  3575. return false;
  3576. }
  3577. htotal = crtc->mode.htotal;
  3578. hdisplay = crtc->mode.hdisplay;
  3579. clock = crtc->mode.clock;
  3580. pixel_size = crtc->fb->bits_per_pixel / 8;
  3581. /* Use the small buffer method to calculate plane watermark */
  3582. entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
  3583. tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
  3584. if (tlb_miss > 0)
  3585. entries += tlb_miss;
  3586. entries = DIV_ROUND_UP(entries, display->cacheline_size);
  3587. *plane_wm = entries + display->guard_size;
  3588. if (*plane_wm > (int)display->max_wm)
  3589. *plane_wm = display->max_wm;
  3590. /* Use the large buffer method to calculate cursor watermark */
  3591. line_time_us = ((htotal * 1000) / clock);
  3592. line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
  3593. entries = line_count * 64 * pixel_size;
  3594. tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
  3595. if (tlb_miss > 0)
  3596. entries += tlb_miss;
  3597. entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
  3598. *cursor_wm = entries + cursor->guard_size;
  3599. if (*cursor_wm > (int)cursor->max_wm)
  3600. *cursor_wm = (int)cursor->max_wm;
  3601. return true;
  3602. }
  3603. /*
  3604. * Check the wm result.
  3605. *
  3606. * If any calculated watermark values is larger than the maximum value that
  3607. * can be programmed into the associated watermark register, that watermark
  3608. * must be disabled.
  3609. */
  3610. static bool g4x_check_srwm(struct drm_device *dev,
  3611. int display_wm, int cursor_wm,
  3612. const struct intel_watermark_params *display,
  3613. const struct intel_watermark_params *cursor)
  3614. {
  3615. DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
  3616. display_wm, cursor_wm);
  3617. if (display_wm > display->max_wm) {
  3618. DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
  3619. display_wm, display->max_wm);
  3620. return false;
  3621. }
  3622. if (cursor_wm > cursor->max_wm) {
  3623. DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
  3624. cursor_wm, cursor->max_wm);
  3625. return false;
  3626. }
  3627. if (!(display_wm || cursor_wm)) {
  3628. DRM_DEBUG_KMS("SR latency is 0, disabling\n");
  3629. return false;
  3630. }
  3631. return true;
  3632. }
  3633. static bool g4x_compute_srwm(struct drm_device *dev,
  3634. int plane,
  3635. int latency_ns,
  3636. const struct intel_watermark_params *display,
  3637. const struct intel_watermark_params *cursor,
  3638. int *display_wm, int *cursor_wm)
  3639. {
  3640. struct drm_crtc *crtc;
  3641. int hdisplay, htotal, pixel_size, clock;
  3642. unsigned long line_time_us;
  3643. int line_count, line_size;
  3644. int small, large;
  3645. int entries;
  3646. if (!latency_ns) {
  3647. *display_wm = *cursor_wm = 0;
  3648. return false;
  3649. }
  3650. crtc = intel_get_crtc_for_plane(dev, plane);
  3651. hdisplay = crtc->mode.hdisplay;
  3652. htotal = crtc->mode.htotal;
  3653. clock = crtc->mode.clock;
  3654. pixel_size = crtc->fb->bits_per_pixel / 8;
  3655. line_time_us = (htotal * 1000) / clock;
  3656. line_count = (latency_ns / line_time_us + 1000) / 1000;
  3657. line_size = hdisplay * pixel_size;
  3658. /* Use the minimum of the small and large buffer method for primary */
  3659. small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
  3660. large = line_count * line_size;
  3661. entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
  3662. *display_wm = entries + display->guard_size;
  3663. /* calculate the self-refresh watermark for display cursor */
  3664. entries = line_count * pixel_size * 64;
  3665. entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
  3666. *cursor_wm = entries + cursor->guard_size;
  3667. return g4x_check_srwm(dev,
  3668. *display_wm, *cursor_wm,
  3669. display, cursor);
  3670. }
  3671. static bool vlv_compute_drain_latency(struct drm_device *dev,
  3672. int plane,
  3673. int *plane_prec_mult,
  3674. int *plane_dl,
  3675. int *cursor_prec_mult,
  3676. int *cursor_dl)
  3677. {
  3678. struct drm_crtc *crtc;
  3679. int clock, pixel_size;
  3680. int entries;
  3681. crtc = intel_get_crtc_for_plane(dev, plane);
  3682. if (crtc->fb == NULL || !crtc->enabled)
  3683. return false;
  3684. clock = crtc->mode.clock; /* VESA DOT Clock */
  3685. pixel_size = crtc->fb->bits_per_pixel / 8; /* BPP */
  3686. entries = (clock / 1000) * pixel_size;
  3687. *plane_prec_mult = (entries > 256) ?
  3688. DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_16;
  3689. *plane_dl = (64 * (*plane_prec_mult) * 4) / ((clock / 1000) *
  3690. pixel_size);
  3691. entries = (clock / 1000) * 4; /* BPP is always 4 for cursor */
  3692. *cursor_prec_mult = (entries > 256) ?
  3693. DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_16;
  3694. *cursor_dl = (64 * (*cursor_prec_mult) * 4) / ((clock / 1000) * 4);
  3695. return true;
  3696. }
  3697. /*
  3698. * Update drain latency registers of memory arbiter
  3699. *
  3700. * Valleyview SoC has a new memory arbiter and needs drain latency registers
  3701. * to be programmed. Each plane has a drain latency multiplier and a drain
  3702. * latency value.
  3703. */
  3704. static void vlv_update_drain_latency(struct drm_device *dev)
  3705. {
  3706. struct drm_i915_private *dev_priv = dev->dev_private;
  3707. int planea_prec, planea_dl, planeb_prec, planeb_dl;
  3708. int cursora_prec, cursora_dl, cursorb_prec, cursorb_dl;
  3709. int plane_prec_mult, cursor_prec_mult; /* Precision multiplier is
  3710. either 16 or 32 */
  3711. /* For plane A, Cursor A */
  3712. if (vlv_compute_drain_latency(dev, 0, &plane_prec_mult, &planea_dl,
  3713. &cursor_prec_mult, &cursora_dl)) {
  3714. cursora_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
  3715. DDL_CURSORA_PRECISION_32 : DDL_CURSORA_PRECISION_16;
  3716. planea_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
  3717. DDL_PLANEA_PRECISION_32 : DDL_PLANEA_PRECISION_16;
  3718. I915_WRITE(VLV_DDL1, cursora_prec |
  3719. (cursora_dl << DDL_CURSORA_SHIFT) |
  3720. planea_prec | planea_dl);
  3721. }
  3722. /* For plane B, Cursor B */
  3723. if (vlv_compute_drain_latency(dev, 1, &plane_prec_mult, &planeb_dl,
  3724. &cursor_prec_mult, &cursorb_dl)) {
  3725. cursorb_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
  3726. DDL_CURSORB_PRECISION_32 : DDL_CURSORB_PRECISION_16;
  3727. planeb_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
  3728. DDL_PLANEB_PRECISION_32 : DDL_PLANEB_PRECISION_16;
  3729. I915_WRITE(VLV_DDL2, cursorb_prec |
  3730. (cursorb_dl << DDL_CURSORB_SHIFT) |
  3731. planeb_prec | planeb_dl);
  3732. }
  3733. }
  3734. #define single_plane_enabled(mask) is_power_of_2(mask)
  3735. static void valleyview_update_wm(struct drm_device *dev)
  3736. {
  3737. static const int sr_latency_ns = 12000;
  3738. struct drm_i915_private *dev_priv = dev->dev_private;
  3739. int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
  3740. int plane_sr, cursor_sr;
  3741. unsigned int enabled = 0;
  3742. vlv_update_drain_latency(dev);
  3743. if (g4x_compute_wm0(dev, 0,
  3744. &valleyview_wm_info, latency_ns,
  3745. &valleyview_cursor_wm_info, latency_ns,
  3746. &planea_wm, &cursora_wm))
  3747. enabled |= 1;
  3748. if (g4x_compute_wm0(dev, 1,
  3749. &valleyview_wm_info, latency_ns,
  3750. &valleyview_cursor_wm_info, latency_ns,
  3751. &planeb_wm, &cursorb_wm))
  3752. enabled |= 2;
  3753. plane_sr = cursor_sr = 0;
  3754. if (single_plane_enabled(enabled) &&
  3755. g4x_compute_srwm(dev, ffs(enabled) - 1,
  3756. sr_latency_ns,
  3757. &valleyview_wm_info,
  3758. &valleyview_cursor_wm_info,
  3759. &plane_sr, &cursor_sr))
  3760. I915_WRITE(FW_BLC_SELF_VLV, FW_CSPWRDWNEN);
  3761. else
  3762. I915_WRITE(FW_BLC_SELF_VLV,
  3763. I915_READ(FW_BLC_SELF_VLV) & ~FW_CSPWRDWNEN);
  3764. DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
  3765. planea_wm, cursora_wm,
  3766. planeb_wm, cursorb_wm,
  3767. plane_sr, cursor_sr);
  3768. I915_WRITE(DSPFW1,
  3769. (plane_sr << DSPFW_SR_SHIFT) |
  3770. (cursorb_wm << DSPFW_CURSORB_SHIFT) |
  3771. (planeb_wm << DSPFW_PLANEB_SHIFT) |
  3772. planea_wm);
  3773. I915_WRITE(DSPFW2,
  3774. (I915_READ(DSPFW2) & DSPFW_CURSORA_MASK) |
  3775. (cursora_wm << DSPFW_CURSORA_SHIFT));
  3776. I915_WRITE(DSPFW3,
  3777. (I915_READ(DSPFW3) | (cursor_sr << DSPFW_CURSOR_SR_SHIFT)));
  3778. }
  3779. static void g4x_update_wm(struct drm_device *dev)
  3780. {
  3781. static const int sr_latency_ns = 12000;
  3782. struct drm_i915_private *dev_priv = dev->dev_private;
  3783. int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
  3784. int plane_sr, cursor_sr;
  3785. unsigned int enabled = 0;
  3786. if (g4x_compute_wm0(dev, 0,
  3787. &g4x_wm_info, latency_ns,
  3788. &g4x_cursor_wm_info, latency_ns,
  3789. &planea_wm, &cursora_wm))
  3790. enabled |= 1;
  3791. if (g4x_compute_wm0(dev, 1,
  3792. &g4x_wm_info, latency_ns,
  3793. &g4x_cursor_wm_info, latency_ns,
  3794. &planeb_wm, &cursorb_wm))
  3795. enabled |= 2;
  3796. plane_sr = cursor_sr = 0;
  3797. if (single_plane_enabled(enabled) &&
  3798. g4x_compute_srwm(dev, ffs(enabled) - 1,
  3799. sr_latency_ns,
  3800. &g4x_wm_info,
  3801. &g4x_cursor_wm_info,
  3802. &plane_sr, &cursor_sr))
  3803. I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
  3804. else
  3805. I915_WRITE(FW_BLC_SELF,
  3806. I915_READ(FW_BLC_SELF) & ~FW_BLC_SELF_EN);
  3807. DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
  3808. planea_wm, cursora_wm,
  3809. planeb_wm, cursorb_wm,
  3810. plane_sr, cursor_sr);
  3811. I915_WRITE(DSPFW1,
  3812. (plane_sr << DSPFW_SR_SHIFT) |
  3813. (cursorb_wm << DSPFW_CURSORB_SHIFT) |
  3814. (planeb_wm << DSPFW_PLANEB_SHIFT) |
  3815. planea_wm);
  3816. I915_WRITE(DSPFW2,
  3817. (I915_READ(DSPFW2) & DSPFW_CURSORA_MASK) |
  3818. (cursora_wm << DSPFW_CURSORA_SHIFT));
  3819. /* HPLL off in SR has some issues on G4x... disable it */
  3820. I915_WRITE(DSPFW3,
  3821. (I915_READ(DSPFW3) & ~DSPFW_HPLL_SR_EN) |
  3822. (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
  3823. }
  3824. static void i965_update_wm(struct drm_device *dev)
  3825. {
  3826. struct drm_i915_private *dev_priv = dev->dev_private;
  3827. struct drm_crtc *crtc;
  3828. int srwm = 1;
  3829. int cursor_sr = 16;
  3830. /* Calc sr entries for one plane configs */
  3831. crtc = single_enabled_crtc(dev);
  3832. if (crtc) {
  3833. /* self-refresh has much higher latency */
  3834. static const int sr_latency_ns = 12000;
  3835. int clock = crtc->mode.clock;
  3836. int htotal = crtc->mode.htotal;
  3837. int hdisplay = crtc->mode.hdisplay;
  3838. int pixel_size = crtc->fb->bits_per_pixel / 8;
  3839. unsigned long line_time_us;
  3840. int entries;
  3841. line_time_us = ((htotal * 1000) / clock);
  3842. /* Use ns/us then divide to preserve precision */
  3843. entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
  3844. pixel_size * hdisplay;
  3845. entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
  3846. srwm = I965_FIFO_SIZE - entries;
  3847. if (srwm < 0)
  3848. srwm = 1;
  3849. srwm &= 0x1ff;
  3850. DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
  3851. entries, srwm);
  3852. entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
  3853. pixel_size * 64;
  3854. entries = DIV_ROUND_UP(entries,
  3855. i965_cursor_wm_info.cacheline_size);
  3856. cursor_sr = i965_cursor_wm_info.fifo_size -
  3857. (entries + i965_cursor_wm_info.guard_size);
  3858. if (cursor_sr > i965_cursor_wm_info.max_wm)
  3859. cursor_sr = i965_cursor_wm_info.max_wm;
  3860. DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
  3861. "cursor %d\n", srwm, cursor_sr);
  3862. if (IS_CRESTLINE(dev))
  3863. I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
  3864. } else {
  3865. /* Turn off self refresh if both pipes are enabled */
  3866. if (IS_CRESTLINE(dev))
  3867. I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
  3868. & ~FW_BLC_SELF_EN);
  3869. }
  3870. DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
  3871. srwm);
  3872. /* 965 has limitations... */
  3873. I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) |
  3874. (8 << 16) | (8 << 8) | (8 << 0));
  3875. I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
  3876. /* update cursor SR watermark */
  3877. I915_WRITE(DSPFW3, (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
  3878. }
  3879. static void i9xx_update_wm(struct drm_device *dev)
  3880. {
  3881. struct drm_i915_private *dev_priv = dev->dev_private;
  3882. const struct intel_watermark_params *wm_info;
  3883. uint32_t fwater_lo;
  3884. uint32_t fwater_hi;
  3885. int cwm, srwm = 1;
  3886. int fifo_size;
  3887. int planea_wm, planeb_wm;
  3888. struct drm_crtc *crtc, *enabled = NULL;
  3889. if (IS_I945GM(dev))
  3890. wm_info = &i945_wm_info;
  3891. else if (!IS_GEN2(dev))
  3892. wm_info = &i915_wm_info;
  3893. else
  3894. wm_info = &i855_wm_info;
  3895. fifo_size = dev_priv->display.get_fifo_size(dev, 0);
  3896. crtc = intel_get_crtc_for_plane(dev, 0);
  3897. if (crtc->enabled && crtc->fb) {
  3898. planea_wm = intel_calculate_wm(crtc->mode.clock,
  3899. wm_info, fifo_size,
  3900. crtc->fb->bits_per_pixel / 8,
  3901. latency_ns);
  3902. enabled = crtc;
  3903. } else
  3904. planea_wm = fifo_size - wm_info->guard_size;
  3905. fifo_size = dev_priv->display.get_fifo_size(dev, 1);
  3906. crtc = intel_get_crtc_for_plane(dev, 1);
  3907. if (crtc->enabled && crtc->fb) {
  3908. planeb_wm = intel_calculate_wm(crtc->mode.clock,
  3909. wm_info, fifo_size,
  3910. crtc->fb->bits_per_pixel / 8,
  3911. latency_ns);
  3912. if (enabled == NULL)
  3913. enabled = crtc;
  3914. else
  3915. enabled = NULL;
  3916. } else
  3917. planeb_wm = fifo_size - wm_info->guard_size;
  3918. DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
  3919. /*
  3920. * Overlay gets an aggressive default since video jitter is bad.
  3921. */
  3922. cwm = 2;
  3923. /* Play safe and disable self-refresh before adjusting watermarks. */
  3924. if (IS_I945G(dev) || IS_I945GM(dev))
  3925. I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN_MASK | 0);
  3926. else if (IS_I915GM(dev))
  3927. I915_WRITE(INSTPM, I915_READ(INSTPM) & ~INSTPM_SELF_EN);
  3928. /* Calc sr entries for one plane configs */
  3929. if (HAS_FW_BLC(dev) && enabled) {
  3930. /* self-refresh has much higher latency */
  3931. static const int sr_latency_ns = 6000;
  3932. int clock = enabled->mode.clock;
  3933. int htotal = enabled->mode.htotal;
  3934. int hdisplay = enabled->mode.hdisplay;
  3935. int pixel_size = enabled->fb->bits_per_pixel / 8;
  3936. unsigned long line_time_us;
  3937. int entries;
  3938. line_time_us = (htotal * 1000) / clock;
  3939. /* Use ns/us then divide to preserve precision */
  3940. entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
  3941. pixel_size * hdisplay;
  3942. entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
  3943. DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
  3944. srwm = wm_info->fifo_size - entries;
  3945. if (srwm < 0)
  3946. srwm = 1;
  3947. if (IS_I945G(dev) || IS_I945GM(dev))
  3948. I915_WRITE(FW_BLC_SELF,
  3949. FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
  3950. else if (IS_I915GM(dev))
  3951. I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
  3952. }
  3953. DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
  3954. planea_wm, planeb_wm, cwm, srwm);
  3955. fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
  3956. fwater_hi = (cwm & 0x1f);
  3957. /* Set request length to 8 cachelines per fetch */
  3958. fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
  3959. fwater_hi = fwater_hi | (1 << 8);
  3960. I915_WRITE(FW_BLC, fwater_lo);
  3961. I915_WRITE(FW_BLC2, fwater_hi);
  3962. if (HAS_FW_BLC(dev)) {
  3963. if (enabled) {
  3964. if (IS_I945G(dev) || IS_I945GM(dev))
  3965. I915_WRITE(FW_BLC_SELF,
  3966. FW_BLC_SELF_EN_MASK | FW_BLC_SELF_EN);
  3967. else if (IS_I915GM(dev))
  3968. I915_WRITE(INSTPM, I915_READ(INSTPM) | INSTPM_SELF_EN);
  3969. DRM_DEBUG_KMS("memory self refresh enabled\n");
  3970. } else
  3971. DRM_DEBUG_KMS("memory self refresh disabled\n");
  3972. }
  3973. }
  3974. static void i830_update_wm(struct drm_device *dev)
  3975. {
  3976. struct drm_i915_private *dev_priv = dev->dev_private;
  3977. struct drm_crtc *crtc;
  3978. uint32_t fwater_lo;
  3979. int planea_wm;
  3980. crtc = single_enabled_crtc(dev);
  3981. if (crtc == NULL)
  3982. return;
  3983. planea_wm = intel_calculate_wm(crtc->mode.clock, &i830_wm_info,
  3984. dev_priv->display.get_fifo_size(dev, 0),
  3985. crtc->fb->bits_per_pixel / 8,
  3986. latency_ns);
  3987. fwater_lo = I915_READ(FW_BLC) & ~0xfff;
  3988. fwater_lo |= (3<<8) | planea_wm;
  3989. DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
  3990. I915_WRITE(FW_BLC, fwater_lo);
  3991. }
  3992. #define ILK_LP0_PLANE_LATENCY 700
  3993. #define ILK_LP0_CURSOR_LATENCY 1300
  3994. /*
  3995. * Check the wm result.
  3996. *
  3997. * If any calculated watermark values is larger than the maximum value that
  3998. * can be programmed into the associated watermark register, that watermark
  3999. * must be disabled.
  4000. */
  4001. static bool ironlake_check_srwm(struct drm_device *dev, int level,
  4002. int fbc_wm, int display_wm, int cursor_wm,
  4003. const struct intel_watermark_params *display,
  4004. const struct intel_watermark_params *cursor)
  4005. {
  4006. struct drm_i915_private *dev_priv = dev->dev_private;
  4007. DRM_DEBUG_KMS("watermark %d: display plane %d, fbc lines %d,"
  4008. " cursor %d\n", level, display_wm, fbc_wm, cursor_wm);
  4009. if (fbc_wm > SNB_FBC_MAX_SRWM) {
  4010. DRM_DEBUG_KMS("fbc watermark(%d) is too large(%d), disabling wm%d+\n",
  4011. fbc_wm, SNB_FBC_MAX_SRWM, level);
  4012. /* fbc has it's own way to disable FBC WM */
  4013. I915_WRITE(DISP_ARB_CTL,
  4014. I915_READ(DISP_ARB_CTL) | DISP_FBC_WM_DIS);
  4015. return false;
  4016. }
  4017. if (display_wm > display->max_wm) {
  4018. DRM_DEBUG_KMS("display watermark(%d) is too large(%d), disabling wm%d+\n",
  4019. display_wm, SNB_DISPLAY_MAX_SRWM, level);
  4020. return false;
  4021. }
  4022. if (cursor_wm > cursor->max_wm) {
  4023. DRM_DEBUG_KMS("cursor watermark(%d) is too large(%d), disabling wm%d+\n",
  4024. cursor_wm, SNB_CURSOR_MAX_SRWM, level);
  4025. return false;
  4026. }
  4027. if (!(fbc_wm || display_wm || cursor_wm)) {
  4028. DRM_DEBUG_KMS("latency %d is 0, disabling wm%d+\n", level, level);
  4029. return false;
  4030. }
  4031. return true;
  4032. }
  4033. /*
  4034. * Compute watermark values of WM[1-3],
  4035. */
  4036. static bool ironlake_compute_srwm(struct drm_device *dev, int level, int plane,
  4037. int latency_ns,
  4038. const struct intel_watermark_params *display,
  4039. const struct intel_watermark_params *cursor,
  4040. int *fbc_wm, int *display_wm, int *cursor_wm)
  4041. {
  4042. struct drm_crtc *crtc;
  4043. unsigned long line_time_us;
  4044. int hdisplay, htotal, pixel_size, clock;
  4045. int line_count, line_size;
  4046. int small, large;
  4047. int entries;
  4048. if (!latency_ns) {
  4049. *fbc_wm = *display_wm = *cursor_wm = 0;
  4050. return false;
  4051. }
  4052. crtc = intel_get_crtc_for_plane(dev, plane);
  4053. hdisplay = crtc->mode.hdisplay;
  4054. htotal = crtc->mode.htotal;
  4055. clock = crtc->mode.clock;
  4056. pixel_size = crtc->fb->bits_per_pixel / 8;
  4057. line_time_us = (htotal * 1000) / clock;
  4058. line_count = (latency_ns / line_time_us + 1000) / 1000;
  4059. line_size = hdisplay * pixel_size;
  4060. /* Use the minimum of the small and large buffer method for primary */
  4061. small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
  4062. large = line_count * line_size;
  4063. entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
  4064. *display_wm = entries + display->guard_size;
  4065. /*
  4066. * Spec says:
  4067. * FBC WM = ((Final Primary WM * 64) / number of bytes per line) + 2
  4068. */
  4069. *fbc_wm = DIV_ROUND_UP(*display_wm * 64, line_size) + 2;
  4070. /* calculate the self-refresh watermark for display cursor */
  4071. entries = line_count * pixel_size * 64;
  4072. entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
  4073. *cursor_wm = entries + cursor->guard_size;
  4074. return ironlake_check_srwm(dev, level,
  4075. *fbc_wm, *display_wm, *cursor_wm,
  4076. display, cursor);
  4077. }
  4078. static void ironlake_update_wm(struct drm_device *dev)
  4079. {
  4080. struct drm_i915_private *dev_priv = dev->dev_private;
  4081. int fbc_wm, plane_wm, cursor_wm;
  4082. unsigned int enabled;
  4083. enabled = 0;
  4084. if (g4x_compute_wm0(dev, 0,
  4085. &ironlake_display_wm_info,
  4086. ILK_LP0_PLANE_LATENCY,
  4087. &ironlake_cursor_wm_info,
  4088. ILK_LP0_CURSOR_LATENCY,
  4089. &plane_wm, &cursor_wm)) {
  4090. I915_WRITE(WM0_PIPEA_ILK,
  4091. (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
  4092. DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
  4093. " plane %d, " "cursor: %d\n",
  4094. plane_wm, cursor_wm);
  4095. enabled |= 1;
  4096. }
  4097. if (g4x_compute_wm0(dev, 1,
  4098. &ironlake_display_wm_info,
  4099. ILK_LP0_PLANE_LATENCY,
  4100. &ironlake_cursor_wm_info,
  4101. ILK_LP0_CURSOR_LATENCY,
  4102. &plane_wm, &cursor_wm)) {
  4103. I915_WRITE(WM0_PIPEB_ILK,
  4104. (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
  4105. DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
  4106. " plane %d, cursor: %d\n",
  4107. plane_wm, cursor_wm);
  4108. enabled |= 2;
  4109. }
  4110. /*
  4111. * Calculate and update the self-refresh watermark only when one
  4112. * display plane is used.
  4113. */
  4114. I915_WRITE(WM3_LP_ILK, 0);
  4115. I915_WRITE(WM2_LP_ILK, 0);
  4116. I915_WRITE(WM1_LP_ILK, 0);
  4117. if (!single_plane_enabled(enabled))
  4118. return;
  4119. enabled = ffs(enabled) - 1;
  4120. /* WM1 */
  4121. if (!ironlake_compute_srwm(dev, 1, enabled,
  4122. ILK_READ_WM1_LATENCY() * 500,
  4123. &ironlake_display_srwm_info,
  4124. &ironlake_cursor_srwm_info,
  4125. &fbc_wm, &plane_wm, &cursor_wm))
  4126. return;
  4127. I915_WRITE(WM1_LP_ILK,
  4128. WM1_LP_SR_EN |
  4129. (ILK_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
  4130. (fbc_wm << WM1_LP_FBC_SHIFT) |
  4131. (plane_wm << WM1_LP_SR_SHIFT) |
  4132. cursor_wm);
  4133. /* WM2 */
  4134. if (!ironlake_compute_srwm(dev, 2, enabled,
  4135. ILK_READ_WM2_LATENCY() * 500,
  4136. &ironlake_display_srwm_info,
  4137. &ironlake_cursor_srwm_info,
  4138. &fbc_wm, &plane_wm, &cursor_wm))
  4139. return;
  4140. I915_WRITE(WM2_LP_ILK,
  4141. WM2_LP_EN |
  4142. (ILK_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
  4143. (fbc_wm << WM1_LP_FBC_SHIFT) |
  4144. (plane_wm << WM1_LP_SR_SHIFT) |
  4145. cursor_wm);
  4146. /*
  4147. * WM3 is unsupported on ILK, probably because we don't have latency
  4148. * data for that power state
  4149. */
  4150. }
  4151. void sandybridge_update_wm(struct drm_device *dev)
  4152. {
  4153. struct drm_i915_private *dev_priv = dev->dev_private;
  4154. int latency = SNB_READ_WM0_LATENCY() * 100; /* In unit 0.1us */
  4155. u32 val;
  4156. int fbc_wm, plane_wm, cursor_wm;
  4157. unsigned int enabled;
  4158. enabled = 0;
  4159. if (g4x_compute_wm0(dev, 0,
  4160. &sandybridge_display_wm_info, latency,
  4161. &sandybridge_cursor_wm_info, latency,
  4162. &plane_wm, &cursor_wm)) {
  4163. val = I915_READ(WM0_PIPEA_ILK);
  4164. val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
  4165. I915_WRITE(WM0_PIPEA_ILK, val |
  4166. ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
  4167. DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
  4168. " plane %d, " "cursor: %d\n",
  4169. plane_wm, cursor_wm);
  4170. enabled |= 1;
  4171. }
  4172. if (g4x_compute_wm0(dev, 1,
  4173. &sandybridge_display_wm_info, latency,
  4174. &sandybridge_cursor_wm_info, latency,
  4175. &plane_wm, &cursor_wm)) {
  4176. val = I915_READ(WM0_PIPEB_ILK);
  4177. val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
  4178. I915_WRITE(WM0_PIPEB_ILK, val |
  4179. ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
  4180. DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
  4181. " plane %d, cursor: %d\n",
  4182. plane_wm, cursor_wm);
  4183. enabled |= 2;
  4184. }
  4185. /* IVB has 3 pipes */
  4186. if (IS_IVYBRIDGE(dev) &&
  4187. g4x_compute_wm0(dev, 2,
  4188. &sandybridge_display_wm_info, latency,
  4189. &sandybridge_cursor_wm_info, latency,
  4190. &plane_wm, &cursor_wm)) {
  4191. val = I915_READ(WM0_PIPEC_IVB);
  4192. val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
  4193. I915_WRITE(WM0_PIPEC_IVB, val |
  4194. ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
  4195. DRM_DEBUG_KMS("FIFO watermarks For pipe C -"
  4196. " plane %d, cursor: %d\n",
  4197. plane_wm, cursor_wm);
  4198. enabled |= 3;
  4199. }
  4200. /*
  4201. * Calculate and update the self-refresh watermark only when one
  4202. * display plane is used.
  4203. *
  4204. * SNB support 3 levels of watermark.
  4205. *
  4206. * WM1/WM2/WM2 watermarks have to be enabled in the ascending order,
  4207. * and disabled in the descending order
  4208. *
  4209. */
  4210. I915_WRITE(WM3_LP_ILK, 0);
  4211. I915_WRITE(WM2_LP_ILK, 0);
  4212. I915_WRITE(WM1_LP_ILK, 0);
  4213. if (!single_plane_enabled(enabled) ||
  4214. dev_priv->sprite_scaling_enabled)
  4215. return;
  4216. enabled = ffs(enabled) - 1;
  4217. /* WM1 */
  4218. if (!ironlake_compute_srwm(dev, 1, enabled,
  4219. SNB_READ_WM1_LATENCY() * 500,
  4220. &sandybridge_display_srwm_info,
  4221. &sandybridge_cursor_srwm_info,
  4222. &fbc_wm, &plane_wm, &cursor_wm))
  4223. return;
  4224. I915_WRITE(WM1_LP_ILK,
  4225. WM1_LP_SR_EN |
  4226. (SNB_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
  4227. (fbc_wm << WM1_LP_FBC_SHIFT) |
  4228. (plane_wm << WM1_LP_SR_SHIFT) |
  4229. cursor_wm);
  4230. /* WM2 */
  4231. if (!ironlake_compute_srwm(dev, 2, enabled,
  4232. SNB_READ_WM2_LATENCY() * 500,
  4233. &sandybridge_display_srwm_info,
  4234. &sandybridge_cursor_srwm_info,
  4235. &fbc_wm, &plane_wm, &cursor_wm))
  4236. return;
  4237. I915_WRITE(WM2_LP_ILK,
  4238. WM2_LP_EN |
  4239. (SNB_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
  4240. (fbc_wm << WM1_LP_FBC_SHIFT) |
  4241. (plane_wm << WM1_LP_SR_SHIFT) |
  4242. cursor_wm);
  4243. /* WM3 */
  4244. if (!ironlake_compute_srwm(dev, 3, enabled,
  4245. SNB_READ_WM3_LATENCY() * 500,
  4246. &sandybridge_display_srwm_info,
  4247. &sandybridge_cursor_srwm_info,
  4248. &fbc_wm, &plane_wm, &cursor_wm))
  4249. return;
  4250. I915_WRITE(WM3_LP_ILK,
  4251. WM3_LP_EN |
  4252. (SNB_READ_WM3_LATENCY() << WM1_LP_LATENCY_SHIFT) |
  4253. (fbc_wm << WM1_LP_FBC_SHIFT) |
  4254. (plane_wm << WM1_LP_SR_SHIFT) |
  4255. cursor_wm);
  4256. }
  4257. static bool
  4258. sandybridge_compute_sprite_wm(struct drm_device *dev, int plane,
  4259. uint32_t sprite_width, int pixel_size,
  4260. const struct intel_watermark_params *display,
  4261. int display_latency_ns, int *sprite_wm)
  4262. {
  4263. struct drm_crtc *crtc;
  4264. int clock;
  4265. int entries, tlb_miss;
  4266. crtc = intel_get_crtc_for_plane(dev, plane);
  4267. if (crtc->fb == NULL || !crtc->enabled) {
  4268. *sprite_wm = display->guard_size;
  4269. return false;
  4270. }
  4271. clock = crtc->mode.clock;
  4272. /* Use the small buffer method to calculate the sprite watermark */
  4273. entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
  4274. tlb_miss = display->fifo_size*display->cacheline_size -
  4275. sprite_width * 8;
  4276. if (tlb_miss > 0)
  4277. entries += tlb_miss;
  4278. entries = DIV_ROUND_UP(entries, display->cacheline_size);
  4279. *sprite_wm = entries + display->guard_size;
  4280. if (*sprite_wm > (int)display->max_wm)
  4281. *sprite_wm = display->max_wm;
  4282. return true;
  4283. }
  4284. static bool
  4285. sandybridge_compute_sprite_srwm(struct drm_device *dev, int plane,
  4286. uint32_t sprite_width, int pixel_size,
  4287. const struct intel_watermark_params *display,
  4288. int latency_ns, int *sprite_wm)
  4289. {
  4290. struct drm_crtc *crtc;
  4291. unsigned long line_time_us;
  4292. int clock;
  4293. int line_count, line_size;
  4294. int small, large;
  4295. int entries;
  4296. if (!latency_ns) {
  4297. *sprite_wm = 0;
  4298. return false;
  4299. }
  4300. crtc = intel_get_crtc_for_plane(dev, plane);
  4301. clock = crtc->mode.clock;
  4302. if (!clock) {
  4303. *sprite_wm = 0;
  4304. return false;
  4305. }
  4306. line_time_us = (sprite_width * 1000) / clock;
  4307. if (!line_time_us) {
  4308. *sprite_wm = 0;
  4309. return false;
  4310. }
  4311. line_count = (latency_ns / line_time_us + 1000) / 1000;
  4312. line_size = sprite_width * pixel_size;
  4313. /* Use the minimum of the small and large buffer method for primary */
  4314. small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
  4315. large = line_count * line_size;
  4316. entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
  4317. *sprite_wm = entries + display->guard_size;
  4318. return *sprite_wm > 0x3ff ? false : true;
  4319. }
  4320. static void sandybridge_update_sprite_wm(struct drm_device *dev, int pipe,
  4321. uint32_t sprite_width, int pixel_size)
  4322. {
  4323. struct drm_i915_private *dev_priv = dev->dev_private;
  4324. int latency = SNB_READ_WM0_LATENCY() * 100; /* In unit 0.1us */
  4325. u32 val;
  4326. int sprite_wm, reg;
  4327. int ret;
  4328. switch (pipe) {
  4329. case 0:
  4330. reg = WM0_PIPEA_ILK;
  4331. break;
  4332. case 1:
  4333. reg = WM0_PIPEB_ILK;
  4334. break;
  4335. case 2:
  4336. reg = WM0_PIPEC_IVB;
  4337. break;
  4338. default:
  4339. return; /* bad pipe */
  4340. }
  4341. ret = sandybridge_compute_sprite_wm(dev, pipe, sprite_width, pixel_size,
  4342. &sandybridge_display_wm_info,
  4343. latency, &sprite_wm);
  4344. if (!ret) {
  4345. DRM_DEBUG_KMS("failed to compute sprite wm for pipe %d\n",
  4346. pipe);
  4347. return;
  4348. }
  4349. val = I915_READ(reg);
  4350. val &= ~WM0_PIPE_SPRITE_MASK;
  4351. I915_WRITE(reg, val | (sprite_wm << WM0_PIPE_SPRITE_SHIFT));
  4352. DRM_DEBUG_KMS("sprite watermarks For pipe %d - %d\n", pipe, sprite_wm);
  4353. ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
  4354. pixel_size,
  4355. &sandybridge_display_srwm_info,
  4356. SNB_READ_WM1_LATENCY() * 500,
  4357. &sprite_wm);
  4358. if (!ret) {
  4359. DRM_DEBUG_KMS("failed to compute sprite lp1 wm on pipe %d\n",
  4360. pipe);
  4361. return;
  4362. }
  4363. I915_WRITE(WM1S_LP_ILK, sprite_wm);
  4364. /* Only IVB has two more LP watermarks for sprite */
  4365. if (!IS_IVYBRIDGE(dev))
  4366. return;
  4367. ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
  4368. pixel_size,
  4369. &sandybridge_display_srwm_info,
  4370. SNB_READ_WM2_LATENCY() * 500,
  4371. &sprite_wm);
  4372. if (!ret) {
  4373. DRM_DEBUG_KMS("failed to compute sprite lp2 wm on pipe %d\n",
  4374. pipe);
  4375. return;
  4376. }
  4377. I915_WRITE(WM2S_LP_IVB, sprite_wm);
  4378. ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
  4379. pixel_size,
  4380. &sandybridge_display_srwm_info,
  4381. SNB_READ_WM3_LATENCY() * 500,
  4382. &sprite_wm);
  4383. if (!ret) {
  4384. DRM_DEBUG_KMS("failed to compute sprite lp3 wm on pipe %d\n",
  4385. pipe);
  4386. return;
  4387. }
  4388. I915_WRITE(WM3S_LP_IVB, sprite_wm);
  4389. }
  4390. /**
  4391. * intel_update_watermarks - update FIFO watermark values based on current modes
  4392. *
  4393. * Calculate watermark values for the various WM regs based on current mode
  4394. * and plane configuration.
  4395. *
  4396. * There are several cases to deal with here:
  4397. * - normal (i.e. non-self-refresh)
  4398. * - self-refresh (SR) mode
  4399. * - lines are large relative to FIFO size (buffer can hold up to 2)
  4400. * - lines are small relative to FIFO size (buffer can hold more than 2
  4401. * lines), so need to account for TLB latency
  4402. *
  4403. * The normal calculation is:
  4404. * watermark = dotclock * bytes per pixel * latency
  4405. * where latency is platform & configuration dependent (we assume pessimal
  4406. * values here).
  4407. *
  4408. * The SR calculation is:
  4409. * watermark = (trunc(latency/line time)+1) * surface width *
  4410. * bytes per pixel
  4411. * where
  4412. * line time = htotal / dotclock
  4413. * surface width = hdisplay for normal plane and 64 for cursor
  4414. * and latency is assumed to be high, as above.
  4415. *
  4416. * The final value programmed to the register should always be rounded up,
  4417. * and include an extra 2 entries to account for clock crossings.
  4418. *
  4419. * We don't use the sprite, so we can ignore that. And on Crestline we have
  4420. * to set the non-SR watermarks to 8.
  4421. */
  4422. static void intel_update_watermarks(struct drm_device *dev)
  4423. {
  4424. struct drm_i915_private *dev_priv = dev->dev_private;
  4425. if (dev_priv->display.update_wm)
  4426. dev_priv->display.update_wm(dev);
  4427. }
  4428. void intel_update_sprite_watermarks(struct drm_device *dev, int pipe,
  4429. uint32_t sprite_width, int pixel_size)
  4430. {
  4431. struct drm_i915_private *dev_priv = dev->dev_private;
  4432. if (dev_priv->display.update_sprite_wm)
  4433. dev_priv->display.update_sprite_wm(dev, pipe, sprite_width,
  4434. pixel_size);
  4435. }
  4436. static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
  4437. {
  4438. if (i915_panel_use_ssc >= 0)
  4439. return i915_panel_use_ssc != 0;
  4440. return dev_priv->lvds_use_ssc
  4441. && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
  4442. }
  4443. /**
  4444. * intel_choose_pipe_bpp_dither - figure out what color depth the pipe should send
  4445. * @crtc: CRTC structure
  4446. * @mode: requested mode
  4447. *
  4448. * A pipe may be connected to one or more outputs. Based on the depth of the
  4449. * attached framebuffer, choose a good color depth to use on the pipe.
  4450. *
  4451. * If possible, match the pipe depth to the fb depth. In some cases, this
  4452. * isn't ideal, because the connected output supports a lesser or restricted
  4453. * set of depths. Resolve that here:
  4454. * LVDS typically supports only 6bpc, so clamp down in that case
  4455. * HDMI supports only 8bpc or 12bpc, so clamp to 8bpc with dither for 10bpc
  4456. * Displays may support a restricted set as well, check EDID and clamp as
  4457. * appropriate.
  4458. * DP may want to dither down to 6bpc to fit larger modes
  4459. *
  4460. * RETURNS:
  4461. * Dithering requirement (i.e. false if display bpc and pipe bpc match,
  4462. * true if they don't match).
  4463. */
  4464. static bool intel_choose_pipe_bpp_dither(struct drm_crtc *crtc,
  4465. unsigned int *pipe_bpp,
  4466. struct drm_display_mode *mode)
  4467. {
  4468. struct drm_device *dev = crtc->dev;
  4469. struct drm_i915_private *dev_priv = dev->dev_private;
  4470. struct drm_encoder *encoder;
  4471. struct drm_connector *connector;
  4472. unsigned int display_bpc = UINT_MAX, bpc;
  4473. /* Walk the encoders & connectors on this crtc, get min bpc */
  4474. list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
  4475. struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
  4476. if (encoder->crtc != crtc)
  4477. continue;
  4478. if (intel_encoder->type == INTEL_OUTPUT_LVDS) {
  4479. unsigned int lvds_bpc;
  4480. if ((I915_READ(PCH_LVDS) & LVDS_A3_POWER_MASK) ==
  4481. LVDS_A3_POWER_UP)
  4482. lvds_bpc = 8;
  4483. else
  4484. lvds_bpc = 6;
  4485. if (lvds_bpc < display_bpc) {
  4486. DRM_DEBUG_KMS("clamping display bpc (was %d) to LVDS (%d)\n", display_bpc, lvds_bpc);
  4487. display_bpc = lvds_bpc;
  4488. }
  4489. continue;
  4490. }
  4491. if (intel_encoder->type == INTEL_OUTPUT_EDP) {
  4492. /* Use VBT settings if we have an eDP panel */
  4493. unsigned int edp_bpc = dev_priv->edp.bpp / 3;
  4494. if (edp_bpc < display_bpc) {
  4495. DRM_DEBUG_KMS("clamping display bpc (was %d) to eDP (%d)\n", display_bpc, edp_bpc);
  4496. display_bpc = edp_bpc;
  4497. }
  4498. continue;
  4499. }
  4500. /* Not one of the known troublemakers, check the EDID */
  4501. list_for_each_entry(connector, &dev->mode_config.connector_list,
  4502. head) {
  4503. if (connector->encoder != encoder)
  4504. continue;
  4505. /* Don't use an invalid EDID bpc value */
  4506. if (connector->display_info.bpc &&
  4507. connector->display_info.bpc < display_bpc) {
  4508. DRM_DEBUG_KMS("clamping display bpc (was %d) to EDID reported max of %d\n", display_bpc, connector->display_info.bpc);
  4509. display_bpc = connector->display_info.bpc;
  4510. }
  4511. }
  4512. /*
  4513. * HDMI is either 12 or 8, so if the display lets 10bpc sneak
  4514. * through, clamp it down. (Note: >12bpc will be caught below.)
  4515. */
  4516. if (intel_encoder->type == INTEL_OUTPUT_HDMI) {
  4517. if (display_bpc > 8 && display_bpc < 12) {
  4518. DRM_DEBUG_KMS("forcing bpc to 12 for HDMI\n");
  4519. display_bpc = 12;
  4520. } else {
  4521. DRM_DEBUG_KMS("forcing bpc to 8 for HDMI\n");
  4522. display_bpc = 8;
  4523. }
  4524. }
  4525. }
  4526. if (mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
  4527. DRM_DEBUG_KMS("Dithering DP to 6bpc\n");
  4528. display_bpc = 6;
  4529. }
  4530. /*
  4531. * We could just drive the pipe at the highest bpc all the time and
  4532. * enable dithering as needed, but that costs bandwidth. So choose
  4533. * the minimum value that expresses the full color range of the fb but
  4534. * also stays within the max display bpc discovered above.
  4535. */
  4536. switch (crtc->fb->depth) {
  4537. case 8:
  4538. bpc = 8; /* since we go through a colormap */
  4539. break;
  4540. case 15:
  4541. case 16:
  4542. bpc = 6; /* min is 18bpp */
  4543. break;
  4544. case 24:
  4545. bpc = 8;
  4546. break;
  4547. case 30:
  4548. bpc = 10;
  4549. break;
  4550. case 48:
  4551. bpc = 12;
  4552. break;
  4553. default:
  4554. DRM_DEBUG("unsupported depth, assuming 24 bits\n");
  4555. bpc = min((unsigned int)8, display_bpc);
  4556. break;
  4557. }
  4558. display_bpc = min(display_bpc, bpc);
  4559. DRM_DEBUG_KMS("setting pipe bpc to %d (max display bpc %d)\n",
  4560. bpc, display_bpc);
  4561. *pipe_bpp = display_bpc * 3;
  4562. return display_bpc != bpc;
  4563. }
  4564. static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
  4565. {
  4566. struct drm_device *dev = crtc->dev;
  4567. struct drm_i915_private *dev_priv = dev->dev_private;
  4568. int refclk;
  4569. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
  4570. intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
  4571. refclk = dev_priv->lvds_ssc_freq * 1000;
  4572. DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
  4573. refclk / 1000);
  4574. } else if (!IS_GEN2(dev)) {
  4575. refclk = 96000;
  4576. } else {
  4577. refclk = 48000;
  4578. }
  4579. return refclk;
  4580. }
  4581. static void i9xx_adjust_sdvo_tv_clock(struct drm_display_mode *adjusted_mode,
  4582. intel_clock_t *clock)
  4583. {
  4584. /* SDVO TV has fixed PLL values depend on its clock range,
  4585. this mirrors vbios setting. */
  4586. if (adjusted_mode->clock >= 100000
  4587. && adjusted_mode->clock < 140500) {
  4588. clock->p1 = 2;
  4589. clock->p2 = 10;
  4590. clock->n = 3;
  4591. clock->m1 = 16;
  4592. clock->m2 = 8;
  4593. } else if (adjusted_mode->clock >= 140500
  4594. && adjusted_mode->clock <= 200000) {
  4595. clock->p1 = 1;
  4596. clock->p2 = 10;
  4597. clock->n = 6;
  4598. clock->m1 = 12;
  4599. clock->m2 = 8;
  4600. }
  4601. }
  4602. static void i9xx_update_pll_dividers(struct drm_crtc *crtc,
  4603. intel_clock_t *clock,
  4604. intel_clock_t *reduced_clock)
  4605. {
  4606. struct drm_device *dev = crtc->dev;
  4607. struct drm_i915_private *dev_priv = dev->dev_private;
  4608. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4609. int pipe = intel_crtc->pipe;
  4610. u32 fp, fp2 = 0;
  4611. if (IS_PINEVIEW(dev)) {
  4612. fp = (1 << clock->n) << 16 | clock->m1 << 8 | clock->m2;
  4613. if (reduced_clock)
  4614. fp2 = (1 << reduced_clock->n) << 16 |
  4615. reduced_clock->m1 << 8 | reduced_clock->m2;
  4616. } else {
  4617. fp = clock->n << 16 | clock->m1 << 8 | clock->m2;
  4618. if (reduced_clock)
  4619. fp2 = reduced_clock->n << 16 | reduced_clock->m1 << 8 |
  4620. reduced_clock->m2;
  4621. }
  4622. I915_WRITE(FP0(pipe), fp);
  4623. intel_crtc->lowfreq_avail = false;
  4624. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
  4625. reduced_clock && i915_powersave) {
  4626. I915_WRITE(FP1(pipe), fp2);
  4627. intel_crtc->lowfreq_avail = true;
  4628. } else {
  4629. I915_WRITE(FP1(pipe), fp);
  4630. }
  4631. }
  4632. static void intel_update_lvds(struct drm_crtc *crtc, intel_clock_t *clock,
  4633. struct drm_display_mode *adjusted_mode)
  4634. {
  4635. struct drm_device *dev = crtc->dev;
  4636. struct drm_i915_private *dev_priv = dev->dev_private;
  4637. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4638. int pipe = intel_crtc->pipe;
  4639. u32 temp, lvds_sync = 0;
  4640. temp = I915_READ(LVDS);
  4641. temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
  4642. if (pipe == 1) {
  4643. temp |= LVDS_PIPEB_SELECT;
  4644. } else {
  4645. temp &= ~LVDS_PIPEB_SELECT;
  4646. }
  4647. /* set the corresponsding LVDS_BORDER bit */
  4648. temp |= dev_priv->lvds_border_bits;
  4649. /* Set the B0-B3 data pairs corresponding to whether we're going to
  4650. * set the DPLLs for dual-channel mode or not.
  4651. */
  4652. if (clock->p2 == 7)
  4653. temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
  4654. else
  4655. temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
  4656. /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
  4657. * appropriately here, but we need to look more thoroughly into how
  4658. * panels behave in the two modes.
  4659. */
  4660. /* set the dithering flag on LVDS as needed */
  4661. if (INTEL_INFO(dev)->gen >= 4) {
  4662. if (dev_priv->lvds_dither)
  4663. temp |= LVDS_ENABLE_DITHER;
  4664. else
  4665. temp &= ~LVDS_ENABLE_DITHER;
  4666. }
  4667. if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
  4668. lvds_sync |= LVDS_HSYNC_POLARITY;
  4669. if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
  4670. lvds_sync |= LVDS_VSYNC_POLARITY;
  4671. if ((temp & (LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY))
  4672. != lvds_sync) {
  4673. char flags[2] = "-+";
  4674. DRM_INFO("Changing LVDS panel from "
  4675. "(%chsync, %cvsync) to (%chsync, %cvsync)\n",
  4676. flags[!(temp & LVDS_HSYNC_POLARITY)],
  4677. flags[!(temp & LVDS_VSYNC_POLARITY)],
  4678. flags[!(lvds_sync & LVDS_HSYNC_POLARITY)],
  4679. flags[!(lvds_sync & LVDS_VSYNC_POLARITY)]);
  4680. temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
  4681. temp |= lvds_sync;
  4682. }
  4683. I915_WRITE(LVDS, temp);
  4684. }
  4685. static void i9xx_update_pll(struct drm_crtc *crtc,
  4686. struct drm_display_mode *mode,
  4687. struct drm_display_mode *adjusted_mode,
  4688. intel_clock_t *clock, intel_clock_t *reduced_clock,
  4689. int num_connectors)
  4690. {
  4691. struct drm_device *dev = crtc->dev;
  4692. struct drm_i915_private *dev_priv = dev->dev_private;
  4693. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4694. int pipe = intel_crtc->pipe;
  4695. u32 dpll;
  4696. bool is_sdvo;
  4697. is_sdvo = intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO) ||
  4698. intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI);
  4699. dpll = DPLL_VGA_MODE_DIS;
  4700. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  4701. dpll |= DPLLB_MODE_LVDS;
  4702. else
  4703. dpll |= DPLLB_MODE_DAC_SERIAL;
  4704. if (is_sdvo) {
  4705. int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
  4706. if (pixel_multiplier > 1) {
  4707. if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
  4708. dpll |= (pixel_multiplier - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
  4709. }
  4710. dpll |= DPLL_DVO_HIGH_SPEED;
  4711. }
  4712. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
  4713. dpll |= DPLL_DVO_HIGH_SPEED;
  4714. /* compute bitmask from p1 value */
  4715. if (IS_PINEVIEW(dev))
  4716. dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
  4717. else {
  4718. dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  4719. if (IS_G4X(dev) && reduced_clock)
  4720. dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
  4721. }
  4722. switch (clock->p2) {
  4723. case 5:
  4724. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
  4725. break;
  4726. case 7:
  4727. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
  4728. break;
  4729. case 10:
  4730. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
  4731. break;
  4732. case 14:
  4733. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
  4734. break;
  4735. }
  4736. if (INTEL_INFO(dev)->gen >= 4)
  4737. dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
  4738. if (is_sdvo && intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
  4739. dpll |= PLL_REF_INPUT_TVCLKINBC;
  4740. else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
  4741. /* XXX: just matching BIOS for now */
  4742. /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
  4743. dpll |= 3;
  4744. else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
  4745. intel_panel_use_ssc(dev_priv) && num_connectors < 2)
  4746. dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
  4747. else
  4748. dpll |= PLL_REF_INPUT_DREFCLK;
  4749. dpll |= DPLL_VCO_ENABLE;
  4750. I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
  4751. POSTING_READ(DPLL(pipe));
  4752. udelay(150);
  4753. /* The LVDS pin pair needs to be on before the DPLLs are enabled.
  4754. * This is an exception to the general rule that mode_set doesn't turn
  4755. * things on.
  4756. */
  4757. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  4758. intel_update_lvds(crtc, clock, adjusted_mode);
  4759. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
  4760. intel_dp_set_m_n(crtc, mode, adjusted_mode);
  4761. I915_WRITE(DPLL(pipe), dpll);
  4762. /* Wait for the clocks to stabilize. */
  4763. POSTING_READ(DPLL(pipe));
  4764. udelay(150);
  4765. if (INTEL_INFO(dev)->gen >= 4) {
  4766. u32 temp = 0;
  4767. if (is_sdvo) {
  4768. temp = intel_mode_get_pixel_multiplier(adjusted_mode);
  4769. if (temp > 1)
  4770. temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
  4771. else
  4772. temp = 0;
  4773. }
  4774. I915_WRITE(DPLL_MD(pipe), temp);
  4775. } else {
  4776. /* The pixel multiplier can only be updated once the
  4777. * DPLL is enabled and the clocks are stable.
  4778. *
  4779. * So write it again.
  4780. */
  4781. I915_WRITE(DPLL(pipe), dpll);
  4782. }
  4783. }
  4784. static void i8xx_update_pll(struct drm_crtc *crtc,
  4785. struct drm_display_mode *adjusted_mode,
  4786. intel_clock_t *clock,
  4787. int num_connectors)
  4788. {
  4789. struct drm_device *dev = crtc->dev;
  4790. struct drm_i915_private *dev_priv = dev->dev_private;
  4791. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4792. int pipe = intel_crtc->pipe;
  4793. u32 dpll;
  4794. dpll = DPLL_VGA_MODE_DIS;
  4795. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  4796. dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  4797. } else {
  4798. if (clock->p1 == 2)
  4799. dpll |= PLL_P1_DIVIDE_BY_TWO;
  4800. else
  4801. dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  4802. if (clock->p2 == 4)
  4803. dpll |= PLL_P2_DIVIDE_BY_4;
  4804. }
  4805. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
  4806. /* XXX: just matching BIOS for now */
  4807. /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
  4808. dpll |= 3;
  4809. else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
  4810. intel_panel_use_ssc(dev_priv) && num_connectors < 2)
  4811. dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
  4812. else
  4813. dpll |= PLL_REF_INPUT_DREFCLK;
  4814. dpll |= DPLL_VCO_ENABLE;
  4815. I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
  4816. POSTING_READ(DPLL(pipe));
  4817. udelay(150);
  4818. I915_WRITE(DPLL(pipe), dpll);
  4819. /* Wait for the clocks to stabilize. */
  4820. POSTING_READ(DPLL(pipe));
  4821. udelay(150);
  4822. /* The LVDS pin pair needs to be on before the DPLLs are enabled.
  4823. * This is an exception to the general rule that mode_set doesn't turn
  4824. * things on.
  4825. */
  4826. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  4827. intel_update_lvds(crtc, clock, adjusted_mode);
  4828. /* The pixel multiplier can only be updated once the
  4829. * DPLL is enabled and the clocks are stable.
  4830. *
  4831. * So write it again.
  4832. */
  4833. I915_WRITE(DPLL(pipe), dpll);
  4834. }
  4835. static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
  4836. struct drm_display_mode *mode,
  4837. struct drm_display_mode *adjusted_mode,
  4838. int x, int y,
  4839. struct drm_framebuffer *old_fb)
  4840. {
  4841. struct drm_device *dev = crtc->dev;
  4842. struct drm_i915_private *dev_priv = dev->dev_private;
  4843. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4844. int pipe = intel_crtc->pipe;
  4845. int plane = intel_crtc->plane;
  4846. int refclk, num_connectors = 0;
  4847. intel_clock_t clock, reduced_clock;
  4848. u32 dspcntr, pipeconf, vsyncshift;
  4849. bool ok, has_reduced_clock = false, is_sdvo = false;
  4850. bool is_lvds = false, is_tv = false, is_dp = false;
  4851. struct drm_mode_config *mode_config = &dev->mode_config;
  4852. struct intel_encoder *encoder;
  4853. const intel_limit_t *limit;
  4854. int ret;
  4855. list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
  4856. if (encoder->base.crtc != crtc)
  4857. continue;
  4858. switch (encoder->type) {
  4859. case INTEL_OUTPUT_LVDS:
  4860. is_lvds = true;
  4861. break;
  4862. case INTEL_OUTPUT_SDVO:
  4863. case INTEL_OUTPUT_HDMI:
  4864. is_sdvo = true;
  4865. if (encoder->needs_tv_clock)
  4866. is_tv = true;
  4867. break;
  4868. case INTEL_OUTPUT_TVOUT:
  4869. is_tv = true;
  4870. break;
  4871. case INTEL_OUTPUT_DISPLAYPORT:
  4872. is_dp = true;
  4873. break;
  4874. }
  4875. num_connectors++;
  4876. }
  4877. refclk = i9xx_get_refclk(crtc, num_connectors);
  4878. /*
  4879. * Returns a set of divisors for the desired target clock with the given
  4880. * refclk, or FALSE. The returned values represent the clock equation:
  4881. * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
  4882. */
  4883. limit = intel_limit(crtc, refclk);
  4884. ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
  4885. &clock);
  4886. if (!ok) {
  4887. DRM_ERROR("Couldn't find PLL settings for mode!\n");
  4888. return -EINVAL;
  4889. }
  4890. /* Ensure that the cursor is valid for the new mode before changing... */
  4891. intel_crtc_update_cursor(crtc, true);
  4892. if (is_lvds && dev_priv->lvds_downclock_avail) {
  4893. /*
  4894. * Ensure we match the reduced clock's P to the target clock.
  4895. * If the clocks don't match, we can't switch the display clock
  4896. * by using the FP0/FP1. In such case we will disable the LVDS
  4897. * downclock feature.
  4898. */
  4899. has_reduced_clock = limit->find_pll(limit, crtc,
  4900. dev_priv->lvds_downclock,
  4901. refclk,
  4902. &clock,
  4903. &reduced_clock);
  4904. }
  4905. if (is_sdvo && is_tv)
  4906. i9xx_adjust_sdvo_tv_clock(adjusted_mode, &clock);
  4907. i9xx_update_pll_dividers(crtc, &clock, has_reduced_clock ?
  4908. &reduced_clock : NULL);
  4909. if (IS_GEN2(dev))
  4910. i8xx_update_pll(crtc, adjusted_mode, &clock, num_connectors);
  4911. else
  4912. i9xx_update_pll(crtc, mode, adjusted_mode, &clock,
  4913. has_reduced_clock ? &reduced_clock : NULL,
  4914. num_connectors);
  4915. /* setup pipeconf */
  4916. pipeconf = I915_READ(PIPECONF(pipe));
  4917. /* Set up the display plane register */
  4918. dspcntr = DISPPLANE_GAMMA_ENABLE;
  4919. if (pipe == 0)
  4920. dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
  4921. else
  4922. dspcntr |= DISPPLANE_SEL_PIPE_B;
  4923. if (pipe == 0 && INTEL_INFO(dev)->gen < 4) {
  4924. /* Enable pixel doubling when the dot clock is > 90% of the (display)
  4925. * core speed.
  4926. *
  4927. * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
  4928. * pipe == 0 check?
  4929. */
  4930. if (mode->clock >
  4931. dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
  4932. pipeconf |= PIPECONF_DOUBLE_WIDE;
  4933. else
  4934. pipeconf &= ~PIPECONF_DOUBLE_WIDE;
  4935. }
  4936. /* default to 8bpc */
  4937. pipeconf &= ~(PIPECONF_BPP_MASK | PIPECONF_DITHER_EN);
  4938. if (is_dp) {
  4939. if (mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
  4940. pipeconf |= PIPECONF_BPP_6 |
  4941. PIPECONF_DITHER_EN |
  4942. PIPECONF_DITHER_TYPE_SP;
  4943. }
  4944. }
  4945. DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
  4946. drm_mode_debug_printmodeline(mode);
  4947. if (HAS_PIPE_CXSR(dev)) {
  4948. if (intel_crtc->lowfreq_avail) {
  4949. DRM_DEBUG_KMS("enabling CxSR downclocking\n");
  4950. pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
  4951. } else {
  4952. DRM_DEBUG_KMS("disabling CxSR downclocking\n");
  4953. pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
  4954. }
  4955. }
  4956. pipeconf &= ~PIPECONF_INTERLACE_MASK;
  4957. if (!IS_GEN2(dev) &&
  4958. adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
  4959. pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
  4960. /* the chip adds 2 halflines automatically */
  4961. adjusted_mode->crtc_vtotal -= 1;
  4962. adjusted_mode->crtc_vblank_end -= 1;
  4963. vsyncshift = adjusted_mode->crtc_hsync_start
  4964. - adjusted_mode->crtc_htotal/2;
  4965. } else {
  4966. pipeconf |= PIPECONF_PROGRESSIVE;
  4967. vsyncshift = 0;
  4968. }
  4969. if (!IS_GEN3(dev))
  4970. I915_WRITE(VSYNCSHIFT(pipe), vsyncshift);
  4971. I915_WRITE(HTOTAL(pipe),
  4972. (adjusted_mode->crtc_hdisplay - 1) |
  4973. ((adjusted_mode->crtc_htotal - 1) << 16));
  4974. I915_WRITE(HBLANK(pipe),
  4975. (adjusted_mode->crtc_hblank_start - 1) |
  4976. ((adjusted_mode->crtc_hblank_end - 1) << 16));
  4977. I915_WRITE(HSYNC(pipe),
  4978. (adjusted_mode->crtc_hsync_start - 1) |
  4979. ((adjusted_mode->crtc_hsync_end - 1) << 16));
  4980. I915_WRITE(VTOTAL(pipe),
  4981. (adjusted_mode->crtc_vdisplay - 1) |
  4982. ((adjusted_mode->crtc_vtotal - 1) << 16));
  4983. I915_WRITE(VBLANK(pipe),
  4984. (adjusted_mode->crtc_vblank_start - 1) |
  4985. ((adjusted_mode->crtc_vblank_end - 1) << 16));
  4986. I915_WRITE(VSYNC(pipe),
  4987. (adjusted_mode->crtc_vsync_start - 1) |
  4988. ((adjusted_mode->crtc_vsync_end - 1) << 16));
  4989. /* pipesrc and dspsize control the size that is scaled from,
  4990. * which should always be the user's requested size.
  4991. */
  4992. I915_WRITE(DSPSIZE(plane),
  4993. ((mode->vdisplay - 1) << 16) |
  4994. (mode->hdisplay - 1));
  4995. I915_WRITE(DSPPOS(plane), 0);
  4996. I915_WRITE(PIPESRC(pipe),
  4997. ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
  4998. I915_WRITE(PIPECONF(pipe), pipeconf);
  4999. POSTING_READ(PIPECONF(pipe));
  5000. intel_enable_pipe(dev_priv, pipe, false);
  5001. intel_wait_for_vblank(dev, pipe);
  5002. I915_WRITE(DSPCNTR(plane), dspcntr);
  5003. POSTING_READ(DSPCNTR(plane));
  5004. intel_enable_plane(dev_priv, plane, pipe);
  5005. ret = intel_pipe_set_base(crtc, x, y, old_fb);
  5006. intel_update_watermarks(dev);
  5007. return ret;
  5008. }
  5009. /*
  5010. * Initialize reference clocks when the driver loads
  5011. */
  5012. void ironlake_init_pch_refclk(struct drm_device *dev)
  5013. {
  5014. struct drm_i915_private *dev_priv = dev->dev_private;
  5015. struct drm_mode_config *mode_config = &dev->mode_config;
  5016. struct intel_encoder *encoder;
  5017. u32 temp;
  5018. bool has_lvds = false;
  5019. bool has_cpu_edp = false;
  5020. bool has_pch_edp = false;
  5021. bool has_panel = false;
  5022. bool has_ck505 = false;
  5023. bool can_ssc = false;
  5024. /* We need to take the global config into account */
  5025. list_for_each_entry(encoder, &mode_config->encoder_list,
  5026. base.head) {
  5027. switch (encoder->type) {
  5028. case INTEL_OUTPUT_LVDS:
  5029. has_panel = true;
  5030. has_lvds = true;
  5031. break;
  5032. case INTEL_OUTPUT_EDP:
  5033. has_panel = true;
  5034. if (intel_encoder_is_pch_edp(&encoder->base))
  5035. has_pch_edp = true;
  5036. else
  5037. has_cpu_edp = true;
  5038. break;
  5039. }
  5040. }
  5041. if (HAS_PCH_IBX(dev)) {
  5042. has_ck505 = dev_priv->display_clock_mode;
  5043. can_ssc = has_ck505;
  5044. } else {
  5045. has_ck505 = false;
  5046. can_ssc = true;
  5047. }
  5048. DRM_DEBUG_KMS("has_panel %d has_lvds %d has_pch_edp %d has_cpu_edp %d has_ck505 %d\n",
  5049. has_panel, has_lvds, has_pch_edp, has_cpu_edp,
  5050. has_ck505);
  5051. /* Ironlake: try to setup display ref clock before DPLL
  5052. * enabling. This is only under driver's control after
  5053. * PCH B stepping, previous chipset stepping should be
  5054. * ignoring this setting.
  5055. */
  5056. temp = I915_READ(PCH_DREF_CONTROL);
  5057. /* Always enable nonspread source */
  5058. temp &= ~DREF_NONSPREAD_SOURCE_MASK;
  5059. if (has_ck505)
  5060. temp |= DREF_NONSPREAD_CK505_ENABLE;
  5061. else
  5062. temp |= DREF_NONSPREAD_SOURCE_ENABLE;
  5063. if (has_panel) {
  5064. temp &= ~DREF_SSC_SOURCE_MASK;
  5065. temp |= DREF_SSC_SOURCE_ENABLE;
  5066. /* SSC must be turned on before enabling the CPU output */
  5067. if (intel_panel_use_ssc(dev_priv) && can_ssc) {
  5068. DRM_DEBUG_KMS("Using SSC on panel\n");
  5069. temp |= DREF_SSC1_ENABLE;
  5070. } else
  5071. temp &= ~DREF_SSC1_ENABLE;
  5072. /* Get SSC going before enabling the outputs */
  5073. I915_WRITE(PCH_DREF_CONTROL, temp);
  5074. POSTING_READ(PCH_DREF_CONTROL);
  5075. udelay(200);
  5076. temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
  5077. /* Enable CPU source on CPU attached eDP */
  5078. if (has_cpu_edp) {
  5079. if (intel_panel_use_ssc(dev_priv) && can_ssc) {
  5080. DRM_DEBUG_KMS("Using SSC on eDP\n");
  5081. temp |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
  5082. }
  5083. else
  5084. temp |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
  5085. } else
  5086. temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
  5087. I915_WRITE(PCH_DREF_CONTROL, temp);
  5088. POSTING_READ(PCH_DREF_CONTROL);
  5089. udelay(200);
  5090. } else {
  5091. DRM_DEBUG_KMS("Disabling SSC entirely\n");
  5092. temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
  5093. /* Turn off CPU output */
  5094. temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
  5095. I915_WRITE(PCH_DREF_CONTROL, temp);
  5096. POSTING_READ(PCH_DREF_CONTROL);
  5097. udelay(200);
  5098. /* Turn off the SSC source */
  5099. temp &= ~DREF_SSC_SOURCE_MASK;
  5100. temp |= DREF_SSC_SOURCE_DISABLE;
  5101. /* Turn off SSC1 */
  5102. temp &= ~ DREF_SSC1_ENABLE;
  5103. I915_WRITE(PCH_DREF_CONTROL, temp);
  5104. POSTING_READ(PCH_DREF_CONTROL);
  5105. udelay(200);
  5106. }
  5107. }
  5108. static int ironlake_get_refclk(struct drm_crtc *crtc)
  5109. {
  5110. struct drm_device *dev = crtc->dev;
  5111. struct drm_i915_private *dev_priv = dev->dev_private;
  5112. struct intel_encoder *encoder;
  5113. struct drm_mode_config *mode_config = &dev->mode_config;
  5114. struct intel_encoder *edp_encoder = NULL;
  5115. int num_connectors = 0;
  5116. bool is_lvds = false;
  5117. list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
  5118. if (encoder->base.crtc != crtc)
  5119. continue;
  5120. switch (encoder->type) {
  5121. case INTEL_OUTPUT_LVDS:
  5122. is_lvds = true;
  5123. break;
  5124. case INTEL_OUTPUT_EDP:
  5125. edp_encoder = encoder;
  5126. break;
  5127. }
  5128. num_connectors++;
  5129. }
  5130. if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
  5131. DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
  5132. dev_priv->lvds_ssc_freq);
  5133. return dev_priv->lvds_ssc_freq * 1000;
  5134. }
  5135. return 120000;
  5136. }
  5137. static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
  5138. struct drm_display_mode *mode,
  5139. struct drm_display_mode *adjusted_mode,
  5140. int x, int y,
  5141. struct drm_framebuffer *old_fb)
  5142. {
  5143. struct drm_device *dev = crtc->dev;
  5144. struct drm_i915_private *dev_priv = dev->dev_private;
  5145. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5146. int pipe = intel_crtc->pipe;
  5147. int plane = intel_crtc->plane;
  5148. int refclk, num_connectors = 0;
  5149. intel_clock_t clock, reduced_clock;
  5150. u32 dpll, fp = 0, fp2 = 0, dspcntr, pipeconf;
  5151. bool ok, has_reduced_clock = false, is_sdvo = false;
  5152. bool is_crt = false, is_lvds = false, is_tv = false, is_dp = false;
  5153. struct drm_mode_config *mode_config = &dev->mode_config;
  5154. struct intel_encoder *encoder, *edp_encoder = NULL;
  5155. const intel_limit_t *limit;
  5156. int ret;
  5157. struct fdi_m_n m_n = {0};
  5158. u32 temp;
  5159. u32 lvds_sync = 0;
  5160. int target_clock, pixel_multiplier, lane, link_bw, factor;
  5161. unsigned int pipe_bpp;
  5162. bool dither;
  5163. bool is_cpu_edp = false, is_pch_edp = false;
  5164. list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
  5165. if (encoder->base.crtc != crtc)
  5166. continue;
  5167. switch (encoder->type) {
  5168. case INTEL_OUTPUT_LVDS:
  5169. is_lvds = true;
  5170. break;
  5171. case INTEL_OUTPUT_SDVO:
  5172. case INTEL_OUTPUT_HDMI:
  5173. is_sdvo = true;
  5174. if (encoder->needs_tv_clock)
  5175. is_tv = true;
  5176. break;
  5177. case INTEL_OUTPUT_TVOUT:
  5178. is_tv = true;
  5179. break;
  5180. case INTEL_OUTPUT_ANALOG:
  5181. is_crt = true;
  5182. break;
  5183. case INTEL_OUTPUT_DISPLAYPORT:
  5184. is_dp = true;
  5185. break;
  5186. case INTEL_OUTPUT_EDP:
  5187. is_dp = true;
  5188. if (intel_encoder_is_pch_edp(&encoder->base))
  5189. is_pch_edp = true;
  5190. else
  5191. is_cpu_edp = true;
  5192. edp_encoder = encoder;
  5193. break;
  5194. }
  5195. num_connectors++;
  5196. }
  5197. refclk = ironlake_get_refclk(crtc);
  5198. /*
  5199. * Returns a set of divisors for the desired target clock with the given
  5200. * refclk, or FALSE. The returned values represent the clock equation:
  5201. * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
  5202. */
  5203. limit = intel_limit(crtc, refclk);
  5204. ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
  5205. &clock);
  5206. if (!ok) {
  5207. DRM_ERROR("Couldn't find PLL settings for mode!\n");
  5208. return -EINVAL;
  5209. }
  5210. /* Ensure that the cursor is valid for the new mode before changing... */
  5211. intel_crtc_update_cursor(crtc, true);
  5212. if (is_lvds && dev_priv->lvds_downclock_avail) {
  5213. /*
  5214. * Ensure we match the reduced clock's P to the target clock.
  5215. * If the clocks don't match, we can't switch the display clock
  5216. * by using the FP0/FP1. In such case we will disable the LVDS
  5217. * downclock feature.
  5218. */
  5219. has_reduced_clock = limit->find_pll(limit, crtc,
  5220. dev_priv->lvds_downclock,
  5221. refclk,
  5222. &clock,
  5223. &reduced_clock);
  5224. }
  5225. /* SDVO TV has fixed PLL values depend on its clock range,
  5226. this mirrors vbios setting. */
  5227. if (is_sdvo && is_tv) {
  5228. if (adjusted_mode->clock >= 100000
  5229. && adjusted_mode->clock < 140500) {
  5230. clock.p1 = 2;
  5231. clock.p2 = 10;
  5232. clock.n = 3;
  5233. clock.m1 = 16;
  5234. clock.m2 = 8;
  5235. } else if (adjusted_mode->clock >= 140500
  5236. && adjusted_mode->clock <= 200000) {
  5237. clock.p1 = 1;
  5238. clock.p2 = 10;
  5239. clock.n = 6;
  5240. clock.m1 = 12;
  5241. clock.m2 = 8;
  5242. }
  5243. }
  5244. /* FDI link */
  5245. pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
  5246. lane = 0;
  5247. /* CPU eDP doesn't require FDI link, so just set DP M/N
  5248. according to current link config */
  5249. if (is_cpu_edp) {
  5250. target_clock = mode->clock;
  5251. intel_edp_link_config(edp_encoder, &lane, &link_bw);
  5252. } else {
  5253. /* [e]DP over FDI requires target mode clock
  5254. instead of link clock */
  5255. if (is_dp)
  5256. target_clock = mode->clock;
  5257. else
  5258. target_clock = adjusted_mode->clock;
  5259. /* FDI is a binary signal running at ~2.7GHz, encoding
  5260. * each output octet as 10 bits. The actual frequency
  5261. * is stored as a divider into a 100MHz clock, and the
  5262. * mode pixel clock is stored in units of 1KHz.
  5263. * Hence the bw of each lane in terms of the mode signal
  5264. * is:
  5265. */
  5266. link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
  5267. }
  5268. /* determine panel color depth */
  5269. temp = I915_READ(PIPECONF(pipe));
  5270. temp &= ~PIPE_BPC_MASK;
  5271. dither = intel_choose_pipe_bpp_dither(crtc, &pipe_bpp, mode);
  5272. switch (pipe_bpp) {
  5273. case 18:
  5274. temp |= PIPE_6BPC;
  5275. break;
  5276. case 24:
  5277. temp |= PIPE_8BPC;
  5278. break;
  5279. case 30:
  5280. temp |= PIPE_10BPC;
  5281. break;
  5282. case 36:
  5283. temp |= PIPE_12BPC;
  5284. break;
  5285. default:
  5286. WARN(1, "intel_choose_pipe_bpp returned invalid value %d\n",
  5287. pipe_bpp);
  5288. temp |= PIPE_8BPC;
  5289. pipe_bpp = 24;
  5290. break;
  5291. }
  5292. intel_crtc->bpp = pipe_bpp;
  5293. I915_WRITE(PIPECONF(pipe), temp);
  5294. if (!lane) {
  5295. /*
  5296. * Account for spread spectrum to avoid
  5297. * oversubscribing the link. Max center spread
  5298. * is 2.5%; use 5% for safety's sake.
  5299. */
  5300. u32 bps = target_clock * intel_crtc->bpp * 21 / 20;
  5301. lane = bps / (link_bw * 8) + 1;
  5302. }
  5303. intel_crtc->fdi_lanes = lane;
  5304. if (pixel_multiplier > 1)
  5305. link_bw *= pixel_multiplier;
  5306. ironlake_compute_m_n(intel_crtc->bpp, lane, target_clock, link_bw,
  5307. &m_n);
  5308. fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
  5309. if (has_reduced_clock)
  5310. fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
  5311. reduced_clock.m2;
  5312. /* Enable autotuning of the PLL clock (if permissible) */
  5313. factor = 21;
  5314. if (is_lvds) {
  5315. if ((intel_panel_use_ssc(dev_priv) &&
  5316. dev_priv->lvds_ssc_freq == 100) ||
  5317. (I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) == LVDS_CLKB_POWER_UP)
  5318. factor = 25;
  5319. } else if (is_sdvo && is_tv)
  5320. factor = 20;
  5321. if (clock.m < factor * clock.n)
  5322. fp |= FP_CB_TUNE;
  5323. dpll = 0;
  5324. if (is_lvds)
  5325. dpll |= DPLLB_MODE_LVDS;
  5326. else
  5327. dpll |= DPLLB_MODE_DAC_SERIAL;
  5328. if (is_sdvo) {
  5329. int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
  5330. if (pixel_multiplier > 1) {
  5331. dpll |= (pixel_multiplier - 1) << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
  5332. }
  5333. dpll |= DPLL_DVO_HIGH_SPEED;
  5334. }
  5335. if (is_dp && !is_cpu_edp)
  5336. dpll |= DPLL_DVO_HIGH_SPEED;
  5337. /* compute bitmask from p1 value */
  5338. dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  5339. /* also FPA1 */
  5340. dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
  5341. switch (clock.p2) {
  5342. case 5:
  5343. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
  5344. break;
  5345. case 7:
  5346. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
  5347. break;
  5348. case 10:
  5349. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
  5350. break;
  5351. case 14:
  5352. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
  5353. break;
  5354. }
  5355. if (is_sdvo && is_tv)
  5356. dpll |= PLL_REF_INPUT_TVCLKINBC;
  5357. else if (is_tv)
  5358. /* XXX: just matching BIOS for now */
  5359. /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
  5360. dpll |= 3;
  5361. else if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
  5362. dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
  5363. else
  5364. dpll |= PLL_REF_INPUT_DREFCLK;
  5365. /* setup pipeconf */
  5366. pipeconf = I915_READ(PIPECONF(pipe));
  5367. /* Set up the display plane register */
  5368. dspcntr = DISPPLANE_GAMMA_ENABLE;
  5369. DRM_DEBUG_KMS("Mode for pipe %d:\n", pipe);
  5370. drm_mode_debug_printmodeline(mode);
  5371. /* PCH eDP needs FDI, but CPU eDP does not */
  5372. if (!intel_crtc->no_pll) {
  5373. if (!is_cpu_edp) {
  5374. I915_WRITE(PCH_FP0(pipe), fp);
  5375. I915_WRITE(PCH_DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
  5376. POSTING_READ(PCH_DPLL(pipe));
  5377. udelay(150);
  5378. }
  5379. } else {
  5380. if (dpll == (I915_READ(PCH_DPLL(0)) & 0x7fffffff) &&
  5381. fp == I915_READ(PCH_FP0(0))) {
  5382. intel_crtc->use_pll_a = true;
  5383. DRM_DEBUG_KMS("using pipe a dpll\n");
  5384. } else if (dpll == (I915_READ(PCH_DPLL(1)) & 0x7fffffff) &&
  5385. fp == I915_READ(PCH_FP0(1))) {
  5386. intel_crtc->use_pll_a = false;
  5387. DRM_DEBUG_KMS("using pipe b dpll\n");
  5388. } else {
  5389. DRM_DEBUG_KMS("no matching PLL configuration for pipe 2\n");
  5390. return -EINVAL;
  5391. }
  5392. }
  5393. /* The LVDS pin pair needs to be on before the DPLLs are enabled.
  5394. * This is an exception to the general rule that mode_set doesn't turn
  5395. * things on.
  5396. */
  5397. if (is_lvds) {
  5398. temp = I915_READ(PCH_LVDS);
  5399. temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
  5400. if (HAS_PCH_CPT(dev)) {
  5401. temp &= ~PORT_TRANS_SEL_MASK;
  5402. temp |= PORT_TRANS_SEL_CPT(pipe);
  5403. } else {
  5404. if (pipe == 1)
  5405. temp |= LVDS_PIPEB_SELECT;
  5406. else
  5407. temp &= ~LVDS_PIPEB_SELECT;
  5408. }
  5409. /* set the corresponsding LVDS_BORDER bit */
  5410. temp |= dev_priv->lvds_border_bits;
  5411. /* Set the B0-B3 data pairs corresponding to whether we're going to
  5412. * set the DPLLs for dual-channel mode or not.
  5413. */
  5414. if (clock.p2 == 7)
  5415. temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
  5416. else
  5417. temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
  5418. /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
  5419. * appropriately here, but we need to look more thoroughly into how
  5420. * panels behave in the two modes.
  5421. */
  5422. if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
  5423. lvds_sync |= LVDS_HSYNC_POLARITY;
  5424. if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
  5425. lvds_sync |= LVDS_VSYNC_POLARITY;
  5426. if ((temp & (LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY))
  5427. != lvds_sync) {
  5428. char flags[2] = "-+";
  5429. DRM_INFO("Changing LVDS panel from "
  5430. "(%chsync, %cvsync) to (%chsync, %cvsync)\n",
  5431. flags[!(temp & LVDS_HSYNC_POLARITY)],
  5432. flags[!(temp & LVDS_VSYNC_POLARITY)],
  5433. flags[!(lvds_sync & LVDS_HSYNC_POLARITY)],
  5434. flags[!(lvds_sync & LVDS_VSYNC_POLARITY)]);
  5435. temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
  5436. temp |= lvds_sync;
  5437. }
  5438. I915_WRITE(PCH_LVDS, temp);
  5439. }
  5440. pipeconf &= ~PIPECONF_DITHER_EN;
  5441. pipeconf &= ~PIPECONF_DITHER_TYPE_MASK;
  5442. if ((is_lvds && dev_priv->lvds_dither) || dither) {
  5443. pipeconf |= PIPECONF_DITHER_EN;
  5444. pipeconf |= PIPECONF_DITHER_TYPE_SP;
  5445. }
  5446. if (is_dp && !is_cpu_edp) {
  5447. intel_dp_set_m_n(crtc, mode, adjusted_mode);
  5448. } else {
  5449. /* For non-DP output, clear any trans DP clock recovery setting.*/
  5450. I915_WRITE(TRANSDATA_M1(pipe), 0);
  5451. I915_WRITE(TRANSDATA_N1(pipe), 0);
  5452. I915_WRITE(TRANSDPLINK_M1(pipe), 0);
  5453. I915_WRITE(TRANSDPLINK_N1(pipe), 0);
  5454. }
  5455. if (!intel_crtc->no_pll && (!edp_encoder || is_pch_edp)) {
  5456. I915_WRITE(PCH_DPLL(pipe), dpll);
  5457. /* Wait for the clocks to stabilize. */
  5458. POSTING_READ(PCH_DPLL(pipe));
  5459. udelay(150);
  5460. /* The pixel multiplier can only be updated once the
  5461. * DPLL is enabled and the clocks are stable.
  5462. *
  5463. * So write it again.
  5464. */
  5465. I915_WRITE(PCH_DPLL(pipe), dpll);
  5466. }
  5467. intel_crtc->lowfreq_avail = false;
  5468. if (!intel_crtc->no_pll) {
  5469. if (is_lvds && has_reduced_clock && i915_powersave) {
  5470. I915_WRITE(PCH_FP1(pipe), fp2);
  5471. intel_crtc->lowfreq_avail = true;
  5472. if (HAS_PIPE_CXSR(dev)) {
  5473. DRM_DEBUG_KMS("enabling CxSR downclocking\n");
  5474. pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
  5475. }
  5476. } else {
  5477. I915_WRITE(PCH_FP1(pipe), fp);
  5478. if (HAS_PIPE_CXSR(dev)) {
  5479. DRM_DEBUG_KMS("disabling CxSR downclocking\n");
  5480. pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
  5481. }
  5482. }
  5483. }
  5484. pipeconf &= ~PIPECONF_INTERLACE_MASK;
  5485. if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
  5486. pipeconf |= PIPECONF_INTERLACED_ILK;
  5487. /* the chip adds 2 halflines automatically */
  5488. adjusted_mode->crtc_vtotal -= 1;
  5489. adjusted_mode->crtc_vblank_end -= 1;
  5490. I915_WRITE(VSYNCSHIFT(pipe),
  5491. adjusted_mode->crtc_hsync_start
  5492. - adjusted_mode->crtc_htotal/2);
  5493. } else {
  5494. pipeconf |= PIPECONF_PROGRESSIVE;
  5495. I915_WRITE(VSYNCSHIFT(pipe), 0);
  5496. }
  5497. I915_WRITE(HTOTAL(pipe),
  5498. (adjusted_mode->crtc_hdisplay - 1) |
  5499. ((adjusted_mode->crtc_htotal - 1) << 16));
  5500. I915_WRITE(HBLANK(pipe),
  5501. (adjusted_mode->crtc_hblank_start - 1) |
  5502. ((adjusted_mode->crtc_hblank_end - 1) << 16));
  5503. I915_WRITE(HSYNC(pipe),
  5504. (adjusted_mode->crtc_hsync_start - 1) |
  5505. ((adjusted_mode->crtc_hsync_end - 1) << 16));
  5506. I915_WRITE(VTOTAL(pipe),
  5507. (adjusted_mode->crtc_vdisplay - 1) |
  5508. ((adjusted_mode->crtc_vtotal - 1) << 16));
  5509. I915_WRITE(VBLANK(pipe),
  5510. (adjusted_mode->crtc_vblank_start - 1) |
  5511. ((adjusted_mode->crtc_vblank_end - 1) << 16));
  5512. I915_WRITE(VSYNC(pipe),
  5513. (adjusted_mode->crtc_vsync_start - 1) |
  5514. ((adjusted_mode->crtc_vsync_end - 1) << 16));
  5515. /* pipesrc controls the size that is scaled from, which should
  5516. * always be the user's requested size.
  5517. */
  5518. I915_WRITE(PIPESRC(pipe),
  5519. ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
  5520. I915_WRITE(PIPE_DATA_M1(pipe), TU_SIZE(m_n.tu) | m_n.gmch_m);
  5521. I915_WRITE(PIPE_DATA_N1(pipe), m_n.gmch_n);
  5522. I915_WRITE(PIPE_LINK_M1(pipe), m_n.link_m);
  5523. I915_WRITE(PIPE_LINK_N1(pipe), m_n.link_n);
  5524. if (is_cpu_edp)
  5525. ironlake_set_pll_edp(crtc, adjusted_mode->clock);
  5526. I915_WRITE(PIPECONF(pipe), pipeconf);
  5527. POSTING_READ(PIPECONF(pipe));
  5528. intel_wait_for_vblank(dev, pipe);
  5529. I915_WRITE(DSPCNTR(plane), dspcntr);
  5530. POSTING_READ(DSPCNTR(plane));
  5531. ret = intel_pipe_set_base(crtc, x, y, old_fb);
  5532. intel_update_watermarks(dev);
  5533. return ret;
  5534. }
  5535. static int intel_crtc_mode_set(struct drm_crtc *crtc,
  5536. struct drm_display_mode *mode,
  5537. struct drm_display_mode *adjusted_mode,
  5538. int x, int y,
  5539. struct drm_framebuffer *old_fb)
  5540. {
  5541. struct drm_device *dev = crtc->dev;
  5542. struct drm_i915_private *dev_priv = dev->dev_private;
  5543. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5544. int pipe = intel_crtc->pipe;
  5545. int ret;
  5546. drm_vblank_pre_modeset(dev, pipe);
  5547. ret = dev_priv->display.crtc_mode_set(crtc, mode, adjusted_mode,
  5548. x, y, old_fb);
  5549. drm_vblank_post_modeset(dev, pipe);
  5550. if (ret)
  5551. intel_crtc->dpms_mode = DRM_MODE_DPMS_OFF;
  5552. else
  5553. intel_crtc->dpms_mode = DRM_MODE_DPMS_ON;
  5554. return ret;
  5555. }
  5556. static bool intel_eld_uptodate(struct drm_connector *connector,
  5557. int reg_eldv, uint32_t bits_eldv,
  5558. int reg_elda, uint32_t bits_elda,
  5559. int reg_edid)
  5560. {
  5561. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  5562. uint8_t *eld = connector->eld;
  5563. uint32_t i;
  5564. i = I915_READ(reg_eldv);
  5565. i &= bits_eldv;
  5566. if (!eld[0])
  5567. return !i;
  5568. if (!i)
  5569. return false;
  5570. i = I915_READ(reg_elda);
  5571. i &= ~bits_elda;
  5572. I915_WRITE(reg_elda, i);
  5573. for (i = 0; i < eld[2]; i++)
  5574. if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
  5575. return false;
  5576. return true;
  5577. }
  5578. static void g4x_write_eld(struct drm_connector *connector,
  5579. struct drm_crtc *crtc)
  5580. {
  5581. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  5582. uint8_t *eld = connector->eld;
  5583. uint32_t eldv;
  5584. uint32_t len;
  5585. uint32_t i;
  5586. i = I915_READ(G4X_AUD_VID_DID);
  5587. if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
  5588. eldv = G4X_ELDV_DEVCL_DEVBLC;
  5589. else
  5590. eldv = G4X_ELDV_DEVCTG;
  5591. if (intel_eld_uptodate(connector,
  5592. G4X_AUD_CNTL_ST, eldv,
  5593. G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
  5594. G4X_HDMIW_HDMIEDID))
  5595. return;
  5596. i = I915_READ(G4X_AUD_CNTL_ST);
  5597. i &= ~(eldv | G4X_ELD_ADDR);
  5598. len = (i >> 9) & 0x1f; /* ELD buffer size */
  5599. I915_WRITE(G4X_AUD_CNTL_ST, i);
  5600. if (!eld[0])
  5601. return;
  5602. len = min_t(uint8_t, eld[2], len);
  5603. DRM_DEBUG_DRIVER("ELD size %d\n", len);
  5604. for (i = 0; i < len; i++)
  5605. I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
  5606. i = I915_READ(G4X_AUD_CNTL_ST);
  5607. i |= eldv;
  5608. I915_WRITE(G4X_AUD_CNTL_ST, i);
  5609. }
  5610. static void ironlake_write_eld(struct drm_connector *connector,
  5611. struct drm_crtc *crtc)
  5612. {
  5613. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  5614. uint8_t *eld = connector->eld;
  5615. uint32_t eldv;
  5616. uint32_t i;
  5617. int len;
  5618. int hdmiw_hdmiedid;
  5619. int aud_config;
  5620. int aud_cntl_st;
  5621. int aud_cntrl_st2;
  5622. if (HAS_PCH_IBX(connector->dev)) {
  5623. hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID_A;
  5624. aud_config = IBX_AUD_CONFIG_A;
  5625. aud_cntl_st = IBX_AUD_CNTL_ST_A;
  5626. aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
  5627. } else {
  5628. hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID_A;
  5629. aud_config = CPT_AUD_CONFIG_A;
  5630. aud_cntl_st = CPT_AUD_CNTL_ST_A;
  5631. aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
  5632. }
  5633. i = to_intel_crtc(crtc)->pipe;
  5634. hdmiw_hdmiedid += i * 0x100;
  5635. aud_cntl_st += i * 0x100;
  5636. aud_config += i * 0x100;
  5637. DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(i));
  5638. i = I915_READ(aud_cntl_st);
  5639. i = (i >> 29) & 0x3; /* DIP_Port_Select, 0x1 = PortB */
  5640. if (!i) {
  5641. DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
  5642. /* operate blindly on all ports */
  5643. eldv = IBX_ELD_VALIDB;
  5644. eldv |= IBX_ELD_VALIDB << 4;
  5645. eldv |= IBX_ELD_VALIDB << 8;
  5646. } else {
  5647. DRM_DEBUG_DRIVER("ELD on port %c\n", 'A' + i);
  5648. eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
  5649. }
  5650. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
  5651. DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
  5652. eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
  5653. I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
  5654. } else
  5655. I915_WRITE(aud_config, 0);
  5656. if (intel_eld_uptodate(connector,
  5657. aud_cntrl_st2, eldv,
  5658. aud_cntl_st, IBX_ELD_ADDRESS,
  5659. hdmiw_hdmiedid))
  5660. return;
  5661. i = I915_READ(aud_cntrl_st2);
  5662. i &= ~eldv;
  5663. I915_WRITE(aud_cntrl_st2, i);
  5664. if (!eld[0])
  5665. return;
  5666. i = I915_READ(aud_cntl_st);
  5667. i &= ~IBX_ELD_ADDRESS;
  5668. I915_WRITE(aud_cntl_st, i);
  5669. len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
  5670. DRM_DEBUG_DRIVER("ELD size %d\n", len);
  5671. for (i = 0; i < len; i++)
  5672. I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
  5673. i = I915_READ(aud_cntrl_st2);
  5674. i |= eldv;
  5675. I915_WRITE(aud_cntrl_st2, i);
  5676. }
  5677. void intel_write_eld(struct drm_encoder *encoder,
  5678. struct drm_display_mode *mode)
  5679. {
  5680. struct drm_crtc *crtc = encoder->crtc;
  5681. struct drm_connector *connector;
  5682. struct drm_device *dev = encoder->dev;
  5683. struct drm_i915_private *dev_priv = dev->dev_private;
  5684. connector = drm_select_eld(encoder, mode);
  5685. if (!connector)
  5686. return;
  5687. DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
  5688. connector->base.id,
  5689. drm_get_connector_name(connector),
  5690. connector->encoder->base.id,
  5691. drm_get_encoder_name(connector->encoder));
  5692. connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
  5693. if (dev_priv->display.write_eld)
  5694. dev_priv->display.write_eld(connector, crtc);
  5695. }
  5696. /** Loads the palette/gamma unit for the CRTC with the prepared values */
  5697. void intel_crtc_load_lut(struct drm_crtc *crtc)
  5698. {
  5699. struct drm_device *dev = crtc->dev;
  5700. struct drm_i915_private *dev_priv = dev->dev_private;
  5701. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5702. int palreg = PALETTE(intel_crtc->pipe);
  5703. int i;
  5704. /* The clocks have to be on to load the palette. */
  5705. if (!crtc->enabled || !intel_crtc->active)
  5706. return;
  5707. /* use legacy palette for Ironlake */
  5708. if (HAS_PCH_SPLIT(dev))
  5709. palreg = LGC_PALETTE(intel_crtc->pipe);
  5710. for (i = 0; i < 256; i++) {
  5711. I915_WRITE(palreg + 4 * i,
  5712. (intel_crtc->lut_r[i] << 16) |
  5713. (intel_crtc->lut_g[i] << 8) |
  5714. intel_crtc->lut_b[i]);
  5715. }
  5716. }
  5717. static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
  5718. {
  5719. struct drm_device *dev = crtc->dev;
  5720. struct drm_i915_private *dev_priv = dev->dev_private;
  5721. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5722. bool visible = base != 0;
  5723. u32 cntl;
  5724. if (intel_crtc->cursor_visible == visible)
  5725. return;
  5726. cntl = I915_READ(_CURACNTR);
  5727. if (visible) {
  5728. /* On these chipsets we can only modify the base whilst
  5729. * the cursor is disabled.
  5730. */
  5731. I915_WRITE(_CURABASE, base);
  5732. cntl &= ~(CURSOR_FORMAT_MASK);
  5733. /* XXX width must be 64, stride 256 => 0x00 << 28 */
  5734. cntl |= CURSOR_ENABLE |
  5735. CURSOR_GAMMA_ENABLE |
  5736. CURSOR_FORMAT_ARGB;
  5737. } else
  5738. cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
  5739. I915_WRITE(_CURACNTR, cntl);
  5740. intel_crtc->cursor_visible = visible;
  5741. }
  5742. static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
  5743. {
  5744. struct drm_device *dev = crtc->dev;
  5745. struct drm_i915_private *dev_priv = dev->dev_private;
  5746. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5747. int pipe = intel_crtc->pipe;
  5748. bool visible = base != 0;
  5749. if (intel_crtc->cursor_visible != visible) {
  5750. uint32_t cntl = I915_READ(CURCNTR(pipe));
  5751. if (base) {
  5752. cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
  5753. cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
  5754. cntl |= pipe << 28; /* Connect to correct pipe */
  5755. } else {
  5756. cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
  5757. cntl |= CURSOR_MODE_DISABLE;
  5758. }
  5759. I915_WRITE(CURCNTR(pipe), cntl);
  5760. intel_crtc->cursor_visible = visible;
  5761. }
  5762. /* and commit changes on next vblank */
  5763. I915_WRITE(CURBASE(pipe), base);
  5764. }
  5765. static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
  5766. {
  5767. struct drm_device *dev = crtc->dev;
  5768. struct drm_i915_private *dev_priv = dev->dev_private;
  5769. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5770. int pipe = intel_crtc->pipe;
  5771. bool visible = base != 0;
  5772. if (intel_crtc->cursor_visible != visible) {
  5773. uint32_t cntl = I915_READ(CURCNTR_IVB(pipe));
  5774. if (base) {
  5775. cntl &= ~CURSOR_MODE;
  5776. cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
  5777. } else {
  5778. cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
  5779. cntl |= CURSOR_MODE_DISABLE;
  5780. }
  5781. I915_WRITE(CURCNTR_IVB(pipe), cntl);
  5782. intel_crtc->cursor_visible = visible;
  5783. }
  5784. /* and commit changes on next vblank */
  5785. I915_WRITE(CURBASE_IVB(pipe), base);
  5786. }
  5787. /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
  5788. static void intel_crtc_update_cursor(struct drm_crtc *crtc,
  5789. bool on)
  5790. {
  5791. struct drm_device *dev = crtc->dev;
  5792. struct drm_i915_private *dev_priv = dev->dev_private;
  5793. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5794. int pipe = intel_crtc->pipe;
  5795. int x = intel_crtc->cursor_x;
  5796. int y = intel_crtc->cursor_y;
  5797. u32 base, pos;
  5798. bool visible;
  5799. pos = 0;
  5800. if (on && crtc->enabled && crtc->fb) {
  5801. base = intel_crtc->cursor_addr;
  5802. if (x > (int) crtc->fb->width)
  5803. base = 0;
  5804. if (y > (int) crtc->fb->height)
  5805. base = 0;
  5806. } else
  5807. base = 0;
  5808. if (x < 0) {
  5809. if (x + intel_crtc->cursor_width < 0)
  5810. base = 0;
  5811. pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
  5812. x = -x;
  5813. }
  5814. pos |= x << CURSOR_X_SHIFT;
  5815. if (y < 0) {
  5816. if (y + intel_crtc->cursor_height < 0)
  5817. base = 0;
  5818. pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
  5819. y = -y;
  5820. }
  5821. pos |= y << CURSOR_Y_SHIFT;
  5822. visible = base != 0;
  5823. if (!visible && !intel_crtc->cursor_visible)
  5824. return;
  5825. if (IS_IVYBRIDGE(dev)) {
  5826. I915_WRITE(CURPOS_IVB(pipe), pos);
  5827. ivb_update_cursor(crtc, base);
  5828. } else {
  5829. I915_WRITE(CURPOS(pipe), pos);
  5830. if (IS_845G(dev) || IS_I865G(dev))
  5831. i845_update_cursor(crtc, base);
  5832. else
  5833. i9xx_update_cursor(crtc, base);
  5834. }
  5835. if (visible)
  5836. intel_mark_busy(dev, to_intel_framebuffer(crtc->fb)->obj);
  5837. }
  5838. static int intel_crtc_cursor_set(struct drm_crtc *crtc,
  5839. struct drm_file *file,
  5840. uint32_t handle,
  5841. uint32_t width, uint32_t height)
  5842. {
  5843. struct drm_device *dev = crtc->dev;
  5844. struct drm_i915_private *dev_priv = dev->dev_private;
  5845. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5846. struct drm_i915_gem_object *obj;
  5847. uint32_t addr;
  5848. int ret;
  5849. DRM_DEBUG_KMS("\n");
  5850. /* if we want to turn off the cursor ignore width and height */
  5851. if (!handle) {
  5852. DRM_DEBUG_KMS("cursor off\n");
  5853. addr = 0;
  5854. obj = NULL;
  5855. mutex_lock(&dev->struct_mutex);
  5856. goto finish;
  5857. }
  5858. /* Currently we only support 64x64 cursors */
  5859. if (width != 64 || height != 64) {
  5860. DRM_ERROR("we currently only support 64x64 cursors\n");
  5861. return -EINVAL;
  5862. }
  5863. obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
  5864. if (&obj->base == NULL)
  5865. return -ENOENT;
  5866. if (obj->base.size < width * height * 4) {
  5867. DRM_ERROR("buffer is to small\n");
  5868. ret = -ENOMEM;
  5869. goto fail;
  5870. }
  5871. /* we only need to pin inside GTT if cursor is non-phy */
  5872. mutex_lock(&dev->struct_mutex);
  5873. if (!dev_priv->info->cursor_needs_physical) {
  5874. if (obj->tiling_mode) {
  5875. DRM_ERROR("cursor cannot be tiled\n");
  5876. ret = -EINVAL;
  5877. goto fail_locked;
  5878. }
  5879. ret = i915_gem_object_pin_to_display_plane(obj, 0, NULL);
  5880. if (ret) {
  5881. DRM_ERROR("failed to move cursor bo into the GTT\n");
  5882. goto fail_locked;
  5883. }
  5884. ret = i915_gem_object_put_fence(obj);
  5885. if (ret) {
  5886. DRM_ERROR("failed to release fence for cursor");
  5887. goto fail_unpin;
  5888. }
  5889. addr = obj->gtt_offset;
  5890. } else {
  5891. int align = IS_I830(dev) ? 16 * 1024 : 256;
  5892. ret = i915_gem_attach_phys_object(dev, obj,
  5893. (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
  5894. align);
  5895. if (ret) {
  5896. DRM_ERROR("failed to attach phys object\n");
  5897. goto fail_locked;
  5898. }
  5899. addr = obj->phys_obj->handle->busaddr;
  5900. }
  5901. if (IS_GEN2(dev))
  5902. I915_WRITE(CURSIZE, (height << 12) | width);
  5903. finish:
  5904. if (intel_crtc->cursor_bo) {
  5905. if (dev_priv->info->cursor_needs_physical) {
  5906. if (intel_crtc->cursor_bo != obj)
  5907. i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
  5908. } else
  5909. i915_gem_object_unpin(intel_crtc->cursor_bo);
  5910. drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
  5911. }
  5912. mutex_unlock(&dev->struct_mutex);
  5913. intel_crtc->cursor_addr = addr;
  5914. intel_crtc->cursor_bo = obj;
  5915. intel_crtc->cursor_width = width;
  5916. intel_crtc->cursor_height = height;
  5917. intel_crtc_update_cursor(crtc, true);
  5918. return 0;
  5919. fail_unpin:
  5920. i915_gem_object_unpin(obj);
  5921. fail_locked:
  5922. mutex_unlock(&dev->struct_mutex);
  5923. fail:
  5924. drm_gem_object_unreference_unlocked(&obj->base);
  5925. return ret;
  5926. }
  5927. static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
  5928. {
  5929. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5930. intel_crtc->cursor_x = x;
  5931. intel_crtc->cursor_y = y;
  5932. intel_crtc_update_cursor(crtc, true);
  5933. return 0;
  5934. }
  5935. /** Sets the color ramps on behalf of RandR */
  5936. void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
  5937. u16 blue, int regno)
  5938. {
  5939. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5940. intel_crtc->lut_r[regno] = red >> 8;
  5941. intel_crtc->lut_g[regno] = green >> 8;
  5942. intel_crtc->lut_b[regno] = blue >> 8;
  5943. }
  5944. void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
  5945. u16 *blue, int regno)
  5946. {
  5947. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5948. *red = intel_crtc->lut_r[regno] << 8;
  5949. *green = intel_crtc->lut_g[regno] << 8;
  5950. *blue = intel_crtc->lut_b[regno] << 8;
  5951. }
  5952. static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
  5953. u16 *blue, uint32_t start, uint32_t size)
  5954. {
  5955. int end = (start + size > 256) ? 256 : start + size, i;
  5956. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5957. for (i = start; i < end; i++) {
  5958. intel_crtc->lut_r[i] = red[i] >> 8;
  5959. intel_crtc->lut_g[i] = green[i] >> 8;
  5960. intel_crtc->lut_b[i] = blue[i] >> 8;
  5961. }
  5962. intel_crtc_load_lut(crtc);
  5963. }
  5964. /**
  5965. * Get a pipe with a simple mode set on it for doing load-based monitor
  5966. * detection.
  5967. *
  5968. * It will be up to the load-detect code to adjust the pipe as appropriate for
  5969. * its requirements. The pipe will be connected to no other encoders.
  5970. *
  5971. * Currently this code will only succeed if there is a pipe with no encoders
  5972. * configured for it. In the future, it could choose to temporarily disable
  5973. * some outputs to free up a pipe for its use.
  5974. *
  5975. * \return crtc, or NULL if no pipes are available.
  5976. */
  5977. /* VESA 640x480x72Hz mode to set on the pipe */
  5978. static struct drm_display_mode load_detect_mode = {
  5979. DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
  5980. 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
  5981. };
  5982. static struct drm_framebuffer *
  5983. intel_framebuffer_create(struct drm_device *dev,
  5984. struct drm_mode_fb_cmd2 *mode_cmd,
  5985. struct drm_i915_gem_object *obj)
  5986. {
  5987. struct intel_framebuffer *intel_fb;
  5988. int ret;
  5989. intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
  5990. if (!intel_fb) {
  5991. drm_gem_object_unreference_unlocked(&obj->base);
  5992. return ERR_PTR(-ENOMEM);
  5993. }
  5994. ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
  5995. if (ret) {
  5996. drm_gem_object_unreference_unlocked(&obj->base);
  5997. kfree(intel_fb);
  5998. return ERR_PTR(ret);
  5999. }
  6000. return &intel_fb->base;
  6001. }
  6002. static u32
  6003. intel_framebuffer_pitch_for_width(int width, int bpp)
  6004. {
  6005. u32 pitch = DIV_ROUND_UP(width * bpp, 8);
  6006. return ALIGN(pitch, 64);
  6007. }
  6008. static u32
  6009. intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
  6010. {
  6011. u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
  6012. return ALIGN(pitch * mode->vdisplay, PAGE_SIZE);
  6013. }
  6014. static struct drm_framebuffer *
  6015. intel_framebuffer_create_for_mode(struct drm_device *dev,
  6016. struct drm_display_mode *mode,
  6017. int depth, int bpp)
  6018. {
  6019. struct drm_i915_gem_object *obj;
  6020. struct drm_mode_fb_cmd2 mode_cmd;
  6021. obj = i915_gem_alloc_object(dev,
  6022. intel_framebuffer_size_for_mode(mode, bpp));
  6023. if (obj == NULL)
  6024. return ERR_PTR(-ENOMEM);
  6025. mode_cmd.width = mode->hdisplay;
  6026. mode_cmd.height = mode->vdisplay;
  6027. mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
  6028. bpp);
  6029. mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
  6030. return intel_framebuffer_create(dev, &mode_cmd, obj);
  6031. }
  6032. static struct drm_framebuffer *
  6033. mode_fits_in_fbdev(struct drm_device *dev,
  6034. struct drm_display_mode *mode)
  6035. {
  6036. struct drm_i915_private *dev_priv = dev->dev_private;
  6037. struct drm_i915_gem_object *obj;
  6038. struct drm_framebuffer *fb;
  6039. if (dev_priv->fbdev == NULL)
  6040. return NULL;
  6041. obj = dev_priv->fbdev->ifb.obj;
  6042. if (obj == NULL)
  6043. return NULL;
  6044. fb = &dev_priv->fbdev->ifb.base;
  6045. if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
  6046. fb->bits_per_pixel))
  6047. return NULL;
  6048. if (obj->base.size < mode->vdisplay * fb->pitches[0])
  6049. return NULL;
  6050. return fb;
  6051. }
  6052. bool intel_get_load_detect_pipe(struct intel_encoder *intel_encoder,
  6053. struct drm_connector *connector,
  6054. struct drm_display_mode *mode,
  6055. struct intel_load_detect_pipe *old)
  6056. {
  6057. struct intel_crtc *intel_crtc;
  6058. struct drm_crtc *possible_crtc;
  6059. struct drm_encoder *encoder = &intel_encoder->base;
  6060. struct drm_crtc *crtc = NULL;
  6061. struct drm_device *dev = encoder->dev;
  6062. struct drm_framebuffer *old_fb;
  6063. int i = -1;
  6064. DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
  6065. connector->base.id, drm_get_connector_name(connector),
  6066. encoder->base.id, drm_get_encoder_name(encoder));
  6067. /*
  6068. * Algorithm gets a little messy:
  6069. *
  6070. * - if the connector already has an assigned crtc, use it (but make
  6071. * sure it's on first)
  6072. *
  6073. * - try to find the first unused crtc that can drive this connector,
  6074. * and use that if we find one
  6075. */
  6076. /* See if we already have a CRTC for this connector */
  6077. if (encoder->crtc) {
  6078. crtc = encoder->crtc;
  6079. intel_crtc = to_intel_crtc(crtc);
  6080. old->dpms_mode = intel_crtc->dpms_mode;
  6081. old->load_detect_temp = false;
  6082. /* Make sure the crtc and connector are running */
  6083. if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
  6084. struct drm_encoder_helper_funcs *encoder_funcs;
  6085. struct drm_crtc_helper_funcs *crtc_funcs;
  6086. crtc_funcs = crtc->helper_private;
  6087. crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
  6088. encoder_funcs = encoder->helper_private;
  6089. encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
  6090. }
  6091. return true;
  6092. }
  6093. /* Find an unused one (if possible) */
  6094. list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
  6095. i++;
  6096. if (!(encoder->possible_crtcs & (1 << i)))
  6097. continue;
  6098. if (!possible_crtc->enabled) {
  6099. crtc = possible_crtc;
  6100. break;
  6101. }
  6102. }
  6103. /*
  6104. * If we didn't find an unused CRTC, don't use any.
  6105. */
  6106. if (!crtc) {
  6107. DRM_DEBUG_KMS("no pipe available for load-detect\n");
  6108. return false;
  6109. }
  6110. encoder->crtc = crtc;
  6111. connector->encoder = encoder;
  6112. intel_crtc = to_intel_crtc(crtc);
  6113. old->dpms_mode = intel_crtc->dpms_mode;
  6114. old->load_detect_temp = true;
  6115. old->release_fb = NULL;
  6116. if (!mode)
  6117. mode = &load_detect_mode;
  6118. old_fb = crtc->fb;
  6119. /* We need a framebuffer large enough to accommodate all accesses
  6120. * that the plane may generate whilst we perform load detection.
  6121. * We can not rely on the fbcon either being present (we get called
  6122. * during its initialisation to detect all boot displays, or it may
  6123. * not even exist) or that it is large enough to satisfy the
  6124. * requested mode.
  6125. */
  6126. crtc->fb = mode_fits_in_fbdev(dev, mode);
  6127. if (crtc->fb == NULL) {
  6128. DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
  6129. crtc->fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
  6130. old->release_fb = crtc->fb;
  6131. } else
  6132. DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
  6133. if (IS_ERR(crtc->fb)) {
  6134. DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
  6135. crtc->fb = old_fb;
  6136. return false;
  6137. }
  6138. if (!drm_crtc_helper_set_mode(crtc, mode, 0, 0, old_fb)) {
  6139. DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
  6140. if (old->release_fb)
  6141. old->release_fb->funcs->destroy(old->release_fb);
  6142. crtc->fb = old_fb;
  6143. return false;
  6144. }
  6145. /* let the connector get through one full cycle before testing */
  6146. intel_wait_for_vblank(dev, intel_crtc->pipe);
  6147. return true;
  6148. }
  6149. void intel_release_load_detect_pipe(struct intel_encoder *intel_encoder,
  6150. struct drm_connector *connector,
  6151. struct intel_load_detect_pipe *old)
  6152. {
  6153. struct drm_encoder *encoder = &intel_encoder->base;
  6154. struct drm_device *dev = encoder->dev;
  6155. struct drm_crtc *crtc = encoder->crtc;
  6156. struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
  6157. struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
  6158. DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
  6159. connector->base.id, drm_get_connector_name(connector),
  6160. encoder->base.id, drm_get_encoder_name(encoder));
  6161. if (old->load_detect_temp) {
  6162. connector->encoder = NULL;
  6163. drm_helper_disable_unused_functions(dev);
  6164. if (old->release_fb)
  6165. old->release_fb->funcs->destroy(old->release_fb);
  6166. return;
  6167. }
  6168. /* Switch crtc and encoder back off if necessary */
  6169. if (old->dpms_mode != DRM_MODE_DPMS_ON) {
  6170. encoder_funcs->dpms(encoder, old->dpms_mode);
  6171. crtc_funcs->dpms(crtc, old->dpms_mode);
  6172. }
  6173. }
  6174. /* Returns the clock of the currently programmed mode of the given pipe. */
  6175. static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
  6176. {
  6177. struct drm_i915_private *dev_priv = dev->dev_private;
  6178. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6179. int pipe = intel_crtc->pipe;
  6180. u32 dpll = I915_READ(DPLL(pipe));
  6181. u32 fp;
  6182. intel_clock_t clock;
  6183. if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
  6184. fp = I915_READ(FP0(pipe));
  6185. else
  6186. fp = I915_READ(FP1(pipe));
  6187. clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
  6188. if (IS_PINEVIEW(dev)) {
  6189. clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
  6190. clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
  6191. } else {
  6192. clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
  6193. clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
  6194. }
  6195. if (!IS_GEN2(dev)) {
  6196. if (IS_PINEVIEW(dev))
  6197. clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
  6198. DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
  6199. else
  6200. clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
  6201. DPLL_FPA01_P1_POST_DIV_SHIFT);
  6202. switch (dpll & DPLL_MODE_MASK) {
  6203. case DPLLB_MODE_DAC_SERIAL:
  6204. clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
  6205. 5 : 10;
  6206. break;
  6207. case DPLLB_MODE_LVDS:
  6208. clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
  6209. 7 : 14;
  6210. break;
  6211. default:
  6212. DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
  6213. "mode\n", (int)(dpll & DPLL_MODE_MASK));
  6214. return 0;
  6215. }
  6216. /* XXX: Handle the 100Mhz refclk */
  6217. intel_clock(dev, 96000, &clock);
  6218. } else {
  6219. bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
  6220. if (is_lvds) {
  6221. clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
  6222. DPLL_FPA01_P1_POST_DIV_SHIFT);
  6223. clock.p2 = 14;
  6224. if ((dpll & PLL_REF_INPUT_MASK) ==
  6225. PLLB_REF_INPUT_SPREADSPECTRUMIN) {
  6226. /* XXX: might not be 66MHz */
  6227. intel_clock(dev, 66000, &clock);
  6228. } else
  6229. intel_clock(dev, 48000, &clock);
  6230. } else {
  6231. if (dpll & PLL_P1_DIVIDE_BY_TWO)
  6232. clock.p1 = 2;
  6233. else {
  6234. clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
  6235. DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
  6236. }
  6237. if (dpll & PLL_P2_DIVIDE_BY_4)
  6238. clock.p2 = 4;
  6239. else
  6240. clock.p2 = 2;
  6241. intel_clock(dev, 48000, &clock);
  6242. }
  6243. }
  6244. /* XXX: It would be nice to validate the clocks, but we can't reuse
  6245. * i830PllIsValid() because it relies on the xf86_config connector
  6246. * configuration being accurate, which it isn't necessarily.
  6247. */
  6248. return clock.dot;
  6249. }
  6250. /** Returns the currently programmed mode of the given pipe. */
  6251. struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
  6252. struct drm_crtc *crtc)
  6253. {
  6254. struct drm_i915_private *dev_priv = dev->dev_private;
  6255. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6256. int pipe = intel_crtc->pipe;
  6257. struct drm_display_mode *mode;
  6258. int htot = I915_READ(HTOTAL(pipe));
  6259. int hsync = I915_READ(HSYNC(pipe));
  6260. int vtot = I915_READ(VTOTAL(pipe));
  6261. int vsync = I915_READ(VSYNC(pipe));
  6262. mode = kzalloc(sizeof(*mode), GFP_KERNEL);
  6263. if (!mode)
  6264. return NULL;
  6265. mode->clock = intel_crtc_clock_get(dev, crtc);
  6266. mode->hdisplay = (htot & 0xffff) + 1;
  6267. mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
  6268. mode->hsync_start = (hsync & 0xffff) + 1;
  6269. mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
  6270. mode->vdisplay = (vtot & 0xffff) + 1;
  6271. mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
  6272. mode->vsync_start = (vsync & 0xffff) + 1;
  6273. mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
  6274. drm_mode_set_name(mode);
  6275. drm_mode_set_crtcinfo(mode, 0);
  6276. return mode;
  6277. }
  6278. #define GPU_IDLE_TIMEOUT 500 /* ms */
  6279. /* When this timer fires, we've been idle for awhile */
  6280. static void intel_gpu_idle_timer(unsigned long arg)
  6281. {
  6282. struct drm_device *dev = (struct drm_device *)arg;
  6283. drm_i915_private_t *dev_priv = dev->dev_private;
  6284. if (!list_empty(&dev_priv->mm.active_list)) {
  6285. /* Still processing requests, so just re-arm the timer. */
  6286. mod_timer(&dev_priv->idle_timer, jiffies +
  6287. msecs_to_jiffies(GPU_IDLE_TIMEOUT));
  6288. return;
  6289. }
  6290. dev_priv->busy = false;
  6291. queue_work(dev_priv->wq, &dev_priv->idle_work);
  6292. }
  6293. #define CRTC_IDLE_TIMEOUT 1000 /* ms */
  6294. static void intel_crtc_idle_timer(unsigned long arg)
  6295. {
  6296. struct intel_crtc *intel_crtc = (struct intel_crtc *)arg;
  6297. struct drm_crtc *crtc = &intel_crtc->base;
  6298. drm_i915_private_t *dev_priv = crtc->dev->dev_private;
  6299. struct intel_framebuffer *intel_fb;
  6300. intel_fb = to_intel_framebuffer(crtc->fb);
  6301. if (intel_fb && intel_fb->obj->active) {
  6302. /* The framebuffer is still being accessed by the GPU. */
  6303. mod_timer(&intel_crtc->idle_timer, jiffies +
  6304. msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
  6305. return;
  6306. }
  6307. intel_crtc->busy = false;
  6308. queue_work(dev_priv->wq, &dev_priv->idle_work);
  6309. }
  6310. static void intel_increase_pllclock(struct drm_crtc *crtc)
  6311. {
  6312. struct drm_device *dev = crtc->dev;
  6313. drm_i915_private_t *dev_priv = dev->dev_private;
  6314. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6315. int pipe = intel_crtc->pipe;
  6316. int dpll_reg = DPLL(pipe);
  6317. int dpll;
  6318. if (HAS_PCH_SPLIT(dev))
  6319. return;
  6320. if (!dev_priv->lvds_downclock_avail)
  6321. return;
  6322. dpll = I915_READ(dpll_reg);
  6323. if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
  6324. DRM_DEBUG_DRIVER("upclocking LVDS\n");
  6325. assert_panel_unlocked(dev_priv, pipe);
  6326. dpll &= ~DISPLAY_RATE_SELECT_FPA1;
  6327. I915_WRITE(dpll_reg, dpll);
  6328. intel_wait_for_vblank(dev, pipe);
  6329. dpll = I915_READ(dpll_reg);
  6330. if (dpll & DISPLAY_RATE_SELECT_FPA1)
  6331. DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
  6332. }
  6333. /* Schedule downclock */
  6334. mod_timer(&intel_crtc->idle_timer, jiffies +
  6335. msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
  6336. }
  6337. static void intel_decrease_pllclock(struct drm_crtc *crtc)
  6338. {
  6339. struct drm_device *dev = crtc->dev;
  6340. drm_i915_private_t *dev_priv = dev->dev_private;
  6341. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6342. int pipe = intel_crtc->pipe;
  6343. int dpll_reg = DPLL(pipe);
  6344. int dpll = I915_READ(dpll_reg);
  6345. if (HAS_PCH_SPLIT(dev))
  6346. return;
  6347. if (!dev_priv->lvds_downclock_avail)
  6348. return;
  6349. /*
  6350. * Since this is called by a timer, we should never get here in
  6351. * the manual case.
  6352. */
  6353. if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
  6354. DRM_DEBUG_DRIVER("downclocking LVDS\n");
  6355. assert_panel_unlocked(dev_priv, pipe);
  6356. dpll |= DISPLAY_RATE_SELECT_FPA1;
  6357. I915_WRITE(dpll_reg, dpll);
  6358. intel_wait_for_vblank(dev, pipe);
  6359. dpll = I915_READ(dpll_reg);
  6360. if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
  6361. DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
  6362. }
  6363. }
  6364. /**
  6365. * intel_idle_update - adjust clocks for idleness
  6366. * @work: work struct
  6367. *
  6368. * Either the GPU or display (or both) went idle. Check the busy status
  6369. * here and adjust the CRTC and GPU clocks as necessary.
  6370. */
  6371. static void intel_idle_update(struct work_struct *work)
  6372. {
  6373. drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
  6374. idle_work);
  6375. struct drm_device *dev = dev_priv->dev;
  6376. struct drm_crtc *crtc;
  6377. struct intel_crtc *intel_crtc;
  6378. if (!i915_powersave)
  6379. return;
  6380. mutex_lock(&dev->struct_mutex);
  6381. i915_update_gfx_val(dev_priv);
  6382. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  6383. /* Skip inactive CRTCs */
  6384. if (!crtc->fb)
  6385. continue;
  6386. intel_crtc = to_intel_crtc(crtc);
  6387. if (!intel_crtc->busy)
  6388. intel_decrease_pllclock(crtc);
  6389. }
  6390. mutex_unlock(&dev->struct_mutex);
  6391. }
  6392. /**
  6393. * intel_mark_busy - mark the GPU and possibly the display busy
  6394. * @dev: drm device
  6395. * @obj: object we're operating on
  6396. *
  6397. * Callers can use this function to indicate that the GPU is busy processing
  6398. * commands. If @obj matches one of the CRTC objects (i.e. it's a scanout
  6399. * buffer), we'll also mark the display as busy, so we know to increase its
  6400. * clock frequency.
  6401. */
  6402. void intel_mark_busy(struct drm_device *dev, struct drm_i915_gem_object *obj)
  6403. {
  6404. drm_i915_private_t *dev_priv = dev->dev_private;
  6405. struct drm_crtc *crtc = NULL;
  6406. struct intel_framebuffer *intel_fb;
  6407. struct intel_crtc *intel_crtc;
  6408. if (!drm_core_check_feature(dev, DRIVER_MODESET))
  6409. return;
  6410. if (!dev_priv->busy)
  6411. dev_priv->busy = true;
  6412. else
  6413. mod_timer(&dev_priv->idle_timer, jiffies +
  6414. msecs_to_jiffies(GPU_IDLE_TIMEOUT));
  6415. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  6416. if (!crtc->fb)
  6417. continue;
  6418. intel_crtc = to_intel_crtc(crtc);
  6419. intel_fb = to_intel_framebuffer(crtc->fb);
  6420. if (intel_fb->obj == obj) {
  6421. if (!intel_crtc->busy) {
  6422. /* Non-busy -> busy, upclock */
  6423. intel_increase_pllclock(crtc);
  6424. intel_crtc->busy = true;
  6425. } else {
  6426. /* Busy -> busy, put off timer */
  6427. mod_timer(&intel_crtc->idle_timer, jiffies +
  6428. msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
  6429. }
  6430. }
  6431. }
  6432. }
  6433. static void intel_crtc_destroy(struct drm_crtc *crtc)
  6434. {
  6435. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6436. struct drm_device *dev = crtc->dev;
  6437. struct intel_unpin_work *work;
  6438. unsigned long flags;
  6439. spin_lock_irqsave(&dev->event_lock, flags);
  6440. work = intel_crtc->unpin_work;
  6441. intel_crtc->unpin_work = NULL;
  6442. spin_unlock_irqrestore(&dev->event_lock, flags);
  6443. if (work) {
  6444. cancel_work_sync(&work->work);
  6445. kfree(work);
  6446. }
  6447. drm_crtc_cleanup(crtc);
  6448. kfree(intel_crtc);
  6449. }
  6450. static void intel_unpin_work_fn(struct work_struct *__work)
  6451. {
  6452. struct intel_unpin_work *work =
  6453. container_of(__work, struct intel_unpin_work, work);
  6454. mutex_lock(&work->dev->struct_mutex);
  6455. intel_unpin_fb_obj(work->old_fb_obj);
  6456. drm_gem_object_unreference(&work->pending_flip_obj->base);
  6457. drm_gem_object_unreference(&work->old_fb_obj->base);
  6458. intel_update_fbc(work->dev);
  6459. mutex_unlock(&work->dev->struct_mutex);
  6460. kfree(work);
  6461. }
  6462. static void do_intel_finish_page_flip(struct drm_device *dev,
  6463. struct drm_crtc *crtc)
  6464. {
  6465. drm_i915_private_t *dev_priv = dev->dev_private;
  6466. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6467. struct intel_unpin_work *work;
  6468. struct drm_i915_gem_object *obj;
  6469. struct drm_pending_vblank_event *e;
  6470. struct timeval tnow, tvbl;
  6471. unsigned long flags;
  6472. /* Ignore early vblank irqs */
  6473. if (intel_crtc == NULL)
  6474. return;
  6475. do_gettimeofday(&tnow);
  6476. spin_lock_irqsave(&dev->event_lock, flags);
  6477. work = intel_crtc->unpin_work;
  6478. if (work == NULL || !work->pending) {
  6479. spin_unlock_irqrestore(&dev->event_lock, flags);
  6480. return;
  6481. }
  6482. intel_crtc->unpin_work = NULL;
  6483. if (work->event) {
  6484. e = work->event;
  6485. e->event.sequence = drm_vblank_count_and_time(dev, intel_crtc->pipe, &tvbl);
  6486. /* Called before vblank count and timestamps have
  6487. * been updated for the vblank interval of flip
  6488. * completion? Need to increment vblank count and
  6489. * add one videorefresh duration to returned timestamp
  6490. * to account for this. We assume this happened if we
  6491. * get called over 0.9 frame durations after the last
  6492. * timestamped vblank.
  6493. *
  6494. * This calculation can not be used with vrefresh rates
  6495. * below 5Hz (10Hz to be on the safe side) without
  6496. * promoting to 64 integers.
  6497. */
  6498. if (10 * (timeval_to_ns(&tnow) - timeval_to_ns(&tvbl)) >
  6499. 9 * crtc->framedur_ns) {
  6500. e->event.sequence++;
  6501. tvbl = ns_to_timeval(timeval_to_ns(&tvbl) +
  6502. crtc->framedur_ns);
  6503. }
  6504. e->event.tv_sec = tvbl.tv_sec;
  6505. e->event.tv_usec = tvbl.tv_usec;
  6506. list_add_tail(&e->base.link,
  6507. &e->base.file_priv->event_list);
  6508. wake_up_interruptible(&e->base.file_priv->event_wait);
  6509. }
  6510. drm_vblank_put(dev, intel_crtc->pipe);
  6511. spin_unlock_irqrestore(&dev->event_lock, flags);
  6512. obj = work->old_fb_obj;
  6513. atomic_clear_mask(1 << intel_crtc->plane,
  6514. &obj->pending_flip.counter);
  6515. if (atomic_read(&obj->pending_flip) == 0)
  6516. wake_up(&dev_priv->pending_flip_queue);
  6517. schedule_work(&work->work);
  6518. trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
  6519. }
  6520. void intel_finish_page_flip(struct drm_device *dev, int pipe)
  6521. {
  6522. drm_i915_private_t *dev_priv = dev->dev_private;
  6523. struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
  6524. do_intel_finish_page_flip(dev, crtc);
  6525. }
  6526. void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
  6527. {
  6528. drm_i915_private_t *dev_priv = dev->dev_private;
  6529. struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
  6530. do_intel_finish_page_flip(dev, crtc);
  6531. }
  6532. void intel_prepare_page_flip(struct drm_device *dev, int plane)
  6533. {
  6534. drm_i915_private_t *dev_priv = dev->dev_private;
  6535. struct intel_crtc *intel_crtc =
  6536. to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
  6537. unsigned long flags;
  6538. spin_lock_irqsave(&dev->event_lock, flags);
  6539. if (intel_crtc->unpin_work) {
  6540. if ((++intel_crtc->unpin_work->pending) > 1)
  6541. DRM_ERROR("Prepared flip multiple times\n");
  6542. } else {
  6543. DRM_DEBUG_DRIVER("preparing flip with no unpin work?\n");
  6544. }
  6545. spin_unlock_irqrestore(&dev->event_lock, flags);
  6546. }
  6547. static int intel_gen2_queue_flip(struct drm_device *dev,
  6548. struct drm_crtc *crtc,
  6549. struct drm_framebuffer *fb,
  6550. struct drm_i915_gem_object *obj)
  6551. {
  6552. struct drm_i915_private *dev_priv = dev->dev_private;
  6553. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6554. unsigned long offset;
  6555. u32 flip_mask;
  6556. int ret;
  6557. ret = intel_pin_and_fence_fb_obj(dev, obj, LP_RING(dev_priv));
  6558. if (ret)
  6559. goto out;
  6560. /* Offset into the new buffer for cases of shared fbs between CRTCs */
  6561. offset = crtc->y * fb->pitches[0] + crtc->x * fb->bits_per_pixel/8;
  6562. ret = BEGIN_LP_RING(6);
  6563. if (ret)
  6564. goto out;
  6565. /* Can't queue multiple flips, so wait for the previous
  6566. * one to finish before executing the next.
  6567. */
  6568. if (intel_crtc->plane)
  6569. flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
  6570. else
  6571. flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
  6572. OUT_RING(MI_WAIT_FOR_EVENT | flip_mask);
  6573. OUT_RING(MI_NOOP);
  6574. OUT_RING(MI_DISPLAY_FLIP |
  6575. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  6576. OUT_RING(fb->pitches[0]);
  6577. OUT_RING(obj->gtt_offset + offset);
  6578. OUT_RING(0); /* aux display base address, unused */
  6579. ADVANCE_LP_RING();
  6580. out:
  6581. return ret;
  6582. }
  6583. static int intel_gen3_queue_flip(struct drm_device *dev,
  6584. struct drm_crtc *crtc,
  6585. struct drm_framebuffer *fb,
  6586. struct drm_i915_gem_object *obj)
  6587. {
  6588. struct drm_i915_private *dev_priv = dev->dev_private;
  6589. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6590. unsigned long offset;
  6591. u32 flip_mask;
  6592. int ret;
  6593. ret = intel_pin_and_fence_fb_obj(dev, obj, LP_RING(dev_priv));
  6594. if (ret)
  6595. goto out;
  6596. /* Offset into the new buffer for cases of shared fbs between CRTCs */
  6597. offset = crtc->y * fb->pitches[0] + crtc->x * fb->bits_per_pixel/8;
  6598. ret = BEGIN_LP_RING(6);
  6599. if (ret)
  6600. goto out;
  6601. if (intel_crtc->plane)
  6602. flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
  6603. else
  6604. flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
  6605. OUT_RING(MI_WAIT_FOR_EVENT | flip_mask);
  6606. OUT_RING(MI_NOOP);
  6607. OUT_RING(MI_DISPLAY_FLIP_I915 |
  6608. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  6609. OUT_RING(fb->pitches[0]);
  6610. OUT_RING(obj->gtt_offset + offset);
  6611. OUT_RING(MI_NOOP);
  6612. ADVANCE_LP_RING();
  6613. out:
  6614. return ret;
  6615. }
  6616. static int intel_gen4_queue_flip(struct drm_device *dev,
  6617. struct drm_crtc *crtc,
  6618. struct drm_framebuffer *fb,
  6619. struct drm_i915_gem_object *obj)
  6620. {
  6621. struct drm_i915_private *dev_priv = dev->dev_private;
  6622. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6623. uint32_t pf, pipesrc;
  6624. int ret;
  6625. ret = intel_pin_and_fence_fb_obj(dev, obj, LP_RING(dev_priv));
  6626. if (ret)
  6627. goto out;
  6628. ret = BEGIN_LP_RING(4);
  6629. if (ret)
  6630. goto out;
  6631. /* i965+ uses the linear or tiled offsets from the
  6632. * Display Registers (which do not change across a page-flip)
  6633. * so we need only reprogram the base address.
  6634. */
  6635. OUT_RING(MI_DISPLAY_FLIP |
  6636. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  6637. OUT_RING(fb->pitches[0]);
  6638. OUT_RING(obj->gtt_offset | obj->tiling_mode);
  6639. /* XXX Enabling the panel-fitter across page-flip is so far
  6640. * untested on non-native modes, so ignore it for now.
  6641. * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
  6642. */
  6643. pf = 0;
  6644. pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
  6645. OUT_RING(pf | pipesrc);
  6646. ADVANCE_LP_RING();
  6647. out:
  6648. return ret;
  6649. }
  6650. static int intel_gen6_queue_flip(struct drm_device *dev,
  6651. struct drm_crtc *crtc,
  6652. struct drm_framebuffer *fb,
  6653. struct drm_i915_gem_object *obj)
  6654. {
  6655. struct drm_i915_private *dev_priv = dev->dev_private;
  6656. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6657. uint32_t pf, pipesrc;
  6658. int ret;
  6659. ret = intel_pin_and_fence_fb_obj(dev, obj, LP_RING(dev_priv));
  6660. if (ret)
  6661. goto out;
  6662. ret = BEGIN_LP_RING(4);
  6663. if (ret)
  6664. goto out;
  6665. OUT_RING(MI_DISPLAY_FLIP |
  6666. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  6667. OUT_RING(fb->pitches[0] | obj->tiling_mode);
  6668. OUT_RING(obj->gtt_offset);
  6669. pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
  6670. pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
  6671. OUT_RING(pf | pipesrc);
  6672. ADVANCE_LP_RING();
  6673. out:
  6674. return ret;
  6675. }
  6676. /*
  6677. * On gen7 we currently use the blit ring because (in early silicon at least)
  6678. * the render ring doesn't give us interrpts for page flip completion, which
  6679. * means clients will hang after the first flip is queued. Fortunately the
  6680. * blit ring generates interrupts properly, so use it instead.
  6681. */
  6682. static int intel_gen7_queue_flip(struct drm_device *dev,
  6683. struct drm_crtc *crtc,
  6684. struct drm_framebuffer *fb,
  6685. struct drm_i915_gem_object *obj)
  6686. {
  6687. struct drm_i915_private *dev_priv = dev->dev_private;
  6688. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6689. struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
  6690. int ret;
  6691. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  6692. if (ret)
  6693. goto out;
  6694. ret = intel_ring_begin(ring, 4);
  6695. if (ret)
  6696. goto out;
  6697. intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | (intel_crtc->plane << 19));
  6698. intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
  6699. intel_ring_emit(ring, (obj->gtt_offset));
  6700. intel_ring_emit(ring, (MI_NOOP));
  6701. intel_ring_advance(ring);
  6702. out:
  6703. return ret;
  6704. }
  6705. static int intel_default_queue_flip(struct drm_device *dev,
  6706. struct drm_crtc *crtc,
  6707. struct drm_framebuffer *fb,
  6708. struct drm_i915_gem_object *obj)
  6709. {
  6710. return -ENODEV;
  6711. }
  6712. static int intel_crtc_page_flip(struct drm_crtc *crtc,
  6713. struct drm_framebuffer *fb,
  6714. struct drm_pending_vblank_event *event)
  6715. {
  6716. struct drm_device *dev = crtc->dev;
  6717. struct drm_i915_private *dev_priv = dev->dev_private;
  6718. struct intel_framebuffer *intel_fb;
  6719. struct drm_i915_gem_object *obj;
  6720. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6721. struct intel_unpin_work *work;
  6722. unsigned long flags;
  6723. int ret;
  6724. work = kzalloc(sizeof *work, GFP_KERNEL);
  6725. if (work == NULL)
  6726. return -ENOMEM;
  6727. work->event = event;
  6728. work->dev = crtc->dev;
  6729. intel_fb = to_intel_framebuffer(crtc->fb);
  6730. work->old_fb_obj = intel_fb->obj;
  6731. INIT_WORK(&work->work, intel_unpin_work_fn);
  6732. ret = drm_vblank_get(dev, intel_crtc->pipe);
  6733. if (ret)
  6734. goto free_work;
  6735. /* We borrow the event spin lock for protecting unpin_work */
  6736. spin_lock_irqsave(&dev->event_lock, flags);
  6737. if (intel_crtc->unpin_work) {
  6738. spin_unlock_irqrestore(&dev->event_lock, flags);
  6739. kfree(work);
  6740. drm_vblank_put(dev, intel_crtc->pipe);
  6741. DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
  6742. return -EBUSY;
  6743. }
  6744. intel_crtc->unpin_work = work;
  6745. spin_unlock_irqrestore(&dev->event_lock, flags);
  6746. intel_fb = to_intel_framebuffer(fb);
  6747. obj = intel_fb->obj;
  6748. mutex_lock(&dev->struct_mutex);
  6749. /* Reference the objects for the scheduled work. */
  6750. drm_gem_object_reference(&work->old_fb_obj->base);
  6751. drm_gem_object_reference(&obj->base);
  6752. crtc->fb = fb;
  6753. work->pending_flip_obj = obj;
  6754. work->enable_stall_check = true;
  6755. /* Block clients from rendering to the new back buffer until
  6756. * the flip occurs and the object is no longer visible.
  6757. */
  6758. atomic_add(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
  6759. ret = dev_priv->display.queue_flip(dev, crtc, fb, obj);
  6760. if (ret)
  6761. goto cleanup_pending;
  6762. intel_disable_fbc(dev);
  6763. mutex_unlock(&dev->struct_mutex);
  6764. trace_i915_flip_request(intel_crtc->plane, obj);
  6765. return 0;
  6766. cleanup_pending:
  6767. atomic_sub(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
  6768. drm_gem_object_unreference(&work->old_fb_obj->base);
  6769. drm_gem_object_unreference(&obj->base);
  6770. mutex_unlock(&dev->struct_mutex);
  6771. spin_lock_irqsave(&dev->event_lock, flags);
  6772. intel_crtc->unpin_work = NULL;
  6773. spin_unlock_irqrestore(&dev->event_lock, flags);
  6774. drm_vblank_put(dev, intel_crtc->pipe);
  6775. free_work:
  6776. kfree(work);
  6777. return ret;
  6778. }
  6779. static void intel_sanitize_modesetting(struct drm_device *dev,
  6780. int pipe, int plane)
  6781. {
  6782. struct drm_i915_private *dev_priv = dev->dev_private;
  6783. u32 reg, val;
  6784. /* Clear any frame start delays used for debugging left by the BIOS */
  6785. for_each_pipe(pipe) {
  6786. reg = PIPECONF(pipe);
  6787. I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
  6788. }
  6789. if (HAS_PCH_SPLIT(dev))
  6790. return;
  6791. /* Who knows what state these registers were left in by the BIOS or
  6792. * grub?
  6793. *
  6794. * If we leave the registers in a conflicting state (e.g. with the
  6795. * display plane reading from the other pipe than the one we intend
  6796. * to use) then when we attempt to teardown the active mode, we will
  6797. * not disable the pipes and planes in the correct order -- leaving
  6798. * a plane reading from a disabled pipe and possibly leading to
  6799. * undefined behaviour.
  6800. */
  6801. reg = DSPCNTR(plane);
  6802. val = I915_READ(reg);
  6803. if ((val & DISPLAY_PLANE_ENABLE) == 0)
  6804. return;
  6805. if (!!(val & DISPPLANE_SEL_PIPE_MASK) == pipe)
  6806. return;
  6807. /* This display plane is active and attached to the other CPU pipe. */
  6808. pipe = !pipe;
  6809. /* Disable the plane and wait for it to stop reading from the pipe. */
  6810. intel_disable_plane(dev_priv, plane, pipe);
  6811. intel_disable_pipe(dev_priv, pipe);
  6812. }
  6813. static void intel_crtc_reset(struct drm_crtc *crtc)
  6814. {
  6815. struct drm_device *dev = crtc->dev;
  6816. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6817. /* Reset flags back to the 'unknown' status so that they
  6818. * will be correctly set on the initial modeset.
  6819. */
  6820. intel_crtc->dpms_mode = -1;
  6821. /* We need to fix up any BIOS configuration that conflicts with
  6822. * our expectations.
  6823. */
  6824. intel_sanitize_modesetting(dev, intel_crtc->pipe, intel_crtc->plane);
  6825. }
  6826. static struct drm_crtc_helper_funcs intel_helper_funcs = {
  6827. .dpms = intel_crtc_dpms,
  6828. .mode_fixup = intel_crtc_mode_fixup,
  6829. .mode_set = intel_crtc_mode_set,
  6830. .mode_set_base = intel_pipe_set_base,
  6831. .mode_set_base_atomic = intel_pipe_set_base_atomic,
  6832. .load_lut = intel_crtc_load_lut,
  6833. .disable = intel_crtc_disable,
  6834. };
  6835. static const struct drm_crtc_funcs intel_crtc_funcs = {
  6836. .reset = intel_crtc_reset,
  6837. .cursor_set = intel_crtc_cursor_set,
  6838. .cursor_move = intel_crtc_cursor_move,
  6839. .gamma_set = intel_crtc_gamma_set,
  6840. .set_config = drm_crtc_helper_set_config,
  6841. .destroy = intel_crtc_destroy,
  6842. .page_flip = intel_crtc_page_flip,
  6843. };
  6844. static void intel_crtc_init(struct drm_device *dev, int pipe)
  6845. {
  6846. drm_i915_private_t *dev_priv = dev->dev_private;
  6847. struct intel_crtc *intel_crtc;
  6848. int i;
  6849. intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
  6850. if (intel_crtc == NULL)
  6851. return;
  6852. drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
  6853. drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
  6854. for (i = 0; i < 256; i++) {
  6855. intel_crtc->lut_r[i] = i;
  6856. intel_crtc->lut_g[i] = i;
  6857. intel_crtc->lut_b[i] = i;
  6858. }
  6859. /* Swap pipes & planes for FBC on pre-965 */
  6860. intel_crtc->pipe = pipe;
  6861. intel_crtc->plane = pipe;
  6862. if (IS_MOBILE(dev) && IS_GEN3(dev)) {
  6863. DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
  6864. intel_crtc->plane = !pipe;
  6865. }
  6866. BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
  6867. dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
  6868. dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
  6869. dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
  6870. intel_crtc_reset(&intel_crtc->base);
  6871. intel_crtc->active = true; /* force the pipe off on setup_init_config */
  6872. intel_crtc->bpp = 24; /* default for pre-Ironlake */
  6873. if (HAS_PCH_SPLIT(dev)) {
  6874. if (pipe == 2 && IS_IVYBRIDGE(dev))
  6875. intel_crtc->no_pll = true;
  6876. intel_helper_funcs.prepare = ironlake_crtc_prepare;
  6877. intel_helper_funcs.commit = ironlake_crtc_commit;
  6878. } else {
  6879. intel_helper_funcs.prepare = i9xx_crtc_prepare;
  6880. intel_helper_funcs.commit = i9xx_crtc_commit;
  6881. }
  6882. drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
  6883. intel_crtc->busy = false;
  6884. setup_timer(&intel_crtc->idle_timer, intel_crtc_idle_timer,
  6885. (unsigned long)intel_crtc);
  6886. }
  6887. int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
  6888. struct drm_file *file)
  6889. {
  6890. drm_i915_private_t *dev_priv = dev->dev_private;
  6891. struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
  6892. struct drm_mode_object *drmmode_obj;
  6893. struct intel_crtc *crtc;
  6894. if (!dev_priv) {
  6895. DRM_ERROR("called with no initialization\n");
  6896. return -EINVAL;
  6897. }
  6898. drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
  6899. DRM_MODE_OBJECT_CRTC);
  6900. if (!drmmode_obj) {
  6901. DRM_ERROR("no such CRTC id\n");
  6902. return -EINVAL;
  6903. }
  6904. crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
  6905. pipe_from_crtc_id->pipe = crtc->pipe;
  6906. return 0;
  6907. }
  6908. static int intel_encoder_clones(struct drm_device *dev, int type_mask)
  6909. {
  6910. struct intel_encoder *encoder;
  6911. int index_mask = 0;
  6912. int entry = 0;
  6913. list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
  6914. if (type_mask & encoder->clone_mask)
  6915. index_mask |= (1 << entry);
  6916. entry++;
  6917. }
  6918. return index_mask;
  6919. }
  6920. static bool has_edp_a(struct drm_device *dev)
  6921. {
  6922. struct drm_i915_private *dev_priv = dev->dev_private;
  6923. if (!IS_MOBILE(dev))
  6924. return false;
  6925. if ((I915_READ(DP_A) & DP_DETECTED) == 0)
  6926. return false;
  6927. if (IS_GEN5(dev) &&
  6928. (I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE))
  6929. return false;
  6930. return true;
  6931. }
  6932. static void intel_setup_outputs(struct drm_device *dev)
  6933. {
  6934. struct drm_i915_private *dev_priv = dev->dev_private;
  6935. struct intel_encoder *encoder;
  6936. bool dpd_is_edp = false;
  6937. bool has_lvds;
  6938. has_lvds = intel_lvds_init(dev);
  6939. if (!has_lvds && !HAS_PCH_SPLIT(dev)) {
  6940. /* disable the panel fitter on everything but LVDS */
  6941. I915_WRITE(PFIT_CONTROL, 0);
  6942. }
  6943. if (HAS_PCH_SPLIT(dev)) {
  6944. dpd_is_edp = intel_dpd_is_edp(dev);
  6945. if (has_edp_a(dev))
  6946. intel_dp_init(dev, DP_A);
  6947. if (dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
  6948. intel_dp_init(dev, PCH_DP_D);
  6949. }
  6950. intel_crt_init(dev);
  6951. if (HAS_PCH_SPLIT(dev)) {
  6952. int found;
  6953. if (I915_READ(HDMIB) & PORT_DETECTED) {
  6954. /* PCH SDVOB multiplex with HDMIB */
  6955. found = intel_sdvo_init(dev, PCH_SDVOB, true);
  6956. if (!found)
  6957. intel_hdmi_init(dev, HDMIB);
  6958. if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
  6959. intel_dp_init(dev, PCH_DP_B);
  6960. }
  6961. if (I915_READ(HDMIC) & PORT_DETECTED)
  6962. intel_hdmi_init(dev, HDMIC);
  6963. if (I915_READ(HDMID) & PORT_DETECTED)
  6964. intel_hdmi_init(dev, HDMID);
  6965. if (I915_READ(PCH_DP_C) & DP_DETECTED)
  6966. intel_dp_init(dev, PCH_DP_C);
  6967. if (!dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
  6968. intel_dp_init(dev, PCH_DP_D);
  6969. } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
  6970. bool found = false;
  6971. if (I915_READ(SDVOB) & SDVO_DETECTED) {
  6972. DRM_DEBUG_KMS("probing SDVOB\n");
  6973. found = intel_sdvo_init(dev, SDVOB, true);
  6974. if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
  6975. DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
  6976. intel_hdmi_init(dev, SDVOB);
  6977. }
  6978. if (!found && SUPPORTS_INTEGRATED_DP(dev)) {
  6979. DRM_DEBUG_KMS("probing DP_B\n");
  6980. intel_dp_init(dev, DP_B);
  6981. }
  6982. }
  6983. /* Before G4X SDVOC doesn't have its own detect register */
  6984. if (I915_READ(SDVOB) & SDVO_DETECTED) {
  6985. DRM_DEBUG_KMS("probing SDVOC\n");
  6986. found = intel_sdvo_init(dev, SDVOC, false);
  6987. }
  6988. if (!found && (I915_READ(SDVOC) & SDVO_DETECTED)) {
  6989. if (SUPPORTS_INTEGRATED_HDMI(dev)) {
  6990. DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
  6991. intel_hdmi_init(dev, SDVOC);
  6992. }
  6993. if (SUPPORTS_INTEGRATED_DP(dev)) {
  6994. DRM_DEBUG_KMS("probing DP_C\n");
  6995. intel_dp_init(dev, DP_C);
  6996. }
  6997. }
  6998. if (SUPPORTS_INTEGRATED_DP(dev) &&
  6999. (I915_READ(DP_D) & DP_DETECTED)) {
  7000. DRM_DEBUG_KMS("probing DP_D\n");
  7001. intel_dp_init(dev, DP_D);
  7002. }
  7003. } else if (IS_GEN2(dev))
  7004. intel_dvo_init(dev);
  7005. if (SUPPORTS_TV(dev))
  7006. intel_tv_init(dev);
  7007. list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
  7008. encoder->base.possible_crtcs = encoder->crtc_mask;
  7009. encoder->base.possible_clones =
  7010. intel_encoder_clones(dev, encoder->clone_mask);
  7011. }
  7012. /* disable all the possible outputs/crtcs before entering KMS mode */
  7013. drm_helper_disable_unused_functions(dev);
  7014. if (HAS_PCH_SPLIT(dev))
  7015. ironlake_init_pch_refclk(dev);
  7016. }
  7017. static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
  7018. {
  7019. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  7020. drm_framebuffer_cleanup(fb);
  7021. drm_gem_object_unreference_unlocked(&intel_fb->obj->base);
  7022. kfree(intel_fb);
  7023. }
  7024. static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
  7025. struct drm_file *file,
  7026. unsigned int *handle)
  7027. {
  7028. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  7029. struct drm_i915_gem_object *obj = intel_fb->obj;
  7030. return drm_gem_handle_create(file, &obj->base, handle);
  7031. }
  7032. static const struct drm_framebuffer_funcs intel_fb_funcs = {
  7033. .destroy = intel_user_framebuffer_destroy,
  7034. .create_handle = intel_user_framebuffer_create_handle,
  7035. };
  7036. int intel_framebuffer_init(struct drm_device *dev,
  7037. struct intel_framebuffer *intel_fb,
  7038. struct drm_mode_fb_cmd2 *mode_cmd,
  7039. struct drm_i915_gem_object *obj)
  7040. {
  7041. int ret;
  7042. if (obj->tiling_mode == I915_TILING_Y)
  7043. return -EINVAL;
  7044. if (mode_cmd->pitches[0] & 63)
  7045. return -EINVAL;
  7046. switch (mode_cmd->pixel_format) {
  7047. case DRM_FORMAT_RGB332:
  7048. case DRM_FORMAT_RGB565:
  7049. case DRM_FORMAT_XRGB8888:
  7050. case DRM_FORMAT_XBGR8888:
  7051. case DRM_FORMAT_ARGB8888:
  7052. case DRM_FORMAT_XRGB2101010:
  7053. case DRM_FORMAT_ARGB2101010:
  7054. /* RGB formats are common across chipsets */
  7055. break;
  7056. case DRM_FORMAT_YUYV:
  7057. case DRM_FORMAT_UYVY:
  7058. case DRM_FORMAT_YVYU:
  7059. case DRM_FORMAT_VYUY:
  7060. break;
  7061. default:
  7062. DRM_DEBUG_KMS("unsupported pixel format %u\n",
  7063. mode_cmd->pixel_format);
  7064. return -EINVAL;
  7065. }
  7066. ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
  7067. if (ret) {
  7068. DRM_ERROR("framebuffer init failed %d\n", ret);
  7069. return ret;
  7070. }
  7071. drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
  7072. intel_fb->obj = obj;
  7073. return 0;
  7074. }
  7075. static struct drm_framebuffer *
  7076. intel_user_framebuffer_create(struct drm_device *dev,
  7077. struct drm_file *filp,
  7078. struct drm_mode_fb_cmd2 *mode_cmd)
  7079. {
  7080. struct drm_i915_gem_object *obj;
  7081. obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
  7082. mode_cmd->handles[0]));
  7083. if (&obj->base == NULL)
  7084. return ERR_PTR(-ENOENT);
  7085. return intel_framebuffer_create(dev, mode_cmd, obj);
  7086. }
  7087. static const struct drm_mode_config_funcs intel_mode_funcs = {
  7088. .fb_create = intel_user_framebuffer_create,
  7089. .output_poll_changed = intel_fb_output_poll_changed,
  7090. };
  7091. static struct drm_i915_gem_object *
  7092. intel_alloc_context_page(struct drm_device *dev)
  7093. {
  7094. struct drm_i915_gem_object *ctx;
  7095. int ret;
  7096. WARN_ON(!mutex_is_locked(&dev->struct_mutex));
  7097. ctx = i915_gem_alloc_object(dev, 4096);
  7098. if (!ctx) {
  7099. DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
  7100. return NULL;
  7101. }
  7102. ret = i915_gem_object_pin(ctx, 4096, true);
  7103. if (ret) {
  7104. DRM_ERROR("failed to pin power context: %d\n", ret);
  7105. goto err_unref;
  7106. }
  7107. ret = i915_gem_object_set_to_gtt_domain(ctx, 1);
  7108. if (ret) {
  7109. DRM_ERROR("failed to set-domain on power context: %d\n", ret);
  7110. goto err_unpin;
  7111. }
  7112. return ctx;
  7113. err_unpin:
  7114. i915_gem_object_unpin(ctx);
  7115. err_unref:
  7116. drm_gem_object_unreference(&ctx->base);
  7117. mutex_unlock(&dev->struct_mutex);
  7118. return NULL;
  7119. }
  7120. bool ironlake_set_drps(struct drm_device *dev, u8 val)
  7121. {
  7122. struct drm_i915_private *dev_priv = dev->dev_private;
  7123. u16 rgvswctl;
  7124. rgvswctl = I915_READ16(MEMSWCTL);
  7125. if (rgvswctl & MEMCTL_CMD_STS) {
  7126. DRM_DEBUG("gpu busy, RCS change rejected\n");
  7127. return false; /* still busy with another command */
  7128. }
  7129. rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
  7130. (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
  7131. I915_WRITE16(MEMSWCTL, rgvswctl);
  7132. POSTING_READ16(MEMSWCTL);
  7133. rgvswctl |= MEMCTL_CMD_STS;
  7134. I915_WRITE16(MEMSWCTL, rgvswctl);
  7135. return true;
  7136. }
  7137. void ironlake_enable_drps(struct drm_device *dev)
  7138. {
  7139. struct drm_i915_private *dev_priv = dev->dev_private;
  7140. u32 rgvmodectl = I915_READ(MEMMODECTL);
  7141. u8 fmax, fmin, fstart, vstart;
  7142. /* Enable temp reporting */
  7143. I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
  7144. I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
  7145. /* 100ms RC evaluation intervals */
  7146. I915_WRITE(RCUPEI, 100000);
  7147. I915_WRITE(RCDNEI, 100000);
  7148. /* Set max/min thresholds to 90ms and 80ms respectively */
  7149. I915_WRITE(RCBMAXAVG, 90000);
  7150. I915_WRITE(RCBMINAVG, 80000);
  7151. I915_WRITE(MEMIHYST, 1);
  7152. /* Set up min, max, and cur for interrupt handling */
  7153. fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
  7154. fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
  7155. fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
  7156. MEMMODE_FSTART_SHIFT;
  7157. vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
  7158. PXVFREQ_PX_SHIFT;
  7159. dev_priv->fmax = fmax; /* IPS callback will increase this */
  7160. dev_priv->fstart = fstart;
  7161. dev_priv->max_delay = fstart;
  7162. dev_priv->min_delay = fmin;
  7163. dev_priv->cur_delay = fstart;
  7164. DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
  7165. fmax, fmin, fstart);
  7166. I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
  7167. /*
  7168. * Interrupts will be enabled in ironlake_irq_postinstall
  7169. */
  7170. I915_WRITE(VIDSTART, vstart);
  7171. POSTING_READ(VIDSTART);
  7172. rgvmodectl |= MEMMODE_SWMODE_EN;
  7173. I915_WRITE(MEMMODECTL, rgvmodectl);
  7174. if (wait_for((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
  7175. DRM_ERROR("stuck trying to change perf mode\n");
  7176. msleep(1);
  7177. ironlake_set_drps(dev, fstart);
  7178. dev_priv->last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
  7179. I915_READ(0x112e0);
  7180. dev_priv->last_time1 = jiffies_to_msecs(jiffies);
  7181. dev_priv->last_count2 = I915_READ(0x112f4);
  7182. getrawmonotonic(&dev_priv->last_time2);
  7183. }
  7184. void ironlake_disable_drps(struct drm_device *dev)
  7185. {
  7186. struct drm_i915_private *dev_priv = dev->dev_private;
  7187. u16 rgvswctl = I915_READ16(MEMSWCTL);
  7188. /* Ack interrupts, disable EFC interrupt */
  7189. I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
  7190. I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
  7191. I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
  7192. I915_WRITE(DEIIR, DE_PCU_EVENT);
  7193. I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
  7194. /* Go back to the starting frequency */
  7195. ironlake_set_drps(dev, dev_priv->fstart);
  7196. msleep(1);
  7197. rgvswctl |= MEMCTL_CMD_STS;
  7198. I915_WRITE(MEMSWCTL, rgvswctl);
  7199. msleep(1);
  7200. }
  7201. void gen6_set_rps(struct drm_device *dev, u8 val)
  7202. {
  7203. struct drm_i915_private *dev_priv = dev->dev_private;
  7204. u32 swreq;
  7205. swreq = (val & 0x3ff) << 25;
  7206. I915_WRITE(GEN6_RPNSWREQ, swreq);
  7207. }
  7208. void gen6_disable_rps(struct drm_device *dev)
  7209. {
  7210. struct drm_i915_private *dev_priv = dev->dev_private;
  7211. I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
  7212. I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
  7213. I915_WRITE(GEN6_PMIER, 0);
  7214. /* Complete PM interrupt masking here doesn't race with the rps work
  7215. * item again unmasking PM interrupts because that is using a different
  7216. * register (PMIMR) to mask PM interrupts. The only risk is in leaving
  7217. * stale bits in PMIIR and PMIMR which gen6_enable_rps will clean up. */
  7218. spin_lock_irq(&dev_priv->rps_lock);
  7219. dev_priv->pm_iir = 0;
  7220. spin_unlock_irq(&dev_priv->rps_lock);
  7221. I915_WRITE(GEN6_PMIIR, I915_READ(GEN6_PMIIR));
  7222. }
  7223. static unsigned long intel_pxfreq(u32 vidfreq)
  7224. {
  7225. unsigned long freq;
  7226. int div = (vidfreq & 0x3f0000) >> 16;
  7227. int post = (vidfreq & 0x3000) >> 12;
  7228. int pre = (vidfreq & 0x7);
  7229. if (!pre)
  7230. return 0;
  7231. freq = ((div * 133333) / ((1<<post) * pre));
  7232. return freq;
  7233. }
  7234. void intel_init_emon(struct drm_device *dev)
  7235. {
  7236. struct drm_i915_private *dev_priv = dev->dev_private;
  7237. u32 lcfuse;
  7238. u8 pxw[16];
  7239. int i;
  7240. /* Disable to program */
  7241. I915_WRITE(ECR, 0);
  7242. POSTING_READ(ECR);
  7243. /* Program energy weights for various events */
  7244. I915_WRITE(SDEW, 0x15040d00);
  7245. I915_WRITE(CSIEW0, 0x007f0000);
  7246. I915_WRITE(CSIEW1, 0x1e220004);
  7247. I915_WRITE(CSIEW2, 0x04000004);
  7248. for (i = 0; i < 5; i++)
  7249. I915_WRITE(PEW + (i * 4), 0);
  7250. for (i = 0; i < 3; i++)
  7251. I915_WRITE(DEW + (i * 4), 0);
  7252. /* Program P-state weights to account for frequency power adjustment */
  7253. for (i = 0; i < 16; i++) {
  7254. u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
  7255. unsigned long freq = intel_pxfreq(pxvidfreq);
  7256. unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
  7257. PXVFREQ_PX_SHIFT;
  7258. unsigned long val;
  7259. val = vid * vid;
  7260. val *= (freq / 1000);
  7261. val *= 255;
  7262. val /= (127*127*900);
  7263. if (val > 0xff)
  7264. DRM_ERROR("bad pxval: %ld\n", val);
  7265. pxw[i] = val;
  7266. }
  7267. /* Render standby states get 0 weight */
  7268. pxw[14] = 0;
  7269. pxw[15] = 0;
  7270. for (i = 0; i < 4; i++) {
  7271. u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
  7272. (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
  7273. I915_WRITE(PXW + (i * 4), val);
  7274. }
  7275. /* Adjust magic regs to magic values (more experimental results) */
  7276. I915_WRITE(OGW0, 0);
  7277. I915_WRITE(OGW1, 0);
  7278. I915_WRITE(EG0, 0x00007f00);
  7279. I915_WRITE(EG1, 0x0000000e);
  7280. I915_WRITE(EG2, 0x000e0000);
  7281. I915_WRITE(EG3, 0x68000300);
  7282. I915_WRITE(EG4, 0x42000000);
  7283. I915_WRITE(EG5, 0x00140031);
  7284. I915_WRITE(EG6, 0);
  7285. I915_WRITE(EG7, 0);
  7286. for (i = 0; i < 8; i++)
  7287. I915_WRITE(PXWL + (i * 4), 0);
  7288. /* Enable PMON + select events */
  7289. I915_WRITE(ECR, 0x80000019);
  7290. lcfuse = I915_READ(LCFUSE02);
  7291. dev_priv->corr = (lcfuse & LCFUSE_HIV_MASK);
  7292. }
  7293. int intel_enable_rc6(const struct drm_device *dev)
  7294. {
  7295. /*
  7296. * Respect the kernel parameter if it is set
  7297. */
  7298. if (i915_enable_rc6 >= 0)
  7299. return i915_enable_rc6;
  7300. /*
  7301. * Disable RC6 on Ironlake
  7302. */
  7303. if (INTEL_INFO(dev)->gen == 5)
  7304. return 0;
  7305. /*
  7306. * Disable rc6 on Sandybridge
  7307. */
  7308. if (INTEL_INFO(dev)->gen == 6) {
  7309. DRM_DEBUG_DRIVER("Sandybridge: deep RC6 disabled\n");
  7310. return INTEL_RC6_ENABLE;
  7311. }
  7312. DRM_DEBUG_DRIVER("RC6 and deep RC6 enabled\n");
  7313. return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
  7314. }
  7315. void gen6_enable_rps(struct drm_i915_private *dev_priv)
  7316. {
  7317. u32 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
  7318. u32 gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
  7319. u32 pcu_mbox, rc6_mask = 0;
  7320. u32 gtfifodbg;
  7321. int cur_freq, min_freq, max_freq;
  7322. int rc6_mode;
  7323. int i;
  7324. /* Here begins a magic sequence of register writes to enable
  7325. * auto-downclocking.
  7326. *
  7327. * Perhaps there might be some value in exposing these to
  7328. * userspace...
  7329. */
  7330. I915_WRITE(GEN6_RC_STATE, 0);
  7331. mutex_lock(&dev_priv->dev->struct_mutex);
  7332. /* Clear the DBG now so we don't confuse earlier errors */
  7333. if ((gtfifodbg = I915_READ(GTFIFODBG))) {
  7334. DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
  7335. I915_WRITE(GTFIFODBG, gtfifodbg);
  7336. }
  7337. gen6_gt_force_wake_get(dev_priv);
  7338. /* disable the counters and set deterministic thresholds */
  7339. I915_WRITE(GEN6_RC_CONTROL, 0);
  7340. I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
  7341. I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
  7342. I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
  7343. I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
  7344. I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
  7345. for (i = 0; i < I915_NUM_RINGS; i++)
  7346. I915_WRITE(RING_MAX_IDLE(dev_priv->ring[i].mmio_base), 10);
  7347. I915_WRITE(GEN6_RC_SLEEP, 0);
  7348. I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
  7349. I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
  7350. I915_WRITE(GEN6_RC6p_THRESHOLD, 100000);
  7351. I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
  7352. rc6_mode = intel_enable_rc6(dev_priv->dev);
  7353. if (rc6_mode & INTEL_RC6_ENABLE)
  7354. rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;
  7355. if (rc6_mode & INTEL_RC6p_ENABLE)
  7356. rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
  7357. if (rc6_mode & INTEL_RC6pp_ENABLE)
  7358. rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
  7359. DRM_INFO("Enabling RC6 states: RC6 %s, RC6p %s, RC6pp %s\n",
  7360. (rc6_mode & INTEL_RC6_ENABLE) ? "on" : "off",
  7361. (rc6_mode & INTEL_RC6p_ENABLE) ? "on" : "off",
  7362. (rc6_mode & INTEL_RC6pp_ENABLE) ? "on" : "off");
  7363. I915_WRITE(GEN6_RC_CONTROL,
  7364. rc6_mask |
  7365. GEN6_RC_CTL_EI_MODE(1) |
  7366. GEN6_RC_CTL_HW_ENABLE);
  7367. I915_WRITE(GEN6_RPNSWREQ,
  7368. GEN6_FREQUENCY(10) |
  7369. GEN6_OFFSET(0) |
  7370. GEN6_AGGRESSIVE_TURBO);
  7371. I915_WRITE(GEN6_RC_VIDEO_FREQ,
  7372. GEN6_FREQUENCY(12));
  7373. I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
  7374. I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
  7375. 18 << 24 |
  7376. 6 << 16);
  7377. I915_WRITE(GEN6_RP_UP_THRESHOLD, 10000);
  7378. I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 1000000);
  7379. I915_WRITE(GEN6_RP_UP_EI, 100000);
  7380. I915_WRITE(GEN6_RP_DOWN_EI, 5000000);
  7381. I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
  7382. I915_WRITE(GEN6_RP_CONTROL,
  7383. GEN6_RP_MEDIA_TURBO |
  7384. GEN6_RP_MEDIA_HW_MODE |
  7385. GEN6_RP_MEDIA_IS_GFX |
  7386. GEN6_RP_ENABLE |
  7387. GEN6_RP_UP_BUSY_AVG |
  7388. GEN6_RP_DOWN_IDLE_CONT);
  7389. if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
  7390. 500))
  7391. DRM_ERROR("timeout waiting for pcode mailbox to become idle\n");
  7392. I915_WRITE(GEN6_PCODE_DATA, 0);
  7393. I915_WRITE(GEN6_PCODE_MAILBOX,
  7394. GEN6_PCODE_READY |
  7395. GEN6_PCODE_WRITE_MIN_FREQ_TABLE);
  7396. if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
  7397. 500))
  7398. DRM_ERROR("timeout waiting for pcode mailbox to finish\n");
  7399. min_freq = (rp_state_cap & 0xff0000) >> 16;
  7400. max_freq = rp_state_cap & 0xff;
  7401. cur_freq = (gt_perf_status & 0xff00) >> 8;
  7402. /* Check for overclock support */
  7403. if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
  7404. 500))
  7405. DRM_ERROR("timeout waiting for pcode mailbox to become idle\n");
  7406. I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_READ_OC_PARAMS);
  7407. pcu_mbox = I915_READ(GEN6_PCODE_DATA);
  7408. if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
  7409. 500))
  7410. DRM_ERROR("timeout waiting for pcode mailbox to finish\n");
  7411. if (pcu_mbox & (1<<31)) { /* OC supported */
  7412. max_freq = pcu_mbox & 0xff;
  7413. DRM_DEBUG_DRIVER("overclocking supported, adjusting frequency max to %dMHz\n", pcu_mbox * 50);
  7414. }
  7415. /* In units of 100MHz */
  7416. dev_priv->max_delay = max_freq;
  7417. dev_priv->min_delay = min_freq;
  7418. dev_priv->cur_delay = cur_freq;
  7419. /* requires MSI enabled */
  7420. I915_WRITE(GEN6_PMIER,
  7421. GEN6_PM_MBOX_EVENT |
  7422. GEN6_PM_THERMAL_EVENT |
  7423. GEN6_PM_RP_DOWN_TIMEOUT |
  7424. GEN6_PM_RP_UP_THRESHOLD |
  7425. GEN6_PM_RP_DOWN_THRESHOLD |
  7426. GEN6_PM_RP_UP_EI_EXPIRED |
  7427. GEN6_PM_RP_DOWN_EI_EXPIRED);
  7428. spin_lock_irq(&dev_priv->rps_lock);
  7429. WARN_ON(dev_priv->pm_iir != 0);
  7430. I915_WRITE(GEN6_PMIMR, 0);
  7431. spin_unlock_irq(&dev_priv->rps_lock);
  7432. /* enable all PM interrupts */
  7433. I915_WRITE(GEN6_PMINTRMSK, 0);
  7434. gen6_gt_force_wake_put(dev_priv);
  7435. mutex_unlock(&dev_priv->dev->struct_mutex);
  7436. }
  7437. void gen6_update_ring_freq(struct drm_i915_private *dev_priv)
  7438. {
  7439. int min_freq = 15;
  7440. int gpu_freq, ia_freq, max_ia_freq;
  7441. int scaling_factor = 180;
  7442. max_ia_freq = cpufreq_quick_get_max(0);
  7443. /*
  7444. * Default to measured freq if none found, PCU will ensure we don't go
  7445. * over
  7446. */
  7447. if (!max_ia_freq)
  7448. max_ia_freq = tsc_khz;
  7449. /* Convert from kHz to MHz */
  7450. max_ia_freq /= 1000;
  7451. mutex_lock(&dev_priv->dev->struct_mutex);
  7452. /*
  7453. * For each potential GPU frequency, load a ring frequency we'd like
  7454. * to use for memory access. We do this by specifying the IA frequency
  7455. * the PCU should use as a reference to determine the ring frequency.
  7456. */
  7457. for (gpu_freq = dev_priv->max_delay; gpu_freq >= dev_priv->min_delay;
  7458. gpu_freq--) {
  7459. int diff = dev_priv->max_delay - gpu_freq;
  7460. /*
  7461. * For GPU frequencies less than 750MHz, just use the lowest
  7462. * ring freq.
  7463. */
  7464. if (gpu_freq < min_freq)
  7465. ia_freq = 800;
  7466. else
  7467. ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
  7468. ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
  7469. I915_WRITE(GEN6_PCODE_DATA,
  7470. (ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT) |
  7471. gpu_freq);
  7472. I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY |
  7473. GEN6_PCODE_WRITE_MIN_FREQ_TABLE);
  7474. if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) &
  7475. GEN6_PCODE_READY) == 0, 10)) {
  7476. DRM_ERROR("pcode write of freq table timed out\n");
  7477. continue;
  7478. }
  7479. }
  7480. mutex_unlock(&dev_priv->dev->struct_mutex);
  7481. }
  7482. static void ironlake_init_clock_gating(struct drm_device *dev)
  7483. {
  7484. struct drm_i915_private *dev_priv = dev->dev_private;
  7485. uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
  7486. /* Required for FBC */
  7487. dspclk_gate |= DPFCUNIT_CLOCK_GATE_DISABLE |
  7488. DPFCRUNIT_CLOCK_GATE_DISABLE |
  7489. DPFDUNIT_CLOCK_GATE_DISABLE;
  7490. /* Required for CxSR */
  7491. dspclk_gate |= DPARBUNIT_CLOCK_GATE_DISABLE;
  7492. I915_WRITE(PCH_3DCGDIS0,
  7493. MARIUNIT_CLOCK_GATE_DISABLE |
  7494. SVSMUNIT_CLOCK_GATE_DISABLE);
  7495. I915_WRITE(PCH_3DCGDIS1,
  7496. VFMUNIT_CLOCK_GATE_DISABLE);
  7497. I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
  7498. /*
  7499. * According to the spec the following bits should be set in
  7500. * order to enable memory self-refresh
  7501. * The bit 22/21 of 0x42004
  7502. * The bit 5 of 0x42020
  7503. * The bit 15 of 0x45000
  7504. */
  7505. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  7506. (I915_READ(ILK_DISPLAY_CHICKEN2) |
  7507. ILK_DPARB_GATE | ILK_VSDPFD_FULL));
  7508. I915_WRITE(ILK_DSPCLK_GATE,
  7509. (I915_READ(ILK_DSPCLK_GATE) |
  7510. ILK_DPARB_CLK_GATE));
  7511. I915_WRITE(DISP_ARB_CTL,
  7512. (I915_READ(DISP_ARB_CTL) |
  7513. DISP_FBC_WM_DIS));
  7514. I915_WRITE(WM3_LP_ILK, 0);
  7515. I915_WRITE(WM2_LP_ILK, 0);
  7516. I915_WRITE(WM1_LP_ILK, 0);
  7517. /*
  7518. * Based on the document from hardware guys the following bits
  7519. * should be set unconditionally in order to enable FBC.
  7520. * The bit 22 of 0x42000
  7521. * The bit 22 of 0x42004
  7522. * The bit 7,8,9 of 0x42020.
  7523. */
  7524. if (IS_IRONLAKE_M(dev)) {
  7525. I915_WRITE(ILK_DISPLAY_CHICKEN1,
  7526. I915_READ(ILK_DISPLAY_CHICKEN1) |
  7527. ILK_FBCQ_DIS);
  7528. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  7529. I915_READ(ILK_DISPLAY_CHICKEN2) |
  7530. ILK_DPARB_GATE);
  7531. I915_WRITE(ILK_DSPCLK_GATE,
  7532. I915_READ(ILK_DSPCLK_GATE) |
  7533. ILK_DPFC_DIS1 |
  7534. ILK_DPFC_DIS2 |
  7535. ILK_CLK_FBC);
  7536. }
  7537. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  7538. I915_READ(ILK_DISPLAY_CHICKEN2) |
  7539. ILK_ELPIN_409_SELECT);
  7540. I915_WRITE(_3D_CHICKEN2,
  7541. _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
  7542. _3D_CHICKEN2_WM_READ_PIPELINED);
  7543. }
  7544. static void gen6_init_clock_gating(struct drm_device *dev)
  7545. {
  7546. struct drm_i915_private *dev_priv = dev->dev_private;
  7547. int pipe;
  7548. uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
  7549. I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
  7550. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  7551. I915_READ(ILK_DISPLAY_CHICKEN2) |
  7552. ILK_ELPIN_409_SELECT);
  7553. I915_WRITE(WM3_LP_ILK, 0);
  7554. I915_WRITE(WM2_LP_ILK, 0);
  7555. I915_WRITE(WM1_LP_ILK, 0);
  7556. /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
  7557. * gating disable must be set. Failure to set it results in
  7558. * flickering pixels due to Z write ordering failures after
  7559. * some amount of runtime in the Mesa "fire" demo, and Unigine
  7560. * Sanctuary and Tropics, and apparently anything else with
  7561. * alpha test or pixel discard.
  7562. *
  7563. * According to the spec, bit 11 (RCCUNIT) must also be set,
  7564. * but we didn't debug actual testcases to find it out.
  7565. */
  7566. I915_WRITE(GEN6_UCGCTL2,
  7567. GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
  7568. GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
  7569. /*
  7570. * According to the spec the following bits should be
  7571. * set in order to enable memory self-refresh and fbc:
  7572. * The bit21 and bit22 of 0x42000
  7573. * The bit21 and bit22 of 0x42004
  7574. * The bit5 and bit7 of 0x42020
  7575. * The bit14 of 0x70180
  7576. * The bit14 of 0x71180
  7577. */
  7578. I915_WRITE(ILK_DISPLAY_CHICKEN1,
  7579. I915_READ(ILK_DISPLAY_CHICKEN1) |
  7580. ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
  7581. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  7582. I915_READ(ILK_DISPLAY_CHICKEN2) |
  7583. ILK_DPARB_GATE | ILK_VSDPFD_FULL);
  7584. I915_WRITE(ILK_DSPCLK_GATE,
  7585. I915_READ(ILK_DSPCLK_GATE) |
  7586. ILK_DPARB_CLK_GATE |
  7587. ILK_DPFD_CLK_GATE);
  7588. for_each_pipe(pipe) {
  7589. I915_WRITE(DSPCNTR(pipe),
  7590. I915_READ(DSPCNTR(pipe)) |
  7591. DISPPLANE_TRICKLE_FEED_DISABLE);
  7592. intel_flush_display_plane(dev_priv, pipe);
  7593. }
  7594. }
  7595. static void ivybridge_init_clock_gating(struct drm_device *dev)
  7596. {
  7597. struct drm_i915_private *dev_priv = dev->dev_private;
  7598. int pipe;
  7599. uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
  7600. I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
  7601. I915_WRITE(WM3_LP_ILK, 0);
  7602. I915_WRITE(WM2_LP_ILK, 0);
  7603. I915_WRITE(WM1_LP_ILK, 0);
  7604. /* According to the spec, bit 13 (RCZUNIT) must be set on IVB.
  7605. * This implements the WaDisableRCZUnitClockGating workaround.
  7606. */
  7607. I915_WRITE(GEN6_UCGCTL2, GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
  7608. I915_WRITE(ILK_DSPCLK_GATE, IVB_VRHUNIT_CLK_GATE);
  7609. I915_WRITE(IVB_CHICKEN3,
  7610. CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
  7611. CHICKEN3_DGMG_DONE_FIX_DISABLE);
  7612. /* Apply the WaDisableRHWOOptimizationForRenderHang workaround. */
  7613. I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
  7614. GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
  7615. /* WaApplyL3ControlAndL3ChickenMode requires those two on Ivy Bridge */
  7616. I915_WRITE(GEN7_L3CNTLREG1,
  7617. GEN7_WA_FOR_GEN7_L3_CONTROL);
  7618. I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
  7619. GEN7_WA_L3_CHICKEN_MODE);
  7620. /* This is required by WaCatErrorRejectionIssue */
  7621. I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
  7622. I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
  7623. GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
  7624. for_each_pipe(pipe) {
  7625. I915_WRITE(DSPCNTR(pipe),
  7626. I915_READ(DSPCNTR(pipe)) |
  7627. DISPPLANE_TRICKLE_FEED_DISABLE);
  7628. intel_flush_display_plane(dev_priv, pipe);
  7629. }
  7630. }
  7631. static void valleyview_init_clock_gating(struct drm_device *dev)
  7632. {
  7633. struct drm_i915_private *dev_priv = dev->dev_private;
  7634. int pipe;
  7635. uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
  7636. I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
  7637. I915_WRITE(WM3_LP_ILK, 0);
  7638. I915_WRITE(WM2_LP_ILK, 0);
  7639. I915_WRITE(WM1_LP_ILK, 0);
  7640. /* According to the spec, bit 13 (RCZUNIT) must be set on IVB.
  7641. * This implements the WaDisableRCZUnitClockGating workaround.
  7642. */
  7643. I915_WRITE(GEN6_UCGCTL2, GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
  7644. I915_WRITE(ILK_DSPCLK_GATE, IVB_VRHUNIT_CLK_GATE);
  7645. I915_WRITE(IVB_CHICKEN3,
  7646. CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
  7647. CHICKEN3_DGMG_DONE_FIX_DISABLE);
  7648. /* Apply the WaDisableRHWOOptimizationForRenderHang workaround. */
  7649. I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
  7650. GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
  7651. /* WaApplyL3ControlAndL3ChickenMode requires those two on Ivy Bridge */
  7652. I915_WRITE(GEN7_L3CNTLREG1, GEN7_WA_FOR_GEN7_L3_CONTROL);
  7653. I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER, GEN7_WA_L3_CHICKEN_MODE);
  7654. /* This is required by WaCatErrorRejectionIssue */
  7655. I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
  7656. I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
  7657. GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
  7658. for_each_pipe(pipe) {
  7659. I915_WRITE(DSPCNTR(pipe),
  7660. I915_READ(DSPCNTR(pipe)) |
  7661. DISPPLANE_TRICKLE_FEED_DISABLE);
  7662. intel_flush_display_plane(dev_priv, pipe);
  7663. }
  7664. I915_WRITE(CACHE_MODE_1, I915_READ(CACHE_MODE_1) |
  7665. (PIXEL_SUBSPAN_COLLECT_OPT_DISABLE << 16) |
  7666. PIXEL_SUBSPAN_COLLECT_OPT_DISABLE);
  7667. }
  7668. static void g4x_init_clock_gating(struct drm_device *dev)
  7669. {
  7670. struct drm_i915_private *dev_priv = dev->dev_private;
  7671. uint32_t dspclk_gate;
  7672. I915_WRITE(RENCLK_GATE_D1, 0);
  7673. I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
  7674. GS_UNIT_CLOCK_GATE_DISABLE |
  7675. CL_UNIT_CLOCK_GATE_DISABLE);
  7676. I915_WRITE(RAMCLK_GATE_D, 0);
  7677. dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
  7678. OVRUNIT_CLOCK_GATE_DISABLE |
  7679. OVCUNIT_CLOCK_GATE_DISABLE;
  7680. if (IS_GM45(dev))
  7681. dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
  7682. I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
  7683. }
  7684. static void crestline_init_clock_gating(struct drm_device *dev)
  7685. {
  7686. struct drm_i915_private *dev_priv = dev->dev_private;
  7687. I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
  7688. I915_WRITE(RENCLK_GATE_D2, 0);
  7689. I915_WRITE(DSPCLK_GATE_D, 0);
  7690. I915_WRITE(RAMCLK_GATE_D, 0);
  7691. I915_WRITE16(DEUC, 0);
  7692. }
  7693. static void broadwater_init_clock_gating(struct drm_device *dev)
  7694. {
  7695. struct drm_i915_private *dev_priv = dev->dev_private;
  7696. I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
  7697. I965_RCC_CLOCK_GATE_DISABLE |
  7698. I965_RCPB_CLOCK_GATE_DISABLE |
  7699. I965_ISC_CLOCK_GATE_DISABLE |
  7700. I965_FBC_CLOCK_GATE_DISABLE);
  7701. I915_WRITE(RENCLK_GATE_D2, 0);
  7702. }
  7703. static void gen3_init_clock_gating(struct drm_device *dev)
  7704. {
  7705. struct drm_i915_private *dev_priv = dev->dev_private;
  7706. u32 dstate = I915_READ(D_STATE);
  7707. dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
  7708. DSTATE_DOT_CLOCK_GATING;
  7709. I915_WRITE(D_STATE, dstate);
  7710. }
  7711. static void i85x_init_clock_gating(struct drm_device *dev)
  7712. {
  7713. struct drm_i915_private *dev_priv = dev->dev_private;
  7714. I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
  7715. }
  7716. static void i830_init_clock_gating(struct drm_device *dev)
  7717. {
  7718. struct drm_i915_private *dev_priv = dev->dev_private;
  7719. I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
  7720. }
  7721. static void ibx_init_clock_gating(struct drm_device *dev)
  7722. {
  7723. struct drm_i915_private *dev_priv = dev->dev_private;
  7724. /*
  7725. * On Ibex Peak and Cougar Point, we need to disable clock
  7726. * gating for the panel power sequencer or it will fail to
  7727. * start up when no ports are active.
  7728. */
  7729. I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
  7730. }
  7731. static void cpt_init_clock_gating(struct drm_device *dev)
  7732. {
  7733. struct drm_i915_private *dev_priv = dev->dev_private;
  7734. int pipe;
  7735. /*
  7736. * On Ibex Peak and Cougar Point, we need to disable clock
  7737. * gating for the panel power sequencer or it will fail to
  7738. * start up when no ports are active.
  7739. */
  7740. I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
  7741. I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
  7742. DPLS_EDP_PPS_FIX_DIS);
  7743. /* Without this, mode sets may fail silently on FDI */
  7744. for_each_pipe(pipe)
  7745. I915_WRITE(TRANS_CHICKEN2(pipe), TRANS_AUTOTRAIN_GEN_STALL_DIS);
  7746. }
  7747. static void ironlake_teardown_rc6(struct drm_device *dev)
  7748. {
  7749. struct drm_i915_private *dev_priv = dev->dev_private;
  7750. if (dev_priv->renderctx) {
  7751. i915_gem_object_unpin(dev_priv->renderctx);
  7752. drm_gem_object_unreference(&dev_priv->renderctx->base);
  7753. dev_priv->renderctx = NULL;
  7754. }
  7755. if (dev_priv->pwrctx) {
  7756. i915_gem_object_unpin(dev_priv->pwrctx);
  7757. drm_gem_object_unreference(&dev_priv->pwrctx->base);
  7758. dev_priv->pwrctx = NULL;
  7759. }
  7760. }
  7761. static void ironlake_disable_rc6(struct drm_device *dev)
  7762. {
  7763. struct drm_i915_private *dev_priv = dev->dev_private;
  7764. if (I915_READ(PWRCTXA)) {
  7765. /* Wake the GPU, prevent RC6, then restore RSTDBYCTL */
  7766. I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) | RCX_SW_EXIT);
  7767. wait_for(((I915_READ(RSTDBYCTL) & RSX_STATUS_MASK) == RSX_STATUS_ON),
  7768. 50);
  7769. I915_WRITE(PWRCTXA, 0);
  7770. POSTING_READ(PWRCTXA);
  7771. I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
  7772. POSTING_READ(RSTDBYCTL);
  7773. }
  7774. ironlake_teardown_rc6(dev);
  7775. }
  7776. static int ironlake_setup_rc6(struct drm_device *dev)
  7777. {
  7778. struct drm_i915_private *dev_priv = dev->dev_private;
  7779. if (dev_priv->renderctx == NULL)
  7780. dev_priv->renderctx = intel_alloc_context_page(dev);
  7781. if (!dev_priv->renderctx)
  7782. return -ENOMEM;
  7783. if (dev_priv->pwrctx == NULL)
  7784. dev_priv->pwrctx = intel_alloc_context_page(dev);
  7785. if (!dev_priv->pwrctx) {
  7786. ironlake_teardown_rc6(dev);
  7787. return -ENOMEM;
  7788. }
  7789. return 0;
  7790. }
  7791. void ironlake_enable_rc6(struct drm_device *dev)
  7792. {
  7793. struct drm_i915_private *dev_priv = dev->dev_private;
  7794. int ret;
  7795. /* rc6 disabled by default due to repeated reports of hanging during
  7796. * boot and resume.
  7797. */
  7798. if (!intel_enable_rc6(dev))
  7799. return;
  7800. mutex_lock(&dev->struct_mutex);
  7801. ret = ironlake_setup_rc6(dev);
  7802. if (ret) {
  7803. mutex_unlock(&dev->struct_mutex);
  7804. return;
  7805. }
  7806. /*
  7807. * GPU can automatically power down the render unit if given a page
  7808. * to save state.
  7809. */
  7810. ret = BEGIN_LP_RING(6);
  7811. if (ret) {
  7812. ironlake_teardown_rc6(dev);
  7813. mutex_unlock(&dev->struct_mutex);
  7814. return;
  7815. }
  7816. OUT_RING(MI_SUSPEND_FLUSH | MI_SUSPEND_FLUSH_EN);
  7817. OUT_RING(MI_SET_CONTEXT);
  7818. OUT_RING(dev_priv->renderctx->gtt_offset |
  7819. MI_MM_SPACE_GTT |
  7820. MI_SAVE_EXT_STATE_EN |
  7821. MI_RESTORE_EXT_STATE_EN |
  7822. MI_RESTORE_INHIBIT);
  7823. OUT_RING(MI_SUSPEND_FLUSH);
  7824. OUT_RING(MI_NOOP);
  7825. OUT_RING(MI_FLUSH);
  7826. ADVANCE_LP_RING();
  7827. /*
  7828. * Wait for the command parser to advance past MI_SET_CONTEXT. The HW
  7829. * does an implicit flush, combined with MI_FLUSH above, it should be
  7830. * safe to assume that renderctx is valid
  7831. */
  7832. ret = intel_wait_ring_idle(LP_RING(dev_priv));
  7833. if (ret) {
  7834. DRM_ERROR("failed to enable ironlake power power savings\n");
  7835. ironlake_teardown_rc6(dev);
  7836. mutex_unlock(&dev->struct_mutex);
  7837. return;
  7838. }
  7839. I915_WRITE(PWRCTXA, dev_priv->pwrctx->gtt_offset | PWRCTX_EN);
  7840. I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
  7841. mutex_unlock(&dev->struct_mutex);
  7842. }
  7843. void intel_init_clock_gating(struct drm_device *dev)
  7844. {
  7845. struct drm_i915_private *dev_priv = dev->dev_private;
  7846. dev_priv->display.init_clock_gating(dev);
  7847. if (dev_priv->display.init_pch_clock_gating)
  7848. dev_priv->display.init_pch_clock_gating(dev);
  7849. }
  7850. /* Set up chip specific display functions */
  7851. static void intel_init_display(struct drm_device *dev)
  7852. {
  7853. struct drm_i915_private *dev_priv = dev->dev_private;
  7854. /* We always want a DPMS function */
  7855. if (HAS_PCH_SPLIT(dev)) {
  7856. dev_priv->display.dpms = ironlake_crtc_dpms;
  7857. dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
  7858. dev_priv->display.update_plane = ironlake_update_plane;
  7859. } else {
  7860. dev_priv->display.dpms = i9xx_crtc_dpms;
  7861. dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
  7862. dev_priv->display.update_plane = i9xx_update_plane;
  7863. }
  7864. if (I915_HAS_FBC(dev)) {
  7865. if (HAS_PCH_SPLIT(dev)) {
  7866. dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
  7867. dev_priv->display.enable_fbc = ironlake_enable_fbc;
  7868. dev_priv->display.disable_fbc = ironlake_disable_fbc;
  7869. } else if (IS_GM45(dev)) {
  7870. dev_priv->display.fbc_enabled = g4x_fbc_enabled;
  7871. dev_priv->display.enable_fbc = g4x_enable_fbc;
  7872. dev_priv->display.disable_fbc = g4x_disable_fbc;
  7873. } else if (IS_CRESTLINE(dev)) {
  7874. dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
  7875. dev_priv->display.enable_fbc = i8xx_enable_fbc;
  7876. dev_priv->display.disable_fbc = i8xx_disable_fbc;
  7877. }
  7878. /* 855GM needs testing */
  7879. }
  7880. /* Returns the core display clock speed */
  7881. if (IS_VALLEYVIEW(dev))
  7882. dev_priv->display.get_display_clock_speed =
  7883. valleyview_get_display_clock_speed;
  7884. else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
  7885. dev_priv->display.get_display_clock_speed =
  7886. i945_get_display_clock_speed;
  7887. else if (IS_I915G(dev))
  7888. dev_priv->display.get_display_clock_speed =
  7889. i915_get_display_clock_speed;
  7890. else if (IS_I945GM(dev) || IS_845G(dev) || IS_PINEVIEW_M(dev))
  7891. dev_priv->display.get_display_clock_speed =
  7892. i9xx_misc_get_display_clock_speed;
  7893. else if (IS_I915GM(dev))
  7894. dev_priv->display.get_display_clock_speed =
  7895. i915gm_get_display_clock_speed;
  7896. else if (IS_I865G(dev))
  7897. dev_priv->display.get_display_clock_speed =
  7898. i865_get_display_clock_speed;
  7899. else if (IS_I85X(dev))
  7900. dev_priv->display.get_display_clock_speed =
  7901. i855_get_display_clock_speed;
  7902. else /* 852, 830 */
  7903. dev_priv->display.get_display_clock_speed =
  7904. i830_get_display_clock_speed;
  7905. /* For FIFO watermark updates */
  7906. if (HAS_PCH_SPLIT(dev)) {
  7907. dev_priv->display.force_wake_get = __gen6_gt_force_wake_get;
  7908. dev_priv->display.force_wake_put = __gen6_gt_force_wake_put;
  7909. /* IVB configs may use multi-threaded forcewake */
  7910. if (IS_IVYBRIDGE(dev)) {
  7911. u32 ecobus;
  7912. /* A small trick here - if the bios hasn't configured MT forcewake,
  7913. * and if the device is in RC6, then force_wake_mt_get will not wake
  7914. * the device and the ECOBUS read will return zero. Which will be
  7915. * (correctly) interpreted by the test below as MT forcewake being
  7916. * disabled.
  7917. */
  7918. mutex_lock(&dev->struct_mutex);
  7919. __gen6_gt_force_wake_mt_get(dev_priv);
  7920. ecobus = I915_READ_NOTRACE(ECOBUS);
  7921. __gen6_gt_force_wake_mt_put(dev_priv);
  7922. mutex_unlock(&dev->struct_mutex);
  7923. if (ecobus & FORCEWAKE_MT_ENABLE) {
  7924. DRM_DEBUG_KMS("Using MT version of forcewake\n");
  7925. dev_priv->display.force_wake_get =
  7926. __gen6_gt_force_wake_mt_get;
  7927. dev_priv->display.force_wake_put =
  7928. __gen6_gt_force_wake_mt_put;
  7929. }
  7930. }
  7931. if (HAS_PCH_IBX(dev))
  7932. dev_priv->display.init_pch_clock_gating = ibx_init_clock_gating;
  7933. else if (HAS_PCH_CPT(dev))
  7934. dev_priv->display.init_pch_clock_gating = cpt_init_clock_gating;
  7935. if (IS_GEN5(dev)) {
  7936. if (I915_READ(MLTR_ILK) & ILK_SRLT_MASK)
  7937. dev_priv->display.update_wm = ironlake_update_wm;
  7938. else {
  7939. DRM_DEBUG_KMS("Failed to get proper latency. "
  7940. "Disable CxSR\n");
  7941. dev_priv->display.update_wm = NULL;
  7942. }
  7943. dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
  7944. dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
  7945. dev_priv->display.write_eld = ironlake_write_eld;
  7946. } else if (IS_GEN6(dev)) {
  7947. if (SNB_READ_WM0_LATENCY()) {
  7948. dev_priv->display.update_wm = sandybridge_update_wm;
  7949. dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
  7950. } else {
  7951. DRM_DEBUG_KMS("Failed to read display plane latency. "
  7952. "Disable CxSR\n");
  7953. dev_priv->display.update_wm = NULL;
  7954. }
  7955. dev_priv->display.fdi_link_train = gen6_fdi_link_train;
  7956. dev_priv->display.init_clock_gating = gen6_init_clock_gating;
  7957. dev_priv->display.write_eld = ironlake_write_eld;
  7958. } else if (IS_IVYBRIDGE(dev)) {
  7959. /* FIXME: detect B0+ stepping and use auto training */
  7960. dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
  7961. if (SNB_READ_WM0_LATENCY()) {
  7962. dev_priv->display.update_wm = sandybridge_update_wm;
  7963. dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
  7964. } else {
  7965. DRM_DEBUG_KMS("Failed to read display plane latency. "
  7966. "Disable CxSR\n");
  7967. dev_priv->display.update_wm = NULL;
  7968. }
  7969. dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
  7970. dev_priv->display.write_eld = ironlake_write_eld;
  7971. } else
  7972. dev_priv->display.update_wm = NULL;
  7973. } else if (IS_VALLEYVIEW(dev)) {
  7974. dev_priv->display.update_wm = valleyview_update_wm;
  7975. dev_priv->display.init_clock_gating =
  7976. valleyview_init_clock_gating;
  7977. dev_priv->display.force_wake_get = vlv_force_wake_get;
  7978. dev_priv->display.force_wake_put = vlv_force_wake_put;
  7979. } else if (IS_PINEVIEW(dev)) {
  7980. if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
  7981. dev_priv->is_ddr3,
  7982. dev_priv->fsb_freq,
  7983. dev_priv->mem_freq)) {
  7984. DRM_INFO("failed to find known CxSR latency "
  7985. "(found ddr%s fsb freq %d, mem freq %d), "
  7986. "disabling CxSR\n",
  7987. (dev_priv->is_ddr3 == 1) ? "3" : "2",
  7988. dev_priv->fsb_freq, dev_priv->mem_freq);
  7989. /* Disable CxSR and never update its watermark again */
  7990. pineview_disable_cxsr(dev);
  7991. dev_priv->display.update_wm = NULL;
  7992. } else
  7993. dev_priv->display.update_wm = pineview_update_wm;
  7994. dev_priv->display.init_clock_gating = gen3_init_clock_gating;
  7995. } else if (IS_G4X(dev)) {
  7996. dev_priv->display.write_eld = g4x_write_eld;
  7997. dev_priv->display.update_wm = g4x_update_wm;
  7998. dev_priv->display.init_clock_gating = g4x_init_clock_gating;
  7999. } else if (IS_GEN4(dev)) {
  8000. dev_priv->display.update_wm = i965_update_wm;
  8001. if (IS_CRESTLINE(dev))
  8002. dev_priv->display.init_clock_gating = crestline_init_clock_gating;
  8003. else if (IS_BROADWATER(dev))
  8004. dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
  8005. } else if (IS_GEN3(dev)) {
  8006. dev_priv->display.update_wm = i9xx_update_wm;
  8007. dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
  8008. dev_priv->display.init_clock_gating = gen3_init_clock_gating;
  8009. } else if (IS_I865G(dev)) {
  8010. dev_priv->display.update_wm = i830_update_wm;
  8011. dev_priv->display.init_clock_gating = i85x_init_clock_gating;
  8012. dev_priv->display.get_fifo_size = i830_get_fifo_size;
  8013. } else if (IS_I85X(dev)) {
  8014. dev_priv->display.update_wm = i9xx_update_wm;
  8015. dev_priv->display.get_fifo_size = i85x_get_fifo_size;
  8016. dev_priv->display.init_clock_gating = i85x_init_clock_gating;
  8017. } else {
  8018. dev_priv->display.update_wm = i830_update_wm;
  8019. dev_priv->display.init_clock_gating = i830_init_clock_gating;
  8020. if (IS_845G(dev))
  8021. dev_priv->display.get_fifo_size = i845_get_fifo_size;
  8022. else
  8023. dev_priv->display.get_fifo_size = i830_get_fifo_size;
  8024. }
  8025. /* Default just returns -ENODEV to indicate unsupported */
  8026. dev_priv->display.queue_flip = intel_default_queue_flip;
  8027. switch (INTEL_INFO(dev)->gen) {
  8028. case 2:
  8029. dev_priv->display.queue_flip = intel_gen2_queue_flip;
  8030. break;
  8031. case 3:
  8032. dev_priv->display.queue_flip = intel_gen3_queue_flip;
  8033. break;
  8034. case 4:
  8035. case 5:
  8036. dev_priv->display.queue_flip = intel_gen4_queue_flip;
  8037. break;
  8038. case 6:
  8039. dev_priv->display.queue_flip = intel_gen6_queue_flip;
  8040. break;
  8041. case 7:
  8042. dev_priv->display.queue_flip = intel_gen7_queue_flip;
  8043. break;
  8044. }
  8045. }
  8046. /*
  8047. * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
  8048. * resume, or other times. This quirk makes sure that's the case for
  8049. * affected systems.
  8050. */
  8051. static void quirk_pipea_force(struct drm_device *dev)
  8052. {
  8053. struct drm_i915_private *dev_priv = dev->dev_private;
  8054. dev_priv->quirks |= QUIRK_PIPEA_FORCE;
  8055. DRM_INFO("applying pipe a force quirk\n");
  8056. }
  8057. /*
  8058. * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
  8059. */
  8060. static void quirk_ssc_force_disable(struct drm_device *dev)
  8061. {
  8062. struct drm_i915_private *dev_priv = dev->dev_private;
  8063. dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
  8064. DRM_INFO("applying lvds SSC disable quirk\n");
  8065. }
  8066. /*
  8067. * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
  8068. * brightness value
  8069. */
  8070. static void quirk_invert_brightness(struct drm_device *dev)
  8071. {
  8072. struct drm_i915_private *dev_priv = dev->dev_private;
  8073. dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
  8074. DRM_INFO("applying inverted panel brightness quirk\n");
  8075. }
  8076. struct intel_quirk {
  8077. int device;
  8078. int subsystem_vendor;
  8079. int subsystem_device;
  8080. void (*hook)(struct drm_device *dev);
  8081. };
  8082. struct intel_quirk intel_quirks[] = {
  8083. /* HP Mini needs pipe A force quirk (LP: #322104) */
  8084. { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
  8085. /* Thinkpad R31 needs pipe A force quirk */
  8086. { 0x3577, 0x1014, 0x0505, quirk_pipea_force },
  8087. /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
  8088. { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
  8089. /* ThinkPad X30 needs pipe A force quirk (LP: #304614) */
  8090. { 0x3577, 0x1014, 0x0513, quirk_pipea_force },
  8091. /* ThinkPad X40 needs pipe A force quirk */
  8092. /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
  8093. { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
  8094. /* 855 & before need to leave pipe A & dpll A up */
  8095. { 0x3582, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
  8096. { 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
  8097. /* Lenovo U160 cannot use SSC on LVDS */
  8098. { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
  8099. /* Sony Vaio Y cannot use SSC on LVDS */
  8100. { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
  8101. /* Acer Aspire 5734Z must invert backlight brightness */
  8102. { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
  8103. };
  8104. static void intel_init_quirks(struct drm_device *dev)
  8105. {
  8106. struct pci_dev *d = dev->pdev;
  8107. int i;
  8108. for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
  8109. struct intel_quirk *q = &intel_quirks[i];
  8110. if (d->device == q->device &&
  8111. (d->subsystem_vendor == q->subsystem_vendor ||
  8112. q->subsystem_vendor == PCI_ANY_ID) &&
  8113. (d->subsystem_device == q->subsystem_device ||
  8114. q->subsystem_device == PCI_ANY_ID))
  8115. q->hook(dev);
  8116. }
  8117. }
  8118. /* Disable the VGA plane that we never use */
  8119. static void i915_disable_vga(struct drm_device *dev)
  8120. {
  8121. struct drm_i915_private *dev_priv = dev->dev_private;
  8122. u8 sr1;
  8123. u32 vga_reg;
  8124. if (HAS_PCH_SPLIT(dev))
  8125. vga_reg = CPU_VGACNTRL;
  8126. else
  8127. vga_reg = VGACNTRL;
  8128. vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
  8129. outb(SR01, VGA_SR_INDEX);
  8130. sr1 = inb(VGA_SR_DATA);
  8131. outb(sr1 | 1<<5, VGA_SR_DATA);
  8132. vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
  8133. udelay(300);
  8134. I915_WRITE(vga_reg, VGA_DISP_DISABLE);
  8135. POSTING_READ(vga_reg);
  8136. }
  8137. void intel_modeset_init_hw(struct drm_device *dev)
  8138. {
  8139. struct drm_i915_private *dev_priv = dev->dev_private;
  8140. intel_init_clock_gating(dev);
  8141. if (IS_IRONLAKE_M(dev)) {
  8142. ironlake_enable_drps(dev);
  8143. intel_init_emon(dev);
  8144. }
  8145. if (IS_GEN6(dev) || IS_GEN7(dev)) {
  8146. gen6_enable_rps(dev_priv);
  8147. gen6_update_ring_freq(dev_priv);
  8148. }
  8149. }
  8150. void intel_modeset_init(struct drm_device *dev)
  8151. {
  8152. struct drm_i915_private *dev_priv = dev->dev_private;
  8153. int i, ret;
  8154. drm_mode_config_init(dev);
  8155. dev->mode_config.min_width = 0;
  8156. dev->mode_config.min_height = 0;
  8157. dev->mode_config.preferred_depth = 24;
  8158. dev->mode_config.prefer_shadow = 1;
  8159. dev->mode_config.funcs = (void *)&intel_mode_funcs;
  8160. intel_init_quirks(dev);
  8161. intel_init_display(dev);
  8162. if (IS_GEN2(dev)) {
  8163. dev->mode_config.max_width = 2048;
  8164. dev->mode_config.max_height = 2048;
  8165. } else if (IS_GEN3(dev)) {
  8166. dev->mode_config.max_width = 4096;
  8167. dev->mode_config.max_height = 4096;
  8168. } else {
  8169. dev->mode_config.max_width = 8192;
  8170. dev->mode_config.max_height = 8192;
  8171. }
  8172. dev->mode_config.fb_base = dev->agp->base;
  8173. DRM_DEBUG_KMS("%d display pipe%s available.\n",
  8174. dev_priv->num_pipe, dev_priv->num_pipe > 1 ? "s" : "");
  8175. for (i = 0; i < dev_priv->num_pipe; i++) {
  8176. intel_crtc_init(dev, i);
  8177. ret = intel_plane_init(dev, i);
  8178. if (ret)
  8179. DRM_DEBUG_KMS("plane %d init failed: %d\n", i, ret);
  8180. }
  8181. /* Just disable it once at startup */
  8182. i915_disable_vga(dev);
  8183. intel_setup_outputs(dev);
  8184. intel_modeset_init_hw(dev);
  8185. INIT_WORK(&dev_priv->idle_work, intel_idle_update);
  8186. setup_timer(&dev_priv->idle_timer, intel_gpu_idle_timer,
  8187. (unsigned long)dev);
  8188. }
  8189. void intel_modeset_gem_init(struct drm_device *dev)
  8190. {
  8191. if (IS_IRONLAKE_M(dev))
  8192. ironlake_enable_rc6(dev);
  8193. intel_setup_overlay(dev);
  8194. }
  8195. void intel_modeset_cleanup(struct drm_device *dev)
  8196. {
  8197. struct drm_i915_private *dev_priv = dev->dev_private;
  8198. struct drm_crtc *crtc;
  8199. struct intel_crtc *intel_crtc;
  8200. drm_kms_helper_poll_fini(dev);
  8201. mutex_lock(&dev->struct_mutex);
  8202. intel_unregister_dsm_handler();
  8203. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  8204. /* Skip inactive CRTCs */
  8205. if (!crtc->fb)
  8206. continue;
  8207. intel_crtc = to_intel_crtc(crtc);
  8208. intel_increase_pllclock(crtc);
  8209. }
  8210. intel_disable_fbc(dev);
  8211. if (IS_IRONLAKE_M(dev))
  8212. ironlake_disable_drps(dev);
  8213. if (IS_GEN6(dev) || IS_GEN7(dev))
  8214. gen6_disable_rps(dev);
  8215. if (IS_IRONLAKE_M(dev))
  8216. ironlake_disable_rc6(dev);
  8217. if (IS_VALLEYVIEW(dev))
  8218. vlv_init_dpio(dev);
  8219. mutex_unlock(&dev->struct_mutex);
  8220. /* Disable the irq before mode object teardown, for the irq might
  8221. * enqueue unpin/hotplug work. */
  8222. drm_irq_uninstall(dev);
  8223. cancel_work_sync(&dev_priv->hotplug_work);
  8224. cancel_work_sync(&dev_priv->rps_work);
  8225. /* flush any delayed tasks or pending work */
  8226. flush_scheduled_work();
  8227. /* Shut off idle work before the crtcs get freed. */
  8228. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  8229. intel_crtc = to_intel_crtc(crtc);
  8230. del_timer_sync(&intel_crtc->idle_timer);
  8231. }
  8232. del_timer_sync(&dev_priv->idle_timer);
  8233. cancel_work_sync(&dev_priv->idle_work);
  8234. drm_mode_config_cleanup(dev);
  8235. }
  8236. /*
  8237. * Return which encoder is currently attached for connector.
  8238. */
  8239. struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
  8240. {
  8241. return &intel_attached_encoder(connector)->base;
  8242. }
  8243. void intel_connector_attach_encoder(struct intel_connector *connector,
  8244. struct intel_encoder *encoder)
  8245. {
  8246. connector->encoder = encoder;
  8247. drm_mode_connector_attach_encoder(&connector->base,
  8248. &encoder->base);
  8249. }
  8250. /*
  8251. * set vga decode state - true == enable VGA decode
  8252. */
  8253. int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
  8254. {
  8255. struct drm_i915_private *dev_priv = dev->dev_private;
  8256. u16 gmch_ctrl;
  8257. pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
  8258. if (state)
  8259. gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
  8260. else
  8261. gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
  8262. pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
  8263. return 0;
  8264. }
  8265. #ifdef CONFIG_DEBUG_FS
  8266. #include <linux/seq_file.h>
  8267. struct intel_display_error_state {
  8268. struct intel_cursor_error_state {
  8269. u32 control;
  8270. u32 position;
  8271. u32 base;
  8272. u32 size;
  8273. } cursor[2];
  8274. struct intel_pipe_error_state {
  8275. u32 conf;
  8276. u32 source;
  8277. u32 htotal;
  8278. u32 hblank;
  8279. u32 hsync;
  8280. u32 vtotal;
  8281. u32 vblank;
  8282. u32 vsync;
  8283. } pipe[2];
  8284. struct intel_plane_error_state {
  8285. u32 control;
  8286. u32 stride;
  8287. u32 size;
  8288. u32 pos;
  8289. u32 addr;
  8290. u32 surface;
  8291. u32 tile_offset;
  8292. } plane[2];
  8293. };
  8294. struct intel_display_error_state *
  8295. intel_display_capture_error_state(struct drm_device *dev)
  8296. {
  8297. drm_i915_private_t *dev_priv = dev->dev_private;
  8298. struct intel_display_error_state *error;
  8299. int i;
  8300. error = kmalloc(sizeof(*error), GFP_ATOMIC);
  8301. if (error == NULL)
  8302. return NULL;
  8303. for (i = 0; i < 2; i++) {
  8304. error->cursor[i].control = I915_READ(CURCNTR(i));
  8305. error->cursor[i].position = I915_READ(CURPOS(i));
  8306. error->cursor[i].base = I915_READ(CURBASE(i));
  8307. error->plane[i].control = I915_READ(DSPCNTR(i));
  8308. error->plane[i].stride = I915_READ(DSPSTRIDE(i));
  8309. error->plane[i].size = I915_READ(DSPSIZE(i));
  8310. error->plane[i].pos = I915_READ(DSPPOS(i));
  8311. error->plane[i].addr = I915_READ(DSPADDR(i));
  8312. if (INTEL_INFO(dev)->gen >= 4) {
  8313. error->plane[i].surface = I915_READ(DSPSURF(i));
  8314. error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
  8315. }
  8316. error->pipe[i].conf = I915_READ(PIPECONF(i));
  8317. error->pipe[i].source = I915_READ(PIPESRC(i));
  8318. error->pipe[i].htotal = I915_READ(HTOTAL(i));
  8319. error->pipe[i].hblank = I915_READ(HBLANK(i));
  8320. error->pipe[i].hsync = I915_READ(HSYNC(i));
  8321. error->pipe[i].vtotal = I915_READ(VTOTAL(i));
  8322. error->pipe[i].vblank = I915_READ(VBLANK(i));
  8323. error->pipe[i].vsync = I915_READ(VSYNC(i));
  8324. }
  8325. return error;
  8326. }
  8327. void
  8328. intel_display_print_error_state(struct seq_file *m,
  8329. struct drm_device *dev,
  8330. struct intel_display_error_state *error)
  8331. {
  8332. int i;
  8333. for (i = 0; i < 2; i++) {
  8334. seq_printf(m, "Pipe [%d]:\n", i);
  8335. seq_printf(m, " CONF: %08x\n", error->pipe[i].conf);
  8336. seq_printf(m, " SRC: %08x\n", error->pipe[i].source);
  8337. seq_printf(m, " HTOTAL: %08x\n", error->pipe[i].htotal);
  8338. seq_printf(m, " HBLANK: %08x\n", error->pipe[i].hblank);
  8339. seq_printf(m, " HSYNC: %08x\n", error->pipe[i].hsync);
  8340. seq_printf(m, " VTOTAL: %08x\n", error->pipe[i].vtotal);
  8341. seq_printf(m, " VBLANK: %08x\n", error->pipe[i].vblank);
  8342. seq_printf(m, " VSYNC: %08x\n", error->pipe[i].vsync);
  8343. seq_printf(m, "Plane [%d]:\n", i);
  8344. seq_printf(m, " CNTR: %08x\n", error->plane[i].control);
  8345. seq_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
  8346. seq_printf(m, " SIZE: %08x\n", error->plane[i].size);
  8347. seq_printf(m, " POS: %08x\n", error->plane[i].pos);
  8348. seq_printf(m, " ADDR: %08x\n", error->plane[i].addr);
  8349. if (INTEL_INFO(dev)->gen >= 4) {
  8350. seq_printf(m, " SURF: %08x\n", error->plane[i].surface);
  8351. seq_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
  8352. }
  8353. seq_printf(m, "Cursor [%d]:\n", i);
  8354. seq_printf(m, " CNTR: %08x\n", error->cursor[i].control);
  8355. seq_printf(m, " POS: %08x\n", error->cursor[i].position);
  8356. seq_printf(m, " BASE: %08x\n", error->cursor[i].base);
  8357. }
  8358. }
  8359. #endif