vmx.c 50 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * Copyright (C) 2006 Qumranet, Inc.
  8. *
  9. * Authors:
  10. * Avi Kivity <avi@qumranet.com>
  11. * Yaniv Kamay <yaniv@qumranet.com>
  12. *
  13. * This work is licensed under the terms of the GNU GPL, version 2. See
  14. * the COPYING file in the top-level directory.
  15. *
  16. */
  17. #include "kvm.h"
  18. #include "vmx.h"
  19. #include "kvm_vmx.h"
  20. #include <linux/module.h>
  21. #include <linux/mm.h>
  22. #include <linux/highmem.h>
  23. #include <asm/io.h>
  24. #include <asm/desc.h>
  25. #include "segment_descriptor.h"
  26. #define MSR_IA32_FEATURE_CONTROL 0x03a
  27. MODULE_AUTHOR("Qumranet");
  28. MODULE_LICENSE("GPL");
  29. static DEFINE_PER_CPU(struct vmcs *, vmxarea);
  30. static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
  31. #ifdef CONFIG_X86_64
  32. #define HOST_IS_64 1
  33. #else
  34. #define HOST_IS_64 0
  35. #endif
  36. static struct vmcs_descriptor {
  37. int size;
  38. int order;
  39. u32 revision_id;
  40. } vmcs_descriptor;
  41. #define VMX_SEGMENT_FIELD(seg) \
  42. [VCPU_SREG_##seg] = { \
  43. .selector = GUEST_##seg##_SELECTOR, \
  44. .base = GUEST_##seg##_BASE, \
  45. .limit = GUEST_##seg##_LIMIT, \
  46. .ar_bytes = GUEST_##seg##_AR_BYTES, \
  47. }
  48. static struct kvm_vmx_segment_field {
  49. unsigned selector;
  50. unsigned base;
  51. unsigned limit;
  52. unsigned ar_bytes;
  53. } kvm_vmx_segment_fields[] = {
  54. VMX_SEGMENT_FIELD(CS),
  55. VMX_SEGMENT_FIELD(DS),
  56. VMX_SEGMENT_FIELD(ES),
  57. VMX_SEGMENT_FIELD(FS),
  58. VMX_SEGMENT_FIELD(GS),
  59. VMX_SEGMENT_FIELD(SS),
  60. VMX_SEGMENT_FIELD(TR),
  61. VMX_SEGMENT_FIELD(LDTR),
  62. };
  63. static const u32 vmx_msr_index[] = {
  64. #ifdef CONFIG_X86_64
  65. MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR, MSR_KERNEL_GS_BASE,
  66. #endif
  67. MSR_EFER, MSR_K6_STAR,
  68. };
  69. #define NR_VMX_MSR (sizeof(vmx_msr_index) / sizeof(*vmx_msr_index))
  70. struct vmx_msr_entry *find_msr_entry(struct kvm_vcpu *vcpu, u32 msr);
  71. static inline int is_page_fault(u32 intr_info)
  72. {
  73. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  74. INTR_INFO_VALID_MASK)) ==
  75. (INTR_TYPE_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
  76. }
  77. static inline int is_external_interrupt(u32 intr_info)
  78. {
  79. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
  80. == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
  81. }
  82. static void vmcs_clear(struct vmcs *vmcs)
  83. {
  84. u64 phys_addr = __pa(vmcs);
  85. u8 error;
  86. asm volatile (ASM_VMX_VMCLEAR_RAX "; setna %0"
  87. : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
  88. : "cc", "memory");
  89. if (error)
  90. printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
  91. vmcs, phys_addr);
  92. }
  93. static void __vcpu_clear(void *arg)
  94. {
  95. struct kvm_vcpu *vcpu = arg;
  96. int cpu = smp_processor_id();
  97. if (vcpu->cpu == cpu)
  98. vmcs_clear(vcpu->vmcs);
  99. if (per_cpu(current_vmcs, cpu) == vcpu->vmcs)
  100. per_cpu(current_vmcs, cpu) = NULL;
  101. }
  102. static unsigned long vmcs_readl(unsigned long field)
  103. {
  104. unsigned long value;
  105. asm volatile (ASM_VMX_VMREAD_RDX_RAX
  106. : "=a"(value) : "d"(field) : "cc");
  107. return value;
  108. }
  109. static u16 vmcs_read16(unsigned long field)
  110. {
  111. return vmcs_readl(field);
  112. }
  113. static u32 vmcs_read32(unsigned long field)
  114. {
  115. return vmcs_readl(field);
  116. }
  117. static u64 vmcs_read64(unsigned long field)
  118. {
  119. #ifdef CONFIG_X86_64
  120. return vmcs_readl(field);
  121. #else
  122. return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
  123. #endif
  124. }
  125. static void vmcs_writel(unsigned long field, unsigned long value)
  126. {
  127. u8 error;
  128. asm volatile (ASM_VMX_VMWRITE_RAX_RDX "; setna %0"
  129. : "=q"(error) : "a"(value), "d"(field) : "cc" );
  130. if (error)
  131. printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
  132. field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
  133. }
  134. static void vmcs_write16(unsigned long field, u16 value)
  135. {
  136. vmcs_writel(field, value);
  137. }
  138. static void vmcs_write32(unsigned long field, u32 value)
  139. {
  140. vmcs_writel(field, value);
  141. }
  142. static void vmcs_write64(unsigned long field, u64 value)
  143. {
  144. #ifdef CONFIG_X86_64
  145. vmcs_writel(field, value);
  146. #else
  147. vmcs_writel(field, value);
  148. asm volatile ("");
  149. vmcs_writel(field+1, value >> 32);
  150. #endif
  151. }
  152. /*
  153. * Switches to specified vcpu, until a matching vcpu_put(), but assumes
  154. * vcpu mutex is already taken.
  155. */
  156. static struct kvm_vcpu *vmx_vcpu_load(struct kvm_vcpu *vcpu)
  157. {
  158. u64 phys_addr = __pa(vcpu->vmcs);
  159. int cpu;
  160. cpu = get_cpu();
  161. if (vcpu->cpu != cpu) {
  162. smp_call_function(__vcpu_clear, vcpu, 0, 1);
  163. vcpu->launched = 0;
  164. }
  165. if (per_cpu(current_vmcs, cpu) != vcpu->vmcs) {
  166. u8 error;
  167. per_cpu(current_vmcs, cpu) = vcpu->vmcs;
  168. asm volatile (ASM_VMX_VMPTRLD_RAX "; setna %0"
  169. : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
  170. : "cc");
  171. if (error)
  172. printk(KERN_ERR "kvm: vmptrld %p/%llx fail\n",
  173. vcpu->vmcs, phys_addr);
  174. }
  175. if (vcpu->cpu != cpu) {
  176. struct descriptor_table dt;
  177. unsigned long sysenter_esp;
  178. vcpu->cpu = cpu;
  179. /*
  180. * Linux uses per-cpu TSS and GDT, so set these when switching
  181. * processors.
  182. */
  183. vmcs_writel(HOST_TR_BASE, read_tr_base()); /* 22.2.4 */
  184. get_gdt(&dt);
  185. vmcs_writel(HOST_GDTR_BASE, dt.base); /* 22.2.4 */
  186. rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
  187. vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
  188. }
  189. return vcpu;
  190. }
  191. static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
  192. {
  193. put_cpu();
  194. }
  195. static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
  196. {
  197. return vmcs_readl(GUEST_RFLAGS);
  198. }
  199. static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
  200. {
  201. vmcs_writel(GUEST_RFLAGS, rflags);
  202. }
  203. static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
  204. {
  205. unsigned long rip;
  206. u32 interruptibility;
  207. rip = vmcs_readl(GUEST_RIP);
  208. rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  209. vmcs_writel(GUEST_RIP, rip);
  210. /*
  211. * We emulated an instruction, so temporary interrupt blocking
  212. * should be removed, if set.
  213. */
  214. interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
  215. if (interruptibility & 3)
  216. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
  217. interruptibility & ~3);
  218. }
  219. static void vmx_inject_gp(struct kvm_vcpu *vcpu, unsigned error_code)
  220. {
  221. printk(KERN_DEBUG "inject_general_protection: rip 0x%lx\n",
  222. vmcs_readl(GUEST_RIP));
  223. vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
  224. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  225. GP_VECTOR |
  226. INTR_TYPE_EXCEPTION |
  227. INTR_INFO_DELIEVER_CODE_MASK |
  228. INTR_INFO_VALID_MASK);
  229. }
  230. /*
  231. * reads and returns guest's timestamp counter "register"
  232. * guest_tsc = host_tsc + tsc_offset -- 21.3
  233. */
  234. static u64 guest_read_tsc(void)
  235. {
  236. u64 host_tsc, tsc_offset;
  237. rdtscll(host_tsc);
  238. tsc_offset = vmcs_read64(TSC_OFFSET);
  239. return host_tsc + tsc_offset;
  240. }
  241. /*
  242. * writes 'guest_tsc' into guest's timestamp counter "register"
  243. * guest_tsc = host_tsc + tsc_offset ==> tsc_offset = guest_tsc - host_tsc
  244. */
  245. static void guest_write_tsc(u64 guest_tsc)
  246. {
  247. u64 host_tsc;
  248. rdtscll(host_tsc);
  249. vmcs_write64(TSC_OFFSET, guest_tsc - host_tsc);
  250. }
  251. static void reload_tss(void)
  252. {
  253. #ifndef CONFIG_X86_64
  254. /*
  255. * VT restores TR but not its size. Useless.
  256. */
  257. struct descriptor_table gdt;
  258. struct segment_descriptor *descs;
  259. get_gdt(&gdt);
  260. descs = (void *)gdt.base;
  261. descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
  262. load_TR_desc();
  263. #endif
  264. }
  265. /*
  266. * Reads an msr value (of 'msr_index') into 'pdata'.
  267. * Returns 0 on success, non-0 otherwise.
  268. * Assumes vcpu_load() was already called.
  269. */
  270. static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  271. {
  272. u64 data;
  273. struct vmx_msr_entry *msr;
  274. if (!pdata) {
  275. printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
  276. return -EINVAL;
  277. }
  278. switch (msr_index) {
  279. #ifdef CONFIG_X86_64
  280. case MSR_FS_BASE:
  281. data = vmcs_readl(GUEST_FS_BASE);
  282. break;
  283. case MSR_GS_BASE:
  284. data = vmcs_readl(GUEST_GS_BASE);
  285. break;
  286. case MSR_EFER:
  287. data = vcpu->shadow_efer;
  288. break;
  289. #endif
  290. case MSR_IA32_TIME_STAMP_COUNTER:
  291. data = guest_read_tsc();
  292. break;
  293. case MSR_IA32_SYSENTER_CS:
  294. data = vmcs_read32(GUEST_SYSENTER_CS);
  295. break;
  296. case MSR_IA32_SYSENTER_EIP:
  297. data = vmcs_read32(GUEST_SYSENTER_EIP);
  298. break;
  299. case MSR_IA32_SYSENTER_ESP:
  300. data = vmcs_read32(GUEST_SYSENTER_ESP);
  301. break;
  302. case MSR_IA32_MC0_CTL:
  303. case MSR_IA32_MCG_STATUS:
  304. case MSR_IA32_MCG_CAP:
  305. case MSR_IA32_MC0_MISC:
  306. case MSR_IA32_MC0_MISC+4:
  307. case MSR_IA32_MC0_MISC+8:
  308. case MSR_IA32_MC0_MISC+12:
  309. case MSR_IA32_MC0_MISC+16:
  310. case MSR_IA32_UCODE_REV:
  311. /* MTRR registers */
  312. case 0xfe:
  313. case 0x200 ... 0x2ff:
  314. data = 0;
  315. break;
  316. case MSR_IA32_APICBASE:
  317. data = vcpu->apic_base;
  318. break;
  319. default:
  320. msr = find_msr_entry(vcpu, msr_index);
  321. if (!msr) {
  322. printk(KERN_ERR "kvm: unhandled rdmsr: %x\n", msr_index);
  323. return 1;
  324. }
  325. data = msr->data;
  326. break;
  327. }
  328. *pdata = data;
  329. return 0;
  330. }
  331. /*
  332. * Writes msr value into into the appropriate "register".
  333. * Returns 0 on success, non-0 otherwise.
  334. * Assumes vcpu_load() was already called.
  335. */
  336. static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  337. {
  338. struct vmx_msr_entry *msr;
  339. switch (msr_index) {
  340. #ifdef CONFIG_X86_64
  341. case MSR_FS_BASE:
  342. vmcs_writel(GUEST_FS_BASE, data);
  343. break;
  344. case MSR_GS_BASE:
  345. vmcs_writel(GUEST_GS_BASE, data);
  346. break;
  347. #endif
  348. case MSR_IA32_SYSENTER_CS:
  349. vmcs_write32(GUEST_SYSENTER_CS, data);
  350. break;
  351. case MSR_IA32_SYSENTER_EIP:
  352. vmcs_write32(GUEST_SYSENTER_EIP, data);
  353. break;
  354. case MSR_IA32_SYSENTER_ESP:
  355. vmcs_write32(GUEST_SYSENTER_ESP, data);
  356. break;
  357. #ifdef __x86_64
  358. case MSR_EFER:
  359. set_efer(vcpu, data);
  360. break;
  361. case MSR_IA32_MC0_STATUS:
  362. printk(KERN_WARNING "%s: MSR_IA32_MC0_STATUS 0x%llx, nop\n"
  363. , __FUNCTION__, data);
  364. break;
  365. #endif
  366. case MSR_IA32_TIME_STAMP_COUNTER: {
  367. guest_write_tsc(data);
  368. break;
  369. }
  370. case MSR_IA32_UCODE_REV:
  371. case MSR_IA32_UCODE_WRITE:
  372. case 0x200 ... 0x2ff: /* MTRRs */
  373. break;
  374. case MSR_IA32_APICBASE:
  375. vcpu->apic_base = data;
  376. break;
  377. default:
  378. msr = find_msr_entry(vcpu, msr_index);
  379. if (!msr) {
  380. printk(KERN_ERR "kvm: unhandled wrmsr: 0x%x\n", msr_index);
  381. return 1;
  382. }
  383. msr->data = data;
  384. break;
  385. }
  386. return 0;
  387. }
  388. /*
  389. * Sync the rsp and rip registers into the vcpu structure. This allows
  390. * registers to be accessed by indexing vcpu->regs.
  391. */
  392. static void vcpu_load_rsp_rip(struct kvm_vcpu *vcpu)
  393. {
  394. vcpu->regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
  395. vcpu->rip = vmcs_readl(GUEST_RIP);
  396. }
  397. /*
  398. * Syncs rsp and rip back into the vmcs. Should be called after possible
  399. * modification.
  400. */
  401. static void vcpu_put_rsp_rip(struct kvm_vcpu *vcpu)
  402. {
  403. vmcs_writel(GUEST_RSP, vcpu->regs[VCPU_REGS_RSP]);
  404. vmcs_writel(GUEST_RIP, vcpu->rip);
  405. }
  406. static int set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_debug_guest *dbg)
  407. {
  408. unsigned long dr7 = 0x400;
  409. u32 exception_bitmap;
  410. int old_singlestep;
  411. exception_bitmap = vmcs_read32(EXCEPTION_BITMAP);
  412. old_singlestep = vcpu->guest_debug.singlestep;
  413. vcpu->guest_debug.enabled = dbg->enabled;
  414. if (vcpu->guest_debug.enabled) {
  415. int i;
  416. dr7 |= 0x200; /* exact */
  417. for (i = 0; i < 4; ++i) {
  418. if (!dbg->breakpoints[i].enabled)
  419. continue;
  420. vcpu->guest_debug.bp[i] = dbg->breakpoints[i].address;
  421. dr7 |= 2 << (i*2); /* global enable */
  422. dr7 |= 0 << (i*4+16); /* execution breakpoint */
  423. }
  424. exception_bitmap |= (1u << 1); /* Trap debug exceptions */
  425. vcpu->guest_debug.singlestep = dbg->singlestep;
  426. } else {
  427. exception_bitmap &= ~(1u << 1); /* Ignore debug exceptions */
  428. vcpu->guest_debug.singlestep = 0;
  429. }
  430. if (old_singlestep && !vcpu->guest_debug.singlestep) {
  431. unsigned long flags;
  432. flags = vmcs_readl(GUEST_RFLAGS);
  433. flags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
  434. vmcs_writel(GUEST_RFLAGS, flags);
  435. }
  436. vmcs_write32(EXCEPTION_BITMAP, exception_bitmap);
  437. vmcs_writel(GUEST_DR7, dr7);
  438. return 0;
  439. }
  440. static __init int cpu_has_kvm_support(void)
  441. {
  442. unsigned long ecx = cpuid_ecx(1);
  443. return test_bit(5, &ecx); /* CPUID.1:ECX.VMX[bit 5] -> VT */
  444. }
  445. static __init int vmx_disabled_by_bios(void)
  446. {
  447. u64 msr;
  448. rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
  449. return (msr & 5) == 1; /* locked but not enabled */
  450. }
  451. static __init void hardware_enable(void *garbage)
  452. {
  453. int cpu = raw_smp_processor_id();
  454. u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
  455. u64 old;
  456. rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
  457. if ((old & 5) == 0)
  458. /* enable and lock */
  459. wrmsrl(MSR_IA32_FEATURE_CONTROL, old | 5);
  460. write_cr4(read_cr4() | CR4_VMXE); /* FIXME: not cpu hotplug safe */
  461. asm volatile (ASM_VMX_VMXON_RAX : : "a"(&phys_addr), "m"(phys_addr)
  462. : "memory", "cc");
  463. }
  464. static void hardware_disable(void *garbage)
  465. {
  466. asm volatile (ASM_VMX_VMXOFF : : : "cc");
  467. }
  468. static __init void setup_vmcs_descriptor(void)
  469. {
  470. u32 vmx_msr_low, vmx_msr_high;
  471. rdmsr(MSR_IA32_VMX_BASIC_MSR, vmx_msr_low, vmx_msr_high);
  472. vmcs_descriptor.size = vmx_msr_high & 0x1fff;
  473. vmcs_descriptor.order = get_order(vmcs_descriptor.size);
  474. vmcs_descriptor.revision_id = vmx_msr_low;
  475. };
  476. static struct vmcs *alloc_vmcs_cpu(int cpu)
  477. {
  478. int node = cpu_to_node(cpu);
  479. struct page *pages;
  480. struct vmcs *vmcs;
  481. pages = alloc_pages_node(node, GFP_KERNEL, vmcs_descriptor.order);
  482. if (!pages)
  483. return NULL;
  484. vmcs = page_address(pages);
  485. memset(vmcs, 0, vmcs_descriptor.size);
  486. vmcs->revision_id = vmcs_descriptor.revision_id; /* vmcs revision id */
  487. return vmcs;
  488. }
  489. static struct vmcs *alloc_vmcs(void)
  490. {
  491. return alloc_vmcs_cpu(smp_processor_id());
  492. }
  493. static void free_vmcs(struct vmcs *vmcs)
  494. {
  495. free_pages((unsigned long)vmcs, vmcs_descriptor.order);
  496. }
  497. static __exit void free_kvm_area(void)
  498. {
  499. int cpu;
  500. for_each_online_cpu(cpu)
  501. free_vmcs(per_cpu(vmxarea, cpu));
  502. }
  503. extern struct vmcs *alloc_vmcs_cpu(int cpu);
  504. static __init int alloc_kvm_area(void)
  505. {
  506. int cpu;
  507. for_each_online_cpu(cpu) {
  508. struct vmcs *vmcs;
  509. vmcs = alloc_vmcs_cpu(cpu);
  510. if (!vmcs) {
  511. free_kvm_area();
  512. return -ENOMEM;
  513. }
  514. per_cpu(vmxarea, cpu) = vmcs;
  515. }
  516. return 0;
  517. }
  518. static __init int hardware_setup(void)
  519. {
  520. setup_vmcs_descriptor();
  521. return alloc_kvm_area();
  522. }
  523. static __exit void hardware_unsetup(void)
  524. {
  525. free_kvm_area();
  526. }
  527. static void update_exception_bitmap(struct kvm_vcpu *vcpu)
  528. {
  529. if (vcpu->rmode.active)
  530. vmcs_write32(EXCEPTION_BITMAP, ~0);
  531. else
  532. vmcs_write32(EXCEPTION_BITMAP, 1 << PF_VECTOR);
  533. }
  534. static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save)
  535. {
  536. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  537. if (vmcs_readl(sf->base) == save->base) {
  538. vmcs_write16(sf->selector, save->selector);
  539. vmcs_writel(sf->base, save->base);
  540. vmcs_write32(sf->limit, save->limit);
  541. vmcs_write32(sf->ar_bytes, save->ar);
  542. } else {
  543. u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK)
  544. << AR_DPL_SHIFT;
  545. vmcs_write32(sf->ar_bytes, 0x93 | dpl);
  546. }
  547. }
  548. static void enter_pmode(struct kvm_vcpu *vcpu)
  549. {
  550. unsigned long flags;
  551. vcpu->rmode.active = 0;
  552. vmcs_writel(GUEST_TR_BASE, vcpu->rmode.tr.base);
  553. vmcs_write32(GUEST_TR_LIMIT, vcpu->rmode.tr.limit);
  554. vmcs_write32(GUEST_TR_AR_BYTES, vcpu->rmode.tr.ar);
  555. flags = vmcs_readl(GUEST_RFLAGS);
  556. flags &= ~(IOPL_MASK | X86_EFLAGS_VM);
  557. flags |= (vcpu->rmode.save_iopl << IOPL_SHIFT);
  558. vmcs_writel(GUEST_RFLAGS, flags);
  559. vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~CR4_VME_MASK) |
  560. (vmcs_readl(CR4_READ_SHADOW) & CR4_VME_MASK));
  561. update_exception_bitmap(vcpu);
  562. fix_pmode_dataseg(VCPU_SREG_ES, &vcpu->rmode.es);
  563. fix_pmode_dataseg(VCPU_SREG_DS, &vcpu->rmode.ds);
  564. fix_pmode_dataseg(VCPU_SREG_GS, &vcpu->rmode.gs);
  565. fix_pmode_dataseg(VCPU_SREG_FS, &vcpu->rmode.fs);
  566. vmcs_write16(GUEST_SS_SELECTOR, 0);
  567. vmcs_write32(GUEST_SS_AR_BYTES, 0x93);
  568. vmcs_write16(GUEST_CS_SELECTOR,
  569. vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK);
  570. vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
  571. }
  572. static int rmode_tss_base(struct kvm* kvm)
  573. {
  574. gfn_t base_gfn = kvm->memslots[0].base_gfn + kvm->memslots[0].npages - 3;
  575. return base_gfn << PAGE_SHIFT;
  576. }
  577. static void fix_rmode_seg(int seg, struct kvm_save_segment *save)
  578. {
  579. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  580. save->selector = vmcs_read16(sf->selector);
  581. save->base = vmcs_readl(sf->base);
  582. save->limit = vmcs_read32(sf->limit);
  583. save->ar = vmcs_read32(sf->ar_bytes);
  584. vmcs_write16(sf->selector, vmcs_readl(sf->base) >> 4);
  585. vmcs_write32(sf->limit, 0xffff);
  586. vmcs_write32(sf->ar_bytes, 0xf3);
  587. }
  588. static void enter_rmode(struct kvm_vcpu *vcpu)
  589. {
  590. unsigned long flags;
  591. vcpu->rmode.active = 1;
  592. vcpu->rmode.tr.base = vmcs_readl(GUEST_TR_BASE);
  593. vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
  594. vcpu->rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT);
  595. vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
  596. vcpu->rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES);
  597. vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
  598. flags = vmcs_readl(GUEST_RFLAGS);
  599. vcpu->rmode.save_iopl = (flags & IOPL_MASK) >> IOPL_SHIFT;
  600. flags |= IOPL_MASK | X86_EFLAGS_VM;
  601. vmcs_writel(GUEST_RFLAGS, flags);
  602. vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | CR4_VME_MASK);
  603. update_exception_bitmap(vcpu);
  604. vmcs_write16(GUEST_SS_SELECTOR, vmcs_readl(GUEST_SS_BASE) >> 4);
  605. vmcs_write32(GUEST_SS_LIMIT, 0xffff);
  606. vmcs_write32(GUEST_SS_AR_BYTES, 0xf3);
  607. vmcs_write32(GUEST_CS_AR_BYTES, 0xf3);
  608. vmcs_write16(GUEST_CS_SELECTOR, vmcs_readl(GUEST_CS_BASE) >> 4);
  609. fix_rmode_seg(VCPU_SREG_ES, &vcpu->rmode.es);
  610. fix_rmode_seg(VCPU_SREG_DS, &vcpu->rmode.ds);
  611. fix_rmode_seg(VCPU_SREG_GS, &vcpu->rmode.gs);
  612. fix_rmode_seg(VCPU_SREG_FS, &vcpu->rmode.fs);
  613. }
  614. #ifdef CONFIG_X86_64
  615. static void enter_lmode(struct kvm_vcpu *vcpu)
  616. {
  617. u32 guest_tr_ar;
  618. guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
  619. if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
  620. printk(KERN_DEBUG "%s: tss fixup for long mode. \n",
  621. __FUNCTION__);
  622. vmcs_write32(GUEST_TR_AR_BYTES,
  623. (guest_tr_ar & ~AR_TYPE_MASK)
  624. | AR_TYPE_BUSY_64_TSS);
  625. }
  626. vcpu->shadow_efer |= EFER_LMA;
  627. find_msr_entry(vcpu, MSR_EFER)->data |= EFER_LMA | EFER_LME;
  628. vmcs_write32(VM_ENTRY_CONTROLS,
  629. vmcs_read32(VM_ENTRY_CONTROLS)
  630. | VM_ENTRY_CONTROLS_IA32E_MASK);
  631. }
  632. static void exit_lmode(struct kvm_vcpu *vcpu)
  633. {
  634. vcpu->shadow_efer &= ~EFER_LMA;
  635. vmcs_write32(VM_ENTRY_CONTROLS,
  636. vmcs_read32(VM_ENTRY_CONTROLS)
  637. & ~VM_ENTRY_CONTROLS_IA32E_MASK);
  638. }
  639. #endif
  640. static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  641. {
  642. if (vcpu->rmode.active && (cr0 & CR0_PE_MASK))
  643. enter_pmode(vcpu);
  644. if (!vcpu->rmode.active && !(cr0 & CR0_PE_MASK))
  645. enter_rmode(vcpu);
  646. #ifdef CONFIG_X86_64
  647. if (vcpu->shadow_efer & EFER_LME) {
  648. if (!is_paging(vcpu) && (cr0 & CR0_PG_MASK))
  649. enter_lmode(vcpu);
  650. if (is_paging(vcpu) && !(cr0 & CR0_PG_MASK))
  651. exit_lmode(vcpu);
  652. }
  653. #endif
  654. vmcs_writel(CR0_READ_SHADOW, cr0);
  655. vmcs_writel(GUEST_CR0,
  656. (cr0 & ~KVM_GUEST_CR0_MASK) | KVM_VM_CR0_ALWAYS_ON);
  657. vcpu->cr0 = cr0;
  658. }
  659. /*
  660. * Used when restoring the VM to avoid corrupting segment registers
  661. */
  662. static void vmx_set_cr0_no_modeswitch(struct kvm_vcpu *vcpu, unsigned long cr0)
  663. {
  664. vcpu->rmode.active = ((cr0 & CR0_PE_MASK) == 0);
  665. update_exception_bitmap(vcpu);
  666. vmcs_writel(CR0_READ_SHADOW, cr0);
  667. vmcs_writel(GUEST_CR0,
  668. (cr0 & ~KVM_GUEST_CR0_MASK) | KVM_VM_CR0_ALWAYS_ON);
  669. vcpu->cr0 = cr0;
  670. }
  671. static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
  672. {
  673. vmcs_writel(GUEST_CR3, cr3);
  674. }
  675. static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  676. {
  677. vmcs_writel(CR4_READ_SHADOW, cr4);
  678. vmcs_writel(GUEST_CR4, cr4 | (vcpu->rmode.active ?
  679. KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON));
  680. vcpu->cr4 = cr4;
  681. }
  682. #ifdef CONFIG_X86_64
  683. static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
  684. {
  685. struct vmx_msr_entry *msr = find_msr_entry(vcpu, MSR_EFER);
  686. vcpu->shadow_efer = efer;
  687. if (efer & EFER_LMA) {
  688. vmcs_write32(VM_ENTRY_CONTROLS,
  689. vmcs_read32(VM_ENTRY_CONTROLS) |
  690. VM_ENTRY_CONTROLS_IA32E_MASK);
  691. msr->data = efer;
  692. } else {
  693. vmcs_write32(VM_ENTRY_CONTROLS,
  694. vmcs_read32(VM_ENTRY_CONTROLS) &
  695. ~VM_ENTRY_CONTROLS_IA32E_MASK);
  696. msr->data = efer & ~EFER_LME;
  697. }
  698. }
  699. #endif
  700. static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
  701. {
  702. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  703. return vmcs_readl(sf->base);
  704. }
  705. static void vmx_get_segment(struct kvm_vcpu *vcpu,
  706. struct kvm_segment *var, int seg)
  707. {
  708. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  709. u32 ar;
  710. var->base = vmcs_readl(sf->base);
  711. var->limit = vmcs_read32(sf->limit);
  712. var->selector = vmcs_read16(sf->selector);
  713. ar = vmcs_read32(sf->ar_bytes);
  714. if (ar & AR_UNUSABLE_MASK)
  715. ar = 0;
  716. var->type = ar & 15;
  717. var->s = (ar >> 4) & 1;
  718. var->dpl = (ar >> 5) & 3;
  719. var->present = (ar >> 7) & 1;
  720. var->avl = (ar >> 12) & 1;
  721. var->l = (ar >> 13) & 1;
  722. var->db = (ar >> 14) & 1;
  723. var->g = (ar >> 15) & 1;
  724. var->unusable = (ar >> 16) & 1;
  725. }
  726. static void vmx_set_segment(struct kvm_vcpu *vcpu,
  727. struct kvm_segment *var, int seg)
  728. {
  729. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  730. u32 ar;
  731. vmcs_writel(sf->base, var->base);
  732. vmcs_write32(sf->limit, var->limit);
  733. vmcs_write16(sf->selector, var->selector);
  734. if (var->unusable)
  735. ar = 1 << 16;
  736. else {
  737. ar = var->type & 15;
  738. ar |= (var->s & 1) << 4;
  739. ar |= (var->dpl & 3) << 5;
  740. ar |= (var->present & 1) << 7;
  741. ar |= (var->avl & 1) << 12;
  742. ar |= (var->l & 1) << 13;
  743. ar |= (var->db & 1) << 14;
  744. ar |= (var->g & 1) << 15;
  745. }
  746. if (ar == 0) /* a 0 value means unusable */
  747. ar = AR_UNUSABLE_MASK;
  748. vmcs_write32(sf->ar_bytes, ar);
  749. }
  750. static int vmx_is_long_mode(struct kvm_vcpu *vcpu)
  751. {
  752. return vmcs_read32(VM_ENTRY_CONTROLS) & VM_ENTRY_CONTROLS_IA32E_MASK;
  753. }
  754. static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
  755. {
  756. u32 ar = vmcs_read32(GUEST_CS_AR_BYTES);
  757. *db = (ar >> 14) & 1;
  758. *l = (ar >> 13) & 1;
  759. }
  760. static void vmx_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  761. {
  762. dt->limit = vmcs_read32(GUEST_IDTR_LIMIT);
  763. dt->base = vmcs_readl(GUEST_IDTR_BASE);
  764. }
  765. static void vmx_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  766. {
  767. vmcs_write32(GUEST_IDTR_LIMIT, dt->limit);
  768. vmcs_writel(GUEST_IDTR_BASE, dt->base);
  769. }
  770. static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  771. {
  772. dt->limit = vmcs_read32(GUEST_GDTR_LIMIT);
  773. dt->base = vmcs_readl(GUEST_GDTR_BASE);
  774. }
  775. static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  776. {
  777. vmcs_write32(GUEST_GDTR_LIMIT, dt->limit);
  778. vmcs_writel(GUEST_GDTR_BASE, dt->base);
  779. }
  780. static int init_rmode_tss(struct kvm* kvm)
  781. {
  782. struct page *p1, *p2, *p3;
  783. gfn_t fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
  784. char *page;
  785. p1 = _gfn_to_page(kvm, fn++);
  786. p2 = _gfn_to_page(kvm, fn++);
  787. p3 = _gfn_to_page(kvm, fn);
  788. if (!p1 || !p2 || !p3) {
  789. kvm_printf(kvm,"%s: gfn_to_page failed\n", __FUNCTION__);
  790. return 0;
  791. }
  792. page = kmap_atomic(p1, KM_USER0);
  793. memset(page, 0, PAGE_SIZE);
  794. *(u16*)(page + 0x66) = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
  795. kunmap_atomic(page, KM_USER0);
  796. page = kmap_atomic(p2, KM_USER0);
  797. memset(page, 0, PAGE_SIZE);
  798. kunmap_atomic(page, KM_USER0);
  799. page = kmap_atomic(p3, KM_USER0);
  800. memset(page, 0, PAGE_SIZE);
  801. *(page + RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1) = ~0;
  802. kunmap_atomic(page, KM_USER0);
  803. return 1;
  804. }
  805. static void vmcs_write32_fixedbits(u32 msr, u32 vmcs_field, u32 val)
  806. {
  807. u32 msr_high, msr_low;
  808. rdmsr(msr, msr_low, msr_high);
  809. val &= msr_high;
  810. val |= msr_low;
  811. vmcs_write32(vmcs_field, val);
  812. }
  813. static void seg_setup(int seg)
  814. {
  815. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  816. vmcs_write16(sf->selector, 0);
  817. vmcs_writel(sf->base, 0);
  818. vmcs_write32(sf->limit, 0xffff);
  819. vmcs_write32(sf->ar_bytes, 0x93);
  820. }
  821. /*
  822. * Sets up the vmcs for emulated real mode.
  823. */
  824. static int vmx_vcpu_setup(struct kvm_vcpu *vcpu)
  825. {
  826. u32 host_sysenter_cs;
  827. u32 junk;
  828. unsigned long a;
  829. struct descriptor_table dt;
  830. int i;
  831. int ret = 0;
  832. int nr_good_msrs;
  833. extern asmlinkage void kvm_vmx_return(void);
  834. if (!init_rmode_tss(vcpu->kvm)) {
  835. ret = -ENOMEM;
  836. goto out;
  837. }
  838. memset(vcpu->regs, 0, sizeof(vcpu->regs));
  839. vcpu->regs[VCPU_REGS_RDX] = get_rdx_init_val();
  840. vcpu->cr8 = 0;
  841. vcpu->apic_base = 0xfee00000 |
  842. /*for vcpu 0*/ MSR_IA32_APICBASE_BSP |
  843. MSR_IA32_APICBASE_ENABLE;
  844. fx_init(vcpu);
  845. /*
  846. * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
  847. * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4. Sigh.
  848. */
  849. vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
  850. vmcs_writel(GUEST_CS_BASE, 0x000f0000);
  851. vmcs_write32(GUEST_CS_LIMIT, 0xffff);
  852. vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
  853. seg_setup(VCPU_SREG_DS);
  854. seg_setup(VCPU_SREG_ES);
  855. seg_setup(VCPU_SREG_FS);
  856. seg_setup(VCPU_SREG_GS);
  857. seg_setup(VCPU_SREG_SS);
  858. vmcs_write16(GUEST_TR_SELECTOR, 0);
  859. vmcs_writel(GUEST_TR_BASE, 0);
  860. vmcs_write32(GUEST_TR_LIMIT, 0xffff);
  861. vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
  862. vmcs_write16(GUEST_LDTR_SELECTOR, 0);
  863. vmcs_writel(GUEST_LDTR_BASE, 0);
  864. vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
  865. vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
  866. vmcs_write32(GUEST_SYSENTER_CS, 0);
  867. vmcs_writel(GUEST_SYSENTER_ESP, 0);
  868. vmcs_writel(GUEST_SYSENTER_EIP, 0);
  869. vmcs_writel(GUEST_RFLAGS, 0x02);
  870. vmcs_writel(GUEST_RIP, 0xfff0);
  871. vmcs_writel(GUEST_RSP, 0);
  872. vmcs_writel(GUEST_CR3, 0);
  873. //todo: dr0 = dr1 = dr2 = dr3 = 0; dr6 = 0xffff0ff0
  874. vmcs_writel(GUEST_DR7, 0x400);
  875. vmcs_writel(GUEST_GDTR_BASE, 0);
  876. vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
  877. vmcs_writel(GUEST_IDTR_BASE, 0);
  878. vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
  879. vmcs_write32(GUEST_ACTIVITY_STATE, 0);
  880. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
  881. vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
  882. /* I/O */
  883. vmcs_write64(IO_BITMAP_A, 0);
  884. vmcs_write64(IO_BITMAP_B, 0);
  885. guest_write_tsc(0);
  886. vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
  887. /* Special registers */
  888. vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
  889. /* Control */
  890. vmcs_write32_fixedbits(MSR_IA32_VMX_PINBASED_CTLS_MSR,
  891. PIN_BASED_VM_EXEC_CONTROL,
  892. PIN_BASED_EXT_INTR_MASK /* 20.6.1 */
  893. | PIN_BASED_NMI_EXITING /* 20.6.1 */
  894. );
  895. vmcs_write32_fixedbits(MSR_IA32_VMX_PROCBASED_CTLS_MSR,
  896. CPU_BASED_VM_EXEC_CONTROL,
  897. CPU_BASED_HLT_EXITING /* 20.6.2 */
  898. | CPU_BASED_CR8_LOAD_EXITING /* 20.6.2 */
  899. | CPU_BASED_CR8_STORE_EXITING /* 20.6.2 */
  900. | CPU_BASED_UNCOND_IO_EXITING /* 20.6.2 */
  901. | CPU_BASED_INVDPG_EXITING
  902. | CPU_BASED_MOV_DR_EXITING
  903. | CPU_BASED_USE_TSC_OFFSETING /* 21.3 */
  904. );
  905. vmcs_write32(EXCEPTION_BITMAP, 1 << PF_VECTOR);
  906. vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
  907. vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
  908. vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
  909. vmcs_writel(HOST_CR0, read_cr0()); /* 22.2.3 */
  910. vmcs_writel(HOST_CR4, read_cr4()); /* 22.2.3, 22.2.5 */
  911. vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */
  912. vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
  913. vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  914. vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  915. vmcs_write16(HOST_FS_SELECTOR, read_fs()); /* 22.2.4 */
  916. vmcs_write16(HOST_GS_SELECTOR, read_gs()); /* 22.2.4 */
  917. vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  918. #ifdef CONFIG_X86_64
  919. rdmsrl(MSR_FS_BASE, a);
  920. vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
  921. rdmsrl(MSR_GS_BASE, a);
  922. vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
  923. #else
  924. vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
  925. vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
  926. #endif
  927. vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
  928. get_idt(&dt);
  929. vmcs_writel(HOST_IDTR_BASE, dt.base); /* 22.2.4 */
  930. vmcs_writel(HOST_RIP, (unsigned long)kvm_vmx_return); /* 22.2.5 */
  931. rdmsr(MSR_IA32_SYSENTER_CS, host_sysenter_cs, junk);
  932. vmcs_write32(HOST_IA32_SYSENTER_CS, host_sysenter_cs);
  933. rdmsrl(MSR_IA32_SYSENTER_ESP, a);
  934. vmcs_writel(HOST_IA32_SYSENTER_ESP, a); /* 22.2.3 */
  935. rdmsrl(MSR_IA32_SYSENTER_EIP, a);
  936. vmcs_writel(HOST_IA32_SYSENTER_EIP, a); /* 22.2.3 */
  937. ret = -ENOMEM;
  938. vcpu->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
  939. if (!vcpu->guest_msrs)
  940. goto out;
  941. vcpu->host_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
  942. if (!vcpu->host_msrs)
  943. goto out_free_guest_msrs;
  944. for (i = 0; i < NR_VMX_MSR; ++i) {
  945. u32 index = vmx_msr_index[i];
  946. u32 data_low, data_high;
  947. u64 data;
  948. int j = vcpu->nmsrs;
  949. if (rdmsr_safe(index, &data_low, &data_high) < 0)
  950. continue;
  951. data = data_low | ((u64)data_high << 32);
  952. vcpu->host_msrs[j].index = index;
  953. vcpu->host_msrs[j].reserved = 0;
  954. vcpu->host_msrs[j].data = data;
  955. vcpu->guest_msrs[j] = vcpu->host_msrs[j];
  956. ++vcpu->nmsrs;
  957. }
  958. printk(KERN_DEBUG "kvm: msrs: %d\n", vcpu->nmsrs);
  959. nr_good_msrs = vcpu->nmsrs - NR_BAD_MSRS;
  960. vmcs_writel(VM_ENTRY_MSR_LOAD_ADDR,
  961. virt_to_phys(vcpu->guest_msrs + NR_BAD_MSRS));
  962. vmcs_writel(VM_EXIT_MSR_STORE_ADDR,
  963. virt_to_phys(vcpu->guest_msrs + NR_BAD_MSRS));
  964. vmcs_writel(VM_EXIT_MSR_LOAD_ADDR,
  965. virt_to_phys(vcpu->host_msrs + NR_BAD_MSRS));
  966. vmcs_write32_fixedbits(MSR_IA32_VMX_EXIT_CTLS_MSR, VM_EXIT_CONTROLS,
  967. (HOST_IS_64 << 9)); /* 22.2,1, 20.7.1 */
  968. vmcs_write32(VM_EXIT_MSR_STORE_COUNT, nr_good_msrs); /* 22.2.2 */
  969. vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, nr_good_msrs); /* 22.2.2 */
  970. vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, nr_good_msrs); /* 22.2.2 */
  971. /* 22.2.1, 20.8.1 */
  972. vmcs_write32_fixedbits(MSR_IA32_VMX_ENTRY_CTLS_MSR,
  973. VM_ENTRY_CONTROLS, 0);
  974. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
  975. vmcs_writel(VIRTUAL_APIC_PAGE_ADDR, 0);
  976. vmcs_writel(TPR_THRESHOLD, 0);
  977. vmcs_writel(CR0_GUEST_HOST_MASK, KVM_GUEST_CR0_MASK);
  978. vmcs_writel(CR4_GUEST_HOST_MASK, KVM_GUEST_CR4_MASK);
  979. vcpu->cr0 = 0x60000010;
  980. vmx_set_cr0(vcpu, vcpu->cr0); // enter rmode
  981. vmx_set_cr4(vcpu, 0);
  982. #ifdef CONFIG_X86_64
  983. vmx_set_efer(vcpu, 0);
  984. #endif
  985. return 0;
  986. out_free_guest_msrs:
  987. kfree(vcpu->guest_msrs);
  988. out:
  989. return ret;
  990. }
  991. static void inject_rmode_irq(struct kvm_vcpu *vcpu, int irq)
  992. {
  993. u16 ent[2];
  994. u16 cs;
  995. u16 ip;
  996. unsigned long flags;
  997. unsigned long ss_base = vmcs_readl(GUEST_SS_BASE);
  998. u16 sp = vmcs_readl(GUEST_RSP);
  999. u32 ss_limit = vmcs_read32(GUEST_SS_LIMIT);
  1000. if (sp > ss_limit || sp - 6 > sp) {
  1001. vcpu_printf(vcpu, "%s: #SS, rsp 0x%lx ss 0x%lx limit 0x%x\n",
  1002. __FUNCTION__,
  1003. vmcs_readl(GUEST_RSP),
  1004. vmcs_readl(GUEST_SS_BASE),
  1005. vmcs_read32(GUEST_SS_LIMIT));
  1006. return;
  1007. }
  1008. if (kvm_read_guest(vcpu, irq * sizeof(ent), sizeof(ent), &ent) !=
  1009. sizeof(ent)) {
  1010. vcpu_printf(vcpu, "%s: read guest err\n", __FUNCTION__);
  1011. return;
  1012. }
  1013. flags = vmcs_readl(GUEST_RFLAGS);
  1014. cs = vmcs_readl(GUEST_CS_BASE) >> 4;
  1015. ip = vmcs_readl(GUEST_RIP);
  1016. if (kvm_write_guest(vcpu, ss_base + sp - 2, 2, &flags) != 2 ||
  1017. kvm_write_guest(vcpu, ss_base + sp - 4, 2, &cs) != 2 ||
  1018. kvm_write_guest(vcpu, ss_base + sp - 6, 2, &ip) != 2) {
  1019. vcpu_printf(vcpu, "%s: write guest err\n", __FUNCTION__);
  1020. return;
  1021. }
  1022. vmcs_writel(GUEST_RFLAGS, flags &
  1023. ~( X86_EFLAGS_IF | X86_EFLAGS_AC | X86_EFLAGS_TF));
  1024. vmcs_write16(GUEST_CS_SELECTOR, ent[1]) ;
  1025. vmcs_writel(GUEST_CS_BASE, ent[1] << 4);
  1026. vmcs_writel(GUEST_RIP, ent[0]);
  1027. vmcs_writel(GUEST_RSP, (vmcs_readl(GUEST_RSP) & ~0xffff) | (sp - 6));
  1028. }
  1029. static void kvm_do_inject_irq(struct kvm_vcpu *vcpu)
  1030. {
  1031. int word_index = __ffs(vcpu->irq_summary);
  1032. int bit_index = __ffs(vcpu->irq_pending[word_index]);
  1033. int irq = word_index * BITS_PER_LONG + bit_index;
  1034. clear_bit(bit_index, &vcpu->irq_pending[word_index]);
  1035. if (!vcpu->irq_pending[word_index])
  1036. clear_bit(word_index, &vcpu->irq_summary);
  1037. if (vcpu->rmode.active) {
  1038. inject_rmode_irq(vcpu, irq);
  1039. return;
  1040. }
  1041. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  1042. irq | INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
  1043. }
  1044. static void kvm_try_inject_irq(struct kvm_vcpu *vcpu)
  1045. {
  1046. if ((vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF)
  1047. && (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0)
  1048. /*
  1049. * Interrupts enabled, and not blocked by sti or mov ss. Good.
  1050. */
  1051. kvm_do_inject_irq(vcpu);
  1052. else
  1053. /*
  1054. * Interrupts blocked. Wait for unblock.
  1055. */
  1056. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
  1057. vmcs_read32(CPU_BASED_VM_EXEC_CONTROL)
  1058. | CPU_BASED_VIRTUAL_INTR_PENDING);
  1059. }
  1060. static void kvm_guest_debug_pre(struct kvm_vcpu *vcpu)
  1061. {
  1062. struct kvm_guest_debug *dbg = &vcpu->guest_debug;
  1063. set_debugreg(dbg->bp[0], 0);
  1064. set_debugreg(dbg->bp[1], 1);
  1065. set_debugreg(dbg->bp[2], 2);
  1066. set_debugreg(dbg->bp[3], 3);
  1067. if (dbg->singlestep) {
  1068. unsigned long flags;
  1069. flags = vmcs_readl(GUEST_RFLAGS);
  1070. flags |= X86_EFLAGS_TF | X86_EFLAGS_RF;
  1071. vmcs_writel(GUEST_RFLAGS, flags);
  1072. }
  1073. }
  1074. static int handle_rmode_exception(struct kvm_vcpu *vcpu,
  1075. int vec, u32 err_code)
  1076. {
  1077. if (!vcpu->rmode.active)
  1078. return 0;
  1079. if (vec == GP_VECTOR && err_code == 0)
  1080. if (emulate_instruction(vcpu, NULL, 0, 0) == EMULATE_DONE)
  1081. return 1;
  1082. return 0;
  1083. }
  1084. static int handle_exception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1085. {
  1086. u32 intr_info, error_code;
  1087. unsigned long cr2, rip;
  1088. u32 vect_info;
  1089. enum emulation_result er;
  1090. vect_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
  1091. intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  1092. if ((vect_info & VECTORING_INFO_VALID_MASK) &&
  1093. !is_page_fault(intr_info)) {
  1094. printk(KERN_ERR "%s: unexpected, vectoring info 0x%x "
  1095. "intr info 0x%x\n", __FUNCTION__, vect_info, intr_info);
  1096. }
  1097. if (is_external_interrupt(vect_info)) {
  1098. int irq = vect_info & VECTORING_INFO_VECTOR_MASK;
  1099. set_bit(irq, vcpu->irq_pending);
  1100. set_bit(irq / BITS_PER_LONG, &vcpu->irq_summary);
  1101. }
  1102. if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == 0x200) { /* nmi */
  1103. asm ("int $2");
  1104. return 1;
  1105. }
  1106. error_code = 0;
  1107. rip = vmcs_readl(GUEST_RIP);
  1108. if (intr_info & INTR_INFO_DELIEVER_CODE_MASK)
  1109. error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
  1110. if (is_page_fault(intr_info)) {
  1111. cr2 = vmcs_readl(EXIT_QUALIFICATION);
  1112. spin_lock(&vcpu->kvm->lock);
  1113. if (!vcpu->mmu.page_fault(vcpu, cr2, error_code)) {
  1114. spin_unlock(&vcpu->kvm->lock);
  1115. return 1;
  1116. }
  1117. er = emulate_instruction(vcpu, kvm_run, cr2, error_code);
  1118. spin_unlock(&vcpu->kvm->lock);
  1119. switch (er) {
  1120. case EMULATE_DONE:
  1121. return 1;
  1122. case EMULATE_DO_MMIO:
  1123. ++kvm_stat.mmio_exits;
  1124. kvm_run->exit_reason = KVM_EXIT_MMIO;
  1125. return 0;
  1126. case EMULATE_FAIL:
  1127. vcpu_printf(vcpu, "%s: emulate fail\n", __FUNCTION__);
  1128. break;
  1129. default:
  1130. BUG();
  1131. }
  1132. }
  1133. if (vcpu->rmode.active &&
  1134. handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK,
  1135. error_code))
  1136. return 1;
  1137. if ((intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK)) == (INTR_TYPE_EXCEPTION | 1)) {
  1138. kvm_run->exit_reason = KVM_EXIT_DEBUG;
  1139. return 0;
  1140. }
  1141. kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
  1142. kvm_run->ex.exception = intr_info & INTR_INFO_VECTOR_MASK;
  1143. kvm_run->ex.error_code = error_code;
  1144. return 0;
  1145. }
  1146. static int handle_external_interrupt(struct kvm_vcpu *vcpu,
  1147. struct kvm_run *kvm_run)
  1148. {
  1149. ++kvm_stat.irq_exits;
  1150. return 1;
  1151. }
  1152. static int get_io_count(struct kvm_vcpu *vcpu, u64 *count)
  1153. {
  1154. u64 inst;
  1155. gva_t rip;
  1156. int countr_size;
  1157. int i, n;
  1158. if ((vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_VM)) {
  1159. countr_size = 2;
  1160. } else {
  1161. u32 cs_ar = vmcs_read32(GUEST_CS_AR_BYTES);
  1162. countr_size = (cs_ar & AR_L_MASK) ? 8:
  1163. (cs_ar & AR_DB_MASK) ? 4: 2;
  1164. }
  1165. rip = vmcs_readl(GUEST_RIP);
  1166. if (countr_size != 8)
  1167. rip += vmcs_readl(GUEST_CS_BASE);
  1168. n = kvm_read_guest(vcpu, rip, sizeof(inst), &inst);
  1169. for (i = 0; i < n; i++) {
  1170. switch (((u8*)&inst)[i]) {
  1171. case 0xf0:
  1172. case 0xf2:
  1173. case 0xf3:
  1174. case 0x2e:
  1175. case 0x36:
  1176. case 0x3e:
  1177. case 0x26:
  1178. case 0x64:
  1179. case 0x65:
  1180. case 0x66:
  1181. break;
  1182. case 0x67:
  1183. countr_size = (countr_size == 2) ? 4: (countr_size >> 1);
  1184. default:
  1185. goto done;
  1186. }
  1187. }
  1188. return 0;
  1189. done:
  1190. countr_size *= 8;
  1191. *count = vcpu->regs[VCPU_REGS_RCX] & (~0ULL >> (64 - countr_size));
  1192. return 1;
  1193. }
  1194. static int handle_io(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1195. {
  1196. u64 exit_qualification;
  1197. ++kvm_stat.io_exits;
  1198. exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
  1199. kvm_run->exit_reason = KVM_EXIT_IO;
  1200. if (exit_qualification & 8)
  1201. kvm_run->io.direction = KVM_EXIT_IO_IN;
  1202. else
  1203. kvm_run->io.direction = KVM_EXIT_IO_OUT;
  1204. kvm_run->io.size = (exit_qualification & 7) + 1;
  1205. kvm_run->io.string = (exit_qualification & 16) != 0;
  1206. kvm_run->io.string_down
  1207. = (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_DF) != 0;
  1208. kvm_run->io.rep = (exit_qualification & 32) != 0;
  1209. kvm_run->io.port = exit_qualification >> 16;
  1210. if (kvm_run->io.string) {
  1211. if (!get_io_count(vcpu, &kvm_run->io.count))
  1212. return 1;
  1213. kvm_run->io.address = vmcs_readl(GUEST_LINEAR_ADDRESS);
  1214. } else
  1215. kvm_run->io.value = vcpu->regs[VCPU_REGS_RAX]; /* rax */
  1216. return 0;
  1217. }
  1218. static int handle_invlpg(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1219. {
  1220. u64 address = vmcs_read64(EXIT_QUALIFICATION);
  1221. int instruction_length = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  1222. spin_lock(&vcpu->kvm->lock);
  1223. vcpu->mmu.inval_page(vcpu, address);
  1224. spin_unlock(&vcpu->kvm->lock);
  1225. vmcs_writel(GUEST_RIP, vmcs_readl(GUEST_RIP) + instruction_length);
  1226. return 1;
  1227. }
  1228. static int handle_cr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1229. {
  1230. u64 exit_qualification;
  1231. int cr;
  1232. int reg;
  1233. exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
  1234. cr = exit_qualification & 15;
  1235. reg = (exit_qualification >> 8) & 15;
  1236. switch ((exit_qualification >> 4) & 3) {
  1237. case 0: /* mov to cr */
  1238. switch (cr) {
  1239. case 0:
  1240. vcpu_load_rsp_rip(vcpu);
  1241. set_cr0(vcpu, vcpu->regs[reg]);
  1242. skip_emulated_instruction(vcpu);
  1243. return 1;
  1244. case 3:
  1245. vcpu_load_rsp_rip(vcpu);
  1246. set_cr3(vcpu, vcpu->regs[reg]);
  1247. skip_emulated_instruction(vcpu);
  1248. return 1;
  1249. case 4:
  1250. vcpu_load_rsp_rip(vcpu);
  1251. set_cr4(vcpu, vcpu->regs[reg]);
  1252. skip_emulated_instruction(vcpu);
  1253. return 1;
  1254. case 8:
  1255. vcpu_load_rsp_rip(vcpu);
  1256. set_cr8(vcpu, vcpu->regs[reg]);
  1257. skip_emulated_instruction(vcpu);
  1258. return 1;
  1259. };
  1260. break;
  1261. case 1: /*mov from cr*/
  1262. switch (cr) {
  1263. case 3:
  1264. vcpu_load_rsp_rip(vcpu);
  1265. vcpu->regs[reg] = vcpu->cr3;
  1266. vcpu_put_rsp_rip(vcpu);
  1267. skip_emulated_instruction(vcpu);
  1268. return 1;
  1269. case 8:
  1270. printk(KERN_DEBUG "handle_cr: read CR8 "
  1271. "cpu erratum AA15\n");
  1272. vcpu_load_rsp_rip(vcpu);
  1273. vcpu->regs[reg] = vcpu->cr8;
  1274. vcpu_put_rsp_rip(vcpu);
  1275. skip_emulated_instruction(vcpu);
  1276. return 1;
  1277. }
  1278. break;
  1279. case 3: /* lmsw */
  1280. lmsw(vcpu, (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f);
  1281. skip_emulated_instruction(vcpu);
  1282. return 1;
  1283. default:
  1284. break;
  1285. }
  1286. kvm_run->exit_reason = 0;
  1287. printk(KERN_ERR "kvm: unhandled control register: op %d cr %d\n",
  1288. (int)(exit_qualification >> 4) & 3, cr);
  1289. return 0;
  1290. }
  1291. static int handle_dr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1292. {
  1293. u64 exit_qualification;
  1294. unsigned long val;
  1295. int dr, reg;
  1296. /*
  1297. * FIXME: this code assumes the host is debugging the guest.
  1298. * need to deal with guest debugging itself too.
  1299. */
  1300. exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
  1301. dr = exit_qualification & 7;
  1302. reg = (exit_qualification >> 8) & 15;
  1303. vcpu_load_rsp_rip(vcpu);
  1304. if (exit_qualification & 16) {
  1305. /* mov from dr */
  1306. switch (dr) {
  1307. case 6:
  1308. val = 0xffff0ff0;
  1309. break;
  1310. case 7:
  1311. val = 0x400;
  1312. break;
  1313. default:
  1314. val = 0;
  1315. }
  1316. vcpu->regs[reg] = val;
  1317. } else {
  1318. /* mov to dr */
  1319. }
  1320. vcpu_put_rsp_rip(vcpu);
  1321. skip_emulated_instruction(vcpu);
  1322. return 1;
  1323. }
  1324. static int handle_cpuid(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1325. {
  1326. kvm_run->exit_reason = KVM_EXIT_CPUID;
  1327. return 0;
  1328. }
  1329. static int handle_rdmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1330. {
  1331. u32 ecx = vcpu->regs[VCPU_REGS_RCX];
  1332. u64 data;
  1333. if (vmx_get_msr(vcpu, ecx, &data)) {
  1334. vmx_inject_gp(vcpu, 0);
  1335. return 1;
  1336. }
  1337. /* FIXME: handling of bits 32:63 of rax, rdx */
  1338. vcpu->regs[VCPU_REGS_RAX] = data & -1u;
  1339. vcpu->regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
  1340. skip_emulated_instruction(vcpu);
  1341. return 1;
  1342. }
  1343. static int handle_wrmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1344. {
  1345. u32 ecx = vcpu->regs[VCPU_REGS_RCX];
  1346. u64 data = (vcpu->regs[VCPU_REGS_RAX] & -1u)
  1347. | ((u64)(vcpu->regs[VCPU_REGS_RDX] & -1u) << 32);
  1348. if (vmx_set_msr(vcpu, ecx, data) != 0) {
  1349. vmx_inject_gp(vcpu, 0);
  1350. return 1;
  1351. }
  1352. skip_emulated_instruction(vcpu);
  1353. return 1;
  1354. }
  1355. static int handle_interrupt_window(struct kvm_vcpu *vcpu,
  1356. struct kvm_run *kvm_run)
  1357. {
  1358. /* Turn off interrupt window reporting. */
  1359. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
  1360. vmcs_read32(CPU_BASED_VM_EXEC_CONTROL)
  1361. & ~CPU_BASED_VIRTUAL_INTR_PENDING);
  1362. return 1;
  1363. }
  1364. static int handle_halt(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1365. {
  1366. skip_emulated_instruction(vcpu);
  1367. if (vcpu->irq_summary && (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF))
  1368. return 1;
  1369. kvm_run->exit_reason = KVM_EXIT_HLT;
  1370. return 0;
  1371. }
  1372. /*
  1373. * The exit handlers return 1 if the exit was handled fully and guest execution
  1374. * may resume. Otherwise they set the kvm_run parameter to indicate what needs
  1375. * to be done to userspace and return 0.
  1376. */
  1377. static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu,
  1378. struct kvm_run *kvm_run) = {
  1379. [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
  1380. [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
  1381. [EXIT_REASON_IO_INSTRUCTION] = handle_io,
  1382. [EXIT_REASON_INVLPG] = handle_invlpg,
  1383. [EXIT_REASON_CR_ACCESS] = handle_cr,
  1384. [EXIT_REASON_DR_ACCESS] = handle_dr,
  1385. [EXIT_REASON_CPUID] = handle_cpuid,
  1386. [EXIT_REASON_MSR_READ] = handle_rdmsr,
  1387. [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
  1388. [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
  1389. [EXIT_REASON_HLT] = handle_halt,
  1390. };
  1391. static const int kvm_vmx_max_exit_handlers =
  1392. sizeof(kvm_vmx_exit_handlers) / sizeof(*kvm_vmx_exit_handlers);
  1393. /*
  1394. * The guest has exited. See if we can fix it or if we need userspace
  1395. * assistance.
  1396. */
  1397. static int kvm_handle_exit(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
  1398. {
  1399. u32 vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
  1400. u32 exit_reason = vmcs_read32(VM_EXIT_REASON);
  1401. if ( (vectoring_info & VECTORING_INFO_VALID_MASK) &&
  1402. exit_reason != EXIT_REASON_EXCEPTION_NMI )
  1403. printk(KERN_WARNING "%s: unexpected, valid vectoring info and "
  1404. "exit reason is 0x%x\n", __FUNCTION__, exit_reason);
  1405. kvm_run->instruction_length = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  1406. if (exit_reason < kvm_vmx_max_exit_handlers
  1407. && kvm_vmx_exit_handlers[exit_reason])
  1408. return kvm_vmx_exit_handlers[exit_reason](vcpu, kvm_run);
  1409. else {
  1410. kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
  1411. kvm_run->hw.hardware_exit_reason = exit_reason;
  1412. }
  1413. return 0;
  1414. }
  1415. static int vmx_vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1416. {
  1417. u8 fail;
  1418. u16 fs_sel, gs_sel, ldt_sel;
  1419. int fs_gs_ldt_reload_needed;
  1420. again:
  1421. /*
  1422. * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
  1423. * allow segment selectors with cpl > 0 or ti == 1.
  1424. */
  1425. fs_sel = read_fs();
  1426. gs_sel = read_gs();
  1427. ldt_sel = read_ldt();
  1428. fs_gs_ldt_reload_needed = (fs_sel & 7) | (gs_sel & 7) | ldt_sel;
  1429. if (!fs_gs_ldt_reload_needed) {
  1430. vmcs_write16(HOST_FS_SELECTOR, fs_sel);
  1431. vmcs_write16(HOST_GS_SELECTOR, gs_sel);
  1432. } else {
  1433. vmcs_write16(HOST_FS_SELECTOR, 0);
  1434. vmcs_write16(HOST_GS_SELECTOR, 0);
  1435. }
  1436. #ifdef CONFIG_X86_64
  1437. vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
  1438. vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
  1439. #else
  1440. vmcs_writel(HOST_FS_BASE, segment_base(fs_sel));
  1441. vmcs_writel(HOST_GS_BASE, segment_base(gs_sel));
  1442. #endif
  1443. if (vcpu->irq_summary &&
  1444. !(vmcs_read32(VM_ENTRY_INTR_INFO_FIELD) & INTR_INFO_VALID_MASK))
  1445. kvm_try_inject_irq(vcpu);
  1446. if (vcpu->guest_debug.enabled)
  1447. kvm_guest_debug_pre(vcpu);
  1448. fx_save(vcpu->host_fx_image);
  1449. fx_restore(vcpu->guest_fx_image);
  1450. save_msrs(vcpu->host_msrs, vcpu->nmsrs);
  1451. load_msrs(vcpu->guest_msrs, NR_BAD_MSRS);
  1452. asm (
  1453. /* Store host registers */
  1454. "pushf \n\t"
  1455. #ifdef CONFIG_X86_64
  1456. "push %%rax; push %%rbx; push %%rdx;"
  1457. "push %%rsi; push %%rdi; push %%rbp;"
  1458. "push %%r8; push %%r9; push %%r10; push %%r11;"
  1459. "push %%r12; push %%r13; push %%r14; push %%r15;"
  1460. "push %%rcx \n\t"
  1461. ASM_VMX_VMWRITE_RSP_RDX "\n\t"
  1462. #else
  1463. "pusha; push %%ecx \n\t"
  1464. ASM_VMX_VMWRITE_RSP_RDX "\n\t"
  1465. #endif
  1466. /* Check if vmlaunch of vmresume is needed */
  1467. "cmp $0, %1 \n\t"
  1468. /* Load guest registers. Don't clobber flags. */
  1469. #ifdef CONFIG_X86_64
  1470. "mov %c[cr2](%3), %%rax \n\t"
  1471. "mov %%rax, %%cr2 \n\t"
  1472. "mov %c[rax](%3), %%rax \n\t"
  1473. "mov %c[rbx](%3), %%rbx \n\t"
  1474. "mov %c[rdx](%3), %%rdx \n\t"
  1475. "mov %c[rsi](%3), %%rsi \n\t"
  1476. "mov %c[rdi](%3), %%rdi \n\t"
  1477. "mov %c[rbp](%3), %%rbp \n\t"
  1478. "mov %c[r8](%3), %%r8 \n\t"
  1479. "mov %c[r9](%3), %%r9 \n\t"
  1480. "mov %c[r10](%3), %%r10 \n\t"
  1481. "mov %c[r11](%3), %%r11 \n\t"
  1482. "mov %c[r12](%3), %%r12 \n\t"
  1483. "mov %c[r13](%3), %%r13 \n\t"
  1484. "mov %c[r14](%3), %%r14 \n\t"
  1485. "mov %c[r15](%3), %%r15 \n\t"
  1486. "mov %c[rcx](%3), %%rcx \n\t" /* kills %3 (rcx) */
  1487. #else
  1488. "mov %c[cr2](%3), %%eax \n\t"
  1489. "mov %%eax, %%cr2 \n\t"
  1490. "mov %c[rax](%3), %%eax \n\t"
  1491. "mov %c[rbx](%3), %%ebx \n\t"
  1492. "mov %c[rdx](%3), %%edx \n\t"
  1493. "mov %c[rsi](%3), %%esi \n\t"
  1494. "mov %c[rdi](%3), %%edi \n\t"
  1495. "mov %c[rbp](%3), %%ebp \n\t"
  1496. "mov %c[rcx](%3), %%ecx \n\t" /* kills %3 (ecx) */
  1497. #endif
  1498. /* Enter guest mode */
  1499. "jne launched \n\t"
  1500. ASM_VMX_VMLAUNCH "\n\t"
  1501. "jmp kvm_vmx_return \n\t"
  1502. "launched: " ASM_VMX_VMRESUME "\n\t"
  1503. ".globl kvm_vmx_return \n\t"
  1504. "kvm_vmx_return: "
  1505. /* Save guest registers, load host registers, keep flags */
  1506. #ifdef CONFIG_X86_64
  1507. "xchg %3, 0(%%rsp) \n\t"
  1508. "mov %%rax, %c[rax](%3) \n\t"
  1509. "mov %%rbx, %c[rbx](%3) \n\t"
  1510. "pushq 0(%%rsp); popq %c[rcx](%3) \n\t"
  1511. "mov %%rdx, %c[rdx](%3) \n\t"
  1512. "mov %%rsi, %c[rsi](%3) \n\t"
  1513. "mov %%rdi, %c[rdi](%3) \n\t"
  1514. "mov %%rbp, %c[rbp](%3) \n\t"
  1515. "mov %%r8, %c[r8](%3) \n\t"
  1516. "mov %%r9, %c[r9](%3) \n\t"
  1517. "mov %%r10, %c[r10](%3) \n\t"
  1518. "mov %%r11, %c[r11](%3) \n\t"
  1519. "mov %%r12, %c[r12](%3) \n\t"
  1520. "mov %%r13, %c[r13](%3) \n\t"
  1521. "mov %%r14, %c[r14](%3) \n\t"
  1522. "mov %%r15, %c[r15](%3) \n\t"
  1523. "mov %%cr2, %%rax \n\t"
  1524. "mov %%rax, %c[cr2](%3) \n\t"
  1525. "mov 0(%%rsp), %3 \n\t"
  1526. "pop %%rcx; pop %%r15; pop %%r14; pop %%r13; pop %%r12;"
  1527. "pop %%r11; pop %%r10; pop %%r9; pop %%r8;"
  1528. "pop %%rbp; pop %%rdi; pop %%rsi;"
  1529. "pop %%rdx; pop %%rbx; pop %%rax \n\t"
  1530. #else
  1531. "xchg %3, 0(%%esp) \n\t"
  1532. "mov %%eax, %c[rax](%3) \n\t"
  1533. "mov %%ebx, %c[rbx](%3) \n\t"
  1534. "pushl 0(%%esp); popl %c[rcx](%3) \n\t"
  1535. "mov %%edx, %c[rdx](%3) \n\t"
  1536. "mov %%esi, %c[rsi](%3) \n\t"
  1537. "mov %%edi, %c[rdi](%3) \n\t"
  1538. "mov %%ebp, %c[rbp](%3) \n\t"
  1539. "mov %%cr2, %%eax \n\t"
  1540. "mov %%eax, %c[cr2](%3) \n\t"
  1541. "mov 0(%%esp), %3 \n\t"
  1542. "pop %%ecx; popa \n\t"
  1543. #endif
  1544. "setbe %0 \n\t"
  1545. "popf \n\t"
  1546. : "=g" (fail)
  1547. : "r"(vcpu->launched), "d"((unsigned long)HOST_RSP),
  1548. "c"(vcpu),
  1549. [rax]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RAX])),
  1550. [rbx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RBX])),
  1551. [rcx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RCX])),
  1552. [rdx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RDX])),
  1553. [rsi]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RSI])),
  1554. [rdi]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RDI])),
  1555. [rbp]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RBP])),
  1556. #ifdef CONFIG_X86_64
  1557. [r8 ]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R8 ])),
  1558. [r9 ]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R9 ])),
  1559. [r10]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R10])),
  1560. [r11]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R11])),
  1561. [r12]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R12])),
  1562. [r13]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R13])),
  1563. [r14]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R14])),
  1564. [r15]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R15])),
  1565. #endif
  1566. [cr2]"i"(offsetof(struct kvm_vcpu, cr2))
  1567. : "cc", "memory" );
  1568. ++kvm_stat.exits;
  1569. save_msrs(vcpu->guest_msrs, NR_BAD_MSRS);
  1570. load_msrs(vcpu->host_msrs, NR_BAD_MSRS);
  1571. fx_save(vcpu->guest_fx_image);
  1572. fx_restore(vcpu->host_fx_image);
  1573. #ifndef CONFIG_X86_64
  1574. asm ("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS));
  1575. #endif
  1576. kvm_run->exit_type = 0;
  1577. if (fail) {
  1578. kvm_run->exit_type = KVM_EXIT_TYPE_FAIL_ENTRY;
  1579. kvm_run->exit_reason = vmcs_read32(VM_INSTRUCTION_ERROR);
  1580. } else {
  1581. if (fs_gs_ldt_reload_needed) {
  1582. load_ldt(ldt_sel);
  1583. load_fs(fs_sel);
  1584. /*
  1585. * If we have to reload gs, we must take care to
  1586. * preserve our gs base.
  1587. */
  1588. local_irq_disable();
  1589. load_gs(gs_sel);
  1590. #ifdef CONFIG_X86_64
  1591. wrmsrl(MSR_GS_BASE, vmcs_readl(HOST_GS_BASE));
  1592. #endif
  1593. local_irq_enable();
  1594. reload_tss();
  1595. }
  1596. vcpu->launched = 1;
  1597. kvm_run->exit_type = KVM_EXIT_TYPE_VM_EXIT;
  1598. if (kvm_handle_exit(kvm_run, vcpu)) {
  1599. /* Give scheduler a change to reschedule. */
  1600. if (signal_pending(current)) {
  1601. ++kvm_stat.signal_exits;
  1602. return -EINTR;
  1603. }
  1604. kvm_resched(vcpu);
  1605. goto again;
  1606. }
  1607. }
  1608. return 0;
  1609. }
  1610. static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
  1611. {
  1612. vmcs_writel(GUEST_CR3, vmcs_readl(GUEST_CR3));
  1613. }
  1614. static void vmx_inject_page_fault(struct kvm_vcpu *vcpu,
  1615. unsigned long addr,
  1616. u32 err_code)
  1617. {
  1618. u32 vect_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
  1619. ++kvm_stat.pf_guest;
  1620. if (is_page_fault(vect_info)) {
  1621. printk(KERN_DEBUG "inject_page_fault: "
  1622. "double fault 0x%lx @ 0x%lx\n",
  1623. addr, vmcs_readl(GUEST_RIP));
  1624. vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, 0);
  1625. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  1626. DF_VECTOR |
  1627. INTR_TYPE_EXCEPTION |
  1628. INTR_INFO_DELIEVER_CODE_MASK |
  1629. INTR_INFO_VALID_MASK);
  1630. return;
  1631. }
  1632. vcpu->cr2 = addr;
  1633. vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, err_code);
  1634. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  1635. PF_VECTOR |
  1636. INTR_TYPE_EXCEPTION |
  1637. INTR_INFO_DELIEVER_CODE_MASK |
  1638. INTR_INFO_VALID_MASK);
  1639. }
  1640. static void vmx_free_vmcs(struct kvm_vcpu *vcpu)
  1641. {
  1642. if (vcpu->vmcs) {
  1643. on_each_cpu(__vcpu_clear, vcpu, 0, 1);
  1644. free_vmcs(vcpu->vmcs);
  1645. vcpu->vmcs = NULL;
  1646. }
  1647. }
  1648. static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
  1649. {
  1650. vmx_free_vmcs(vcpu);
  1651. }
  1652. static int vmx_create_vcpu(struct kvm_vcpu *vcpu)
  1653. {
  1654. struct vmcs *vmcs;
  1655. vmcs = alloc_vmcs();
  1656. if (!vmcs)
  1657. return -ENOMEM;
  1658. vmcs_clear(vmcs);
  1659. vcpu->vmcs = vmcs;
  1660. vcpu->launched = 0;
  1661. return 0;
  1662. }
  1663. static struct kvm_arch_ops vmx_arch_ops = {
  1664. .cpu_has_kvm_support = cpu_has_kvm_support,
  1665. .disabled_by_bios = vmx_disabled_by_bios,
  1666. .hardware_setup = hardware_setup,
  1667. .hardware_unsetup = hardware_unsetup,
  1668. .hardware_enable = hardware_enable,
  1669. .hardware_disable = hardware_disable,
  1670. .vcpu_create = vmx_create_vcpu,
  1671. .vcpu_free = vmx_free_vcpu,
  1672. .vcpu_load = vmx_vcpu_load,
  1673. .vcpu_put = vmx_vcpu_put,
  1674. .set_guest_debug = set_guest_debug,
  1675. .get_msr = vmx_get_msr,
  1676. .set_msr = vmx_set_msr,
  1677. .get_segment_base = vmx_get_segment_base,
  1678. .get_segment = vmx_get_segment,
  1679. .set_segment = vmx_set_segment,
  1680. .is_long_mode = vmx_is_long_mode,
  1681. .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
  1682. .set_cr0 = vmx_set_cr0,
  1683. .set_cr0_no_modeswitch = vmx_set_cr0_no_modeswitch,
  1684. .set_cr3 = vmx_set_cr3,
  1685. .set_cr4 = vmx_set_cr4,
  1686. #ifdef CONFIG_X86_64
  1687. .set_efer = vmx_set_efer,
  1688. #endif
  1689. .get_idt = vmx_get_idt,
  1690. .set_idt = vmx_set_idt,
  1691. .get_gdt = vmx_get_gdt,
  1692. .set_gdt = vmx_set_gdt,
  1693. .cache_regs = vcpu_load_rsp_rip,
  1694. .decache_regs = vcpu_put_rsp_rip,
  1695. .get_rflags = vmx_get_rflags,
  1696. .set_rflags = vmx_set_rflags,
  1697. .tlb_flush = vmx_flush_tlb,
  1698. .inject_page_fault = vmx_inject_page_fault,
  1699. .inject_gp = vmx_inject_gp,
  1700. .run = vmx_vcpu_run,
  1701. .skip_emulated_instruction = skip_emulated_instruction,
  1702. .vcpu_setup = vmx_vcpu_setup,
  1703. };
  1704. static int __init vmx_init(void)
  1705. {
  1706. kvm_init_arch(&vmx_arch_ops, THIS_MODULE);
  1707. return 0;
  1708. }
  1709. static void __exit vmx_exit(void)
  1710. {
  1711. kvm_exit_arch();
  1712. }
  1713. module_init(vmx_init)
  1714. module_exit(vmx_exit)