time.c 28 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978
  1. /*
  2. * Common time routines among all ppc machines.
  3. *
  4. * Written by Cort Dougan (cort@cs.nmt.edu) to merge
  5. * Paul Mackerras' version and mine for PReP and Pmac.
  6. * MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net).
  7. * Converted for 64-bit by Mike Corrigan (mikejc@us.ibm.com)
  8. *
  9. * First round of bugfixes by Gabriel Paubert (paubert@iram.es)
  10. * to make clock more stable (2.4.0-test5). The only thing
  11. * that this code assumes is that the timebases have been synchronized
  12. * by firmware on SMP and are never stopped (never do sleep
  13. * on SMP then, nap and doze are OK).
  14. *
  15. * Speeded up do_gettimeofday by getting rid of references to
  16. * xtime (which required locks for consistency). (mikejc@us.ibm.com)
  17. *
  18. * TODO (not necessarily in this file):
  19. * - improve precision and reproducibility of timebase frequency
  20. * measurement at boot time. (for iSeries, we calibrate the timebase
  21. * against the Titan chip's clock.)
  22. * - for astronomical applications: add a new function to get
  23. * non ambiguous timestamps even around leap seconds. This needs
  24. * a new timestamp format and a good name.
  25. *
  26. * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
  27. * "A Kernel Model for Precision Timekeeping" by Dave Mills
  28. *
  29. * This program is free software; you can redistribute it and/or
  30. * modify it under the terms of the GNU General Public License
  31. * as published by the Free Software Foundation; either version
  32. * 2 of the License, or (at your option) any later version.
  33. */
  34. #include <linux/config.h>
  35. #include <linux/errno.h>
  36. #include <linux/module.h>
  37. #include <linux/sched.h>
  38. #include <linux/kernel.h>
  39. #include <linux/param.h>
  40. #include <linux/string.h>
  41. #include <linux/mm.h>
  42. #include <linux/interrupt.h>
  43. #include <linux/timex.h>
  44. #include <linux/kernel_stat.h>
  45. #include <linux/time.h>
  46. #include <linux/init.h>
  47. #include <linux/profile.h>
  48. #include <linux/cpu.h>
  49. #include <linux/security.h>
  50. #include <linux/percpu.h>
  51. #include <linux/rtc.h>
  52. #include <asm/io.h>
  53. #include <asm/processor.h>
  54. #include <asm/nvram.h>
  55. #include <asm/cache.h>
  56. #include <asm/machdep.h>
  57. #include <asm/uaccess.h>
  58. #include <asm/time.h>
  59. #include <asm/prom.h>
  60. #include <asm/irq.h>
  61. #include <asm/div64.h>
  62. #ifdef CONFIG_PPC64
  63. #include <asm/systemcfg.h>
  64. #include <asm/firmware.h>
  65. #endif
  66. #ifdef CONFIG_PPC_ISERIES
  67. #include <asm/iSeries/ItLpQueue.h>
  68. #include <asm/iSeries/HvCallXm.h>
  69. #endif
  70. u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES;
  71. EXPORT_SYMBOL(jiffies_64);
  72. /* keep track of when we need to update the rtc */
  73. time_t last_rtc_update;
  74. extern int piranha_simulator;
  75. #ifdef CONFIG_PPC_ISERIES
  76. unsigned long iSeries_recal_titan = 0;
  77. unsigned long iSeries_recal_tb = 0;
  78. static unsigned long first_settimeofday = 1;
  79. #endif
  80. /* The decrementer counts down by 128 every 128ns on a 601. */
  81. #define DECREMENTER_COUNT_601 (1000000000 / HZ)
  82. #define XSEC_PER_SEC (1024*1024)
  83. #ifdef CONFIG_PPC64
  84. #define SCALE_XSEC(xsec, max) (((xsec) * max) / XSEC_PER_SEC)
  85. #else
  86. /* compute ((xsec << 12) * max) >> 32 */
  87. #define SCALE_XSEC(xsec, max) mulhwu((xsec) << 12, max)
  88. #endif
  89. unsigned long tb_ticks_per_jiffy;
  90. unsigned long tb_ticks_per_usec = 100; /* sane default */
  91. EXPORT_SYMBOL(tb_ticks_per_usec);
  92. unsigned long tb_ticks_per_sec;
  93. u64 tb_to_xs;
  94. unsigned tb_to_us;
  95. unsigned long processor_freq;
  96. DEFINE_SPINLOCK(rtc_lock);
  97. EXPORT_SYMBOL_GPL(rtc_lock);
  98. u64 tb_to_ns_scale;
  99. unsigned tb_to_ns_shift;
  100. struct gettimeofday_struct do_gtod;
  101. extern unsigned long wall_jiffies;
  102. extern struct timezone sys_tz;
  103. static long timezone_offset;
  104. void ppc_adjtimex(void);
  105. static unsigned adjusting_time = 0;
  106. unsigned long ppc_proc_freq;
  107. unsigned long ppc_tb_freq;
  108. #ifdef CONFIG_PPC32 /* XXX for now */
  109. #define boot_cpuid 0
  110. #endif
  111. static __inline__ void timer_check_rtc(void)
  112. {
  113. /*
  114. * update the rtc when needed, this should be performed on the
  115. * right fraction of a second. Half or full second ?
  116. * Full second works on mk48t59 clocks, others need testing.
  117. * Note that this update is basically only used through
  118. * the adjtimex system calls. Setting the HW clock in
  119. * any other way is a /dev/rtc and userland business.
  120. * This is still wrong by -0.5/+1.5 jiffies because of the
  121. * timer interrupt resolution and possible delay, but here we
  122. * hit a quantization limit which can only be solved by higher
  123. * resolution timers and decoupling time management from timer
  124. * interrupts. This is also wrong on the clocks
  125. * which require being written at the half second boundary.
  126. * We should have an rtc call that only sets the minutes and
  127. * seconds like on Intel to avoid problems with non UTC clocks.
  128. */
  129. if (ntp_synced() &&
  130. xtime.tv_sec - last_rtc_update >= 659 &&
  131. abs((xtime.tv_nsec/1000) - (1000000-1000000/HZ)) < 500000/HZ &&
  132. jiffies - wall_jiffies == 1) {
  133. struct rtc_time tm;
  134. to_tm(xtime.tv_sec + 1 + timezone_offset, &tm);
  135. tm.tm_year -= 1900;
  136. tm.tm_mon -= 1;
  137. if (ppc_md.set_rtc_time(&tm) == 0)
  138. last_rtc_update = xtime.tv_sec + 1;
  139. else
  140. /* Try again one minute later */
  141. last_rtc_update += 60;
  142. }
  143. }
  144. /*
  145. * This version of gettimeofday has microsecond resolution.
  146. */
  147. static inline void __do_gettimeofday(struct timeval *tv, u64 tb_val)
  148. {
  149. unsigned long sec, usec;
  150. u64 tb_ticks, xsec;
  151. struct gettimeofday_vars *temp_varp;
  152. u64 temp_tb_to_xs, temp_stamp_xsec;
  153. /*
  154. * These calculations are faster (gets rid of divides)
  155. * if done in units of 1/2^20 rather than microseconds.
  156. * The conversion to microseconds at the end is done
  157. * without a divide (and in fact, without a multiply)
  158. */
  159. temp_varp = do_gtod.varp;
  160. tb_ticks = tb_val - temp_varp->tb_orig_stamp;
  161. temp_tb_to_xs = temp_varp->tb_to_xs;
  162. temp_stamp_xsec = temp_varp->stamp_xsec;
  163. xsec = temp_stamp_xsec + mulhdu(tb_ticks, temp_tb_to_xs);
  164. sec = xsec / XSEC_PER_SEC;
  165. usec = (unsigned long)xsec & (XSEC_PER_SEC - 1);
  166. usec = SCALE_XSEC(usec, 1000000);
  167. tv->tv_sec = sec;
  168. tv->tv_usec = usec;
  169. }
  170. void do_gettimeofday(struct timeval *tv)
  171. {
  172. __do_gettimeofday(tv, get_tb());
  173. }
  174. EXPORT_SYMBOL(do_gettimeofday);
  175. /* Synchronize xtime with do_gettimeofday */
  176. static inline void timer_sync_xtime(unsigned long cur_tb)
  177. {
  178. #ifdef CONFIG_PPC64
  179. /* why do we do this? */
  180. struct timeval my_tv;
  181. __do_gettimeofday(&my_tv, cur_tb);
  182. if (xtime.tv_sec <= my_tv.tv_sec) {
  183. xtime.tv_sec = my_tv.tv_sec;
  184. xtime.tv_nsec = my_tv.tv_usec * 1000;
  185. }
  186. #endif
  187. }
  188. /*
  189. * There are two copies of tb_to_xs and stamp_xsec so that no
  190. * lock is needed to access and use these values in
  191. * do_gettimeofday. We alternate the copies and as long as a
  192. * reasonable time elapses between changes, there will never
  193. * be inconsistent values. ntpd has a minimum of one minute
  194. * between updates.
  195. */
  196. static inline void update_gtod(u64 new_tb_stamp, u64 new_stamp_xsec,
  197. unsigned int new_tb_to_xs)
  198. {
  199. unsigned temp_idx;
  200. struct gettimeofday_vars *temp_varp;
  201. temp_idx = (do_gtod.var_idx == 0);
  202. temp_varp = &do_gtod.vars[temp_idx];
  203. temp_varp->tb_to_xs = new_tb_to_xs;
  204. temp_varp->tb_orig_stamp = new_tb_stamp;
  205. temp_varp->stamp_xsec = new_stamp_xsec;
  206. smp_mb();
  207. do_gtod.varp = temp_varp;
  208. do_gtod.var_idx = temp_idx;
  209. #ifdef CONFIG_PPC64
  210. /*
  211. * tb_update_count is used to allow the userspace gettimeofday code
  212. * to assure itself that it sees a consistent view of the tb_to_xs and
  213. * stamp_xsec variables. It reads the tb_update_count, then reads
  214. * tb_to_xs and stamp_xsec and then reads tb_update_count again. If
  215. * the two values of tb_update_count match and are even then the
  216. * tb_to_xs and stamp_xsec values are consistent. If not, then it
  217. * loops back and reads them again until this criteria is met.
  218. */
  219. ++(systemcfg->tb_update_count);
  220. smp_wmb();
  221. systemcfg->tb_orig_stamp = new_tb_stamp;
  222. systemcfg->stamp_xsec = new_stamp_xsec;
  223. systemcfg->tb_to_xs = new_tb_to_xs;
  224. smp_wmb();
  225. ++(systemcfg->tb_update_count);
  226. #endif
  227. }
  228. /*
  229. * When the timebase - tb_orig_stamp gets too big, we do a manipulation
  230. * between tb_orig_stamp and stamp_xsec. The goal here is to keep the
  231. * difference tb - tb_orig_stamp small enough to always fit inside a
  232. * 32 bits number. This is a requirement of our fast 32 bits userland
  233. * implementation in the vdso. If we "miss" a call to this function
  234. * (interrupt latency, CPU locked in a spinlock, ...) and we end up
  235. * with a too big difference, then the vdso will fallback to calling
  236. * the syscall
  237. */
  238. static __inline__ void timer_recalc_offset(u64 cur_tb)
  239. {
  240. unsigned long offset;
  241. u64 new_stamp_xsec;
  242. offset = cur_tb - do_gtod.varp->tb_orig_stamp;
  243. if ((offset & 0x80000000u) == 0)
  244. return;
  245. new_stamp_xsec = do_gtod.varp->stamp_xsec
  246. + mulhdu(offset, do_gtod.varp->tb_to_xs);
  247. update_gtod(cur_tb, new_stamp_xsec, do_gtod.varp->tb_to_xs);
  248. }
  249. #ifdef CONFIG_SMP
  250. unsigned long profile_pc(struct pt_regs *regs)
  251. {
  252. unsigned long pc = instruction_pointer(regs);
  253. if (in_lock_functions(pc))
  254. return regs->link;
  255. return pc;
  256. }
  257. EXPORT_SYMBOL(profile_pc);
  258. #endif
  259. #ifdef CONFIG_PPC_ISERIES
  260. /*
  261. * This function recalibrates the timebase based on the 49-bit time-of-day
  262. * value in the Titan chip. The Titan is much more accurate than the value
  263. * returned by the service processor for the timebase frequency.
  264. */
  265. static void iSeries_tb_recal(void)
  266. {
  267. struct div_result divres;
  268. unsigned long titan, tb;
  269. tb = get_tb();
  270. titan = HvCallXm_loadTod();
  271. if ( iSeries_recal_titan ) {
  272. unsigned long tb_ticks = tb - iSeries_recal_tb;
  273. unsigned long titan_usec = (titan - iSeries_recal_titan) >> 12;
  274. unsigned long new_tb_ticks_per_sec = (tb_ticks * USEC_PER_SEC)/titan_usec;
  275. unsigned long new_tb_ticks_per_jiffy = (new_tb_ticks_per_sec+(HZ/2))/HZ;
  276. long tick_diff = new_tb_ticks_per_jiffy - tb_ticks_per_jiffy;
  277. char sign = '+';
  278. /* make sure tb_ticks_per_sec and tb_ticks_per_jiffy are consistent */
  279. new_tb_ticks_per_sec = new_tb_ticks_per_jiffy * HZ;
  280. if ( tick_diff < 0 ) {
  281. tick_diff = -tick_diff;
  282. sign = '-';
  283. }
  284. if ( tick_diff ) {
  285. if ( tick_diff < tb_ticks_per_jiffy/25 ) {
  286. printk( "Titan recalibrate: new tb_ticks_per_jiffy = %lu (%c%ld)\n",
  287. new_tb_ticks_per_jiffy, sign, tick_diff );
  288. tb_ticks_per_jiffy = new_tb_ticks_per_jiffy;
  289. tb_ticks_per_sec = new_tb_ticks_per_sec;
  290. div128_by_32( XSEC_PER_SEC, 0, tb_ticks_per_sec, &divres );
  291. do_gtod.tb_ticks_per_sec = tb_ticks_per_sec;
  292. tb_to_xs = divres.result_low;
  293. do_gtod.varp->tb_to_xs = tb_to_xs;
  294. systemcfg->tb_ticks_per_sec = tb_ticks_per_sec;
  295. systemcfg->tb_to_xs = tb_to_xs;
  296. }
  297. else {
  298. printk( "Titan recalibrate: FAILED (difference > 4 percent)\n"
  299. " new tb_ticks_per_jiffy = %lu\n"
  300. " old tb_ticks_per_jiffy = %lu\n",
  301. new_tb_ticks_per_jiffy, tb_ticks_per_jiffy );
  302. }
  303. }
  304. }
  305. iSeries_recal_titan = titan;
  306. iSeries_recal_tb = tb;
  307. }
  308. #endif
  309. /*
  310. * For iSeries shared processors, we have to let the hypervisor
  311. * set the hardware decrementer. We set a virtual decrementer
  312. * in the lppaca and call the hypervisor if the virtual
  313. * decrementer is less than the current value in the hardware
  314. * decrementer. (almost always the new decrementer value will
  315. * be greater than the current hardware decementer so the hypervisor
  316. * call will not be needed)
  317. */
  318. u64 tb_last_stamp __cacheline_aligned_in_smp;
  319. /*
  320. * Note that on ppc32 this only stores the bottom 32 bits of
  321. * the timebase value, but that's enough to tell when a jiffy
  322. * has passed.
  323. */
  324. DEFINE_PER_CPU(unsigned long, last_jiffy);
  325. /*
  326. * timer_interrupt - gets called when the decrementer overflows,
  327. * with interrupts disabled.
  328. */
  329. void timer_interrupt(struct pt_regs * regs)
  330. {
  331. int next_dec;
  332. int cpu = smp_processor_id();
  333. unsigned long ticks;
  334. #ifdef CONFIG_PPC32
  335. if (atomic_read(&ppc_n_lost_interrupts) != 0)
  336. do_IRQ(regs);
  337. #endif
  338. irq_enter();
  339. profile_tick(CPU_PROFILING, regs);
  340. #ifdef CONFIG_PPC_ISERIES
  341. get_paca()->lppaca.int_dword.fields.decr_int = 0;
  342. #endif
  343. while ((ticks = tb_ticks_since(per_cpu(last_jiffy, cpu)))
  344. >= tb_ticks_per_jiffy) {
  345. /* Update last_jiffy */
  346. per_cpu(last_jiffy, cpu) += tb_ticks_per_jiffy;
  347. /* Handle RTCL overflow on 601 */
  348. if (__USE_RTC() && per_cpu(last_jiffy, cpu) >= 1000000000)
  349. per_cpu(last_jiffy, cpu) -= 1000000000;
  350. /*
  351. * We cannot disable the decrementer, so in the period
  352. * between this cpu's being marked offline in cpu_online_map
  353. * and calling stop-self, it is taking timer interrupts.
  354. * Avoid calling into the scheduler rebalancing code if this
  355. * is the case.
  356. */
  357. if (!cpu_is_offline(cpu))
  358. update_process_times(user_mode(regs));
  359. /*
  360. * No need to check whether cpu is offline here; boot_cpuid
  361. * should have been fixed up by now.
  362. */
  363. if (cpu != boot_cpuid)
  364. continue;
  365. write_seqlock(&xtime_lock);
  366. tb_last_stamp += tb_ticks_per_jiffy;
  367. timer_recalc_offset(tb_last_stamp);
  368. do_timer(regs);
  369. timer_sync_xtime(tb_last_stamp);
  370. timer_check_rtc();
  371. write_sequnlock(&xtime_lock);
  372. if (adjusting_time && (time_adjust == 0))
  373. ppc_adjtimex();
  374. }
  375. next_dec = tb_ticks_per_jiffy - ticks;
  376. set_dec(next_dec);
  377. #ifdef CONFIG_PPC_ISERIES
  378. if (hvlpevent_is_pending())
  379. process_hvlpevents(regs);
  380. #endif
  381. #ifdef CONFIG_PPC64
  382. /* collect purr register values often, for accurate calculations */
  383. if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
  384. struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
  385. cu->current_tb = mfspr(SPRN_PURR);
  386. }
  387. #endif
  388. irq_exit();
  389. }
  390. void wakeup_decrementer(void)
  391. {
  392. int i;
  393. set_dec(tb_ticks_per_jiffy);
  394. /*
  395. * We don't expect this to be called on a machine with a 601,
  396. * so using get_tbl is fine.
  397. */
  398. tb_last_stamp = get_tb();
  399. for_each_cpu(i)
  400. per_cpu(last_jiffy, i) = tb_last_stamp;
  401. }
  402. #ifdef CONFIG_SMPxxx
  403. void __init smp_space_timers(unsigned int max_cpus)
  404. {
  405. int i;
  406. unsigned long offset = tb_ticks_per_jiffy / max_cpus;
  407. unsigned long previous_tb = per_cpu(last_jiffy, boot_cpuid);
  408. for_each_cpu(i) {
  409. if (i != boot_cpuid) {
  410. previous_tb += offset;
  411. per_cpu(last_jiffy, i) = previous_tb;
  412. }
  413. }
  414. }
  415. #endif
  416. /*
  417. * Scheduler clock - returns current time in nanosec units.
  418. *
  419. * Note: mulhdu(a, b) (multiply high double unsigned) returns
  420. * the high 64 bits of a * b, i.e. (a * b) >> 64, where a and b
  421. * are 64-bit unsigned numbers.
  422. */
  423. unsigned long long sched_clock(void)
  424. {
  425. return mulhdu(get_tb(), tb_to_ns_scale) << tb_to_ns_shift;
  426. }
  427. int do_settimeofday(struct timespec *tv)
  428. {
  429. time_t wtm_sec, new_sec = tv->tv_sec;
  430. long wtm_nsec, new_nsec = tv->tv_nsec;
  431. unsigned long flags;
  432. long int tb_delta;
  433. u64 new_xsec;
  434. if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
  435. return -EINVAL;
  436. write_seqlock_irqsave(&xtime_lock, flags);
  437. /*
  438. * Updating the RTC is not the job of this code. If the time is
  439. * stepped under NTP, the RTC will be updated after STA_UNSYNC
  440. * is cleared. Tools like clock/hwclock either copy the RTC
  441. * to the system time, in which case there is no point in writing
  442. * to the RTC again, or write to the RTC but then they don't call
  443. * settimeofday to perform this operation.
  444. */
  445. #ifdef CONFIG_PPC_ISERIES
  446. if (first_settimeofday) {
  447. iSeries_tb_recal();
  448. first_settimeofday = 0;
  449. }
  450. #endif
  451. tb_delta = tb_ticks_since(tb_last_stamp);
  452. tb_delta += (jiffies - wall_jiffies) * tb_ticks_per_jiffy;
  453. new_nsec -= 1000 * mulhwu(tb_to_us, tb_delta);
  454. wtm_sec = wall_to_monotonic.tv_sec + (xtime.tv_sec - new_sec);
  455. wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - new_nsec);
  456. set_normalized_timespec(&xtime, new_sec, new_nsec);
  457. set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec);
  458. /* In case of a large backwards jump in time with NTP, we want the
  459. * clock to be updated as soon as the PLL is again in lock.
  460. */
  461. last_rtc_update = new_sec - 658;
  462. ntp_clear();
  463. new_xsec = (u64)new_nsec * XSEC_PER_SEC;
  464. do_div(new_xsec, NSEC_PER_SEC);
  465. new_xsec += (u64)new_sec * XSEC_PER_SEC;
  466. update_gtod(tb_last_stamp, new_xsec, do_gtod.varp->tb_to_xs);
  467. #ifdef CONFIG_PPC64
  468. systemcfg->tz_minuteswest = sys_tz.tz_minuteswest;
  469. systemcfg->tz_dsttime = sys_tz.tz_dsttime;
  470. #endif
  471. write_sequnlock_irqrestore(&xtime_lock, flags);
  472. clock_was_set();
  473. return 0;
  474. }
  475. EXPORT_SYMBOL(do_settimeofday);
  476. #if defined(CONFIG_PPC_PSERIES) || defined(CONFIG_PPC_MAPLE) || defined(CONFIG_PPC_BPA) || defined(CONFIG_PPC_ISERIES)
  477. void __init generic_calibrate_decr(void)
  478. {
  479. struct device_node *cpu;
  480. struct div_result divres;
  481. unsigned int *fp;
  482. int node_found;
  483. /*
  484. * The cpu node should have a timebase-frequency property
  485. * to tell us the rate at which the decrementer counts.
  486. */
  487. cpu = of_find_node_by_type(NULL, "cpu");
  488. ppc_tb_freq = DEFAULT_TB_FREQ; /* hardcoded default */
  489. node_found = 0;
  490. if (cpu != 0) {
  491. fp = (unsigned int *)get_property(cpu, "timebase-frequency",
  492. NULL);
  493. if (fp != 0) {
  494. node_found = 1;
  495. ppc_tb_freq = *fp;
  496. }
  497. }
  498. if (!node_found)
  499. printk(KERN_ERR "WARNING: Estimating decrementer frequency "
  500. "(not found)\n");
  501. ppc_proc_freq = DEFAULT_PROC_FREQ;
  502. node_found = 0;
  503. if (cpu != 0) {
  504. fp = (unsigned int *)get_property(cpu, "clock-frequency",
  505. NULL);
  506. if (fp != 0) {
  507. node_found = 1;
  508. ppc_proc_freq = *fp;
  509. }
  510. }
  511. if (!node_found)
  512. printk(KERN_ERR "WARNING: Estimating processor frequency "
  513. "(not found)\n");
  514. of_node_put(cpu);
  515. printk(KERN_INFO "time_init: decrementer frequency = %lu.%.6lu MHz\n",
  516. ppc_tb_freq/1000000, ppc_tb_freq%1000000);
  517. printk(KERN_INFO "time_init: processor frequency = %lu.%.6lu MHz\n",
  518. ppc_proc_freq/1000000, ppc_proc_freq%1000000);
  519. tb_ticks_per_jiffy = ppc_tb_freq / HZ;
  520. tb_ticks_per_sec = tb_ticks_per_jiffy * HZ;
  521. tb_ticks_per_usec = ppc_tb_freq / 1000000;
  522. tb_to_us = mulhwu_scale_factor(ppc_tb_freq, 1000000);
  523. div128_by_32(1024*1024, 0, tb_ticks_per_sec, &divres);
  524. tb_to_xs = divres.result_low;
  525. }
  526. #endif
  527. unsigned long get_boot_time(void)
  528. {
  529. struct rtc_time tm;
  530. if (ppc_md.get_boot_time)
  531. return ppc_md.get_boot_time();
  532. if (!ppc_md.get_rtc_time)
  533. return 0;
  534. ppc_md.get_rtc_time(&tm);
  535. return mktime(tm.tm_year+1900, tm.tm_mon+1, tm.tm_mday,
  536. tm.tm_hour, tm.tm_min, tm.tm_sec);
  537. }
  538. /* This function is only called on the boot processor */
  539. void __init time_init(void)
  540. {
  541. unsigned long flags;
  542. unsigned long tm = 0;
  543. struct div_result res;
  544. u64 scale;
  545. unsigned shift;
  546. if (ppc_md.time_init != NULL)
  547. timezone_offset = ppc_md.time_init();
  548. ppc_md.calibrate_decr();
  549. #ifdef CONFIG_PPC64
  550. get_paca()->default_decr = tb_ticks_per_jiffy;
  551. #endif
  552. /*
  553. * Compute scale factor for sched_clock.
  554. * The calibrate_decr() function has set tb_ticks_per_sec,
  555. * which is the timebase frequency.
  556. * We compute 1e9 * 2^64 / tb_ticks_per_sec and interpret
  557. * the 128-bit result as a 64.64 fixed-point number.
  558. * We then shift that number right until it is less than 1.0,
  559. * giving us the scale factor and shift count to use in
  560. * sched_clock().
  561. */
  562. div128_by_32(1000000000, 0, tb_ticks_per_sec, &res);
  563. scale = res.result_low;
  564. for (shift = 0; res.result_high != 0; ++shift) {
  565. scale = (scale >> 1) | (res.result_high << 63);
  566. res.result_high >>= 1;
  567. }
  568. tb_to_ns_scale = scale;
  569. tb_to_ns_shift = shift;
  570. #ifdef CONFIG_PPC_ISERIES
  571. if (!piranha_simulator)
  572. #endif
  573. tm = get_boot_time();
  574. write_seqlock_irqsave(&xtime_lock, flags);
  575. xtime.tv_sec = tm;
  576. xtime.tv_nsec = 0;
  577. tb_last_stamp = get_tb();
  578. do_gtod.varp = &do_gtod.vars[0];
  579. do_gtod.var_idx = 0;
  580. do_gtod.varp->tb_orig_stamp = tb_last_stamp;
  581. __get_cpu_var(last_jiffy) = tb_last_stamp;
  582. do_gtod.varp->stamp_xsec = (u64) xtime.tv_sec * XSEC_PER_SEC;
  583. do_gtod.tb_ticks_per_sec = tb_ticks_per_sec;
  584. do_gtod.varp->tb_to_xs = tb_to_xs;
  585. do_gtod.tb_to_us = tb_to_us;
  586. #ifdef CONFIG_PPC64
  587. systemcfg->tb_orig_stamp = tb_last_stamp;
  588. systemcfg->tb_update_count = 0;
  589. systemcfg->tb_ticks_per_sec = tb_ticks_per_sec;
  590. systemcfg->stamp_xsec = xtime.tv_sec * XSEC_PER_SEC;
  591. systemcfg->tb_to_xs = tb_to_xs;
  592. #endif
  593. time_freq = 0;
  594. /* If platform provided a timezone (pmac), we correct the time */
  595. if (timezone_offset) {
  596. sys_tz.tz_minuteswest = -timezone_offset / 60;
  597. sys_tz.tz_dsttime = 0;
  598. xtime.tv_sec -= timezone_offset;
  599. }
  600. last_rtc_update = xtime.tv_sec;
  601. set_normalized_timespec(&wall_to_monotonic,
  602. -xtime.tv_sec, -xtime.tv_nsec);
  603. write_sequnlock_irqrestore(&xtime_lock, flags);
  604. /* Not exact, but the timer interrupt takes care of this */
  605. set_dec(tb_ticks_per_jiffy);
  606. }
  607. /*
  608. * After adjtimex is called, adjust the conversion of tb ticks
  609. * to microseconds to keep do_gettimeofday synchronized
  610. * with ntpd.
  611. *
  612. * Use the time_adjust, time_freq and time_offset computed by adjtimex to
  613. * adjust the frequency.
  614. */
  615. /* #define DEBUG_PPC_ADJTIMEX 1 */
  616. void ppc_adjtimex(void)
  617. {
  618. #ifdef CONFIG_PPC64
  619. unsigned long den, new_tb_ticks_per_sec, tb_ticks, old_xsec,
  620. new_tb_to_xs, new_xsec, new_stamp_xsec;
  621. unsigned long tb_ticks_per_sec_delta;
  622. long delta_freq, ltemp;
  623. struct div_result divres;
  624. unsigned long flags;
  625. long singleshot_ppm = 0;
  626. /*
  627. * Compute parts per million frequency adjustment to
  628. * accomplish the time adjustment implied by time_offset to be
  629. * applied over the elapsed time indicated by time_constant.
  630. * Use SHIFT_USEC to get it into the same units as
  631. * time_freq.
  632. */
  633. if ( time_offset < 0 ) {
  634. ltemp = -time_offset;
  635. ltemp <<= SHIFT_USEC - SHIFT_UPDATE;
  636. ltemp >>= SHIFT_KG + time_constant;
  637. ltemp = -ltemp;
  638. } else {
  639. ltemp = time_offset;
  640. ltemp <<= SHIFT_USEC - SHIFT_UPDATE;
  641. ltemp >>= SHIFT_KG + time_constant;
  642. }
  643. /* If there is a single shot time adjustment in progress */
  644. if ( time_adjust ) {
  645. #ifdef DEBUG_PPC_ADJTIMEX
  646. printk("ppc_adjtimex: ");
  647. if ( adjusting_time == 0 )
  648. printk("starting ");
  649. printk("single shot time_adjust = %ld\n", time_adjust);
  650. #endif
  651. adjusting_time = 1;
  652. /*
  653. * Compute parts per million frequency adjustment
  654. * to match time_adjust
  655. */
  656. singleshot_ppm = tickadj * HZ;
  657. /*
  658. * The adjustment should be tickadj*HZ to match the code in
  659. * linux/kernel/timer.c, but experiments show that this is too
  660. * large. 3/4 of tickadj*HZ seems about right
  661. */
  662. singleshot_ppm -= singleshot_ppm / 4;
  663. /* Use SHIFT_USEC to get it into the same units as time_freq */
  664. singleshot_ppm <<= SHIFT_USEC;
  665. if ( time_adjust < 0 )
  666. singleshot_ppm = -singleshot_ppm;
  667. }
  668. else {
  669. #ifdef DEBUG_PPC_ADJTIMEX
  670. if ( adjusting_time )
  671. printk("ppc_adjtimex: ending single shot time_adjust\n");
  672. #endif
  673. adjusting_time = 0;
  674. }
  675. /* Add up all of the frequency adjustments */
  676. delta_freq = time_freq + ltemp + singleshot_ppm;
  677. /*
  678. * Compute a new value for tb_ticks_per_sec based on
  679. * the frequency adjustment
  680. */
  681. den = 1000000 * (1 << (SHIFT_USEC - 8));
  682. if ( delta_freq < 0 ) {
  683. tb_ticks_per_sec_delta = ( tb_ticks_per_sec * ( (-delta_freq) >> (SHIFT_USEC - 8))) / den;
  684. new_tb_ticks_per_sec = tb_ticks_per_sec + tb_ticks_per_sec_delta;
  685. }
  686. else {
  687. tb_ticks_per_sec_delta = ( tb_ticks_per_sec * ( delta_freq >> (SHIFT_USEC - 8))) / den;
  688. new_tb_ticks_per_sec = tb_ticks_per_sec - tb_ticks_per_sec_delta;
  689. }
  690. #ifdef DEBUG_PPC_ADJTIMEX
  691. printk("ppc_adjtimex: ltemp = %ld, time_freq = %ld, singleshot_ppm = %ld\n", ltemp, time_freq, singleshot_ppm);
  692. printk("ppc_adjtimex: tb_ticks_per_sec - base = %ld new = %ld\n", tb_ticks_per_sec, new_tb_ticks_per_sec);
  693. #endif
  694. /*
  695. * Compute a new value of tb_to_xs (used to convert tb to
  696. * microseconds) and a new value of stamp_xsec which is the
  697. * time (in 1/2^20 second units) corresponding to
  698. * tb_orig_stamp. This new value of stamp_xsec compensates
  699. * for the change in frequency (implied by the new tb_to_xs)
  700. * which guarantees that the current time remains the same.
  701. */
  702. write_seqlock_irqsave( &xtime_lock, flags );
  703. tb_ticks = get_tb() - do_gtod.varp->tb_orig_stamp;
  704. div128_by_32(1024*1024, 0, new_tb_ticks_per_sec, &divres);
  705. new_tb_to_xs = divres.result_low;
  706. new_xsec = mulhdu(tb_ticks, new_tb_to_xs);
  707. old_xsec = mulhdu(tb_ticks, do_gtod.varp->tb_to_xs);
  708. new_stamp_xsec = do_gtod.varp->stamp_xsec + old_xsec - new_xsec;
  709. update_gtod(do_gtod.varp->tb_orig_stamp, new_stamp_xsec, new_tb_to_xs);
  710. write_sequnlock_irqrestore( &xtime_lock, flags );
  711. #endif /* CONFIG_PPC64 */
  712. }
  713. #define FEBRUARY 2
  714. #define STARTOFTIME 1970
  715. #define SECDAY 86400L
  716. #define SECYR (SECDAY * 365)
  717. #define leapyear(year) ((year) % 4 == 0 && \
  718. ((year) % 100 != 0 || (year) % 400 == 0))
  719. #define days_in_year(a) (leapyear(a) ? 366 : 365)
  720. #define days_in_month(a) (month_days[(a) - 1])
  721. static int month_days[12] = {
  722. 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
  723. };
  724. /*
  725. * This only works for the Gregorian calendar - i.e. after 1752 (in the UK)
  726. */
  727. void GregorianDay(struct rtc_time * tm)
  728. {
  729. int leapsToDate;
  730. int lastYear;
  731. int day;
  732. int MonthOffset[] = { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 };
  733. lastYear = tm->tm_year - 1;
  734. /*
  735. * Number of leap corrections to apply up to end of last year
  736. */
  737. leapsToDate = lastYear / 4 - lastYear / 100 + lastYear / 400;
  738. /*
  739. * This year is a leap year if it is divisible by 4 except when it is
  740. * divisible by 100 unless it is divisible by 400
  741. *
  742. * e.g. 1904 was a leap year, 1900 was not, 1996 is, and 2000 was
  743. */
  744. day = tm->tm_mon > 2 && leapyear(tm->tm_year);
  745. day += lastYear*365 + leapsToDate + MonthOffset[tm->tm_mon-1] +
  746. tm->tm_mday;
  747. tm->tm_wday = day % 7;
  748. }
  749. void to_tm(int tim, struct rtc_time * tm)
  750. {
  751. register int i;
  752. register long hms, day;
  753. day = tim / SECDAY;
  754. hms = tim % SECDAY;
  755. /* Hours, minutes, seconds are easy */
  756. tm->tm_hour = hms / 3600;
  757. tm->tm_min = (hms % 3600) / 60;
  758. tm->tm_sec = (hms % 3600) % 60;
  759. /* Number of years in days */
  760. for (i = STARTOFTIME; day >= days_in_year(i); i++)
  761. day -= days_in_year(i);
  762. tm->tm_year = i;
  763. /* Number of months in days left */
  764. if (leapyear(tm->tm_year))
  765. days_in_month(FEBRUARY) = 29;
  766. for (i = 1; day >= days_in_month(i); i++)
  767. day -= days_in_month(i);
  768. days_in_month(FEBRUARY) = 28;
  769. tm->tm_mon = i;
  770. /* Days are what is left over (+1) from all that. */
  771. tm->tm_mday = day + 1;
  772. /*
  773. * Determine the day of week
  774. */
  775. GregorianDay(tm);
  776. }
  777. /* Auxiliary function to compute scaling factors */
  778. /* Actually the choice of a timebase running at 1/4 the of the bus
  779. * frequency giving resolution of a few tens of nanoseconds is quite nice.
  780. * It makes this computation very precise (27-28 bits typically) which
  781. * is optimistic considering the stability of most processor clock
  782. * oscillators and the precision with which the timebase frequency
  783. * is measured but does not harm.
  784. */
  785. unsigned mulhwu_scale_factor(unsigned inscale, unsigned outscale)
  786. {
  787. unsigned mlt=0, tmp, err;
  788. /* No concern for performance, it's done once: use a stupid
  789. * but safe and compact method to find the multiplier.
  790. */
  791. for (tmp = 1U<<31; tmp != 0; tmp >>= 1) {
  792. if (mulhwu(inscale, mlt|tmp) < outscale)
  793. mlt |= tmp;
  794. }
  795. /* We might still be off by 1 for the best approximation.
  796. * A side effect of this is that if outscale is too large
  797. * the returned value will be zero.
  798. * Many corner cases have been checked and seem to work,
  799. * some might have been forgotten in the test however.
  800. */
  801. err = inscale * (mlt+1);
  802. if (err <= inscale/2)
  803. mlt++;
  804. return mlt;
  805. }
  806. /*
  807. * Divide a 128-bit dividend by a 32-bit divisor, leaving a 128 bit
  808. * result.
  809. */
  810. void div128_by_32(u64 dividend_high, u64 dividend_low,
  811. unsigned divisor, struct div_result *dr)
  812. {
  813. unsigned long a, b, c, d;
  814. unsigned long w, x, y, z;
  815. u64 ra, rb, rc;
  816. a = dividend_high >> 32;
  817. b = dividend_high & 0xffffffff;
  818. c = dividend_low >> 32;
  819. d = dividend_low & 0xffffffff;
  820. w = a / divisor;
  821. ra = ((u64)(a - (w * divisor)) << 32) + b;
  822. #ifdef CONFIG_PPC64
  823. x = ra / divisor;
  824. rb = ((ra - (x * divisor)) << 32) + c;
  825. y = rb / divisor;
  826. rc = ((rb - (y * divisor)) << 32) + d;
  827. z = rc / divisor;
  828. #else
  829. /* for 32-bit, use do_div from div64.h */
  830. rb = ((u64) do_div(ra, divisor) << 32) + c;
  831. x = ra;
  832. rc = ((u64) do_div(rb, divisor) << 32) + d;
  833. y = rb;
  834. do_div(rc, divisor);
  835. z = rc;
  836. #endif
  837. dr->result_high = ((u64)w << 32) + x;
  838. dr->result_low = ((u64)y << 32) + z;
  839. }