ll_rw_blk.c 91 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641
  1. /*
  2. * linux/drivers/block/ll_rw_blk.c
  3. *
  4. * Copyright (C) 1991, 1992 Linus Torvalds
  5. * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
  6. * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
  7. * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
  8. * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au> - July2000
  9. * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
  10. */
  11. /*
  12. * This handles all read/write requests to block devices
  13. */
  14. #include <linux/config.h>
  15. #include <linux/kernel.h>
  16. #include <linux/module.h>
  17. #include <linux/backing-dev.h>
  18. #include <linux/bio.h>
  19. #include <linux/blkdev.h>
  20. #include <linux/highmem.h>
  21. #include <linux/mm.h>
  22. #include <linux/kernel_stat.h>
  23. #include <linux/string.h>
  24. #include <linux/init.h>
  25. #include <linux/bootmem.h> /* for max_pfn/max_low_pfn */
  26. #include <linux/completion.h>
  27. #include <linux/slab.h>
  28. #include <linux/swap.h>
  29. #include <linux/writeback.h>
  30. #include <linux/blkdev.h>
  31. /*
  32. * for max sense size
  33. */
  34. #include <scsi/scsi_cmnd.h>
  35. static void blk_unplug_work(void *data);
  36. static void blk_unplug_timeout(unsigned long data);
  37. /*
  38. * For the allocated request tables
  39. */
  40. static kmem_cache_t *request_cachep;
  41. /*
  42. * For queue allocation
  43. */
  44. static kmem_cache_t *requestq_cachep;
  45. /*
  46. * For io context allocations
  47. */
  48. static kmem_cache_t *iocontext_cachep;
  49. static wait_queue_head_t congestion_wqh[2] = {
  50. __WAIT_QUEUE_HEAD_INITIALIZER(congestion_wqh[0]),
  51. __WAIT_QUEUE_HEAD_INITIALIZER(congestion_wqh[1])
  52. };
  53. /*
  54. * Controlling structure to kblockd
  55. */
  56. static struct workqueue_struct *kblockd_workqueue;
  57. unsigned long blk_max_low_pfn, blk_max_pfn;
  58. EXPORT_SYMBOL(blk_max_low_pfn);
  59. EXPORT_SYMBOL(blk_max_pfn);
  60. /* Amount of time in which a process may batch requests */
  61. #define BLK_BATCH_TIME (HZ/50UL)
  62. /* Number of requests a "batching" process may submit */
  63. #define BLK_BATCH_REQ 32
  64. /*
  65. * Return the threshold (number of used requests) at which the queue is
  66. * considered to be congested. It include a little hysteresis to keep the
  67. * context switch rate down.
  68. */
  69. static inline int queue_congestion_on_threshold(struct request_queue *q)
  70. {
  71. return q->nr_congestion_on;
  72. }
  73. /*
  74. * The threshold at which a queue is considered to be uncongested
  75. */
  76. static inline int queue_congestion_off_threshold(struct request_queue *q)
  77. {
  78. return q->nr_congestion_off;
  79. }
  80. static void blk_queue_congestion_threshold(struct request_queue *q)
  81. {
  82. int nr;
  83. nr = q->nr_requests - (q->nr_requests / 8) + 1;
  84. if (nr > q->nr_requests)
  85. nr = q->nr_requests;
  86. q->nr_congestion_on = nr;
  87. nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
  88. if (nr < 1)
  89. nr = 1;
  90. q->nr_congestion_off = nr;
  91. }
  92. /*
  93. * A queue has just exitted congestion. Note this in the global counter of
  94. * congested queues, and wake up anyone who was waiting for requests to be
  95. * put back.
  96. */
  97. static void clear_queue_congested(request_queue_t *q, int rw)
  98. {
  99. enum bdi_state bit;
  100. wait_queue_head_t *wqh = &congestion_wqh[rw];
  101. bit = (rw == WRITE) ? BDI_write_congested : BDI_read_congested;
  102. clear_bit(bit, &q->backing_dev_info.state);
  103. smp_mb__after_clear_bit();
  104. if (waitqueue_active(wqh))
  105. wake_up(wqh);
  106. }
  107. /*
  108. * A queue has just entered congestion. Flag that in the queue's VM-visible
  109. * state flags and increment the global gounter of congested queues.
  110. */
  111. static void set_queue_congested(request_queue_t *q, int rw)
  112. {
  113. enum bdi_state bit;
  114. bit = (rw == WRITE) ? BDI_write_congested : BDI_read_congested;
  115. set_bit(bit, &q->backing_dev_info.state);
  116. }
  117. /**
  118. * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
  119. * @bdev: device
  120. *
  121. * Locates the passed device's request queue and returns the address of its
  122. * backing_dev_info
  123. *
  124. * Will return NULL if the request queue cannot be located.
  125. */
  126. struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
  127. {
  128. struct backing_dev_info *ret = NULL;
  129. request_queue_t *q = bdev_get_queue(bdev);
  130. if (q)
  131. ret = &q->backing_dev_info;
  132. return ret;
  133. }
  134. EXPORT_SYMBOL(blk_get_backing_dev_info);
  135. void blk_queue_activity_fn(request_queue_t *q, activity_fn *fn, void *data)
  136. {
  137. q->activity_fn = fn;
  138. q->activity_data = data;
  139. }
  140. EXPORT_SYMBOL(blk_queue_activity_fn);
  141. /**
  142. * blk_queue_prep_rq - set a prepare_request function for queue
  143. * @q: queue
  144. * @pfn: prepare_request function
  145. *
  146. * It's possible for a queue to register a prepare_request callback which
  147. * is invoked before the request is handed to the request_fn. The goal of
  148. * the function is to prepare a request for I/O, it can be used to build a
  149. * cdb from the request data for instance.
  150. *
  151. */
  152. void blk_queue_prep_rq(request_queue_t *q, prep_rq_fn *pfn)
  153. {
  154. q->prep_rq_fn = pfn;
  155. }
  156. EXPORT_SYMBOL(blk_queue_prep_rq);
  157. /**
  158. * blk_queue_merge_bvec - set a merge_bvec function for queue
  159. * @q: queue
  160. * @mbfn: merge_bvec_fn
  161. *
  162. * Usually queues have static limitations on the max sectors or segments that
  163. * we can put in a request. Stacking drivers may have some settings that
  164. * are dynamic, and thus we have to query the queue whether it is ok to
  165. * add a new bio_vec to a bio at a given offset or not. If the block device
  166. * has such limitations, it needs to register a merge_bvec_fn to control
  167. * the size of bio's sent to it. Note that a block device *must* allow a
  168. * single page to be added to an empty bio. The block device driver may want
  169. * to use the bio_split() function to deal with these bio's. By default
  170. * no merge_bvec_fn is defined for a queue, and only the fixed limits are
  171. * honored.
  172. */
  173. void blk_queue_merge_bvec(request_queue_t *q, merge_bvec_fn *mbfn)
  174. {
  175. q->merge_bvec_fn = mbfn;
  176. }
  177. EXPORT_SYMBOL(blk_queue_merge_bvec);
  178. /**
  179. * blk_queue_make_request - define an alternate make_request function for a device
  180. * @q: the request queue for the device to be affected
  181. * @mfn: the alternate make_request function
  182. *
  183. * Description:
  184. * The normal way for &struct bios to be passed to a device
  185. * driver is for them to be collected into requests on a request
  186. * queue, and then to allow the device driver to select requests
  187. * off that queue when it is ready. This works well for many block
  188. * devices. However some block devices (typically virtual devices
  189. * such as md or lvm) do not benefit from the processing on the
  190. * request queue, and are served best by having the requests passed
  191. * directly to them. This can be achieved by providing a function
  192. * to blk_queue_make_request().
  193. *
  194. * Caveat:
  195. * The driver that does this *must* be able to deal appropriately
  196. * with buffers in "highmemory". This can be accomplished by either calling
  197. * __bio_kmap_atomic() to get a temporary kernel mapping, or by calling
  198. * blk_queue_bounce() to create a buffer in normal memory.
  199. **/
  200. void blk_queue_make_request(request_queue_t * q, make_request_fn * mfn)
  201. {
  202. /*
  203. * set defaults
  204. */
  205. q->nr_requests = BLKDEV_MAX_RQ;
  206. q->max_phys_segments = MAX_PHYS_SEGMENTS;
  207. q->max_hw_segments = MAX_HW_SEGMENTS;
  208. q->make_request_fn = mfn;
  209. q->backing_dev_info.ra_pages = (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
  210. q->backing_dev_info.state = 0;
  211. q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
  212. blk_queue_max_sectors(q, MAX_SECTORS);
  213. blk_queue_hardsect_size(q, 512);
  214. blk_queue_dma_alignment(q, 511);
  215. blk_queue_congestion_threshold(q);
  216. q->nr_batching = BLK_BATCH_REQ;
  217. q->unplug_thresh = 4; /* hmm */
  218. q->unplug_delay = (3 * HZ) / 1000; /* 3 milliseconds */
  219. if (q->unplug_delay == 0)
  220. q->unplug_delay = 1;
  221. INIT_WORK(&q->unplug_work, blk_unplug_work, q);
  222. q->unplug_timer.function = blk_unplug_timeout;
  223. q->unplug_timer.data = (unsigned long)q;
  224. /*
  225. * by default assume old behaviour and bounce for any highmem page
  226. */
  227. blk_queue_bounce_limit(q, BLK_BOUNCE_HIGH);
  228. blk_queue_activity_fn(q, NULL, NULL);
  229. INIT_LIST_HEAD(&q->drain_list);
  230. }
  231. EXPORT_SYMBOL(blk_queue_make_request);
  232. static inline void rq_init(request_queue_t *q, struct request *rq)
  233. {
  234. INIT_LIST_HEAD(&rq->queuelist);
  235. rq->errors = 0;
  236. rq->rq_status = RQ_ACTIVE;
  237. rq->bio = rq->biotail = NULL;
  238. rq->buffer = NULL;
  239. rq->ref_count = 1;
  240. rq->q = q;
  241. rq->waiting = NULL;
  242. rq->special = NULL;
  243. rq->data_len = 0;
  244. rq->data = NULL;
  245. rq->sense = NULL;
  246. rq->end_io = NULL;
  247. rq->end_io_data = NULL;
  248. }
  249. /**
  250. * blk_queue_ordered - does this queue support ordered writes
  251. * @q: the request queue
  252. * @flag: see below
  253. *
  254. * Description:
  255. * For journalled file systems, doing ordered writes on a commit
  256. * block instead of explicitly doing wait_on_buffer (which is bad
  257. * for performance) can be a big win. Block drivers supporting this
  258. * feature should call this function and indicate so.
  259. *
  260. **/
  261. void blk_queue_ordered(request_queue_t *q, int flag)
  262. {
  263. switch (flag) {
  264. case QUEUE_ORDERED_NONE:
  265. if (q->flush_rq)
  266. kmem_cache_free(request_cachep, q->flush_rq);
  267. q->flush_rq = NULL;
  268. q->ordered = flag;
  269. break;
  270. case QUEUE_ORDERED_TAG:
  271. q->ordered = flag;
  272. break;
  273. case QUEUE_ORDERED_FLUSH:
  274. q->ordered = flag;
  275. if (!q->flush_rq)
  276. q->flush_rq = kmem_cache_alloc(request_cachep,
  277. GFP_KERNEL);
  278. break;
  279. default:
  280. printk("blk_queue_ordered: bad value %d\n", flag);
  281. break;
  282. }
  283. }
  284. EXPORT_SYMBOL(blk_queue_ordered);
  285. /**
  286. * blk_queue_issue_flush_fn - set function for issuing a flush
  287. * @q: the request queue
  288. * @iff: the function to be called issuing the flush
  289. *
  290. * Description:
  291. * If a driver supports issuing a flush command, the support is notified
  292. * to the block layer by defining it through this call.
  293. *
  294. **/
  295. void blk_queue_issue_flush_fn(request_queue_t *q, issue_flush_fn *iff)
  296. {
  297. q->issue_flush_fn = iff;
  298. }
  299. EXPORT_SYMBOL(blk_queue_issue_flush_fn);
  300. /*
  301. * Cache flushing for ordered writes handling
  302. */
  303. static void blk_pre_flush_end_io(struct request *flush_rq)
  304. {
  305. struct request *rq = flush_rq->end_io_data;
  306. request_queue_t *q = rq->q;
  307. rq->flags |= REQ_BAR_PREFLUSH;
  308. if (!flush_rq->errors)
  309. elv_requeue_request(q, rq);
  310. else {
  311. q->end_flush_fn(q, flush_rq);
  312. clear_bit(QUEUE_FLAG_FLUSH, &q->queue_flags);
  313. q->request_fn(q);
  314. }
  315. }
  316. static void blk_post_flush_end_io(struct request *flush_rq)
  317. {
  318. struct request *rq = flush_rq->end_io_data;
  319. request_queue_t *q = rq->q;
  320. rq->flags |= REQ_BAR_POSTFLUSH;
  321. q->end_flush_fn(q, flush_rq);
  322. clear_bit(QUEUE_FLAG_FLUSH, &q->queue_flags);
  323. q->request_fn(q);
  324. }
  325. struct request *blk_start_pre_flush(request_queue_t *q, struct request *rq)
  326. {
  327. struct request *flush_rq = q->flush_rq;
  328. BUG_ON(!blk_barrier_rq(rq));
  329. if (test_and_set_bit(QUEUE_FLAG_FLUSH, &q->queue_flags))
  330. return NULL;
  331. rq_init(q, flush_rq);
  332. flush_rq->elevator_private = NULL;
  333. flush_rq->flags = REQ_BAR_FLUSH;
  334. flush_rq->rq_disk = rq->rq_disk;
  335. flush_rq->rl = NULL;
  336. /*
  337. * prepare_flush returns 0 if no flush is needed, just mark both
  338. * pre and post flush as done in that case
  339. */
  340. if (!q->prepare_flush_fn(q, flush_rq)) {
  341. rq->flags |= REQ_BAR_PREFLUSH | REQ_BAR_POSTFLUSH;
  342. clear_bit(QUEUE_FLAG_FLUSH, &q->queue_flags);
  343. return rq;
  344. }
  345. /*
  346. * some drivers dequeue requests right away, some only after io
  347. * completion. make sure the request is dequeued.
  348. */
  349. if (!list_empty(&rq->queuelist))
  350. blkdev_dequeue_request(rq);
  351. elv_deactivate_request(q, rq);
  352. flush_rq->end_io_data = rq;
  353. flush_rq->end_io = blk_pre_flush_end_io;
  354. __elv_add_request(q, flush_rq, ELEVATOR_INSERT_FRONT, 0);
  355. return flush_rq;
  356. }
  357. static void blk_start_post_flush(request_queue_t *q, struct request *rq)
  358. {
  359. struct request *flush_rq = q->flush_rq;
  360. BUG_ON(!blk_barrier_rq(rq));
  361. rq_init(q, flush_rq);
  362. flush_rq->elevator_private = NULL;
  363. flush_rq->flags = REQ_BAR_FLUSH;
  364. flush_rq->rq_disk = rq->rq_disk;
  365. flush_rq->rl = NULL;
  366. if (q->prepare_flush_fn(q, flush_rq)) {
  367. flush_rq->end_io_data = rq;
  368. flush_rq->end_io = blk_post_flush_end_io;
  369. __elv_add_request(q, flush_rq, ELEVATOR_INSERT_FRONT, 0);
  370. q->request_fn(q);
  371. }
  372. }
  373. static inline int blk_check_end_barrier(request_queue_t *q, struct request *rq,
  374. int sectors)
  375. {
  376. if (sectors > rq->nr_sectors)
  377. sectors = rq->nr_sectors;
  378. rq->nr_sectors -= sectors;
  379. return rq->nr_sectors;
  380. }
  381. static int __blk_complete_barrier_rq(request_queue_t *q, struct request *rq,
  382. int sectors, int queue_locked)
  383. {
  384. if (q->ordered != QUEUE_ORDERED_FLUSH)
  385. return 0;
  386. if (!blk_fs_request(rq) || !blk_barrier_rq(rq))
  387. return 0;
  388. if (blk_barrier_postflush(rq))
  389. return 0;
  390. if (!blk_check_end_barrier(q, rq, sectors)) {
  391. unsigned long flags = 0;
  392. if (!queue_locked)
  393. spin_lock_irqsave(q->queue_lock, flags);
  394. blk_start_post_flush(q, rq);
  395. if (!queue_locked)
  396. spin_unlock_irqrestore(q->queue_lock, flags);
  397. }
  398. return 1;
  399. }
  400. /**
  401. * blk_complete_barrier_rq - complete possible barrier request
  402. * @q: the request queue for the device
  403. * @rq: the request
  404. * @sectors: number of sectors to complete
  405. *
  406. * Description:
  407. * Used in driver end_io handling to determine whether to postpone
  408. * completion of a barrier request until a post flush has been done. This
  409. * is the unlocked variant, used if the caller doesn't already hold the
  410. * queue lock.
  411. **/
  412. int blk_complete_barrier_rq(request_queue_t *q, struct request *rq, int sectors)
  413. {
  414. return __blk_complete_barrier_rq(q, rq, sectors, 0);
  415. }
  416. EXPORT_SYMBOL(blk_complete_barrier_rq);
  417. /**
  418. * blk_complete_barrier_rq_locked - complete possible barrier request
  419. * @q: the request queue for the device
  420. * @rq: the request
  421. * @sectors: number of sectors to complete
  422. *
  423. * Description:
  424. * See blk_complete_barrier_rq(). This variant must be used if the caller
  425. * holds the queue lock.
  426. **/
  427. int blk_complete_barrier_rq_locked(request_queue_t *q, struct request *rq,
  428. int sectors)
  429. {
  430. return __blk_complete_barrier_rq(q, rq, sectors, 1);
  431. }
  432. EXPORT_SYMBOL(blk_complete_barrier_rq_locked);
  433. /**
  434. * blk_queue_bounce_limit - set bounce buffer limit for queue
  435. * @q: the request queue for the device
  436. * @dma_addr: bus address limit
  437. *
  438. * Description:
  439. * Different hardware can have different requirements as to what pages
  440. * it can do I/O directly to. A low level driver can call
  441. * blk_queue_bounce_limit to have lower memory pages allocated as bounce
  442. * buffers for doing I/O to pages residing above @page. By default
  443. * the block layer sets this to the highest numbered "low" memory page.
  444. **/
  445. void blk_queue_bounce_limit(request_queue_t *q, u64 dma_addr)
  446. {
  447. unsigned long bounce_pfn = dma_addr >> PAGE_SHIFT;
  448. /*
  449. * set appropriate bounce gfp mask -- unfortunately we don't have a
  450. * full 4GB zone, so we have to resort to low memory for any bounces.
  451. * ISA has its own < 16MB zone.
  452. */
  453. if (bounce_pfn < blk_max_low_pfn) {
  454. BUG_ON(dma_addr < BLK_BOUNCE_ISA);
  455. init_emergency_isa_pool();
  456. q->bounce_gfp = GFP_NOIO | GFP_DMA;
  457. } else
  458. q->bounce_gfp = GFP_NOIO;
  459. q->bounce_pfn = bounce_pfn;
  460. }
  461. EXPORT_SYMBOL(blk_queue_bounce_limit);
  462. /**
  463. * blk_queue_max_sectors - set max sectors for a request for this queue
  464. * @q: the request queue for the device
  465. * @max_sectors: max sectors in the usual 512b unit
  466. *
  467. * Description:
  468. * Enables a low level driver to set an upper limit on the size of
  469. * received requests.
  470. **/
  471. void blk_queue_max_sectors(request_queue_t *q, unsigned short max_sectors)
  472. {
  473. if ((max_sectors << 9) < PAGE_CACHE_SIZE) {
  474. max_sectors = 1 << (PAGE_CACHE_SHIFT - 9);
  475. printk("%s: set to minimum %d\n", __FUNCTION__, max_sectors);
  476. }
  477. q->max_sectors = q->max_hw_sectors = max_sectors;
  478. }
  479. EXPORT_SYMBOL(blk_queue_max_sectors);
  480. /**
  481. * blk_queue_max_phys_segments - set max phys segments for a request for this queue
  482. * @q: the request queue for the device
  483. * @max_segments: max number of segments
  484. *
  485. * Description:
  486. * Enables a low level driver to set an upper limit on the number of
  487. * physical data segments in a request. This would be the largest sized
  488. * scatter list the driver could handle.
  489. **/
  490. void blk_queue_max_phys_segments(request_queue_t *q, unsigned short max_segments)
  491. {
  492. if (!max_segments) {
  493. max_segments = 1;
  494. printk("%s: set to minimum %d\n", __FUNCTION__, max_segments);
  495. }
  496. q->max_phys_segments = max_segments;
  497. }
  498. EXPORT_SYMBOL(blk_queue_max_phys_segments);
  499. /**
  500. * blk_queue_max_hw_segments - set max hw segments for a request for this queue
  501. * @q: the request queue for the device
  502. * @max_segments: max number of segments
  503. *
  504. * Description:
  505. * Enables a low level driver to set an upper limit on the number of
  506. * hw data segments in a request. This would be the largest number of
  507. * address/length pairs the host adapter can actually give as once
  508. * to the device.
  509. **/
  510. void blk_queue_max_hw_segments(request_queue_t *q, unsigned short max_segments)
  511. {
  512. if (!max_segments) {
  513. max_segments = 1;
  514. printk("%s: set to minimum %d\n", __FUNCTION__, max_segments);
  515. }
  516. q->max_hw_segments = max_segments;
  517. }
  518. EXPORT_SYMBOL(blk_queue_max_hw_segments);
  519. /**
  520. * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg
  521. * @q: the request queue for the device
  522. * @max_size: max size of segment in bytes
  523. *
  524. * Description:
  525. * Enables a low level driver to set an upper limit on the size of a
  526. * coalesced segment
  527. **/
  528. void blk_queue_max_segment_size(request_queue_t *q, unsigned int max_size)
  529. {
  530. if (max_size < PAGE_CACHE_SIZE) {
  531. max_size = PAGE_CACHE_SIZE;
  532. printk("%s: set to minimum %d\n", __FUNCTION__, max_size);
  533. }
  534. q->max_segment_size = max_size;
  535. }
  536. EXPORT_SYMBOL(blk_queue_max_segment_size);
  537. /**
  538. * blk_queue_hardsect_size - set hardware sector size for the queue
  539. * @q: the request queue for the device
  540. * @size: the hardware sector size, in bytes
  541. *
  542. * Description:
  543. * This should typically be set to the lowest possible sector size
  544. * that the hardware can operate on (possible without reverting to
  545. * even internal read-modify-write operations). Usually the default
  546. * of 512 covers most hardware.
  547. **/
  548. void blk_queue_hardsect_size(request_queue_t *q, unsigned short size)
  549. {
  550. q->hardsect_size = size;
  551. }
  552. EXPORT_SYMBOL(blk_queue_hardsect_size);
  553. /*
  554. * Returns the minimum that is _not_ zero, unless both are zero.
  555. */
  556. #define min_not_zero(l, r) (l == 0) ? r : ((r == 0) ? l : min(l, r))
  557. /**
  558. * blk_queue_stack_limits - inherit underlying queue limits for stacked drivers
  559. * @t: the stacking driver (top)
  560. * @b: the underlying device (bottom)
  561. **/
  562. void blk_queue_stack_limits(request_queue_t *t, request_queue_t *b)
  563. {
  564. /* zero is "infinity" */
  565. t->max_sectors = t->max_hw_sectors =
  566. min_not_zero(t->max_sectors,b->max_sectors);
  567. t->max_phys_segments = min(t->max_phys_segments,b->max_phys_segments);
  568. t->max_hw_segments = min(t->max_hw_segments,b->max_hw_segments);
  569. t->max_segment_size = min(t->max_segment_size,b->max_segment_size);
  570. t->hardsect_size = max(t->hardsect_size,b->hardsect_size);
  571. }
  572. EXPORT_SYMBOL(blk_queue_stack_limits);
  573. /**
  574. * blk_queue_segment_boundary - set boundary rules for segment merging
  575. * @q: the request queue for the device
  576. * @mask: the memory boundary mask
  577. **/
  578. void blk_queue_segment_boundary(request_queue_t *q, unsigned long mask)
  579. {
  580. if (mask < PAGE_CACHE_SIZE - 1) {
  581. mask = PAGE_CACHE_SIZE - 1;
  582. printk("%s: set to minimum %lx\n", __FUNCTION__, mask);
  583. }
  584. q->seg_boundary_mask = mask;
  585. }
  586. EXPORT_SYMBOL(blk_queue_segment_boundary);
  587. /**
  588. * blk_queue_dma_alignment - set dma length and memory alignment
  589. * @q: the request queue for the device
  590. * @mask: alignment mask
  591. *
  592. * description:
  593. * set required memory and length aligment for direct dma transactions.
  594. * this is used when buiding direct io requests for the queue.
  595. *
  596. **/
  597. void blk_queue_dma_alignment(request_queue_t *q, int mask)
  598. {
  599. q->dma_alignment = mask;
  600. }
  601. EXPORT_SYMBOL(blk_queue_dma_alignment);
  602. /**
  603. * blk_queue_find_tag - find a request by its tag and queue
  604. *
  605. * @q: The request queue for the device
  606. * @tag: The tag of the request
  607. *
  608. * Notes:
  609. * Should be used when a device returns a tag and you want to match
  610. * it with a request.
  611. *
  612. * no locks need be held.
  613. **/
  614. struct request *blk_queue_find_tag(request_queue_t *q, int tag)
  615. {
  616. struct blk_queue_tag *bqt = q->queue_tags;
  617. if (unlikely(bqt == NULL || tag >= bqt->max_depth))
  618. return NULL;
  619. return bqt->tag_index[tag];
  620. }
  621. EXPORT_SYMBOL(blk_queue_find_tag);
  622. /**
  623. * __blk_queue_free_tags - release tag maintenance info
  624. * @q: the request queue for the device
  625. *
  626. * Notes:
  627. * blk_cleanup_queue() will take care of calling this function, if tagging
  628. * has been used. So there's no need to call this directly.
  629. **/
  630. static void __blk_queue_free_tags(request_queue_t *q)
  631. {
  632. struct blk_queue_tag *bqt = q->queue_tags;
  633. if (!bqt)
  634. return;
  635. if (atomic_dec_and_test(&bqt->refcnt)) {
  636. BUG_ON(bqt->busy);
  637. BUG_ON(!list_empty(&bqt->busy_list));
  638. kfree(bqt->tag_index);
  639. bqt->tag_index = NULL;
  640. kfree(bqt->tag_map);
  641. bqt->tag_map = NULL;
  642. kfree(bqt);
  643. }
  644. q->queue_tags = NULL;
  645. q->queue_flags &= ~(1 << QUEUE_FLAG_QUEUED);
  646. }
  647. /**
  648. * blk_queue_free_tags - release tag maintenance info
  649. * @q: the request queue for the device
  650. *
  651. * Notes:
  652. * This is used to disabled tagged queuing to a device, yet leave
  653. * queue in function.
  654. **/
  655. void blk_queue_free_tags(request_queue_t *q)
  656. {
  657. clear_bit(QUEUE_FLAG_QUEUED, &q->queue_flags);
  658. }
  659. EXPORT_SYMBOL(blk_queue_free_tags);
  660. static int
  661. init_tag_map(request_queue_t *q, struct blk_queue_tag *tags, int depth)
  662. {
  663. struct request **tag_index;
  664. unsigned long *tag_map;
  665. int nr_ulongs;
  666. if (depth > q->nr_requests * 2) {
  667. depth = q->nr_requests * 2;
  668. printk(KERN_ERR "%s: adjusted depth to %d\n",
  669. __FUNCTION__, depth);
  670. }
  671. tag_index = kmalloc(depth * sizeof(struct request *), GFP_ATOMIC);
  672. if (!tag_index)
  673. goto fail;
  674. nr_ulongs = ALIGN(depth, BITS_PER_LONG) / BITS_PER_LONG;
  675. tag_map = kmalloc(nr_ulongs * sizeof(unsigned long), GFP_ATOMIC);
  676. if (!tag_map)
  677. goto fail;
  678. memset(tag_index, 0, depth * sizeof(struct request *));
  679. memset(tag_map, 0, nr_ulongs * sizeof(unsigned long));
  680. tags->max_depth = depth;
  681. tags->tag_index = tag_index;
  682. tags->tag_map = tag_map;
  683. return 0;
  684. fail:
  685. kfree(tag_index);
  686. return -ENOMEM;
  687. }
  688. /**
  689. * blk_queue_init_tags - initialize the queue tag info
  690. * @q: the request queue for the device
  691. * @depth: the maximum queue depth supported
  692. * @tags: the tag to use
  693. **/
  694. int blk_queue_init_tags(request_queue_t *q, int depth,
  695. struct blk_queue_tag *tags)
  696. {
  697. int rc;
  698. BUG_ON(tags && q->queue_tags && tags != q->queue_tags);
  699. if (!tags && !q->queue_tags) {
  700. tags = kmalloc(sizeof(struct blk_queue_tag), GFP_ATOMIC);
  701. if (!tags)
  702. goto fail;
  703. if (init_tag_map(q, tags, depth))
  704. goto fail;
  705. INIT_LIST_HEAD(&tags->busy_list);
  706. tags->busy = 0;
  707. atomic_set(&tags->refcnt, 1);
  708. } else if (q->queue_tags) {
  709. if ((rc = blk_queue_resize_tags(q, depth)))
  710. return rc;
  711. set_bit(QUEUE_FLAG_QUEUED, &q->queue_flags);
  712. return 0;
  713. } else
  714. atomic_inc(&tags->refcnt);
  715. /*
  716. * assign it, all done
  717. */
  718. q->queue_tags = tags;
  719. q->queue_flags |= (1 << QUEUE_FLAG_QUEUED);
  720. return 0;
  721. fail:
  722. kfree(tags);
  723. return -ENOMEM;
  724. }
  725. EXPORT_SYMBOL(blk_queue_init_tags);
  726. /**
  727. * blk_queue_resize_tags - change the queueing depth
  728. * @q: the request queue for the device
  729. * @new_depth: the new max command queueing depth
  730. *
  731. * Notes:
  732. * Must be called with the queue lock held.
  733. **/
  734. int blk_queue_resize_tags(request_queue_t *q, int new_depth)
  735. {
  736. struct blk_queue_tag *bqt = q->queue_tags;
  737. struct request **tag_index;
  738. unsigned long *tag_map;
  739. int max_depth, nr_ulongs;
  740. if (!bqt)
  741. return -ENXIO;
  742. /*
  743. * save the old state info, so we can copy it back
  744. */
  745. tag_index = bqt->tag_index;
  746. tag_map = bqt->tag_map;
  747. max_depth = bqt->max_depth;
  748. if (init_tag_map(q, bqt, new_depth))
  749. return -ENOMEM;
  750. memcpy(bqt->tag_index, tag_index, max_depth * sizeof(struct request *));
  751. nr_ulongs = ALIGN(max_depth, BITS_PER_LONG) / BITS_PER_LONG;
  752. memcpy(bqt->tag_map, tag_map, nr_ulongs * sizeof(unsigned long));
  753. kfree(tag_index);
  754. kfree(tag_map);
  755. return 0;
  756. }
  757. EXPORT_SYMBOL(blk_queue_resize_tags);
  758. /**
  759. * blk_queue_end_tag - end tag operations for a request
  760. * @q: the request queue for the device
  761. * @rq: the request that has completed
  762. *
  763. * Description:
  764. * Typically called when end_that_request_first() returns 0, meaning
  765. * all transfers have been done for a request. It's important to call
  766. * this function before end_that_request_last(), as that will put the
  767. * request back on the free list thus corrupting the internal tag list.
  768. *
  769. * Notes:
  770. * queue lock must be held.
  771. **/
  772. void blk_queue_end_tag(request_queue_t *q, struct request *rq)
  773. {
  774. struct blk_queue_tag *bqt = q->queue_tags;
  775. int tag = rq->tag;
  776. BUG_ON(tag == -1);
  777. if (unlikely(tag >= bqt->max_depth))
  778. return;
  779. if (unlikely(!__test_and_clear_bit(tag, bqt->tag_map))) {
  780. printk("attempt to clear non-busy tag (%d)\n", tag);
  781. return;
  782. }
  783. list_del_init(&rq->queuelist);
  784. rq->flags &= ~REQ_QUEUED;
  785. rq->tag = -1;
  786. if (unlikely(bqt->tag_index[tag] == NULL))
  787. printk("tag %d is missing\n", tag);
  788. bqt->tag_index[tag] = NULL;
  789. bqt->busy--;
  790. }
  791. EXPORT_SYMBOL(blk_queue_end_tag);
  792. /**
  793. * blk_queue_start_tag - find a free tag and assign it
  794. * @q: the request queue for the device
  795. * @rq: the block request that needs tagging
  796. *
  797. * Description:
  798. * This can either be used as a stand-alone helper, or possibly be
  799. * assigned as the queue &prep_rq_fn (in which case &struct request
  800. * automagically gets a tag assigned). Note that this function
  801. * assumes that any type of request can be queued! if this is not
  802. * true for your device, you must check the request type before
  803. * calling this function. The request will also be removed from
  804. * the request queue, so it's the drivers responsibility to readd
  805. * it if it should need to be restarted for some reason.
  806. *
  807. * Notes:
  808. * queue lock must be held.
  809. **/
  810. int blk_queue_start_tag(request_queue_t *q, struct request *rq)
  811. {
  812. struct blk_queue_tag *bqt = q->queue_tags;
  813. int tag;
  814. if (unlikely((rq->flags & REQ_QUEUED))) {
  815. printk(KERN_ERR
  816. "request %p for device [%s] already tagged %d",
  817. rq, rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->tag);
  818. BUG();
  819. }
  820. tag = find_first_zero_bit(bqt->tag_map, bqt->max_depth);
  821. if (tag >= bqt->max_depth)
  822. return 1;
  823. __set_bit(tag, bqt->tag_map);
  824. rq->flags |= REQ_QUEUED;
  825. rq->tag = tag;
  826. bqt->tag_index[tag] = rq;
  827. blkdev_dequeue_request(rq);
  828. list_add(&rq->queuelist, &bqt->busy_list);
  829. bqt->busy++;
  830. return 0;
  831. }
  832. EXPORT_SYMBOL(blk_queue_start_tag);
  833. /**
  834. * blk_queue_invalidate_tags - invalidate all pending tags
  835. * @q: the request queue for the device
  836. *
  837. * Description:
  838. * Hardware conditions may dictate a need to stop all pending requests.
  839. * In this case, we will safely clear the block side of the tag queue and
  840. * readd all requests to the request queue in the right order.
  841. *
  842. * Notes:
  843. * queue lock must be held.
  844. **/
  845. void blk_queue_invalidate_tags(request_queue_t *q)
  846. {
  847. struct blk_queue_tag *bqt = q->queue_tags;
  848. struct list_head *tmp, *n;
  849. struct request *rq;
  850. list_for_each_safe(tmp, n, &bqt->busy_list) {
  851. rq = list_entry_rq(tmp);
  852. if (rq->tag == -1) {
  853. printk("bad tag found on list\n");
  854. list_del_init(&rq->queuelist);
  855. rq->flags &= ~REQ_QUEUED;
  856. } else
  857. blk_queue_end_tag(q, rq);
  858. rq->flags &= ~REQ_STARTED;
  859. __elv_add_request(q, rq, ELEVATOR_INSERT_BACK, 0);
  860. }
  861. }
  862. EXPORT_SYMBOL(blk_queue_invalidate_tags);
  863. static char *rq_flags[] = {
  864. "REQ_RW",
  865. "REQ_FAILFAST",
  866. "REQ_SOFTBARRIER",
  867. "REQ_HARDBARRIER",
  868. "REQ_CMD",
  869. "REQ_NOMERGE",
  870. "REQ_STARTED",
  871. "REQ_DONTPREP",
  872. "REQ_QUEUED",
  873. "REQ_PC",
  874. "REQ_BLOCK_PC",
  875. "REQ_SENSE",
  876. "REQ_FAILED",
  877. "REQ_QUIET",
  878. "REQ_SPECIAL",
  879. "REQ_DRIVE_CMD",
  880. "REQ_DRIVE_TASK",
  881. "REQ_DRIVE_TASKFILE",
  882. "REQ_PREEMPT",
  883. "REQ_PM_SUSPEND",
  884. "REQ_PM_RESUME",
  885. "REQ_PM_SHUTDOWN",
  886. };
  887. void blk_dump_rq_flags(struct request *rq, char *msg)
  888. {
  889. int bit;
  890. printk("%s: dev %s: flags = ", msg,
  891. rq->rq_disk ? rq->rq_disk->disk_name : "?");
  892. bit = 0;
  893. do {
  894. if (rq->flags & (1 << bit))
  895. printk("%s ", rq_flags[bit]);
  896. bit++;
  897. } while (bit < __REQ_NR_BITS);
  898. printk("\nsector %llu, nr/cnr %lu/%u\n", (unsigned long long)rq->sector,
  899. rq->nr_sectors,
  900. rq->current_nr_sectors);
  901. printk("bio %p, biotail %p, buffer %p, data %p, len %u\n", rq->bio, rq->biotail, rq->buffer, rq->data, rq->data_len);
  902. if (rq->flags & (REQ_BLOCK_PC | REQ_PC)) {
  903. printk("cdb: ");
  904. for (bit = 0; bit < sizeof(rq->cmd); bit++)
  905. printk("%02x ", rq->cmd[bit]);
  906. printk("\n");
  907. }
  908. }
  909. EXPORT_SYMBOL(blk_dump_rq_flags);
  910. void blk_recount_segments(request_queue_t *q, struct bio *bio)
  911. {
  912. struct bio_vec *bv, *bvprv = NULL;
  913. int i, nr_phys_segs, nr_hw_segs, seg_size, hw_seg_size, cluster;
  914. int high, highprv = 1;
  915. if (unlikely(!bio->bi_io_vec))
  916. return;
  917. cluster = q->queue_flags & (1 << QUEUE_FLAG_CLUSTER);
  918. hw_seg_size = seg_size = nr_phys_segs = nr_hw_segs = 0;
  919. bio_for_each_segment(bv, bio, i) {
  920. /*
  921. * the trick here is making sure that a high page is never
  922. * considered part of another segment, since that might
  923. * change with the bounce page.
  924. */
  925. high = page_to_pfn(bv->bv_page) >= q->bounce_pfn;
  926. if (high || highprv)
  927. goto new_hw_segment;
  928. if (cluster) {
  929. if (seg_size + bv->bv_len > q->max_segment_size)
  930. goto new_segment;
  931. if (!BIOVEC_PHYS_MERGEABLE(bvprv, bv))
  932. goto new_segment;
  933. if (!BIOVEC_SEG_BOUNDARY(q, bvprv, bv))
  934. goto new_segment;
  935. if (BIOVEC_VIRT_OVERSIZE(hw_seg_size + bv->bv_len))
  936. goto new_hw_segment;
  937. seg_size += bv->bv_len;
  938. hw_seg_size += bv->bv_len;
  939. bvprv = bv;
  940. continue;
  941. }
  942. new_segment:
  943. if (BIOVEC_VIRT_MERGEABLE(bvprv, bv) &&
  944. !BIOVEC_VIRT_OVERSIZE(hw_seg_size + bv->bv_len)) {
  945. hw_seg_size += bv->bv_len;
  946. } else {
  947. new_hw_segment:
  948. if (hw_seg_size > bio->bi_hw_front_size)
  949. bio->bi_hw_front_size = hw_seg_size;
  950. hw_seg_size = BIOVEC_VIRT_START_SIZE(bv) + bv->bv_len;
  951. nr_hw_segs++;
  952. }
  953. nr_phys_segs++;
  954. bvprv = bv;
  955. seg_size = bv->bv_len;
  956. highprv = high;
  957. }
  958. if (hw_seg_size > bio->bi_hw_back_size)
  959. bio->bi_hw_back_size = hw_seg_size;
  960. if (nr_hw_segs == 1 && hw_seg_size > bio->bi_hw_front_size)
  961. bio->bi_hw_front_size = hw_seg_size;
  962. bio->bi_phys_segments = nr_phys_segs;
  963. bio->bi_hw_segments = nr_hw_segs;
  964. bio->bi_flags |= (1 << BIO_SEG_VALID);
  965. }
  966. int blk_phys_contig_segment(request_queue_t *q, struct bio *bio,
  967. struct bio *nxt)
  968. {
  969. if (!(q->queue_flags & (1 << QUEUE_FLAG_CLUSTER)))
  970. return 0;
  971. if (!BIOVEC_PHYS_MERGEABLE(__BVEC_END(bio), __BVEC_START(nxt)))
  972. return 0;
  973. if (bio->bi_size + nxt->bi_size > q->max_segment_size)
  974. return 0;
  975. /*
  976. * bio and nxt are contigous in memory, check if the queue allows
  977. * these two to be merged into one
  978. */
  979. if (BIO_SEG_BOUNDARY(q, bio, nxt))
  980. return 1;
  981. return 0;
  982. }
  983. EXPORT_SYMBOL(blk_phys_contig_segment);
  984. int blk_hw_contig_segment(request_queue_t *q, struct bio *bio,
  985. struct bio *nxt)
  986. {
  987. if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
  988. blk_recount_segments(q, bio);
  989. if (unlikely(!bio_flagged(nxt, BIO_SEG_VALID)))
  990. blk_recount_segments(q, nxt);
  991. if (!BIOVEC_VIRT_MERGEABLE(__BVEC_END(bio), __BVEC_START(nxt)) ||
  992. BIOVEC_VIRT_OVERSIZE(bio->bi_hw_front_size + bio->bi_hw_back_size))
  993. return 0;
  994. if (bio->bi_size + nxt->bi_size > q->max_segment_size)
  995. return 0;
  996. return 1;
  997. }
  998. EXPORT_SYMBOL(blk_hw_contig_segment);
  999. /*
  1000. * map a request to scatterlist, return number of sg entries setup. Caller
  1001. * must make sure sg can hold rq->nr_phys_segments entries
  1002. */
  1003. int blk_rq_map_sg(request_queue_t *q, struct request *rq, struct scatterlist *sg)
  1004. {
  1005. struct bio_vec *bvec, *bvprv;
  1006. struct bio *bio;
  1007. int nsegs, i, cluster;
  1008. nsegs = 0;
  1009. cluster = q->queue_flags & (1 << QUEUE_FLAG_CLUSTER);
  1010. /*
  1011. * for each bio in rq
  1012. */
  1013. bvprv = NULL;
  1014. rq_for_each_bio(bio, rq) {
  1015. /*
  1016. * for each segment in bio
  1017. */
  1018. bio_for_each_segment(bvec, bio, i) {
  1019. int nbytes = bvec->bv_len;
  1020. if (bvprv && cluster) {
  1021. if (sg[nsegs - 1].length + nbytes > q->max_segment_size)
  1022. goto new_segment;
  1023. if (!BIOVEC_PHYS_MERGEABLE(bvprv, bvec))
  1024. goto new_segment;
  1025. if (!BIOVEC_SEG_BOUNDARY(q, bvprv, bvec))
  1026. goto new_segment;
  1027. sg[nsegs - 1].length += nbytes;
  1028. } else {
  1029. new_segment:
  1030. memset(&sg[nsegs],0,sizeof(struct scatterlist));
  1031. sg[nsegs].page = bvec->bv_page;
  1032. sg[nsegs].length = nbytes;
  1033. sg[nsegs].offset = bvec->bv_offset;
  1034. nsegs++;
  1035. }
  1036. bvprv = bvec;
  1037. } /* segments in bio */
  1038. } /* bios in rq */
  1039. return nsegs;
  1040. }
  1041. EXPORT_SYMBOL(blk_rq_map_sg);
  1042. /*
  1043. * the standard queue merge functions, can be overridden with device
  1044. * specific ones if so desired
  1045. */
  1046. static inline int ll_new_mergeable(request_queue_t *q,
  1047. struct request *req,
  1048. struct bio *bio)
  1049. {
  1050. int nr_phys_segs = bio_phys_segments(q, bio);
  1051. if (req->nr_phys_segments + nr_phys_segs > q->max_phys_segments) {
  1052. req->flags |= REQ_NOMERGE;
  1053. if (req == q->last_merge)
  1054. q->last_merge = NULL;
  1055. return 0;
  1056. }
  1057. /*
  1058. * A hw segment is just getting larger, bump just the phys
  1059. * counter.
  1060. */
  1061. req->nr_phys_segments += nr_phys_segs;
  1062. return 1;
  1063. }
  1064. static inline int ll_new_hw_segment(request_queue_t *q,
  1065. struct request *req,
  1066. struct bio *bio)
  1067. {
  1068. int nr_hw_segs = bio_hw_segments(q, bio);
  1069. int nr_phys_segs = bio_phys_segments(q, bio);
  1070. if (req->nr_hw_segments + nr_hw_segs > q->max_hw_segments
  1071. || req->nr_phys_segments + nr_phys_segs > q->max_phys_segments) {
  1072. req->flags |= REQ_NOMERGE;
  1073. if (req == q->last_merge)
  1074. q->last_merge = NULL;
  1075. return 0;
  1076. }
  1077. /*
  1078. * This will form the start of a new hw segment. Bump both
  1079. * counters.
  1080. */
  1081. req->nr_hw_segments += nr_hw_segs;
  1082. req->nr_phys_segments += nr_phys_segs;
  1083. return 1;
  1084. }
  1085. static int ll_back_merge_fn(request_queue_t *q, struct request *req,
  1086. struct bio *bio)
  1087. {
  1088. int len;
  1089. if (req->nr_sectors + bio_sectors(bio) > q->max_sectors) {
  1090. req->flags |= REQ_NOMERGE;
  1091. if (req == q->last_merge)
  1092. q->last_merge = NULL;
  1093. return 0;
  1094. }
  1095. if (unlikely(!bio_flagged(req->biotail, BIO_SEG_VALID)))
  1096. blk_recount_segments(q, req->biotail);
  1097. if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
  1098. blk_recount_segments(q, bio);
  1099. len = req->biotail->bi_hw_back_size + bio->bi_hw_front_size;
  1100. if (BIOVEC_VIRT_MERGEABLE(__BVEC_END(req->biotail), __BVEC_START(bio)) &&
  1101. !BIOVEC_VIRT_OVERSIZE(len)) {
  1102. int mergeable = ll_new_mergeable(q, req, bio);
  1103. if (mergeable) {
  1104. if (req->nr_hw_segments == 1)
  1105. req->bio->bi_hw_front_size = len;
  1106. if (bio->bi_hw_segments == 1)
  1107. bio->bi_hw_back_size = len;
  1108. }
  1109. return mergeable;
  1110. }
  1111. return ll_new_hw_segment(q, req, bio);
  1112. }
  1113. static int ll_front_merge_fn(request_queue_t *q, struct request *req,
  1114. struct bio *bio)
  1115. {
  1116. int len;
  1117. if (req->nr_sectors + bio_sectors(bio) > q->max_sectors) {
  1118. req->flags |= REQ_NOMERGE;
  1119. if (req == q->last_merge)
  1120. q->last_merge = NULL;
  1121. return 0;
  1122. }
  1123. len = bio->bi_hw_back_size + req->bio->bi_hw_front_size;
  1124. if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
  1125. blk_recount_segments(q, bio);
  1126. if (unlikely(!bio_flagged(req->bio, BIO_SEG_VALID)))
  1127. blk_recount_segments(q, req->bio);
  1128. if (BIOVEC_VIRT_MERGEABLE(__BVEC_END(bio), __BVEC_START(req->bio)) &&
  1129. !BIOVEC_VIRT_OVERSIZE(len)) {
  1130. int mergeable = ll_new_mergeable(q, req, bio);
  1131. if (mergeable) {
  1132. if (bio->bi_hw_segments == 1)
  1133. bio->bi_hw_front_size = len;
  1134. if (req->nr_hw_segments == 1)
  1135. req->biotail->bi_hw_back_size = len;
  1136. }
  1137. return mergeable;
  1138. }
  1139. return ll_new_hw_segment(q, req, bio);
  1140. }
  1141. static int ll_merge_requests_fn(request_queue_t *q, struct request *req,
  1142. struct request *next)
  1143. {
  1144. int total_phys_segments = req->nr_phys_segments +next->nr_phys_segments;
  1145. int total_hw_segments = req->nr_hw_segments + next->nr_hw_segments;
  1146. /*
  1147. * First check if the either of the requests are re-queued
  1148. * requests. Can't merge them if they are.
  1149. */
  1150. if (req->special || next->special)
  1151. return 0;
  1152. /*
  1153. * Will it become to large?
  1154. */
  1155. if ((req->nr_sectors + next->nr_sectors) > q->max_sectors)
  1156. return 0;
  1157. total_phys_segments = req->nr_phys_segments + next->nr_phys_segments;
  1158. if (blk_phys_contig_segment(q, req->biotail, next->bio))
  1159. total_phys_segments--;
  1160. if (total_phys_segments > q->max_phys_segments)
  1161. return 0;
  1162. total_hw_segments = req->nr_hw_segments + next->nr_hw_segments;
  1163. if (blk_hw_contig_segment(q, req->biotail, next->bio)) {
  1164. int len = req->biotail->bi_hw_back_size + next->bio->bi_hw_front_size;
  1165. /*
  1166. * propagate the combined length to the end of the requests
  1167. */
  1168. if (req->nr_hw_segments == 1)
  1169. req->bio->bi_hw_front_size = len;
  1170. if (next->nr_hw_segments == 1)
  1171. next->biotail->bi_hw_back_size = len;
  1172. total_hw_segments--;
  1173. }
  1174. if (total_hw_segments > q->max_hw_segments)
  1175. return 0;
  1176. /* Merge is OK... */
  1177. req->nr_phys_segments = total_phys_segments;
  1178. req->nr_hw_segments = total_hw_segments;
  1179. return 1;
  1180. }
  1181. /*
  1182. * "plug" the device if there are no outstanding requests: this will
  1183. * force the transfer to start only after we have put all the requests
  1184. * on the list.
  1185. *
  1186. * This is called with interrupts off and no requests on the queue and
  1187. * with the queue lock held.
  1188. */
  1189. void blk_plug_device(request_queue_t *q)
  1190. {
  1191. WARN_ON(!irqs_disabled());
  1192. /*
  1193. * don't plug a stopped queue, it must be paired with blk_start_queue()
  1194. * which will restart the queueing
  1195. */
  1196. if (test_bit(QUEUE_FLAG_STOPPED, &q->queue_flags))
  1197. return;
  1198. if (!test_and_set_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags))
  1199. mod_timer(&q->unplug_timer, jiffies + q->unplug_delay);
  1200. }
  1201. EXPORT_SYMBOL(blk_plug_device);
  1202. /*
  1203. * remove the queue from the plugged list, if present. called with
  1204. * queue lock held and interrupts disabled.
  1205. */
  1206. int blk_remove_plug(request_queue_t *q)
  1207. {
  1208. WARN_ON(!irqs_disabled());
  1209. if (!test_and_clear_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags))
  1210. return 0;
  1211. del_timer(&q->unplug_timer);
  1212. return 1;
  1213. }
  1214. EXPORT_SYMBOL(blk_remove_plug);
  1215. /*
  1216. * remove the plug and let it rip..
  1217. */
  1218. void __generic_unplug_device(request_queue_t *q)
  1219. {
  1220. if (test_bit(QUEUE_FLAG_STOPPED, &q->queue_flags))
  1221. return;
  1222. if (!blk_remove_plug(q))
  1223. return;
  1224. /*
  1225. * was plugged, fire request_fn if queue has stuff to do
  1226. */
  1227. if (elv_next_request(q))
  1228. q->request_fn(q);
  1229. }
  1230. EXPORT_SYMBOL(__generic_unplug_device);
  1231. /**
  1232. * generic_unplug_device - fire a request queue
  1233. * @q: The &request_queue_t in question
  1234. *
  1235. * Description:
  1236. * Linux uses plugging to build bigger requests queues before letting
  1237. * the device have at them. If a queue is plugged, the I/O scheduler
  1238. * is still adding and merging requests on the queue. Once the queue
  1239. * gets unplugged, the request_fn defined for the queue is invoked and
  1240. * transfers started.
  1241. **/
  1242. void generic_unplug_device(request_queue_t *q)
  1243. {
  1244. spin_lock_irq(q->queue_lock);
  1245. __generic_unplug_device(q);
  1246. spin_unlock_irq(q->queue_lock);
  1247. }
  1248. EXPORT_SYMBOL(generic_unplug_device);
  1249. static void blk_backing_dev_unplug(struct backing_dev_info *bdi,
  1250. struct page *page)
  1251. {
  1252. request_queue_t *q = bdi->unplug_io_data;
  1253. /*
  1254. * devices don't necessarily have an ->unplug_fn defined
  1255. */
  1256. if (q->unplug_fn)
  1257. q->unplug_fn(q);
  1258. }
  1259. static void blk_unplug_work(void *data)
  1260. {
  1261. request_queue_t *q = data;
  1262. q->unplug_fn(q);
  1263. }
  1264. static void blk_unplug_timeout(unsigned long data)
  1265. {
  1266. request_queue_t *q = (request_queue_t *)data;
  1267. kblockd_schedule_work(&q->unplug_work);
  1268. }
  1269. /**
  1270. * blk_start_queue - restart a previously stopped queue
  1271. * @q: The &request_queue_t in question
  1272. *
  1273. * Description:
  1274. * blk_start_queue() will clear the stop flag on the queue, and call
  1275. * the request_fn for the queue if it was in a stopped state when
  1276. * entered. Also see blk_stop_queue(). Queue lock must be held.
  1277. **/
  1278. void blk_start_queue(request_queue_t *q)
  1279. {
  1280. clear_bit(QUEUE_FLAG_STOPPED, &q->queue_flags);
  1281. /*
  1282. * one level of recursion is ok and is much faster than kicking
  1283. * the unplug handling
  1284. */
  1285. if (!test_and_set_bit(QUEUE_FLAG_REENTER, &q->queue_flags)) {
  1286. q->request_fn(q);
  1287. clear_bit(QUEUE_FLAG_REENTER, &q->queue_flags);
  1288. } else {
  1289. blk_plug_device(q);
  1290. kblockd_schedule_work(&q->unplug_work);
  1291. }
  1292. }
  1293. EXPORT_SYMBOL(blk_start_queue);
  1294. /**
  1295. * blk_stop_queue - stop a queue
  1296. * @q: The &request_queue_t in question
  1297. *
  1298. * Description:
  1299. * The Linux block layer assumes that a block driver will consume all
  1300. * entries on the request queue when the request_fn strategy is called.
  1301. * Often this will not happen, because of hardware limitations (queue
  1302. * depth settings). If a device driver gets a 'queue full' response,
  1303. * or if it simply chooses not to queue more I/O at one point, it can
  1304. * call this function to prevent the request_fn from being called until
  1305. * the driver has signalled it's ready to go again. This happens by calling
  1306. * blk_start_queue() to restart queue operations. Queue lock must be held.
  1307. **/
  1308. void blk_stop_queue(request_queue_t *q)
  1309. {
  1310. blk_remove_plug(q);
  1311. set_bit(QUEUE_FLAG_STOPPED, &q->queue_flags);
  1312. }
  1313. EXPORT_SYMBOL(blk_stop_queue);
  1314. /**
  1315. * blk_sync_queue - cancel any pending callbacks on a queue
  1316. * @q: the queue
  1317. *
  1318. * Description:
  1319. * The block layer may perform asynchronous callback activity
  1320. * on a queue, such as calling the unplug function after a timeout.
  1321. * A block device may call blk_sync_queue to ensure that any
  1322. * such activity is cancelled, thus allowing it to release resources
  1323. * the the callbacks might use. The caller must already have made sure
  1324. * that its ->make_request_fn will not re-add plugging prior to calling
  1325. * this function.
  1326. *
  1327. */
  1328. void blk_sync_queue(struct request_queue *q)
  1329. {
  1330. del_timer_sync(&q->unplug_timer);
  1331. kblockd_flush();
  1332. }
  1333. EXPORT_SYMBOL(blk_sync_queue);
  1334. /**
  1335. * blk_run_queue - run a single device queue
  1336. * @q: The queue to run
  1337. */
  1338. void blk_run_queue(struct request_queue *q)
  1339. {
  1340. unsigned long flags;
  1341. spin_lock_irqsave(q->queue_lock, flags);
  1342. blk_remove_plug(q);
  1343. if (!elv_queue_empty(q))
  1344. q->request_fn(q);
  1345. spin_unlock_irqrestore(q->queue_lock, flags);
  1346. }
  1347. EXPORT_SYMBOL(blk_run_queue);
  1348. /**
  1349. * blk_cleanup_queue: - release a &request_queue_t when it is no longer needed
  1350. * @q: the request queue to be released
  1351. *
  1352. * Description:
  1353. * blk_cleanup_queue is the pair to blk_init_queue() or
  1354. * blk_queue_make_request(). It should be called when a request queue is
  1355. * being released; typically when a block device is being de-registered.
  1356. * Currently, its primary task it to free all the &struct request
  1357. * structures that were allocated to the queue and the queue itself.
  1358. *
  1359. * Caveat:
  1360. * Hopefully the low level driver will have finished any
  1361. * outstanding requests first...
  1362. **/
  1363. void blk_cleanup_queue(request_queue_t * q)
  1364. {
  1365. struct request_list *rl = &q->rq;
  1366. if (!atomic_dec_and_test(&q->refcnt))
  1367. return;
  1368. if (q->elevator)
  1369. elevator_exit(q->elevator);
  1370. blk_sync_queue(q);
  1371. if (rl->rq_pool)
  1372. mempool_destroy(rl->rq_pool);
  1373. if (q->queue_tags)
  1374. __blk_queue_free_tags(q);
  1375. blk_queue_ordered(q, QUEUE_ORDERED_NONE);
  1376. kmem_cache_free(requestq_cachep, q);
  1377. }
  1378. EXPORT_SYMBOL(blk_cleanup_queue);
  1379. static int blk_init_free_list(request_queue_t *q)
  1380. {
  1381. struct request_list *rl = &q->rq;
  1382. rl->count[READ] = rl->count[WRITE] = 0;
  1383. rl->starved[READ] = rl->starved[WRITE] = 0;
  1384. init_waitqueue_head(&rl->wait[READ]);
  1385. init_waitqueue_head(&rl->wait[WRITE]);
  1386. init_waitqueue_head(&rl->drain);
  1387. rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
  1388. mempool_free_slab, request_cachep, q->node);
  1389. if (!rl->rq_pool)
  1390. return -ENOMEM;
  1391. return 0;
  1392. }
  1393. static int __make_request(request_queue_t *, struct bio *);
  1394. request_queue_t *blk_alloc_queue(int gfp_mask)
  1395. {
  1396. return blk_alloc_queue_node(gfp_mask, -1);
  1397. }
  1398. EXPORT_SYMBOL(blk_alloc_queue);
  1399. request_queue_t *blk_alloc_queue_node(int gfp_mask, int node_id)
  1400. {
  1401. request_queue_t *q;
  1402. q = kmem_cache_alloc_node(requestq_cachep, gfp_mask, node_id);
  1403. if (!q)
  1404. return NULL;
  1405. memset(q, 0, sizeof(*q));
  1406. init_timer(&q->unplug_timer);
  1407. atomic_set(&q->refcnt, 1);
  1408. q->backing_dev_info.unplug_io_fn = blk_backing_dev_unplug;
  1409. q->backing_dev_info.unplug_io_data = q;
  1410. return q;
  1411. }
  1412. EXPORT_SYMBOL(blk_alloc_queue_node);
  1413. /**
  1414. * blk_init_queue - prepare a request queue for use with a block device
  1415. * @rfn: The function to be called to process requests that have been
  1416. * placed on the queue.
  1417. * @lock: Request queue spin lock
  1418. *
  1419. * Description:
  1420. * If a block device wishes to use the standard request handling procedures,
  1421. * which sorts requests and coalesces adjacent requests, then it must
  1422. * call blk_init_queue(). The function @rfn will be called when there
  1423. * are requests on the queue that need to be processed. If the device
  1424. * supports plugging, then @rfn may not be called immediately when requests
  1425. * are available on the queue, but may be called at some time later instead.
  1426. * Plugged queues are generally unplugged when a buffer belonging to one
  1427. * of the requests on the queue is needed, or due to memory pressure.
  1428. *
  1429. * @rfn is not required, or even expected, to remove all requests off the
  1430. * queue, but only as many as it can handle at a time. If it does leave
  1431. * requests on the queue, it is responsible for arranging that the requests
  1432. * get dealt with eventually.
  1433. *
  1434. * The queue spin lock must be held while manipulating the requests on the
  1435. * request queue.
  1436. *
  1437. * Function returns a pointer to the initialized request queue, or NULL if
  1438. * it didn't succeed.
  1439. *
  1440. * Note:
  1441. * blk_init_queue() must be paired with a blk_cleanup_queue() call
  1442. * when the block device is deactivated (such as at module unload).
  1443. **/
  1444. request_queue_t *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
  1445. {
  1446. return blk_init_queue_node(rfn, lock, -1);
  1447. }
  1448. EXPORT_SYMBOL(blk_init_queue);
  1449. request_queue_t *
  1450. blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
  1451. {
  1452. request_queue_t *q = blk_alloc_queue_node(GFP_KERNEL, node_id);
  1453. if (!q)
  1454. return NULL;
  1455. q->node = node_id;
  1456. if (blk_init_free_list(q))
  1457. goto out_init;
  1458. /*
  1459. * if caller didn't supply a lock, they get per-queue locking with
  1460. * our embedded lock
  1461. */
  1462. if (!lock) {
  1463. spin_lock_init(&q->__queue_lock);
  1464. lock = &q->__queue_lock;
  1465. }
  1466. q->request_fn = rfn;
  1467. q->back_merge_fn = ll_back_merge_fn;
  1468. q->front_merge_fn = ll_front_merge_fn;
  1469. q->merge_requests_fn = ll_merge_requests_fn;
  1470. q->prep_rq_fn = NULL;
  1471. q->unplug_fn = generic_unplug_device;
  1472. q->queue_flags = (1 << QUEUE_FLAG_CLUSTER);
  1473. q->queue_lock = lock;
  1474. blk_queue_segment_boundary(q, 0xffffffff);
  1475. blk_queue_make_request(q, __make_request);
  1476. blk_queue_max_segment_size(q, MAX_SEGMENT_SIZE);
  1477. blk_queue_max_hw_segments(q, MAX_HW_SEGMENTS);
  1478. blk_queue_max_phys_segments(q, MAX_PHYS_SEGMENTS);
  1479. /*
  1480. * all done
  1481. */
  1482. if (!elevator_init(q, NULL)) {
  1483. blk_queue_congestion_threshold(q);
  1484. return q;
  1485. }
  1486. blk_cleanup_queue(q);
  1487. out_init:
  1488. kmem_cache_free(requestq_cachep, q);
  1489. return NULL;
  1490. }
  1491. EXPORT_SYMBOL(blk_init_queue_node);
  1492. int blk_get_queue(request_queue_t *q)
  1493. {
  1494. if (!test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)) {
  1495. atomic_inc(&q->refcnt);
  1496. return 0;
  1497. }
  1498. return 1;
  1499. }
  1500. EXPORT_SYMBOL(blk_get_queue);
  1501. static inline void blk_free_request(request_queue_t *q, struct request *rq)
  1502. {
  1503. elv_put_request(q, rq);
  1504. mempool_free(rq, q->rq.rq_pool);
  1505. }
  1506. static inline struct request *blk_alloc_request(request_queue_t *q, int rw,
  1507. int gfp_mask)
  1508. {
  1509. struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask);
  1510. if (!rq)
  1511. return NULL;
  1512. /*
  1513. * first three bits are identical in rq->flags and bio->bi_rw,
  1514. * see bio.h and blkdev.h
  1515. */
  1516. rq->flags = rw;
  1517. if (!elv_set_request(q, rq, gfp_mask))
  1518. return rq;
  1519. mempool_free(rq, q->rq.rq_pool);
  1520. return NULL;
  1521. }
  1522. /*
  1523. * ioc_batching returns true if the ioc is a valid batching request and
  1524. * should be given priority access to a request.
  1525. */
  1526. static inline int ioc_batching(request_queue_t *q, struct io_context *ioc)
  1527. {
  1528. if (!ioc)
  1529. return 0;
  1530. /*
  1531. * Make sure the process is able to allocate at least 1 request
  1532. * even if the batch times out, otherwise we could theoretically
  1533. * lose wakeups.
  1534. */
  1535. return ioc->nr_batch_requests == q->nr_batching ||
  1536. (ioc->nr_batch_requests > 0
  1537. && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
  1538. }
  1539. /*
  1540. * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
  1541. * will cause the process to be a "batcher" on all queues in the system. This
  1542. * is the behaviour we want though - once it gets a wakeup it should be given
  1543. * a nice run.
  1544. */
  1545. void ioc_set_batching(request_queue_t *q, struct io_context *ioc)
  1546. {
  1547. if (!ioc || ioc_batching(q, ioc))
  1548. return;
  1549. ioc->nr_batch_requests = q->nr_batching;
  1550. ioc->last_waited = jiffies;
  1551. }
  1552. static void __freed_request(request_queue_t *q, int rw)
  1553. {
  1554. struct request_list *rl = &q->rq;
  1555. if (rl->count[rw] < queue_congestion_off_threshold(q))
  1556. clear_queue_congested(q, rw);
  1557. if (rl->count[rw] + 1 <= q->nr_requests) {
  1558. smp_mb();
  1559. if (waitqueue_active(&rl->wait[rw]))
  1560. wake_up(&rl->wait[rw]);
  1561. blk_clear_queue_full(q, rw);
  1562. }
  1563. }
  1564. /*
  1565. * A request has just been released. Account for it, update the full and
  1566. * congestion status, wake up any waiters. Called under q->queue_lock.
  1567. */
  1568. static void freed_request(request_queue_t *q, int rw)
  1569. {
  1570. struct request_list *rl = &q->rq;
  1571. rl->count[rw]--;
  1572. __freed_request(q, rw);
  1573. if (unlikely(rl->starved[rw ^ 1]))
  1574. __freed_request(q, rw ^ 1);
  1575. if (!rl->count[READ] && !rl->count[WRITE]) {
  1576. smp_mb();
  1577. if (unlikely(waitqueue_active(&rl->drain)))
  1578. wake_up(&rl->drain);
  1579. }
  1580. }
  1581. #define blkdev_free_rq(list) list_entry((list)->next, struct request, queuelist)
  1582. /*
  1583. * Get a free request, queue_lock must not be held
  1584. */
  1585. static struct request *get_request(request_queue_t *q, int rw, int gfp_mask)
  1586. {
  1587. struct request *rq = NULL;
  1588. struct request_list *rl = &q->rq;
  1589. struct io_context *ioc = get_io_context(gfp_mask);
  1590. if (unlikely(test_bit(QUEUE_FLAG_DRAIN, &q->queue_flags)))
  1591. goto out;
  1592. spin_lock_irq(q->queue_lock);
  1593. if (rl->count[rw]+1 >= q->nr_requests) {
  1594. /*
  1595. * The queue will fill after this allocation, so set it as
  1596. * full, and mark this process as "batching". This process
  1597. * will be allowed to complete a batch of requests, others
  1598. * will be blocked.
  1599. */
  1600. if (!blk_queue_full(q, rw)) {
  1601. ioc_set_batching(q, ioc);
  1602. blk_set_queue_full(q, rw);
  1603. }
  1604. }
  1605. switch (elv_may_queue(q, rw)) {
  1606. case ELV_MQUEUE_NO:
  1607. goto rq_starved;
  1608. case ELV_MQUEUE_MAY:
  1609. break;
  1610. case ELV_MQUEUE_MUST:
  1611. goto get_rq;
  1612. }
  1613. if (blk_queue_full(q, rw) && !ioc_batching(q, ioc)) {
  1614. /*
  1615. * The queue is full and the allocating process is not a
  1616. * "batcher", and not exempted by the IO scheduler
  1617. */
  1618. spin_unlock_irq(q->queue_lock);
  1619. goto out;
  1620. }
  1621. get_rq:
  1622. rl->count[rw]++;
  1623. rl->starved[rw] = 0;
  1624. if (rl->count[rw] >= queue_congestion_on_threshold(q))
  1625. set_queue_congested(q, rw);
  1626. spin_unlock_irq(q->queue_lock);
  1627. rq = blk_alloc_request(q, rw, gfp_mask);
  1628. if (!rq) {
  1629. /*
  1630. * Allocation failed presumably due to memory. Undo anything
  1631. * we might have messed up.
  1632. *
  1633. * Allocating task should really be put onto the front of the
  1634. * wait queue, but this is pretty rare.
  1635. */
  1636. spin_lock_irq(q->queue_lock);
  1637. freed_request(q, rw);
  1638. /*
  1639. * in the very unlikely event that allocation failed and no
  1640. * requests for this direction was pending, mark us starved
  1641. * so that freeing of a request in the other direction will
  1642. * notice us. another possible fix would be to split the
  1643. * rq mempool into READ and WRITE
  1644. */
  1645. rq_starved:
  1646. if (unlikely(rl->count[rw] == 0))
  1647. rl->starved[rw] = 1;
  1648. spin_unlock_irq(q->queue_lock);
  1649. goto out;
  1650. }
  1651. if (ioc_batching(q, ioc))
  1652. ioc->nr_batch_requests--;
  1653. rq_init(q, rq);
  1654. rq->rl = rl;
  1655. out:
  1656. put_io_context(ioc);
  1657. return rq;
  1658. }
  1659. /*
  1660. * No available requests for this queue, unplug the device and wait for some
  1661. * requests to become available.
  1662. */
  1663. static struct request *get_request_wait(request_queue_t *q, int rw)
  1664. {
  1665. DEFINE_WAIT(wait);
  1666. struct request *rq;
  1667. generic_unplug_device(q);
  1668. do {
  1669. struct request_list *rl = &q->rq;
  1670. prepare_to_wait_exclusive(&rl->wait[rw], &wait,
  1671. TASK_UNINTERRUPTIBLE);
  1672. rq = get_request(q, rw, GFP_NOIO);
  1673. if (!rq) {
  1674. struct io_context *ioc;
  1675. io_schedule();
  1676. /*
  1677. * After sleeping, we become a "batching" process and
  1678. * will be able to allocate at least one request, and
  1679. * up to a big batch of them for a small period time.
  1680. * See ioc_batching, ioc_set_batching
  1681. */
  1682. ioc = get_io_context(GFP_NOIO);
  1683. ioc_set_batching(q, ioc);
  1684. put_io_context(ioc);
  1685. }
  1686. finish_wait(&rl->wait[rw], &wait);
  1687. } while (!rq);
  1688. return rq;
  1689. }
  1690. struct request *blk_get_request(request_queue_t *q, int rw, int gfp_mask)
  1691. {
  1692. struct request *rq;
  1693. BUG_ON(rw != READ && rw != WRITE);
  1694. if (gfp_mask & __GFP_WAIT)
  1695. rq = get_request_wait(q, rw);
  1696. else
  1697. rq = get_request(q, rw, gfp_mask);
  1698. return rq;
  1699. }
  1700. EXPORT_SYMBOL(blk_get_request);
  1701. /**
  1702. * blk_requeue_request - put a request back on queue
  1703. * @q: request queue where request should be inserted
  1704. * @rq: request to be inserted
  1705. *
  1706. * Description:
  1707. * Drivers often keep queueing requests until the hardware cannot accept
  1708. * more, when that condition happens we need to put the request back
  1709. * on the queue. Must be called with queue lock held.
  1710. */
  1711. void blk_requeue_request(request_queue_t *q, struct request *rq)
  1712. {
  1713. if (blk_rq_tagged(rq))
  1714. blk_queue_end_tag(q, rq);
  1715. elv_requeue_request(q, rq);
  1716. }
  1717. EXPORT_SYMBOL(blk_requeue_request);
  1718. /**
  1719. * blk_insert_request - insert a special request in to a request queue
  1720. * @q: request queue where request should be inserted
  1721. * @rq: request to be inserted
  1722. * @at_head: insert request at head or tail of queue
  1723. * @data: private data
  1724. *
  1725. * Description:
  1726. * Many block devices need to execute commands asynchronously, so they don't
  1727. * block the whole kernel from preemption during request execution. This is
  1728. * accomplished normally by inserting aritficial requests tagged as
  1729. * REQ_SPECIAL in to the corresponding request queue, and letting them be
  1730. * scheduled for actual execution by the request queue.
  1731. *
  1732. * We have the option of inserting the head or the tail of the queue.
  1733. * Typically we use the tail for new ioctls and so forth. We use the head
  1734. * of the queue for things like a QUEUE_FULL message from a device, or a
  1735. * host that is unable to accept a particular command.
  1736. */
  1737. void blk_insert_request(request_queue_t *q, struct request *rq,
  1738. int at_head, void *data)
  1739. {
  1740. int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
  1741. unsigned long flags;
  1742. /*
  1743. * tell I/O scheduler that this isn't a regular read/write (ie it
  1744. * must not attempt merges on this) and that it acts as a soft
  1745. * barrier
  1746. */
  1747. rq->flags |= REQ_SPECIAL | REQ_SOFTBARRIER;
  1748. rq->special = data;
  1749. spin_lock_irqsave(q->queue_lock, flags);
  1750. /*
  1751. * If command is tagged, release the tag
  1752. */
  1753. if (blk_rq_tagged(rq))
  1754. blk_queue_end_tag(q, rq);
  1755. drive_stat_acct(rq, rq->nr_sectors, 1);
  1756. __elv_add_request(q, rq, where, 0);
  1757. if (blk_queue_plugged(q))
  1758. __generic_unplug_device(q);
  1759. else
  1760. q->request_fn(q);
  1761. spin_unlock_irqrestore(q->queue_lock, flags);
  1762. }
  1763. EXPORT_SYMBOL(blk_insert_request);
  1764. /**
  1765. * blk_rq_map_user - map user data to a request, for REQ_BLOCK_PC usage
  1766. * @q: request queue where request should be inserted
  1767. * @rw: READ or WRITE data
  1768. * @ubuf: the user buffer
  1769. * @len: length of user data
  1770. *
  1771. * Description:
  1772. * Data will be mapped directly for zero copy io, if possible. Otherwise
  1773. * a kernel bounce buffer is used.
  1774. *
  1775. * A matching blk_rq_unmap_user() must be issued at the end of io, while
  1776. * still in process context.
  1777. *
  1778. * Note: The mapped bio may need to be bounced through blk_queue_bounce()
  1779. * before being submitted to the device, as pages mapped may be out of
  1780. * reach. It's the callers responsibility to make sure this happens. The
  1781. * original bio must be passed back in to blk_rq_unmap_user() for proper
  1782. * unmapping.
  1783. */
  1784. struct request *blk_rq_map_user(request_queue_t *q, int rw, void __user *ubuf,
  1785. unsigned int len)
  1786. {
  1787. unsigned long uaddr;
  1788. struct request *rq;
  1789. struct bio *bio;
  1790. if (len > (q->max_sectors << 9))
  1791. return ERR_PTR(-EINVAL);
  1792. if ((!len && ubuf) || (len && !ubuf))
  1793. return ERR_PTR(-EINVAL);
  1794. rq = blk_get_request(q, rw, __GFP_WAIT);
  1795. if (!rq)
  1796. return ERR_PTR(-ENOMEM);
  1797. /*
  1798. * if alignment requirement is satisfied, map in user pages for
  1799. * direct dma. else, set up kernel bounce buffers
  1800. */
  1801. uaddr = (unsigned long) ubuf;
  1802. if (!(uaddr & queue_dma_alignment(q)) && !(len & queue_dma_alignment(q)))
  1803. bio = bio_map_user(q, NULL, uaddr, len, rw == READ);
  1804. else
  1805. bio = bio_copy_user(q, uaddr, len, rw == READ);
  1806. if (!IS_ERR(bio)) {
  1807. rq->bio = rq->biotail = bio;
  1808. blk_rq_bio_prep(q, rq, bio);
  1809. rq->buffer = rq->data = NULL;
  1810. rq->data_len = len;
  1811. return rq;
  1812. }
  1813. /*
  1814. * bio is the err-ptr
  1815. */
  1816. blk_put_request(rq);
  1817. return (struct request *) bio;
  1818. }
  1819. EXPORT_SYMBOL(blk_rq_map_user);
  1820. /**
  1821. * blk_rq_unmap_user - unmap a request with user data
  1822. * @rq: request to be unmapped
  1823. * @bio: bio for the request
  1824. * @ulen: length of user buffer
  1825. *
  1826. * Description:
  1827. * Unmap a request previously mapped by blk_rq_map_user().
  1828. */
  1829. int blk_rq_unmap_user(struct request *rq, struct bio *bio, unsigned int ulen)
  1830. {
  1831. int ret = 0;
  1832. if (bio) {
  1833. if (bio_flagged(bio, BIO_USER_MAPPED))
  1834. bio_unmap_user(bio);
  1835. else
  1836. ret = bio_uncopy_user(bio);
  1837. }
  1838. blk_put_request(rq);
  1839. return ret;
  1840. }
  1841. EXPORT_SYMBOL(blk_rq_unmap_user);
  1842. /**
  1843. * blk_execute_rq - insert a request into queue for execution
  1844. * @q: queue to insert the request in
  1845. * @bd_disk: matching gendisk
  1846. * @rq: request to insert
  1847. *
  1848. * Description:
  1849. * Insert a fully prepared request at the back of the io scheduler queue
  1850. * for execution.
  1851. */
  1852. int blk_execute_rq(request_queue_t *q, struct gendisk *bd_disk,
  1853. struct request *rq)
  1854. {
  1855. DECLARE_COMPLETION(wait);
  1856. char sense[SCSI_SENSE_BUFFERSIZE];
  1857. int err = 0;
  1858. rq->rq_disk = bd_disk;
  1859. /*
  1860. * we need an extra reference to the request, so we can look at
  1861. * it after io completion
  1862. */
  1863. rq->ref_count++;
  1864. if (!rq->sense) {
  1865. memset(sense, 0, sizeof(sense));
  1866. rq->sense = sense;
  1867. rq->sense_len = 0;
  1868. }
  1869. rq->flags |= REQ_NOMERGE;
  1870. rq->waiting = &wait;
  1871. rq->end_io = blk_end_sync_rq;
  1872. elv_add_request(q, rq, ELEVATOR_INSERT_BACK, 1);
  1873. generic_unplug_device(q);
  1874. wait_for_completion(&wait);
  1875. rq->waiting = NULL;
  1876. if (rq->errors)
  1877. err = -EIO;
  1878. return err;
  1879. }
  1880. EXPORT_SYMBOL(blk_execute_rq);
  1881. /**
  1882. * blkdev_issue_flush - queue a flush
  1883. * @bdev: blockdev to issue flush for
  1884. * @error_sector: error sector
  1885. *
  1886. * Description:
  1887. * Issue a flush for the block device in question. Caller can supply
  1888. * room for storing the error offset in case of a flush error, if they
  1889. * wish to. Caller must run wait_for_completion() on its own.
  1890. */
  1891. int blkdev_issue_flush(struct block_device *bdev, sector_t *error_sector)
  1892. {
  1893. request_queue_t *q;
  1894. if (bdev->bd_disk == NULL)
  1895. return -ENXIO;
  1896. q = bdev_get_queue(bdev);
  1897. if (!q)
  1898. return -ENXIO;
  1899. if (!q->issue_flush_fn)
  1900. return -EOPNOTSUPP;
  1901. return q->issue_flush_fn(q, bdev->bd_disk, error_sector);
  1902. }
  1903. EXPORT_SYMBOL(blkdev_issue_flush);
  1904. /**
  1905. * blkdev_scsi_issue_flush_fn - issue flush for SCSI devices
  1906. * @q: device queue
  1907. * @disk: gendisk
  1908. * @error_sector: error offset
  1909. *
  1910. * Description:
  1911. * Devices understanding the SCSI command set, can use this function as
  1912. * a helper for issuing a cache flush. Note: driver is required to store
  1913. * the error offset (in case of error flushing) in ->sector of struct
  1914. * request.
  1915. */
  1916. int blkdev_scsi_issue_flush_fn(request_queue_t *q, struct gendisk *disk,
  1917. sector_t *error_sector)
  1918. {
  1919. struct request *rq = blk_get_request(q, WRITE, __GFP_WAIT);
  1920. int ret;
  1921. rq->flags |= REQ_BLOCK_PC | REQ_SOFTBARRIER;
  1922. rq->sector = 0;
  1923. memset(rq->cmd, 0, sizeof(rq->cmd));
  1924. rq->cmd[0] = 0x35;
  1925. rq->cmd_len = 12;
  1926. rq->data = NULL;
  1927. rq->data_len = 0;
  1928. rq->timeout = 60 * HZ;
  1929. ret = blk_execute_rq(q, disk, rq);
  1930. if (ret && error_sector)
  1931. *error_sector = rq->sector;
  1932. blk_put_request(rq);
  1933. return ret;
  1934. }
  1935. EXPORT_SYMBOL(blkdev_scsi_issue_flush_fn);
  1936. void drive_stat_acct(struct request *rq, int nr_sectors, int new_io)
  1937. {
  1938. int rw = rq_data_dir(rq);
  1939. if (!blk_fs_request(rq) || !rq->rq_disk)
  1940. return;
  1941. if (rw == READ) {
  1942. __disk_stat_add(rq->rq_disk, read_sectors, nr_sectors);
  1943. if (!new_io)
  1944. __disk_stat_inc(rq->rq_disk, read_merges);
  1945. } else if (rw == WRITE) {
  1946. __disk_stat_add(rq->rq_disk, write_sectors, nr_sectors);
  1947. if (!new_io)
  1948. __disk_stat_inc(rq->rq_disk, write_merges);
  1949. }
  1950. if (new_io) {
  1951. disk_round_stats(rq->rq_disk);
  1952. rq->rq_disk->in_flight++;
  1953. }
  1954. }
  1955. /*
  1956. * add-request adds a request to the linked list.
  1957. * queue lock is held and interrupts disabled, as we muck with the
  1958. * request queue list.
  1959. */
  1960. static inline void add_request(request_queue_t * q, struct request * req)
  1961. {
  1962. drive_stat_acct(req, req->nr_sectors, 1);
  1963. if (q->activity_fn)
  1964. q->activity_fn(q->activity_data, rq_data_dir(req));
  1965. /*
  1966. * elevator indicated where it wants this request to be
  1967. * inserted at elevator_merge time
  1968. */
  1969. __elv_add_request(q, req, ELEVATOR_INSERT_SORT, 0);
  1970. }
  1971. /*
  1972. * disk_round_stats() - Round off the performance stats on a struct
  1973. * disk_stats.
  1974. *
  1975. * The average IO queue length and utilisation statistics are maintained
  1976. * by observing the current state of the queue length and the amount of
  1977. * time it has been in this state for.
  1978. *
  1979. * Normally, that accounting is done on IO completion, but that can result
  1980. * in more than a second's worth of IO being accounted for within any one
  1981. * second, leading to >100% utilisation. To deal with that, we call this
  1982. * function to do a round-off before returning the results when reading
  1983. * /proc/diskstats. This accounts immediately for all queue usage up to
  1984. * the current jiffies and restarts the counters again.
  1985. */
  1986. void disk_round_stats(struct gendisk *disk)
  1987. {
  1988. unsigned long now = jiffies;
  1989. __disk_stat_add(disk, time_in_queue,
  1990. disk->in_flight * (now - disk->stamp));
  1991. disk->stamp = now;
  1992. if (disk->in_flight)
  1993. __disk_stat_add(disk, io_ticks, (now - disk->stamp_idle));
  1994. disk->stamp_idle = now;
  1995. }
  1996. /*
  1997. * queue lock must be held
  1998. */
  1999. static void __blk_put_request(request_queue_t *q, struct request *req)
  2000. {
  2001. struct request_list *rl = req->rl;
  2002. if (unlikely(!q))
  2003. return;
  2004. if (unlikely(--req->ref_count))
  2005. return;
  2006. req->rq_status = RQ_INACTIVE;
  2007. req->q = NULL;
  2008. req->rl = NULL;
  2009. /*
  2010. * Request may not have originated from ll_rw_blk. if not,
  2011. * it didn't come out of our reserved rq pools
  2012. */
  2013. if (rl) {
  2014. int rw = rq_data_dir(req);
  2015. elv_completed_request(q, req);
  2016. BUG_ON(!list_empty(&req->queuelist));
  2017. blk_free_request(q, req);
  2018. freed_request(q, rw);
  2019. }
  2020. }
  2021. void blk_put_request(struct request *req)
  2022. {
  2023. /*
  2024. * if req->rl isn't set, this request didnt originate from the
  2025. * block layer, so it's safe to just disregard it
  2026. */
  2027. if (req->rl) {
  2028. unsigned long flags;
  2029. request_queue_t *q = req->q;
  2030. spin_lock_irqsave(q->queue_lock, flags);
  2031. __blk_put_request(q, req);
  2032. spin_unlock_irqrestore(q->queue_lock, flags);
  2033. }
  2034. }
  2035. EXPORT_SYMBOL(blk_put_request);
  2036. /**
  2037. * blk_end_sync_rq - executes a completion event on a request
  2038. * @rq: request to complete
  2039. */
  2040. void blk_end_sync_rq(struct request *rq)
  2041. {
  2042. struct completion *waiting = rq->waiting;
  2043. rq->waiting = NULL;
  2044. __blk_put_request(rq->q, rq);
  2045. /*
  2046. * complete last, if this is a stack request the process (and thus
  2047. * the rq pointer) could be invalid right after this complete()
  2048. */
  2049. complete(waiting);
  2050. }
  2051. EXPORT_SYMBOL(blk_end_sync_rq);
  2052. /**
  2053. * blk_congestion_wait - wait for a queue to become uncongested
  2054. * @rw: READ or WRITE
  2055. * @timeout: timeout in jiffies
  2056. *
  2057. * Waits for up to @timeout jiffies for a queue (any queue) to exit congestion.
  2058. * If no queues are congested then just wait for the next request to be
  2059. * returned.
  2060. */
  2061. long blk_congestion_wait(int rw, long timeout)
  2062. {
  2063. long ret;
  2064. DEFINE_WAIT(wait);
  2065. wait_queue_head_t *wqh = &congestion_wqh[rw];
  2066. prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
  2067. ret = io_schedule_timeout(timeout);
  2068. finish_wait(wqh, &wait);
  2069. return ret;
  2070. }
  2071. EXPORT_SYMBOL(blk_congestion_wait);
  2072. /*
  2073. * Has to be called with the request spinlock acquired
  2074. */
  2075. static int attempt_merge(request_queue_t *q, struct request *req,
  2076. struct request *next)
  2077. {
  2078. if (!rq_mergeable(req) || !rq_mergeable(next))
  2079. return 0;
  2080. /*
  2081. * not contigious
  2082. */
  2083. if (req->sector + req->nr_sectors != next->sector)
  2084. return 0;
  2085. if (rq_data_dir(req) != rq_data_dir(next)
  2086. || req->rq_disk != next->rq_disk
  2087. || next->waiting || next->special)
  2088. return 0;
  2089. /*
  2090. * If we are allowed to merge, then append bio list
  2091. * from next to rq and release next. merge_requests_fn
  2092. * will have updated segment counts, update sector
  2093. * counts here.
  2094. */
  2095. if (!q->merge_requests_fn(q, req, next))
  2096. return 0;
  2097. /*
  2098. * At this point we have either done a back merge
  2099. * or front merge. We need the smaller start_time of
  2100. * the merged requests to be the current request
  2101. * for accounting purposes.
  2102. */
  2103. if (time_after(req->start_time, next->start_time))
  2104. req->start_time = next->start_time;
  2105. req->biotail->bi_next = next->bio;
  2106. req->biotail = next->biotail;
  2107. req->nr_sectors = req->hard_nr_sectors += next->hard_nr_sectors;
  2108. elv_merge_requests(q, req, next);
  2109. if (req->rq_disk) {
  2110. disk_round_stats(req->rq_disk);
  2111. req->rq_disk->in_flight--;
  2112. }
  2113. __blk_put_request(q, next);
  2114. return 1;
  2115. }
  2116. static inline int attempt_back_merge(request_queue_t *q, struct request *rq)
  2117. {
  2118. struct request *next = elv_latter_request(q, rq);
  2119. if (next)
  2120. return attempt_merge(q, rq, next);
  2121. return 0;
  2122. }
  2123. static inline int attempt_front_merge(request_queue_t *q, struct request *rq)
  2124. {
  2125. struct request *prev = elv_former_request(q, rq);
  2126. if (prev)
  2127. return attempt_merge(q, prev, rq);
  2128. return 0;
  2129. }
  2130. /**
  2131. * blk_attempt_remerge - attempt to remerge active head with next request
  2132. * @q: The &request_queue_t belonging to the device
  2133. * @rq: The head request (usually)
  2134. *
  2135. * Description:
  2136. * For head-active devices, the queue can easily be unplugged so quickly
  2137. * that proper merging is not done on the front request. This may hurt
  2138. * performance greatly for some devices. The block layer cannot safely
  2139. * do merging on that first request for these queues, but the driver can
  2140. * call this function and make it happen any way. Only the driver knows
  2141. * when it is safe to do so.
  2142. **/
  2143. void blk_attempt_remerge(request_queue_t *q, struct request *rq)
  2144. {
  2145. unsigned long flags;
  2146. spin_lock_irqsave(q->queue_lock, flags);
  2147. attempt_back_merge(q, rq);
  2148. spin_unlock_irqrestore(q->queue_lock, flags);
  2149. }
  2150. EXPORT_SYMBOL(blk_attempt_remerge);
  2151. /*
  2152. * Non-locking blk_attempt_remerge variant.
  2153. */
  2154. void __blk_attempt_remerge(request_queue_t *q, struct request *rq)
  2155. {
  2156. attempt_back_merge(q, rq);
  2157. }
  2158. EXPORT_SYMBOL(__blk_attempt_remerge);
  2159. static int __make_request(request_queue_t *q, struct bio *bio)
  2160. {
  2161. struct request *req, *freereq = NULL;
  2162. int el_ret, rw, nr_sectors, cur_nr_sectors, barrier, err, sync;
  2163. sector_t sector;
  2164. sector = bio->bi_sector;
  2165. nr_sectors = bio_sectors(bio);
  2166. cur_nr_sectors = bio_cur_sectors(bio);
  2167. rw = bio_data_dir(bio);
  2168. sync = bio_sync(bio);
  2169. /*
  2170. * low level driver can indicate that it wants pages above a
  2171. * certain limit bounced to low memory (ie for highmem, or even
  2172. * ISA dma in theory)
  2173. */
  2174. blk_queue_bounce(q, &bio);
  2175. spin_lock_prefetch(q->queue_lock);
  2176. barrier = bio_barrier(bio);
  2177. if (barrier && (q->ordered == QUEUE_ORDERED_NONE)) {
  2178. err = -EOPNOTSUPP;
  2179. goto end_io;
  2180. }
  2181. again:
  2182. spin_lock_irq(q->queue_lock);
  2183. if (elv_queue_empty(q)) {
  2184. blk_plug_device(q);
  2185. goto get_rq;
  2186. }
  2187. if (barrier)
  2188. goto get_rq;
  2189. el_ret = elv_merge(q, &req, bio);
  2190. switch (el_ret) {
  2191. case ELEVATOR_BACK_MERGE:
  2192. BUG_ON(!rq_mergeable(req));
  2193. if (!q->back_merge_fn(q, req, bio))
  2194. break;
  2195. req->biotail->bi_next = bio;
  2196. req->biotail = bio;
  2197. req->nr_sectors = req->hard_nr_sectors += nr_sectors;
  2198. drive_stat_acct(req, nr_sectors, 0);
  2199. if (!attempt_back_merge(q, req))
  2200. elv_merged_request(q, req);
  2201. goto out;
  2202. case ELEVATOR_FRONT_MERGE:
  2203. BUG_ON(!rq_mergeable(req));
  2204. if (!q->front_merge_fn(q, req, bio))
  2205. break;
  2206. bio->bi_next = req->bio;
  2207. req->bio = bio;
  2208. /*
  2209. * may not be valid. if the low level driver said
  2210. * it didn't need a bounce buffer then it better
  2211. * not touch req->buffer either...
  2212. */
  2213. req->buffer = bio_data(bio);
  2214. req->current_nr_sectors = cur_nr_sectors;
  2215. req->hard_cur_sectors = cur_nr_sectors;
  2216. req->sector = req->hard_sector = sector;
  2217. req->nr_sectors = req->hard_nr_sectors += nr_sectors;
  2218. drive_stat_acct(req, nr_sectors, 0);
  2219. if (!attempt_front_merge(q, req))
  2220. elv_merged_request(q, req);
  2221. goto out;
  2222. /*
  2223. * elevator says don't/can't merge. get new request
  2224. */
  2225. case ELEVATOR_NO_MERGE:
  2226. break;
  2227. default:
  2228. printk("elevator returned crap (%d)\n", el_ret);
  2229. BUG();
  2230. }
  2231. /*
  2232. * Grab a free request from the freelist - if that is empty, check
  2233. * if we are doing read ahead and abort instead of blocking for
  2234. * a free slot.
  2235. */
  2236. get_rq:
  2237. if (freereq) {
  2238. req = freereq;
  2239. freereq = NULL;
  2240. } else {
  2241. spin_unlock_irq(q->queue_lock);
  2242. if ((freereq = get_request(q, rw, GFP_ATOMIC)) == NULL) {
  2243. /*
  2244. * READA bit set
  2245. */
  2246. err = -EWOULDBLOCK;
  2247. if (bio_rw_ahead(bio))
  2248. goto end_io;
  2249. freereq = get_request_wait(q, rw);
  2250. }
  2251. goto again;
  2252. }
  2253. req->flags |= REQ_CMD;
  2254. /*
  2255. * inherit FAILFAST from bio (for read-ahead, and explicit FAILFAST)
  2256. */
  2257. if (bio_rw_ahead(bio) || bio_failfast(bio))
  2258. req->flags |= REQ_FAILFAST;
  2259. /*
  2260. * REQ_BARRIER implies no merging, but lets make it explicit
  2261. */
  2262. if (barrier)
  2263. req->flags |= (REQ_HARDBARRIER | REQ_NOMERGE);
  2264. req->errors = 0;
  2265. req->hard_sector = req->sector = sector;
  2266. req->hard_nr_sectors = req->nr_sectors = nr_sectors;
  2267. req->current_nr_sectors = req->hard_cur_sectors = cur_nr_sectors;
  2268. req->nr_phys_segments = bio_phys_segments(q, bio);
  2269. req->nr_hw_segments = bio_hw_segments(q, bio);
  2270. req->buffer = bio_data(bio); /* see ->buffer comment above */
  2271. req->waiting = NULL;
  2272. req->bio = req->biotail = bio;
  2273. req->rq_disk = bio->bi_bdev->bd_disk;
  2274. req->start_time = jiffies;
  2275. add_request(q, req);
  2276. out:
  2277. if (freereq)
  2278. __blk_put_request(q, freereq);
  2279. if (sync)
  2280. __generic_unplug_device(q);
  2281. spin_unlock_irq(q->queue_lock);
  2282. return 0;
  2283. end_io:
  2284. bio_endio(bio, nr_sectors << 9, err);
  2285. return 0;
  2286. }
  2287. /*
  2288. * If bio->bi_dev is a partition, remap the location
  2289. */
  2290. static inline void blk_partition_remap(struct bio *bio)
  2291. {
  2292. struct block_device *bdev = bio->bi_bdev;
  2293. if (bdev != bdev->bd_contains) {
  2294. struct hd_struct *p = bdev->bd_part;
  2295. switch (bio->bi_rw) {
  2296. case READ:
  2297. p->read_sectors += bio_sectors(bio);
  2298. p->reads++;
  2299. break;
  2300. case WRITE:
  2301. p->write_sectors += bio_sectors(bio);
  2302. p->writes++;
  2303. break;
  2304. }
  2305. bio->bi_sector += p->start_sect;
  2306. bio->bi_bdev = bdev->bd_contains;
  2307. }
  2308. }
  2309. void blk_finish_queue_drain(request_queue_t *q)
  2310. {
  2311. struct request_list *rl = &q->rq;
  2312. struct request *rq;
  2313. spin_lock_irq(q->queue_lock);
  2314. clear_bit(QUEUE_FLAG_DRAIN, &q->queue_flags);
  2315. while (!list_empty(&q->drain_list)) {
  2316. rq = list_entry_rq(q->drain_list.next);
  2317. list_del_init(&rq->queuelist);
  2318. __elv_add_request(q, rq, ELEVATOR_INSERT_BACK, 1);
  2319. }
  2320. spin_unlock_irq(q->queue_lock);
  2321. wake_up(&rl->wait[0]);
  2322. wake_up(&rl->wait[1]);
  2323. wake_up(&rl->drain);
  2324. }
  2325. static int wait_drain(request_queue_t *q, struct request_list *rl, int dispatch)
  2326. {
  2327. int wait = rl->count[READ] + rl->count[WRITE];
  2328. if (dispatch)
  2329. wait += !list_empty(&q->queue_head);
  2330. return wait;
  2331. }
  2332. /*
  2333. * We rely on the fact that only requests allocated through blk_alloc_request()
  2334. * have io scheduler private data structures associated with them. Any other
  2335. * type of request (allocated on stack or through kmalloc()) should not go
  2336. * to the io scheduler core, but be attached to the queue head instead.
  2337. */
  2338. void blk_wait_queue_drained(request_queue_t *q, int wait_dispatch)
  2339. {
  2340. struct request_list *rl = &q->rq;
  2341. DEFINE_WAIT(wait);
  2342. spin_lock_irq(q->queue_lock);
  2343. set_bit(QUEUE_FLAG_DRAIN, &q->queue_flags);
  2344. while (wait_drain(q, rl, wait_dispatch)) {
  2345. prepare_to_wait(&rl->drain, &wait, TASK_UNINTERRUPTIBLE);
  2346. if (wait_drain(q, rl, wait_dispatch)) {
  2347. __generic_unplug_device(q);
  2348. spin_unlock_irq(q->queue_lock);
  2349. io_schedule();
  2350. spin_lock_irq(q->queue_lock);
  2351. }
  2352. finish_wait(&rl->drain, &wait);
  2353. }
  2354. spin_unlock_irq(q->queue_lock);
  2355. }
  2356. /*
  2357. * block waiting for the io scheduler being started again.
  2358. */
  2359. static inline void block_wait_queue_running(request_queue_t *q)
  2360. {
  2361. DEFINE_WAIT(wait);
  2362. while (test_bit(QUEUE_FLAG_DRAIN, &q->queue_flags)) {
  2363. struct request_list *rl = &q->rq;
  2364. prepare_to_wait_exclusive(&rl->drain, &wait,
  2365. TASK_UNINTERRUPTIBLE);
  2366. /*
  2367. * re-check the condition. avoids using prepare_to_wait()
  2368. * in the fast path (queue is running)
  2369. */
  2370. if (test_bit(QUEUE_FLAG_DRAIN, &q->queue_flags))
  2371. io_schedule();
  2372. finish_wait(&rl->drain, &wait);
  2373. }
  2374. }
  2375. static void handle_bad_sector(struct bio *bio)
  2376. {
  2377. char b[BDEVNAME_SIZE];
  2378. printk(KERN_INFO "attempt to access beyond end of device\n");
  2379. printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
  2380. bdevname(bio->bi_bdev, b),
  2381. bio->bi_rw,
  2382. (unsigned long long)bio->bi_sector + bio_sectors(bio),
  2383. (long long)(bio->bi_bdev->bd_inode->i_size >> 9));
  2384. set_bit(BIO_EOF, &bio->bi_flags);
  2385. }
  2386. /**
  2387. * generic_make_request: hand a buffer to its device driver for I/O
  2388. * @bio: The bio describing the location in memory and on the device.
  2389. *
  2390. * generic_make_request() is used to make I/O requests of block
  2391. * devices. It is passed a &struct bio, which describes the I/O that needs
  2392. * to be done.
  2393. *
  2394. * generic_make_request() does not return any status. The
  2395. * success/failure status of the request, along with notification of
  2396. * completion, is delivered asynchronously through the bio->bi_end_io
  2397. * function described (one day) else where.
  2398. *
  2399. * The caller of generic_make_request must make sure that bi_io_vec
  2400. * are set to describe the memory buffer, and that bi_dev and bi_sector are
  2401. * set to describe the device address, and the
  2402. * bi_end_io and optionally bi_private are set to describe how
  2403. * completion notification should be signaled.
  2404. *
  2405. * generic_make_request and the drivers it calls may use bi_next if this
  2406. * bio happens to be merged with someone else, and may change bi_dev and
  2407. * bi_sector for remaps as it sees fit. So the values of these fields
  2408. * should NOT be depended on after the call to generic_make_request.
  2409. */
  2410. void generic_make_request(struct bio *bio)
  2411. {
  2412. request_queue_t *q;
  2413. sector_t maxsector;
  2414. int ret, nr_sectors = bio_sectors(bio);
  2415. might_sleep();
  2416. /* Test device or partition size, when known. */
  2417. maxsector = bio->bi_bdev->bd_inode->i_size >> 9;
  2418. if (maxsector) {
  2419. sector_t sector = bio->bi_sector;
  2420. if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
  2421. /*
  2422. * This may well happen - the kernel calls bread()
  2423. * without checking the size of the device, e.g., when
  2424. * mounting a device.
  2425. */
  2426. handle_bad_sector(bio);
  2427. goto end_io;
  2428. }
  2429. }
  2430. /*
  2431. * Resolve the mapping until finished. (drivers are
  2432. * still free to implement/resolve their own stacking
  2433. * by explicitly returning 0)
  2434. *
  2435. * NOTE: we don't repeat the blk_size check for each new device.
  2436. * Stacking drivers are expected to know what they are doing.
  2437. */
  2438. do {
  2439. char b[BDEVNAME_SIZE];
  2440. q = bdev_get_queue(bio->bi_bdev);
  2441. if (!q) {
  2442. printk(KERN_ERR
  2443. "generic_make_request: Trying to access "
  2444. "nonexistent block-device %s (%Lu)\n",
  2445. bdevname(bio->bi_bdev, b),
  2446. (long long) bio->bi_sector);
  2447. end_io:
  2448. bio_endio(bio, bio->bi_size, -EIO);
  2449. break;
  2450. }
  2451. if (unlikely(bio_sectors(bio) > q->max_hw_sectors)) {
  2452. printk("bio too big device %s (%u > %u)\n",
  2453. bdevname(bio->bi_bdev, b),
  2454. bio_sectors(bio),
  2455. q->max_hw_sectors);
  2456. goto end_io;
  2457. }
  2458. if (test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))
  2459. goto end_io;
  2460. block_wait_queue_running(q);
  2461. /*
  2462. * If this device has partitions, remap block n
  2463. * of partition p to block n+start(p) of the disk.
  2464. */
  2465. blk_partition_remap(bio);
  2466. ret = q->make_request_fn(q, bio);
  2467. } while (ret);
  2468. }
  2469. EXPORT_SYMBOL(generic_make_request);
  2470. /**
  2471. * submit_bio: submit a bio to the block device layer for I/O
  2472. * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
  2473. * @bio: The &struct bio which describes the I/O
  2474. *
  2475. * submit_bio() is very similar in purpose to generic_make_request(), and
  2476. * uses that function to do most of the work. Both are fairly rough
  2477. * interfaces, @bio must be presetup and ready for I/O.
  2478. *
  2479. */
  2480. void submit_bio(int rw, struct bio *bio)
  2481. {
  2482. int count = bio_sectors(bio);
  2483. BIO_BUG_ON(!bio->bi_size);
  2484. BIO_BUG_ON(!bio->bi_io_vec);
  2485. bio->bi_rw = rw;
  2486. if (rw & WRITE)
  2487. mod_page_state(pgpgout, count);
  2488. else
  2489. mod_page_state(pgpgin, count);
  2490. if (unlikely(block_dump)) {
  2491. char b[BDEVNAME_SIZE];
  2492. printk(KERN_DEBUG "%s(%d): %s block %Lu on %s\n",
  2493. current->comm, current->pid,
  2494. (rw & WRITE) ? "WRITE" : "READ",
  2495. (unsigned long long)bio->bi_sector,
  2496. bdevname(bio->bi_bdev,b));
  2497. }
  2498. generic_make_request(bio);
  2499. }
  2500. EXPORT_SYMBOL(submit_bio);
  2501. void blk_recalc_rq_segments(struct request *rq)
  2502. {
  2503. struct bio *bio, *prevbio = NULL;
  2504. int nr_phys_segs, nr_hw_segs;
  2505. unsigned int phys_size, hw_size;
  2506. request_queue_t *q = rq->q;
  2507. if (!rq->bio)
  2508. return;
  2509. phys_size = hw_size = nr_phys_segs = nr_hw_segs = 0;
  2510. rq_for_each_bio(bio, rq) {
  2511. /* Force bio hw/phys segs to be recalculated. */
  2512. bio->bi_flags &= ~(1 << BIO_SEG_VALID);
  2513. nr_phys_segs += bio_phys_segments(q, bio);
  2514. nr_hw_segs += bio_hw_segments(q, bio);
  2515. if (prevbio) {
  2516. int pseg = phys_size + prevbio->bi_size + bio->bi_size;
  2517. int hseg = hw_size + prevbio->bi_size + bio->bi_size;
  2518. if (blk_phys_contig_segment(q, prevbio, bio) &&
  2519. pseg <= q->max_segment_size) {
  2520. nr_phys_segs--;
  2521. phys_size += prevbio->bi_size + bio->bi_size;
  2522. } else
  2523. phys_size = 0;
  2524. if (blk_hw_contig_segment(q, prevbio, bio) &&
  2525. hseg <= q->max_segment_size) {
  2526. nr_hw_segs--;
  2527. hw_size += prevbio->bi_size + bio->bi_size;
  2528. } else
  2529. hw_size = 0;
  2530. }
  2531. prevbio = bio;
  2532. }
  2533. rq->nr_phys_segments = nr_phys_segs;
  2534. rq->nr_hw_segments = nr_hw_segs;
  2535. }
  2536. void blk_recalc_rq_sectors(struct request *rq, int nsect)
  2537. {
  2538. if (blk_fs_request(rq)) {
  2539. rq->hard_sector += nsect;
  2540. rq->hard_nr_sectors -= nsect;
  2541. /*
  2542. * Move the I/O submission pointers ahead if required.
  2543. */
  2544. if ((rq->nr_sectors >= rq->hard_nr_sectors) &&
  2545. (rq->sector <= rq->hard_sector)) {
  2546. rq->sector = rq->hard_sector;
  2547. rq->nr_sectors = rq->hard_nr_sectors;
  2548. rq->hard_cur_sectors = bio_cur_sectors(rq->bio);
  2549. rq->current_nr_sectors = rq->hard_cur_sectors;
  2550. rq->buffer = bio_data(rq->bio);
  2551. }
  2552. /*
  2553. * if total number of sectors is less than the first segment
  2554. * size, something has gone terribly wrong
  2555. */
  2556. if (rq->nr_sectors < rq->current_nr_sectors) {
  2557. printk("blk: request botched\n");
  2558. rq->nr_sectors = rq->current_nr_sectors;
  2559. }
  2560. }
  2561. }
  2562. static int __end_that_request_first(struct request *req, int uptodate,
  2563. int nr_bytes)
  2564. {
  2565. int total_bytes, bio_nbytes, error, next_idx = 0;
  2566. struct bio *bio;
  2567. /*
  2568. * extend uptodate bool to allow < 0 value to be direct io error
  2569. */
  2570. error = 0;
  2571. if (end_io_error(uptodate))
  2572. error = !uptodate ? -EIO : uptodate;
  2573. /*
  2574. * for a REQ_BLOCK_PC request, we want to carry any eventual
  2575. * sense key with us all the way through
  2576. */
  2577. if (!blk_pc_request(req))
  2578. req->errors = 0;
  2579. if (!uptodate) {
  2580. if (blk_fs_request(req) && !(req->flags & REQ_QUIET))
  2581. printk("end_request: I/O error, dev %s, sector %llu\n",
  2582. req->rq_disk ? req->rq_disk->disk_name : "?",
  2583. (unsigned long long)req->sector);
  2584. }
  2585. total_bytes = bio_nbytes = 0;
  2586. while ((bio = req->bio) != NULL) {
  2587. int nbytes;
  2588. if (nr_bytes >= bio->bi_size) {
  2589. req->bio = bio->bi_next;
  2590. nbytes = bio->bi_size;
  2591. bio_endio(bio, nbytes, error);
  2592. next_idx = 0;
  2593. bio_nbytes = 0;
  2594. } else {
  2595. int idx = bio->bi_idx + next_idx;
  2596. if (unlikely(bio->bi_idx >= bio->bi_vcnt)) {
  2597. blk_dump_rq_flags(req, "__end_that");
  2598. printk("%s: bio idx %d >= vcnt %d\n",
  2599. __FUNCTION__,
  2600. bio->bi_idx, bio->bi_vcnt);
  2601. break;
  2602. }
  2603. nbytes = bio_iovec_idx(bio, idx)->bv_len;
  2604. BIO_BUG_ON(nbytes > bio->bi_size);
  2605. /*
  2606. * not a complete bvec done
  2607. */
  2608. if (unlikely(nbytes > nr_bytes)) {
  2609. bio_nbytes += nr_bytes;
  2610. total_bytes += nr_bytes;
  2611. break;
  2612. }
  2613. /*
  2614. * advance to the next vector
  2615. */
  2616. next_idx++;
  2617. bio_nbytes += nbytes;
  2618. }
  2619. total_bytes += nbytes;
  2620. nr_bytes -= nbytes;
  2621. if ((bio = req->bio)) {
  2622. /*
  2623. * end more in this run, or just return 'not-done'
  2624. */
  2625. if (unlikely(nr_bytes <= 0))
  2626. break;
  2627. }
  2628. }
  2629. /*
  2630. * completely done
  2631. */
  2632. if (!req->bio)
  2633. return 0;
  2634. /*
  2635. * if the request wasn't completed, update state
  2636. */
  2637. if (bio_nbytes) {
  2638. bio_endio(bio, bio_nbytes, error);
  2639. bio->bi_idx += next_idx;
  2640. bio_iovec(bio)->bv_offset += nr_bytes;
  2641. bio_iovec(bio)->bv_len -= nr_bytes;
  2642. }
  2643. blk_recalc_rq_sectors(req, total_bytes >> 9);
  2644. blk_recalc_rq_segments(req);
  2645. return 1;
  2646. }
  2647. /**
  2648. * end_that_request_first - end I/O on a request
  2649. * @req: the request being processed
  2650. * @uptodate: 1 for success, 0 for I/O error, < 0 for specific error
  2651. * @nr_sectors: number of sectors to end I/O on
  2652. *
  2653. * Description:
  2654. * Ends I/O on a number of sectors attached to @req, and sets it up
  2655. * for the next range of segments (if any) in the cluster.
  2656. *
  2657. * Return:
  2658. * 0 - we are done with this request, call end_that_request_last()
  2659. * 1 - still buffers pending for this request
  2660. **/
  2661. int end_that_request_first(struct request *req, int uptodate, int nr_sectors)
  2662. {
  2663. return __end_that_request_first(req, uptodate, nr_sectors << 9);
  2664. }
  2665. EXPORT_SYMBOL(end_that_request_first);
  2666. /**
  2667. * end_that_request_chunk - end I/O on a request
  2668. * @req: the request being processed
  2669. * @uptodate: 1 for success, 0 for I/O error, < 0 for specific error
  2670. * @nr_bytes: number of bytes to complete
  2671. *
  2672. * Description:
  2673. * Ends I/O on a number of bytes attached to @req, and sets it up
  2674. * for the next range of segments (if any). Like end_that_request_first(),
  2675. * but deals with bytes instead of sectors.
  2676. *
  2677. * Return:
  2678. * 0 - we are done with this request, call end_that_request_last()
  2679. * 1 - still buffers pending for this request
  2680. **/
  2681. int end_that_request_chunk(struct request *req, int uptodate, int nr_bytes)
  2682. {
  2683. return __end_that_request_first(req, uptodate, nr_bytes);
  2684. }
  2685. EXPORT_SYMBOL(end_that_request_chunk);
  2686. /*
  2687. * queue lock must be held
  2688. */
  2689. void end_that_request_last(struct request *req)
  2690. {
  2691. struct gendisk *disk = req->rq_disk;
  2692. if (unlikely(laptop_mode) && blk_fs_request(req))
  2693. laptop_io_completion();
  2694. if (disk && blk_fs_request(req)) {
  2695. unsigned long duration = jiffies - req->start_time;
  2696. switch (rq_data_dir(req)) {
  2697. case WRITE:
  2698. __disk_stat_inc(disk, writes);
  2699. __disk_stat_add(disk, write_ticks, duration);
  2700. break;
  2701. case READ:
  2702. __disk_stat_inc(disk, reads);
  2703. __disk_stat_add(disk, read_ticks, duration);
  2704. break;
  2705. }
  2706. disk_round_stats(disk);
  2707. disk->in_flight--;
  2708. }
  2709. if (req->end_io)
  2710. req->end_io(req);
  2711. else
  2712. __blk_put_request(req->q, req);
  2713. }
  2714. EXPORT_SYMBOL(end_that_request_last);
  2715. void end_request(struct request *req, int uptodate)
  2716. {
  2717. if (!end_that_request_first(req, uptodate, req->hard_cur_sectors)) {
  2718. add_disk_randomness(req->rq_disk);
  2719. blkdev_dequeue_request(req);
  2720. end_that_request_last(req);
  2721. }
  2722. }
  2723. EXPORT_SYMBOL(end_request);
  2724. void blk_rq_bio_prep(request_queue_t *q, struct request *rq, struct bio *bio)
  2725. {
  2726. /* first three bits are identical in rq->flags and bio->bi_rw */
  2727. rq->flags |= (bio->bi_rw & 7);
  2728. rq->nr_phys_segments = bio_phys_segments(q, bio);
  2729. rq->nr_hw_segments = bio_hw_segments(q, bio);
  2730. rq->current_nr_sectors = bio_cur_sectors(bio);
  2731. rq->hard_cur_sectors = rq->current_nr_sectors;
  2732. rq->hard_nr_sectors = rq->nr_sectors = bio_sectors(bio);
  2733. rq->buffer = bio_data(bio);
  2734. rq->bio = rq->biotail = bio;
  2735. }
  2736. EXPORT_SYMBOL(blk_rq_bio_prep);
  2737. int kblockd_schedule_work(struct work_struct *work)
  2738. {
  2739. return queue_work(kblockd_workqueue, work);
  2740. }
  2741. EXPORT_SYMBOL(kblockd_schedule_work);
  2742. void kblockd_flush(void)
  2743. {
  2744. flush_workqueue(kblockd_workqueue);
  2745. }
  2746. EXPORT_SYMBOL(kblockd_flush);
  2747. int __init blk_dev_init(void)
  2748. {
  2749. kblockd_workqueue = create_workqueue("kblockd");
  2750. if (!kblockd_workqueue)
  2751. panic("Failed to create kblockd\n");
  2752. request_cachep = kmem_cache_create("blkdev_requests",
  2753. sizeof(struct request), 0, SLAB_PANIC, NULL, NULL);
  2754. requestq_cachep = kmem_cache_create("blkdev_queue",
  2755. sizeof(request_queue_t), 0, SLAB_PANIC, NULL, NULL);
  2756. iocontext_cachep = kmem_cache_create("blkdev_ioc",
  2757. sizeof(struct io_context), 0, SLAB_PANIC, NULL, NULL);
  2758. blk_max_low_pfn = max_low_pfn;
  2759. blk_max_pfn = max_pfn;
  2760. return 0;
  2761. }
  2762. /*
  2763. * IO Context helper functions
  2764. */
  2765. void put_io_context(struct io_context *ioc)
  2766. {
  2767. if (ioc == NULL)
  2768. return;
  2769. BUG_ON(atomic_read(&ioc->refcount) == 0);
  2770. if (atomic_dec_and_test(&ioc->refcount)) {
  2771. if (ioc->aic && ioc->aic->dtor)
  2772. ioc->aic->dtor(ioc->aic);
  2773. if (ioc->cic && ioc->cic->dtor)
  2774. ioc->cic->dtor(ioc->cic);
  2775. kmem_cache_free(iocontext_cachep, ioc);
  2776. }
  2777. }
  2778. EXPORT_SYMBOL(put_io_context);
  2779. /* Called by the exitting task */
  2780. void exit_io_context(void)
  2781. {
  2782. unsigned long flags;
  2783. struct io_context *ioc;
  2784. local_irq_save(flags);
  2785. ioc = current->io_context;
  2786. current->io_context = NULL;
  2787. local_irq_restore(flags);
  2788. if (ioc->aic && ioc->aic->exit)
  2789. ioc->aic->exit(ioc->aic);
  2790. if (ioc->cic && ioc->cic->exit)
  2791. ioc->cic->exit(ioc->cic);
  2792. put_io_context(ioc);
  2793. }
  2794. /*
  2795. * If the current task has no IO context then create one and initialise it.
  2796. * If it does have a context, take a ref on it.
  2797. *
  2798. * This is always called in the context of the task which submitted the I/O.
  2799. * But weird things happen, so we disable local interrupts to ensure exclusive
  2800. * access to *current.
  2801. */
  2802. struct io_context *get_io_context(int gfp_flags)
  2803. {
  2804. struct task_struct *tsk = current;
  2805. unsigned long flags;
  2806. struct io_context *ret;
  2807. local_irq_save(flags);
  2808. ret = tsk->io_context;
  2809. if (ret)
  2810. goto out;
  2811. local_irq_restore(flags);
  2812. ret = kmem_cache_alloc(iocontext_cachep, gfp_flags);
  2813. if (ret) {
  2814. atomic_set(&ret->refcount, 1);
  2815. ret->pid = tsk->pid;
  2816. ret->last_waited = jiffies; /* doesn't matter... */
  2817. ret->nr_batch_requests = 0; /* because this is 0 */
  2818. ret->aic = NULL;
  2819. ret->cic = NULL;
  2820. spin_lock_init(&ret->lock);
  2821. local_irq_save(flags);
  2822. /*
  2823. * very unlikely, someone raced with us in setting up the task
  2824. * io context. free new context and just grab a reference.
  2825. */
  2826. if (!tsk->io_context)
  2827. tsk->io_context = ret;
  2828. else {
  2829. kmem_cache_free(iocontext_cachep, ret);
  2830. ret = tsk->io_context;
  2831. }
  2832. out:
  2833. atomic_inc(&ret->refcount);
  2834. local_irq_restore(flags);
  2835. }
  2836. return ret;
  2837. }
  2838. EXPORT_SYMBOL(get_io_context);
  2839. void copy_io_context(struct io_context **pdst, struct io_context **psrc)
  2840. {
  2841. struct io_context *src = *psrc;
  2842. struct io_context *dst = *pdst;
  2843. if (src) {
  2844. BUG_ON(atomic_read(&src->refcount) == 0);
  2845. atomic_inc(&src->refcount);
  2846. put_io_context(dst);
  2847. *pdst = src;
  2848. }
  2849. }
  2850. EXPORT_SYMBOL(copy_io_context);
  2851. void swap_io_context(struct io_context **ioc1, struct io_context **ioc2)
  2852. {
  2853. struct io_context *temp;
  2854. temp = *ioc1;
  2855. *ioc1 = *ioc2;
  2856. *ioc2 = temp;
  2857. }
  2858. EXPORT_SYMBOL(swap_io_context);
  2859. /*
  2860. * sysfs parts below
  2861. */
  2862. struct queue_sysfs_entry {
  2863. struct attribute attr;
  2864. ssize_t (*show)(struct request_queue *, char *);
  2865. ssize_t (*store)(struct request_queue *, const char *, size_t);
  2866. };
  2867. static ssize_t
  2868. queue_var_show(unsigned int var, char *page)
  2869. {
  2870. return sprintf(page, "%d\n", var);
  2871. }
  2872. static ssize_t
  2873. queue_var_store(unsigned long *var, const char *page, size_t count)
  2874. {
  2875. char *p = (char *) page;
  2876. *var = simple_strtoul(p, &p, 10);
  2877. return count;
  2878. }
  2879. static ssize_t queue_requests_show(struct request_queue *q, char *page)
  2880. {
  2881. return queue_var_show(q->nr_requests, (page));
  2882. }
  2883. static ssize_t
  2884. queue_requests_store(struct request_queue *q, const char *page, size_t count)
  2885. {
  2886. struct request_list *rl = &q->rq;
  2887. int ret = queue_var_store(&q->nr_requests, page, count);
  2888. if (q->nr_requests < BLKDEV_MIN_RQ)
  2889. q->nr_requests = BLKDEV_MIN_RQ;
  2890. blk_queue_congestion_threshold(q);
  2891. if (rl->count[READ] >= queue_congestion_on_threshold(q))
  2892. set_queue_congested(q, READ);
  2893. else if (rl->count[READ] < queue_congestion_off_threshold(q))
  2894. clear_queue_congested(q, READ);
  2895. if (rl->count[WRITE] >= queue_congestion_on_threshold(q))
  2896. set_queue_congested(q, WRITE);
  2897. else if (rl->count[WRITE] < queue_congestion_off_threshold(q))
  2898. clear_queue_congested(q, WRITE);
  2899. if (rl->count[READ] >= q->nr_requests) {
  2900. blk_set_queue_full(q, READ);
  2901. } else if (rl->count[READ]+1 <= q->nr_requests) {
  2902. blk_clear_queue_full(q, READ);
  2903. wake_up(&rl->wait[READ]);
  2904. }
  2905. if (rl->count[WRITE] >= q->nr_requests) {
  2906. blk_set_queue_full(q, WRITE);
  2907. } else if (rl->count[WRITE]+1 <= q->nr_requests) {
  2908. blk_clear_queue_full(q, WRITE);
  2909. wake_up(&rl->wait[WRITE]);
  2910. }
  2911. return ret;
  2912. }
  2913. static ssize_t queue_ra_show(struct request_queue *q, char *page)
  2914. {
  2915. int ra_kb = q->backing_dev_info.ra_pages << (PAGE_CACHE_SHIFT - 10);
  2916. return queue_var_show(ra_kb, (page));
  2917. }
  2918. static ssize_t
  2919. queue_ra_store(struct request_queue *q, const char *page, size_t count)
  2920. {
  2921. unsigned long ra_kb;
  2922. ssize_t ret = queue_var_store(&ra_kb, page, count);
  2923. spin_lock_irq(q->queue_lock);
  2924. if (ra_kb > (q->max_sectors >> 1))
  2925. ra_kb = (q->max_sectors >> 1);
  2926. q->backing_dev_info.ra_pages = ra_kb >> (PAGE_CACHE_SHIFT - 10);
  2927. spin_unlock_irq(q->queue_lock);
  2928. return ret;
  2929. }
  2930. static ssize_t queue_max_sectors_show(struct request_queue *q, char *page)
  2931. {
  2932. int max_sectors_kb = q->max_sectors >> 1;
  2933. return queue_var_show(max_sectors_kb, (page));
  2934. }
  2935. static ssize_t
  2936. queue_max_sectors_store(struct request_queue *q, const char *page, size_t count)
  2937. {
  2938. unsigned long max_sectors_kb,
  2939. max_hw_sectors_kb = q->max_hw_sectors >> 1,
  2940. page_kb = 1 << (PAGE_CACHE_SHIFT - 10);
  2941. ssize_t ret = queue_var_store(&max_sectors_kb, page, count);
  2942. int ra_kb;
  2943. if (max_sectors_kb > max_hw_sectors_kb || max_sectors_kb < page_kb)
  2944. return -EINVAL;
  2945. /*
  2946. * Take the queue lock to update the readahead and max_sectors
  2947. * values synchronously:
  2948. */
  2949. spin_lock_irq(q->queue_lock);
  2950. /*
  2951. * Trim readahead window as well, if necessary:
  2952. */
  2953. ra_kb = q->backing_dev_info.ra_pages << (PAGE_CACHE_SHIFT - 10);
  2954. if (ra_kb > max_sectors_kb)
  2955. q->backing_dev_info.ra_pages =
  2956. max_sectors_kb >> (PAGE_CACHE_SHIFT - 10);
  2957. q->max_sectors = max_sectors_kb << 1;
  2958. spin_unlock_irq(q->queue_lock);
  2959. return ret;
  2960. }
  2961. static ssize_t queue_max_hw_sectors_show(struct request_queue *q, char *page)
  2962. {
  2963. int max_hw_sectors_kb = q->max_hw_sectors >> 1;
  2964. return queue_var_show(max_hw_sectors_kb, (page));
  2965. }
  2966. static struct queue_sysfs_entry queue_requests_entry = {
  2967. .attr = {.name = "nr_requests", .mode = S_IRUGO | S_IWUSR },
  2968. .show = queue_requests_show,
  2969. .store = queue_requests_store,
  2970. };
  2971. static struct queue_sysfs_entry queue_ra_entry = {
  2972. .attr = {.name = "read_ahead_kb", .mode = S_IRUGO | S_IWUSR },
  2973. .show = queue_ra_show,
  2974. .store = queue_ra_store,
  2975. };
  2976. static struct queue_sysfs_entry queue_max_sectors_entry = {
  2977. .attr = {.name = "max_sectors_kb", .mode = S_IRUGO | S_IWUSR },
  2978. .show = queue_max_sectors_show,
  2979. .store = queue_max_sectors_store,
  2980. };
  2981. static struct queue_sysfs_entry queue_max_hw_sectors_entry = {
  2982. .attr = {.name = "max_hw_sectors_kb", .mode = S_IRUGO },
  2983. .show = queue_max_hw_sectors_show,
  2984. };
  2985. static struct queue_sysfs_entry queue_iosched_entry = {
  2986. .attr = {.name = "scheduler", .mode = S_IRUGO | S_IWUSR },
  2987. .show = elv_iosched_show,
  2988. .store = elv_iosched_store,
  2989. };
  2990. static struct attribute *default_attrs[] = {
  2991. &queue_requests_entry.attr,
  2992. &queue_ra_entry.attr,
  2993. &queue_max_hw_sectors_entry.attr,
  2994. &queue_max_sectors_entry.attr,
  2995. &queue_iosched_entry.attr,
  2996. NULL,
  2997. };
  2998. #define to_queue(atr) container_of((atr), struct queue_sysfs_entry, attr)
  2999. static ssize_t
  3000. queue_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
  3001. {
  3002. struct queue_sysfs_entry *entry = to_queue(attr);
  3003. struct request_queue *q;
  3004. q = container_of(kobj, struct request_queue, kobj);
  3005. if (!entry->show)
  3006. return -EIO;
  3007. return entry->show(q, page);
  3008. }
  3009. static ssize_t
  3010. queue_attr_store(struct kobject *kobj, struct attribute *attr,
  3011. const char *page, size_t length)
  3012. {
  3013. struct queue_sysfs_entry *entry = to_queue(attr);
  3014. struct request_queue *q;
  3015. q = container_of(kobj, struct request_queue, kobj);
  3016. if (!entry->store)
  3017. return -EIO;
  3018. return entry->store(q, page, length);
  3019. }
  3020. static struct sysfs_ops queue_sysfs_ops = {
  3021. .show = queue_attr_show,
  3022. .store = queue_attr_store,
  3023. };
  3024. struct kobj_type queue_ktype = {
  3025. .sysfs_ops = &queue_sysfs_ops,
  3026. .default_attrs = default_attrs,
  3027. };
  3028. int blk_register_queue(struct gendisk *disk)
  3029. {
  3030. int ret;
  3031. request_queue_t *q = disk->queue;
  3032. if (!q || !q->request_fn)
  3033. return -ENXIO;
  3034. q->kobj.parent = kobject_get(&disk->kobj);
  3035. if (!q->kobj.parent)
  3036. return -EBUSY;
  3037. snprintf(q->kobj.name, KOBJ_NAME_LEN, "%s", "queue");
  3038. q->kobj.ktype = &queue_ktype;
  3039. ret = kobject_register(&q->kobj);
  3040. if (ret < 0)
  3041. return ret;
  3042. ret = elv_register_queue(q);
  3043. if (ret) {
  3044. kobject_unregister(&q->kobj);
  3045. return ret;
  3046. }
  3047. return 0;
  3048. }
  3049. void blk_unregister_queue(struct gendisk *disk)
  3050. {
  3051. request_queue_t *q = disk->queue;
  3052. if (q && q->request_fn) {
  3053. elv_unregister_queue(q);
  3054. kobject_unregister(&q->kobj);
  3055. kobject_put(&disk->kobj);
  3056. }
  3057. }