intel_display.c 239 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900
  1. /*
  2. * Copyright © 2006-2007 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
  21. * DEALINGS IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. */
  26. #include <linux/cpufreq.h>
  27. #include <linux/module.h>
  28. #include <linux/input.h>
  29. #include <linux/i2c.h>
  30. #include <linux/kernel.h>
  31. #include <linux/slab.h>
  32. #include <linux/vgaarb.h>
  33. #include <drm/drm_edid.h>
  34. #include "drmP.h"
  35. #include "intel_drv.h"
  36. #include "i915_drm.h"
  37. #include "i915_drv.h"
  38. #include "i915_trace.h"
  39. #include "drm_dp_helper.h"
  40. #include "drm_crtc_helper.h"
  41. #define HAS_eDP (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
  42. bool intel_pipe_has_type(struct drm_crtc *crtc, int type);
  43. static void intel_update_watermarks(struct drm_device *dev);
  44. static void intel_increase_pllclock(struct drm_crtc *crtc);
  45. static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
  46. typedef struct {
  47. /* given values */
  48. int n;
  49. int m1, m2;
  50. int p1, p2;
  51. /* derived values */
  52. int dot;
  53. int vco;
  54. int m;
  55. int p;
  56. } intel_clock_t;
  57. typedef struct {
  58. int min, max;
  59. } intel_range_t;
  60. typedef struct {
  61. int dot_limit;
  62. int p2_slow, p2_fast;
  63. } intel_p2_t;
  64. #define INTEL_P2_NUM 2
  65. typedef struct intel_limit intel_limit_t;
  66. struct intel_limit {
  67. intel_range_t dot, vco, n, m, m1, m2, p, p1;
  68. intel_p2_t p2;
  69. bool (* find_pll)(const intel_limit_t *, struct drm_crtc *,
  70. int, int, intel_clock_t *);
  71. };
  72. /* FDI */
  73. #define IRONLAKE_FDI_FREQ 2700000 /* in kHz for mode->clock */
  74. static bool
  75. intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
  76. int target, int refclk, intel_clock_t *best_clock);
  77. static bool
  78. intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
  79. int target, int refclk, intel_clock_t *best_clock);
  80. static bool
  81. intel_find_pll_g4x_dp(const intel_limit_t *, struct drm_crtc *crtc,
  82. int target, int refclk, intel_clock_t *best_clock);
  83. static bool
  84. intel_find_pll_ironlake_dp(const intel_limit_t *, struct drm_crtc *crtc,
  85. int target, int refclk, intel_clock_t *best_clock);
  86. static inline u32 /* units of 100MHz */
  87. intel_fdi_link_freq(struct drm_device *dev)
  88. {
  89. if (IS_GEN5(dev)) {
  90. struct drm_i915_private *dev_priv = dev->dev_private;
  91. return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
  92. } else
  93. return 27;
  94. }
  95. static const intel_limit_t intel_limits_i8xx_dvo = {
  96. .dot = { .min = 25000, .max = 350000 },
  97. .vco = { .min = 930000, .max = 1400000 },
  98. .n = { .min = 3, .max = 16 },
  99. .m = { .min = 96, .max = 140 },
  100. .m1 = { .min = 18, .max = 26 },
  101. .m2 = { .min = 6, .max = 16 },
  102. .p = { .min = 4, .max = 128 },
  103. .p1 = { .min = 2, .max = 33 },
  104. .p2 = { .dot_limit = 165000,
  105. .p2_slow = 4, .p2_fast = 2 },
  106. .find_pll = intel_find_best_PLL,
  107. };
  108. static const intel_limit_t intel_limits_i8xx_lvds = {
  109. .dot = { .min = 25000, .max = 350000 },
  110. .vco = { .min = 930000, .max = 1400000 },
  111. .n = { .min = 3, .max = 16 },
  112. .m = { .min = 96, .max = 140 },
  113. .m1 = { .min = 18, .max = 26 },
  114. .m2 = { .min = 6, .max = 16 },
  115. .p = { .min = 4, .max = 128 },
  116. .p1 = { .min = 1, .max = 6 },
  117. .p2 = { .dot_limit = 165000,
  118. .p2_slow = 14, .p2_fast = 7 },
  119. .find_pll = intel_find_best_PLL,
  120. };
  121. static const intel_limit_t intel_limits_i9xx_sdvo = {
  122. .dot = { .min = 20000, .max = 400000 },
  123. .vco = { .min = 1400000, .max = 2800000 },
  124. .n = { .min = 1, .max = 6 },
  125. .m = { .min = 70, .max = 120 },
  126. .m1 = { .min = 10, .max = 22 },
  127. .m2 = { .min = 5, .max = 9 },
  128. .p = { .min = 5, .max = 80 },
  129. .p1 = { .min = 1, .max = 8 },
  130. .p2 = { .dot_limit = 200000,
  131. .p2_slow = 10, .p2_fast = 5 },
  132. .find_pll = intel_find_best_PLL,
  133. };
  134. static const intel_limit_t intel_limits_i9xx_lvds = {
  135. .dot = { .min = 20000, .max = 400000 },
  136. .vco = { .min = 1400000, .max = 2800000 },
  137. .n = { .min = 1, .max = 6 },
  138. .m = { .min = 70, .max = 120 },
  139. .m1 = { .min = 10, .max = 22 },
  140. .m2 = { .min = 5, .max = 9 },
  141. .p = { .min = 7, .max = 98 },
  142. .p1 = { .min = 1, .max = 8 },
  143. .p2 = { .dot_limit = 112000,
  144. .p2_slow = 14, .p2_fast = 7 },
  145. .find_pll = intel_find_best_PLL,
  146. };
  147. static const intel_limit_t intel_limits_g4x_sdvo = {
  148. .dot = { .min = 25000, .max = 270000 },
  149. .vco = { .min = 1750000, .max = 3500000},
  150. .n = { .min = 1, .max = 4 },
  151. .m = { .min = 104, .max = 138 },
  152. .m1 = { .min = 17, .max = 23 },
  153. .m2 = { .min = 5, .max = 11 },
  154. .p = { .min = 10, .max = 30 },
  155. .p1 = { .min = 1, .max = 3},
  156. .p2 = { .dot_limit = 270000,
  157. .p2_slow = 10,
  158. .p2_fast = 10
  159. },
  160. .find_pll = intel_g4x_find_best_PLL,
  161. };
  162. static const intel_limit_t intel_limits_g4x_hdmi = {
  163. .dot = { .min = 22000, .max = 400000 },
  164. .vco = { .min = 1750000, .max = 3500000},
  165. .n = { .min = 1, .max = 4 },
  166. .m = { .min = 104, .max = 138 },
  167. .m1 = { .min = 16, .max = 23 },
  168. .m2 = { .min = 5, .max = 11 },
  169. .p = { .min = 5, .max = 80 },
  170. .p1 = { .min = 1, .max = 8},
  171. .p2 = { .dot_limit = 165000,
  172. .p2_slow = 10, .p2_fast = 5 },
  173. .find_pll = intel_g4x_find_best_PLL,
  174. };
  175. static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
  176. .dot = { .min = 20000, .max = 115000 },
  177. .vco = { .min = 1750000, .max = 3500000 },
  178. .n = { .min = 1, .max = 3 },
  179. .m = { .min = 104, .max = 138 },
  180. .m1 = { .min = 17, .max = 23 },
  181. .m2 = { .min = 5, .max = 11 },
  182. .p = { .min = 28, .max = 112 },
  183. .p1 = { .min = 2, .max = 8 },
  184. .p2 = { .dot_limit = 0,
  185. .p2_slow = 14, .p2_fast = 14
  186. },
  187. .find_pll = intel_g4x_find_best_PLL,
  188. };
  189. static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
  190. .dot = { .min = 80000, .max = 224000 },
  191. .vco = { .min = 1750000, .max = 3500000 },
  192. .n = { .min = 1, .max = 3 },
  193. .m = { .min = 104, .max = 138 },
  194. .m1 = { .min = 17, .max = 23 },
  195. .m2 = { .min = 5, .max = 11 },
  196. .p = { .min = 14, .max = 42 },
  197. .p1 = { .min = 2, .max = 6 },
  198. .p2 = { .dot_limit = 0,
  199. .p2_slow = 7, .p2_fast = 7
  200. },
  201. .find_pll = intel_g4x_find_best_PLL,
  202. };
  203. static const intel_limit_t intel_limits_g4x_display_port = {
  204. .dot = { .min = 161670, .max = 227000 },
  205. .vco = { .min = 1750000, .max = 3500000},
  206. .n = { .min = 1, .max = 2 },
  207. .m = { .min = 97, .max = 108 },
  208. .m1 = { .min = 0x10, .max = 0x12 },
  209. .m2 = { .min = 0x05, .max = 0x06 },
  210. .p = { .min = 10, .max = 20 },
  211. .p1 = { .min = 1, .max = 2},
  212. .p2 = { .dot_limit = 0,
  213. .p2_slow = 10, .p2_fast = 10 },
  214. .find_pll = intel_find_pll_g4x_dp,
  215. };
  216. static const intel_limit_t intel_limits_pineview_sdvo = {
  217. .dot = { .min = 20000, .max = 400000},
  218. .vco = { .min = 1700000, .max = 3500000 },
  219. /* Pineview's Ncounter is a ring counter */
  220. .n = { .min = 3, .max = 6 },
  221. .m = { .min = 2, .max = 256 },
  222. /* Pineview only has one combined m divider, which we treat as m2. */
  223. .m1 = { .min = 0, .max = 0 },
  224. .m2 = { .min = 0, .max = 254 },
  225. .p = { .min = 5, .max = 80 },
  226. .p1 = { .min = 1, .max = 8 },
  227. .p2 = { .dot_limit = 200000,
  228. .p2_slow = 10, .p2_fast = 5 },
  229. .find_pll = intel_find_best_PLL,
  230. };
  231. static const intel_limit_t intel_limits_pineview_lvds = {
  232. .dot = { .min = 20000, .max = 400000 },
  233. .vco = { .min = 1700000, .max = 3500000 },
  234. .n = { .min = 3, .max = 6 },
  235. .m = { .min = 2, .max = 256 },
  236. .m1 = { .min = 0, .max = 0 },
  237. .m2 = { .min = 0, .max = 254 },
  238. .p = { .min = 7, .max = 112 },
  239. .p1 = { .min = 1, .max = 8 },
  240. .p2 = { .dot_limit = 112000,
  241. .p2_slow = 14, .p2_fast = 14 },
  242. .find_pll = intel_find_best_PLL,
  243. };
  244. /* Ironlake / Sandybridge
  245. *
  246. * We calculate clock using (register_value + 2) for N/M1/M2, so here
  247. * the range value for them is (actual_value - 2).
  248. */
  249. static const intel_limit_t intel_limits_ironlake_dac = {
  250. .dot = { .min = 25000, .max = 350000 },
  251. .vco = { .min = 1760000, .max = 3510000 },
  252. .n = { .min = 1, .max = 5 },
  253. .m = { .min = 79, .max = 127 },
  254. .m1 = { .min = 12, .max = 22 },
  255. .m2 = { .min = 5, .max = 9 },
  256. .p = { .min = 5, .max = 80 },
  257. .p1 = { .min = 1, .max = 8 },
  258. .p2 = { .dot_limit = 225000,
  259. .p2_slow = 10, .p2_fast = 5 },
  260. .find_pll = intel_g4x_find_best_PLL,
  261. };
  262. static const intel_limit_t intel_limits_ironlake_single_lvds = {
  263. .dot = { .min = 25000, .max = 350000 },
  264. .vco = { .min = 1760000, .max = 3510000 },
  265. .n = { .min = 1, .max = 3 },
  266. .m = { .min = 79, .max = 118 },
  267. .m1 = { .min = 12, .max = 22 },
  268. .m2 = { .min = 5, .max = 9 },
  269. .p = { .min = 28, .max = 112 },
  270. .p1 = { .min = 2, .max = 8 },
  271. .p2 = { .dot_limit = 225000,
  272. .p2_slow = 14, .p2_fast = 14 },
  273. .find_pll = intel_g4x_find_best_PLL,
  274. };
  275. static const intel_limit_t intel_limits_ironlake_dual_lvds = {
  276. .dot = { .min = 25000, .max = 350000 },
  277. .vco = { .min = 1760000, .max = 3510000 },
  278. .n = { .min = 1, .max = 3 },
  279. .m = { .min = 79, .max = 127 },
  280. .m1 = { .min = 12, .max = 22 },
  281. .m2 = { .min = 5, .max = 9 },
  282. .p = { .min = 14, .max = 56 },
  283. .p1 = { .min = 2, .max = 8 },
  284. .p2 = { .dot_limit = 225000,
  285. .p2_slow = 7, .p2_fast = 7 },
  286. .find_pll = intel_g4x_find_best_PLL,
  287. };
  288. /* LVDS 100mhz refclk limits. */
  289. static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
  290. .dot = { .min = 25000, .max = 350000 },
  291. .vco = { .min = 1760000, .max = 3510000 },
  292. .n = { .min = 1, .max = 2 },
  293. .m = { .min = 79, .max = 126 },
  294. .m1 = { .min = 12, .max = 22 },
  295. .m2 = { .min = 5, .max = 9 },
  296. .p = { .min = 28, .max = 112 },
  297. .p1 = { .min = 2, .max = 8 },
  298. .p2 = { .dot_limit = 225000,
  299. .p2_slow = 14, .p2_fast = 14 },
  300. .find_pll = intel_g4x_find_best_PLL,
  301. };
  302. static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
  303. .dot = { .min = 25000, .max = 350000 },
  304. .vco = { .min = 1760000, .max = 3510000 },
  305. .n = { .min = 1, .max = 3 },
  306. .m = { .min = 79, .max = 126 },
  307. .m1 = { .min = 12, .max = 22 },
  308. .m2 = { .min = 5, .max = 9 },
  309. .p = { .min = 14, .max = 42 },
  310. .p1 = { .min = 2, .max = 6 },
  311. .p2 = { .dot_limit = 225000,
  312. .p2_slow = 7, .p2_fast = 7 },
  313. .find_pll = intel_g4x_find_best_PLL,
  314. };
  315. static const intel_limit_t intel_limits_ironlake_display_port = {
  316. .dot = { .min = 25000, .max = 350000 },
  317. .vco = { .min = 1760000, .max = 3510000},
  318. .n = { .min = 1, .max = 2 },
  319. .m = { .min = 81, .max = 90 },
  320. .m1 = { .min = 12, .max = 22 },
  321. .m2 = { .min = 5, .max = 9 },
  322. .p = { .min = 10, .max = 20 },
  323. .p1 = { .min = 1, .max = 2},
  324. .p2 = { .dot_limit = 0,
  325. .p2_slow = 10, .p2_fast = 10 },
  326. .find_pll = intel_find_pll_ironlake_dp,
  327. };
  328. static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
  329. int refclk)
  330. {
  331. struct drm_device *dev = crtc->dev;
  332. struct drm_i915_private *dev_priv = dev->dev_private;
  333. const intel_limit_t *limit;
  334. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  335. if ((I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) ==
  336. LVDS_CLKB_POWER_UP) {
  337. /* LVDS dual channel */
  338. if (refclk == 100000)
  339. limit = &intel_limits_ironlake_dual_lvds_100m;
  340. else
  341. limit = &intel_limits_ironlake_dual_lvds;
  342. } else {
  343. if (refclk == 100000)
  344. limit = &intel_limits_ironlake_single_lvds_100m;
  345. else
  346. limit = &intel_limits_ironlake_single_lvds;
  347. }
  348. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
  349. HAS_eDP)
  350. limit = &intel_limits_ironlake_display_port;
  351. else
  352. limit = &intel_limits_ironlake_dac;
  353. return limit;
  354. }
  355. static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
  356. {
  357. struct drm_device *dev = crtc->dev;
  358. struct drm_i915_private *dev_priv = dev->dev_private;
  359. const intel_limit_t *limit;
  360. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  361. if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
  362. LVDS_CLKB_POWER_UP)
  363. /* LVDS with dual channel */
  364. limit = &intel_limits_g4x_dual_channel_lvds;
  365. else
  366. /* LVDS with dual channel */
  367. limit = &intel_limits_g4x_single_channel_lvds;
  368. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
  369. intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
  370. limit = &intel_limits_g4x_hdmi;
  371. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
  372. limit = &intel_limits_g4x_sdvo;
  373. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
  374. limit = &intel_limits_g4x_display_port;
  375. } else /* The option is for other outputs */
  376. limit = &intel_limits_i9xx_sdvo;
  377. return limit;
  378. }
  379. static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
  380. {
  381. struct drm_device *dev = crtc->dev;
  382. const intel_limit_t *limit;
  383. if (HAS_PCH_SPLIT(dev))
  384. limit = intel_ironlake_limit(crtc, refclk);
  385. else if (IS_G4X(dev)) {
  386. limit = intel_g4x_limit(crtc);
  387. } else if (IS_PINEVIEW(dev)) {
  388. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  389. limit = &intel_limits_pineview_lvds;
  390. else
  391. limit = &intel_limits_pineview_sdvo;
  392. } else if (!IS_GEN2(dev)) {
  393. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  394. limit = &intel_limits_i9xx_lvds;
  395. else
  396. limit = &intel_limits_i9xx_sdvo;
  397. } else {
  398. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  399. limit = &intel_limits_i8xx_lvds;
  400. else
  401. limit = &intel_limits_i8xx_dvo;
  402. }
  403. return limit;
  404. }
  405. /* m1 is reserved as 0 in Pineview, n is a ring counter */
  406. static void pineview_clock(int refclk, intel_clock_t *clock)
  407. {
  408. clock->m = clock->m2 + 2;
  409. clock->p = clock->p1 * clock->p2;
  410. clock->vco = refclk * clock->m / clock->n;
  411. clock->dot = clock->vco / clock->p;
  412. }
  413. static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
  414. {
  415. if (IS_PINEVIEW(dev)) {
  416. pineview_clock(refclk, clock);
  417. return;
  418. }
  419. clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
  420. clock->p = clock->p1 * clock->p2;
  421. clock->vco = refclk * clock->m / (clock->n + 2);
  422. clock->dot = clock->vco / clock->p;
  423. }
  424. /**
  425. * Returns whether any output on the specified pipe is of the specified type
  426. */
  427. bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
  428. {
  429. struct drm_device *dev = crtc->dev;
  430. struct drm_mode_config *mode_config = &dev->mode_config;
  431. struct intel_encoder *encoder;
  432. list_for_each_entry(encoder, &mode_config->encoder_list, base.head)
  433. if (encoder->base.crtc == crtc && encoder->type == type)
  434. return true;
  435. return false;
  436. }
  437. #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
  438. /**
  439. * Returns whether the given set of divisors are valid for a given refclk with
  440. * the given connectors.
  441. */
  442. static bool intel_PLL_is_valid(struct drm_device *dev,
  443. const intel_limit_t *limit,
  444. const intel_clock_t *clock)
  445. {
  446. if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
  447. INTELPllInvalid("p1 out of range\n");
  448. if (clock->p < limit->p.min || limit->p.max < clock->p)
  449. INTELPllInvalid("p out of range\n");
  450. if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
  451. INTELPllInvalid("m2 out of range\n");
  452. if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
  453. INTELPllInvalid("m1 out of range\n");
  454. if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
  455. INTELPllInvalid("m1 <= m2\n");
  456. if (clock->m < limit->m.min || limit->m.max < clock->m)
  457. INTELPllInvalid("m out of range\n");
  458. if (clock->n < limit->n.min || limit->n.max < clock->n)
  459. INTELPllInvalid("n out of range\n");
  460. if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
  461. INTELPllInvalid("vco out of range\n");
  462. /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
  463. * connector, etc., rather than just a single range.
  464. */
  465. if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
  466. INTELPllInvalid("dot out of range\n");
  467. return true;
  468. }
  469. static bool
  470. intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
  471. int target, int refclk, intel_clock_t *best_clock)
  472. {
  473. struct drm_device *dev = crtc->dev;
  474. struct drm_i915_private *dev_priv = dev->dev_private;
  475. intel_clock_t clock;
  476. int err = target;
  477. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
  478. (I915_READ(LVDS)) != 0) {
  479. /*
  480. * For LVDS, if the panel is on, just rely on its current
  481. * settings for dual-channel. We haven't figured out how to
  482. * reliably set up different single/dual channel state, if we
  483. * even can.
  484. */
  485. if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
  486. LVDS_CLKB_POWER_UP)
  487. clock.p2 = limit->p2.p2_fast;
  488. else
  489. clock.p2 = limit->p2.p2_slow;
  490. } else {
  491. if (target < limit->p2.dot_limit)
  492. clock.p2 = limit->p2.p2_slow;
  493. else
  494. clock.p2 = limit->p2.p2_fast;
  495. }
  496. memset(best_clock, 0, sizeof(*best_clock));
  497. for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
  498. clock.m1++) {
  499. for (clock.m2 = limit->m2.min;
  500. clock.m2 <= limit->m2.max; clock.m2++) {
  501. /* m1 is always 0 in Pineview */
  502. if (clock.m2 >= clock.m1 && !IS_PINEVIEW(dev))
  503. break;
  504. for (clock.n = limit->n.min;
  505. clock.n <= limit->n.max; clock.n++) {
  506. for (clock.p1 = limit->p1.min;
  507. clock.p1 <= limit->p1.max; clock.p1++) {
  508. int this_err;
  509. intel_clock(dev, refclk, &clock);
  510. if (!intel_PLL_is_valid(dev, limit,
  511. &clock))
  512. continue;
  513. this_err = abs(clock.dot - target);
  514. if (this_err < err) {
  515. *best_clock = clock;
  516. err = this_err;
  517. }
  518. }
  519. }
  520. }
  521. }
  522. return (err != target);
  523. }
  524. static bool
  525. intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
  526. int target, int refclk, intel_clock_t *best_clock)
  527. {
  528. struct drm_device *dev = crtc->dev;
  529. struct drm_i915_private *dev_priv = dev->dev_private;
  530. intel_clock_t clock;
  531. int max_n;
  532. bool found;
  533. /* approximately equals target * 0.00585 */
  534. int err_most = (target >> 8) + (target >> 9);
  535. found = false;
  536. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  537. int lvds_reg;
  538. if (HAS_PCH_SPLIT(dev))
  539. lvds_reg = PCH_LVDS;
  540. else
  541. lvds_reg = LVDS;
  542. if ((I915_READ(lvds_reg) & LVDS_CLKB_POWER_MASK) ==
  543. LVDS_CLKB_POWER_UP)
  544. clock.p2 = limit->p2.p2_fast;
  545. else
  546. clock.p2 = limit->p2.p2_slow;
  547. } else {
  548. if (target < limit->p2.dot_limit)
  549. clock.p2 = limit->p2.p2_slow;
  550. else
  551. clock.p2 = limit->p2.p2_fast;
  552. }
  553. memset(best_clock, 0, sizeof(*best_clock));
  554. max_n = limit->n.max;
  555. /* based on hardware requirement, prefer smaller n to precision */
  556. for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
  557. /* based on hardware requirement, prefere larger m1,m2 */
  558. for (clock.m1 = limit->m1.max;
  559. clock.m1 >= limit->m1.min; clock.m1--) {
  560. for (clock.m2 = limit->m2.max;
  561. clock.m2 >= limit->m2.min; clock.m2--) {
  562. for (clock.p1 = limit->p1.max;
  563. clock.p1 >= limit->p1.min; clock.p1--) {
  564. int this_err;
  565. intel_clock(dev, refclk, &clock);
  566. if (!intel_PLL_is_valid(dev, limit,
  567. &clock))
  568. continue;
  569. this_err = abs(clock.dot - target);
  570. if (this_err < err_most) {
  571. *best_clock = clock;
  572. err_most = this_err;
  573. max_n = clock.n;
  574. found = true;
  575. }
  576. }
  577. }
  578. }
  579. }
  580. return found;
  581. }
  582. static bool
  583. intel_find_pll_ironlake_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
  584. int target, int refclk, intel_clock_t *best_clock)
  585. {
  586. struct drm_device *dev = crtc->dev;
  587. intel_clock_t clock;
  588. if (target < 200000) {
  589. clock.n = 1;
  590. clock.p1 = 2;
  591. clock.p2 = 10;
  592. clock.m1 = 12;
  593. clock.m2 = 9;
  594. } else {
  595. clock.n = 2;
  596. clock.p1 = 1;
  597. clock.p2 = 10;
  598. clock.m1 = 14;
  599. clock.m2 = 8;
  600. }
  601. intel_clock(dev, refclk, &clock);
  602. memcpy(best_clock, &clock, sizeof(intel_clock_t));
  603. return true;
  604. }
  605. /* DisplayPort has only two frequencies, 162MHz and 270MHz */
  606. static bool
  607. intel_find_pll_g4x_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
  608. int target, int refclk, intel_clock_t *best_clock)
  609. {
  610. intel_clock_t clock;
  611. if (target < 200000) {
  612. clock.p1 = 2;
  613. clock.p2 = 10;
  614. clock.n = 2;
  615. clock.m1 = 23;
  616. clock.m2 = 8;
  617. } else {
  618. clock.p1 = 1;
  619. clock.p2 = 10;
  620. clock.n = 1;
  621. clock.m1 = 14;
  622. clock.m2 = 2;
  623. }
  624. clock.m = 5 * (clock.m1 + 2) + (clock.m2 + 2);
  625. clock.p = (clock.p1 * clock.p2);
  626. clock.dot = 96000 * clock.m / (clock.n + 2) / clock.p;
  627. clock.vco = 0;
  628. memcpy(best_clock, &clock, sizeof(intel_clock_t));
  629. return true;
  630. }
  631. /**
  632. * intel_wait_for_vblank - wait for vblank on a given pipe
  633. * @dev: drm device
  634. * @pipe: pipe to wait for
  635. *
  636. * Wait for vblank to occur on a given pipe. Needed for various bits of
  637. * mode setting code.
  638. */
  639. void intel_wait_for_vblank(struct drm_device *dev, int pipe)
  640. {
  641. struct drm_i915_private *dev_priv = dev->dev_private;
  642. int pipestat_reg = PIPESTAT(pipe);
  643. /* Clear existing vblank status. Note this will clear any other
  644. * sticky status fields as well.
  645. *
  646. * This races with i915_driver_irq_handler() with the result
  647. * that either function could miss a vblank event. Here it is not
  648. * fatal, as we will either wait upon the next vblank interrupt or
  649. * timeout. Generally speaking intel_wait_for_vblank() is only
  650. * called during modeset at which time the GPU should be idle and
  651. * should *not* be performing page flips and thus not waiting on
  652. * vblanks...
  653. * Currently, the result of us stealing a vblank from the irq
  654. * handler is that a single frame will be skipped during swapbuffers.
  655. */
  656. I915_WRITE(pipestat_reg,
  657. I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
  658. /* Wait for vblank interrupt bit to set */
  659. if (wait_for(I915_READ(pipestat_reg) &
  660. PIPE_VBLANK_INTERRUPT_STATUS,
  661. 50))
  662. DRM_DEBUG_KMS("vblank wait timed out\n");
  663. }
  664. /*
  665. * intel_wait_for_pipe_off - wait for pipe to turn off
  666. * @dev: drm device
  667. * @pipe: pipe to wait for
  668. *
  669. * After disabling a pipe, we can't wait for vblank in the usual way,
  670. * spinning on the vblank interrupt status bit, since we won't actually
  671. * see an interrupt when the pipe is disabled.
  672. *
  673. * On Gen4 and above:
  674. * wait for the pipe register state bit to turn off
  675. *
  676. * Otherwise:
  677. * wait for the display line value to settle (it usually
  678. * ends up stopping at the start of the next frame).
  679. *
  680. */
  681. void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
  682. {
  683. struct drm_i915_private *dev_priv = dev->dev_private;
  684. if (INTEL_INFO(dev)->gen >= 4) {
  685. int reg = PIPECONF(pipe);
  686. /* Wait for the Pipe State to go off */
  687. if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
  688. 100))
  689. DRM_DEBUG_KMS("pipe_off wait timed out\n");
  690. } else {
  691. u32 last_line;
  692. int reg = PIPEDSL(pipe);
  693. unsigned long timeout = jiffies + msecs_to_jiffies(100);
  694. /* Wait for the display line to settle */
  695. do {
  696. last_line = I915_READ(reg) & DSL_LINEMASK;
  697. mdelay(5);
  698. } while (((I915_READ(reg) & DSL_LINEMASK) != last_line) &&
  699. time_after(timeout, jiffies));
  700. if (time_after(jiffies, timeout))
  701. DRM_DEBUG_KMS("pipe_off wait timed out\n");
  702. }
  703. }
  704. static const char *state_string(bool enabled)
  705. {
  706. return enabled ? "on" : "off";
  707. }
  708. /* Only for pre-ILK configs */
  709. static void assert_pll(struct drm_i915_private *dev_priv,
  710. enum pipe pipe, bool state)
  711. {
  712. int reg;
  713. u32 val;
  714. bool cur_state;
  715. reg = DPLL(pipe);
  716. val = I915_READ(reg);
  717. cur_state = !!(val & DPLL_VCO_ENABLE);
  718. WARN(cur_state != state,
  719. "PLL state assertion failure (expected %s, current %s)\n",
  720. state_string(state), state_string(cur_state));
  721. }
  722. #define assert_pll_enabled(d, p) assert_pll(d, p, true)
  723. #define assert_pll_disabled(d, p) assert_pll(d, p, false)
  724. /* For ILK+ */
  725. static void assert_pch_pll(struct drm_i915_private *dev_priv,
  726. enum pipe pipe, bool state)
  727. {
  728. int reg;
  729. u32 val;
  730. bool cur_state;
  731. if (HAS_PCH_CPT(dev_priv->dev)) {
  732. u32 pch_dpll;
  733. pch_dpll = I915_READ(PCH_DPLL_SEL);
  734. /* Make sure the selected PLL is enabled to the transcoder */
  735. WARN(!((pch_dpll >> (4 * pipe)) & 8),
  736. "transcoder %d PLL not enabled\n", pipe);
  737. /* Convert the transcoder pipe number to a pll pipe number */
  738. pipe = (pch_dpll >> (4 * pipe)) & 1;
  739. }
  740. reg = PCH_DPLL(pipe);
  741. val = I915_READ(reg);
  742. cur_state = !!(val & DPLL_VCO_ENABLE);
  743. WARN(cur_state != state,
  744. "PCH PLL state assertion failure (expected %s, current %s)\n",
  745. state_string(state), state_string(cur_state));
  746. }
  747. #define assert_pch_pll_enabled(d, p) assert_pch_pll(d, p, true)
  748. #define assert_pch_pll_disabled(d, p) assert_pch_pll(d, p, false)
  749. static void assert_fdi_tx(struct drm_i915_private *dev_priv,
  750. enum pipe pipe, bool state)
  751. {
  752. int reg;
  753. u32 val;
  754. bool cur_state;
  755. reg = FDI_TX_CTL(pipe);
  756. val = I915_READ(reg);
  757. cur_state = !!(val & FDI_TX_ENABLE);
  758. WARN(cur_state != state,
  759. "FDI TX state assertion failure (expected %s, current %s)\n",
  760. state_string(state), state_string(cur_state));
  761. }
  762. #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
  763. #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
  764. static void assert_fdi_rx(struct drm_i915_private *dev_priv,
  765. enum pipe pipe, bool state)
  766. {
  767. int reg;
  768. u32 val;
  769. bool cur_state;
  770. reg = FDI_RX_CTL(pipe);
  771. val = I915_READ(reg);
  772. cur_state = !!(val & FDI_RX_ENABLE);
  773. WARN(cur_state != state,
  774. "FDI RX state assertion failure (expected %s, current %s)\n",
  775. state_string(state), state_string(cur_state));
  776. }
  777. #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
  778. #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
  779. static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
  780. enum pipe pipe)
  781. {
  782. int reg;
  783. u32 val;
  784. /* ILK FDI PLL is always enabled */
  785. if (dev_priv->info->gen == 5)
  786. return;
  787. reg = FDI_TX_CTL(pipe);
  788. val = I915_READ(reg);
  789. WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
  790. }
  791. static void assert_fdi_rx_pll_enabled(struct drm_i915_private *dev_priv,
  792. enum pipe pipe)
  793. {
  794. int reg;
  795. u32 val;
  796. reg = FDI_RX_CTL(pipe);
  797. val = I915_READ(reg);
  798. WARN(!(val & FDI_RX_PLL_ENABLE), "FDI RX PLL assertion failure, should be active but is disabled\n");
  799. }
  800. static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
  801. enum pipe pipe)
  802. {
  803. int pp_reg, lvds_reg;
  804. u32 val;
  805. enum pipe panel_pipe = PIPE_A;
  806. bool locked = true;
  807. if (HAS_PCH_SPLIT(dev_priv->dev)) {
  808. pp_reg = PCH_PP_CONTROL;
  809. lvds_reg = PCH_LVDS;
  810. } else {
  811. pp_reg = PP_CONTROL;
  812. lvds_reg = LVDS;
  813. }
  814. val = I915_READ(pp_reg);
  815. if (!(val & PANEL_POWER_ON) ||
  816. ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
  817. locked = false;
  818. if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
  819. panel_pipe = PIPE_B;
  820. WARN(panel_pipe == pipe && locked,
  821. "panel assertion failure, pipe %c regs locked\n",
  822. pipe_name(pipe));
  823. }
  824. static void assert_pipe(struct drm_i915_private *dev_priv,
  825. enum pipe pipe, bool state)
  826. {
  827. int reg;
  828. u32 val;
  829. bool cur_state;
  830. reg = PIPECONF(pipe);
  831. val = I915_READ(reg);
  832. cur_state = !!(val & PIPECONF_ENABLE);
  833. WARN(cur_state != state,
  834. "pipe %c assertion failure (expected %s, current %s)\n",
  835. pipe_name(pipe), state_string(state), state_string(cur_state));
  836. }
  837. #define assert_pipe_enabled(d, p) assert_pipe(d, p, true)
  838. #define assert_pipe_disabled(d, p) assert_pipe(d, p, false)
  839. static void assert_plane_enabled(struct drm_i915_private *dev_priv,
  840. enum plane plane)
  841. {
  842. int reg;
  843. u32 val;
  844. reg = DSPCNTR(plane);
  845. val = I915_READ(reg);
  846. WARN(!(val & DISPLAY_PLANE_ENABLE),
  847. "plane %c assertion failure, should be active but is disabled\n",
  848. plane_name(plane));
  849. }
  850. static void assert_planes_disabled(struct drm_i915_private *dev_priv,
  851. enum pipe pipe)
  852. {
  853. int reg, i;
  854. u32 val;
  855. int cur_pipe;
  856. /* Planes are fixed to pipes on ILK+ */
  857. if (HAS_PCH_SPLIT(dev_priv->dev))
  858. return;
  859. /* Need to check both planes against the pipe */
  860. for (i = 0; i < 2; i++) {
  861. reg = DSPCNTR(i);
  862. val = I915_READ(reg);
  863. cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
  864. DISPPLANE_SEL_PIPE_SHIFT;
  865. WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
  866. "plane %c assertion failure, should be off on pipe %c but is still active\n",
  867. plane_name(i), pipe_name(pipe));
  868. }
  869. }
  870. static void assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
  871. {
  872. u32 val;
  873. bool enabled;
  874. val = I915_READ(PCH_DREF_CONTROL);
  875. enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
  876. DREF_SUPERSPREAD_SOURCE_MASK));
  877. WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
  878. }
  879. static void assert_transcoder_disabled(struct drm_i915_private *dev_priv,
  880. enum pipe pipe)
  881. {
  882. int reg;
  883. u32 val;
  884. bool enabled;
  885. reg = TRANSCONF(pipe);
  886. val = I915_READ(reg);
  887. enabled = !!(val & TRANS_ENABLE);
  888. WARN(enabled,
  889. "transcoder assertion failed, should be off on pipe %c but is still active\n",
  890. pipe_name(pipe));
  891. }
  892. static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
  893. enum pipe pipe, u32 port_sel, u32 val)
  894. {
  895. if ((val & DP_PORT_EN) == 0)
  896. return false;
  897. if (HAS_PCH_CPT(dev_priv->dev)) {
  898. u32 trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
  899. u32 trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
  900. if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
  901. return false;
  902. } else {
  903. if ((val & DP_PIPE_MASK) != (pipe << 30))
  904. return false;
  905. }
  906. return true;
  907. }
  908. static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
  909. enum pipe pipe, u32 val)
  910. {
  911. if ((val & PORT_ENABLE) == 0)
  912. return false;
  913. if (HAS_PCH_CPT(dev_priv->dev)) {
  914. if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
  915. return false;
  916. } else {
  917. if ((val & TRANSCODER_MASK) != TRANSCODER(pipe))
  918. return false;
  919. }
  920. return true;
  921. }
  922. static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
  923. enum pipe pipe, u32 val)
  924. {
  925. if ((val & LVDS_PORT_EN) == 0)
  926. return false;
  927. if (HAS_PCH_CPT(dev_priv->dev)) {
  928. if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
  929. return false;
  930. } else {
  931. if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
  932. return false;
  933. }
  934. return true;
  935. }
  936. static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
  937. enum pipe pipe, u32 val)
  938. {
  939. if ((val & ADPA_DAC_ENABLE) == 0)
  940. return false;
  941. if (HAS_PCH_CPT(dev_priv->dev)) {
  942. if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
  943. return false;
  944. } else {
  945. if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
  946. return false;
  947. }
  948. return true;
  949. }
  950. static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
  951. enum pipe pipe, int reg, u32 port_sel)
  952. {
  953. u32 val = I915_READ(reg);
  954. WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
  955. "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
  956. reg, pipe_name(pipe));
  957. }
  958. static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
  959. enum pipe pipe, int reg)
  960. {
  961. u32 val = I915_READ(reg);
  962. WARN(hdmi_pipe_enabled(dev_priv, val, pipe),
  963. "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
  964. reg, pipe_name(pipe));
  965. }
  966. static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
  967. enum pipe pipe)
  968. {
  969. int reg;
  970. u32 val;
  971. assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
  972. assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
  973. assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
  974. reg = PCH_ADPA;
  975. val = I915_READ(reg);
  976. WARN(adpa_pipe_enabled(dev_priv, val, pipe),
  977. "PCH VGA enabled on transcoder %c, should be disabled\n",
  978. pipe_name(pipe));
  979. reg = PCH_LVDS;
  980. val = I915_READ(reg);
  981. WARN(lvds_pipe_enabled(dev_priv, val, pipe),
  982. "PCH LVDS enabled on transcoder %c, should be disabled\n",
  983. pipe_name(pipe));
  984. assert_pch_hdmi_disabled(dev_priv, pipe, HDMIB);
  985. assert_pch_hdmi_disabled(dev_priv, pipe, HDMIC);
  986. assert_pch_hdmi_disabled(dev_priv, pipe, HDMID);
  987. }
  988. /**
  989. * intel_enable_pll - enable a PLL
  990. * @dev_priv: i915 private structure
  991. * @pipe: pipe PLL to enable
  992. *
  993. * Enable @pipe's PLL so we can start pumping pixels from a plane. Check to
  994. * make sure the PLL reg is writable first though, since the panel write
  995. * protect mechanism may be enabled.
  996. *
  997. * Note! This is for pre-ILK only.
  998. */
  999. static void intel_enable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
  1000. {
  1001. int reg;
  1002. u32 val;
  1003. /* No really, not for ILK+ */
  1004. BUG_ON(dev_priv->info->gen >= 5);
  1005. /* PLL is protected by panel, make sure we can write it */
  1006. if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
  1007. assert_panel_unlocked(dev_priv, pipe);
  1008. reg = DPLL(pipe);
  1009. val = I915_READ(reg);
  1010. val |= DPLL_VCO_ENABLE;
  1011. /* We do this three times for luck */
  1012. I915_WRITE(reg, val);
  1013. POSTING_READ(reg);
  1014. udelay(150); /* wait for warmup */
  1015. I915_WRITE(reg, val);
  1016. POSTING_READ(reg);
  1017. udelay(150); /* wait for warmup */
  1018. I915_WRITE(reg, val);
  1019. POSTING_READ(reg);
  1020. udelay(150); /* wait for warmup */
  1021. }
  1022. /**
  1023. * intel_disable_pll - disable a PLL
  1024. * @dev_priv: i915 private structure
  1025. * @pipe: pipe PLL to disable
  1026. *
  1027. * Disable the PLL for @pipe, making sure the pipe is off first.
  1028. *
  1029. * Note! This is for pre-ILK only.
  1030. */
  1031. static void intel_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
  1032. {
  1033. int reg;
  1034. u32 val;
  1035. /* Don't disable pipe A or pipe A PLLs if needed */
  1036. if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
  1037. return;
  1038. /* Make sure the pipe isn't still relying on us */
  1039. assert_pipe_disabled(dev_priv, pipe);
  1040. reg = DPLL(pipe);
  1041. val = I915_READ(reg);
  1042. val &= ~DPLL_VCO_ENABLE;
  1043. I915_WRITE(reg, val);
  1044. POSTING_READ(reg);
  1045. }
  1046. /**
  1047. * intel_enable_pch_pll - enable PCH PLL
  1048. * @dev_priv: i915 private structure
  1049. * @pipe: pipe PLL to enable
  1050. *
  1051. * The PCH PLL needs to be enabled before the PCH transcoder, since it
  1052. * drives the transcoder clock.
  1053. */
  1054. static void intel_enable_pch_pll(struct drm_i915_private *dev_priv,
  1055. enum pipe pipe)
  1056. {
  1057. int reg;
  1058. u32 val;
  1059. if (pipe > 1)
  1060. return;
  1061. /* PCH only available on ILK+ */
  1062. BUG_ON(dev_priv->info->gen < 5);
  1063. /* PCH refclock must be enabled first */
  1064. assert_pch_refclk_enabled(dev_priv);
  1065. reg = PCH_DPLL(pipe);
  1066. val = I915_READ(reg);
  1067. val |= DPLL_VCO_ENABLE;
  1068. I915_WRITE(reg, val);
  1069. POSTING_READ(reg);
  1070. udelay(200);
  1071. }
  1072. static void intel_disable_pch_pll(struct drm_i915_private *dev_priv,
  1073. enum pipe pipe)
  1074. {
  1075. int reg;
  1076. u32 val;
  1077. if (pipe > 1)
  1078. return;
  1079. /* PCH only available on ILK+ */
  1080. BUG_ON(dev_priv->info->gen < 5);
  1081. /* Make sure transcoder isn't still depending on us */
  1082. assert_transcoder_disabled(dev_priv, pipe);
  1083. reg = PCH_DPLL(pipe);
  1084. val = I915_READ(reg);
  1085. val &= ~DPLL_VCO_ENABLE;
  1086. I915_WRITE(reg, val);
  1087. POSTING_READ(reg);
  1088. udelay(200);
  1089. }
  1090. static void intel_enable_transcoder(struct drm_i915_private *dev_priv,
  1091. enum pipe pipe)
  1092. {
  1093. int reg;
  1094. u32 val;
  1095. /* PCH only available on ILK+ */
  1096. BUG_ON(dev_priv->info->gen < 5);
  1097. /* Make sure PCH DPLL is enabled */
  1098. assert_pch_pll_enabled(dev_priv, pipe);
  1099. /* FDI must be feeding us bits for PCH ports */
  1100. assert_fdi_tx_enabled(dev_priv, pipe);
  1101. assert_fdi_rx_enabled(dev_priv, pipe);
  1102. reg = TRANSCONF(pipe);
  1103. val = I915_READ(reg);
  1104. if (HAS_PCH_IBX(dev_priv->dev)) {
  1105. /*
  1106. * make the BPC in transcoder be consistent with
  1107. * that in pipeconf reg.
  1108. */
  1109. val &= ~PIPE_BPC_MASK;
  1110. val |= I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK;
  1111. }
  1112. I915_WRITE(reg, val | TRANS_ENABLE);
  1113. if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
  1114. DRM_ERROR("failed to enable transcoder %d\n", pipe);
  1115. }
  1116. static void intel_disable_transcoder(struct drm_i915_private *dev_priv,
  1117. enum pipe pipe)
  1118. {
  1119. int reg;
  1120. u32 val;
  1121. /* FDI relies on the transcoder */
  1122. assert_fdi_tx_disabled(dev_priv, pipe);
  1123. assert_fdi_rx_disabled(dev_priv, pipe);
  1124. /* Ports must be off as well */
  1125. assert_pch_ports_disabled(dev_priv, pipe);
  1126. reg = TRANSCONF(pipe);
  1127. val = I915_READ(reg);
  1128. val &= ~TRANS_ENABLE;
  1129. I915_WRITE(reg, val);
  1130. /* wait for PCH transcoder off, transcoder state */
  1131. if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
  1132. DRM_ERROR("failed to disable transcoder\n");
  1133. }
  1134. /**
  1135. * intel_enable_pipe - enable a pipe, asserting requirements
  1136. * @dev_priv: i915 private structure
  1137. * @pipe: pipe to enable
  1138. * @pch_port: on ILK+, is this pipe driving a PCH port or not
  1139. *
  1140. * Enable @pipe, making sure that various hardware specific requirements
  1141. * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
  1142. *
  1143. * @pipe should be %PIPE_A or %PIPE_B.
  1144. *
  1145. * Will wait until the pipe is actually running (i.e. first vblank) before
  1146. * returning.
  1147. */
  1148. static void intel_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe,
  1149. bool pch_port)
  1150. {
  1151. int reg;
  1152. u32 val;
  1153. /*
  1154. * A pipe without a PLL won't actually be able to drive bits from
  1155. * a plane. On ILK+ the pipe PLLs are integrated, so we don't
  1156. * need the check.
  1157. */
  1158. if (!HAS_PCH_SPLIT(dev_priv->dev))
  1159. assert_pll_enabled(dev_priv, pipe);
  1160. else {
  1161. if (pch_port) {
  1162. /* if driving the PCH, we need FDI enabled */
  1163. assert_fdi_rx_pll_enabled(dev_priv, pipe);
  1164. assert_fdi_tx_pll_enabled(dev_priv, pipe);
  1165. }
  1166. /* FIXME: assert CPU port conditions for SNB+ */
  1167. }
  1168. reg = PIPECONF(pipe);
  1169. val = I915_READ(reg);
  1170. if (val & PIPECONF_ENABLE)
  1171. return;
  1172. I915_WRITE(reg, val | PIPECONF_ENABLE);
  1173. intel_wait_for_vblank(dev_priv->dev, pipe);
  1174. }
  1175. /**
  1176. * intel_disable_pipe - disable a pipe, asserting requirements
  1177. * @dev_priv: i915 private structure
  1178. * @pipe: pipe to disable
  1179. *
  1180. * Disable @pipe, making sure that various hardware specific requirements
  1181. * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
  1182. *
  1183. * @pipe should be %PIPE_A or %PIPE_B.
  1184. *
  1185. * Will wait until the pipe has shut down before returning.
  1186. */
  1187. static void intel_disable_pipe(struct drm_i915_private *dev_priv,
  1188. enum pipe pipe)
  1189. {
  1190. int reg;
  1191. u32 val;
  1192. /*
  1193. * Make sure planes won't keep trying to pump pixels to us,
  1194. * or we might hang the display.
  1195. */
  1196. assert_planes_disabled(dev_priv, pipe);
  1197. /* Don't disable pipe A or pipe A PLLs if needed */
  1198. if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
  1199. return;
  1200. reg = PIPECONF(pipe);
  1201. val = I915_READ(reg);
  1202. if ((val & PIPECONF_ENABLE) == 0)
  1203. return;
  1204. I915_WRITE(reg, val & ~PIPECONF_ENABLE);
  1205. intel_wait_for_pipe_off(dev_priv->dev, pipe);
  1206. }
  1207. /*
  1208. * Plane regs are double buffered, going from enabled->disabled needs a
  1209. * trigger in order to latch. The display address reg provides this.
  1210. */
  1211. static void intel_flush_display_plane(struct drm_i915_private *dev_priv,
  1212. enum plane plane)
  1213. {
  1214. I915_WRITE(DSPADDR(plane), I915_READ(DSPADDR(plane)));
  1215. I915_WRITE(DSPSURF(plane), I915_READ(DSPSURF(plane)));
  1216. }
  1217. /**
  1218. * intel_enable_plane - enable a display plane on a given pipe
  1219. * @dev_priv: i915 private structure
  1220. * @plane: plane to enable
  1221. * @pipe: pipe being fed
  1222. *
  1223. * Enable @plane on @pipe, making sure that @pipe is running first.
  1224. */
  1225. static void intel_enable_plane(struct drm_i915_private *dev_priv,
  1226. enum plane plane, enum pipe pipe)
  1227. {
  1228. int reg;
  1229. u32 val;
  1230. /* If the pipe isn't enabled, we can't pump pixels and may hang */
  1231. assert_pipe_enabled(dev_priv, pipe);
  1232. reg = DSPCNTR(plane);
  1233. val = I915_READ(reg);
  1234. if (val & DISPLAY_PLANE_ENABLE)
  1235. return;
  1236. I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
  1237. intel_flush_display_plane(dev_priv, plane);
  1238. intel_wait_for_vblank(dev_priv->dev, pipe);
  1239. }
  1240. /**
  1241. * intel_disable_plane - disable a display plane
  1242. * @dev_priv: i915 private structure
  1243. * @plane: plane to disable
  1244. * @pipe: pipe consuming the data
  1245. *
  1246. * Disable @plane; should be an independent operation.
  1247. */
  1248. static void intel_disable_plane(struct drm_i915_private *dev_priv,
  1249. enum plane plane, enum pipe pipe)
  1250. {
  1251. int reg;
  1252. u32 val;
  1253. reg = DSPCNTR(plane);
  1254. val = I915_READ(reg);
  1255. if ((val & DISPLAY_PLANE_ENABLE) == 0)
  1256. return;
  1257. I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
  1258. intel_flush_display_plane(dev_priv, plane);
  1259. intel_wait_for_vblank(dev_priv->dev, pipe);
  1260. }
  1261. static void disable_pch_dp(struct drm_i915_private *dev_priv,
  1262. enum pipe pipe, int reg, u32 port_sel)
  1263. {
  1264. u32 val = I915_READ(reg);
  1265. if (dp_pipe_enabled(dev_priv, pipe, port_sel, val)) {
  1266. DRM_DEBUG_KMS("Disabling pch dp %x on pipe %d\n", reg, pipe);
  1267. I915_WRITE(reg, val & ~DP_PORT_EN);
  1268. }
  1269. }
  1270. static void disable_pch_hdmi(struct drm_i915_private *dev_priv,
  1271. enum pipe pipe, int reg)
  1272. {
  1273. u32 val = I915_READ(reg);
  1274. if (hdmi_pipe_enabled(dev_priv, val, pipe)) {
  1275. DRM_DEBUG_KMS("Disabling pch HDMI %x on pipe %d\n",
  1276. reg, pipe);
  1277. I915_WRITE(reg, val & ~PORT_ENABLE);
  1278. }
  1279. }
  1280. /* Disable any ports connected to this transcoder */
  1281. static void intel_disable_pch_ports(struct drm_i915_private *dev_priv,
  1282. enum pipe pipe)
  1283. {
  1284. u32 reg, val;
  1285. val = I915_READ(PCH_PP_CONTROL);
  1286. I915_WRITE(PCH_PP_CONTROL, val | PANEL_UNLOCK_REGS);
  1287. disable_pch_dp(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
  1288. disable_pch_dp(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
  1289. disable_pch_dp(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
  1290. reg = PCH_ADPA;
  1291. val = I915_READ(reg);
  1292. if (adpa_pipe_enabled(dev_priv, val, pipe))
  1293. I915_WRITE(reg, val & ~ADPA_DAC_ENABLE);
  1294. reg = PCH_LVDS;
  1295. val = I915_READ(reg);
  1296. if (lvds_pipe_enabled(dev_priv, val, pipe)) {
  1297. DRM_DEBUG_KMS("disable lvds on pipe %d val 0x%08x\n", pipe, val);
  1298. I915_WRITE(reg, val & ~LVDS_PORT_EN);
  1299. POSTING_READ(reg);
  1300. udelay(100);
  1301. }
  1302. disable_pch_hdmi(dev_priv, pipe, HDMIB);
  1303. disable_pch_hdmi(dev_priv, pipe, HDMIC);
  1304. disable_pch_hdmi(dev_priv, pipe, HDMID);
  1305. }
  1306. static void i8xx_disable_fbc(struct drm_device *dev)
  1307. {
  1308. struct drm_i915_private *dev_priv = dev->dev_private;
  1309. u32 fbc_ctl;
  1310. /* Disable compression */
  1311. fbc_ctl = I915_READ(FBC_CONTROL);
  1312. if ((fbc_ctl & FBC_CTL_EN) == 0)
  1313. return;
  1314. fbc_ctl &= ~FBC_CTL_EN;
  1315. I915_WRITE(FBC_CONTROL, fbc_ctl);
  1316. /* Wait for compressing bit to clear */
  1317. if (wait_for((I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) == 0, 10)) {
  1318. DRM_DEBUG_KMS("FBC idle timed out\n");
  1319. return;
  1320. }
  1321. DRM_DEBUG_KMS("disabled FBC\n");
  1322. }
  1323. static void i8xx_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
  1324. {
  1325. struct drm_device *dev = crtc->dev;
  1326. struct drm_i915_private *dev_priv = dev->dev_private;
  1327. struct drm_framebuffer *fb = crtc->fb;
  1328. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  1329. struct drm_i915_gem_object *obj = intel_fb->obj;
  1330. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1331. int cfb_pitch;
  1332. int plane, i;
  1333. u32 fbc_ctl, fbc_ctl2;
  1334. cfb_pitch = dev_priv->cfb_size / FBC_LL_SIZE;
  1335. if (fb->pitch < cfb_pitch)
  1336. cfb_pitch = fb->pitch;
  1337. /* FBC_CTL wants 64B units */
  1338. cfb_pitch = (cfb_pitch / 64) - 1;
  1339. plane = intel_crtc->plane == 0 ? FBC_CTL_PLANEA : FBC_CTL_PLANEB;
  1340. /* Clear old tags */
  1341. for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
  1342. I915_WRITE(FBC_TAG + (i * 4), 0);
  1343. /* Set it up... */
  1344. fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | FBC_CTL_CPU_FENCE;
  1345. fbc_ctl2 |= plane;
  1346. I915_WRITE(FBC_CONTROL2, fbc_ctl2);
  1347. I915_WRITE(FBC_FENCE_OFF, crtc->y);
  1348. /* enable it... */
  1349. fbc_ctl = FBC_CTL_EN | FBC_CTL_PERIODIC;
  1350. if (IS_I945GM(dev))
  1351. fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
  1352. fbc_ctl |= (cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
  1353. fbc_ctl |= (interval & 0x2fff) << FBC_CTL_INTERVAL_SHIFT;
  1354. fbc_ctl |= obj->fence_reg;
  1355. I915_WRITE(FBC_CONTROL, fbc_ctl);
  1356. DRM_DEBUG_KMS("enabled FBC, pitch %d, yoff %d, plane %d, ",
  1357. cfb_pitch, crtc->y, intel_crtc->plane);
  1358. }
  1359. static bool i8xx_fbc_enabled(struct drm_device *dev)
  1360. {
  1361. struct drm_i915_private *dev_priv = dev->dev_private;
  1362. return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
  1363. }
  1364. static void g4x_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
  1365. {
  1366. struct drm_device *dev = crtc->dev;
  1367. struct drm_i915_private *dev_priv = dev->dev_private;
  1368. struct drm_framebuffer *fb = crtc->fb;
  1369. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  1370. struct drm_i915_gem_object *obj = intel_fb->obj;
  1371. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1372. int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
  1373. unsigned long stall_watermark = 200;
  1374. u32 dpfc_ctl;
  1375. dpfc_ctl = plane | DPFC_SR_EN | DPFC_CTL_LIMIT_1X;
  1376. dpfc_ctl |= DPFC_CTL_FENCE_EN | obj->fence_reg;
  1377. I915_WRITE(DPFC_CHICKEN, DPFC_HT_MODIFY);
  1378. I915_WRITE(DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
  1379. (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
  1380. (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
  1381. I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
  1382. /* enable it... */
  1383. I915_WRITE(DPFC_CONTROL, I915_READ(DPFC_CONTROL) | DPFC_CTL_EN);
  1384. DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
  1385. }
  1386. static void g4x_disable_fbc(struct drm_device *dev)
  1387. {
  1388. struct drm_i915_private *dev_priv = dev->dev_private;
  1389. u32 dpfc_ctl;
  1390. /* Disable compression */
  1391. dpfc_ctl = I915_READ(DPFC_CONTROL);
  1392. if (dpfc_ctl & DPFC_CTL_EN) {
  1393. dpfc_ctl &= ~DPFC_CTL_EN;
  1394. I915_WRITE(DPFC_CONTROL, dpfc_ctl);
  1395. DRM_DEBUG_KMS("disabled FBC\n");
  1396. }
  1397. }
  1398. static bool g4x_fbc_enabled(struct drm_device *dev)
  1399. {
  1400. struct drm_i915_private *dev_priv = dev->dev_private;
  1401. return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
  1402. }
  1403. static void sandybridge_blit_fbc_update(struct drm_device *dev)
  1404. {
  1405. struct drm_i915_private *dev_priv = dev->dev_private;
  1406. u32 blt_ecoskpd;
  1407. /* Make sure blitter notifies FBC of writes */
  1408. gen6_gt_force_wake_get(dev_priv);
  1409. blt_ecoskpd = I915_READ(GEN6_BLITTER_ECOSKPD);
  1410. blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY <<
  1411. GEN6_BLITTER_LOCK_SHIFT;
  1412. I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
  1413. blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY;
  1414. I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
  1415. blt_ecoskpd &= ~(GEN6_BLITTER_FBC_NOTIFY <<
  1416. GEN6_BLITTER_LOCK_SHIFT);
  1417. I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
  1418. POSTING_READ(GEN6_BLITTER_ECOSKPD);
  1419. gen6_gt_force_wake_put(dev_priv);
  1420. }
  1421. static void ironlake_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
  1422. {
  1423. struct drm_device *dev = crtc->dev;
  1424. struct drm_i915_private *dev_priv = dev->dev_private;
  1425. struct drm_framebuffer *fb = crtc->fb;
  1426. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  1427. struct drm_i915_gem_object *obj = intel_fb->obj;
  1428. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1429. int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
  1430. unsigned long stall_watermark = 200;
  1431. u32 dpfc_ctl;
  1432. dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
  1433. dpfc_ctl &= DPFC_RESERVED;
  1434. dpfc_ctl |= (plane | DPFC_CTL_LIMIT_1X);
  1435. /* Set persistent mode for front-buffer rendering, ala X. */
  1436. dpfc_ctl |= DPFC_CTL_PERSISTENT_MODE;
  1437. dpfc_ctl |= (DPFC_CTL_FENCE_EN | obj->fence_reg);
  1438. I915_WRITE(ILK_DPFC_CHICKEN, DPFC_HT_MODIFY);
  1439. I915_WRITE(ILK_DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
  1440. (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
  1441. (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
  1442. I915_WRITE(ILK_DPFC_FENCE_YOFF, crtc->y);
  1443. I915_WRITE(ILK_FBC_RT_BASE, obj->gtt_offset | ILK_FBC_RT_VALID);
  1444. /* enable it... */
  1445. I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
  1446. if (IS_GEN6(dev)) {
  1447. I915_WRITE(SNB_DPFC_CTL_SA,
  1448. SNB_CPU_FENCE_ENABLE | obj->fence_reg);
  1449. I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
  1450. sandybridge_blit_fbc_update(dev);
  1451. }
  1452. DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
  1453. }
  1454. static void ironlake_disable_fbc(struct drm_device *dev)
  1455. {
  1456. struct drm_i915_private *dev_priv = dev->dev_private;
  1457. u32 dpfc_ctl;
  1458. /* Disable compression */
  1459. dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
  1460. if (dpfc_ctl & DPFC_CTL_EN) {
  1461. dpfc_ctl &= ~DPFC_CTL_EN;
  1462. I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);
  1463. DRM_DEBUG_KMS("disabled FBC\n");
  1464. }
  1465. }
  1466. static bool ironlake_fbc_enabled(struct drm_device *dev)
  1467. {
  1468. struct drm_i915_private *dev_priv = dev->dev_private;
  1469. return I915_READ(ILK_DPFC_CONTROL) & DPFC_CTL_EN;
  1470. }
  1471. bool intel_fbc_enabled(struct drm_device *dev)
  1472. {
  1473. struct drm_i915_private *dev_priv = dev->dev_private;
  1474. if (!dev_priv->display.fbc_enabled)
  1475. return false;
  1476. return dev_priv->display.fbc_enabled(dev);
  1477. }
  1478. static void intel_fbc_work_fn(struct work_struct *__work)
  1479. {
  1480. struct intel_fbc_work *work =
  1481. container_of(to_delayed_work(__work),
  1482. struct intel_fbc_work, work);
  1483. struct drm_device *dev = work->crtc->dev;
  1484. struct drm_i915_private *dev_priv = dev->dev_private;
  1485. mutex_lock(&dev->struct_mutex);
  1486. if (work == dev_priv->fbc_work) {
  1487. /* Double check that we haven't switched fb without cancelling
  1488. * the prior work.
  1489. */
  1490. if (work->crtc->fb == work->fb) {
  1491. dev_priv->display.enable_fbc(work->crtc,
  1492. work->interval);
  1493. dev_priv->cfb_plane = to_intel_crtc(work->crtc)->plane;
  1494. dev_priv->cfb_fb = work->crtc->fb->base.id;
  1495. dev_priv->cfb_y = work->crtc->y;
  1496. }
  1497. dev_priv->fbc_work = NULL;
  1498. }
  1499. mutex_unlock(&dev->struct_mutex);
  1500. kfree(work);
  1501. }
  1502. static void intel_cancel_fbc_work(struct drm_i915_private *dev_priv)
  1503. {
  1504. if (dev_priv->fbc_work == NULL)
  1505. return;
  1506. DRM_DEBUG_KMS("cancelling pending FBC enable\n");
  1507. /* Synchronisation is provided by struct_mutex and checking of
  1508. * dev_priv->fbc_work, so we can perform the cancellation
  1509. * entirely asynchronously.
  1510. */
  1511. if (cancel_delayed_work(&dev_priv->fbc_work->work))
  1512. /* tasklet was killed before being run, clean up */
  1513. kfree(dev_priv->fbc_work);
  1514. /* Mark the work as no longer wanted so that if it does
  1515. * wake-up (because the work was already running and waiting
  1516. * for our mutex), it will discover that is no longer
  1517. * necessary to run.
  1518. */
  1519. dev_priv->fbc_work = NULL;
  1520. }
  1521. static void intel_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
  1522. {
  1523. struct intel_fbc_work *work;
  1524. struct drm_device *dev = crtc->dev;
  1525. struct drm_i915_private *dev_priv = dev->dev_private;
  1526. if (!dev_priv->display.enable_fbc)
  1527. return;
  1528. intel_cancel_fbc_work(dev_priv);
  1529. work = kzalloc(sizeof *work, GFP_KERNEL);
  1530. if (work == NULL) {
  1531. dev_priv->display.enable_fbc(crtc, interval);
  1532. return;
  1533. }
  1534. work->crtc = crtc;
  1535. work->fb = crtc->fb;
  1536. work->interval = interval;
  1537. INIT_DELAYED_WORK(&work->work, intel_fbc_work_fn);
  1538. dev_priv->fbc_work = work;
  1539. DRM_DEBUG_KMS("scheduling delayed FBC enable\n");
  1540. /* Delay the actual enabling to let pageflipping cease and the
  1541. * display to settle before starting the compression. Note that
  1542. * this delay also serves a second purpose: it allows for a
  1543. * vblank to pass after disabling the FBC before we attempt
  1544. * to modify the control registers.
  1545. *
  1546. * A more complicated solution would involve tracking vblanks
  1547. * following the termination of the page-flipping sequence
  1548. * and indeed performing the enable as a co-routine and not
  1549. * waiting synchronously upon the vblank.
  1550. */
  1551. schedule_delayed_work(&work->work, msecs_to_jiffies(50));
  1552. }
  1553. void intel_disable_fbc(struct drm_device *dev)
  1554. {
  1555. struct drm_i915_private *dev_priv = dev->dev_private;
  1556. intel_cancel_fbc_work(dev_priv);
  1557. if (!dev_priv->display.disable_fbc)
  1558. return;
  1559. dev_priv->display.disable_fbc(dev);
  1560. dev_priv->cfb_plane = -1;
  1561. }
  1562. /**
  1563. * intel_update_fbc - enable/disable FBC as needed
  1564. * @dev: the drm_device
  1565. *
  1566. * Set up the framebuffer compression hardware at mode set time. We
  1567. * enable it if possible:
  1568. * - plane A only (on pre-965)
  1569. * - no pixel mulitply/line duplication
  1570. * - no alpha buffer discard
  1571. * - no dual wide
  1572. * - framebuffer <= 2048 in width, 1536 in height
  1573. *
  1574. * We can't assume that any compression will take place (worst case),
  1575. * so the compressed buffer has to be the same size as the uncompressed
  1576. * one. It also must reside (along with the line length buffer) in
  1577. * stolen memory.
  1578. *
  1579. * We need to enable/disable FBC on a global basis.
  1580. */
  1581. static void intel_update_fbc(struct drm_device *dev)
  1582. {
  1583. struct drm_i915_private *dev_priv = dev->dev_private;
  1584. struct drm_crtc *crtc = NULL, *tmp_crtc;
  1585. struct intel_crtc *intel_crtc;
  1586. struct drm_framebuffer *fb;
  1587. struct intel_framebuffer *intel_fb;
  1588. struct drm_i915_gem_object *obj;
  1589. int enable_fbc;
  1590. DRM_DEBUG_KMS("\n");
  1591. if (!i915_powersave)
  1592. return;
  1593. if (!I915_HAS_FBC(dev))
  1594. return;
  1595. /*
  1596. * If FBC is already on, we just have to verify that we can
  1597. * keep it that way...
  1598. * Need to disable if:
  1599. * - more than one pipe is active
  1600. * - changing FBC params (stride, fence, mode)
  1601. * - new fb is too large to fit in compressed buffer
  1602. * - going to an unsupported config (interlace, pixel multiply, etc.)
  1603. */
  1604. list_for_each_entry(tmp_crtc, &dev->mode_config.crtc_list, head) {
  1605. if (tmp_crtc->enabled && tmp_crtc->fb) {
  1606. if (crtc) {
  1607. DRM_DEBUG_KMS("more than one pipe active, disabling compression\n");
  1608. dev_priv->no_fbc_reason = FBC_MULTIPLE_PIPES;
  1609. goto out_disable;
  1610. }
  1611. crtc = tmp_crtc;
  1612. }
  1613. }
  1614. if (!crtc || crtc->fb == NULL) {
  1615. DRM_DEBUG_KMS("no output, disabling\n");
  1616. dev_priv->no_fbc_reason = FBC_NO_OUTPUT;
  1617. goto out_disable;
  1618. }
  1619. intel_crtc = to_intel_crtc(crtc);
  1620. fb = crtc->fb;
  1621. intel_fb = to_intel_framebuffer(fb);
  1622. obj = intel_fb->obj;
  1623. enable_fbc = i915_enable_fbc;
  1624. if (enable_fbc < 0) {
  1625. DRM_DEBUG_KMS("fbc set to per-chip default\n");
  1626. enable_fbc = 1;
  1627. if (INTEL_INFO(dev)->gen <= 5)
  1628. enable_fbc = 0;
  1629. }
  1630. if (!enable_fbc) {
  1631. DRM_DEBUG_KMS("fbc disabled per module param\n");
  1632. dev_priv->no_fbc_reason = FBC_MODULE_PARAM;
  1633. goto out_disable;
  1634. }
  1635. if (intel_fb->obj->base.size > dev_priv->cfb_size) {
  1636. DRM_DEBUG_KMS("framebuffer too large, disabling "
  1637. "compression\n");
  1638. dev_priv->no_fbc_reason = FBC_STOLEN_TOO_SMALL;
  1639. goto out_disable;
  1640. }
  1641. if ((crtc->mode.flags & DRM_MODE_FLAG_INTERLACE) ||
  1642. (crtc->mode.flags & DRM_MODE_FLAG_DBLSCAN)) {
  1643. DRM_DEBUG_KMS("mode incompatible with compression, "
  1644. "disabling\n");
  1645. dev_priv->no_fbc_reason = FBC_UNSUPPORTED_MODE;
  1646. goto out_disable;
  1647. }
  1648. if ((crtc->mode.hdisplay > 2048) ||
  1649. (crtc->mode.vdisplay > 1536)) {
  1650. DRM_DEBUG_KMS("mode too large for compression, disabling\n");
  1651. dev_priv->no_fbc_reason = FBC_MODE_TOO_LARGE;
  1652. goto out_disable;
  1653. }
  1654. if ((IS_I915GM(dev) || IS_I945GM(dev)) && intel_crtc->plane != 0) {
  1655. DRM_DEBUG_KMS("plane not 0, disabling compression\n");
  1656. dev_priv->no_fbc_reason = FBC_BAD_PLANE;
  1657. goto out_disable;
  1658. }
  1659. /* The use of a CPU fence is mandatory in order to detect writes
  1660. * by the CPU to the scanout and trigger updates to the FBC.
  1661. */
  1662. if (obj->tiling_mode != I915_TILING_X ||
  1663. obj->fence_reg == I915_FENCE_REG_NONE) {
  1664. DRM_DEBUG_KMS("framebuffer not tiled or fenced, disabling compression\n");
  1665. dev_priv->no_fbc_reason = FBC_NOT_TILED;
  1666. goto out_disable;
  1667. }
  1668. /* If the kernel debugger is active, always disable compression */
  1669. if (in_dbg_master())
  1670. goto out_disable;
  1671. /* If the scanout has not changed, don't modify the FBC settings.
  1672. * Note that we make the fundamental assumption that the fb->obj
  1673. * cannot be unpinned (and have its GTT offset and fence revoked)
  1674. * without first being decoupled from the scanout and FBC disabled.
  1675. */
  1676. if (dev_priv->cfb_plane == intel_crtc->plane &&
  1677. dev_priv->cfb_fb == fb->base.id &&
  1678. dev_priv->cfb_y == crtc->y)
  1679. return;
  1680. if (intel_fbc_enabled(dev)) {
  1681. /* We update FBC along two paths, after changing fb/crtc
  1682. * configuration (modeswitching) and after page-flipping
  1683. * finishes. For the latter, we know that not only did
  1684. * we disable the FBC at the start of the page-flip
  1685. * sequence, but also more than one vblank has passed.
  1686. *
  1687. * For the former case of modeswitching, it is possible
  1688. * to switch between two FBC valid configurations
  1689. * instantaneously so we do need to disable the FBC
  1690. * before we can modify its control registers. We also
  1691. * have to wait for the next vblank for that to take
  1692. * effect. However, since we delay enabling FBC we can
  1693. * assume that a vblank has passed since disabling and
  1694. * that we can safely alter the registers in the deferred
  1695. * callback.
  1696. *
  1697. * In the scenario that we go from a valid to invalid
  1698. * and then back to valid FBC configuration we have
  1699. * no strict enforcement that a vblank occurred since
  1700. * disabling the FBC. However, along all current pipe
  1701. * disabling paths we do need to wait for a vblank at
  1702. * some point. And we wait before enabling FBC anyway.
  1703. */
  1704. DRM_DEBUG_KMS("disabling active FBC for update\n");
  1705. intel_disable_fbc(dev);
  1706. }
  1707. intel_enable_fbc(crtc, 500);
  1708. return;
  1709. out_disable:
  1710. /* Multiple disables should be harmless */
  1711. if (intel_fbc_enabled(dev)) {
  1712. DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
  1713. intel_disable_fbc(dev);
  1714. }
  1715. }
  1716. int
  1717. intel_pin_and_fence_fb_obj(struct drm_device *dev,
  1718. struct drm_i915_gem_object *obj,
  1719. struct intel_ring_buffer *pipelined)
  1720. {
  1721. struct drm_i915_private *dev_priv = dev->dev_private;
  1722. u32 alignment;
  1723. int ret;
  1724. switch (obj->tiling_mode) {
  1725. case I915_TILING_NONE:
  1726. if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
  1727. alignment = 128 * 1024;
  1728. else if (INTEL_INFO(dev)->gen >= 4)
  1729. alignment = 4 * 1024;
  1730. else
  1731. alignment = 64 * 1024;
  1732. break;
  1733. case I915_TILING_X:
  1734. /* pin() will align the object as required by fence */
  1735. alignment = 0;
  1736. break;
  1737. case I915_TILING_Y:
  1738. /* FIXME: Is this true? */
  1739. DRM_ERROR("Y tiled not allowed for scan out buffers\n");
  1740. return -EINVAL;
  1741. default:
  1742. BUG();
  1743. }
  1744. dev_priv->mm.interruptible = false;
  1745. ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
  1746. if (ret)
  1747. goto err_interruptible;
  1748. /* Install a fence for tiled scan-out. Pre-i965 always needs a
  1749. * fence, whereas 965+ only requires a fence if using
  1750. * framebuffer compression. For simplicity, we always install
  1751. * a fence as the cost is not that onerous.
  1752. */
  1753. if (obj->tiling_mode != I915_TILING_NONE) {
  1754. ret = i915_gem_object_get_fence(obj, pipelined);
  1755. if (ret)
  1756. goto err_unpin;
  1757. }
  1758. dev_priv->mm.interruptible = true;
  1759. return 0;
  1760. err_unpin:
  1761. i915_gem_object_unpin(obj);
  1762. err_interruptible:
  1763. dev_priv->mm.interruptible = true;
  1764. return ret;
  1765. }
  1766. static int i9xx_update_plane(struct drm_crtc *crtc, struct drm_framebuffer *fb,
  1767. int x, int y)
  1768. {
  1769. struct drm_device *dev = crtc->dev;
  1770. struct drm_i915_private *dev_priv = dev->dev_private;
  1771. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1772. struct intel_framebuffer *intel_fb;
  1773. struct drm_i915_gem_object *obj;
  1774. int plane = intel_crtc->plane;
  1775. unsigned long Start, Offset;
  1776. u32 dspcntr;
  1777. u32 reg;
  1778. switch (plane) {
  1779. case 0:
  1780. case 1:
  1781. break;
  1782. default:
  1783. DRM_ERROR("Can't update plane %d in SAREA\n", plane);
  1784. return -EINVAL;
  1785. }
  1786. intel_fb = to_intel_framebuffer(fb);
  1787. obj = intel_fb->obj;
  1788. reg = DSPCNTR(plane);
  1789. dspcntr = I915_READ(reg);
  1790. /* Mask out pixel format bits in case we change it */
  1791. dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
  1792. switch (fb->bits_per_pixel) {
  1793. case 8:
  1794. dspcntr |= DISPPLANE_8BPP;
  1795. break;
  1796. case 16:
  1797. if (fb->depth == 15)
  1798. dspcntr |= DISPPLANE_15_16BPP;
  1799. else
  1800. dspcntr |= DISPPLANE_16BPP;
  1801. break;
  1802. case 24:
  1803. case 32:
  1804. dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
  1805. break;
  1806. default:
  1807. DRM_ERROR("Unknown color depth %d\n", fb->bits_per_pixel);
  1808. return -EINVAL;
  1809. }
  1810. if (INTEL_INFO(dev)->gen >= 4) {
  1811. if (obj->tiling_mode != I915_TILING_NONE)
  1812. dspcntr |= DISPPLANE_TILED;
  1813. else
  1814. dspcntr &= ~DISPPLANE_TILED;
  1815. }
  1816. I915_WRITE(reg, dspcntr);
  1817. Start = obj->gtt_offset;
  1818. Offset = y * fb->pitch + x * (fb->bits_per_pixel / 8);
  1819. DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
  1820. Start, Offset, x, y, fb->pitch);
  1821. I915_WRITE(DSPSTRIDE(plane), fb->pitch);
  1822. if (INTEL_INFO(dev)->gen >= 4) {
  1823. I915_WRITE(DSPSURF(plane), Start);
  1824. I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
  1825. I915_WRITE(DSPADDR(plane), Offset);
  1826. } else
  1827. I915_WRITE(DSPADDR(plane), Start + Offset);
  1828. POSTING_READ(reg);
  1829. return 0;
  1830. }
  1831. static int ironlake_update_plane(struct drm_crtc *crtc,
  1832. struct drm_framebuffer *fb, int x, int y)
  1833. {
  1834. struct drm_device *dev = crtc->dev;
  1835. struct drm_i915_private *dev_priv = dev->dev_private;
  1836. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1837. struct intel_framebuffer *intel_fb;
  1838. struct drm_i915_gem_object *obj;
  1839. int plane = intel_crtc->plane;
  1840. unsigned long Start, Offset;
  1841. u32 dspcntr;
  1842. u32 reg;
  1843. switch (plane) {
  1844. case 0:
  1845. case 1:
  1846. case 2:
  1847. break;
  1848. default:
  1849. DRM_ERROR("Can't update plane %d in SAREA\n", plane);
  1850. return -EINVAL;
  1851. }
  1852. intel_fb = to_intel_framebuffer(fb);
  1853. obj = intel_fb->obj;
  1854. reg = DSPCNTR(plane);
  1855. dspcntr = I915_READ(reg);
  1856. /* Mask out pixel format bits in case we change it */
  1857. dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
  1858. switch (fb->bits_per_pixel) {
  1859. case 8:
  1860. dspcntr |= DISPPLANE_8BPP;
  1861. break;
  1862. case 16:
  1863. if (fb->depth != 16)
  1864. return -EINVAL;
  1865. dspcntr |= DISPPLANE_16BPP;
  1866. break;
  1867. case 24:
  1868. case 32:
  1869. if (fb->depth == 24)
  1870. dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
  1871. else if (fb->depth == 30)
  1872. dspcntr |= DISPPLANE_32BPP_30BIT_NO_ALPHA;
  1873. else
  1874. return -EINVAL;
  1875. break;
  1876. default:
  1877. DRM_ERROR("Unknown color depth %d\n", fb->bits_per_pixel);
  1878. return -EINVAL;
  1879. }
  1880. if (obj->tiling_mode != I915_TILING_NONE)
  1881. dspcntr |= DISPPLANE_TILED;
  1882. else
  1883. dspcntr &= ~DISPPLANE_TILED;
  1884. /* must disable */
  1885. dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
  1886. I915_WRITE(reg, dspcntr);
  1887. Start = obj->gtt_offset;
  1888. Offset = y * fb->pitch + x * (fb->bits_per_pixel / 8);
  1889. DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
  1890. Start, Offset, x, y, fb->pitch);
  1891. I915_WRITE(DSPSTRIDE(plane), fb->pitch);
  1892. I915_WRITE(DSPSURF(plane), Start);
  1893. I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
  1894. I915_WRITE(DSPADDR(plane), Offset);
  1895. POSTING_READ(reg);
  1896. return 0;
  1897. }
  1898. /* Assume fb object is pinned & idle & fenced and just update base pointers */
  1899. static int
  1900. intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
  1901. int x, int y, enum mode_set_atomic state)
  1902. {
  1903. struct drm_device *dev = crtc->dev;
  1904. struct drm_i915_private *dev_priv = dev->dev_private;
  1905. int ret;
  1906. ret = dev_priv->display.update_plane(crtc, fb, x, y);
  1907. if (ret)
  1908. return ret;
  1909. intel_update_fbc(dev);
  1910. intel_increase_pllclock(crtc);
  1911. return 0;
  1912. }
  1913. static int
  1914. intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
  1915. struct drm_framebuffer *old_fb)
  1916. {
  1917. struct drm_device *dev = crtc->dev;
  1918. struct drm_i915_master_private *master_priv;
  1919. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1920. int ret;
  1921. /* no fb bound */
  1922. if (!crtc->fb) {
  1923. DRM_ERROR("No FB bound\n");
  1924. return 0;
  1925. }
  1926. switch (intel_crtc->plane) {
  1927. case 0:
  1928. case 1:
  1929. break;
  1930. case 2:
  1931. if (IS_IVYBRIDGE(dev))
  1932. break;
  1933. /* fall through otherwise */
  1934. default:
  1935. DRM_ERROR("no plane for crtc\n");
  1936. return -EINVAL;
  1937. }
  1938. mutex_lock(&dev->struct_mutex);
  1939. ret = intel_pin_and_fence_fb_obj(dev,
  1940. to_intel_framebuffer(crtc->fb)->obj,
  1941. NULL);
  1942. if (ret != 0) {
  1943. mutex_unlock(&dev->struct_mutex);
  1944. DRM_ERROR("pin & fence failed\n");
  1945. return ret;
  1946. }
  1947. if (old_fb) {
  1948. struct drm_i915_private *dev_priv = dev->dev_private;
  1949. struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
  1950. wait_event(dev_priv->pending_flip_queue,
  1951. atomic_read(&dev_priv->mm.wedged) ||
  1952. atomic_read(&obj->pending_flip) == 0);
  1953. /* Big Hammer, we also need to ensure that any pending
  1954. * MI_WAIT_FOR_EVENT inside a user batch buffer on the
  1955. * current scanout is retired before unpinning the old
  1956. * framebuffer.
  1957. *
  1958. * This should only fail upon a hung GPU, in which case we
  1959. * can safely continue.
  1960. */
  1961. ret = i915_gem_object_finish_gpu(obj);
  1962. (void) ret;
  1963. }
  1964. ret = intel_pipe_set_base_atomic(crtc, crtc->fb, x, y,
  1965. LEAVE_ATOMIC_MODE_SET);
  1966. if (ret) {
  1967. i915_gem_object_unpin(to_intel_framebuffer(crtc->fb)->obj);
  1968. mutex_unlock(&dev->struct_mutex);
  1969. DRM_ERROR("failed to update base address\n");
  1970. return ret;
  1971. }
  1972. if (old_fb) {
  1973. intel_wait_for_vblank(dev, intel_crtc->pipe);
  1974. i915_gem_object_unpin(to_intel_framebuffer(old_fb)->obj);
  1975. }
  1976. mutex_unlock(&dev->struct_mutex);
  1977. if (!dev->primary->master)
  1978. return 0;
  1979. master_priv = dev->primary->master->driver_priv;
  1980. if (!master_priv->sarea_priv)
  1981. return 0;
  1982. if (intel_crtc->pipe) {
  1983. master_priv->sarea_priv->pipeB_x = x;
  1984. master_priv->sarea_priv->pipeB_y = y;
  1985. } else {
  1986. master_priv->sarea_priv->pipeA_x = x;
  1987. master_priv->sarea_priv->pipeA_y = y;
  1988. }
  1989. return 0;
  1990. }
  1991. static void ironlake_set_pll_edp(struct drm_crtc *crtc, int clock)
  1992. {
  1993. struct drm_device *dev = crtc->dev;
  1994. struct drm_i915_private *dev_priv = dev->dev_private;
  1995. u32 dpa_ctl;
  1996. DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", clock);
  1997. dpa_ctl = I915_READ(DP_A);
  1998. dpa_ctl &= ~DP_PLL_FREQ_MASK;
  1999. if (clock < 200000) {
  2000. u32 temp;
  2001. dpa_ctl |= DP_PLL_FREQ_160MHZ;
  2002. /* workaround for 160Mhz:
  2003. 1) program 0x4600c bits 15:0 = 0x8124
  2004. 2) program 0x46010 bit 0 = 1
  2005. 3) program 0x46034 bit 24 = 1
  2006. 4) program 0x64000 bit 14 = 1
  2007. */
  2008. temp = I915_READ(0x4600c);
  2009. temp &= 0xffff0000;
  2010. I915_WRITE(0x4600c, temp | 0x8124);
  2011. temp = I915_READ(0x46010);
  2012. I915_WRITE(0x46010, temp | 1);
  2013. temp = I915_READ(0x46034);
  2014. I915_WRITE(0x46034, temp | (1 << 24));
  2015. } else {
  2016. dpa_ctl |= DP_PLL_FREQ_270MHZ;
  2017. }
  2018. I915_WRITE(DP_A, dpa_ctl);
  2019. POSTING_READ(DP_A);
  2020. udelay(500);
  2021. }
  2022. static void intel_fdi_normal_train(struct drm_crtc *crtc)
  2023. {
  2024. struct drm_device *dev = crtc->dev;
  2025. struct drm_i915_private *dev_priv = dev->dev_private;
  2026. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2027. int pipe = intel_crtc->pipe;
  2028. u32 reg, temp;
  2029. /* enable normal train */
  2030. reg = FDI_TX_CTL(pipe);
  2031. temp = I915_READ(reg);
  2032. if (IS_IVYBRIDGE(dev)) {
  2033. temp &= ~FDI_LINK_TRAIN_NONE_IVB;
  2034. temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
  2035. } else {
  2036. temp &= ~FDI_LINK_TRAIN_NONE;
  2037. temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
  2038. }
  2039. I915_WRITE(reg, temp);
  2040. reg = FDI_RX_CTL(pipe);
  2041. temp = I915_READ(reg);
  2042. if (HAS_PCH_CPT(dev)) {
  2043. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2044. temp |= FDI_LINK_TRAIN_NORMAL_CPT;
  2045. } else {
  2046. temp &= ~FDI_LINK_TRAIN_NONE;
  2047. temp |= FDI_LINK_TRAIN_NONE;
  2048. }
  2049. I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
  2050. /* wait one idle pattern time */
  2051. POSTING_READ(reg);
  2052. udelay(1000);
  2053. /* IVB wants error correction enabled */
  2054. if (IS_IVYBRIDGE(dev))
  2055. I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
  2056. FDI_FE_ERRC_ENABLE);
  2057. }
  2058. static void cpt_phase_pointer_enable(struct drm_device *dev, int pipe)
  2059. {
  2060. struct drm_i915_private *dev_priv = dev->dev_private;
  2061. u32 flags = I915_READ(SOUTH_CHICKEN1);
  2062. flags |= FDI_PHASE_SYNC_OVR(pipe);
  2063. I915_WRITE(SOUTH_CHICKEN1, flags); /* once to unlock... */
  2064. flags |= FDI_PHASE_SYNC_EN(pipe);
  2065. I915_WRITE(SOUTH_CHICKEN1, flags); /* then again to enable */
  2066. POSTING_READ(SOUTH_CHICKEN1);
  2067. }
  2068. /* The FDI link training functions for ILK/Ibexpeak. */
  2069. static void ironlake_fdi_link_train(struct drm_crtc *crtc)
  2070. {
  2071. struct drm_device *dev = crtc->dev;
  2072. struct drm_i915_private *dev_priv = dev->dev_private;
  2073. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2074. int pipe = intel_crtc->pipe;
  2075. int plane = intel_crtc->plane;
  2076. u32 reg, temp, tries;
  2077. /* FDI needs bits from pipe & plane first */
  2078. assert_pipe_enabled(dev_priv, pipe);
  2079. assert_plane_enabled(dev_priv, plane);
  2080. /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
  2081. for train result */
  2082. reg = FDI_RX_IMR(pipe);
  2083. temp = I915_READ(reg);
  2084. temp &= ~FDI_RX_SYMBOL_LOCK;
  2085. temp &= ~FDI_RX_BIT_LOCK;
  2086. I915_WRITE(reg, temp);
  2087. I915_READ(reg);
  2088. udelay(150);
  2089. /* enable CPU FDI TX and PCH FDI RX */
  2090. reg = FDI_TX_CTL(pipe);
  2091. temp = I915_READ(reg);
  2092. temp &= ~(7 << 19);
  2093. temp |= (intel_crtc->fdi_lanes - 1) << 19;
  2094. temp &= ~FDI_LINK_TRAIN_NONE;
  2095. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2096. I915_WRITE(reg, temp | FDI_TX_ENABLE);
  2097. reg = FDI_RX_CTL(pipe);
  2098. temp = I915_READ(reg);
  2099. temp &= ~FDI_LINK_TRAIN_NONE;
  2100. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2101. I915_WRITE(reg, temp | FDI_RX_ENABLE);
  2102. POSTING_READ(reg);
  2103. udelay(150);
  2104. /* Ironlake workaround, enable clock pointer after FDI enable*/
  2105. if (HAS_PCH_IBX(dev)) {
  2106. I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
  2107. I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
  2108. FDI_RX_PHASE_SYNC_POINTER_EN);
  2109. }
  2110. reg = FDI_RX_IIR(pipe);
  2111. for (tries = 0; tries < 5; tries++) {
  2112. temp = I915_READ(reg);
  2113. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2114. if ((temp & FDI_RX_BIT_LOCK)) {
  2115. DRM_DEBUG_KMS("FDI train 1 done.\n");
  2116. I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
  2117. break;
  2118. }
  2119. }
  2120. if (tries == 5)
  2121. DRM_ERROR("FDI train 1 fail!\n");
  2122. /* Train 2 */
  2123. reg = FDI_TX_CTL(pipe);
  2124. temp = I915_READ(reg);
  2125. temp &= ~FDI_LINK_TRAIN_NONE;
  2126. temp |= FDI_LINK_TRAIN_PATTERN_2;
  2127. I915_WRITE(reg, temp);
  2128. reg = FDI_RX_CTL(pipe);
  2129. temp = I915_READ(reg);
  2130. temp &= ~FDI_LINK_TRAIN_NONE;
  2131. temp |= FDI_LINK_TRAIN_PATTERN_2;
  2132. I915_WRITE(reg, temp);
  2133. POSTING_READ(reg);
  2134. udelay(150);
  2135. reg = FDI_RX_IIR(pipe);
  2136. for (tries = 0; tries < 5; tries++) {
  2137. temp = I915_READ(reg);
  2138. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2139. if (temp & FDI_RX_SYMBOL_LOCK) {
  2140. I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
  2141. DRM_DEBUG_KMS("FDI train 2 done.\n");
  2142. break;
  2143. }
  2144. }
  2145. if (tries == 5)
  2146. DRM_ERROR("FDI train 2 fail!\n");
  2147. DRM_DEBUG_KMS("FDI train done\n");
  2148. }
  2149. static const int snb_b_fdi_train_param[] = {
  2150. FDI_LINK_TRAIN_400MV_0DB_SNB_B,
  2151. FDI_LINK_TRAIN_400MV_6DB_SNB_B,
  2152. FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
  2153. FDI_LINK_TRAIN_800MV_0DB_SNB_B,
  2154. };
  2155. /* The FDI link training functions for SNB/Cougarpoint. */
  2156. static void gen6_fdi_link_train(struct drm_crtc *crtc)
  2157. {
  2158. struct drm_device *dev = crtc->dev;
  2159. struct drm_i915_private *dev_priv = dev->dev_private;
  2160. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2161. int pipe = intel_crtc->pipe;
  2162. u32 reg, temp, i;
  2163. /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
  2164. for train result */
  2165. reg = FDI_RX_IMR(pipe);
  2166. temp = I915_READ(reg);
  2167. temp &= ~FDI_RX_SYMBOL_LOCK;
  2168. temp &= ~FDI_RX_BIT_LOCK;
  2169. I915_WRITE(reg, temp);
  2170. POSTING_READ(reg);
  2171. udelay(150);
  2172. /* enable CPU FDI TX and PCH FDI RX */
  2173. reg = FDI_TX_CTL(pipe);
  2174. temp = I915_READ(reg);
  2175. temp &= ~(7 << 19);
  2176. temp |= (intel_crtc->fdi_lanes - 1) << 19;
  2177. temp &= ~FDI_LINK_TRAIN_NONE;
  2178. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2179. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2180. /* SNB-B */
  2181. temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
  2182. I915_WRITE(reg, temp | FDI_TX_ENABLE);
  2183. reg = FDI_RX_CTL(pipe);
  2184. temp = I915_READ(reg);
  2185. if (HAS_PCH_CPT(dev)) {
  2186. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2187. temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
  2188. } else {
  2189. temp &= ~FDI_LINK_TRAIN_NONE;
  2190. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2191. }
  2192. I915_WRITE(reg, temp | FDI_RX_ENABLE);
  2193. POSTING_READ(reg);
  2194. udelay(150);
  2195. if (HAS_PCH_CPT(dev))
  2196. cpt_phase_pointer_enable(dev, pipe);
  2197. for (i = 0; i < 4; i++) {
  2198. reg = FDI_TX_CTL(pipe);
  2199. temp = I915_READ(reg);
  2200. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2201. temp |= snb_b_fdi_train_param[i];
  2202. I915_WRITE(reg, temp);
  2203. POSTING_READ(reg);
  2204. udelay(500);
  2205. reg = FDI_RX_IIR(pipe);
  2206. temp = I915_READ(reg);
  2207. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2208. if (temp & FDI_RX_BIT_LOCK) {
  2209. I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
  2210. DRM_DEBUG_KMS("FDI train 1 done.\n");
  2211. break;
  2212. }
  2213. }
  2214. if (i == 4)
  2215. DRM_ERROR("FDI train 1 fail!\n");
  2216. /* Train 2 */
  2217. reg = FDI_TX_CTL(pipe);
  2218. temp = I915_READ(reg);
  2219. temp &= ~FDI_LINK_TRAIN_NONE;
  2220. temp |= FDI_LINK_TRAIN_PATTERN_2;
  2221. if (IS_GEN6(dev)) {
  2222. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2223. /* SNB-B */
  2224. temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
  2225. }
  2226. I915_WRITE(reg, temp);
  2227. reg = FDI_RX_CTL(pipe);
  2228. temp = I915_READ(reg);
  2229. if (HAS_PCH_CPT(dev)) {
  2230. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2231. temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
  2232. } else {
  2233. temp &= ~FDI_LINK_TRAIN_NONE;
  2234. temp |= FDI_LINK_TRAIN_PATTERN_2;
  2235. }
  2236. I915_WRITE(reg, temp);
  2237. POSTING_READ(reg);
  2238. udelay(150);
  2239. for (i = 0; i < 4; i++) {
  2240. reg = FDI_TX_CTL(pipe);
  2241. temp = I915_READ(reg);
  2242. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2243. temp |= snb_b_fdi_train_param[i];
  2244. I915_WRITE(reg, temp);
  2245. POSTING_READ(reg);
  2246. udelay(500);
  2247. reg = FDI_RX_IIR(pipe);
  2248. temp = I915_READ(reg);
  2249. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2250. if (temp & FDI_RX_SYMBOL_LOCK) {
  2251. I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
  2252. DRM_DEBUG_KMS("FDI train 2 done.\n");
  2253. break;
  2254. }
  2255. }
  2256. if (i == 4)
  2257. DRM_ERROR("FDI train 2 fail!\n");
  2258. DRM_DEBUG_KMS("FDI train done.\n");
  2259. }
  2260. /* Manual link training for Ivy Bridge A0 parts */
  2261. static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
  2262. {
  2263. struct drm_device *dev = crtc->dev;
  2264. struct drm_i915_private *dev_priv = dev->dev_private;
  2265. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2266. int pipe = intel_crtc->pipe;
  2267. u32 reg, temp, i;
  2268. /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
  2269. for train result */
  2270. reg = FDI_RX_IMR(pipe);
  2271. temp = I915_READ(reg);
  2272. temp &= ~FDI_RX_SYMBOL_LOCK;
  2273. temp &= ~FDI_RX_BIT_LOCK;
  2274. I915_WRITE(reg, temp);
  2275. POSTING_READ(reg);
  2276. udelay(150);
  2277. /* enable CPU FDI TX and PCH FDI RX */
  2278. reg = FDI_TX_CTL(pipe);
  2279. temp = I915_READ(reg);
  2280. temp &= ~(7 << 19);
  2281. temp |= (intel_crtc->fdi_lanes - 1) << 19;
  2282. temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
  2283. temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
  2284. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2285. temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
  2286. temp |= FDI_COMPOSITE_SYNC;
  2287. I915_WRITE(reg, temp | FDI_TX_ENABLE);
  2288. reg = FDI_RX_CTL(pipe);
  2289. temp = I915_READ(reg);
  2290. temp &= ~FDI_LINK_TRAIN_AUTO;
  2291. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2292. temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
  2293. temp |= FDI_COMPOSITE_SYNC;
  2294. I915_WRITE(reg, temp | FDI_RX_ENABLE);
  2295. POSTING_READ(reg);
  2296. udelay(150);
  2297. if (HAS_PCH_CPT(dev))
  2298. cpt_phase_pointer_enable(dev, pipe);
  2299. for (i = 0; i < 4; i++) {
  2300. reg = FDI_TX_CTL(pipe);
  2301. temp = I915_READ(reg);
  2302. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2303. temp |= snb_b_fdi_train_param[i];
  2304. I915_WRITE(reg, temp);
  2305. POSTING_READ(reg);
  2306. udelay(500);
  2307. reg = FDI_RX_IIR(pipe);
  2308. temp = I915_READ(reg);
  2309. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2310. if (temp & FDI_RX_BIT_LOCK ||
  2311. (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
  2312. I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
  2313. DRM_DEBUG_KMS("FDI train 1 done.\n");
  2314. break;
  2315. }
  2316. }
  2317. if (i == 4)
  2318. DRM_ERROR("FDI train 1 fail!\n");
  2319. /* Train 2 */
  2320. reg = FDI_TX_CTL(pipe);
  2321. temp = I915_READ(reg);
  2322. temp &= ~FDI_LINK_TRAIN_NONE_IVB;
  2323. temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
  2324. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2325. temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
  2326. I915_WRITE(reg, temp);
  2327. reg = FDI_RX_CTL(pipe);
  2328. temp = I915_READ(reg);
  2329. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2330. temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
  2331. I915_WRITE(reg, temp);
  2332. POSTING_READ(reg);
  2333. udelay(150);
  2334. for (i = 0; i < 4; i++) {
  2335. reg = FDI_TX_CTL(pipe);
  2336. temp = I915_READ(reg);
  2337. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2338. temp |= snb_b_fdi_train_param[i];
  2339. I915_WRITE(reg, temp);
  2340. POSTING_READ(reg);
  2341. udelay(500);
  2342. reg = FDI_RX_IIR(pipe);
  2343. temp = I915_READ(reg);
  2344. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2345. if (temp & FDI_RX_SYMBOL_LOCK) {
  2346. I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
  2347. DRM_DEBUG_KMS("FDI train 2 done.\n");
  2348. break;
  2349. }
  2350. }
  2351. if (i == 4)
  2352. DRM_ERROR("FDI train 2 fail!\n");
  2353. DRM_DEBUG_KMS("FDI train done.\n");
  2354. }
  2355. static void ironlake_fdi_pll_enable(struct drm_crtc *crtc)
  2356. {
  2357. struct drm_device *dev = crtc->dev;
  2358. struct drm_i915_private *dev_priv = dev->dev_private;
  2359. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2360. int pipe = intel_crtc->pipe;
  2361. u32 reg, temp;
  2362. /* Write the TU size bits so error detection works */
  2363. I915_WRITE(FDI_RX_TUSIZE1(pipe),
  2364. I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
  2365. /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
  2366. reg = FDI_RX_CTL(pipe);
  2367. temp = I915_READ(reg);
  2368. temp &= ~((0x7 << 19) | (0x7 << 16));
  2369. temp |= (intel_crtc->fdi_lanes - 1) << 19;
  2370. temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
  2371. I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
  2372. POSTING_READ(reg);
  2373. udelay(200);
  2374. /* Switch from Rawclk to PCDclk */
  2375. temp = I915_READ(reg);
  2376. I915_WRITE(reg, temp | FDI_PCDCLK);
  2377. POSTING_READ(reg);
  2378. udelay(200);
  2379. /* Enable CPU FDI TX PLL, always on for Ironlake */
  2380. reg = FDI_TX_CTL(pipe);
  2381. temp = I915_READ(reg);
  2382. if ((temp & FDI_TX_PLL_ENABLE) == 0) {
  2383. I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
  2384. POSTING_READ(reg);
  2385. udelay(100);
  2386. }
  2387. }
  2388. static void cpt_phase_pointer_disable(struct drm_device *dev, int pipe)
  2389. {
  2390. struct drm_i915_private *dev_priv = dev->dev_private;
  2391. u32 flags = I915_READ(SOUTH_CHICKEN1);
  2392. flags &= ~(FDI_PHASE_SYNC_EN(pipe));
  2393. I915_WRITE(SOUTH_CHICKEN1, flags); /* once to disable... */
  2394. flags &= ~(FDI_PHASE_SYNC_OVR(pipe));
  2395. I915_WRITE(SOUTH_CHICKEN1, flags); /* then again to lock */
  2396. POSTING_READ(SOUTH_CHICKEN1);
  2397. }
  2398. static void ironlake_fdi_disable(struct drm_crtc *crtc)
  2399. {
  2400. struct drm_device *dev = crtc->dev;
  2401. struct drm_i915_private *dev_priv = dev->dev_private;
  2402. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2403. int pipe = intel_crtc->pipe;
  2404. u32 reg, temp;
  2405. /* disable CPU FDI tx and PCH FDI rx */
  2406. reg = FDI_TX_CTL(pipe);
  2407. temp = I915_READ(reg);
  2408. I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
  2409. POSTING_READ(reg);
  2410. reg = FDI_RX_CTL(pipe);
  2411. temp = I915_READ(reg);
  2412. temp &= ~(0x7 << 16);
  2413. temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
  2414. I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
  2415. POSTING_READ(reg);
  2416. udelay(100);
  2417. /* Ironlake workaround, disable clock pointer after downing FDI */
  2418. if (HAS_PCH_IBX(dev)) {
  2419. I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
  2420. I915_WRITE(FDI_RX_CHICKEN(pipe),
  2421. I915_READ(FDI_RX_CHICKEN(pipe) &
  2422. ~FDI_RX_PHASE_SYNC_POINTER_EN));
  2423. } else if (HAS_PCH_CPT(dev)) {
  2424. cpt_phase_pointer_disable(dev, pipe);
  2425. }
  2426. /* still set train pattern 1 */
  2427. reg = FDI_TX_CTL(pipe);
  2428. temp = I915_READ(reg);
  2429. temp &= ~FDI_LINK_TRAIN_NONE;
  2430. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2431. I915_WRITE(reg, temp);
  2432. reg = FDI_RX_CTL(pipe);
  2433. temp = I915_READ(reg);
  2434. if (HAS_PCH_CPT(dev)) {
  2435. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2436. temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
  2437. } else {
  2438. temp &= ~FDI_LINK_TRAIN_NONE;
  2439. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2440. }
  2441. /* BPC in FDI rx is consistent with that in PIPECONF */
  2442. temp &= ~(0x07 << 16);
  2443. temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
  2444. I915_WRITE(reg, temp);
  2445. POSTING_READ(reg);
  2446. udelay(100);
  2447. }
  2448. /*
  2449. * When we disable a pipe, we need to clear any pending scanline wait events
  2450. * to avoid hanging the ring, which we assume we are waiting on.
  2451. */
  2452. static void intel_clear_scanline_wait(struct drm_device *dev)
  2453. {
  2454. struct drm_i915_private *dev_priv = dev->dev_private;
  2455. struct intel_ring_buffer *ring;
  2456. u32 tmp;
  2457. if (IS_GEN2(dev))
  2458. /* Can't break the hang on i8xx */
  2459. return;
  2460. ring = LP_RING(dev_priv);
  2461. tmp = I915_READ_CTL(ring);
  2462. if (tmp & RING_WAIT)
  2463. I915_WRITE_CTL(ring, tmp);
  2464. }
  2465. static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
  2466. {
  2467. struct drm_i915_gem_object *obj;
  2468. struct drm_i915_private *dev_priv;
  2469. if (crtc->fb == NULL)
  2470. return;
  2471. obj = to_intel_framebuffer(crtc->fb)->obj;
  2472. dev_priv = crtc->dev->dev_private;
  2473. wait_event(dev_priv->pending_flip_queue,
  2474. atomic_read(&obj->pending_flip) == 0);
  2475. }
  2476. static bool intel_crtc_driving_pch(struct drm_crtc *crtc)
  2477. {
  2478. struct drm_device *dev = crtc->dev;
  2479. struct drm_mode_config *mode_config = &dev->mode_config;
  2480. struct intel_encoder *encoder;
  2481. /*
  2482. * If there's a non-PCH eDP on this crtc, it must be DP_A, and that
  2483. * must be driven by its own crtc; no sharing is possible.
  2484. */
  2485. list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
  2486. if (encoder->base.crtc != crtc)
  2487. continue;
  2488. switch (encoder->type) {
  2489. case INTEL_OUTPUT_EDP:
  2490. if (!intel_encoder_is_pch_edp(&encoder->base))
  2491. return false;
  2492. continue;
  2493. }
  2494. }
  2495. return true;
  2496. }
  2497. /*
  2498. * Enable PCH resources required for PCH ports:
  2499. * - PCH PLLs
  2500. * - FDI training & RX/TX
  2501. * - update transcoder timings
  2502. * - DP transcoding bits
  2503. * - transcoder
  2504. */
  2505. static void ironlake_pch_enable(struct drm_crtc *crtc)
  2506. {
  2507. struct drm_device *dev = crtc->dev;
  2508. struct drm_i915_private *dev_priv = dev->dev_private;
  2509. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2510. int pipe = intel_crtc->pipe;
  2511. u32 reg, temp, transc_sel;
  2512. /* For PCH output, training FDI link */
  2513. dev_priv->display.fdi_link_train(crtc);
  2514. intel_enable_pch_pll(dev_priv, pipe);
  2515. if (HAS_PCH_CPT(dev)) {
  2516. transc_sel = intel_crtc->use_pll_a ? TRANSC_DPLLA_SEL :
  2517. TRANSC_DPLLB_SEL;
  2518. /* Be sure PCH DPLL SEL is set */
  2519. temp = I915_READ(PCH_DPLL_SEL);
  2520. if (pipe == 0 && (temp & TRANSA_DPLL_ENABLE) == 0)
  2521. temp |= (TRANSA_DPLL_ENABLE | TRANSA_DPLLA_SEL);
  2522. else if (pipe == 1 && (temp & TRANSB_DPLL_ENABLE) == 0)
  2523. temp |= (TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
  2524. else if (pipe == 2 && (temp & TRANSC_DPLL_ENABLE) == 0)
  2525. temp |= (TRANSC_DPLL_ENABLE | transc_sel);
  2526. I915_WRITE(PCH_DPLL_SEL, temp);
  2527. }
  2528. /* set transcoder timing, panel must allow it */
  2529. assert_panel_unlocked(dev_priv, pipe);
  2530. I915_WRITE(TRANS_HTOTAL(pipe), I915_READ(HTOTAL(pipe)));
  2531. I915_WRITE(TRANS_HBLANK(pipe), I915_READ(HBLANK(pipe)));
  2532. I915_WRITE(TRANS_HSYNC(pipe), I915_READ(HSYNC(pipe)));
  2533. I915_WRITE(TRANS_VTOTAL(pipe), I915_READ(VTOTAL(pipe)));
  2534. I915_WRITE(TRANS_VBLANK(pipe), I915_READ(VBLANK(pipe)));
  2535. I915_WRITE(TRANS_VSYNC(pipe), I915_READ(VSYNC(pipe)));
  2536. intel_fdi_normal_train(crtc);
  2537. /* For PCH DP, enable TRANS_DP_CTL */
  2538. if (HAS_PCH_CPT(dev) &&
  2539. intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
  2540. u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) >> 5;
  2541. reg = TRANS_DP_CTL(pipe);
  2542. temp = I915_READ(reg);
  2543. temp &= ~(TRANS_DP_PORT_SEL_MASK |
  2544. TRANS_DP_SYNC_MASK |
  2545. TRANS_DP_BPC_MASK);
  2546. temp |= (TRANS_DP_OUTPUT_ENABLE |
  2547. TRANS_DP_ENH_FRAMING);
  2548. temp |= bpc << 9; /* same format but at 11:9 */
  2549. if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
  2550. temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
  2551. if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
  2552. temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
  2553. switch (intel_trans_dp_port_sel(crtc)) {
  2554. case PCH_DP_B:
  2555. temp |= TRANS_DP_PORT_SEL_B;
  2556. break;
  2557. case PCH_DP_C:
  2558. temp |= TRANS_DP_PORT_SEL_C;
  2559. break;
  2560. case PCH_DP_D:
  2561. temp |= TRANS_DP_PORT_SEL_D;
  2562. break;
  2563. default:
  2564. DRM_DEBUG_KMS("Wrong PCH DP port return. Guess port B\n");
  2565. temp |= TRANS_DP_PORT_SEL_B;
  2566. break;
  2567. }
  2568. I915_WRITE(reg, temp);
  2569. }
  2570. intel_enable_transcoder(dev_priv, pipe);
  2571. }
  2572. static void ironlake_crtc_enable(struct drm_crtc *crtc)
  2573. {
  2574. struct drm_device *dev = crtc->dev;
  2575. struct drm_i915_private *dev_priv = dev->dev_private;
  2576. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2577. int pipe = intel_crtc->pipe;
  2578. int plane = intel_crtc->plane;
  2579. u32 temp;
  2580. bool is_pch_port;
  2581. if (intel_crtc->active)
  2582. return;
  2583. intel_crtc->active = true;
  2584. intel_update_watermarks(dev);
  2585. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  2586. temp = I915_READ(PCH_LVDS);
  2587. if ((temp & LVDS_PORT_EN) == 0)
  2588. I915_WRITE(PCH_LVDS, temp | LVDS_PORT_EN);
  2589. }
  2590. is_pch_port = intel_crtc_driving_pch(crtc);
  2591. if (is_pch_port)
  2592. ironlake_fdi_pll_enable(crtc);
  2593. else
  2594. ironlake_fdi_disable(crtc);
  2595. /* Enable panel fitting for LVDS */
  2596. if (dev_priv->pch_pf_size &&
  2597. (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) || HAS_eDP)) {
  2598. /* Force use of hard-coded filter coefficients
  2599. * as some pre-programmed values are broken,
  2600. * e.g. x201.
  2601. */
  2602. I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
  2603. I915_WRITE(PF_WIN_POS(pipe), dev_priv->pch_pf_pos);
  2604. I915_WRITE(PF_WIN_SZ(pipe), dev_priv->pch_pf_size);
  2605. }
  2606. /*
  2607. * On ILK+ LUT must be loaded before the pipe is running but with
  2608. * clocks enabled
  2609. */
  2610. intel_crtc_load_lut(crtc);
  2611. intel_enable_pipe(dev_priv, pipe, is_pch_port);
  2612. intel_enable_plane(dev_priv, plane, pipe);
  2613. if (is_pch_port)
  2614. ironlake_pch_enable(crtc);
  2615. mutex_lock(&dev->struct_mutex);
  2616. intel_update_fbc(dev);
  2617. mutex_unlock(&dev->struct_mutex);
  2618. intel_crtc_update_cursor(crtc, true);
  2619. }
  2620. static void ironlake_crtc_disable(struct drm_crtc *crtc)
  2621. {
  2622. struct drm_device *dev = crtc->dev;
  2623. struct drm_i915_private *dev_priv = dev->dev_private;
  2624. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2625. int pipe = intel_crtc->pipe;
  2626. int plane = intel_crtc->plane;
  2627. u32 reg, temp;
  2628. if (!intel_crtc->active)
  2629. return;
  2630. intel_crtc_wait_for_pending_flips(crtc);
  2631. drm_vblank_off(dev, pipe);
  2632. intel_crtc_update_cursor(crtc, false);
  2633. intel_disable_plane(dev_priv, plane, pipe);
  2634. if (dev_priv->cfb_plane == plane)
  2635. intel_disable_fbc(dev);
  2636. intel_disable_pipe(dev_priv, pipe);
  2637. /* Disable PF */
  2638. I915_WRITE(PF_CTL(pipe), 0);
  2639. I915_WRITE(PF_WIN_SZ(pipe), 0);
  2640. ironlake_fdi_disable(crtc);
  2641. /* This is a horrible layering violation; we should be doing this in
  2642. * the connector/encoder ->prepare instead, but we don't always have
  2643. * enough information there about the config to know whether it will
  2644. * actually be necessary or just cause undesired flicker.
  2645. */
  2646. intel_disable_pch_ports(dev_priv, pipe);
  2647. intel_disable_transcoder(dev_priv, pipe);
  2648. if (HAS_PCH_CPT(dev)) {
  2649. /* disable TRANS_DP_CTL */
  2650. reg = TRANS_DP_CTL(pipe);
  2651. temp = I915_READ(reg);
  2652. temp &= ~(TRANS_DP_OUTPUT_ENABLE | TRANS_DP_PORT_SEL_MASK);
  2653. temp |= TRANS_DP_PORT_SEL_NONE;
  2654. I915_WRITE(reg, temp);
  2655. /* disable DPLL_SEL */
  2656. temp = I915_READ(PCH_DPLL_SEL);
  2657. switch (pipe) {
  2658. case 0:
  2659. temp &= ~(TRANSA_DPLL_ENABLE | TRANSA_DPLLA_SEL);
  2660. break;
  2661. case 1:
  2662. temp &= ~(TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
  2663. break;
  2664. case 2:
  2665. /* C shares PLL A or B */
  2666. temp &= ~(TRANSC_DPLL_ENABLE | TRANSB_DPLLB_SEL);
  2667. break;
  2668. default:
  2669. BUG(); /* wtf */
  2670. }
  2671. I915_WRITE(PCH_DPLL_SEL, temp);
  2672. }
  2673. /* disable PCH DPLL */
  2674. if (!intel_crtc->no_pll)
  2675. intel_disable_pch_pll(dev_priv, pipe);
  2676. /* Switch from PCDclk to Rawclk */
  2677. reg = FDI_RX_CTL(pipe);
  2678. temp = I915_READ(reg);
  2679. I915_WRITE(reg, temp & ~FDI_PCDCLK);
  2680. /* Disable CPU FDI TX PLL */
  2681. reg = FDI_TX_CTL(pipe);
  2682. temp = I915_READ(reg);
  2683. I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
  2684. POSTING_READ(reg);
  2685. udelay(100);
  2686. reg = FDI_RX_CTL(pipe);
  2687. temp = I915_READ(reg);
  2688. I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
  2689. /* Wait for the clocks to turn off. */
  2690. POSTING_READ(reg);
  2691. udelay(100);
  2692. intel_crtc->active = false;
  2693. intel_update_watermarks(dev);
  2694. mutex_lock(&dev->struct_mutex);
  2695. intel_update_fbc(dev);
  2696. intel_clear_scanline_wait(dev);
  2697. mutex_unlock(&dev->struct_mutex);
  2698. }
  2699. static void ironlake_crtc_dpms(struct drm_crtc *crtc, int mode)
  2700. {
  2701. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2702. int pipe = intel_crtc->pipe;
  2703. int plane = intel_crtc->plane;
  2704. /* XXX: When our outputs are all unaware of DPMS modes other than off
  2705. * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
  2706. */
  2707. switch (mode) {
  2708. case DRM_MODE_DPMS_ON:
  2709. case DRM_MODE_DPMS_STANDBY:
  2710. case DRM_MODE_DPMS_SUSPEND:
  2711. DRM_DEBUG_KMS("crtc %d/%d dpms on\n", pipe, plane);
  2712. ironlake_crtc_enable(crtc);
  2713. break;
  2714. case DRM_MODE_DPMS_OFF:
  2715. DRM_DEBUG_KMS("crtc %d/%d dpms off\n", pipe, plane);
  2716. ironlake_crtc_disable(crtc);
  2717. break;
  2718. }
  2719. }
  2720. static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
  2721. {
  2722. if (!enable && intel_crtc->overlay) {
  2723. struct drm_device *dev = intel_crtc->base.dev;
  2724. struct drm_i915_private *dev_priv = dev->dev_private;
  2725. mutex_lock(&dev->struct_mutex);
  2726. dev_priv->mm.interruptible = false;
  2727. (void) intel_overlay_switch_off(intel_crtc->overlay);
  2728. dev_priv->mm.interruptible = true;
  2729. mutex_unlock(&dev->struct_mutex);
  2730. }
  2731. /* Let userspace switch the overlay on again. In most cases userspace
  2732. * has to recompute where to put it anyway.
  2733. */
  2734. }
  2735. static void i9xx_crtc_enable(struct drm_crtc *crtc)
  2736. {
  2737. struct drm_device *dev = crtc->dev;
  2738. struct drm_i915_private *dev_priv = dev->dev_private;
  2739. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2740. int pipe = intel_crtc->pipe;
  2741. int plane = intel_crtc->plane;
  2742. if (intel_crtc->active)
  2743. return;
  2744. intel_crtc->active = true;
  2745. intel_update_watermarks(dev);
  2746. intel_enable_pll(dev_priv, pipe);
  2747. intel_enable_pipe(dev_priv, pipe, false);
  2748. intel_enable_plane(dev_priv, plane, pipe);
  2749. intel_crtc_load_lut(crtc);
  2750. intel_update_fbc(dev);
  2751. /* Give the overlay scaler a chance to enable if it's on this pipe */
  2752. intel_crtc_dpms_overlay(intel_crtc, true);
  2753. intel_crtc_update_cursor(crtc, true);
  2754. }
  2755. static void i9xx_crtc_disable(struct drm_crtc *crtc)
  2756. {
  2757. struct drm_device *dev = crtc->dev;
  2758. struct drm_i915_private *dev_priv = dev->dev_private;
  2759. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2760. int pipe = intel_crtc->pipe;
  2761. int plane = intel_crtc->plane;
  2762. if (!intel_crtc->active)
  2763. return;
  2764. /* Give the overlay scaler a chance to disable if it's on this pipe */
  2765. intel_crtc_wait_for_pending_flips(crtc);
  2766. drm_vblank_off(dev, pipe);
  2767. intel_crtc_dpms_overlay(intel_crtc, false);
  2768. intel_crtc_update_cursor(crtc, false);
  2769. if (dev_priv->cfb_plane == plane)
  2770. intel_disable_fbc(dev);
  2771. intel_disable_plane(dev_priv, plane, pipe);
  2772. intel_disable_pipe(dev_priv, pipe);
  2773. intel_disable_pll(dev_priv, pipe);
  2774. intel_crtc->active = false;
  2775. intel_update_fbc(dev);
  2776. intel_update_watermarks(dev);
  2777. intel_clear_scanline_wait(dev);
  2778. }
  2779. static void i9xx_crtc_dpms(struct drm_crtc *crtc, int mode)
  2780. {
  2781. /* XXX: When our outputs are all unaware of DPMS modes other than off
  2782. * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
  2783. */
  2784. switch (mode) {
  2785. case DRM_MODE_DPMS_ON:
  2786. case DRM_MODE_DPMS_STANDBY:
  2787. case DRM_MODE_DPMS_SUSPEND:
  2788. i9xx_crtc_enable(crtc);
  2789. break;
  2790. case DRM_MODE_DPMS_OFF:
  2791. i9xx_crtc_disable(crtc);
  2792. break;
  2793. }
  2794. }
  2795. /**
  2796. * Sets the power management mode of the pipe and plane.
  2797. */
  2798. static void intel_crtc_dpms(struct drm_crtc *crtc, int mode)
  2799. {
  2800. struct drm_device *dev = crtc->dev;
  2801. struct drm_i915_private *dev_priv = dev->dev_private;
  2802. struct drm_i915_master_private *master_priv;
  2803. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2804. int pipe = intel_crtc->pipe;
  2805. bool enabled;
  2806. if (intel_crtc->dpms_mode == mode)
  2807. return;
  2808. intel_crtc->dpms_mode = mode;
  2809. dev_priv->display.dpms(crtc, mode);
  2810. if (!dev->primary->master)
  2811. return;
  2812. master_priv = dev->primary->master->driver_priv;
  2813. if (!master_priv->sarea_priv)
  2814. return;
  2815. enabled = crtc->enabled && mode != DRM_MODE_DPMS_OFF;
  2816. switch (pipe) {
  2817. case 0:
  2818. master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
  2819. master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
  2820. break;
  2821. case 1:
  2822. master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
  2823. master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
  2824. break;
  2825. default:
  2826. DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
  2827. break;
  2828. }
  2829. }
  2830. static void intel_crtc_disable(struct drm_crtc *crtc)
  2831. {
  2832. struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
  2833. struct drm_device *dev = crtc->dev;
  2834. crtc_funcs->dpms(crtc, DRM_MODE_DPMS_OFF);
  2835. if (crtc->fb) {
  2836. mutex_lock(&dev->struct_mutex);
  2837. i915_gem_object_unpin(to_intel_framebuffer(crtc->fb)->obj);
  2838. mutex_unlock(&dev->struct_mutex);
  2839. }
  2840. }
  2841. /* Prepare for a mode set.
  2842. *
  2843. * Note we could be a lot smarter here. We need to figure out which outputs
  2844. * will be enabled, which disabled (in short, how the config will changes)
  2845. * and perform the minimum necessary steps to accomplish that, e.g. updating
  2846. * watermarks, FBC configuration, making sure PLLs are programmed correctly,
  2847. * panel fitting is in the proper state, etc.
  2848. */
  2849. static void i9xx_crtc_prepare(struct drm_crtc *crtc)
  2850. {
  2851. i9xx_crtc_disable(crtc);
  2852. }
  2853. static void i9xx_crtc_commit(struct drm_crtc *crtc)
  2854. {
  2855. i9xx_crtc_enable(crtc);
  2856. }
  2857. static void ironlake_crtc_prepare(struct drm_crtc *crtc)
  2858. {
  2859. ironlake_crtc_disable(crtc);
  2860. }
  2861. static void ironlake_crtc_commit(struct drm_crtc *crtc)
  2862. {
  2863. ironlake_crtc_enable(crtc);
  2864. }
  2865. void intel_encoder_prepare(struct drm_encoder *encoder)
  2866. {
  2867. struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
  2868. /* lvds has its own version of prepare see intel_lvds_prepare */
  2869. encoder_funcs->dpms(encoder, DRM_MODE_DPMS_OFF);
  2870. }
  2871. void intel_encoder_commit(struct drm_encoder *encoder)
  2872. {
  2873. struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
  2874. /* lvds has its own version of commit see intel_lvds_commit */
  2875. encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
  2876. }
  2877. void intel_encoder_destroy(struct drm_encoder *encoder)
  2878. {
  2879. struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
  2880. drm_encoder_cleanup(encoder);
  2881. kfree(intel_encoder);
  2882. }
  2883. static bool intel_crtc_mode_fixup(struct drm_crtc *crtc,
  2884. struct drm_display_mode *mode,
  2885. struct drm_display_mode *adjusted_mode)
  2886. {
  2887. struct drm_device *dev = crtc->dev;
  2888. if (HAS_PCH_SPLIT(dev)) {
  2889. /* FDI link clock is fixed at 2.7G */
  2890. if (mode->clock * 3 > IRONLAKE_FDI_FREQ * 4)
  2891. return false;
  2892. }
  2893. /* XXX some encoders set the crtcinfo, others don't.
  2894. * Obviously we need some form of conflict resolution here...
  2895. */
  2896. if (adjusted_mode->crtc_htotal == 0)
  2897. drm_mode_set_crtcinfo(adjusted_mode, 0);
  2898. return true;
  2899. }
  2900. static int i945_get_display_clock_speed(struct drm_device *dev)
  2901. {
  2902. return 400000;
  2903. }
  2904. static int i915_get_display_clock_speed(struct drm_device *dev)
  2905. {
  2906. return 333000;
  2907. }
  2908. static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
  2909. {
  2910. return 200000;
  2911. }
  2912. static int i915gm_get_display_clock_speed(struct drm_device *dev)
  2913. {
  2914. u16 gcfgc = 0;
  2915. pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
  2916. if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
  2917. return 133000;
  2918. else {
  2919. switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
  2920. case GC_DISPLAY_CLOCK_333_MHZ:
  2921. return 333000;
  2922. default:
  2923. case GC_DISPLAY_CLOCK_190_200_MHZ:
  2924. return 190000;
  2925. }
  2926. }
  2927. }
  2928. static int i865_get_display_clock_speed(struct drm_device *dev)
  2929. {
  2930. return 266000;
  2931. }
  2932. static int i855_get_display_clock_speed(struct drm_device *dev)
  2933. {
  2934. u16 hpllcc = 0;
  2935. /* Assume that the hardware is in the high speed state. This
  2936. * should be the default.
  2937. */
  2938. switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
  2939. case GC_CLOCK_133_200:
  2940. case GC_CLOCK_100_200:
  2941. return 200000;
  2942. case GC_CLOCK_166_250:
  2943. return 250000;
  2944. case GC_CLOCK_100_133:
  2945. return 133000;
  2946. }
  2947. /* Shouldn't happen */
  2948. return 0;
  2949. }
  2950. static int i830_get_display_clock_speed(struct drm_device *dev)
  2951. {
  2952. return 133000;
  2953. }
  2954. struct fdi_m_n {
  2955. u32 tu;
  2956. u32 gmch_m;
  2957. u32 gmch_n;
  2958. u32 link_m;
  2959. u32 link_n;
  2960. };
  2961. static void
  2962. fdi_reduce_ratio(u32 *num, u32 *den)
  2963. {
  2964. while (*num > 0xffffff || *den > 0xffffff) {
  2965. *num >>= 1;
  2966. *den >>= 1;
  2967. }
  2968. }
  2969. static void
  2970. ironlake_compute_m_n(int bits_per_pixel, int nlanes, int pixel_clock,
  2971. int link_clock, struct fdi_m_n *m_n)
  2972. {
  2973. m_n->tu = 64; /* default size */
  2974. /* BUG_ON(pixel_clock > INT_MAX / 36); */
  2975. m_n->gmch_m = bits_per_pixel * pixel_clock;
  2976. m_n->gmch_n = link_clock * nlanes * 8;
  2977. fdi_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
  2978. m_n->link_m = pixel_clock;
  2979. m_n->link_n = link_clock;
  2980. fdi_reduce_ratio(&m_n->link_m, &m_n->link_n);
  2981. }
  2982. struct intel_watermark_params {
  2983. unsigned long fifo_size;
  2984. unsigned long max_wm;
  2985. unsigned long default_wm;
  2986. unsigned long guard_size;
  2987. unsigned long cacheline_size;
  2988. };
  2989. /* Pineview has different values for various configs */
  2990. static const struct intel_watermark_params pineview_display_wm = {
  2991. PINEVIEW_DISPLAY_FIFO,
  2992. PINEVIEW_MAX_WM,
  2993. PINEVIEW_DFT_WM,
  2994. PINEVIEW_GUARD_WM,
  2995. PINEVIEW_FIFO_LINE_SIZE
  2996. };
  2997. static const struct intel_watermark_params pineview_display_hplloff_wm = {
  2998. PINEVIEW_DISPLAY_FIFO,
  2999. PINEVIEW_MAX_WM,
  3000. PINEVIEW_DFT_HPLLOFF_WM,
  3001. PINEVIEW_GUARD_WM,
  3002. PINEVIEW_FIFO_LINE_SIZE
  3003. };
  3004. static const struct intel_watermark_params pineview_cursor_wm = {
  3005. PINEVIEW_CURSOR_FIFO,
  3006. PINEVIEW_CURSOR_MAX_WM,
  3007. PINEVIEW_CURSOR_DFT_WM,
  3008. PINEVIEW_CURSOR_GUARD_WM,
  3009. PINEVIEW_FIFO_LINE_SIZE,
  3010. };
  3011. static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
  3012. PINEVIEW_CURSOR_FIFO,
  3013. PINEVIEW_CURSOR_MAX_WM,
  3014. PINEVIEW_CURSOR_DFT_WM,
  3015. PINEVIEW_CURSOR_GUARD_WM,
  3016. PINEVIEW_FIFO_LINE_SIZE
  3017. };
  3018. static const struct intel_watermark_params g4x_wm_info = {
  3019. G4X_FIFO_SIZE,
  3020. G4X_MAX_WM,
  3021. G4X_MAX_WM,
  3022. 2,
  3023. G4X_FIFO_LINE_SIZE,
  3024. };
  3025. static const struct intel_watermark_params g4x_cursor_wm_info = {
  3026. I965_CURSOR_FIFO,
  3027. I965_CURSOR_MAX_WM,
  3028. I965_CURSOR_DFT_WM,
  3029. 2,
  3030. G4X_FIFO_LINE_SIZE,
  3031. };
  3032. static const struct intel_watermark_params i965_cursor_wm_info = {
  3033. I965_CURSOR_FIFO,
  3034. I965_CURSOR_MAX_WM,
  3035. I965_CURSOR_DFT_WM,
  3036. 2,
  3037. I915_FIFO_LINE_SIZE,
  3038. };
  3039. static const struct intel_watermark_params i945_wm_info = {
  3040. I945_FIFO_SIZE,
  3041. I915_MAX_WM,
  3042. 1,
  3043. 2,
  3044. I915_FIFO_LINE_SIZE
  3045. };
  3046. static const struct intel_watermark_params i915_wm_info = {
  3047. I915_FIFO_SIZE,
  3048. I915_MAX_WM,
  3049. 1,
  3050. 2,
  3051. I915_FIFO_LINE_SIZE
  3052. };
  3053. static const struct intel_watermark_params i855_wm_info = {
  3054. I855GM_FIFO_SIZE,
  3055. I915_MAX_WM,
  3056. 1,
  3057. 2,
  3058. I830_FIFO_LINE_SIZE
  3059. };
  3060. static const struct intel_watermark_params i830_wm_info = {
  3061. I830_FIFO_SIZE,
  3062. I915_MAX_WM,
  3063. 1,
  3064. 2,
  3065. I830_FIFO_LINE_SIZE
  3066. };
  3067. static const struct intel_watermark_params ironlake_display_wm_info = {
  3068. ILK_DISPLAY_FIFO,
  3069. ILK_DISPLAY_MAXWM,
  3070. ILK_DISPLAY_DFTWM,
  3071. 2,
  3072. ILK_FIFO_LINE_SIZE
  3073. };
  3074. static const struct intel_watermark_params ironlake_cursor_wm_info = {
  3075. ILK_CURSOR_FIFO,
  3076. ILK_CURSOR_MAXWM,
  3077. ILK_CURSOR_DFTWM,
  3078. 2,
  3079. ILK_FIFO_LINE_SIZE
  3080. };
  3081. static const struct intel_watermark_params ironlake_display_srwm_info = {
  3082. ILK_DISPLAY_SR_FIFO,
  3083. ILK_DISPLAY_MAX_SRWM,
  3084. ILK_DISPLAY_DFT_SRWM,
  3085. 2,
  3086. ILK_FIFO_LINE_SIZE
  3087. };
  3088. static const struct intel_watermark_params ironlake_cursor_srwm_info = {
  3089. ILK_CURSOR_SR_FIFO,
  3090. ILK_CURSOR_MAX_SRWM,
  3091. ILK_CURSOR_DFT_SRWM,
  3092. 2,
  3093. ILK_FIFO_LINE_SIZE
  3094. };
  3095. static const struct intel_watermark_params sandybridge_display_wm_info = {
  3096. SNB_DISPLAY_FIFO,
  3097. SNB_DISPLAY_MAXWM,
  3098. SNB_DISPLAY_DFTWM,
  3099. 2,
  3100. SNB_FIFO_LINE_SIZE
  3101. };
  3102. static const struct intel_watermark_params sandybridge_cursor_wm_info = {
  3103. SNB_CURSOR_FIFO,
  3104. SNB_CURSOR_MAXWM,
  3105. SNB_CURSOR_DFTWM,
  3106. 2,
  3107. SNB_FIFO_LINE_SIZE
  3108. };
  3109. static const struct intel_watermark_params sandybridge_display_srwm_info = {
  3110. SNB_DISPLAY_SR_FIFO,
  3111. SNB_DISPLAY_MAX_SRWM,
  3112. SNB_DISPLAY_DFT_SRWM,
  3113. 2,
  3114. SNB_FIFO_LINE_SIZE
  3115. };
  3116. static const struct intel_watermark_params sandybridge_cursor_srwm_info = {
  3117. SNB_CURSOR_SR_FIFO,
  3118. SNB_CURSOR_MAX_SRWM,
  3119. SNB_CURSOR_DFT_SRWM,
  3120. 2,
  3121. SNB_FIFO_LINE_SIZE
  3122. };
  3123. /**
  3124. * intel_calculate_wm - calculate watermark level
  3125. * @clock_in_khz: pixel clock
  3126. * @wm: chip FIFO params
  3127. * @pixel_size: display pixel size
  3128. * @latency_ns: memory latency for the platform
  3129. *
  3130. * Calculate the watermark level (the level at which the display plane will
  3131. * start fetching from memory again). Each chip has a different display
  3132. * FIFO size and allocation, so the caller needs to figure that out and pass
  3133. * in the correct intel_watermark_params structure.
  3134. *
  3135. * As the pixel clock runs, the FIFO will be drained at a rate that depends
  3136. * on the pixel size. When it reaches the watermark level, it'll start
  3137. * fetching FIFO line sized based chunks from memory until the FIFO fills
  3138. * past the watermark point. If the FIFO drains completely, a FIFO underrun
  3139. * will occur, and a display engine hang could result.
  3140. */
  3141. static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
  3142. const struct intel_watermark_params *wm,
  3143. int fifo_size,
  3144. int pixel_size,
  3145. unsigned long latency_ns)
  3146. {
  3147. long entries_required, wm_size;
  3148. /*
  3149. * Note: we need to make sure we don't overflow for various clock &
  3150. * latency values.
  3151. * clocks go from a few thousand to several hundred thousand.
  3152. * latency is usually a few thousand
  3153. */
  3154. entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
  3155. 1000;
  3156. entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
  3157. DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
  3158. wm_size = fifo_size - (entries_required + wm->guard_size);
  3159. DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
  3160. /* Don't promote wm_size to unsigned... */
  3161. if (wm_size > (long)wm->max_wm)
  3162. wm_size = wm->max_wm;
  3163. if (wm_size <= 0)
  3164. wm_size = wm->default_wm;
  3165. return wm_size;
  3166. }
  3167. struct cxsr_latency {
  3168. int is_desktop;
  3169. int is_ddr3;
  3170. unsigned long fsb_freq;
  3171. unsigned long mem_freq;
  3172. unsigned long display_sr;
  3173. unsigned long display_hpll_disable;
  3174. unsigned long cursor_sr;
  3175. unsigned long cursor_hpll_disable;
  3176. };
  3177. static const struct cxsr_latency cxsr_latency_table[] = {
  3178. {1, 0, 800, 400, 3382, 33382, 3983, 33983}, /* DDR2-400 SC */
  3179. {1, 0, 800, 667, 3354, 33354, 3807, 33807}, /* DDR2-667 SC */
  3180. {1, 0, 800, 800, 3347, 33347, 3763, 33763}, /* DDR2-800 SC */
  3181. {1, 1, 800, 667, 6420, 36420, 6873, 36873}, /* DDR3-667 SC */
  3182. {1, 1, 800, 800, 5902, 35902, 6318, 36318}, /* DDR3-800 SC */
  3183. {1, 0, 667, 400, 3400, 33400, 4021, 34021}, /* DDR2-400 SC */
  3184. {1, 0, 667, 667, 3372, 33372, 3845, 33845}, /* DDR2-667 SC */
  3185. {1, 0, 667, 800, 3386, 33386, 3822, 33822}, /* DDR2-800 SC */
  3186. {1, 1, 667, 667, 6438, 36438, 6911, 36911}, /* DDR3-667 SC */
  3187. {1, 1, 667, 800, 5941, 35941, 6377, 36377}, /* DDR3-800 SC */
  3188. {1, 0, 400, 400, 3472, 33472, 4173, 34173}, /* DDR2-400 SC */
  3189. {1, 0, 400, 667, 3443, 33443, 3996, 33996}, /* DDR2-667 SC */
  3190. {1, 0, 400, 800, 3430, 33430, 3946, 33946}, /* DDR2-800 SC */
  3191. {1, 1, 400, 667, 6509, 36509, 7062, 37062}, /* DDR3-667 SC */
  3192. {1, 1, 400, 800, 5985, 35985, 6501, 36501}, /* DDR3-800 SC */
  3193. {0, 0, 800, 400, 3438, 33438, 4065, 34065}, /* DDR2-400 SC */
  3194. {0, 0, 800, 667, 3410, 33410, 3889, 33889}, /* DDR2-667 SC */
  3195. {0, 0, 800, 800, 3403, 33403, 3845, 33845}, /* DDR2-800 SC */
  3196. {0, 1, 800, 667, 6476, 36476, 6955, 36955}, /* DDR3-667 SC */
  3197. {0, 1, 800, 800, 5958, 35958, 6400, 36400}, /* DDR3-800 SC */
  3198. {0, 0, 667, 400, 3456, 33456, 4103, 34106}, /* DDR2-400 SC */
  3199. {0, 0, 667, 667, 3428, 33428, 3927, 33927}, /* DDR2-667 SC */
  3200. {0, 0, 667, 800, 3443, 33443, 3905, 33905}, /* DDR2-800 SC */
  3201. {0, 1, 667, 667, 6494, 36494, 6993, 36993}, /* DDR3-667 SC */
  3202. {0, 1, 667, 800, 5998, 35998, 6460, 36460}, /* DDR3-800 SC */
  3203. {0, 0, 400, 400, 3528, 33528, 4255, 34255}, /* DDR2-400 SC */
  3204. {0, 0, 400, 667, 3500, 33500, 4079, 34079}, /* DDR2-667 SC */
  3205. {0, 0, 400, 800, 3487, 33487, 4029, 34029}, /* DDR2-800 SC */
  3206. {0, 1, 400, 667, 6566, 36566, 7145, 37145}, /* DDR3-667 SC */
  3207. {0, 1, 400, 800, 6042, 36042, 6584, 36584}, /* DDR3-800 SC */
  3208. };
  3209. static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
  3210. int is_ddr3,
  3211. int fsb,
  3212. int mem)
  3213. {
  3214. const struct cxsr_latency *latency;
  3215. int i;
  3216. if (fsb == 0 || mem == 0)
  3217. return NULL;
  3218. for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
  3219. latency = &cxsr_latency_table[i];
  3220. if (is_desktop == latency->is_desktop &&
  3221. is_ddr3 == latency->is_ddr3 &&
  3222. fsb == latency->fsb_freq && mem == latency->mem_freq)
  3223. return latency;
  3224. }
  3225. DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
  3226. return NULL;
  3227. }
  3228. static void pineview_disable_cxsr(struct drm_device *dev)
  3229. {
  3230. struct drm_i915_private *dev_priv = dev->dev_private;
  3231. /* deactivate cxsr */
  3232. I915_WRITE(DSPFW3, I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN);
  3233. }
  3234. /*
  3235. * Latency for FIFO fetches is dependent on several factors:
  3236. * - memory configuration (speed, channels)
  3237. * - chipset
  3238. * - current MCH state
  3239. * It can be fairly high in some situations, so here we assume a fairly
  3240. * pessimal value. It's a tradeoff between extra memory fetches (if we
  3241. * set this value too high, the FIFO will fetch frequently to stay full)
  3242. * and power consumption (set it too low to save power and we might see
  3243. * FIFO underruns and display "flicker").
  3244. *
  3245. * A value of 5us seems to be a good balance; safe for very low end
  3246. * platforms but not overly aggressive on lower latency configs.
  3247. */
  3248. static const int latency_ns = 5000;
  3249. static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
  3250. {
  3251. struct drm_i915_private *dev_priv = dev->dev_private;
  3252. uint32_t dsparb = I915_READ(DSPARB);
  3253. int size;
  3254. size = dsparb & 0x7f;
  3255. if (plane)
  3256. size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
  3257. DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
  3258. plane ? "B" : "A", size);
  3259. return size;
  3260. }
  3261. static int i85x_get_fifo_size(struct drm_device *dev, int plane)
  3262. {
  3263. struct drm_i915_private *dev_priv = dev->dev_private;
  3264. uint32_t dsparb = I915_READ(DSPARB);
  3265. int size;
  3266. size = dsparb & 0x1ff;
  3267. if (plane)
  3268. size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
  3269. size >>= 1; /* Convert to cachelines */
  3270. DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
  3271. plane ? "B" : "A", size);
  3272. return size;
  3273. }
  3274. static int i845_get_fifo_size(struct drm_device *dev, int plane)
  3275. {
  3276. struct drm_i915_private *dev_priv = dev->dev_private;
  3277. uint32_t dsparb = I915_READ(DSPARB);
  3278. int size;
  3279. size = dsparb & 0x7f;
  3280. size >>= 2; /* Convert to cachelines */
  3281. DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
  3282. plane ? "B" : "A",
  3283. size);
  3284. return size;
  3285. }
  3286. static int i830_get_fifo_size(struct drm_device *dev, int plane)
  3287. {
  3288. struct drm_i915_private *dev_priv = dev->dev_private;
  3289. uint32_t dsparb = I915_READ(DSPARB);
  3290. int size;
  3291. size = dsparb & 0x7f;
  3292. size >>= 1; /* Convert to cachelines */
  3293. DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
  3294. plane ? "B" : "A", size);
  3295. return size;
  3296. }
  3297. static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
  3298. {
  3299. struct drm_crtc *crtc, *enabled = NULL;
  3300. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  3301. if (crtc->enabled && crtc->fb) {
  3302. if (enabled)
  3303. return NULL;
  3304. enabled = crtc;
  3305. }
  3306. }
  3307. return enabled;
  3308. }
  3309. static void pineview_update_wm(struct drm_device *dev)
  3310. {
  3311. struct drm_i915_private *dev_priv = dev->dev_private;
  3312. struct drm_crtc *crtc;
  3313. const struct cxsr_latency *latency;
  3314. u32 reg;
  3315. unsigned long wm;
  3316. latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
  3317. dev_priv->fsb_freq, dev_priv->mem_freq);
  3318. if (!latency) {
  3319. DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
  3320. pineview_disable_cxsr(dev);
  3321. return;
  3322. }
  3323. crtc = single_enabled_crtc(dev);
  3324. if (crtc) {
  3325. int clock = crtc->mode.clock;
  3326. int pixel_size = crtc->fb->bits_per_pixel / 8;
  3327. /* Display SR */
  3328. wm = intel_calculate_wm(clock, &pineview_display_wm,
  3329. pineview_display_wm.fifo_size,
  3330. pixel_size, latency->display_sr);
  3331. reg = I915_READ(DSPFW1);
  3332. reg &= ~DSPFW_SR_MASK;
  3333. reg |= wm << DSPFW_SR_SHIFT;
  3334. I915_WRITE(DSPFW1, reg);
  3335. DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
  3336. /* cursor SR */
  3337. wm = intel_calculate_wm(clock, &pineview_cursor_wm,
  3338. pineview_display_wm.fifo_size,
  3339. pixel_size, latency->cursor_sr);
  3340. reg = I915_READ(DSPFW3);
  3341. reg &= ~DSPFW_CURSOR_SR_MASK;
  3342. reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
  3343. I915_WRITE(DSPFW3, reg);
  3344. /* Display HPLL off SR */
  3345. wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
  3346. pineview_display_hplloff_wm.fifo_size,
  3347. pixel_size, latency->display_hpll_disable);
  3348. reg = I915_READ(DSPFW3);
  3349. reg &= ~DSPFW_HPLL_SR_MASK;
  3350. reg |= wm & DSPFW_HPLL_SR_MASK;
  3351. I915_WRITE(DSPFW3, reg);
  3352. /* cursor HPLL off SR */
  3353. wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
  3354. pineview_display_hplloff_wm.fifo_size,
  3355. pixel_size, latency->cursor_hpll_disable);
  3356. reg = I915_READ(DSPFW3);
  3357. reg &= ~DSPFW_HPLL_CURSOR_MASK;
  3358. reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
  3359. I915_WRITE(DSPFW3, reg);
  3360. DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
  3361. /* activate cxsr */
  3362. I915_WRITE(DSPFW3,
  3363. I915_READ(DSPFW3) | PINEVIEW_SELF_REFRESH_EN);
  3364. DRM_DEBUG_KMS("Self-refresh is enabled\n");
  3365. } else {
  3366. pineview_disable_cxsr(dev);
  3367. DRM_DEBUG_KMS("Self-refresh is disabled\n");
  3368. }
  3369. }
  3370. static bool g4x_compute_wm0(struct drm_device *dev,
  3371. int plane,
  3372. const struct intel_watermark_params *display,
  3373. int display_latency_ns,
  3374. const struct intel_watermark_params *cursor,
  3375. int cursor_latency_ns,
  3376. int *plane_wm,
  3377. int *cursor_wm)
  3378. {
  3379. struct drm_crtc *crtc;
  3380. int htotal, hdisplay, clock, pixel_size;
  3381. int line_time_us, line_count;
  3382. int entries, tlb_miss;
  3383. crtc = intel_get_crtc_for_plane(dev, plane);
  3384. if (crtc->fb == NULL || !crtc->enabled) {
  3385. *cursor_wm = cursor->guard_size;
  3386. *plane_wm = display->guard_size;
  3387. return false;
  3388. }
  3389. htotal = crtc->mode.htotal;
  3390. hdisplay = crtc->mode.hdisplay;
  3391. clock = crtc->mode.clock;
  3392. pixel_size = crtc->fb->bits_per_pixel / 8;
  3393. /* Use the small buffer method to calculate plane watermark */
  3394. entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
  3395. tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
  3396. if (tlb_miss > 0)
  3397. entries += tlb_miss;
  3398. entries = DIV_ROUND_UP(entries, display->cacheline_size);
  3399. *plane_wm = entries + display->guard_size;
  3400. if (*plane_wm > (int)display->max_wm)
  3401. *plane_wm = display->max_wm;
  3402. /* Use the large buffer method to calculate cursor watermark */
  3403. line_time_us = ((htotal * 1000) / clock);
  3404. line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
  3405. entries = line_count * 64 * pixel_size;
  3406. tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
  3407. if (tlb_miss > 0)
  3408. entries += tlb_miss;
  3409. entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
  3410. *cursor_wm = entries + cursor->guard_size;
  3411. if (*cursor_wm > (int)cursor->max_wm)
  3412. *cursor_wm = (int)cursor->max_wm;
  3413. return true;
  3414. }
  3415. /*
  3416. * Check the wm result.
  3417. *
  3418. * If any calculated watermark values is larger than the maximum value that
  3419. * can be programmed into the associated watermark register, that watermark
  3420. * must be disabled.
  3421. */
  3422. static bool g4x_check_srwm(struct drm_device *dev,
  3423. int display_wm, int cursor_wm,
  3424. const struct intel_watermark_params *display,
  3425. const struct intel_watermark_params *cursor)
  3426. {
  3427. DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
  3428. display_wm, cursor_wm);
  3429. if (display_wm > display->max_wm) {
  3430. DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
  3431. display_wm, display->max_wm);
  3432. return false;
  3433. }
  3434. if (cursor_wm > cursor->max_wm) {
  3435. DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
  3436. cursor_wm, cursor->max_wm);
  3437. return false;
  3438. }
  3439. if (!(display_wm || cursor_wm)) {
  3440. DRM_DEBUG_KMS("SR latency is 0, disabling\n");
  3441. return false;
  3442. }
  3443. return true;
  3444. }
  3445. static bool g4x_compute_srwm(struct drm_device *dev,
  3446. int plane,
  3447. int latency_ns,
  3448. const struct intel_watermark_params *display,
  3449. const struct intel_watermark_params *cursor,
  3450. int *display_wm, int *cursor_wm)
  3451. {
  3452. struct drm_crtc *crtc;
  3453. int hdisplay, htotal, pixel_size, clock;
  3454. unsigned long line_time_us;
  3455. int line_count, line_size;
  3456. int small, large;
  3457. int entries;
  3458. if (!latency_ns) {
  3459. *display_wm = *cursor_wm = 0;
  3460. return false;
  3461. }
  3462. crtc = intel_get_crtc_for_plane(dev, plane);
  3463. hdisplay = crtc->mode.hdisplay;
  3464. htotal = crtc->mode.htotal;
  3465. clock = crtc->mode.clock;
  3466. pixel_size = crtc->fb->bits_per_pixel / 8;
  3467. line_time_us = (htotal * 1000) / clock;
  3468. line_count = (latency_ns / line_time_us + 1000) / 1000;
  3469. line_size = hdisplay * pixel_size;
  3470. /* Use the minimum of the small and large buffer method for primary */
  3471. small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
  3472. large = line_count * line_size;
  3473. entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
  3474. *display_wm = entries + display->guard_size;
  3475. /* calculate the self-refresh watermark for display cursor */
  3476. entries = line_count * pixel_size * 64;
  3477. entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
  3478. *cursor_wm = entries + cursor->guard_size;
  3479. return g4x_check_srwm(dev,
  3480. *display_wm, *cursor_wm,
  3481. display, cursor);
  3482. }
  3483. #define single_plane_enabled(mask) is_power_of_2(mask)
  3484. static void g4x_update_wm(struct drm_device *dev)
  3485. {
  3486. static const int sr_latency_ns = 12000;
  3487. struct drm_i915_private *dev_priv = dev->dev_private;
  3488. int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
  3489. int plane_sr, cursor_sr;
  3490. unsigned int enabled = 0;
  3491. if (g4x_compute_wm0(dev, 0,
  3492. &g4x_wm_info, latency_ns,
  3493. &g4x_cursor_wm_info, latency_ns,
  3494. &planea_wm, &cursora_wm))
  3495. enabled |= 1;
  3496. if (g4x_compute_wm0(dev, 1,
  3497. &g4x_wm_info, latency_ns,
  3498. &g4x_cursor_wm_info, latency_ns,
  3499. &planeb_wm, &cursorb_wm))
  3500. enabled |= 2;
  3501. plane_sr = cursor_sr = 0;
  3502. if (single_plane_enabled(enabled) &&
  3503. g4x_compute_srwm(dev, ffs(enabled) - 1,
  3504. sr_latency_ns,
  3505. &g4x_wm_info,
  3506. &g4x_cursor_wm_info,
  3507. &plane_sr, &cursor_sr))
  3508. I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
  3509. else
  3510. I915_WRITE(FW_BLC_SELF,
  3511. I915_READ(FW_BLC_SELF) & ~FW_BLC_SELF_EN);
  3512. DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
  3513. planea_wm, cursora_wm,
  3514. planeb_wm, cursorb_wm,
  3515. plane_sr, cursor_sr);
  3516. I915_WRITE(DSPFW1,
  3517. (plane_sr << DSPFW_SR_SHIFT) |
  3518. (cursorb_wm << DSPFW_CURSORB_SHIFT) |
  3519. (planeb_wm << DSPFW_PLANEB_SHIFT) |
  3520. planea_wm);
  3521. I915_WRITE(DSPFW2,
  3522. (I915_READ(DSPFW2) & DSPFW_CURSORA_MASK) |
  3523. (cursora_wm << DSPFW_CURSORA_SHIFT));
  3524. /* HPLL off in SR has some issues on G4x... disable it */
  3525. I915_WRITE(DSPFW3,
  3526. (I915_READ(DSPFW3) & ~DSPFW_HPLL_SR_EN) |
  3527. (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
  3528. }
  3529. static void i965_update_wm(struct drm_device *dev)
  3530. {
  3531. struct drm_i915_private *dev_priv = dev->dev_private;
  3532. struct drm_crtc *crtc;
  3533. int srwm = 1;
  3534. int cursor_sr = 16;
  3535. /* Calc sr entries for one plane configs */
  3536. crtc = single_enabled_crtc(dev);
  3537. if (crtc) {
  3538. /* self-refresh has much higher latency */
  3539. static const int sr_latency_ns = 12000;
  3540. int clock = crtc->mode.clock;
  3541. int htotal = crtc->mode.htotal;
  3542. int hdisplay = crtc->mode.hdisplay;
  3543. int pixel_size = crtc->fb->bits_per_pixel / 8;
  3544. unsigned long line_time_us;
  3545. int entries;
  3546. line_time_us = ((htotal * 1000) / clock);
  3547. /* Use ns/us then divide to preserve precision */
  3548. entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
  3549. pixel_size * hdisplay;
  3550. entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
  3551. srwm = I965_FIFO_SIZE - entries;
  3552. if (srwm < 0)
  3553. srwm = 1;
  3554. srwm &= 0x1ff;
  3555. DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
  3556. entries, srwm);
  3557. entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
  3558. pixel_size * 64;
  3559. entries = DIV_ROUND_UP(entries,
  3560. i965_cursor_wm_info.cacheline_size);
  3561. cursor_sr = i965_cursor_wm_info.fifo_size -
  3562. (entries + i965_cursor_wm_info.guard_size);
  3563. if (cursor_sr > i965_cursor_wm_info.max_wm)
  3564. cursor_sr = i965_cursor_wm_info.max_wm;
  3565. DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
  3566. "cursor %d\n", srwm, cursor_sr);
  3567. if (IS_CRESTLINE(dev))
  3568. I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
  3569. } else {
  3570. /* Turn off self refresh if both pipes are enabled */
  3571. if (IS_CRESTLINE(dev))
  3572. I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
  3573. & ~FW_BLC_SELF_EN);
  3574. }
  3575. DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
  3576. srwm);
  3577. /* 965 has limitations... */
  3578. I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) |
  3579. (8 << 16) | (8 << 8) | (8 << 0));
  3580. I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
  3581. /* update cursor SR watermark */
  3582. I915_WRITE(DSPFW3, (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
  3583. }
  3584. static void i9xx_update_wm(struct drm_device *dev)
  3585. {
  3586. struct drm_i915_private *dev_priv = dev->dev_private;
  3587. const struct intel_watermark_params *wm_info;
  3588. uint32_t fwater_lo;
  3589. uint32_t fwater_hi;
  3590. int cwm, srwm = 1;
  3591. int fifo_size;
  3592. int planea_wm, planeb_wm;
  3593. struct drm_crtc *crtc, *enabled = NULL;
  3594. if (IS_I945GM(dev))
  3595. wm_info = &i945_wm_info;
  3596. else if (!IS_GEN2(dev))
  3597. wm_info = &i915_wm_info;
  3598. else
  3599. wm_info = &i855_wm_info;
  3600. fifo_size = dev_priv->display.get_fifo_size(dev, 0);
  3601. crtc = intel_get_crtc_for_plane(dev, 0);
  3602. if (crtc->enabled && crtc->fb) {
  3603. planea_wm = intel_calculate_wm(crtc->mode.clock,
  3604. wm_info, fifo_size,
  3605. crtc->fb->bits_per_pixel / 8,
  3606. latency_ns);
  3607. enabled = crtc;
  3608. } else
  3609. planea_wm = fifo_size - wm_info->guard_size;
  3610. fifo_size = dev_priv->display.get_fifo_size(dev, 1);
  3611. crtc = intel_get_crtc_for_plane(dev, 1);
  3612. if (crtc->enabled && crtc->fb) {
  3613. planeb_wm = intel_calculate_wm(crtc->mode.clock,
  3614. wm_info, fifo_size,
  3615. crtc->fb->bits_per_pixel / 8,
  3616. latency_ns);
  3617. if (enabled == NULL)
  3618. enabled = crtc;
  3619. else
  3620. enabled = NULL;
  3621. } else
  3622. planeb_wm = fifo_size - wm_info->guard_size;
  3623. DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
  3624. /*
  3625. * Overlay gets an aggressive default since video jitter is bad.
  3626. */
  3627. cwm = 2;
  3628. /* Play safe and disable self-refresh before adjusting watermarks. */
  3629. if (IS_I945G(dev) || IS_I945GM(dev))
  3630. I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN_MASK | 0);
  3631. else if (IS_I915GM(dev))
  3632. I915_WRITE(INSTPM, I915_READ(INSTPM) & ~INSTPM_SELF_EN);
  3633. /* Calc sr entries for one plane configs */
  3634. if (HAS_FW_BLC(dev) && enabled) {
  3635. /* self-refresh has much higher latency */
  3636. static const int sr_latency_ns = 6000;
  3637. int clock = enabled->mode.clock;
  3638. int htotal = enabled->mode.htotal;
  3639. int hdisplay = enabled->mode.hdisplay;
  3640. int pixel_size = enabled->fb->bits_per_pixel / 8;
  3641. unsigned long line_time_us;
  3642. int entries;
  3643. line_time_us = (htotal * 1000) / clock;
  3644. /* Use ns/us then divide to preserve precision */
  3645. entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
  3646. pixel_size * hdisplay;
  3647. entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
  3648. DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
  3649. srwm = wm_info->fifo_size - entries;
  3650. if (srwm < 0)
  3651. srwm = 1;
  3652. if (IS_I945G(dev) || IS_I945GM(dev))
  3653. I915_WRITE(FW_BLC_SELF,
  3654. FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
  3655. else if (IS_I915GM(dev))
  3656. I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
  3657. }
  3658. DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
  3659. planea_wm, planeb_wm, cwm, srwm);
  3660. fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
  3661. fwater_hi = (cwm & 0x1f);
  3662. /* Set request length to 8 cachelines per fetch */
  3663. fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
  3664. fwater_hi = fwater_hi | (1 << 8);
  3665. I915_WRITE(FW_BLC, fwater_lo);
  3666. I915_WRITE(FW_BLC2, fwater_hi);
  3667. if (HAS_FW_BLC(dev)) {
  3668. if (enabled) {
  3669. if (IS_I945G(dev) || IS_I945GM(dev))
  3670. I915_WRITE(FW_BLC_SELF,
  3671. FW_BLC_SELF_EN_MASK | FW_BLC_SELF_EN);
  3672. else if (IS_I915GM(dev))
  3673. I915_WRITE(INSTPM, I915_READ(INSTPM) | INSTPM_SELF_EN);
  3674. DRM_DEBUG_KMS("memory self refresh enabled\n");
  3675. } else
  3676. DRM_DEBUG_KMS("memory self refresh disabled\n");
  3677. }
  3678. }
  3679. static void i830_update_wm(struct drm_device *dev)
  3680. {
  3681. struct drm_i915_private *dev_priv = dev->dev_private;
  3682. struct drm_crtc *crtc;
  3683. uint32_t fwater_lo;
  3684. int planea_wm;
  3685. crtc = single_enabled_crtc(dev);
  3686. if (crtc == NULL)
  3687. return;
  3688. planea_wm = intel_calculate_wm(crtc->mode.clock, &i830_wm_info,
  3689. dev_priv->display.get_fifo_size(dev, 0),
  3690. crtc->fb->bits_per_pixel / 8,
  3691. latency_ns);
  3692. fwater_lo = I915_READ(FW_BLC) & ~0xfff;
  3693. fwater_lo |= (3<<8) | planea_wm;
  3694. DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
  3695. I915_WRITE(FW_BLC, fwater_lo);
  3696. }
  3697. #define ILK_LP0_PLANE_LATENCY 700
  3698. #define ILK_LP0_CURSOR_LATENCY 1300
  3699. /*
  3700. * Check the wm result.
  3701. *
  3702. * If any calculated watermark values is larger than the maximum value that
  3703. * can be programmed into the associated watermark register, that watermark
  3704. * must be disabled.
  3705. */
  3706. static bool ironlake_check_srwm(struct drm_device *dev, int level,
  3707. int fbc_wm, int display_wm, int cursor_wm,
  3708. const struct intel_watermark_params *display,
  3709. const struct intel_watermark_params *cursor)
  3710. {
  3711. struct drm_i915_private *dev_priv = dev->dev_private;
  3712. DRM_DEBUG_KMS("watermark %d: display plane %d, fbc lines %d,"
  3713. " cursor %d\n", level, display_wm, fbc_wm, cursor_wm);
  3714. if (fbc_wm > SNB_FBC_MAX_SRWM) {
  3715. DRM_DEBUG_KMS("fbc watermark(%d) is too large(%d), disabling wm%d+\n",
  3716. fbc_wm, SNB_FBC_MAX_SRWM, level);
  3717. /* fbc has it's own way to disable FBC WM */
  3718. I915_WRITE(DISP_ARB_CTL,
  3719. I915_READ(DISP_ARB_CTL) | DISP_FBC_WM_DIS);
  3720. return false;
  3721. }
  3722. if (display_wm > display->max_wm) {
  3723. DRM_DEBUG_KMS("display watermark(%d) is too large(%d), disabling wm%d+\n",
  3724. display_wm, SNB_DISPLAY_MAX_SRWM, level);
  3725. return false;
  3726. }
  3727. if (cursor_wm > cursor->max_wm) {
  3728. DRM_DEBUG_KMS("cursor watermark(%d) is too large(%d), disabling wm%d+\n",
  3729. cursor_wm, SNB_CURSOR_MAX_SRWM, level);
  3730. return false;
  3731. }
  3732. if (!(fbc_wm || display_wm || cursor_wm)) {
  3733. DRM_DEBUG_KMS("latency %d is 0, disabling wm%d+\n", level, level);
  3734. return false;
  3735. }
  3736. return true;
  3737. }
  3738. /*
  3739. * Compute watermark values of WM[1-3],
  3740. */
  3741. static bool ironlake_compute_srwm(struct drm_device *dev, int level, int plane,
  3742. int latency_ns,
  3743. const struct intel_watermark_params *display,
  3744. const struct intel_watermark_params *cursor,
  3745. int *fbc_wm, int *display_wm, int *cursor_wm)
  3746. {
  3747. struct drm_crtc *crtc;
  3748. unsigned long line_time_us;
  3749. int hdisplay, htotal, pixel_size, clock;
  3750. int line_count, line_size;
  3751. int small, large;
  3752. int entries;
  3753. if (!latency_ns) {
  3754. *fbc_wm = *display_wm = *cursor_wm = 0;
  3755. return false;
  3756. }
  3757. crtc = intel_get_crtc_for_plane(dev, plane);
  3758. hdisplay = crtc->mode.hdisplay;
  3759. htotal = crtc->mode.htotal;
  3760. clock = crtc->mode.clock;
  3761. pixel_size = crtc->fb->bits_per_pixel / 8;
  3762. line_time_us = (htotal * 1000) / clock;
  3763. line_count = (latency_ns / line_time_us + 1000) / 1000;
  3764. line_size = hdisplay * pixel_size;
  3765. /* Use the minimum of the small and large buffer method for primary */
  3766. small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
  3767. large = line_count * line_size;
  3768. entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
  3769. *display_wm = entries + display->guard_size;
  3770. /*
  3771. * Spec says:
  3772. * FBC WM = ((Final Primary WM * 64) / number of bytes per line) + 2
  3773. */
  3774. *fbc_wm = DIV_ROUND_UP(*display_wm * 64, line_size) + 2;
  3775. /* calculate the self-refresh watermark for display cursor */
  3776. entries = line_count * pixel_size * 64;
  3777. entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
  3778. *cursor_wm = entries + cursor->guard_size;
  3779. return ironlake_check_srwm(dev, level,
  3780. *fbc_wm, *display_wm, *cursor_wm,
  3781. display, cursor);
  3782. }
  3783. static void ironlake_update_wm(struct drm_device *dev)
  3784. {
  3785. struct drm_i915_private *dev_priv = dev->dev_private;
  3786. int fbc_wm, plane_wm, cursor_wm;
  3787. unsigned int enabled;
  3788. enabled = 0;
  3789. if (g4x_compute_wm0(dev, 0,
  3790. &ironlake_display_wm_info,
  3791. ILK_LP0_PLANE_LATENCY,
  3792. &ironlake_cursor_wm_info,
  3793. ILK_LP0_CURSOR_LATENCY,
  3794. &plane_wm, &cursor_wm)) {
  3795. I915_WRITE(WM0_PIPEA_ILK,
  3796. (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
  3797. DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
  3798. " plane %d, " "cursor: %d\n",
  3799. plane_wm, cursor_wm);
  3800. enabled |= 1;
  3801. }
  3802. if (g4x_compute_wm0(dev, 1,
  3803. &ironlake_display_wm_info,
  3804. ILK_LP0_PLANE_LATENCY,
  3805. &ironlake_cursor_wm_info,
  3806. ILK_LP0_CURSOR_LATENCY,
  3807. &plane_wm, &cursor_wm)) {
  3808. I915_WRITE(WM0_PIPEB_ILK,
  3809. (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
  3810. DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
  3811. " plane %d, cursor: %d\n",
  3812. plane_wm, cursor_wm);
  3813. enabled |= 2;
  3814. }
  3815. /*
  3816. * Calculate and update the self-refresh watermark only when one
  3817. * display plane is used.
  3818. */
  3819. I915_WRITE(WM3_LP_ILK, 0);
  3820. I915_WRITE(WM2_LP_ILK, 0);
  3821. I915_WRITE(WM1_LP_ILK, 0);
  3822. if (!single_plane_enabled(enabled))
  3823. return;
  3824. enabled = ffs(enabled) - 1;
  3825. /* WM1 */
  3826. if (!ironlake_compute_srwm(dev, 1, enabled,
  3827. ILK_READ_WM1_LATENCY() * 500,
  3828. &ironlake_display_srwm_info,
  3829. &ironlake_cursor_srwm_info,
  3830. &fbc_wm, &plane_wm, &cursor_wm))
  3831. return;
  3832. I915_WRITE(WM1_LP_ILK,
  3833. WM1_LP_SR_EN |
  3834. (ILK_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
  3835. (fbc_wm << WM1_LP_FBC_SHIFT) |
  3836. (plane_wm << WM1_LP_SR_SHIFT) |
  3837. cursor_wm);
  3838. /* WM2 */
  3839. if (!ironlake_compute_srwm(dev, 2, enabled,
  3840. ILK_READ_WM2_LATENCY() * 500,
  3841. &ironlake_display_srwm_info,
  3842. &ironlake_cursor_srwm_info,
  3843. &fbc_wm, &plane_wm, &cursor_wm))
  3844. return;
  3845. I915_WRITE(WM2_LP_ILK,
  3846. WM2_LP_EN |
  3847. (ILK_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
  3848. (fbc_wm << WM1_LP_FBC_SHIFT) |
  3849. (plane_wm << WM1_LP_SR_SHIFT) |
  3850. cursor_wm);
  3851. /*
  3852. * WM3 is unsupported on ILK, probably because we don't have latency
  3853. * data for that power state
  3854. */
  3855. }
  3856. static void sandybridge_update_wm(struct drm_device *dev)
  3857. {
  3858. struct drm_i915_private *dev_priv = dev->dev_private;
  3859. int latency = SNB_READ_WM0_LATENCY() * 100; /* In unit 0.1us */
  3860. int fbc_wm, plane_wm, cursor_wm;
  3861. unsigned int enabled;
  3862. enabled = 0;
  3863. if (g4x_compute_wm0(dev, 0,
  3864. &sandybridge_display_wm_info, latency,
  3865. &sandybridge_cursor_wm_info, latency,
  3866. &plane_wm, &cursor_wm)) {
  3867. I915_WRITE(WM0_PIPEA_ILK,
  3868. (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
  3869. DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
  3870. " plane %d, " "cursor: %d\n",
  3871. plane_wm, cursor_wm);
  3872. enabled |= 1;
  3873. }
  3874. if (g4x_compute_wm0(dev, 1,
  3875. &sandybridge_display_wm_info, latency,
  3876. &sandybridge_cursor_wm_info, latency,
  3877. &plane_wm, &cursor_wm)) {
  3878. I915_WRITE(WM0_PIPEB_ILK,
  3879. (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
  3880. DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
  3881. " plane %d, cursor: %d\n",
  3882. plane_wm, cursor_wm);
  3883. enabled |= 2;
  3884. }
  3885. /*
  3886. * Calculate and update the self-refresh watermark only when one
  3887. * display plane is used.
  3888. *
  3889. * SNB support 3 levels of watermark.
  3890. *
  3891. * WM1/WM2/WM2 watermarks have to be enabled in the ascending order,
  3892. * and disabled in the descending order
  3893. *
  3894. */
  3895. I915_WRITE(WM3_LP_ILK, 0);
  3896. I915_WRITE(WM2_LP_ILK, 0);
  3897. I915_WRITE(WM1_LP_ILK, 0);
  3898. if (!single_plane_enabled(enabled))
  3899. return;
  3900. enabled = ffs(enabled) - 1;
  3901. /* WM1 */
  3902. if (!ironlake_compute_srwm(dev, 1, enabled,
  3903. SNB_READ_WM1_LATENCY() * 500,
  3904. &sandybridge_display_srwm_info,
  3905. &sandybridge_cursor_srwm_info,
  3906. &fbc_wm, &plane_wm, &cursor_wm))
  3907. return;
  3908. I915_WRITE(WM1_LP_ILK,
  3909. WM1_LP_SR_EN |
  3910. (SNB_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
  3911. (fbc_wm << WM1_LP_FBC_SHIFT) |
  3912. (plane_wm << WM1_LP_SR_SHIFT) |
  3913. cursor_wm);
  3914. /* WM2 */
  3915. if (!ironlake_compute_srwm(dev, 2, enabled,
  3916. SNB_READ_WM2_LATENCY() * 500,
  3917. &sandybridge_display_srwm_info,
  3918. &sandybridge_cursor_srwm_info,
  3919. &fbc_wm, &plane_wm, &cursor_wm))
  3920. return;
  3921. I915_WRITE(WM2_LP_ILK,
  3922. WM2_LP_EN |
  3923. (SNB_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
  3924. (fbc_wm << WM1_LP_FBC_SHIFT) |
  3925. (plane_wm << WM1_LP_SR_SHIFT) |
  3926. cursor_wm);
  3927. /* WM3 */
  3928. if (!ironlake_compute_srwm(dev, 3, enabled,
  3929. SNB_READ_WM3_LATENCY() * 500,
  3930. &sandybridge_display_srwm_info,
  3931. &sandybridge_cursor_srwm_info,
  3932. &fbc_wm, &plane_wm, &cursor_wm))
  3933. return;
  3934. I915_WRITE(WM3_LP_ILK,
  3935. WM3_LP_EN |
  3936. (SNB_READ_WM3_LATENCY() << WM1_LP_LATENCY_SHIFT) |
  3937. (fbc_wm << WM1_LP_FBC_SHIFT) |
  3938. (plane_wm << WM1_LP_SR_SHIFT) |
  3939. cursor_wm);
  3940. }
  3941. /**
  3942. * intel_update_watermarks - update FIFO watermark values based on current modes
  3943. *
  3944. * Calculate watermark values for the various WM regs based on current mode
  3945. * and plane configuration.
  3946. *
  3947. * There are several cases to deal with here:
  3948. * - normal (i.e. non-self-refresh)
  3949. * - self-refresh (SR) mode
  3950. * - lines are large relative to FIFO size (buffer can hold up to 2)
  3951. * - lines are small relative to FIFO size (buffer can hold more than 2
  3952. * lines), so need to account for TLB latency
  3953. *
  3954. * The normal calculation is:
  3955. * watermark = dotclock * bytes per pixel * latency
  3956. * where latency is platform & configuration dependent (we assume pessimal
  3957. * values here).
  3958. *
  3959. * The SR calculation is:
  3960. * watermark = (trunc(latency/line time)+1) * surface width *
  3961. * bytes per pixel
  3962. * where
  3963. * line time = htotal / dotclock
  3964. * surface width = hdisplay for normal plane and 64 for cursor
  3965. * and latency is assumed to be high, as above.
  3966. *
  3967. * The final value programmed to the register should always be rounded up,
  3968. * and include an extra 2 entries to account for clock crossings.
  3969. *
  3970. * We don't use the sprite, so we can ignore that. And on Crestline we have
  3971. * to set the non-SR watermarks to 8.
  3972. */
  3973. static void intel_update_watermarks(struct drm_device *dev)
  3974. {
  3975. struct drm_i915_private *dev_priv = dev->dev_private;
  3976. if (dev_priv->display.update_wm)
  3977. dev_priv->display.update_wm(dev);
  3978. }
  3979. static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
  3980. {
  3981. if (i915_panel_use_ssc >= 0)
  3982. return i915_panel_use_ssc != 0;
  3983. return dev_priv->lvds_use_ssc
  3984. && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
  3985. }
  3986. /**
  3987. * intel_choose_pipe_bpp_dither - figure out what color depth the pipe should send
  3988. * @crtc: CRTC structure
  3989. *
  3990. * A pipe may be connected to one or more outputs. Based on the depth of the
  3991. * attached framebuffer, choose a good color depth to use on the pipe.
  3992. *
  3993. * If possible, match the pipe depth to the fb depth. In some cases, this
  3994. * isn't ideal, because the connected output supports a lesser or restricted
  3995. * set of depths. Resolve that here:
  3996. * LVDS typically supports only 6bpc, so clamp down in that case
  3997. * HDMI supports only 8bpc or 12bpc, so clamp to 8bpc with dither for 10bpc
  3998. * Displays may support a restricted set as well, check EDID and clamp as
  3999. * appropriate.
  4000. *
  4001. * RETURNS:
  4002. * Dithering requirement (i.e. false if display bpc and pipe bpc match,
  4003. * true if they don't match).
  4004. */
  4005. static bool intel_choose_pipe_bpp_dither(struct drm_crtc *crtc,
  4006. unsigned int *pipe_bpp)
  4007. {
  4008. struct drm_device *dev = crtc->dev;
  4009. struct drm_i915_private *dev_priv = dev->dev_private;
  4010. struct drm_encoder *encoder;
  4011. struct drm_connector *connector;
  4012. unsigned int display_bpc = UINT_MAX, bpc;
  4013. /* Walk the encoders & connectors on this crtc, get min bpc */
  4014. list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
  4015. struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
  4016. if (encoder->crtc != crtc)
  4017. continue;
  4018. if (intel_encoder->type == INTEL_OUTPUT_LVDS) {
  4019. unsigned int lvds_bpc;
  4020. if ((I915_READ(PCH_LVDS) & LVDS_A3_POWER_MASK) ==
  4021. LVDS_A3_POWER_UP)
  4022. lvds_bpc = 8;
  4023. else
  4024. lvds_bpc = 6;
  4025. if (lvds_bpc < display_bpc) {
  4026. DRM_DEBUG_DRIVER("clamping display bpc (was %d) to LVDS (%d)\n", display_bpc, lvds_bpc);
  4027. display_bpc = lvds_bpc;
  4028. }
  4029. continue;
  4030. }
  4031. if (intel_encoder->type == INTEL_OUTPUT_EDP) {
  4032. /* Use VBT settings if we have an eDP panel */
  4033. unsigned int edp_bpc = dev_priv->edp.bpp / 3;
  4034. if (edp_bpc < display_bpc) {
  4035. DRM_DEBUG_DRIVER("clamping display bpc (was %d) to eDP (%d)\n", display_bpc, edp_bpc);
  4036. display_bpc = edp_bpc;
  4037. }
  4038. continue;
  4039. }
  4040. /* Not one of the known troublemakers, check the EDID */
  4041. list_for_each_entry(connector, &dev->mode_config.connector_list,
  4042. head) {
  4043. if (connector->encoder != encoder)
  4044. continue;
  4045. /* Don't use an invalid EDID bpc value */
  4046. if (connector->display_info.bpc &&
  4047. connector->display_info.bpc < display_bpc) {
  4048. DRM_DEBUG_DRIVER("clamping display bpc (was %d) to EDID reported max of %d\n", display_bpc, connector->display_info.bpc);
  4049. display_bpc = connector->display_info.bpc;
  4050. }
  4051. }
  4052. /*
  4053. * HDMI is either 12 or 8, so if the display lets 10bpc sneak
  4054. * through, clamp it down. (Note: >12bpc will be caught below.)
  4055. */
  4056. if (intel_encoder->type == INTEL_OUTPUT_HDMI) {
  4057. if (display_bpc > 8 && display_bpc < 12) {
  4058. DRM_DEBUG_DRIVER("forcing bpc to 12 for HDMI\n");
  4059. display_bpc = 12;
  4060. } else {
  4061. DRM_DEBUG_DRIVER("forcing bpc to 8 for HDMI\n");
  4062. display_bpc = 8;
  4063. }
  4064. }
  4065. }
  4066. /*
  4067. * We could just drive the pipe at the highest bpc all the time and
  4068. * enable dithering as needed, but that costs bandwidth. So choose
  4069. * the minimum value that expresses the full color range of the fb but
  4070. * also stays within the max display bpc discovered above.
  4071. */
  4072. switch (crtc->fb->depth) {
  4073. case 8:
  4074. bpc = 8; /* since we go through a colormap */
  4075. break;
  4076. case 15:
  4077. case 16:
  4078. bpc = 6; /* min is 18bpp */
  4079. break;
  4080. case 24:
  4081. bpc = 8;
  4082. break;
  4083. case 30:
  4084. bpc = 10;
  4085. break;
  4086. case 48:
  4087. bpc = 12;
  4088. break;
  4089. default:
  4090. DRM_DEBUG("unsupported depth, assuming 24 bits\n");
  4091. bpc = min((unsigned int)8, display_bpc);
  4092. break;
  4093. }
  4094. display_bpc = min(display_bpc, bpc);
  4095. DRM_DEBUG_DRIVER("setting pipe bpc to %d (max display bpc %d)\n",
  4096. bpc, display_bpc);
  4097. *pipe_bpp = display_bpc * 3;
  4098. return display_bpc != bpc;
  4099. }
  4100. static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
  4101. struct drm_display_mode *mode,
  4102. struct drm_display_mode *adjusted_mode,
  4103. int x, int y,
  4104. struct drm_framebuffer *old_fb)
  4105. {
  4106. struct drm_device *dev = crtc->dev;
  4107. struct drm_i915_private *dev_priv = dev->dev_private;
  4108. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4109. int pipe = intel_crtc->pipe;
  4110. int plane = intel_crtc->plane;
  4111. int refclk, num_connectors = 0;
  4112. intel_clock_t clock, reduced_clock;
  4113. u32 dpll, fp = 0, fp2 = 0, dspcntr, pipeconf;
  4114. bool ok, has_reduced_clock = false, is_sdvo = false, is_dvo = false;
  4115. bool is_crt = false, is_lvds = false, is_tv = false, is_dp = false;
  4116. struct drm_mode_config *mode_config = &dev->mode_config;
  4117. struct intel_encoder *encoder;
  4118. const intel_limit_t *limit;
  4119. int ret;
  4120. u32 temp;
  4121. u32 lvds_sync = 0;
  4122. list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
  4123. if (encoder->base.crtc != crtc)
  4124. continue;
  4125. switch (encoder->type) {
  4126. case INTEL_OUTPUT_LVDS:
  4127. is_lvds = true;
  4128. break;
  4129. case INTEL_OUTPUT_SDVO:
  4130. case INTEL_OUTPUT_HDMI:
  4131. is_sdvo = true;
  4132. if (encoder->needs_tv_clock)
  4133. is_tv = true;
  4134. break;
  4135. case INTEL_OUTPUT_DVO:
  4136. is_dvo = true;
  4137. break;
  4138. case INTEL_OUTPUT_TVOUT:
  4139. is_tv = true;
  4140. break;
  4141. case INTEL_OUTPUT_ANALOG:
  4142. is_crt = true;
  4143. break;
  4144. case INTEL_OUTPUT_DISPLAYPORT:
  4145. is_dp = true;
  4146. break;
  4147. }
  4148. num_connectors++;
  4149. }
  4150. if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
  4151. refclk = dev_priv->lvds_ssc_freq * 1000;
  4152. DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
  4153. refclk / 1000);
  4154. } else if (!IS_GEN2(dev)) {
  4155. refclk = 96000;
  4156. } else {
  4157. refclk = 48000;
  4158. }
  4159. /*
  4160. * Returns a set of divisors for the desired target clock with the given
  4161. * refclk, or FALSE. The returned values represent the clock equation:
  4162. * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
  4163. */
  4164. limit = intel_limit(crtc, refclk);
  4165. ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, &clock);
  4166. if (!ok) {
  4167. DRM_ERROR("Couldn't find PLL settings for mode!\n");
  4168. return -EINVAL;
  4169. }
  4170. /* Ensure that the cursor is valid for the new mode before changing... */
  4171. intel_crtc_update_cursor(crtc, true);
  4172. if (is_lvds && dev_priv->lvds_downclock_avail) {
  4173. has_reduced_clock = limit->find_pll(limit, crtc,
  4174. dev_priv->lvds_downclock,
  4175. refclk,
  4176. &reduced_clock);
  4177. if (has_reduced_clock && (clock.p != reduced_clock.p)) {
  4178. /*
  4179. * If the different P is found, it means that we can't
  4180. * switch the display clock by using the FP0/FP1.
  4181. * In such case we will disable the LVDS downclock
  4182. * feature.
  4183. */
  4184. DRM_DEBUG_KMS("Different P is found for "
  4185. "LVDS clock/downclock\n");
  4186. has_reduced_clock = 0;
  4187. }
  4188. }
  4189. /* SDVO TV has fixed PLL values depend on its clock range,
  4190. this mirrors vbios setting. */
  4191. if (is_sdvo && is_tv) {
  4192. if (adjusted_mode->clock >= 100000
  4193. && adjusted_mode->clock < 140500) {
  4194. clock.p1 = 2;
  4195. clock.p2 = 10;
  4196. clock.n = 3;
  4197. clock.m1 = 16;
  4198. clock.m2 = 8;
  4199. } else if (adjusted_mode->clock >= 140500
  4200. && adjusted_mode->clock <= 200000) {
  4201. clock.p1 = 1;
  4202. clock.p2 = 10;
  4203. clock.n = 6;
  4204. clock.m1 = 12;
  4205. clock.m2 = 8;
  4206. }
  4207. }
  4208. if (IS_PINEVIEW(dev)) {
  4209. fp = (1 << clock.n) << 16 | clock.m1 << 8 | clock.m2;
  4210. if (has_reduced_clock)
  4211. fp2 = (1 << reduced_clock.n) << 16 |
  4212. reduced_clock.m1 << 8 | reduced_clock.m2;
  4213. } else {
  4214. fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
  4215. if (has_reduced_clock)
  4216. fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
  4217. reduced_clock.m2;
  4218. }
  4219. dpll = DPLL_VGA_MODE_DIS;
  4220. if (!IS_GEN2(dev)) {
  4221. if (is_lvds)
  4222. dpll |= DPLLB_MODE_LVDS;
  4223. else
  4224. dpll |= DPLLB_MODE_DAC_SERIAL;
  4225. if (is_sdvo) {
  4226. int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
  4227. if (pixel_multiplier > 1) {
  4228. if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
  4229. dpll |= (pixel_multiplier - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
  4230. }
  4231. dpll |= DPLL_DVO_HIGH_SPEED;
  4232. }
  4233. if (is_dp)
  4234. dpll |= DPLL_DVO_HIGH_SPEED;
  4235. /* compute bitmask from p1 value */
  4236. if (IS_PINEVIEW(dev))
  4237. dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
  4238. else {
  4239. dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  4240. if (IS_G4X(dev) && has_reduced_clock)
  4241. dpll |= (1 << (reduced_clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
  4242. }
  4243. switch (clock.p2) {
  4244. case 5:
  4245. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
  4246. break;
  4247. case 7:
  4248. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
  4249. break;
  4250. case 10:
  4251. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
  4252. break;
  4253. case 14:
  4254. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
  4255. break;
  4256. }
  4257. if (INTEL_INFO(dev)->gen >= 4)
  4258. dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
  4259. } else {
  4260. if (is_lvds) {
  4261. dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  4262. } else {
  4263. if (clock.p1 == 2)
  4264. dpll |= PLL_P1_DIVIDE_BY_TWO;
  4265. else
  4266. dpll |= (clock.p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  4267. if (clock.p2 == 4)
  4268. dpll |= PLL_P2_DIVIDE_BY_4;
  4269. }
  4270. }
  4271. if (is_sdvo && is_tv)
  4272. dpll |= PLL_REF_INPUT_TVCLKINBC;
  4273. else if (is_tv)
  4274. /* XXX: just matching BIOS for now */
  4275. /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
  4276. dpll |= 3;
  4277. else if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
  4278. dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
  4279. else
  4280. dpll |= PLL_REF_INPUT_DREFCLK;
  4281. /* setup pipeconf */
  4282. pipeconf = I915_READ(PIPECONF(pipe));
  4283. /* Set up the display plane register */
  4284. dspcntr = DISPPLANE_GAMMA_ENABLE;
  4285. /* Ironlake's plane is forced to pipe, bit 24 is to
  4286. enable color space conversion */
  4287. if (pipe == 0)
  4288. dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
  4289. else
  4290. dspcntr |= DISPPLANE_SEL_PIPE_B;
  4291. if (pipe == 0 && INTEL_INFO(dev)->gen < 4) {
  4292. /* Enable pixel doubling when the dot clock is > 90% of the (display)
  4293. * core speed.
  4294. *
  4295. * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
  4296. * pipe == 0 check?
  4297. */
  4298. if (mode->clock >
  4299. dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
  4300. pipeconf |= PIPECONF_DOUBLE_WIDE;
  4301. else
  4302. pipeconf &= ~PIPECONF_DOUBLE_WIDE;
  4303. }
  4304. dpll |= DPLL_VCO_ENABLE;
  4305. DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
  4306. drm_mode_debug_printmodeline(mode);
  4307. I915_WRITE(FP0(pipe), fp);
  4308. I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
  4309. POSTING_READ(DPLL(pipe));
  4310. udelay(150);
  4311. /* The LVDS pin pair needs to be on before the DPLLs are enabled.
  4312. * This is an exception to the general rule that mode_set doesn't turn
  4313. * things on.
  4314. */
  4315. if (is_lvds) {
  4316. temp = I915_READ(LVDS);
  4317. temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
  4318. if (pipe == 1) {
  4319. temp |= LVDS_PIPEB_SELECT;
  4320. } else {
  4321. temp &= ~LVDS_PIPEB_SELECT;
  4322. }
  4323. /* set the corresponsding LVDS_BORDER bit */
  4324. temp |= dev_priv->lvds_border_bits;
  4325. /* Set the B0-B3 data pairs corresponding to whether we're going to
  4326. * set the DPLLs for dual-channel mode or not.
  4327. */
  4328. if (clock.p2 == 7)
  4329. temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
  4330. else
  4331. temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
  4332. /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
  4333. * appropriately here, but we need to look more thoroughly into how
  4334. * panels behave in the two modes.
  4335. */
  4336. /* set the dithering flag on LVDS as needed */
  4337. if (INTEL_INFO(dev)->gen >= 4) {
  4338. if (dev_priv->lvds_dither)
  4339. temp |= LVDS_ENABLE_DITHER;
  4340. else
  4341. temp &= ~LVDS_ENABLE_DITHER;
  4342. }
  4343. if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
  4344. lvds_sync |= LVDS_HSYNC_POLARITY;
  4345. if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
  4346. lvds_sync |= LVDS_VSYNC_POLARITY;
  4347. if ((temp & (LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY))
  4348. != lvds_sync) {
  4349. char flags[2] = "-+";
  4350. DRM_INFO("Changing LVDS panel from "
  4351. "(%chsync, %cvsync) to (%chsync, %cvsync)\n",
  4352. flags[!(temp & LVDS_HSYNC_POLARITY)],
  4353. flags[!(temp & LVDS_VSYNC_POLARITY)],
  4354. flags[!(lvds_sync & LVDS_HSYNC_POLARITY)],
  4355. flags[!(lvds_sync & LVDS_VSYNC_POLARITY)]);
  4356. temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
  4357. temp |= lvds_sync;
  4358. }
  4359. I915_WRITE(LVDS, temp);
  4360. }
  4361. if (is_dp) {
  4362. intel_dp_set_m_n(crtc, mode, adjusted_mode);
  4363. }
  4364. I915_WRITE(DPLL(pipe), dpll);
  4365. /* Wait for the clocks to stabilize. */
  4366. POSTING_READ(DPLL(pipe));
  4367. udelay(150);
  4368. if (INTEL_INFO(dev)->gen >= 4) {
  4369. temp = 0;
  4370. if (is_sdvo) {
  4371. temp = intel_mode_get_pixel_multiplier(adjusted_mode);
  4372. if (temp > 1)
  4373. temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
  4374. else
  4375. temp = 0;
  4376. }
  4377. I915_WRITE(DPLL_MD(pipe), temp);
  4378. } else {
  4379. /* The pixel multiplier can only be updated once the
  4380. * DPLL is enabled and the clocks are stable.
  4381. *
  4382. * So write it again.
  4383. */
  4384. I915_WRITE(DPLL(pipe), dpll);
  4385. }
  4386. intel_crtc->lowfreq_avail = false;
  4387. if (is_lvds && has_reduced_clock && i915_powersave) {
  4388. I915_WRITE(FP1(pipe), fp2);
  4389. intel_crtc->lowfreq_avail = true;
  4390. if (HAS_PIPE_CXSR(dev)) {
  4391. DRM_DEBUG_KMS("enabling CxSR downclocking\n");
  4392. pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
  4393. }
  4394. } else {
  4395. I915_WRITE(FP1(pipe), fp);
  4396. if (HAS_PIPE_CXSR(dev)) {
  4397. DRM_DEBUG_KMS("disabling CxSR downclocking\n");
  4398. pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
  4399. }
  4400. }
  4401. if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
  4402. pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
  4403. /* the chip adds 2 halflines automatically */
  4404. adjusted_mode->crtc_vdisplay -= 1;
  4405. adjusted_mode->crtc_vtotal -= 1;
  4406. adjusted_mode->crtc_vblank_start -= 1;
  4407. adjusted_mode->crtc_vblank_end -= 1;
  4408. adjusted_mode->crtc_vsync_end -= 1;
  4409. adjusted_mode->crtc_vsync_start -= 1;
  4410. } else
  4411. pipeconf &= ~PIPECONF_INTERLACE_W_FIELD_INDICATION; /* progressive */
  4412. I915_WRITE(HTOTAL(pipe),
  4413. (adjusted_mode->crtc_hdisplay - 1) |
  4414. ((adjusted_mode->crtc_htotal - 1) << 16));
  4415. I915_WRITE(HBLANK(pipe),
  4416. (adjusted_mode->crtc_hblank_start - 1) |
  4417. ((adjusted_mode->crtc_hblank_end - 1) << 16));
  4418. I915_WRITE(HSYNC(pipe),
  4419. (adjusted_mode->crtc_hsync_start - 1) |
  4420. ((adjusted_mode->crtc_hsync_end - 1) << 16));
  4421. I915_WRITE(VTOTAL(pipe),
  4422. (adjusted_mode->crtc_vdisplay - 1) |
  4423. ((adjusted_mode->crtc_vtotal - 1) << 16));
  4424. I915_WRITE(VBLANK(pipe),
  4425. (adjusted_mode->crtc_vblank_start - 1) |
  4426. ((adjusted_mode->crtc_vblank_end - 1) << 16));
  4427. I915_WRITE(VSYNC(pipe),
  4428. (adjusted_mode->crtc_vsync_start - 1) |
  4429. ((adjusted_mode->crtc_vsync_end - 1) << 16));
  4430. /* pipesrc and dspsize control the size that is scaled from,
  4431. * which should always be the user's requested size.
  4432. */
  4433. I915_WRITE(DSPSIZE(plane),
  4434. ((mode->vdisplay - 1) << 16) |
  4435. (mode->hdisplay - 1));
  4436. I915_WRITE(DSPPOS(plane), 0);
  4437. I915_WRITE(PIPESRC(pipe),
  4438. ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
  4439. I915_WRITE(PIPECONF(pipe), pipeconf);
  4440. POSTING_READ(PIPECONF(pipe));
  4441. intel_enable_pipe(dev_priv, pipe, false);
  4442. intel_wait_for_vblank(dev, pipe);
  4443. I915_WRITE(DSPCNTR(plane), dspcntr);
  4444. POSTING_READ(DSPCNTR(plane));
  4445. intel_enable_plane(dev_priv, plane, pipe);
  4446. ret = intel_pipe_set_base(crtc, x, y, old_fb);
  4447. intel_update_watermarks(dev);
  4448. return ret;
  4449. }
  4450. /*
  4451. * Initialize reference clocks when the driver loads
  4452. */
  4453. void ironlake_init_pch_refclk(struct drm_device *dev)
  4454. {
  4455. struct drm_i915_private *dev_priv = dev->dev_private;
  4456. struct drm_mode_config *mode_config = &dev->mode_config;
  4457. struct intel_encoder *encoder;
  4458. u32 temp;
  4459. bool has_lvds = false;
  4460. bool has_cpu_edp = false;
  4461. bool has_pch_edp = false;
  4462. bool has_panel = false;
  4463. bool has_ck505 = false;
  4464. bool can_ssc = false;
  4465. /* We need to take the global config into account */
  4466. list_for_each_entry(encoder, &mode_config->encoder_list,
  4467. base.head) {
  4468. switch (encoder->type) {
  4469. case INTEL_OUTPUT_LVDS:
  4470. has_panel = true;
  4471. has_lvds = true;
  4472. break;
  4473. case INTEL_OUTPUT_EDP:
  4474. has_panel = true;
  4475. if (intel_encoder_is_pch_edp(&encoder->base))
  4476. has_pch_edp = true;
  4477. else
  4478. has_cpu_edp = true;
  4479. break;
  4480. }
  4481. }
  4482. if (HAS_PCH_IBX(dev)) {
  4483. has_ck505 = dev_priv->display_clock_mode;
  4484. can_ssc = has_ck505;
  4485. } else {
  4486. has_ck505 = false;
  4487. can_ssc = true;
  4488. }
  4489. DRM_DEBUG_KMS("has_panel %d has_lvds %d has_pch_edp %d has_cpu_edp %d has_ck505 %d\n",
  4490. has_panel, has_lvds, has_pch_edp, has_cpu_edp,
  4491. has_ck505);
  4492. /* Ironlake: try to setup display ref clock before DPLL
  4493. * enabling. This is only under driver's control after
  4494. * PCH B stepping, previous chipset stepping should be
  4495. * ignoring this setting.
  4496. */
  4497. temp = I915_READ(PCH_DREF_CONTROL);
  4498. /* Always enable nonspread source */
  4499. temp &= ~DREF_NONSPREAD_SOURCE_MASK;
  4500. if (has_ck505)
  4501. temp |= DREF_NONSPREAD_CK505_ENABLE;
  4502. else
  4503. temp |= DREF_NONSPREAD_SOURCE_ENABLE;
  4504. if (has_panel) {
  4505. temp &= ~DREF_SSC_SOURCE_MASK;
  4506. temp |= DREF_SSC_SOURCE_ENABLE;
  4507. /* SSC must be turned on before enabling the CPU output */
  4508. if (intel_panel_use_ssc(dev_priv) && can_ssc) {
  4509. DRM_DEBUG_KMS("Using SSC on panel\n");
  4510. temp |= DREF_SSC1_ENABLE;
  4511. }
  4512. /* Get SSC going before enabling the outputs */
  4513. I915_WRITE(PCH_DREF_CONTROL, temp);
  4514. POSTING_READ(PCH_DREF_CONTROL);
  4515. udelay(200);
  4516. temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
  4517. /* Enable CPU source on CPU attached eDP */
  4518. if (has_cpu_edp) {
  4519. if (intel_panel_use_ssc(dev_priv) && can_ssc) {
  4520. DRM_DEBUG_KMS("Using SSC on eDP\n");
  4521. temp |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
  4522. }
  4523. else
  4524. temp |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
  4525. } else
  4526. temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
  4527. I915_WRITE(PCH_DREF_CONTROL, temp);
  4528. POSTING_READ(PCH_DREF_CONTROL);
  4529. udelay(200);
  4530. } else {
  4531. DRM_DEBUG_KMS("Disabling SSC entirely\n");
  4532. temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
  4533. /* Turn off CPU output */
  4534. temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
  4535. I915_WRITE(PCH_DREF_CONTROL, temp);
  4536. POSTING_READ(PCH_DREF_CONTROL);
  4537. udelay(200);
  4538. /* Turn off the SSC source */
  4539. temp &= ~DREF_SSC_SOURCE_MASK;
  4540. temp |= DREF_SSC_SOURCE_DISABLE;
  4541. /* Turn off SSC1 */
  4542. temp &= ~ DREF_SSC1_ENABLE;
  4543. I915_WRITE(PCH_DREF_CONTROL, temp);
  4544. POSTING_READ(PCH_DREF_CONTROL);
  4545. udelay(200);
  4546. }
  4547. }
  4548. static int ironlake_get_refclk(struct drm_crtc *crtc)
  4549. {
  4550. struct drm_device *dev = crtc->dev;
  4551. struct drm_i915_private *dev_priv = dev->dev_private;
  4552. struct intel_encoder *encoder;
  4553. struct drm_mode_config *mode_config = &dev->mode_config;
  4554. struct intel_encoder *edp_encoder = NULL;
  4555. int num_connectors = 0;
  4556. bool is_lvds = false;
  4557. list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
  4558. if (encoder->base.crtc != crtc)
  4559. continue;
  4560. switch (encoder->type) {
  4561. case INTEL_OUTPUT_LVDS:
  4562. is_lvds = true;
  4563. break;
  4564. case INTEL_OUTPUT_EDP:
  4565. edp_encoder = encoder;
  4566. break;
  4567. }
  4568. num_connectors++;
  4569. }
  4570. if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
  4571. DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
  4572. dev_priv->lvds_ssc_freq);
  4573. return dev_priv->lvds_ssc_freq * 1000;
  4574. }
  4575. return 120000;
  4576. }
  4577. static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
  4578. struct drm_display_mode *mode,
  4579. struct drm_display_mode *adjusted_mode,
  4580. int x, int y,
  4581. struct drm_framebuffer *old_fb)
  4582. {
  4583. struct drm_device *dev = crtc->dev;
  4584. struct drm_i915_private *dev_priv = dev->dev_private;
  4585. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4586. int pipe = intel_crtc->pipe;
  4587. int plane = intel_crtc->plane;
  4588. int refclk, num_connectors = 0;
  4589. intel_clock_t clock, reduced_clock;
  4590. u32 dpll, fp = 0, fp2 = 0, dspcntr, pipeconf;
  4591. bool ok, has_reduced_clock = false, is_sdvo = false;
  4592. bool is_crt = false, is_lvds = false, is_tv = false, is_dp = false;
  4593. struct intel_encoder *has_edp_encoder = NULL;
  4594. struct drm_mode_config *mode_config = &dev->mode_config;
  4595. struct intel_encoder *encoder;
  4596. const intel_limit_t *limit;
  4597. int ret;
  4598. struct fdi_m_n m_n = {0};
  4599. u32 temp;
  4600. u32 lvds_sync = 0;
  4601. int target_clock, pixel_multiplier, lane, link_bw, factor;
  4602. unsigned int pipe_bpp;
  4603. bool dither;
  4604. list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
  4605. if (encoder->base.crtc != crtc)
  4606. continue;
  4607. switch (encoder->type) {
  4608. case INTEL_OUTPUT_LVDS:
  4609. is_lvds = true;
  4610. break;
  4611. case INTEL_OUTPUT_SDVO:
  4612. case INTEL_OUTPUT_HDMI:
  4613. is_sdvo = true;
  4614. if (encoder->needs_tv_clock)
  4615. is_tv = true;
  4616. break;
  4617. case INTEL_OUTPUT_TVOUT:
  4618. is_tv = true;
  4619. break;
  4620. case INTEL_OUTPUT_ANALOG:
  4621. is_crt = true;
  4622. break;
  4623. case INTEL_OUTPUT_DISPLAYPORT:
  4624. is_dp = true;
  4625. break;
  4626. case INTEL_OUTPUT_EDP:
  4627. has_edp_encoder = encoder;
  4628. break;
  4629. }
  4630. num_connectors++;
  4631. }
  4632. refclk = ironlake_get_refclk(crtc);
  4633. /*
  4634. * Returns a set of divisors for the desired target clock with the given
  4635. * refclk, or FALSE. The returned values represent the clock equation:
  4636. * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
  4637. */
  4638. limit = intel_limit(crtc, refclk);
  4639. ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, &clock);
  4640. if (!ok) {
  4641. DRM_ERROR("Couldn't find PLL settings for mode!\n");
  4642. return -EINVAL;
  4643. }
  4644. /* Ensure that the cursor is valid for the new mode before changing... */
  4645. intel_crtc_update_cursor(crtc, true);
  4646. if (is_lvds && dev_priv->lvds_downclock_avail) {
  4647. has_reduced_clock = limit->find_pll(limit, crtc,
  4648. dev_priv->lvds_downclock,
  4649. refclk,
  4650. &reduced_clock);
  4651. if (has_reduced_clock && (clock.p != reduced_clock.p)) {
  4652. /*
  4653. * If the different P is found, it means that we can't
  4654. * switch the display clock by using the FP0/FP1.
  4655. * In such case we will disable the LVDS downclock
  4656. * feature.
  4657. */
  4658. DRM_DEBUG_KMS("Different P is found for "
  4659. "LVDS clock/downclock\n");
  4660. has_reduced_clock = 0;
  4661. }
  4662. }
  4663. /* SDVO TV has fixed PLL values depend on its clock range,
  4664. this mirrors vbios setting. */
  4665. if (is_sdvo && is_tv) {
  4666. if (adjusted_mode->clock >= 100000
  4667. && adjusted_mode->clock < 140500) {
  4668. clock.p1 = 2;
  4669. clock.p2 = 10;
  4670. clock.n = 3;
  4671. clock.m1 = 16;
  4672. clock.m2 = 8;
  4673. } else if (adjusted_mode->clock >= 140500
  4674. && adjusted_mode->clock <= 200000) {
  4675. clock.p1 = 1;
  4676. clock.p2 = 10;
  4677. clock.n = 6;
  4678. clock.m1 = 12;
  4679. clock.m2 = 8;
  4680. }
  4681. }
  4682. /* FDI link */
  4683. pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
  4684. lane = 0;
  4685. /* CPU eDP doesn't require FDI link, so just set DP M/N
  4686. according to current link config */
  4687. if (has_edp_encoder &&
  4688. !intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
  4689. target_clock = mode->clock;
  4690. intel_edp_link_config(has_edp_encoder,
  4691. &lane, &link_bw);
  4692. } else {
  4693. /* [e]DP over FDI requires target mode clock
  4694. instead of link clock */
  4695. if (is_dp || intel_encoder_is_pch_edp(&has_edp_encoder->base))
  4696. target_clock = mode->clock;
  4697. else
  4698. target_clock = adjusted_mode->clock;
  4699. /* FDI is a binary signal running at ~2.7GHz, encoding
  4700. * each output octet as 10 bits. The actual frequency
  4701. * is stored as a divider into a 100MHz clock, and the
  4702. * mode pixel clock is stored in units of 1KHz.
  4703. * Hence the bw of each lane in terms of the mode signal
  4704. * is:
  4705. */
  4706. link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
  4707. }
  4708. /* determine panel color depth */
  4709. temp = I915_READ(PIPECONF(pipe));
  4710. temp &= ~PIPE_BPC_MASK;
  4711. dither = intel_choose_pipe_bpp_dither(crtc, &pipe_bpp);
  4712. switch (pipe_bpp) {
  4713. case 18:
  4714. temp |= PIPE_6BPC;
  4715. break;
  4716. case 24:
  4717. temp |= PIPE_8BPC;
  4718. break;
  4719. case 30:
  4720. temp |= PIPE_10BPC;
  4721. break;
  4722. case 36:
  4723. temp |= PIPE_12BPC;
  4724. break;
  4725. default:
  4726. WARN(1, "intel_choose_pipe_bpp returned invalid value %d\n",
  4727. pipe_bpp);
  4728. temp |= PIPE_8BPC;
  4729. pipe_bpp = 24;
  4730. break;
  4731. }
  4732. intel_crtc->bpp = pipe_bpp;
  4733. I915_WRITE(PIPECONF(pipe), temp);
  4734. if (!lane) {
  4735. /*
  4736. * Account for spread spectrum to avoid
  4737. * oversubscribing the link. Max center spread
  4738. * is 2.5%; use 5% for safety's sake.
  4739. */
  4740. u32 bps = target_clock * intel_crtc->bpp * 21 / 20;
  4741. lane = bps / (link_bw * 8) + 1;
  4742. }
  4743. intel_crtc->fdi_lanes = lane;
  4744. if (pixel_multiplier > 1)
  4745. link_bw *= pixel_multiplier;
  4746. ironlake_compute_m_n(intel_crtc->bpp, lane, target_clock, link_bw,
  4747. &m_n);
  4748. fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
  4749. if (has_reduced_clock)
  4750. fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
  4751. reduced_clock.m2;
  4752. /* Enable autotuning of the PLL clock (if permissible) */
  4753. factor = 21;
  4754. if (is_lvds) {
  4755. if ((intel_panel_use_ssc(dev_priv) &&
  4756. dev_priv->lvds_ssc_freq == 100) ||
  4757. (I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) == LVDS_CLKB_POWER_UP)
  4758. factor = 25;
  4759. } else if (is_sdvo && is_tv)
  4760. factor = 20;
  4761. if (clock.m < factor * clock.n)
  4762. fp |= FP_CB_TUNE;
  4763. dpll = 0;
  4764. if (is_lvds)
  4765. dpll |= DPLLB_MODE_LVDS;
  4766. else
  4767. dpll |= DPLLB_MODE_DAC_SERIAL;
  4768. if (is_sdvo) {
  4769. int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
  4770. if (pixel_multiplier > 1) {
  4771. dpll |= (pixel_multiplier - 1) << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
  4772. }
  4773. dpll |= DPLL_DVO_HIGH_SPEED;
  4774. }
  4775. if (is_dp || intel_encoder_is_pch_edp(&has_edp_encoder->base))
  4776. dpll |= DPLL_DVO_HIGH_SPEED;
  4777. /* compute bitmask from p1 value */
  4778. dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  4779. /* also FPA1 */
  4780. dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
  4781. switch (clock.p2) {
  4782. case 5:
  4783. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
  4784. break;
  4785. case 7:
  4786. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
  4787. break;
  4788. case 10:
  4789. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
  4790. break;
  4791. case 14:
  4792. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
  4793. break;
  4794. }
  4795. if (is_sdvo && is_tv)
  4796. dpll |= PLL_REF_INPUT_TVCLKINBC;
  4797. else if (is_tv)
  4798. /* XXX: just matching BIOS for now */
  4799. /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
  4800. dpll |= 3;
  4801. else if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
  4802. dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
  4803. else
  4804. dpll |= PLL_REF_INPUT_DREFCLK;
  4805. /* setup pipeconf */
  4806. pipeconf = I915_READ(PIPECONF(pipe));
  4807. /* Set up the display plane register */
  4808. dspcntr = DISPPLANE_GAMMA_ENABLE;
  4809. DRM_DEBUG_KMS("Mode for pipe %d:\n", pipe);
  4810. drm_mode_debug_printmodeline(mode);
  4811. /* PCH eDP needs FDI, but CPU eDP does not */
  4812. if (!intel_crtc->no_pll) {
  4813. if (!has_edp_encoder ||
  4814. intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
  4815. I915_WRITE(PCH_FP0(pipe), fp);
  4816. I915_WRITE(PCH_DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
  4817. POSTING_READ(PCH_DPLL(pipe));
  4818. udelay(150);
  4819. }
  4820. } else {
  4821. if (dpll == (I915_READ(PCH_DPLL(0)) & 0x7fffffff) &&
  4822. fp == I915_READ(PCH_FP0(0))) {
  4823. intel_crtc->use_pll_a = true;
  4824. DRM_DEBUG_KMS("using pipe a dpll\n");
  4825. } else if (dpll == (I915_READ(PCH_DPLL(1)) & 0x7fffffff) &&
  4826. fp == I915_READ(PCH_FP0(1))) {
  4827. intel_crtc->use_pll_a = false;
  4828. DRM_DEBUG_KMS("using pipe b dpll\n");
  4829. } else {
  4830. DRM_DEBUG_KMS("no matching PLL configuration for pipe 2\n");
  4831. return -EINVAL;
  4832. }
  4833. }
  4834. /* enable transcoder DPLL */
  4835. if (HAS_PCH_CPT(dev)) {
  4836. u32 transc_sel = intel_crtc->use_pll_a ? TRANSC_DPLLA_SEL :
  4837. TRANSC_DPLLB_SEL;
  4838. temp = I915_READ(PCH_DPLL_SEL);
  4839. switch (pipe) {
  4840. case 0:
  4841. temp |= TRANSA_DPLL_ENABLE | TRANSA_DPLLA_SEL;
  4842. break;
  4843. case 1:
  4844. temp |= TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL;
  4845. break;
  4846. case 2:
  4847. temp |= TRANSC_DPLL_ENABLE | transc_sel;
  4848. break;
  4849. default:
  4850. BUG();
  4851. }
  4852. I915_WRITE(PCH_DPLL_SEL, temp);
  4853. POSTING_READ(PCH_DPLL_SEL);
  4854. udelay(150);
  4855. }
  4856. /* The LVDS pin pair needs to be on before the DPLLs are enabled.
  4857. * This is an exception to the general rule that mode_set doesn't turn
  4858. * things on.
  4859. */
  4860. if (is_lvds) {
  4861. temp = I915_READ(PCH_LVDS);
  4862. temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
  4863. if (HAS_PCH_CPT(dev))
  4864. temp |= PORT_TRANS_SEL_CPT(pipe);
  4865. else if (pipe == 1)
  4866. temp |= LVDS_PIPEB_SELECT;
  4867. else
  4868. temp &= ~LVDS_PIPEB_SELECT;
  4869. /* set the corresponsding LVDS_BORDER bit */
  4870. temp |= dev_priv->lvds_border_bits;
  4871. /* Set the B0-B3 data pairs corresponding to whether we're going to
  4872. * set the DPLLs for dual-channel mode or not.
  4873. */
  4874. if (clock.p2 == 7)
  4875. temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
  4876. else
  4877. temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
  4878. /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
  4879. * appropriately here, but we need to look more thoroughly into how
  4880. * panels behave in the two modes.
  4881. */
  4882. if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
  4883. lvds_sync |= LVDS_HSYNC_POLARITY;
  4884. if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
  4885. lvds_sync |= LVDS_VSYNC_POLARITY;
  4886. if ((temp & (LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY))
  4887. != lvds_sync) {
  4888. char flags[2] = "-+";
  4889. DRM_INFO("Changing LVDS panel from "
  4890. "(%chsync, %cvsync) to (%chsync, %cvsync)\n",
  4891. flags[!(temp & LVDS_HSYNC_POLARITY)],
  4892. flags[!(temp & LVDS_VSYNC_POLARITY)],
  4893. flags[!(lvds_sync & LVDS_HSYNC_POLARITY)],
  4894. flags[!(lvds_sync & LVDS_VSYNC_POLARITY)]);
  4895. temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
  4896. temp |= lvds_sync;
  4897. }
  4898. I915_WRITE(PCH_LVDS, temp);
  4899. }
  4900. pipeconf &= ~PIPECONF_DITHER_EN;
  4901. pipeconf &= ~PIPECONF_DITHER_TYPE_MASK;
  4902. if ((is_lvds && dev_priv->lvds_dither) || dither) {
  4903. pipeconf |= PIPECONF_DITHER_EN;
  4904. pipeconf |= PIPECONF_DITHER_TYPE_ST1;
  4905. }
  4906. if (is_dp || intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
  4907. intel_dp_set_m_n(crtc, mode, adjusted_mode);
  4908. } else {
  4909. /* For non-DP output, clear any trans DP clock recovery setting.*/
  4910. I915_WRITE(TRANSDATA_M1(pipe), 0);
  4911. I915_WRITE(TRANSDATA_N1(pipe), 0);
  4912. I915_WRITE(TRANSDPLINK_M1(pipe), 0);
  4913. I915_WRITE(TRANSDPLINK_N1(pipe), 0);
  4914. }
  4915. if (!intel_crtc->no_pll &&
  4916. (!has_edp_encoder ||
  4917. intel_encoder_is_pch_edp(&has_edp_encoder->base))) {
  4918. I915_WRITE(PCH_DPLL(pipe), dpll);
  4919. /* Wait for the clocks to stabilize. */
  4920. POSTING_READ(PCH_DPLL(pipe));
  4921. udelay(150);
  4922. /* The pixel multiplier can only be updated once the
  4923. * DPLL is enabled and the clocks are stable.
  4924. *
  4925. * So write it again.
  4926. */
  4927. I915_WRITE(PCH_DPLL(pipe), dpll);
  4928. }
  4929. intel_crtc->lowfreq_avail = false;
  4930. if (!intel_crtc->no_pll) {
  4931. if (is_lvds && has_reduced_clock && i915_powersave) {
  4932. I915_WRITE(PCH_FP1(pipe), fp2);
  4933. intel_crtc->lowfreq_avail = true;
  4934. if (HAS_PIPE_CXSR(dev)) {
  4935. DRM_DEBUG_KMS("enabling CxSR downclocking\n");
  4936. pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
  4937. }
  4938. } else {
  4939. I915_WRITE(PCH_FP1(pipe), fp);
  4940. if (HAS_PIPE_CXSR(dev)) {
  4941. DRM_DEBUG_KMS("disabling CxSR downclocking\n");
  4942. pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
  4943. }
  4944. }
  4945. }
  4946. if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
  4947. pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
  4948. /* the chip adds 2 halflines automatically */
  4949. adjusted_mode->crtc_vdisplay -= 1;
  4950. adjusted_mode->crtc_vtotal -= 1;
  4951. adjusted_mode->crtc_vblank_start -= 1;
  4952. adjusted_mode->crtc_vblank_end -= 1;
  4953. adjusted_mode->crtc_vsync_end -= 1;
  4954. adjusted_mode->crtc_vsync_start -= 1;
  4955. } else
  4956. pipeconf &= ~PIPECONF_INTERLACE_W_FIELD_INDICATION; /* progressive */
  4957. I915_WRITE(HTOTAL(pipe),
  4958. (adjusted_mode->crtc_hdisplay - 1) |
  4959. ((adjusted_mode->crtc_htotal - 1) << 16));
  4960. I915_WRITE(HBLANK(pipe),
  4961. (adjusted_mode->crtc_hblank_start - 1) |
  4962. ((adjusted_mode->crtc_hblank_end - 1) << 16));
  4963. I915_WRITE(HSYNC(pipe),
  4964. (adjusted_mode->crtc_hsync_start - 1) |
  4965. ((adjusted_mode->crtc_hsync_end - 1) << 16));
  4966. I915_WRITE(VTOTAL(pipe),
  4967. (adjusted_mode->crtc_vdisplay - 1) |
  4968. ((adjusted_mode->crtc_vtotal - 1) << 16));
  4969. I915_WRITE(VBLANK(pipe),
  4970. (adjusted_mode->crtc_vblank_start - 1) |
  4971. ((adjusted_mode->crtc_vblank_end - 1) << 16));
  4972. I915_WRITE(VSYNC(pipe),
  4973. (adjusted_mode->crtc_vsync_start - 1) |
  4974. ((adjusted_mode->crtc_vsync_end - 1) << 16));
  4975. /* pipesrc controls the size that is scaled from, which should
  4976. * always be the user's requested size.
  4977. */
  4978. I915_WRITE(PIPESRC(pipe),
  4979. ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
  4980. I915_WRITE(PIPE_DATA_M1(pipe), TU_SIZE(m_n.tu) | m_n.gmch_m);
  4981. I915_WRITE(PIPE_DATA_N1(pipe), m_n.gmch_n);
  4982. I915_WRITE(PIPE_LINK_M1(pipe), m_n.link_m);
  4983. I915_WRITE(PIPE_LINK_N1(pipe), m_n.link_n);
  4984. if (has_edp_encoder &&
  4985. !intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
  4986. ironlake_set_pll_edp(crtc, adjusted_mode->clock);
  4987. }
  4988. I915_WRITE(PIPECONF(pipe), pipeconf);
  4989. POSTING_READ(PIPECONF(pipe));
  4990. intel_wait_for_vblank(dev, pipe);
  4991. if (IS_GEN5(dev)) {
  4992. /* enable address swizzle for tiling buffer */
  4993. temp = I915_READ(DISP_ARB_CTL);
  4994. I915_WRITE(DISP_ARB_CTL, temp | DISP_TILE_SURFACE_SWIZZLING);
  4995. }
  4996. I915_WRITE(DSPCNTR(plane), dspcntr);
  4997. POSTING_READ(DSPCNTR(plane));
  4998. ret = intel_pipe_set_base(crtc, x, y, old_fb);
  4999. intel_update_watermarks(dev);
  5000. return ret;
  5001. }
  5002. static int intel_crtc_mode_set(struct drm_crtc *crtc,
  5003. struct drm_display_mode *mode,
  5004. struct drm_display_mode *adjusted_mode,
  5005. int x, int y,
  5006. struct drm_framebuffer *old_fb)
  5007. {
  5008. struct drm_device *dev = crtc->dev;
  5009. struct drm_i915_private *dev_priv = dev->dev_private;
  5010. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5011. int pipe = intel_crtc->pipe;
  5012. int ret;
  5013. drm_vblank_pre_modeset(dev, pipe);
  5014. ret = dev_priv->display.crtc_mode_set(crtc, mode, adjusted_mode,
  5015. x, y, old_fb);
  5016. drm_vblank_post_modeset(dev, pipe);
  5017. intel_crtc->dpms_mode = DRM_MODE_DPMS_ON;
  5018. return ret;
  5019. }
  5020. static void g4x_write_eld(struct drm_connector *connector,
  5021. struct drm_crtc *crtc)
  5022. {
  5023. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  5024. uint8_t *eld = connector->eld;
  5025. uint32_t eldv;
  5026. uint32_t len;
  5027. uint32_t i;
  5028. i = I915_READ(G4X_AUD_VID_DID);
  5029. if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
  5030. eldv = G4X_ELDV_DEVCL_DEVBLC;
  5031. else
  5032. eldv = G4X_ELDV_DEVCTG;
  5033. i = I915_READ(G4X_AUD_CNTL_ST);
  5034. i &= ~(eldv | G4X_ELD_ADDR);
  5035. len = (i >> 9) & 0x1f; /* ELD buffer size */
  5036. I915_WRITE(G4X_AUD_CNTL_ST, i);
  5037. if (!eld[0])
  5038. return;
  5039. len = min_t(uint8_t, eld[2], len);
  5040. DRM_DEBUG_DRIVER("ELD size %d\n", len);
  5041. for (i = 0; i < len; i++)
  5042. I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
  5043. i = I915_READ(G4X_AUD_CNTL_ST);
  5044. i |= eldv;
  5045. I915_WRITE(G4X_AUD_CNTL_ST, i);
  5046. }
  5047. static void ironlake_write_eld(struct drm_connector *connector,
  5048. struct drm_crtc *crtc)
  5049. {
  5050. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  5051. uint8_t *eld = connector->eld;
  5052. uint32_t eldv;
  5053. uint32_t i;
  5054. int len;
  5055. int hdmiw_hdmiedid;
  5056. int aud_cntl_st;
  5057. int aud_cntrl_st2;
  5058. if (IS_IVYBRIDGE(connector->dev)) {
  5059. hdmiw_hdmiedid = GEN7_HDMIW_HDMIEDID_A;
  5060. aud_cntl_st = GEN7_AUD_CNTRL_ST_A;
  5061. aud_cntrl_st2 = GEN7_AUD_CNTRL_ST2;
  5062. } else {
  5063. hdmiw_hdmiedid = GEN5_HDMIW_HDMIEDID_A;
  5064. aud_cntl_st = GEN5_AUD_CNTL_ST_A;
  5065. aud_cntrl_st2 = GEN5_AUD_CNTL_ST2;
  5066. }
  5067. i = to_intel_crtc(crtc)->pipe;
  5068. hdmiw_hdmiedid += i * 0x100;
  5069. aud_cntl_st += i * 0x100;
  5070. DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(i));
  5071. i = I915_READ(aud_cntl_st);
  5072. i = (i >> 29) & 0x3; /* DIP_Port_Select, 0x1 = PortB */
  5073. if (!i) {
  5074. DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
  5075. /* operate blindly on all ports */
  5076. eldv = GEN5_ELD_VALIDB;
  5077. eldv |= GEN5_ELD_VALIDB << 4;
  5078. eldv |= GEN5_ELD_VALIDB << 8;
  5079. } else {
  5080. DRM_DEBUG_DRIVER("ELD on port %c\n", 'A' + i);
  5081. eldv = GEN5_ELD_VALIDB << ((i - 1) * 4);
  5082. }
  5083. i = I915_READ(aud_cntrl_st2);
  5084. i &= ~eldv;
  5085. I915_WRITE(aud_cntrl_st2, i);
  5086. if (!eld[0])
  5087. return;
  5088. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
  5089. DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
  5090. eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
  5091. }
  5092. i = I915_READ(aud_cntl_st);
  5093. i &= ~GEN5_ELD_ADDRESS;
  5094. I915_WRITE(aud_cntl_st, i);
  5095. len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
  5096. DRM_DEBUG_DRIVER("ELD size %d\n", len);
  5097. for (i = 0; i < len; i++)
  5098. I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
  5099. i = I915_READ(aud_cntrl_st2);
  5100. i |= eldv;
  5101. I915_WRITE(aud_cntrl_st2, i);
  5102. }
  5103. void intel_write_eld(struct drm_encoder *encoder,
  5104. struct drm_display_mode *mode)
  5105. {
  5106. struct drm_crtc *crtc = encoder->crtc;
  5107. struct drm_connector *connector;
  5108. struct drm_device *dev = encoder->dev;
  5109. struct drm_i915_private *dev_priv = dev->dev_private;
  5110. connector = drm_select_eld(encoder, mode);
  5111. if (!connector)
  5112. return;
  5113. DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
  5114. connector->base.id,
  5115. drm_get_connector_name(connector),
  5116. connector->encoder->base.id,
  5117. drm_get_encoder_name(connector->encoder));
  5118. connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
  5119. if (dev_priv->display.write_eld)
  5120. dev_priv->display.write_eld(connector, crtc);
  5121. }
  5122. /** Loads the palette/gamma unit for the CRTC with the prepared values */
  5123. void intel_crtc_load_lut(struct drm_crtc *crtc)
  5124. {
  5125. struct drm_device *dev = crtc->dev;
  5126. struct drm_i915_private *dev_priv = dev->dev_private;
  5127. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5128. int palreg = PALETTE(intel_crtc->pipe);
  5129. int i;
  5130. /* The clocks have to be on to load the palette. */
  5131. if (!crtc->enabled)
  5132. return;
  5133. /* use legacy palette for Ironlake */
  5134. if (HAS_PCH_SPLIT(dev))
  5135. palreg = LGC_PALETTE(intel_crtc->pipe);
  5136. for (i = 0; i < 256; i++) {
  5137. I915_WRITE(palreg + 4 * i,
  5138. (intel_crtc->lut_r[i] << 16) |
  5139. (intel_crtc->lut_g[i] << 8) |
  5140. intel_crtc->lut_b[i]);
  5141. }
  5142. }
  5143. static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
  5144. {
  5145. struct drm_device *dev = crtc->dev;
  5146. struct drm_i915_private *dev_priv = dev->dev_private;
  5147. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5148. bool visible = base != 0;
  5149. u32 cntl;
  5150. if (intel_crtc->cursor_visible == visible)
  5151. return;
  5152. cntl = I915_READ(_CURACNTR);
  5153. if (visible) {
  5154. /* On these chipsets we can only modify the base whilst
  5155. * the cursor is disabled.
  5156. */
  5157. I915_WRITE(_CURABASE, base);
  5158. cntl &= ~(CURSOR_FORMAT_MASK);
  5159. /* XXX width must be 64, stride 256 => 0x00 << 28 */
  5160. cntl |= CURSOR_ENABLE |
  5161. CURSOR_GAMMA_ENABLE |
  5162. CURSOR_FORMAT_ARGB;
  5163. } else
  5164. cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
  5165. I915_WRITE(_CURACNTR, cntl);
  5166. intel_crtc->cursor_visible = visible;
  5167. }
  5168. static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
  5169. {
  5170. struct drm_device *dev = crtc->dev;
  5171. struct drm_i915_private *dev_priv = dev->dev_private;
  5172. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5173. int pipe = intel_crtc->pipe;
  5174. bool visible = base != 0;
  5175. if (intel_crtc->cursor_visible != visible) {
  5176. uint32_t cntl = I915_READ(CURCNTR(pipe));
  5177. if (base) {
  5178. cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
  5179. cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
  5180. cntl |= pipe << 28; /* Connect to correct pipe */
  5181. } else {
  5182. cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
  5183. cntl |= CURSOR_MODE_DISABLE;
  5184. }
  5185. I915_WRITE(CURCNTR(pipe), cntl);
  5186. intel_crtc->cursor_visible = visible;
  5187. }
  5188. /* and commit changes on next vblank */
  5189. I915_WRITE(CURBASE(pipe), base);
  5190. }
  5191. /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
  5192. static void intel_crtc_update_cursor(struct drm_crtc *crtc,
  5193. bool on)
  5194. {
  5195. struct drm_device *dev = crtc->dev;
  5196. struct drm_i915_private *dev_priv = dev->dev_private;
  5197. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5198. int pipe = intel_crtc->pipe;
  5199. int x = intel_crtc->cursor_x;
  5200. int y = intel_crtc->cursor_y;
  5201. u32 base, pos;
  5202. bool visible;
  5203. pos = 0;
  5204. if (on && crtc->enabled && crtc->fb) {
  5205. base = intel_crtc->cursor_addr;
  5206. if (x > (int) crtc->fb->width)
  5207. base = 0;
  5208. if (y > (int) crtc->fb->height)
  5209. base = 0;
  5210. } else
  5211. base = 0;
  5212. if (x < 0) {
  5213. if (x + intel_crtc->cursor_width < 0)
  5214. base = 0;
  5215. pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
  5216. x = -x;
  5217. }
  5218. pos |= x << CURSOR_X_SHIFT;
  5219. if (y < 0) {
  5220. if (y + intel_crtc->cursor_height < 0)
  5221. base = 0;
  5222. pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
  5223. y = -y;
  5224. }
  5225. pos |= y << CURSOR_Y_SHIFT;
  5226. visible = base != 0;
  5227. if (!visible && !intel_crtc->cursor_visible)
  5228. return;
  5229. I915_WRITE(CURPOS(pipe), pos);
  5230. if (IS_845G(dev) || IS_I865G(dev))
  5231. i845_update_cursor(crtc, base);
  5232. else
  5233. i9xx_update_cursor(crtc, base);
  5234. if (visible)
  5235. intel_mark_busy(dev, to_intel_framebuffer(crtc->fb)->obj);
  5236. }
  5237. static int intel_crtc_cursor_set(struct drm_crtc *crtc,
  5238. struct drm_file *file,
  5239. uint32_t handle,
  5240. uint32_t width, uint32_t height)
  5241. {
  5242. struct drm_device *dev = crtc->dev;
  5243. struct drm_i915_private *dev_priv = dev->dev_private;
  5244. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5245. struct drm_i915_gem_object *obj;
  5246. uint32_t addr;
  5247. int ret;
  5248. DRM_DEBUG_KMS("\n");
  5249. /* if we want to turn off the cursor ignore width and height */
  5250. if (!handle) {
  5251. DRM_DEBUG_KMS("cursor off\n");
  5252. addr = 0;
  5253. obj = NULL;
  5254. mutex_lock(&dev->struct_mutex);
  5255. goto finish;
  5256. }
  5257. /* Currently we only support 64x64 cursors */
  5258. if (width != 64 || height != 64) {
  5259. DRM_ERROR("we currently only support 64x64 cursors\n");
  5260. return -EINVAL;
  5261. }
  5262. obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
  5263. if (&obj->base == NULL)
  5264. return -ENOENT;
  5265. if (obj->base.size < width * height * 4) {
  5266. DRM_ERROR("buffer is to small\n");
  5267. ret = -ENOMEM;
  5268. goto fail;
  5269. }
  5270. /* we only need to pin inside GTT if cursor is non-phy */
  5271. mutex_lock(&dev->struct_mutex);
  5272. if (!dev_priv->info->cursor_needs_physical) {
  5273. if (obj->tiling_mode) {
  5274. DRM_ERROR("cursor cannot be tiled\n");
  5275. ret = -EINVAL;
  5276. goto fail_locked;
  5277. }
  5278. ret = i915_gem_object_pin_to_display_plane(obj, 0, NULL);
  5279. if (ret) {
  5280. DRM_ERROR("failed to move cursor bo into the GTT\n");
  5281. goto fail_locked;
  5282. }
  5283. ret = i915_gem_object_put_fence(obj);
  5284. if (ret) {
  5285. DRM_ERROR("failed to release fence for cursor");
  5286. goto fail_unpin;
  5287. }
  5288. addr = obj->gtt_offset;
  5289. } else {
  5290. int align = IS_I830(dev) ? 16 * 1024 : 256;
  5291. ret = i915_gem_attach_phys_object(dev, obj,
  5292. (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
  5293. align);
  5294. if (ret) {
  5295. DRM_ERROR("failed to attach phys object\n");
  5296. goto fail_locked;
  5297. }
  5298. addr = obj->phys_obj->handle->busaddr;
  5299. }
  5300. if (IS_GEN2(dev))
  5301. I915_WRITE(CURSIZE, (height << 12) | width);
  5302. finish:
  5303. if (intel_crtc->cursor_bo) {
  5304. if (dev_priv->info->cursor_needs_physical) {
  5305. if (intel_crtc->cursor_bo != obj)
  5306. i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
  5307. } else
  5308. i915_gem_object_unpin(intel_crtc->cursor_bo);
  5309. drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
  5310. }
  5311. mutex_unlock(&dev->struct_mutex);
  5312. intel_crtc->cursor_addr = addr;
  5313. intel_crtc->cursor_bo = obj;
  5314. intel_crtc->cursor_width = width;
  5315. intel_crtc->cursor_height = height;
  5316. intel_crtc_update_cursor(crtc, true);
  5317. return 0;
  5318. fail_unpin:
  5319. i915_gem_object_unpin(obj);
  5320. fail_locked:
  5321. mutex_unlock(&dev->struct_mutex);
  5322. fail:
  5323. drm_gem_object_unreference_unlocked(&obj->base);
  5324. return ret;
  5325. }
  5326. static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
  5327. {
  5328. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5329. intel_crtc->cursor_x = x;
  5330. intel_crtc->cursor_y = y;
  5331. intel_crtc_update_cursor(crtc, true);
  5332. return 0;
  5333. }
  5334. /** Sets the color ramps on behalf of RandR */
  5335. void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
  5336. u16 blue, int regno)
  5337. {
  5338. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5339. intel_crtc->lut_r[regno] = red >> 8;
  5340. intel_crtc->lut_g[regno] = green >> 8;
  5341. intel_crtc->lut_b[regno] = blue >> 8;
  5342. }
  5343. void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
  5344. u16 *blue, int regno)
  5345. {
  5346. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5347. *red = intel_crtc->lut_r[regno] << 8;
  5348. *green = intel_crtc->lut_g[regno] << 8;
  5349. *blue = intel_crtc->lut_b[regno] << 8;
  5350. }
  5351. static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
  5352. u16 *blue, uint32_t start, uint32_t size)
  5353. {
  5354. int end = (start + size > 256) ? 256 : start + size, i;
  5355. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5356. for (i = start; i < end; i++) {
  5357. intel_crtc->lut_r[i] = red[i] >> 8;
  5358. intel_crtc->lut_g[i] = green[i] >> 8;
  5359. intel_crtc->lut_b[i] = blue[i] >> 8;
  5360. }
  5361. intel_crtc_load_lut(crtc);
  5362. }
  5363. /**
  5364. * Get a pipe with a simple mode set on it for doing load-based monitor
  5365. * detection.
  5366. *
  5367. * It will be up to the load-detect code to adjust the pipe as appropriate for
  5368. * its requirements. The pipe will be connected to no other encoders.
  5369. *
  5370. * Currently this code will only succeed if there is a pipe with no encoders
  5371. * configured for it. In the future, it could choose to temporarily disable
  5372. * some outputs to free up a pipe for its use.
  5373. *
  5374. * \return crtc, or NULL if no pipes are available.
  5375. */
  5376. /* VESA 640x480x72Hz mode to set on the pipe */
  5377. static struct drm_display_mode load_detect_mode = {
  5378. DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
  5379. 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
  5380. };
  5381. static struct drm_framebuffer *
  5382. intel_framebuffer_create(struct drm_device *dev,
  5383. struct drm_mode_fb_cmd *mode_cmd,
  5384. struct drm_i915_gem_object *obj)
  5385. {
  5386. struct intel_framebuffer *intel_fb;
  5387. int ret;
  5388. intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
  5389. if (!intel_fb) {
  5390. drm_gem_object_unreference_unlocked(&obj->base);
  5391. return ERR_PTR(-ENOMEM);
  5392. }
  5393. ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
  5394. if (ret) {
  5395. drm_gem_object_unreference_unlocked(&obj->base);
  5396. kfree(intel_fb);
  5397. return ERR_PTR(ret);
  5398. }
  5399. return &intel_fb->base;
  5400. }
  5401. static u32
  5402. intel_framebuffer_pitch_for_width(int width, int bpp)
  5403. {
  5404. u32 pitch = DIV_ROUND_UP(width * bpp, 8);
  5405. return ALIGN(pitch, 64);
  5406. }
  5407. static u32
  5408. intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
  5409. {
  5410. u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
  5411. return ALIGN(pitch * mode->vdisplay, PAGE_SIZE);
  5412. }
  5413. static struct drm_framebuffer *
  5414. intel_framebuffer_create_for_mode(struct drm_device *dev,
  5415. struct drm_display_mode *mode,
  5416. int depth, int bpp)
  5417. {
  5418. struct drm_i915_gem_object *obj;
  5419. struct drm_mode_fb_cmd mode_cmd;
  5420. obj = i915_gem_alloc_object(dev,
  5421. intel_framebuffer_size_for_mode(mode, bpp));
  5422. if (obj == NULL)
  5423. return ERR_PTR(-ENOMEM);
  5424. mode_cmd.width = mode->hdisplay;
  5425. mode_cmd.height = mode->vdisplay;
  5426. mode_cmd.depth = depth;
  5427. mode_cmd.bpp = bpp;
  5428. mode_cmd.pitch = intel_framebuffer_pitch_for_width(mode_cmd.width, bpp);
  5429. return intel_framebuffer_create(dev, &mode_cmd, obj);
  5430. }
  5431. static struct drm_framebuffer *
  5432. mode_fits_in_fbdev(struct drm_device *dev,
  5433. struct drm_display_mode *mode)
  5434. {
  5435. struct drm_i915_private *dev_priv = dev->dev_private;
  5436. struct drm_i915_gem_object *obj;
  5437. struct drm_framebuffer *fb;
  5438. if (dev_priv->fbdev == NULL)
  5439. return NULL;
  5440. obj = dev_priv->fbdev->ifb.obj;
  5441. if (obj == NULL)
  5442. return NULL;
  5443. fb = &dev_priv->fbdev->ifb.base;
  5444. if (fb->pitch < intel_framebuffer_pitch_for_width(mode->hdisplay,
  5445. fb->bits_per_pixel))
  5446. return NULL;
  5447. if (obj->base.size < mode->vdisplay * fb->pitch)
  5448. return NULL;
  5449. return fb;
  5450. }
  5451. bool intel_get_load_detect_pipe(struct intel_encoder *intel_encoder,
  5452. struct drm_connector *connector,
  5453. struct drm_display_mode *mode,
  5454. struct intel_load_detect_pipe *old)
  5455. {
  5456. struct intel_crtc *intel_crtc;
  5457. struct drm_crtc *possible_crtc;
  5458. struct drm_encoder *encoder = &intel_encoder->base;
  5459. struct drm_crtc *crtc = NULL;
  5460. struct drm_device *dev = encoder->dev;
  5461. struct drm_framebuffer *old_fb;
  5462. int i = -1;
  5463. DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
  5464. connector->base.id, drm_get_connector_name(connector),
  5465. encoder->base.id, drm_get_encoder_name(encoder));
  5466. /*
  5467. * Algorithm gets a little messy:
  5468. *
  5469. * - if the connector already has an assigned crtc, use it (but make
  5470. * sure it's on first)
  5471. *
  5472. * - try to find the first unused crtc that can drive this connector,
  5473. * and use that if we find one
  5474. */
  5475. /* See if we already have a CRTC for this connector */
  5476. if (encoder->crtc) {
  5477. crtc = encoder->crtc;
  5478. intel_crtc = to_intel_crtc(crtc);
  5479. old->dpms_mode = intel_crtc->dpms_mode;
  5480. old->load_detect_temp = false;
  5481. /* Make sure the crtc and connector are running */
  5482. if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
  5483. struct drm_encoder_helper_funcs *encoder_funcs;
  5484. struct drm_crtc_helper_funcs *crtc_funcs;
  5485. crtc_funcs = crtc->helper_private;
  5486. crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
  5487. encoder_funcs = encoder->helper_private;
  5488. encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
  5489. }
  5490. return true;
  5491. }
  5492. /* Find an unused one (if possible) */
  5493. list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
  5494. i++;
  5495. if (!(encoder->possible_crtcs & (1 << i)))
  5496. continue;
  5497. if (!possible_crtc->enabled) {
  5498. crtc = possible_crtc;
  5499. break;
  5500. }
  5501. }
  5502. /*
  5503. * If we didn't find an unused CRTC, don't use any.
  5504. */
  5505. if (!crtc) {
  5506. DRM_DEBUG_KMS("no pipe available for load-detect\n");
  5507. return false;
  5508. }
  5509. encoder->crtc = crtc;
  5510. connector->encoder = encoder;
  5511. intel_crtc = to_intel_crtc(crtc);
  5512. old->dpms_mode = intel_crtc->dpms_mode;
  5513. old->load_detect_temp = true;
  5514. old->release_fb = NULL;
  5515. if (!mode)
  5516. mode = &load_detect_mode;
  5517. old_fb = crtc->fb;
  5518. /* We need a framebuffer large enough to accommodate all accesses
  5519. * that the plane may generate whilst we perform load detection.
  5520. * We can not rely on the fbcon either being present (we get called
  5521. * during its initialisation to detect all boot displays, or it may
  5522. * not even exist) or that it is large enough to satisfy the
  5523. * requested mode.
  5524. */
  5525. crtc->fb = mode_fits_in_fbdev(dev, mode);
  5526. if (crtc->fb == NULL) {
  5527. DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
  5528. crtc->fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
  5529. old->release_fb = crtc->fb;
  5530. } else
  5531. DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
  5532. if (IS_ERR(crtc->fb)) {
  5533. DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
  5534. crtc->fb = old_fb;
  5535. return false;
  5536. }
  5537. if (!drm_crtc_helper_set_mode(crtc, mode, 0, 0, old_fb)) {
  5538. DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
  5539. if (old->release_fb)
  5540. old->release_fb->funcs->destroy(old->release_fb);
  5541. crtc->fb = old_fb;
  5542. return false;
  5543. }
  5544. /* let the connector get through one full cycle before testing */
  5545. intel_wait_for_vblank(dev, intel_crtc->pipe);
  5546. return true;
  5547. }
  5548. void intel_release_load_detect_pipe(struct intel_encoder *intel_encoder,
  5549. struct drm_connector *connector,
  5550. struct intel_load_detect_pipe *old)
  5551. {
  5552. struct drm_encoder *encoder = &intel_encoder->base;
  5553. struct drm_device *dev = encoder->dev;
  5554. struct drm_crtc *crtc = encoder->crtc;
  5555. struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
  5556. struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
  5557. DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
  5558. connector->base.id, drm_get_connector_name(connector),
  5559. encoder->base.id, drm_get_encoder_name(encoder));
  5560. if (old->load_detect_temp) {
  5561. connector->encoder = NULL;
  5562. drm_helper_disable_unused_functions(dev);
  5563. if (old->release_fb)
  5564. old->release_fb->funcs->destroy(old->release_fb);
  5565. return;
  5566. }
  5567. /* Switch crtc and encoder back off if necessary */
  5568. if (old->dpms_mode != DRM_MODE_DPMS_ON) {
  5569. encoder_funcs->dpms(encoder, old->dpms_mode);
  5570. crtc_funcs->dpms(crtc, old->dpms_mode);
  5571. }
  5572. }
  5573. /* Returns the clock of the currently programmed mode of the given pipe. */
  5574. static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
  5575. {
  5576. struct drm_i915_private *dev_priv = dev->dev_private;
  5577. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5578. int pipe = intel_crtc->pipe;
  5579. u32 dpll = I915_READ(DPLL(pipe));
  5580. u32 fp;
  5581. intel_clock_t clock;
  5582. if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
  5583. fp = I915_READ(FP0(pipe));
  5584. else
  5585. fp = I915_READ(FP1(pipe));
  5586. clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
  5587. if (IS_PINEVIEW(dev)) {
  5588. clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
  5589. clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
  5590. } else {
  5591. clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
  5592. clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
  5593. }
  5594. if (!IS_GEN2(dev)) {
  5595. if (IS_PINEVIEW(dev))
  5596. clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
  5597. DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
  5598. else
  5599. clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
  5600. DPLL_FPA01_P1_POST_DIV_SHIFT);
  5601. switch (dpll & DPLL_MODE_MASK) {
  5602. case DPLLB_MODE_DAC_SERIAL:
  5603. clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
  5604. 5 : 10;
  5605. break;
  5606. case DPLLB_MODE_LVDS:
  5607. clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
  5608. 7 : 14;
  5609. break;
  5610. default:
  5611. DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
  5612. "mode\n", (int)(dpll & DPLL_MODE_MASK));
  5613. return 0;
  5614. }
  5615. /* XXX: Handle the 100Mhz refclk */
  5616. intel_clock(dev, 96000, &clock);
  5617. } else {
  5618. bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
  5619. if (is_lvds) {
  5620. clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
  5621. DPLL_FPA01_P1_POST_DIV_SHIFT);
  5622. clock.p2 = 14;
  5623. if ((dpll & PLL_REF_INPUT_MASK) ==
  5624. PLLB_REF_INPUT_SPREADSPECTRUMIN) {
  5625. /* XXX: might not be 66MHz */
  5626. intel_clock(dev, 66000, &clock);
  5627. } else
  5628. intel_clock(dev, 48000, &clock);
  5629. } else {
  5630. if (dpll & PLL_P1_DIVIDE_BY_TWO)
  5631. clock.p1 = 2;
  5632. else {
  5633. clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
  5634. DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
  5635. }
  5636. if (dpll & PLL_P2_DIVIDE_BY_4)
  5637. clock.p2 = 4;
  5638. else
  5639. clock.p2 = 2;
  5640. intel_clock(dev, 48000, &clock);
  5641. }
  5642. }
  5643. /* XXX: It would be nice to validate the clocks, but we can't reuse
  5644. * i830PllIsValid() because it relies on the xf86_config connector
  5645. * configuration being accurate, which it isn't necessarily.
  5646. */
  5647. return clock.dot;
  5648. }
  5649. /** Returns the currently programmed mode of the given pipe. */
  5650. struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
  5651. struct drm_crtc *crtc)
  5652. {
  5653. struct drm_i915_private *dev_priv = dev->dev_private;
  5654. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5655. int pipe = intel_crtc->pipe;
  5656. struct drm_display_mode *mode;
  5657. int htot = I915_READ(HTOTAL(pipe));
  5658. int hsync = I915_READ(HSYNC(pipe));
  5659. int vtot = I915_READ(VTOTAL(pipe));
  5660. int vsync = I915_READ(VSYNC(pipe));
  5661. mode = kzalloc(sizeof(*mode), GFP_KERNEL);
  5662. if (!mode)
  5663. return NULL;
  5664. mode->clock = intel_crtc_clock_get(dev, crtc);
  5665. mode->hdisplay = (htot & 0xffff) + 1;
  5666. mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
  5667. mode->hsync_start = (hsync & 0xffff) + 1;
  5668. mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
  5669. mode->vdisplay = (vtot & 0xffff) + 1;
  5670. mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
  5671. mode->vsync_start = (vsync & 0xffff) + 1;
  5672. mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
  5673. drm_mode_set_name(mode);
  5674. drm_mode_set_crtcinfo(mode, 0);
  5675. return mode;
  5676. }
  5677. #define GPU_IDLE_TIMEOUT 500 /* ms */
  5678. /* When this timer fires, we've been idle for awhile */
  5679. static void intel_gpu_idle_timer(unsigned long arg)
  5680. {
  5681. struct drm_device *dev = (struct drm_device *)arg;
  5682. drm_i915_private_t *dev_priv = dev->dev_private;
  5683. if (!list_empty(&dev_priv->mm.active_list)) {
  5684. /* Still processing requests, so just re-arm the timer. */
  5685. mod_timer(&dev_priv->idle_timer, jiffies +
  5686. msecs_to_jiffies(GPU_IDLE_TIMEOUT));
  5687. return;
  5688. }
  5689. dev_priv->busy = false;
  5690. queue_work(dev_priv->wq, &dev_priv->idle_work);
  5691. }
  5692. #define CRTC_IDLE_TIMEOUT 1000 /* ms */
  5693. static void intel_crtc_idle_timer(unsigned long arg)
  5694. {
  5695. struct intel_crtc *intel_crtc = (struct intel_crtc *)arg;
  5696. struct drm_crtc *crtc = &intel_crtc->base;
  5697. drm_i915_private_t *dev_priv = crtc->dev->dev_private;
  5698. struct intel_framebuffer *intel_fb;
  5699. intel_fb = to_intel_framebuffer(crtc->fb);
  5700. if (intel_fb && intel_fb->obj->active) {
  5701. /* The framebuffer is still being accessed by the GPU. */
  5702. mod_timer(&intel_crtc->idle_timer, jiffies +
  5703. msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
  5704. return;
  5705. }
  5706. intel_crtc->busy = false;
  5707. queue_work(dev_priv->wq, &dev_priv->idle_work);
  5708. }
  5709. static void intel_increase_pllclock(struct drm_crtc *crtc)
  5710. {
  5711. struct drm_device *dev = crtc->dev;
  5712. drm_i915_private_t *dev_priv = dev->dev_private;
  5713. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5714. int pipe = intel_crtc->pipe;
  5715. int dpll_reg = DPLL(pipe);
  5716. int dpll;
  5717. if (HAS_PCH_SPLIT(dev))
  5718. return;
  5719. if (!dev_priv->lvds_downclock_avail)
  5720. return;
  5721. dpll = I915_READ(dpll_reg);
  5722. if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
  5723. DRM_DEBUG_DRIVER("upclocking LVDS\n");
  5724. /* Unlock panel regs */
  5725. I915_WRITE(PP_CONTROL,
  5726. I915_READ(PP_CONTROL) | PANEL_UNLOCK_REGS);
  5727. dpll &= ~DISPLAY_RATE_SELECT_FPA1;
  5728. I915_WRITE(dpll_reg, dpll);
  5729. intel_wait_for_vblank(dev, pipe);
  5730. dpll = I915_READ(dpll_reg);
  5731. if (dpll & DISPLAY_RATE_SELECT_FPA1)
  5732. DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
  5733. /* ...and lock them again */
  5734. I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) & 0x3);
  5735. }
  5736. /* Schedule downclock */
  5737. mod_timer(&intel_crtc->idle_timer, jiffies +
  5738. msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
  5739. }
  5740. static void intel_decrease_pllclock(struct drm_crtc *crtc)
  5741. {
  5742. struct drm_device *dev = crtc->dev;
  5743. drm_i915_private_t *dev_priv = dev->dev_private;
  5744. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5745. int pipe = intel_crtc->pipe;
  5746. int dpll_reg = DPLL(pipe);
  5747. int dpll = I915_READ(dpll_reg);
  5748. if (HAS_PCH_SPLIT(dev))
  5749. return;
  5750. if (!dev_priv->lvds_downclock_avail)
  5751. return;
  5752. /*
  5753. * Since this is called by a timer, we should never get here in
  5754. * the manual case.
  5755. */
  5756. if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
  5757. DRM_DEBUG_DRIVER("downclocking LVDS\n");
  5758. /* Unlock panel regs */
  5759. I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) |
  5760. PANEL_UNLOCK_REGS);
  5761. dpll |= DISPLAY_RATE_SELECT_FPA1;
  5762. I915_WRITE(dpll_reg, dpll);
  5763. intel_wait_for_vblank(dev, pipe);
  5764. dpll = I915_READ(dpll_reg);
  5765. if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
  5766. DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
  5767. /* ...and lock them again */
  5768. I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) & 0x3);
  5769. }
  5770. }
  5771. /**
  5772. * intel_idle_update - adjust clocks for idleness
  5773. * @work: work struct
  5774. *
  5775. * Either the GPU or display (or both) went idle. Check the busy status
  5776. * here and adjust the CRTC and GPU clocks as necessary.
  5777. */
  5778. static void intel_idle_update(struct work_struct *work)
  5779. {
  5780. drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
  5781. idle_work);
  5782. struct drm_device *dev = dev_priv->dev;
  5783. struct drm_crtc *crtc;
  5784. struct intel_crtc *intel_crtc;
  5785. if (!i915_powersave)
  5786. return;
  5787. mutex_lock(&dev->struct_mutex);
  5788. i915_update_gfx_val(dev_priv);
  5789. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  5790. /* Skip inactive CRTCs */
  5791. if (!crtc->fb)
  5792. continue;
  5793. intel_crtc = to_intel_crtc(crtc);
  5794. if (!intel_crtc->busy)
  5795. intel_decrease_pllclock(crtc);
  5796. }
  5797. mutex_unlock(&dev->struct_mutex);
  5798. }
  5799. /**
  5800. * intel_mark_busy - mark the GPU and possibly the display busy
  5801. * @dev: drm device
  5802. * @obj: object we're operating on
  5803. *
  5804. * Callers can use this function to indicate that the GPU is busy processing
  5805. * commands. If @obj matches one of the CRTC objects (i.e. it's a scanout
  5806. * buffer), we'll also mark the display as busy, so we know to increase its
  5807. * clock frequency.
  5808. */
  5809. void intel_mark_busy(struct drm_device *dev, struct drm_i915_gem_object *obj)
  5810. {
  5811. drm_i915_private_t *dev_priv = dev->dev_private;
  5812. struct drm_crtc *crtc = NULL;
  5813. struct intel_framebuffer *intel_fb;
  5814. struct intel_crtc *intel_crtc;
  5815. if (!drm_core_check_feature(dev, DRIVER_MODESET))
  5816. return;
  5817. if (!dev_priv->busy)
  5818. dev_priv->busy = true;
  5819. else
  5820. mod_timer(&dev_priv->idle_timer, jiffies +
  5821. msecs_to_jiffies(GPU_IDLE_TIMEOUT));
  5822. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  5823. if (!crtc->fb)
  5824. continue;
  5825. intel_crtc = to_intel_crtc(crtc);
  5826. intel_fb = to_intel_framebuffer(crtc->fb);
  5827. if (intel_fb->obj == obj) {
  5828. if (!intel_crtc->busy) {
  5829. /* Non-busy -> busy, upclock */
  5830. intel_increase_pllclock(crtc);
  5831. intel_crtc->busy = true;
  5832. } else {
  5833. /* Busy -> busy, put off timer */
  5834. mod_timer(&intel_crtc->idle_timer, jiffies +
  5835. msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
  5836. }
  5837. }
  5838. }
  5839. }
  5840. static void intel_crtc_destroy(struct drm_crtc *crtc)
  5841. {
  5842. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5843. struct drm_device *dev = crtc->dev;
  5844. struct intel_unpin_work *work;
  5845. unsigned long flags;
  5846. spin_lock_irqsave(&dev->event_lock, flags);
  5847. work = intel_crtc->unpin_work;
  5848. intel_crtc->unpin_work = NULL;
  5849. spin_unlock_irqrestore(&dev->event_lock, flags);
  5850. if (work) {
  5851. cancel_work_sync(&work->work);
  5852. kfree(work);
  5853. }
  5854. drm_crtc_cleanup(crtc);
  5855. kfree(intel_crtc);
  5856. }
  5857. static void intel_unpin_work_fn(struct work_struct *__work)
  5858. {
  5859. struct intel_unpin_work *work =
  5860. container_of(__work, struct intel_unpin_work, work);
  5861. mutex_lock(&work->dev->struct_mutex);
  5862. i915_gem_object_unpin(work->old_fb_obj);
  5863. drm_gem_object_unreference(&work->pending_flip_obj->base);
  5864. drm_gem_object_unreference(&work->old_fb_obj->base);
  5865. intel_update_fbc(work->dev);
  5866. mutex_unlock(&work->dev->struct_mutex);
  5867. kfree(work);
  5868. }
  5869. static void do_intel_finish_page_flip(struct drm_device *dev,
  5870. struct drm_crtc *crtc)
  5871. {
  5872. drm_i915_private_t *dev_priv = dev->dev_private;
  5873. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5874. struct intel_unpin_work *work;
  5875. struct drm_i915_gem_object *obj;
  5876. struct drm_pending_vblank_event *e;
  5877. struct timeval tnow, tvbl;
  5878. unsigned long flags;
  5879. /* Ignore early vblank irqs */
  5880. if (intel_crtc == NULL)
  5881. return;
  5882. do_gettimeofday(&tnow);
  5883. spin_lock_irqsave(&dev->event_lock, flags);
  5884. work = intel_crtc->unpin_work;
  5885. if (work == NULL || !work->pending) {
  5886. spin_unlock_irqrestore(&dev->event_lock, flags);
  5887. return;
  5888. }
  5889. intel_crtc->unpin_work = NULL;
  5890. if (work->event) {
  5891. e = work->event;
  5892. e->event.sequence = drm_vblank_count_and_time(dev, intel_crtc->pipe, &tvbl);
  5893. /* Called before vblank count and timestamps have
  5894. * been updated for the vblank interval of flip
  5895. * completion? Need to increment vblank count and
  5896. * add one videorefresh duration to returned timestamp
  5897. * to account for this. We assume this happened if we
  5898. * get called over 0.9 frame durations after the last
  5899. * timestamped vblank.
  5900. *
  5901. * This calculation can not be used with vrefresh rates
  5902. * below 5Hz (10Hz to be on the safe side) without
  5903. * promoting to 64 integers.
  5904. */
  5905. if (10 * (timeval_to_ns(&tnow) - timeval_to_ns(&tvbl)) >
  5906. 9 * crtc->framedur_ns) {
  5907. e->event.sequence++;
  5908. tvbl = ns_to_timeval(timeval_to_ns(&tvbl) +
  5909. crtc->framedur_ns);
  5910. }
  5911. e->event.tv_sec = tvbl.tv_sec;
  5912. e->event.tv_usec = tvbl.tv_usec;
  5913. list_add_tail(&e->base.link,
  5914. &e->base.file_priv->event_list);
  5915. wake_up_interruptible(&e->base.file_priv->event_wait);
  5916. }
  5917. drm_vblank_put(dev, intel_crtc->pipe);
  5918. spin_unlock_irqrestore(&dev->event_lock, flags);
  5919. obj = work->old_fb_obj;
  5920. atomic_clear_mask(1 << intel_crtc->plane,
  5921. &obj->pending_flip.counter);
  5922. if (atomic_read(&obj->pending_flip) == 0)
  5923. wake_up(&dev_priv->pending_flip_queue);
  5924. schedule_work(&work->work);
  5925. trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
  5926. }
  5927. void intel_finish_page_flip(struct drm_device *dev, int pipe)
  5928. {
  5929. drm_i915_private_t *dev_priv = dev->dev_private;
  5930. struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
  5931. do_intel_finish_page_flip(dev, crtc);
  5932. }
  5933. void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
  5934. {
  5935. drm_i915_private_t *dev_priv = dev->dev_private;
  5936. struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
  5937. do_intel_finish_page_flip(dev, crtc);
  5938. }
  5939. void intel_prepare_page_flip(struct drm_device *dev, int plane)
  5940. {
  5941. drm_i915_private_t *dev_priv = dev->dev_private;
  5942. struct intel_crtc *intel_crtc =
  5943. to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
  5944. unsigned long flags;
  5945. spin_lock_irqsave(&dev->event_lock, flags);
  5946. if (intel_crtc->unpin_work) {
  5947. if ((++intel_crtc->unpin_work->pending) > 1)
  5948. DRM_ERROR("Prepared flip multiple times\n");
  5949. } else {
  5950. DRM_DEBUG_DRIVER("preparing flip with no unpin work?\n");
  5951. }
  5952. spin_unlock_irqrestore(&dev->event_lock, flags);
  5953. }
  5954. static int intel_gen2_queue_flip(struct drm_device *dev,
  5955. struct drm_crtc *crtc,
  5956. struct drm_framebuffer *fb,
  5957. struct drm_i915_gem_object *obj)
  5958. {
  5959. struct drm_i915_private *dev_priv = dev->dev_private;
  5960. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5961. unsigned long offset;
  5962. u32 flip_mask;
  5963. int ret;
  5964. ret = intel_pin_and_fence_fb_obj(dev, obj, LP_RING(dev_priv));
  5965. if (ret)
  5966. goto out;
  5967. /* Offset into the new buffer for cases of shared fbs between CRTCs */
  5968. offset = crtc->y * fb->pitch + crtc->x * fb->bits_per_pixel/8;
  5969. ret = BEGIN_LP_RING(6);
  5970. if (ret)
  5971. goto out;
  5972. /* Can't queue multiple flips, so wait for the previous
  5973. * one to finish before executing the next.
  5974. */
  5975. if (intel_crtc->plane)
  5976. flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
  5977. else
  5978. flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
  5979. OUT_RING(MI_WAIT_FOR_EVENT | flip_mask);
  5980. OUT_RING(MI_NOOP);
  5981. OUT_RING(MI_DISPLAY_FLIP |
  5982. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  5983. OUT_RING(fb->pitch);
  5984. OUT_RING(obj->gtt_offset + offset);
  5985. OUT_RING(MI_NOOP);
  5986. ADVANCE_LP_RING();
  5987. out:
  5988. return ret;
  5989. }
  5990. static int intel_gen3_queue_flip(struct drm_device *dev,
  5991. struct drm_crtc *crtc,
  5992. struct drm_framebuffer *fb,
  5993. struct drm_i915_gem_object *obj)
  5994. {
  5995. struct drm_i915_private *dev_priv = dev->dev_private;
  5996. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5997. unsigned long offset;
  5998. u32 flip_mask;
  5999. int ret;
  6000. ret = intel_pin_and_fence_fb_obj(dev, obj, LP_RING(dev_priv));
  6001. if (ret)
  6002. goto out;
  6003. /* Offset into the new buffer for cases of shared fbs between CRTCs */
  6004. offset = crtc->y * fb->pitch + crtc->x * fb->bits_per_pixel/8;
  6005. ret = BEGIN_LP_RING(6);
  6006. if (ret)
  6007. goto out;
  6008. if (intel_crtc->plane)
  6009. flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
  6010. else
  6011. flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
  6012. OUT_RING(MI_WAIT_FOR_EVENT | flip_mask);
  6013. OUT_RING(MI_NOOP);
  6014. OUT_RING(MI_DISPLAY_FLIP_I915 |
  6015. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  6016. OUT_RING(fb->pitch);
  6017. OUT_RING(obj->gtt_offset + offset);
  6018. OUT_RING(MI_NOOP);
  6019. ADVANCE_LP_RING();
  6020. out:
  6021. return ret;
  6022. }
  6023. static int intel_gen4_queue_flip(struct drm_device *dev,
  6024. struct drm_crtc *crtc,
  6025. struct drm_framebuffer *fb,
  6026. struct drm_i915_gem_object *obj)
  6027. {
  6028. struct drm_i915_private *dev_priv = dev->dev_private;
  6029. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6030. uint32_t pf, pipesrc;
  6031. int ret;
  6032. ret = intel_pin_and_fence_fb_obj(dev, obj, LP_RING(dev_priv));
  6033. if (ret)
  6034. goto out;
  6035. ret = BEGIN_LP_RING(4);
  6036. if (ret)
  6037. goto out;
  6038. /* i965+ uses the linear or tiled offsets from the
  6039. * Display Registers (which do not change across a page-flip)
  6040. * so we need only reprogram the base address.
  6041. */
  6042. OUT_RING(MI_DISPLAY_FLIP |
  6043. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  6044. OUT_RING(fb->pitch);
  6045. OUT_RING(obj->gtt_offset | obj->tiling_mode);
  6046. /* XXX Enabling the panel-fitter across page-flip is so far
  6047. * untested on non-native modes, so ignore it for now.
  6048. * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
  6049. */
  6050. pf = 0;
  6051. pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
  6052. OUT_RING(pf | pipesrc);
  6053. ADVANCE_LP_RING();
  6054. out:
  6055. return ret;
  6056. }
  6057. static int intel_gen6_queue_flip(struct drm_device *dev,
  6058. struct drm_crtc *crtc,
  6059. struct drm_framebuffer *fb,
  6060. struct drm_i915_gem_object *obj)
  6061. {
  6062. struct drm_i915_private *dev_priv = dev->dev_private;
  6063. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6064. uint32_t pf, pipesrc;
  6065. int ret;
  6066. ret = intel_pin_and_fence_fb_obj(dev, obj, LP_RING(dev_priv));
  6067. if (ret)
  6068. goto out;
  6069. ret = BEGIN_LP_RING(4);
  6070. if (ret)
  6071. goto out;
  6072. OUT_RING(MI_DISPLAY_FLIP |
  6073. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  6074. OUT_RING(fb->pitch | obj->tiling_mode);
  6075. OUT_RING(obj->gtt_offset);
  6076. pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
  6077. pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
  6078. OUT_RING(pf | pipesrc);
  6079. ADVANCE_LP_RING();
  6080. out:
  6081. return ret;
  6082. }
  6083. /*
  6084. * On gen7 we currently use the blit ring because (in early silicon at least)
  6085. * the render ring doesn't give us interrpts for page flip completion, which
  6086. * means clients will hang after the first flip is queued. Fortunately the
  6087. * blit ring generates interrupts properly, so use it instead.
  6088. */
  6089. static int intel_gen7_queue_flip(struct drm_device *dev,
  6090. struct drm_crtc *crtc,
  6091. struct drm_framebuffer *fb,
  6092. struct drm_i915_gem_object *obj)
  6093. {
  6094. struct drm_i915_private *dev_priv = dev->dev_private;
  6095. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6096. struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
  6097. int ret;
  6098. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  6099. if (ret)
  6100. goto out;
  6101. ret = intel_ring_begin(ring, 4);
  6102. if (ret)
  6103. goto out;
  6104. intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | (intel_crtc->plane << 19));
  6105. intel_ring_emit(ring, (fb->pitch | obj->tiling_mode));
  6106. intel_ring_emit(ring, (obj->gtt_offset));
  6107. intel_ring_emit(ring, (MI_NOOP));
  6108. intel_ring_advance(ring);
  6109. out:
  6110. return ret;
  6111. }
  6112. static int intel_default_queue_flip(struct drm_device *dev,
  6113. struct drm_crtc *crtc,
  6114. struct drm_framebuffer *fb,
  6115. struct drm_i915_gem_object *obj)
  6116. {
  6117. return -ENODEV;
  6118. }
  6119. static int intel_crtc_page_flip(struct drm_crtc *crtc,
  6120. struct drm_framebuffer *fb,
  6121. struct drm_pending_vblank_event *event)
  6122. {
  6123. struct drm_device *dev = crtc->dev;
  6124. struct drm_i915_private *dev_priv = dev->dev_private;
  6125. struct intel_framebuffer *intel_fb;
  6126. struct drm_i915_gem_object *obj;
  6127. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6128. struct intel_unpin_work *work;
  6129. unsigned long flags;
  6130. int ret;
  6131. work = kzalloc(sizeof *work, GFP_KERNEL);
  6132. if (work == NULL)
  6133. return -ENOMEM;
  6134. work->event = event;
  6135. work->dev = crtc->dev;
  6136. intel_fb = to_intel_framebuffer(crtc->fb);
  6137. work->old_fb_obj = intel_fb->obj;
  6138. INIT_WORK(&work->work, intel_unpin_work_fn);
  6139. /* We borrow the event spin lock for protecting unpin_work */
  6140. spin_lock_irqsave(&dev->event_lock, flags);
  6141. if (intel_crtc->unpin_work) {
  6142. spin_unlock_irqrestore(&dev->event_lock, flags);
  6143. kfree(work);
  6144. DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
  6145. return -EBUSY;
  6146. }
  6147. intel_crtc->unpin_work = work;
  6148. spin_unlock_irqrestore(&dev->event_lock, flags);
  6149. intel_fb = to_intel_framebuffer(fb);
  6150. obj = intel_fb->obj;
  6151. mutex_lock(&dev->struct_mutex);
  6152. /* Reference the objects for the scheduled work. */
  6153. drm_gem_object_reference(&work->old_fb_obj->base);
  6154. drm_gem_object_reference(&obj->base);
  6155. crtc->fb = fb;
  6156. ret = drm_vblank_get(dev, intel_crtc->pipe);
  6157. if (ret)
  6158. goto cleanup_objs;
  6159. work->pending_flip_obj = obj;
  6160. work->enable_stall_check = true;
  6161. /* Block clients from rendering to the new back buffer until
  6162. * the flip occurs and the object is no longer visible.
  6163. */
  6164. atomic_add(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
  6165. ret = dev_priv->display.queue_flip(dev, crtc, fb, obj);
  6166. if (ret)
  6167. goto cleanup_pending;
  6168. intel_disable_fbc(dev);
  6169. mutex_unlock(&dev->struct_mutex);
  6170. trace_i915_flip_request(intel_crtc->plane, obj);
  6171. return 0;
  6172. cleanup_pending:
  6173. atomic_sub(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
  6174. cleanup_objs:
  6175. drm_gem_object_unreference(&work->old_fb_obj->base);
  6176. drm_gem_object_unreference(&obj->base);
  6177. mutex_unlock(&dev->struct_mutex);
  6178. spin_lock_irqsave(&dev->event_lock, flags);
  6179. intel_crtc->unpin_work = NULL;
  6180. spin_unlock_irqrestore(&dev->event_lock, flags);
  6181. kfree(work);
  6182. return ret;
  6183. }
  6184. static void intel_sanitize_modesetting(struct drm_device *dev,
  6185. int pipe, int plane)
  6186. {
  6187. struct drm_i915_private *dev_priv = dev->dev_private;
  6188. u32 reg, val;
  6189. if (HAS_PCH_SPLIT(dev))
  6190. return;
  6191. /* Who knows what state these registers were left in by the BIOS or
  6192. * grub?
  6193. *
  6194. * If we leave the registers in a conflicting state (e.g. with the
  6195. * display plane reading from the other pipe than the one we intend
  6196. * to use) then when we attempt to teardown the active mode, we will
  6197. * not disable the pipes and planes in the correct order -- leaving
  6198. * a plane reading from a disabled pipe and possibly leading to
  6199. * undefined behaviour.
  6200. */
  6201. reg = DSPCNTR(plane);
  6202. val = I915_READ(reg);
  6203. if ((val & DISPLAY_PLANE_ENABLE) == 0)
  6204. return;
  6205. if (!!(val & DISPPLANE_SEL_PIPE_MASK) == pipe)
  6206. return;
  6207. /* This display plane is active and attached to the other CPU pipe. */
  6208. pipe = !pipe;
  6209. /* Disable the plane and wait for it to stop reading from the pipe. */
  6210. intel_disable_plane(dev_priv, plane, pipe);
  6211. intel_disable_pipe(dev_priv, pipe);
  6212. }
  6213. static void intel_crtc_reset(struct drm_crtc *crtc)
  6214. {
  6215. struct drm_device *dev = crtc->dev;
  6216. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6217. /* Reset flags back to the 'unknown' status so that they
  6218. * will be correctly set on the initial modeset.
  6219. */
  6220. intel_crtc->dpms_mode = -1;
  6221. /* We need to fix up any BIOS configuration that conflicts with
  6222. * our expectations.
  6223. */
  6224. intel_sanitize_modesetting(dev, intel_crtc->pipe, intel_crtc->plane);
  6225. }
  6226. static struct drm_crtc_helper_funcs intel_helper_funcs = {
  6227. .dpms = intel_crtc_dpms,
  6228. .mode_fixup = intel_crtc_mode_fixup,
  6229. .mode_set = intel_crtc_mode_set,
  6230. .mode_set_base = intel_pipe_set_base,
  6231. .mode_set_base_atomic = intel_pipe_set_base_atomic,
  6232. .load_lut = intel_crtc_load_lut,
  6233. .disable = intel_crtc_disable,
  6234. };
  6235. static const struct drm_crtc_funcs intel_crtc_funcs = {
  6236. .reset = intel_crtc_reset,
  6237. .cursor_set = intel_crtc_cursor_set,
  6238. .cursor_move = intel_crtc_cursor_move,
  6239. .gamma_set = intel_crtc_gamma_set,
  6240. .set_config = drm_crtc_helper_set_config,
  6241. .destroy = intel_crtc_destroy,
  6242. .page_flip = intel_crtc_page_flip,
  6243. };
  6244. static void intel_crtc_init(struct drm_device *dev, int pipe)
  6245. {
  6246. drm_i915_private_t *dev_priv = dev->dev_private;
  6247. struct intel_crtc *intel_crtc;
  6248. int i;
  6249. intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
  6250. if (intel_crtc == NULL)
  6251. return;
  6252. drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
  6253. drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
  6254. for (i = 0; i < 256; i++) {
  6255. intel_crtc->lut_r[i] = i;
  6256. intel_crtc->lut_g[i] = i;
  6257. intel_crtc->lut_b[i] = i;
  6258. }
  6259. /* Swap pipes & planes for FBC on pre-965 */
  6260. intel_crtc->pipe = pipe;
  6261. intel_crtc->plane = pipe;
  6262. if (IS_MOBILE(dev) && IS_GEN3(dev)) {
  6263. DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
  6264. intel_crtc->plane = !pipe;
  6265. }
  6266. BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
  6267. dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
  6268. dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
  6269. dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
  6270. intel_crtc_reset(&intel_crtc->base);
  6271. intel_crtc->active = true; /* force the pipe off on setup_init_config */
  6272. intel_crtc->bpp = 24; /* default for pre-Ironlake */
  6273. if (HAS_PCH_SPLIT(dev)) {
  6274. if (pipe == 2 && IS_IVYBRIDGE(dev))
  6275. intel_crtc->no_pll = true;
  6276. intel_helper_funcs.prepare = ironlake_crtc_prepare;
  6277. intel_helper_funcs.commit = ironlake_crtc_commit;
  6278. } else {
  6279. intel_helper_funcs.prepare = i9xx_crtc_prepare;
  6280. intel_helper_funcs.commit = i9xx_crtc_commit;
  6281. }
  6282. drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
  6283. intel_crtc->busy = false;
  6284. setup_timer(&intel_crtc->idle_timer, intel_crtc_idle_timer,
  6285. (unsigned long)intel_crtc);
  6286. }
  6287. int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
  6288. struct drm_file *file)
  6289. {
  6290. drm_i915_private_t *dev_priv = dev->dev_private;
  6291. struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
  6292. struct drm_mode_object *drmmode_obj;
  6293. struct intel_crtc *crtc;
  6294. if (!dev_priv) {
  6295. DRM_ERROR("called with no initialization\n");
  6296. return -EINVAL;
  6297. }
  6298. drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
  6299. DRM_MODE_OBJECT_CRTC);
  6300. if (!drmmode_obj) {
  6301. DRM_ERROR("no such CRTC id\n");
  6302. return -EINVAL;
  6303. }
  6304. crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
  6305. pipe_from_crtc_id->pipe = crtc->pipe;
  6306. return 0;
  6307. }
  6308. static int intel_encoder_clones(struct drm_device *dev, int type_mask)
  6309. {
  6310. struct intel_encoder *encoder;
  6311. int index_mask = 0;
  6312. int entry = 0;
  6313. list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
  6314. if (type_mask & encoder->clone_mask)
  6315. index_mask |= (1 << entry);
  6316. entry++;
  6317. }
  6318. return index_mask;
  6319. }
  6320. static bool has_edp_a(struct drm_device *dev)
  6321. {
  6322. struct drm_i915_private *dev_priv = dev->dev_private;
  6323. if (!IS_MOBILE(dev))
  6324. return false;
  6325. if ((I915_READ(DP_A) & DP_DETECTED) == 0)
  6326. return false;
  6327. if (IS_GEN5(dev) &&
  6328. (I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE))
  6329. return false;
  6330. return true;
  6331. }
  6332. static void intel_setup_outputs(struct drm_device *dev)
  6333. {
  6334. struct drm_i915_private *dev_priv = dev->dev_private;
  6335. struct intel_encoder *encoder;
  6336. bool dpd_is_edp = false;
  6337. bool has_lvds = false;
  6338. if (IS_MOBILE(dev) && !IS_I830(dev))
  6339. has_lvds = intel_lvds_init(dev);
  6340. if (!has_lvds && !HAS_PCH_SPLIT(dev)) {
  6341. /* disable the panel fitter on everything but LVDS */
  6342. I915_WRITE(PFIT_CONTROL, 0);
  6343. }
  6344. if (HAS_PCH_SPLIT(dev)) {
  6345. dpd_is_edp = intel_dpd_is_edp(dev);
  6346. if (has_edp_a(dev))
  6347. intel_dp_init(dev, DP_A);
  6348. if (dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
  6349. intel_dp_init(dev, PCH_DP_D);
  6350. }
  6351. intel_crt_init(dev);
  6352. if (HAS_PCH_SPLIT(dev)) {
  6353. int found;
  6354. if (I915_READ(HDMIB) & PORT_DETECTED) {
  6355. /* PCH SDVOB multiplex with HDMIB */
  6356. found = intel_sdvo_init(dev, PCH_SDVOB);
  6357. if (!found)
  6358. intel_hdmi_init(dev, HDMIB);
  6359. if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
  6360. intel_dp_init(dev, PCH_DP_B);
  6361. }
  6362. if (I915_READ(HDMIC) & PORT_DETECTED)
  6363. intel_hdmi_init(dev, HDMIC);
  6364. if (I915_READ(HDMID) & PORT_DETECTED)
  6365. intel_hdmi_init(dev, HDMID);
  6366. if (I915_READ(PCH_DP_C) & DP_DETECTED)
  6367. intel_dp_init(dev, PCH_DP_C);
  6368. if (!dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
  6369. intel_dp_init(dev, PCH_DP_D);
  6370. } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
  6371. bool found = false;
  6372. if (I915_READ(SDVOB) & SDVO_DETECTED) {
  6373. DRM_DEBUG_KMS("probing SDVOB\n");
  6374. found = intel_sdvo_init(dev, SDVOB);
  6375. if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
  6376. DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
  6377. intel_hdmi_init(dev, SDVOB);
  6378. }
  6379. if (!found && SUPPORTS_INTEGRATED_DP(dev)) {
  6380. DRM_DEBUG_KMS("probing DP_B\n");
  6381. intel_dp_init(dev, DP_B);
  6382. }
  6383. }
  6384. /* Before G4X SDVOC doesn't have its own detect register */
  6385. if (I915_READ(SDVOB) & SDVO_DETECTED) {
  6386. DRM_DEBUG_KMS("probing SDVOC\n");
  6387. found = intel_sdvo_init(dev, SDVOC);
  6388. }
  6389. if (!found && (I915_READ(SDVOC) & SDVO_DETECTED)) {
  6390. if (SUPPORTS_INTEGRATED_HDMI(dev)) {
  6391. DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
  6392. intel_hdmi_init(dev, SDVOC);
  6393. }
  6394. if (SUPPORTS_INTEGRATED_DP(dev)) {
  6395. DRM_DEBUG_KMS("probing DP_C\n");
  6396. intel_dp_init(dev, DP_C);
  6397. }
  6398. }
  6399. if (SUPPORTS_INTEGRATED_DP(dev) &&
  6400. (I915_READ(DP_D) & DP_DETECTED)) {
  6401. DRM_DEBUG_KMS("probing DP_D\n");
  6402. intel_dp_init(dev, DP_D);
  6403. }
  6404. } else if (IS_GEN2(dev))
  6405. intel_dvo_init(dev);
  6406. if (SUPPORTS_TV(dev))
  6407. intel_tv_init(dev);
  6408. list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
  6409. encoder->base.possible_crtcs = encoder->crtc_mask;
  6410. encoder->base.possible_clones =
  6411. intel_encoder_clones(dev, encoder->clone_mask);
  6412. }
  6413. /* disable all the possible outputs/crtcs before entering KMS mode */
  6414. drm_helper_disable_unused_functions(dev);
  6415. if (HAS_PCH_SPLIT(dev))
  6416. ironlake_init_pch_refclk(dev);
  6417. }
  6418. static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
  6419. {
  6420. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  6421. drm_framebuffer_cleanup(fb);
  6422. drm_gem_object_unreference_unlocked(&intel_fb->obj->base);
  6423. kfree(intel_fb);
  6424. }
  6425. static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
  6426. struct drm_file *file,
  6427. unsigned int *handle)
  6428. {
  6429. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  6430. struct drm_i915_gem_object *obj = intel_fb->obj;
  6431. return drm_gem_handle_create(file, &obj->base, handle);
  6432. }
  6433. static const struct drm_framebuffer_funcs intel_fb_funcs = {
  6434. .destroy = intel_user_framebuffer_destroy,
  6435. .create_handle = intel_user_framebuffer_create_handle,
  6436. };
  6437. int intel_framebuffer_init(struct drm_device *dev,
  6438. struct intel_framebuffer *intel_fb,
  6439. struct drm_mode_fb_cmd *mode_cmd,
  6440. struct drm_i915_gem_object *obj)
  6441. {
  6442. int ret;
  6443. if (obj->tiling_mode == I915_TILING_Y)
  6444. return -EINVAL;
  6445. if (mode_cmd->pitch & 63)
  6446. return -EINVAL;
  6447. switch (mode_cmd->bpp) {
  6448. case 8:
  6449. case 16:
  6450. /* Only pre-ILK can handle 5:5:5 */
  6451. if (mode_cmd->depth == 15 && !HAS_PCH_SPLIT(dev))
  6452. return -EINVAL;
  6453. break;
  6454. case 24:
  6455. case 32:
  6456. break;
  6457. default:
  6458. return -EINVAL;
  6459. }
  6460. ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
  6461. if (ret) {
  6462. DRM_ERROR("framebuffer init failed %d\n", ret);
  6463. return ret;
  6464. }
  6465. drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
  6466. intel_fb->obj = obj;
  6467. return 0;
  6468. }
  6469. static struct drm_framebuffer *
  6470. intel_user_framebuffer_create(struct drm_device *dev,
  6471. struct drm_file *filp,
  6472. struct drm_mode_fb_cmd *mode_cmd)
  6473. {
  6474. struct drm_i915_gem_object *obj;
  6475. obj = to_intel_bo(drm_gem_object_lookup(dev, filp, mode_cmd->handle));
  6476. if (&obj->base == NULL)
  6477. return ERR_PTR(-ENOENT);
  6478. return intel_framebuffer_create(dev, mode_cmd, obj);
  6479. }
  6480. static const struct drm_mode_config_funcs intel_mode_funcs = {
  6481. .fb_create = intel_user_framebuffer_create,
  6482. .output_poll_changed = intel_fb_output_poll_changed,
  6483. };
  6484. static struct drm_i915_gem_object *
  6485. intel_alloc_context_page(struct drm_device *dev)
  6486. {
  6487. struct drm_i915_gem_object *ctx;
  6488. int ret;
  6489. WARN_ON(!mutex_is_locked(&dev->struct_mutex));
  6490. ctx = i915_gem_alloc_object(dev, 4096);
  6491. if (!ctx) {
  6492. DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
  6493. return NULL;
  6494. }
  6495. ret = i915_gem_object_pin(ctx, 4096, true);
  6496. if (ret) {
  6497. DRM_ERROR("failed to pin power context: %d\n", ret);
  6498. goto err_unref;
  6499. }
  6500. ret = i915_gem_object_set_to_gtt_domain(ctx, 1);
  6501. if (ret) {
  6502. DRM_ERROR("failed to set-domain on power context: %d\n", ret);
  6503. goto err_unpin;
  6504. }
  6505. return ctx;
  6506. err_unpin:
  6507. i915_gem_object_unpin(ctx);
  6508. err_unref:
  6509. drm_gem_object_unreference(&ctx->base);
  6510. mutex_unlock(&dev->struct_mutex);
  6511. return NULL;
  6512. }
  6513. bool ironlake_set_drps(struct drm_device *dev, u8 val)
  6514. {
  6515. struct drm_i915_private *dev_priv = dev->dev_private;
  6516. u16 rgvswctl;
  6517. rgvswctl = I915_READ16(MEMSWCTL);
  6518. if (rgvswctl & MEMCTL_CMD_STS) {
  6519. DRM_DEBUG("gpu busy, RCS change rejected\n");
  6520. return false; /* still busy with another command */
  6521. }
  6522. rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
  6523. (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
  6524. I915_WRITE16(MEMSWCTL, rgvswctl);
  6525. POSTING_READ16(MEMSWCTL);
  6526. rgvswctl |= MEMCTL_CMD_STS;
  6527. I915_WRITE16(MEMSWCTL, rgvswctl);
  6528. return true;
  6529. }
  6530. void ironlake_enable_drps(struct drm_device *dev)
  6531. {
  6532. struct drm_i915_private *dev_priv = dev->dev_private;
  6533. u32 rgvmodectl = I915_READ(MEMMODECTL);
  6534. u8 fmax, fmin, fstart, vstart;
  6535. /* Enable temp reporting */
  6536. I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
  6537. I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
  6538. /* 100ms RC evaluation intervals */
  6539. I915_WRITE(RCUPEI, 100000);
  6540. I915_WRITE(RCDNEI, 100000);
  6541. /* Set max/min thresholds to 90ms and 80ms respectively */
  6542. I915_WRITE(RCBMAXAVG, 90000);
  6543. I915_WRITE(RCBMINAVG, 80000);
  6544. I915_WRITE(MEMIHYST, 1);
  6545. /* Set up min, max, and cur for interrupt handling */
  6546. fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
  6547. fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
  6548. fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
  6549. MEMMODE_FSTART_SHIFT;
  6550. vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
  6551. PXVFREQ_PX_SHIFT;
  6552. dev_priv->fmax = fmax; /* IPS callback will increase this */
  6553. dev_priv->fstart = fstart;
  6554. dev_priv->max_delay = fstart;
  6555. dev_priv->min_delay = fmin;
  6556. dev_priv->cur_delay = fstart;
  6557. DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
  6558. fmax, fmin, fstart);
  6559. I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
  6560. /*
  6561. * Interrupts will be enabled in ironlake_irq_postinstall
  6562. */
  6563. I915_WRITE(VIDSTART, vstart);
  6564. POSTING_READ(VIDSTART);
  6565. rgvmodectl |= MEMMODE_SWMODE_EN;
  6566. I915_WRITE(MEMMODECTL, rgvmodectl);
  6567. if (wait_for((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
  6568. DRM_ERROR("stuck trying to change perf mode\n");
  6569. msleep(1);
  6570. ironlake_set_drps(dev, fstart);
  6571. dev_priv->last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
  6572. I915_READ(0x112e0);
  6573. dev_priv->last_time1 = jiffies_to_msecs(jiffies);
  6574. dev_priv->last_count2 = I915_READ(0x112f4);
  6575. getrawmonotonic(&dev_priv->last_time2);
  6576. }
  6577. void ironlake_disable_drps(struct drm_device *dev)
  6578. {
  6579. struct drm_i915_private *dev_priv = dev->dev_private;
  6580. u16 rgvswctl = I915_READ16(MEMSWCTL);
  6581. /* Ack interrupts, disable EFC interrupt */
  6582. I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
  6583. I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
  6584. I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
  6585. I915_WRITE(DEIIR, DE_PCU_EVENT);
  6586. I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
  6587. /* Go back to the starting frequency */
  6588. ironlake_set_drps(dev, dev_priv->fstart);
  6589. msleep(1);
  6590. rgvswctl |= MEMCTL_CMD_STS;
  6591. I915_WRITE(MEMSWCTL, rgvswctl);
  6592. msleep(1);
  6593. }
  6594. void gen6_set_rps(struct drm_device *dev, u8 val)
  6595. {
  6596. struct drm_i915_private *dev_priv = dev->dev_private;
  6597. u32 swreq;
  6598. swreq = (val & 0x3ff) << 25;
  6599. I915_WRITE(GEN6_RPNSWREQ, swreq);
  6600. }
  6601. void gen6_disable_rps(struct drm_device *dev)
  6602. {
  6603. struct drm_i915_private *dev_priv = dev->dev_private;
  6604. I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
  6605. I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
  6606. I915_WRITE(GEN6_PMIER, 0);
  6607. /* Complete PM interrupt masking here doesn't race with the rps work
  6608. * item again unmasking PM interrupts because that is using a different
  6609. * register (PMIMR) to mask PM interrupts. The only risk is in leaving
  6610. * stale bits in PMIIR and PMIMR which gen6_enable_rps will clean up. */
  6611. spin_lock_irq(&dev_priv->rps_lock);
  6612. dev_priv->pm_iir = 0;
  6613. spin_unlock_irq(&dev_priv->rps_lock);
  6614. I915_WRITE(GEN6_PMIIR, I915_READ(GEN6_PMIIR));
  6615. }
  6616. static unsigned long intel_pxfreq(u32 vidfreq)
  6617. {
  6618. unsigned long freq;
  6619. int div = (vidfreq & 0x3f0000) >> 16;
  6620. int post = (vidfreq & 0x3000) >> 12;
  6621. int pre = (vidfreq & 0x7);
  6622. if (!pre)
  6623. return 0;
  6624. freq = ((div * 133333) / ((1<<post) * pre));
  6625. return freq;
  6626. }
  6627. void intel_init_emon(struct drm_device *dev)
  6628. {
  6629. struct drm_i915_private *dev_priv = dev->dev_private;
  6630. u32 lcfuse;
  6631. u8 pxw[16];
  6632. int i;
  6633. /* Disable to program */
  6634. I915_WRITE(ECR, 0);
  6635. POSTING_READ(ECR);
  6636. /* Program energy weights for various events */
  6637. I915_WRITE(SDEW, 0x15040d00);
  6638. I915_WRITE(CSIEW0, 0x007f0000);
  6639. I915_WRITE(CSIEW1, 0x1e220004);
  6640. I915_WRITE(CSIEW2, 0x04000004);
  6641. for (i = 0; i < 5; i++)
  6642. I915_WRITE(PEW + (i * 4), 0);
  6643. for (i = 0; i < 3; i++)
  6644. I915_WRITE(DEW + (i * 4), 0);
  6645. /* Program P-state weights to account for frequency power adjustment */
  6646. for (i = 0; i < 16; i++) {
  6647. u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
  6648. unsigned long freq = intel_pxfreq(pxvidfreq);
  6649. unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
  6650. PXVFREQ_PX_SHIFT;
  6651. unsigned long val;
  6652. val = vid * vid;
  6653. val *= (freq / 1000);
  6654. val *= 255;
  6655. val /= (127*127*900);
  6656. if (val > 0xff)
  6657. DRM_ERROR("bad pxval: %ld\n", val);
  6658. pxw[i] = val;
  6659. }
  6660. /* Render standby states get 0 weight */
  6661. pxw[14] = 0;
  6662. pxw[15] = 0;
  6663. for (i = 0; i < 4; i++) {
  6664. u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
  6665. (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
  6666. I915_WRITE(PXW + (i * 4), val);
  6667. }
  6668. /* Adjust magic regs to magic values (more experimental results) */
  6669. I915_WRITE(OGW0, 0);
  6670. I915_WRITE(OGW1, 0);
  6671. I915_WRITE(EG0, 0x00007f00);
  6672. I915_WRITE(EG1, 0x0000000e);
  6673. I915_WRITE(EG2, 0x000e0000);
  6674. I915_WRITE(EG3, 0x68000300);
  6675. I915_WRITE(EG4, 0x42000000);
  6676. I915_WRITE(EG5, 0x00140031);
  6677. I915_WRITE(EG6, 0);
  6678. I915_WRITE(EG7, 0);
  6679. for (i = 0; i < 8; i++)
  6680. I915_WRITE(PXWL + (i * 4), 0);
  6681. /* Enable PMON + select events */
  6682. I915_WRITE(ECR, 0x80000019);
  6683. lcfuse = I915_READ(LCFUSE02);
  6684. dev_priv->corr = (lcfuse & LCFUSE_HIV_MASK);
  6685. }
  6686. void gen6_enable_rps(struct drm_i915_private *dev_priv)
  6687. {
  6688. u32 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
  6689. u32 gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
  6690. u32 pcu_mbox, rc6_mask = 0;
  6691. int cur_freq, min_freq, max_freq;
  6692. int i;
  6693. /* Here begins a magic sequence of register writes to enable
  6694. * auto-downclocking.
  6695. *
  6696. * Perhaps there might be some value in exposing these to
  6697. * userspace...
  6698. */
  6699. I915_WRITE(GEN6_RC_STATE, 0);
  6700. mutex_lock(&dev_priv->dev->struct_mutex);
  6701. gen6_gt_force_wake_get(dev_priv);
  6702. /* disable the counters and set deterministic thresholds */
  6703. I915_WRITE(GEN6_RC_CONTROL, 0);
  6704. I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
  6705. I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
  6706. I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
  6707. I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
  6708. I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
  6709. for (i = 0; i < I915_NUM_RINGS; i++)
  6710. I915_WRITE(RING_MAX_IDLE(dev_priv->ring[i].mmio_base), 10);
  6711. I915_WRITE(GEN6_RC_SLEEP, 0);
  6712. I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
  6713. I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
  6714. I915_WRITE(GEN6_RC6p_THRESHOLD, 100000);
  6715. I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
  6716. if (i915_enable_rc6)
  6717. rc6_mask = GEN6_RC_CTL_RC6p_ENABLE |
  6718. GEN6_RC_CTL_RC6_ENABLE;
  6719. I915_WRITE(GEN6_RC_CONTROL,
  6720. rc6_mask |
  6721. GEN6_RC_CTL_EI_MODE(1) |
  6722. GEN6_RC_CTL_HW_ENABLE);
  6723. I915_WRITE(GEN6_RPNSWREQ,
  6724. GEN6_FREQUENCY(10) |
  6725. GEN6_OFFSET(0) |
  6726. GEN6_AGGRESSIVE_TURBO);
  6727. I915_WRITE(GEN6_RC_VIDEO_FREQ,
  6728. GEN6_FREQUENCY(12));
  6729. I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
  6730. I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
  6731. 18 << 24 |
  6732. 6 << 16);
  6733. I915_WRITE(GEN6_RP_UP_THRESHOLD, 10000);
  6734. I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 1000000);
  6735. I915_WRITE(GEN6_RP_UP_EI, 100000);
  6736. I915_WRITE(GEN6_RP_DOWN_EI, 5000000);
  6737. I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
  6738. I915_WRITE(GEN6_RP_CONTROL,
  6739. GEN6_RP_MEDIA_TURBO |
  6740. GEN6_RP_USE_NORMAL_FREQ |
  6741. GEN6_RP_MEDIA_IS_GFX |
  6742. GEN6_RP_ENABLE |
  6743. GEN6_RP_UP_BUSY_AVG |
  6744. GEN6_RP_DOWN_IDLE_CONT);
  6745. if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
  6746. 500))
  6747. DRM_ERROR("timeout waiting for pcode mailbox to become idle\n");
  6748. I915_WRITE(GEN6_PCODE_DATA, 0);
  6749. I915_WRITE(GEN6_PCODE_MAILBOX,
  6750. GEN6_PCODE_READY |
  6751. GEN6_PCODE_WRITE_MIN_FREQ_TABLE);
  6752. if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
  6753. 500))
  6754. DRM_ERROR("timeout waiting for pcode mailbox to finish\n");
  6755. min_freq = (rp_state_cap & 0xff0000) >> 16;
  6756. max_freq = rp_state_cap & 0xff;
  6757. cur_freq = (gt_perf_status & 0xff00) >> 8;
  6758. /* Check for overclock support */
  6759. if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
  6760. 500))
  6761. DRM_ERROR("timeout waiting for pcode mailbox to become idle\n");
  6762. I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_READ_OC_PARAMS);
  6763. pcu_mbox = I915_READ(GEN6_PCODE_DATA);
  6764. if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
  6765. 500))
  6766. DRM_ERROR("timeout waiting for pcode mailbox to finish\n");
  6767. if (pcu_mbox & (1<<31)) { /* OC supported */
  6768. max_freq = pcu_mbox & 0xff;
  6769. DRM_DEBUG_DRIVER("overclocking supported, adjusting frequency max to %dMHz\n", pcu_mbox * 50);
  6770. }
  6771. /* In units of 100MHz */
  6772. dev_priv->max_delay = max_freq;
  6773. dev_priv->min_delay = min_freq;
  6774. dev_priv->cur_delay = cur_freq;
  6775. /* requires MSI enabled */
  6776. I915_WRITE(GEN6_PMIER,
  6777. GEN6_PM_MBOX_EVENT |
  6778. GEN6_PM_THERMAL_EVENT |
  6779. GEN6_PM_RP_DOWN_TIMEOUT |
  6780. GEN6_PM_RP_UP_THRESHOLD |
  6781. GEN6_PM_RP_DOWN_THRESHOLD |
  6782. GEN6_PM_RP_UP_EI_EXPIRED |
  6783. GEN6_PM_RP_DOWN_EI_EXPIRED);
  6784. spin_lock_irq(&dev_priv->rps_lock);
  6785. WARN_ON(dev_priv->pm_iir != 0);
  6786. I915_WRITE(GEN6_PMIMR, 0);
  6787. spin_unlock_irq(&dev_priv->rps_lock);
  6788. /* enable all PM interrupts */
  6789. I915_WRITE(GEN6_PMINTRMSK, 0);
  6790. gen6_gt_force_wake_put(dev_priv);
  6791. mutex_unlock(&dev_priv->dev->struct_mutex);
  6792. }
  6793. void gen6_update_ring_freq(struct drm_i915_private *dev_priv)
  6794. {
  6795. int min_freq = 15;
  6796. int gpu_freq, ia_freq, max_ia_freq;
  6797. int scaling_factor = 180;
  6798. max_ia_freq = cpufreq_quick_get_max(0);
  6799. /*
  6800. * Default to measured freq if none found, PCU will ensure we don't go
  6801. * over
  6802. */
  6803. if (!max_ia_freq)
  6804. max_ia_freq = tsc_khz;
  6805. /* Convert from kHz to MHz */
  6806. max_ia_freq /= 1000;
  6807. mutex_lock(&dev_priv->dev->struct_mutex);
  6808. /*
  6809. * For each potential GPU frequency, load a ring frequency we'd like
  6810. * to use for memory access. We do this by specifying the IA frequency
  6811. * the PCU should use as a reference to determine the ring frequency.
  6812. */
  6813. for (gpu_freq = dev_priv->max_delay; gpu_freq >= dev_priv->min_delay;
  6814. gpu_freq--) {
  6815. int diff = dev_priv->max_delay - gpu_freq;
  6816. /*
  6817. * For GPU frequencies less than 750MHz, just use the lowest
  6818. * ring freq.
  6819. */
  6820. if (gpu_freq < min_freq)
  6821. ia_freq = 800;
  6822. else
  6823. ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
  6824. ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
  6825. I915_WRITE(GEN6_PCODE_DATA,
  6826. (ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT) |
  6827. gpu_freq);
  6828. I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY |
  6829. GEN6_PCODE_WRITE_MIN_FREQ_TABLE);
  6830. if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) &
  6831. GEN6_PCODE_READY) == 0, 10)) {
  6832. DRM_ERROR("pcode write of freq table timed out\n");
  6833. continue;
  6834. }
  6835. }
  6836. mutex_unlock(&dev_priv->dev->struct_mutex);
  6837. }
  6838. static void ironlake_init_clock_gating(struct drm_device *dev)
  6839. {
  6840. struct drm_i915_private *dev_priv = dev->dev_private;
  6841. uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
  6842. /* Required for FBC */
  6843. dspclk_gate |= DPFCUNIT_CLOCK_GATE_DISABLE |
  6844. DPFCRUNIT_CLOCK_GATE_DISABLE |
  6845. DPFDUNIT_CLOCK_GATE_DISABLE;
  6846. /* Required for CxSR */
  6847. dspclk_gate |= DPARBUNIT_CLOCK_GATE_DISABLE;
  6848. I915_WRITE(PCH_3DCGDIS0,
  6849. MARIUNIT_CLOCK_GATE_DISABLE |
  6850. SVSMUNIT_CLOCK_GATE_DISABLE);
  6851. I915_WRITE(PCH_3DCGDIS1,
  6852. VFMUNIT_CLOCK_GATE_DISABLE);
  6853. I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
  6854. /*
  6855. * According to the spec the following bits should be set in
  6856. * order to enable memory self-refresh
  6857. * The bit 22/21 of 0x42004
  6858. * The bit 5 of 0x42020
  6859. * The bit 15 of 0x45000
  6860. */
  6861. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  6862. (I915_READ(ILK_DISPLAY_CHICKEN2) |
  6863. ILK_DPARB_GATE | ILK_VSDPFD_FULL));
  6864. I915_WRITE(ILK_DSPCLK_GATE,
  6865. (I915_READ(ILK_DSPCLK_GATE) |
  6866. ILK_DPARB_CLK_GATE));
  6867. I915_WRITE(DISP_ARB_CTL,
  6868. (I915_READ(DISP_ARB_CTL) |
  6869. DISP_FBC_WM_DIS));
  6870. I915_WRITE(WM3_LP_ILK, 0);
  6871. I915_WRITE(WM2_LP_ILK, 0);
  6872. I915_WRITE(WM1_LP_ILK, 0);
  6873. /*
  6874. * Based on the document from hardware guys the following bits
  6875. * should be set unconditionally in order to enable FBC.
  6876. * The bit 22 of 0x42000
  6877. * The bit 22 of 0x42004
  6878. * The bit 7,8,9 of 0x42020.
  6879. */
  6880. if (IS_IRONLAKE_M(dev)) {
  6881. I915_WRITE(ILK_DISPLAY_CHICKEN1,
  6882. I915_READ(ILK_DISPLAY_CHICKEN1) |
  6883. ILK_FBCQ_DIS);
  6884. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  6885. I915_READ(ILK_DISPLAY_CHICKEN2) |
  6886. ILK_DPARB_GATE);
  6887. I915_WRITE(ILK_DSPCLK_GATE,
  6888. I915_READ(ILK_DSPCLK_GATE) |
  6889. ILK_DPFC_DIS1 |
  6890. ILK_DPFC_DIS2 |
  6891. ILK_CLK_FBC);
  6892. }
  6893. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  6894. I915_READ(ILK_DISPLAY_CHICKEN2) |
  6895. ILK_ELPIN_409_SELECT);
  6896. I915_WRITE(_3D_CHICKEN2,
  6897. _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
  6898. _3D_CHICKEN2_WM_READ_PIPELINED);
  6899. }
  6900. static void gen6_init_clock_gating(struct drm_device *dev)
  6901. {
  6902. struct drm_i915_private *dev_priv = dev->dev_private;
  6903. int pipe;
  6904. uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
  6905. I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
  6906. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  6907. I915_READ(ILK_DISPLAY_CHICKEN2) |
  6908. ILK_ELPIN_409_SELECT);
  6909. I915_WRITE(WM3_LP_ILK, 0);
  6910. I915_WRITE(WM2_LP_ILK, 0);
  6911. I915_WRITE(WM1_LP_ILK, 0);
  6912. /*
  6913. * According to the spec the following bits should be
  6914. * set in order to enable memory self-refresh and fbc:
  6915. * The bit21 and bit22 of 0x42000
  6916. * The bit21 and bit22 of 0x42004
  6917. * The bit5 and bit7 of 0x42020
  6918. * The bit14 of 0x70180
  6919. * The bit14 of 0x71180
  6920. */
  6921. I915_WRITE(ILK_DISPLAY_CHICKEN1,
  6922. I915_READ(ILK_DISPLAY_CHICKEN1) |
  6923. ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
  6924. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  6925. I915_READ(ILK_DISPLAY_CHICKEN2) |
  6926. ILK_DPARB_GATE | ILK_VSDPFD_FULL);
  6927. I915_WRITE(ILK_DSPCLK_GATE,
  6928. I915_READ(ILK_DSPCLK_GATE) |
  6929. ILK_DPARB_CLK_GATE |
  6930. ILK_DPFD_CLK_GATE);
  6931. for_each_pipe(pipe) {
  6932. I915_WRITE(DSPCNTR(pipe),
  6933. I915_READ(DSPCNTR(pipe)) |
  6934. DISPPLANE_TRICKLE_FEED_DISABLE);
  6935. intel_flush_display_plane(dev_priv, pipe);
  6936. }
  6937. }
  6938. static void ivybridge_init_clock_gating(struct drm_device *dev)
  6939. {
  6940. struct drm_i915_private *dev_priv = dev->dev_private;
  6941. int pipe;
  6942. uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
  6943. I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
  6944. I915_WRITE(WM3_LP_ILK, 0);
  6945. I915_WRITE(WM2_LP_ILK, 0);
  6946. I915_WRITE(WM1_LP_ILK, 0);
  6947. I915_WRITE(ILK_DSPCLK_GATE, IVB_VRHUNIT_CLK_GATE);
  6948. for_each_pipe(pipe) {
  6949. I915_WRITE(DSPCNTR(pipe),
  6950. I915_READ(DSPCNTR(pipe)) |
  6951. DISPPLANE_TRICKLE_FEED_DISABLE);
  6952. intel_flush_display_plane(dev_priv, pipe);
  6953. }
  6954. }
  6955. static void g4x_init_clock_gating(struct drm_device *dev)
  6956. {
  6957. struct drm_i915_private *dev_priv = dev->dev_private;
  6958. uint32_t dspclk_gate;
  6959. I915_WRITE(RENCLK_GATE_D1, 0);
  6960. I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
  6961. GS_UNIT_CLOCK_GATE_DISABLE |
  6962. CL_UNIT_CLOCK_GATE_DISABLE);
  6963. I915_WRITE(RAMCLK_GATE_D, 0);
  6964. dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
  6965. OVRUNIT_CLOCK_GATE_DISABLE |
  6966. OVCUNIT_CLOCK_GATE_DISABLE;
  6967. if (IS_GM45(dev))
  6968. dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
  6969. I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
  6970. }
  6971. static void crestline_init_clock_gating(struct drm_device *dev)
  6972. {
  6973. struct drm_i915_private *dev_priv = dev->dev_private;
  6974. I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
  6975. I915_WRITE(RENCLK_GATE_D2, 0);
  6976. I915_WRITE(DSPCLK_GATE_D, 0);
  6977. I915_WRITE(RAMCLK_GATE_D, 0);
  6978. I915_WRITE16(DEUC, 0);
  6979. }
  6980. static void broadwater_init_clock_gating(struct drm_device *dev)
  6981. {
  6982. struct drm_i915_private *dev_priv = dev->dev_private;
  6983. I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
  6984. I965_RCC_CLOCK_GATE_DISABLE |
  6985. I965_RCPB_CLOCK_GATE_DISABLE |
  6986. I965_ISC_CLOCK_GATE_DISABLE |
  6987. I965_FBC_CLOCK_GATE_DISABLE);
  6988. I915_WRITE(RENCLK_GATE_D2, 0);
  6989. }
  6990. static void gen3_init_clock_gating(struct drm_device *dev)
  6991. {
  6992. struct drm_i915_private *dev_priv = dev->dev_private;
  6993. u32 dstate = I915_READ(D_STATE);
  6994. dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
  6995. DSTATE_DOT_CLOCK_GATING;
  6996. I915_WRITE(D_STATE, dstate);
  6997. }
  6998. static void i85x_init_clock_gating(struct drm_device *dev)
  6999. {
  7000. struct drm_i915_private *dev_priv = dev->dev_private;
  7001. I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
  7002. }
  7003. static void i830_init_clock_gating(struct drm_device *dev)
  7004. {
  7005. struct drm_i915_private *dev_priv = dev->dev_private;
  7006. I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
  7007. }
  7008. static void ibx_init_clock_gating(struct drm_device *dev)
  7009. {
  7010. struct drm_i915_private *dev_priv = dev->dev_private;
  7011. /*
  7012. * On Ibex Peak and Cougar Point, we need to disable clock
  7013. * gating for the panel power sequencer or it will fail to
  7014. * start up when no ports are active.
  7015. */
  7016. I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
  7017. }
  7018. static void cpt_init_clock_gating(struct drm_device *dev)
  7019. {
  7020. struct drm_i915_private *dev_priv = dev->dev_private;
  7021. int pipe;
  7022. /*
  7023. * On Ibex Peak and Cougar Point, we need to disable clock
  7024. * gating for the panel power sequencer or it will fail to
  7025. * start up when no ports are active.
  7026. */
  7027. I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
  7028. I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
  7029. DPLS_EDP_PPS_FIX_DIS);
  7030. /* Without this, mode sets may fail silently on FDI */
  7031. for_each_pipe(pipe)
  7032. I915_WRITE(TRANS_CHICKEN2(pipe), TRANS_AUTOTRAIN_GEN_STALL_DIS);
  7033. }
  7034. static void ironlake_teardown_rc6(struct drm_device *dev)
  7035. {
  7036. struct drm_i915_private *dev_priv = dev->dev_private;
  7037. if (dev_priv->renderctx) {
  7038. i915_gem_object_unpin(dev_priv->renderctx);
  7039. drm_gem_object_unreference(&dev_priv->renderctx->base);
  7040. dev_priv->renderctx = NULL;
  7041. }
  7042. if (dev_priv->pwrctx) {
  7043. i915_gem_object_unpin(dev_priv->pwrctx);
  7044. drm_gem_object_unreference(&dev_priv->pwrctx->base);
  7045. dev_priv->pwrctx = NULL;
  7046. }
  7047. }
  7048. static void ironlake_disable_rc6(struct drm_device *dev)
  7049. {
  7050. struct drm_i915_private *dev_priv = dev->dev_private;
  7051. if (I915_READ(PWRCTXA)) {
  7052. /* Wake the GPU, prevent RC6, then restore RSTDBYCTL */
  7053. I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) | RCX_SW_EXIT);
  7054. wait_for(((I915_READ(RSTDBYCTL) & RSX_STATUS_MASK) == RSX_STATUS_ON),
  7055. 50);
  7056. I915_WRITE(PWRCTXA, 0);
  7057. POSTING_READ(PWRCTXA);
  7058. I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
  7059. POSTING_READ(RSTDBYCTL);
  7060. }
  7061. ironlake_teardown_rc6(dev);
  7062. }
  7063. static int ironlake_setup_rc6(struct drm_device *dev)
  7064. {
  7065. struct drm_i915_private *dev_priv = dev->dev_private;
  7066. if (dev_priv->renderctx == NULL)
  7067. dev_priv->renderctx = intel_alloc_context_page(dev);
  7068. if (!dev_priv->renderctx)
  7069. return -ENOMEM;
  7070. if (dev_priv->pwrctx == NULL)
  7071. dev_priv->pwrctx = intel_alloc_context_page(dev);
  7072. if (!dev_priv->pwrctx) {
  7073. ironlake_teardown_rc6(dev);
  7074. return -ENOMEM;
  7075. }
  7076. return 0;
  7077. }
  7078. void ironlake_enable_rc6(struct drm_device *dev)
  7079. {
  7080. struct drm_i915_private *dev_priv = dev->dev_private;
  7081. int ret;
  7082. /* rc6 disabled by default due to repeated reports of hanging during
  7083. * boot and resume.
  7084. */
  7085. if (!i915_enable_rc6)
  7086. return;
  7087. mutex_lock(&dev->struct_mutex);
  7088. ret = ironlake_setup_rc6(dev);
  7089. if (ret) {
  7090. mutex_unlock(&dev->struct_mutex);
  7091. return;
  7092. }
  7093. /*
  7094. * GPU can automatically power down the render unit if given a page
  7095. * to save state.
  7096. */
  7097. ret = BEGIN_LP_RING(6);
  7098. if (ret) {
  7099. ironlake_teardown_rc6(dev);
  7100. mutex_unlock(&dev->struct_mutex);
  7101. return;
  7102. }
  7103. OUT_RING(MI_SUSPEND_FLUSH | MI_SUSPEND_FLUSH_EN);
  7104. OUT_RING(MI_SET_CONTEXT);
  7105. OUT_RING(dev_priv->renderctx->gtt_offset |
  7106. MI_MM_SPACE_GTT |
  7107. MI_SAVE_EXT_STATE_EN |
  7108. MI_RESTORE_EXT_STATE_EN |
  7109. MI_RESTORE_INHIBIT);
  7110. OUT_RING(MI_SUSPEND_FLUSH);
  7111. OUT_RING(MI_NOOP);
  7112. OUT_RING(MI_FLUSH);
  7113. ADVANCE_LP_RING();
  7114. /*
  7115. * Wait for the command parser to advance past MI_SET_CONTEXT. The HW
  7116. * does an implicit flush, combined with MI_FLUSH above, it should be
  7117. * safe to assume that renderctx is valid
  7118. */
  7119. ret = intel_wait_ring_idle(LP_RING(dev_priv));
  7120. if (ret) {
  7121. DRM_ERROR("failed to enable ironlake power power savings\n");
  7122. ironlake_teardown_rc6(dev);
  7123. mutex_unlock(&dev->struct_mutex);
  7124. return;
  7125. }
  7126. I915_WRITE(PWRCTXA, dev_priv->pwrctx->gtt_offset | PWRCTX_EN);
  7127. I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
  7128. mutex_unlock(&dev->struct_mutex);
  7129. }
  7130. void intel_init_clock_gating(struct drm_device *dev)
  7131. {
  7132. struct drm_i915_private *dev_priv = dev->dev_private;
  7133. dev_priv->display.init_clock_gating(dev);
  7134. if (dev_priv->display.init_pch_clock_gating)
  7135. dev_priv->display.init_pch_clock_gating(dev);
  7136. }
  7137. /* Set up chip specific display functions */
  7138. static void intel_init_display(struct drm_device *dev)
  7139. {
  7140. struct drm_i915_private *dev_priv = dev->dev_private;
  7141. /* We always want a DPMS function */
  7142. if (HAS_PCH_SPLIT(dev)) {
  7143. dev_priv->display.dpms = ironlake_crtc_dpms;
  7144. dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
  7145. dev_priv->display.update_plane = ironlake_update_plane;
  7146. } else {
  7147. dev_priv->display.dpms = i9xx_crtc_dpms;
  7148. dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
  7149. dev_priv->display.update_plane = i9xx_update_plane;
  7150. }
  7151. if (I915_HAS_FBC(dev)) {
  7152. if (HAS_PCH_SPLIT(dev)) {
  7153. dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
  7154. dev_priv->display.enable_fbc = ironlake_enable_fbc;
  7155. dev_priv->display.disable_fbc = ironlake_disable_fbc;
  7156. } else if (IS_GM45(dev)) {
  7157. dev_priv->display.fbc_enabled = g4x_fbc_enabled;
  7158. dev_priv->display.enable_fbc = g4x_enable_fbc;
  7159. dev_priv->display.disable_fbc = g4x_disable_fbc;
  7160. } else if (IS_CRESTLINE(dev)) {
  7161. dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
  7162. dev_priv->display.enable_fbc = i8xx_enable_fbc;
  7163. dev_priv->display.disable_fbc = i8xx_disable_fbc;
  7164. }
  7165. /* 855GM needs testing */
  7166. }
  7167. /* Returns the core display clock speed */
  7168. if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
  7169. dev_priv->display.get_display_clock_speed =
  7170. i945_get_display_clock_speed;
  7171. else if (IS_I915G(dev))
  7172. dev_priv->display.get_display_clock_speed =
  7173. i915_get_display_clock_speed;
  7174. else if (IS_I945GM(dev) || IS_845G(dev) || IS_PINEVIEW_M(dev))
  7175. dev_priv->display.get_display_clock_speed =
  7176. i9xx_misc_get_display_clock_speed;
  7177. else if (IS_I915GM(dev))
  7178. dev_priv->display.get_display_clock_speed =
  7179. i915gm_get_display_clock_speed;
  7180. else if (IS_I865G(dev))
  7181. dev_priv->display.get_display_clock_speed =
  7182. i865_get_display_clock_speed;
  7183. else if (IS_I85X(dev))
  7184. dev_priv->display.get_display_clock_speed =
  7185. i855_get_display_clock_speed;
  7186. else /* 852, 830 */
  7187. dev_priv->display.get_display_clock_speed =
  7188. i830_get_display_clock_speed;
  7189. /* For FIFO watermark updates */
  7190. if (HAS_PCH_SPLIT(dev)) {
  7191. if (HAS_PCH_IBX(dev))
  7192. dev_priv->display.init_pch_clock_gating = ibx_init_clock_gating;
  7193. else if (HAS_PCH_CPT(dev))
  7194. dev_priv->display.init_pch_clock_gating = cpt_init_clock_gating;
  7195. if (IS_GEN5(dev)) {
  7196. if (I915_READ(MLTR_ILK) & ILK_SRLT_MASK)
  7197. dev_priv->display.update_wm = ironlake_update_wm;
  7198. else {
  7199. DRM_DEBUG_KMS("Failed to get proper latency. "
  7200. "Disable CxSR\n");
  7201. dev_priv->display.update_wm = NULL;
  7202. }
  7203. dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
  7204. dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
  7205. dev_priv->display.write_eld = ironlake_write_eld;
  7206. } else if (IS_GEN6(dev)) {
  7207. if (SNB_READ_WM0_LATENCY()) {
  7208. dev_priv->display.update_wm = sandybridge_update_wm;
  7209. } else {
  7210. DRM_DEBUG_KMS("Failed to read display plane latency. "
  7211. "Disable CxSR\n");
  7212. dev_priv->display.update_wm = NULL;
  7213. }
  7214. dev_priv->display.fdi_link_train = gen6_fdi_link_train;
  7215. dev_priv->display.init_clock_gating = gen6_init_clock_gating;
  7216. dev_priv->display.write_eld = ironlake_write_eld;
  7217. } else if (IS_IVYBRIDGE(dev)) {
  7218. /* FIXME: detect B0+ stepping and use auto training */
  7219. dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
  7220. if (SNB_READ_WM0_LATENCY()) {
  7221. dev_priv->display.update_wm = sandybridge_update_wm;
  7222. } else {
  7223. DRM_DEBUG_KMS("Failed to read display plane latency. "
  7224. "Disable CxSR\n");
  7225. dev_priv->display.update_wm = NULL;
  7226. }
  7227. dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
  7228. dev_priv->display.write_eld = ironlake_write_eld;
  7229. } else
  7230. dev_priv->display.update_wm = NULL;
  7231. } else if (IS_PINEVIEW(dev)) {
  7232. if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
  7233. dev_priv->is_ddr3,
  7234. dev_priv->fsb_freq,
  7235. dev_priv->mem_freq)) {
  7236. DRM_INFO("failed to find known CxSR latency "
  7237. "(found ddr%s fsb freq %d, mem freq %d), "
  7238. "disabling CxSR\n",
  7239. (dev_priv->is_ddr3 == 1) ? "3" : "2",
  7240. dev_priv->fsb_freq, dev_priv->mem_freq);
  7241. /* Disable CxSR and never update its watermark again */
  7242. pineview_disable_cxsr(dev);
  7243. dev_priv->display.update_wm = NULL;
  7244. } else
  7245. dev_priv->display.update_wm = pineview_update_wm;
  7246. dev_priv->display.init_clock_gating = gen3_init_clock_gating;
  7247. } else if (IS_G4X(dev)) {
  7248. dev_priv->display.write_eld = g4x_write_eld;
  7249. dev_priv->display.update_wm = g4x_update_wm;
  7250. dev_priv->display.init_clock_gating = g4x_init_clock_gating;
  7251. } else if (IS_GEN4(dev)) {
  7252. dev_priv->display.update_wm = i965_update_wm;
  7253. if (IS_CRESTLINE(dev))
  7254. dev_priv->display.init_clock_gating = crestline_init_clock_gating;
  7255. else if (IS_BROADWATER(dev))
  7256. dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
  7257. } else if (IS_GEN3(dev)) {
  7258. dev_priv->display.update_wm = i9xx_update_wm;
  7259. dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
  7260. dev_priv->display.init_clock_gating = gen3_init_clock_gating;
  7261. } else if (IS_I865G(dev)) {
  7262. dev_priv->display.update_wm = i830_update_wm;
  7263. dev_priv->display.init_clock_gating = i85x_init_clock_gating;
  7264. dev_priv->display.get_fifo_size = i830_get_fifo_size;
  7265. } else if (IS_I85X(dev)) {
  7266. dev_priv->display.update_wm = i9xx_update_wm;
  7267. dev_priv->display.get_fifo_size = i85x_get_fifo_size;
  7268. dev_priv->display.init_clock_gating = i85x_init_clock_gating;
  7269. } else {
  7270. dev_priv->display.update_wm = i830_update_wm;
  7271. dev_priv->display.init_clock_gating = i830_init_clock_gating;
  7272. if (IS_845G(dev))
  7273. dev_priv->display.get_fifo_size = i845_get_fifo_size;
  7274. else
  7275. dev_priv->display.get_fifo_size = i830_get_fifo_size;
  7276. }
  7277. /* Default just returns -ENODEV to indicate unsupported */
  7278. dev_priv->display.queue_flip = intel_default_queue_flip;
  7279. switch (INTEL_INFO(dev)->gen) {
  7280. case 2:
  7281. dev_priv->display.queue_flip = intel_gen2_queue_flip;
  7282. break;
  7283. case 3:
  7284. dev_priv->display.queue_flip = intel_gen3_queue_flip;
  7285. break;
  7286. case 4:
  7287. case 5:
  7288. dev_priv->display.queue_flip = intel_gen4_queue_flip;
  7289. break;
  7290. case 6:
  7291. dev_priv->display.queue_flip = intel_gen6_queue_flip;
  7292. break;
  7293. case 7:
  7294. dev_priv->display.queue_flip = intel_gen7_queue_flip;
  7295. break;
  7296. }
  7297. }
  7298. /*
  7299. * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
  7300. * resume, or other times. This quirk makes sure that's the case for
  7301. * affected systems.
  7302. */
  7303. static void quirk_pipea_force(struct drm_device *dev)
  7304. {
  7305. struct drm_i915_private *dev_priv = dev->dev_private;
  7306. dev_priv->quirks |= QUIRK_PIPEA_FORCE;
  7307. DRM_DEBUG_DRIVER("applying pipe a force quirk\n");
  7308. }
  7309. /*
  7310. * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
  7311. */
  7312. static void quirk_ssc_force_disable(struct drm_device *dev)
  7313. {
  7314. struct drm_i915_private *dev_priv = dev->dev_private;
  7315. dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
  7316. }
  7317. struct intel_quirk {
  7318. int device;
  7319. int subsystem_vendor;
  7320. int subsystem_device;
  7321. void (*hook)(struct drm_device *dev);
  7322. };
  7323. struct intel_quirk intel_quirks[] = {
  7324. /* HP Compaq 2730p needs pipe A force quirk (LP: #291555) */
  7325. { 0x2a42, 0x103c, 0x30eb, quirk_pipea_force },
  7326. /* HP Mini needs pipe A force quirk (LP: #322104) */
  7327. { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
  7328. /* Thinkpad R31 needs pipe A force quirk */
  7329. { 0x3577, 0x1014, 0x0505, quirk_pipea_force },
  7330. /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
  7331. { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
  7332. /* ThinkPad X30 needs pipe A force quirk (LP: #304614) */
  7333. { 0x3577, 0x1014, 0x0513, quirk_pipea_force },
  7334. /* ThinkPad X40 needs pipe A force quirk */
  7335. /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
  7336. { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
  7337. /* 855 & before need to leave pipe A & dpll A up */
  7338. { 0x3582, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
  7339. { 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
  7340. /* Lenovo U160 cannot use SSC on LVDS */
  7341. { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
  7342. /* Sony Vaio Y cannot use SSC on LVDS */
  7343. { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
  7344. };
  7345. static void intel_init_quirks(struct drm_device *dev)
  7346. {
  7347. struct pci_dev *d = dev->pdev;
  7348. int i;
  7349. for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
  7350. struct intel_quirk *q = &intel_quirks[i];
  7351. if (d->device == q->device &&
  7352. (d->subsystem_vendor == q->subsystem_vendor ||
  7353. q->subsystem_vendor == PCI_ANY_ID) &&
  7354. (d->subsystem_device == q->subsystem_device ||
  7355. q->subsystem_device == PCI_ANY_ID))
  7356. q->hook(dev);
  7357. }
  7358. }
  7359. /* Disable the VGA plane that we never use */
  7360. static void i915_disable_vga(struct drm_device *dev)
  7361. {
  7362. struct drm_i915_private *dev_priv = dev->dev_private;
  7363. u8 sr1;
  7364. u32 vga_reg;
  7365. if (HAS_PCH_SPLIT(dev))
  7366. vga_reg = CPU_VGACNTRL;
  7367. else
  7368. vga_reg = VGACNTRL;
  7369. vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
  7370. outb(1, VGA_SR_INDEX);
  7371. sr1 = inb(VGA_SR_DATA);
  7372. outb(sr1 | 1<<5, VGA_SR_DATA);
  7373. vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
  7374. udelay(300);
  7375. I915_WRITE(vga_reg, VGA_DISP_DISABLE);
  7376. POSTING_READ(vga_reg);
  7377. }
  7378. void intel_modeset_init(struct drm_device *dev)
  7379. {
  7380. struct drm_i915_private *dev_priv = dev->dev_private;
  7381. int i;
  7382. drm_mode_config_init(dev);
  7383. dev->mode_config.min_width = 0;
  7384. dev->mode_config.min_height = 0;
  7385. dev->mode_config.funcs = (void *)&intel_mode_funcs;
  7386. intel_init_quirks(dev);
  7387. intel_init_display(dev);
  7388. if (IS_GEN2(dev)) {
  7389. dev->mode_config.max_width = 2048;
  7390. dev->mode_config.max_height = 2048;
  7391. } else if (IS_GEN3(dev)) {
  7392. dev->mode_config.max_width = 4096;
  7393. dev->mode_config.max_height = 4096;
  7394. } else {
  7395. dev->mode_config.max_width = 8192;
  7396. dev->mode_config.max_height = 8192;
  7397. }
  7398. dev->mode_config.fb_base = dev->agp->base;
  7399. DRM_DEBUG_KMS("%d display pipe%s available.\n",
  7400. dev_priv->num_pipe, dev_priv->num_pipe > 1 ? "s" : "");
  7401. for (i = 0; i < dev_priv->num_pipe; i++) {
  7402. intel_crtc_init(dev, i);
  7403. }
  7404. /* Just disable it once at startup */
  7405. i915_disable_vga(dev);
  7406. intel_setup_outputs(dev);
  7407. intel_init_clock_gating(dev);
  7408. if (IS_IRONLAKE_M(dev)) {
  7409. ironlake_enable_drps(dev);
  7410. intel_init_emon(dev);
  7411. }
  7412. if (IS_GEN6(dev) || IS_GEN7(dev)) {
  7413. gen6_enable_rps(dev_priv);
  7414. gen6_update_ring_freq(dev_priv);
  7415. }
  7416. INIT_WORK(&dev_priv->idle_work, intel_idle_update);
  7417. setup_timer(&dev_priv->idle_timer, intel_gpu_idle_timer,
  7418. (unsigned long)dev);
  7419. }
  7420. void intel_modeset_gem_init(struct drm_device *dev)
  7421. {
  7422. if (IS_IRONLAKE_M(dev))
  7423. ironlake_enable_rc6(dev);
  7424. intel_setup_overlay(dev);
  7425. }
  7426. void intel_modeset_cleanup(struct drm_device *dev)
  7427. {
  7428. struct drm_i915_private *dev_priv = dev->dev_private;
  7429. struct drm_crtc *crtc;
  7430. struct intel_crtc *intel_crtc;
  7431. drm_kms_helper_poll_fini(dev);
  7432. mutex_lock(&dev->struct_mutex);
  7433. intel_unregister_dsm_handler();
  7434. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  7435. /* Skip inactive CRTCs */
  7436. if (!crtc->fb)
  7437. continue;
  7438. intel_crtc = to_intel_crtc(crtc);
  7439. intel_increase_pllclock(crtc);
  7440. }
  7441. intel_disable_fbc(dev);
  7442. if (IS_IRONLAKE_M(dev))
  7443. ironlake_disable_drps(dev);
  7444. if (IS_GEN6(dev) || IS_GEN7(dev))
  7445. gen6_disable_rps(dev);
  7446. if (IS_IRONLAKE_M(dev))
  7447. ironlake_disable_rc6(dev);
  7448. mutex_unlock(&dev->struct_mutex);
  7449. /* Disable the irq before mode object teardown, for the irq might
  7450. * enqueue unpin/hotplug work. */
  7451. drm_irq_uninstall(dev);
  7452. cancel_work_sync(&dev_priv->hotplug_work);
  7453. cancel_work_sync(&dev_priv->rps_work);
  7454. /* flush any delayed tasks or pending work */
  7455. flush_scheduled_work();
  7456. /* Shut off idle work before the crtcs get freed. */
  7457. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  7458. intel_crtc = to_intel_crtc(crtc);
  7459. del_timer_sync(&intel_crtc->idle_timer);
  7460. }
  7461. del_timer_sync(&dev_priv->idle_timer);
  7462. cancel_work_sync(&dev_priv->idle_work);
  7463. drm_mode_config_cleanup(dev);
  7464. }
  7465. /*
  7466. * Return which encoder is currently attached for connector.
  7467. */
  7468. struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
  7469. {
  7470. return &intel_attached_encoder(connector)->base;
  7471. }
  7472. void intel_connector_attach_encoder(struct intel_connector *connector,
  7473. struct intel_encoder *encoder)
  7474. {
  7475. connector->encoder = encoder;
  7476. drm_mode_connector_attach_encoder(&connector->base,
  7477. &encoder->base);
  7478. }
  7479. /*
  7480. * set vga decode state - true == enable VGA decode
  7481. */
  7482. int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
  7483. {
  7484. struct drm_i915_private *dev_priv = dev->dev_private;
  7485. u16 gmch_ctrl;
  7486. pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
  7487. if (state)
  7488. gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
  7489. else
  7490. gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
  7491. pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
  7492. return 0;
  7493. }
  7494. #ifdef CONFIG_DEBUG_FS
  7495. #include <linux/seq_file.h>
  7496. struct intel_display_error_state {
  7497. struct intel_cursor_error_state {
  7498. u32 control;
  7499. u32 position;
  7500. u32 base;
  7501. u32 size;
  7502. } cursor[2];
  7503. struct intel_pipe_error_state {
  7504. u32 conf;
  7505. u32 source;
  7506. u32 htotal;
  7507. u32 hblank;
  7508. u32 hsync;
  7509. u32 vtotal;
  7510. u32 vblank;
  7511. u32 vsync;
  7512. } pipe[2];
  7513. struct intel_plane_error_state {
  7514. u32 control;
  7515. u32 stride;
  7516. u32 size;
  7517. u32 pos;
  7518. u32 addr;
  7519. u32 surface;
  7520. u32 tile_offset;
  7521. } plane[2];
  7522. };
  7523. struct intel_display_error_state *
  7524. intel_display_capture_error_state(struct drm_device *dev)
  7525. {
  7526. drm_i915_private_t *dev_priv = dev->dev_private;
  7527. struct intel_display_error_state *error;
  7528. int i;
  7529. error = kmalloc(sizeof(*error), GFP_ATOMIC);
  7530. if (error == NULL)
  7531. return NULL;
  7532. for (i = 0; i < 2; i++) {
  7533. error->cursor[i].control = I915_READ(CURCNTR(i));
  7534. error->cursor[i].position = I915_READ(CURPOS(i));
  7535. error->cursor[i].base = I915_READ(CURBASE(i));
  7536. error->plane[i].control = I915_READ(DSPCNTR(i));
  7537. error->plane[i].stride = I915_READ(DSPSTRIDE(i));
  7538. error->plane[i].size = I915_READ(DSPSIZE(i));
  7539. error->plane[i].pos = I915_READ(DSPPOS(i));
  7540. error->plane[i].addr = I915_READ(DSPADDR(i));
  7541. if (INTEL_INFO(dev)->gen >= 4) {
  7542. error->plane[i].surface = I915_READ(DSPSURF(i));
  7543. error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
  7544. }
  7545. error->pipe[i].conf = I915_READ(PIPECONF(i));
  7546. error->pipe[i].source = I915_READ(PIPESRC(i));
  7547. error->pipe[i].htotal = I915_READ(HTOTAL(i));
  7548. error->pipe[i].hblank = I915_READ(HBLANK(i));
  7549. error->pipe[i].hsync = I915_READ(HSYNC(i));
  7550. error->pipe[i].vtotal = I915_READ(VTOTAL(i));
  7551. error->pipe[i].vblank = I915_READ(VBLANK(i));
  7552. error->pipe[i].vsync = I915_READ(VSYNC(i));
  7553. }
  7554. return error;
  7555. }
  7556. void
  7557. intel_display_print_error_state(struct seq_file *m,
  7558. struct drm_device *dev,
  7559. struct intel_display_error_state *error)
  7560. {
  7561. int i;
  7562. for (i = 0; i < 2; i++) {
  7563. seq_printf(m, "Pipe [%d]:\n", i);
  7564. seq_printf(m, " CONF: %08x\n", error->pipe[i].conf);
  7565. seq_printf(m, " SRC: %08x\n", error->pipe[i].source);
  7566. seq_printf(m, " HTOTAL: %08x\n", error->pipe[i].htotal);
  7567. seq_printf(m, " HBLANK: %08x\n", error->pipe[i].hblank);
  7568. seq_printf(m, " HSYNC: %08x\n", error->pipe[i].hsync);
  7569. seq_printf(m, " VTOTAL: %08x\n", error->pipe[i].vtotal);
  7570. seq_printf(m, " VBLANK: %08x\n", error->pipe[i].vblank);
  7571. seq_printf(m, " VSYNC: %08x\n", error->pipe[i].vsync);
  7572. seq_printf(m, "Plane [%d]:\n", i);
  7573. seq_printf(m, " CNTR: %08x\n", error->plane[i].control);
  7574. seq_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
  7575. seq_printf(m, " SIZE: %08x\n", error->plane[i].size);
  7576. seq_printf(m, " POS: %08x\n", error->plane[i].pos);
  7577. seq_printf(m, " ADDR: %08x\n", error->plane[i].addr);
  7578. if (INTEL_INFO(dev)->gen >= 4) {
  7579. seq_printf(m, " SURF: %08x\n", error->plane[i].surface);
  7580. seq_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
  7581. }
  7582. seq_printf(m, "Cursor [%d]:\n", i);
  7583. seq_printf(m, " CNTR: %08x\n", error->cursor[i].control);
  7584. seq_printf(m, " POS: %08x\n", error->cursor[i].position);
  7585. seq_printf(m, " BASE: %08x\n", error->cursor[i].base);
  7586. }
  7587. }
  7588. #endif