slub.c 105 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507
  1. /*
  2. * SLUB: A slab allocator that limits cache line use instead of queuing
  3. * objects in per cpu and per node lists.
  4. *
  5. * The allocator synchronizes using per slab locks and only
  6. * uses a centralized lock to manage a pool of partial slabs.
  7. *
  8. * (C) 2007 SGI, Christoph Lameter <clameter@sgi.com>
  9. */
  10. #include <linux/mm.h>
  11. #include <linux/module.h>
  12. #include <linux/bit_spinlock.h>
  13. #include <linux/interrupt.h>
  14. #include <linux/bitops.h>
  15. #include <linux/slab.h>
  16. #include <linux/seq_file.h>
  17. #include <linux/cpu.h>
  18. #include <linux/cpuset.h>
  19. #include <linux/mempolicy.h>
  20. #include <linux/ctype.h>
  21. #include <linux/kallsyms.h>
  22. #include <linux/memory.h>
  23. /*
  24. * Lock order:
  25. * 1. slab_lock(page)
  26. * 2. slab->list_lock
  27. *
  28. * The slab_lock protects operations on the object of a particular
  29. * slab and its metadata in the page struct. If the slab lock
  30. * has been taken then no allocations nor frees can be performed
  31. * on the objects in the slab nor can the slab be added or removed
  32. * from the partial or full lists since this would mean modifying
  33. * the page_struct of the slab.
  34. *
  35. * The list_lock protects the partial and full list on each node and
  36. * the partial slab counter. If taken then no new slabs may be added or
  37. * removed from the lists nor make the number of partial slabs be modified.
  38. * (Note that the total number of slabs is an atomic value that may be
  39. * modified without taking the list lock).
  40. *
  41. * The list_lock is a centralized lock and thus we avoid taking it as
  42. * much as possible. As long as SLUB does not have to handle partial
  43. * slabs, operations can continue without any centralized lock. F.e.
  44. * allocating a long series of objects that fill up slabs does not require
  45. * the list lock.
  46. *
  47. * The lock order is sometimes inverted when we are trying to get a slab
  48. * off a list. We take the list_lock and then look for a page on the list
  49. * to use. While we do that objects in the slabs may be freed. We can
  50. * only operate on the slab if we have also taken the slab_lock. So we use
  51. * a slab_trylock() on the slab. If trylock was successful then no frees
  52. * can occur anymore and we can use the slab for allocations etc. If the
  53. * slab_trylock() does not succeed then frees are in progress in the slab and
  54. * we must stay away from it for a while since we may cause a bouncing
  55. * cacheline if we try to acquire the lock. So go onto the next slab.
  56. * If all pages are busy then we may allocate a new slab instead of reusing
  57. * a partial slab. A new slab has noone operating on it and thus there is
  58. * no danger of cacheline contention.
  59. *
  60. * Interrupts are disabled during allocation and deallocation in order to
  61. * make the slab allocator safe to use in the context of an irq. In addition
  62. * interrupts are disabled to ensure that the processor does not change
  63. * while handling per_cpu slabs, due to kernel preemption.
  64. *
  65. * SLUB assigns one slab for allocation to each processor.
  66. * Allocations only occur from these slabs called cpu slabs.
  67. *
  68. * Slabs with free elements are kept on a partial list and during regular
  69. * operations no list for full slabs is used. If an object in a full slab is
  70. * freed then the slab will show up again on the partial lists.
  71. * We track full slabs for debugging purposes though because otherwise we
  72. * cannot scan all objects.
  73. *
  74. * Slabs are freed when they become empty. Teardown and setup is
  75. * minimal so we rely on the page allocators per cpu caches for
  76. * fast frees and allocs.
  77. *
  78. * Overloading of page flags that are otherwise used for LRU management.
  79. *
  80. * PageActive The slab is frozen and exempt from list processing.
  81. * This means that the slab is dedicated to a purpose
  82. * such as satisfying allocations for a specific
  83. * processor. Objects may be freed in the slab while
  84. * it is frozen but slab_free will then skip the usual
  85. * list operations. It is up to the processor holding
  86. * the slab to integrate the slab into the slab lists
  87. * when the slab is no longer needed.
  88. *
  89. * One use of this flag is to mark slabs that are
  90. * used for allocations. Then such a slab becomes a cpu
  91. * slab. The cpu slab may be equipped with an additional
  92. * freelist that allows lockless access to
  93. * free objects in addition to the regular freelist
  94. * that requires the slab lock.
  95. *
  96. * PageError Slab requires special handling due to debug
  97. * options set. This moves slab handling out of
  98. * the fast path and disables lockless freelists.
  99. */
  100. #define FROZEN (1 << PG_active)
  101. #ifdef CONFIG_SLUB_DEBUG
  102. #define SLABDEBUG (1 << PG_error)
  103. #else
  104. #define SLABDEBUG 0
  105. #endif
  106. static inline int SlabFrozen(struct page *page)
  107. {
  108. return page->flags & FROZEN;
  109. }
  110. static inline void SetSlabFrozen(struct page *page)
  111. {
  112. page->flags |= FROZEN;
  113. }
  114. static inline void ClearSlabFrozen(struct page *page)
  115. {
  116. page->flags &= ~FROZEN;
  117. }
  118. static inline int SlabDebug(struct page *page)
  119. {
  120. return page->flags & SLABDEBUG;
  121. }
  122. static inline void SetSlabDebug(struct page *page)
  123. {
  124. page->flags |= SLABDEBUG;
  125. }
  126. static inline void ClearSlabDebug(struct page *page)
  127. {
  128. page->flags &= ~SLABDEBUG;
  129. }
  130. /*
  131. * Issues still to be resolved:
  132. *
  133. * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
  134. *
  135. * - Variable sizing of the per node arrays
  136. */
  137. /* Enable to test recovery from slab corruption on boot */
  138. #undef SLUB_RESILIENCY_TEST
  139. /*
  140. * Mininum number of partial slabs. These will be left on the partial
  141. * lists even if they are empty. kmem_cache_shrink may reclaim them.
  142. */
  143. #define MIN_PARTIAL 5
  144. /*
  145. * Maximum number of desirable partial slabs.
  146. * The existence of more partial slabs makes kmem_cache_shrink
  147. * sort the partial list by the number of objects in the.
  148. */
  149. #define MAX_PARTIAL 10
  150. #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
  151. SLAB_POISON | SLAB_STORE_USER)
  152. /*
  153. * Set of flags that will prevent slab merging
  154. */
  155. #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
  156. SLAB_TRACE | SLAB_DESTROY_BY_RCU)
  157. #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
  158. SLAB_CACHE_DMA)
  159. #ifndef ARCH_KMALLOC_MINALIGN
  160. #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
  161. #endif
  162. #ifndef ARCH_SLAB_MINALIGN
  163. #define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
  164. #endif
  165. /* Internal SLUB flags */
  166. #define __OBJECT_POISON 0x80000000 /* Poison object */
  167. #define __SYSFS_ADD_DEFERRED 0x40000000 /* Not yet visible via sysfs */
  168. static int kmem_size = sizeof(struct kmem_cache);
  169. #ifdef CONFIG_SMP
  170. static struct notifier_block slab_notifier;
  171. #endif
  172. static enum {
  173. DOWN, /* No slab functionality available */
  174. PARTIAL, /* kmem_cache_open() works but kmalloc does not */
  175. UP, /* Everything works but does not show up in sysfs */
  176. SYSFS /* Sysfs up */
  177. } slab_state = DOWN;
  178. /* A list of all slab caches on the system */
  179. static DECLARE_RWSEM(slub_lock);
  180. static LIST_HEAD(slab_caches);
  181. /*
  182. * Tracking user of a slab.
  183. */
  184. struct track {
  185. void *addr; /* Called from address */
  186. int cpu; /* Was running on cpu */
  187. int pid; /* Pid context */
  188. unsigned long when; /* When did the operation occur */
  189. };
  190. enum track_item { TRACK_ALLOC, TRACK_FREE };
  191. #if defined(CONFIG_SYSFS) && defined(CONFIG_SLUB_DEBUG)
  192. static int sysfs_slab_add(struct kmem_cache *);
  193. static int sysfs_slab_alias(struct kmem_cache *, const char *);
  194. static void sysfs_slab_remove(struct kmem_cache *);
  195. #else
  196. static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
  197. static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
  198. { return 0; }
  199. static inline void sysfs_slab_remove(struct kmem_cache *s)
  200. {
  201. kfree(s);
  202. }
  203. #endif
  204. static inline void stat(struct kmem_cache_cpu *c, enum stat_item si)
  205. {
  206. #ifdef CONFIG_SLUB_STATS
  207. c->stat[si]++;
  208. #endif
  209. }
  210. /********************************************************************
  211. * Core slab cache functions
  212. *******************************************************************/
  213. int slab_is_available(void)
  214. {
  215. return slab_state >= UP;
  216. }
  217. static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
  218. {
  219. #ifdef CONFIG_NUMA
  220. return s->node[node];
  221. #else
  222. return &s->local_node;
  223. #endif
  224. }
  225. static inline struct kmem_cache_cpu *get_cpu_slab(struct kmem_cache *s, int cpu)
  226. {
  227. #ifdef CONFIG_SMP
  228. return s->cpu_slab[cpu];
  229. #else
  230. return &s->cpu_slab;
  231. #endif
  232. }
  233. /* Verify that a pointer has an address that is valid within a slab page */
  234. static inline int check_valid_pointer(struct kmem_cache *s,
  235. struct page *page, const void *object)
  236. {
  237. void *base;
  238. if (!object)
  239. return 1;
  240. base = page_address(page);
  241. if (object < base || object >= base + page->objects * s->size ||
  242. (object - base) % s->size) {
  243. return 0;
  244. }
  245. return 1;
  246. }
  247. /*
  248. * Slow version of get and set free pointer.
  249. *
  250. * This version requires touching the cache lines of kmem_cache which
  251. * we avoid to do in the fast alloc free paths. There we obtain the offset
  252. * from the page struct.
  253. */
  254. static inline void *get_freepointer(struct kmem_cache *s, void *object)
  255. {
  256. return *(void **)(object + s->offset);
  257. }
  258. static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
  259. {
  260. *(void **)(object + s->offset) = fp;
  261. }
  262. /* Loop over all objects in a slab */
  263. #define for_each_object(__p, __s, __addr, __objects) \
  264. for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
  265. __p += (__s)->size)
  266. /* Scan freelist */
  267. #define for_each_free_object(__p, __s, __free) \
  268. for (__p = (__free); __p; __p = get_freepointer((__s), __p))
  269. /* Determine object index from a given position */
  270. static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
  271. {
  272. return (p - addr) / s->size;
  273. }
  274. static inline struct kmem_cache_order_objects oo_make(int order,
  275. unsigned long size)
  276. {
  277. struct kmem_cache_order_objects x = {
  278. (order << 16) + (PAGE_SIZE << order) / size
  279. };
  280. return x;
  281. }
  282. static inline int oo_order(struct kmem_cache_order_objects x)
  283. {
  284. return x.x >> 16;
  285. }
  286. static inline int oo_objects(struct kmem_cache_order_objects x)
  287. {
  288. return x.x & ((1 << 16) - 1);
  289. }
  290. #ifdef CONFIG_SLUB_DEBUG
  291. /*
  292. * Debug settings:
  293. */
  294. #ifdef CONFIG_SLUB_DEBUG_ON
  295. static int slub_debug = DEBUG_DEFAULT_FLAGS;
  296. #else
  297. static int slub_debug;
  298. #endif
  299. static char *slub_debug_slabs;
  300. /*
  301. * Object debugging
  302. */
  303. static void print_section(char *text, u8 *addr, unsigned int length)
  304. {
  305. int i, offset;
  306. int newline = 1;
  307. char ascii[17];
  308. ascii[16] = 0;
  309. for (i = 0; i < length; i++) {
  310. if (newline) {
  311. printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
  312. newline = 0;
  313. }
  314. printk(KERN_CONT " %02x", addr[i]);
  315. offset = i % 16;
  316. ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
  317. if (offset == 15) {
  318. printk(KERN_CONT " %s\n", ascii);
  319. newline = 1;
  320. }
  321. }
  322. if (!newline) {
  323. i %= 16;
  324. while (i < 16) {
  325. printk(KERN_CONT " ");
  326. ascii[i] = ' ';
  327. i++;
  328. }
  329. printk(KERN_CONT " %s\n", ascii);
  330. }
  331. }
  332. static struct track *get_track(struct kmem_cache *s, void *object,
  333. enum track_item alloc)
  334. {
  335. struct track *p;
  336. if (s->offset)
  337. p = object + s->offset + sizeof(void *);
  338. else
  339. p = object + s->inuse;
  340. return p + alloc;
  341. }
  342. static void set_track(struct kmem_cache *s, void *object,
  343. enum track_item alloc, void *addr)
  344. {
  345. struct track *p;
  346. if (s->offset)
  347. p = object + s->offset + sizeof(void *);
  348. else
  349. p = object + s->inuse;
  350. p += alloc;
  351. if (addr) {
  352. p->addr = addr;
  353. p->cpu = smp_processor_id();
  354. p->pid = current ? current->pid : -1;
  355. p->when = jiffies;
  356. } else
  357. memset(p, 0, sizeof(struct track));
  358. }
  359. static void init_tracking(struct kmem_cache *s, void *object)
  360. {
  361. if (!(s->flags & SLAB_STORE_USER))
  362. return;
  363. set_track(s, object, TRACK_FREE, NULL);
  364. set_track(s, object, TRACK_ALLOC, NULL);
  365. }
  366. static void print_track(const char *s, struct track *t)
  367. {
  368. if (!t->addr)
  369. return;
  370. printk(KERN_ERR "INFO: %s in ", s);
  371. __print_symbol("%s", (unsigned long)t->addr);
  372. printk(" age=%lu cpu=%u pid=%d\n", jiffies - t->when, t->cpu, t->pid);
  373. }
  374. static void print_tracking(struct kmem_cache *s, void *object)
  375. {
  376. if (!(s->flags & SLAB_STORE_USER))
  377. return;
  378. print_track("Allocated", get_track(s, object, TRACK_ALLOC));
  379. print_track("Freed", get_track(s, object, TRACK_FREE));
  380. }
  381. static void print_page_info(struct page *page)
  382. {
  383. printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
  384. page, page->objects, page->inuse, page->freelist, page->flags);
  385. }
  386. static void slab_bug(struct kmem_cache *s, char *fmt, ...)
  387. {
  388. va_list args;
  389. char buf[100];
  390. va_start(args, fmt);
  391. vsnprintf(buf, sizeof(buf), fmt, args);
  392. va_end(args);
  393. printk(KERN_ERR "========================================"
  394. "=====================================\n");
  395. printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
  396. printk(KERN_ERR "----------------------------------------"
  397. "-------------------------------------\n\n");
  398. }
  399. static void slab_fix(struct kmem_cache *s, char *fmt, ...)
  400. {
  401. va_list args;
  402. char buf[100];
  403. va_start(args, fmt);
  404. vsnprintf(buf, sizeof(buf), fmt, args);
  405. va_end(args);
  406. printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
  407. }
  408. static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
  409. {
  410. unsigned int off; /* Offset of last byte */
  411. u8 *addr = page_address(page);
  412. print_tracking(s, p);
  413. print_page_info(page);
  414. printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
  415. p, p - addr, get_freepointer(s, p));
  416. if (p > addr + 16)
  417. print_section("Bytes b4", p - 16, 16);
  418. print_section("Object", p, min(s->objsize, 128));
  419. if (s->flags & SLAB_RED_ZONE)
  420. print_section("Redzone", p + s->objsize,
  421. s->inuse - s->objsize);
  422. if (s->offset)
  423. off = s->offset + sizeof(void *);
  424. else
  425. off = s->inuse;
  426. if (s->flags & SLAB_STORE_USER)
  427. off += 2 * sizeof(struct track);
  428. if (off != s->size)
  429. /* Beginning of the filler is the free pointer */
  430. print_section("Padding", p + off, s->size - off);
  431. dump_stack();
  432. }
  433. static void object_err(struct kmem_cache *s, struct page *page,
  434. u8 *object, char *reason)
  435. {
  436. slab_bug(s, "%s", reason);
  437. print_trailer(s, page, object);
  438. }
  439. static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
  440. {
  441. va_list args;
  442. char buf[100];
  443. va_start(args, fmt);
  444. vsnprintf(buf, sizeof(buf), fmt, args);
  445. va_end(args);
  446. slab_bug(s, "%s", buf);
  447. print_page_info(page);
  448. dump_stack();
  449. }
  450. static void init_object(struct kmem_cache *s, void *object, int active)
  451. {
  452. u8 *p = object;
  453. if (s->flags & __OBJECT_POISON) {
  454. memset(p, POISON_FREE, s->objsize - 1);
  455. p[s->objsize - 1] = POISON_END;
  456. }
  457. if (s->flags & SLAB_RED_ZONE)
  458. memset(p + s->objsize,
  459. active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE,
  460. s->inuse - s->objsize);
  461. }
  462. static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes)
  463. {
  464. while (bytes) {
  465. if (*start != (u8)value)
  466. return start;
  467. start++;
  468. bytes--;
  469. }
  470. return NULL;
  471. }
  472. static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
  473. void *from, void *to)
  474. {
  475. slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
  476. memset(from, data, to - from);
  477. }
  478. static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
  479. u8 *object, char *what,
  480. u8 *start, unsigned int value, unsigned int bytes)
  481. {
  482. u8 *fault;
  483. u8 *end;
  484. fault = check_bytes(start, value, bytes);
  485. if (!fault)
  486. return 1;
  487. end = start + bytes;
  488. while (end > fault && end[-1] == value)
  489. end--;
  490. slab_bug(s, "%s overwritten", what);
  491. printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
  492. fault, end - 1, fault[0], value);
  493. print_trailer(s, page, object);
  494. restore_bytes(s, what, value, fault, end);
  495. return 0;
  496. }
  497. /*
  498. * Object layout:
  499. *
  500. * object address
  501. * Bytes of the object to be managed.
  502. * If the freepointer may overlay the object then the free
  503. * pointer is the first word of the object.
  504. *
  505. * Poisoning uses 0x6b (POISON_FREE) and the last byte is
  506. * 0xa5 (POISON_END)
  507. *
  508. * object + s->objsize
  509. * Padding to reach word boundary. This is also used for Redzoning.
  510. * Padding is extended by another word if Redzoning is enabled and
  511. * objsize == inuse.
  512. *
  513. * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
  514. * 0xcc (RED_ACTIVE) for objects in use.
  515. *
  516. * object + s->inuse
  517. * Meta data starts here.
  518. *
  519. * A. Free pointer (if we cannot overwrite object on free)
  520. * B. Tracking data for SLAB_STORE_USER
  521. * C. Padding to reach required alignment boundary or at mininum
  522. * one word if debugging is on to be able to detect writes
  523. * before the word boundary.
  524. *
  525. * Padding is done using 0x5a (POISON_INUSE)
  526. *
  527. * object + s->size
  528. * Nothing is used beyond s->size.
  529. *
  530. * If slabcaches are merged then the objsize and inuse boundaries are mostly
  531. * ignored. And therefore no slab options that rely on these boundaries
  532. * may be used with merged slabcaches.
  533. */
  534. static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
  535. {
  536. unsigned long off = s->inuse; /* The end of info */
  537. if (s->offset)
  538. /* Freepointer is placed after the object. */
  539. off += sizeof(void *);
  540. if (s->flags & SLAB_STORE_USER)
  541. /* We also have user information there */
  542. off += 2 * sizeof(struct track);
  543. if (s->size == off)
  544. return 1;
  545. return check_bytes_and_report(s, page, p, "Object padding",
  546. p + off, POISON_INUSE, s->size - off);
  547. }
  548. /* Check the pad bytes at the end of a slab page */
  549. static int slab_pad_check(struct kmem_cache *s, struct page *page)
  550. {
  551. u8 *start;
  552. u8 *fault;
  553. u8 *end;
  554. int length;
  555. int remainder;
  556. if (!(s->flags & SLAB_POISON))
  557. return 1;
  558. start = page_address(page);
  559. length = (PAGE_SIZE << compound_order(page));
  560. end = start + length;
  561. remainder = length % s->size;
  562. if (!remainder)
  563. return 1;
  564. fault = check_bytes(end - remainder, POISON_INUSE, remainder);
  565. if (!fault)
  566. return 1;
  567. while (end > fault && end[-1] == POISON_INUSE)
  568. end--;
  569. slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
  570. print_section("Padding", end - remainder, remainder);
  571. restore_bytes(s, "slab padding", POISON_INUSE, start, end);
  572. return 0;
  573. }
  574. static int check_object(struct kmem_cache *s, struct page *page,
  575. void *object, int active)
  576. {
  577. u8 *p = object;
  578. u8 *endobject = object + s->objsize;
  579. if (s->flags & SLAB_RED_ZONE) {
  580. unsigned int red =
  581. active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE;
  582. if (!check_bytes_and_report(s, page, object, "Redzone",
  583. endobject, red, s->inuse - s->objsize))
  584. return 0;
  585. } else {
  586. if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
  587. check_bytes_and_report(s, page, p, "Alignment padding",
  588. endobject, POISON_INUSE, s->inuse - s->objsize);
  589. }
  590. }
  591. if (s->flags & SLAB_POISON) {
  592. if (!active && (s->flags & __OBJECT_POISON) &&
  593. (!check_bytes_and_report(s, page, p, "Poison", p,
  594. POISON_FREE, s->objsize - 1) ||
  595. !check_bytes_and_report(s, page, p, "Poison",
  596. p + s->objsize - 1, POISON_END, 1)))
  597. return 0;
  598. /*
  599. * check_pad_bytes cleans up on its own.
  600. */
  601. check_pad_bytes(s, page, p);
  602. }
  603. if (!s->offset && active)
  604. /*
  605. * Object and freepointer overlap. Cannot check
  606. * freepointer while object is allocated.
  607. */
  608. return 1;
  609. /* Check free pointer validity */
  610. if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
  611. object_err(s, page, p, "Freepointer corrupt");
  612. /*
  613. * No choice but to zap it and thus loose the remainder
  614. * of the free objects in this slab. May cause
  615. * another error because the object count is now wrong.
  616. */
  617. set_freepointer(s, p, NULL);
  618. return 0;
  619. }
  620. return 1;
  621. }
  622. static int check_slab(struct kmem_cache *s, struct page *page)
  623. {
  624. int maxobj;
  625. VM_BUG_ON(!irqs_disabled());
  626. if (!PageSlab(page)) {
  627. slab_err(s, page, "Not a valid slab page");
  628. return 0;
  629. }
  630. maxobj = (PAGE_SIZE << compound_order(page)) / s->size;
  631. if (page->objects > maxobj) {
  632. slab_err(s, page, "objects %u > max %u",
  633. s->name, page->objects, maxobj);
  634. return 0;
  635. }
  636. if (page->inuse > page->objects) {
  637. slab_err(s, page, "inuse %u > max %u",
  638. s->name, page->inuse, page->objects);
  639. return 0;
  640. }
  641. /* Slab_pad_check fixes things up after itself */
  642. slab_pad_check(s, page);
  643. return 1;
  644. }
  645. /*
  646. * Determine if a certain object on a page is on the freelist. Must hold the
  647. * slab lock to guarantee that the chains are in a consistent state.
  648. */
  649. static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
  650. {
  651. int nr = 0;
  652. void *fp = page->freelist;
  653. void *object = NULL;
  654. unsigned long max_objects;
  655. while (fp && nr <= page->objects) {
  656. if (fp == search)
  657. return 1;
  658. if (!check_valid_pointer(s, page, fp)) {
  659. if (object) {
  660. object_err(s, page, object,
  661. "Freechain corrupt");
  662. set_freepointer(s, object, NULL);
  663. break;
  664. } else {
  665. slab_err(s, page, "Freepointer corrupt");
  666. page->freelist = NULL;
  667. page->inuse = page->objects;
  668. slab_fix(s, "Freelist cleared");
  669. return 0;
  670. }
  671. break;
  672. }
  673. object = fp;
  674. fp = get_freepointer(s, object);
  675. nr++;
  676. }
  677. max_objects = (PAGE_SIZE << compound_order(page)) / s->size;
  678. if (max_objects > 65535)
  679. max_objects = 65535;
  680. if (page->objects != max_objects) {
  681. slab_err(s, page, "Wrong number of objects. Found %d but "
  682. "should be %d", page->objects, max_objects);
  683. page->objects = max_objects;
  684. slab_fix(s, "Number of objects adjusted.");
  685. }
  686. if (page->inuse != page->objects - nr) {
  687. slab_err(s, page, "Wrong object count. Counter is %d but "
  688. "counted were %d", page->inuse, page->objects - nr);
  689. page->inuse = page->objects - nr;
  690. slab_fix(s, "Object count adjusted.");
  691. }
  692. return search == NULL;
  693. }
  694. static void trace(struct kmem_cache *s, struct page *page, void *object, int alloc)
  695. {
  696. if (s->flags & SLAB_TRACE) {
  697. printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
  698. s->name,
  699. alloc ? "alloc" : "free",
  700. object, page->inuse,
  701. page->freelist);
  702. if (!alloc)
  703. print_section("Object", (void *)object, s->objsize);
  704. dump_stack();
  705. }
  706. }
  707. /*
  708. * Tracking of fully allocated slabs for debugging purposes.
  709. */
  710. static void add_full(struct kmem_cache_node *n, struct page *page)
  711. {
  712. spin_lock(&n->list_lock);
  713. list_add(&page->lru, &n->full);
  714. spin_unlock(&n->list_lock);
  715. }
  716. static void remove_full(struct kmem_cache *s, struct page *page)
  717. {
  718. struct kmem_cache_node *n;
  719. if (!(s->flags & SLAB_STORE_USER))
  720. return;
  721. n = get_node(s, page_to_nid(page));
  722. spin_lock(&n->list_lock);
  723. list_del(&page->lru);
  724. spin_unlock(&n->list_lock);
  725. }
  726. /* Tracking of the number of slabs for debugging purposes */
  727. static inline unsigned long slabs_node(struct kmem_cache *s, int node)
  728. {
  729. struct kmem_cache_node *n = get_node(s, node);
  730. return atomic_long_read(&n->nr_slabs);
  731. }
  732. static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
  733. {
  734. struct kmem_cache_node *n = get_node(s, node);
  735. /*
  736. * May be called early in order to allocate a slab for the
  737. * kmem_cache_node structure. Solve the chicken-egg
  738. * dilemma by deferring the increment of the count during
  739. * bootstrap (see early_kmem_cache_node_alloc).
  740. */
  741. if (!NUMA_BUILD || n) {
  742. atomic_long_inc(&n->nr_slabs);
  743. atomic_long_add(objects, &n->total_objects);
  744. }
  745. }
  746. static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
  747. {
  748. struct kmem_cache_node *n = get_node(s, node);
  749. atomic_long_dec(&n->nr_slabs);
  750. atomic_long_sub(objects, &n->total_objects);
  751. }
  752. /* Object debug checks for alloc/free paths */
  753. static void setup_object_debug(struct kmem_cache *s, struct page *page,
  754. void *object)
  755. {
  756. if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
  757. return;
  758. init_object(s, object, 0);
  759. init_tracking(s, object);
  760. }
  761. static int alloc_debug_processing(struct kmem_cache *s, struct page *page,
  762. void *object, void *addr)
  763. {
  764. if (!check_slab(s, page))
  765. goto bad;
  766. if (!on_freelist(s, page, object)) {
  767. object_err(s, page, object, "Object already allocated");
  768. goto bad;
  769. }
  770. if (!check_valid_pointer(s, page, object)) {
  771. object_err(s, page, object, "Freelist Pointer check fails");
  772. goto bad;
  773. }
  774. if (!check_object(s, page, object, 0))
  775. goto bad;
  776. /* Success perform special debug activities for allocs */
  777. if (s->flags & SLAB_STORE_USER)
  778. set_track(s, object, TRACK_ALLOC, addr);
  779. trace(s, page, object, 1);
  780. init_object(s, object, 1);
  781. return 1;
  782. bad:
  783. if (PageSlab(page)) {
  784. /*
  785. * If this is a slab page then lets do the best we can
  786. * to avoid issues in the future. Marking all objects
  787. * as used avoids touching the remaining objects.
  788. */
  789. slab_fix(s, "Marking all objects used");
  790. page->inuse = page->objects;
  791. page->freelist = NULL;
  792. }
  793. return 0;
  794. }
  795. static int free_debug_processing(struct kmem_cache *s, struct page *page,
  796. void *object, void *addr)
  797. {
  798. if (!check_slab(s, page))
  799. goto fail;
  800. if (!check_valid_pointer(s, page, object)) {
  801. slab_err(s, page, "Invalid object pointer 0x%p", object);
  802. goto fail;
  803. }
  804. if (on_freelist(s, page, object)) {
  805. object_err(s, page, object, "Object already free");
  806. goto fail;
  807. }
  808. if (!check_object(s, page, object, 1))
  809. return 0;
  810. if (unlikely(s != page->slab)) {
  811. if (!PageSlab(page)) {
  812. slab_err(s, page, "Attempt to free object(0x%p) "
  813. "outside of slab", object);
  814. } else if (!page->slab) {
  815. printk(KERN_ERR
  816. "SLUB <none>: no slab for object 0x%p.\n",
  817. object);
  818. dump_stack();
  819. } else
  820. object_err(s, page, object,
  821. "page slab pointer corrupt.");
  822. goto fail;
  823. }
  824. /* Special debug activities for freeing objects */
  825. if (!SlabFrozen(page) && !page->freelist)
  826. remove_full(s, page);
  827. if (s->flags & SLAB_STORE_USER)
  828. set_track(s, object, TRACK_FREE, addr);
  829. trace(s, page, object, 0);
  830. init_object(s, object, 0);
  831. return 1;
  832. fail:
  833. slab_fix(s, "Object at 0x%p not freed", object);
  834. return 0;
  835. }
  836. static int __init setup_slub_debug(char *str)
  837. {
  838. slub_debug = DEBUG_DEFAULT_FLAGS;
  839. if (*str++ != '=' || !*str)
  840. /*
  841. * No options specified. Switch on full debugging.
  842. */
  843. goto out;
  844. if (*str == ',')
  845. /*
  846. * No options but restriction on slabs. This means full
  847. * debugging for slabs matching a pattern.
  848. */
  849. goto check_slabs;
  850. slub_debug = 0;
  851. if (*str == '-')
  852. /*
  853. * Switch off all debugging measures.
  854. */
  855. goto out;
  856. /*
  857. * Determine which debug features should be switched on
  858. */
  859. for (; *str && *str != ','; str++) {
  860. switch (tolower(*str)) {
  861. case 'f':
  862. slub_debug |= SLAB_DEBUG_FREE;
  863. break;
  864. case 'z':
  865. slub_debug |= SLAB_RED_ZONE;
  866. break;
  867. case 'p':
  868. slub_debug |= SLAB_POISON;
  869. break;
  870. case 'u':
  871. slub_debug |= SLAB_STORE_USER;
  872. break;
  873. case 't':
  874. slub_debug |= SLAB_TRACE;
  875. break;
  876. default:
  877. printk(KERN_ERR "slub_debug option '%c' "
  878. "unknown. skipped\n", *str);
  879. }
  880. }
  881. check_slabs:
  882. if (*str == ',')
  883. slub_debug_slabs = str + 1;
  884. out:
  885. return 1;
  886. }
  887. __setup("slub_debug", setup_slub_debug);
  888. static unsigned long kmem_cache_flags(unsigned long objsize,
  889. unsigned long flags, const char *name,
  890. void (*ctor)(struct kmem_cache *, void *))
  891. {
  892. /*
  893. * Enable debugging if selected on the kernel commandline.
  894. */
  895. if (slub_debug && (!slub_debug_slabs ||
  896. strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)) == 0))
  897. flags |= slub_debug;
  898. return flags;
  899. }
  900. #else
  901. static inline void setup_object_debug(struct kmem_cache *s,
  902. struct page *page, void *object) {}
  903. static inline int alloc_debug_processing(struct kmem_cache *s,
  904. struct page *page, void *object, void *addr) { return 0; }
  905. static inline int free_debug_processing(struct kmem_cache *s,
  906. struct page *page, void *object, void *addr) { return 0; }
  907. static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
  908. { return 1; }
  909. static inline int check_object(struct kmem_cache *s, struct page *page,
  910. void *object, int active) { return 1; }
  911. static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
  912. static inline unsigned long kmem_cache_flags(unsigned long objsize,
  913. unsigned long flags, const char *name,
  914. void (*ctor)(struct kmem_cache *, void *))
  915. {
  916. return flags;
  917. }
  918. #define slub_debug 0
  919. static inline unsigned long slabs_node(struct kmem_cache *s, int node)
  920. { return 0; }
  921. static inline void inc_slabs_node(struct kmem_cache *s, int node,
  922. int objects) {}
  923. static inline void dec_slabs_node(struct kmem_cache *s, int node,
  924. int objects) {}
  925. #endif
  926. /*
  927. * Slab allocation and freeing
  928. */
  929. static inline struct page *alloc_slab_page(gfp_t flags, int node,
  930. struct kmem_cache_order_objects oo)
  931. {
  932. int order = oo_order(oo);
  933. if (node == -1)
  934. return alloc_pages(flags, order);
  935. else
  936. return alloc_pages_node(node, flags, order);
  937. }
  938. static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
  939. {
  940. struct page *page;
  941. struct kmem_cache_order_objects oo = s->oo;
  942. flags |= s->allocflags;
  943. page = alloc_slab_page(flags | __GFP_NOWARN | __GFP_NORETRY, node,
  944. oo);
  945. if (unlikely(!page)) {
  946. oo = s->min;
  947. /*
  948. * Allocation may have failed due to fragmentation.
  949. * Try a lower order alloc if possible
  950. */
  951. page = alloc_slab_page(flags, node, oo);
  952. if (!page)
  953. return NULL;
  954. stat(get_cpu_slab(s, raw_smp_processor_id()), ORDER_FALLBACK);
  955. }
  956. page->objects = oo_objects(oo);
  957. mod_zone_page_state(page_zone(page),
  958. (s->flags & SLAB_RECLAIM_ACCOUNT) ?
  959. NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
  960. 1 << oo_order(oo));
  961. return page;
  962. }
  963. static void setup_object(struct kmem_cache *s, struct page *page,
  964. void *object)
  965. {
  966. setup_object_debug(s, page, object);
  967. if (unlikely(s->ctor))
  968. s->ctor(s, object);
  969. }
  970. static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
  971. {
  972. struct page *page;
  973. void *start;
  974. void *last;
  975. void *p;
  976. BUG_ON(flags & GFP_SLAB_BUG_MASK);
  977. page = allocate_slab(s,
  978. flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
  979. if (!page)
  980. goto out;
  981. inc_slabs_node(s, page_to_nid(page), page->objects);
  982. page->slab = s;
  983. page->flags |= 1 << PG_slab;
  984. if (s->flags & (SLAB_DEBUG_FREE | SLAB_RED_ZONE | SLAB_POISON |
  985. SLAB_STORE_USER | SLAB_TRACE))
  986. SetSlabDebug(page);
  987. start = page_address(page);
  988. if (unlikely(s->flags & SLAB_POISON))
  989. memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
  990. last = start;
  991. for_each_object(p, s, start, page->objects) {
  992. setup_object(s, page, last);
  993. set_freepointer(s, last, p);
  994. last = p;
  995. }
  996. setup_object(s, page, last);
  997. set_freepointer(s, last, NULL);
  998. page->freelist = start;
  999. page->inuse = 0;
  1000. out:
  1001. return page;
  1002. }
  1003. static void __free_slab(struct kmem_cache *s, struct page *page)
  1004. {
  1005. int order = compound_order(page);
  1006. int pages = 1 << order;
  1007. if (unlikely(SlabDebug(page))) {
  1008. void *p;
  1009. slab_pad_check(s, page);
  1010. for_each_object(p, s, page_address(page),
  1011. page->objects)
  1012. check_object(s, page, p, 0);
  1013. ClearSlabDebug(page);
  1014. }
  1015. mod_zone_page_state(page_zone(page),
  1016. (s->flags & SLAB_RECLAIM_ACCOUNT) ?
  1017. NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
  1018. -pages);
  1019. __ClearPageSlab(page);
  1020. reset_page_mapcount(page);
  1021. __free_pages(page, order);
  1022. }
  1023. static void rcu_free_slab(struct rcu_head *h)
  1024. {
  1025. struct page *page;
  1026. page = container_of((struct list_head *)h, struct page, lru);
  1027. __free_slab(page->slab, page);
  1028. }
  1029. static void free_slab(struct kmem_cache *s, struct page *page)
  1030. {
  1031. if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
  1032. /*
  1033. * RCU free overloads the RCU head over the LRU
  1034. */
  1035. struct rcu_head *head = (void *)&page->lru;
  1036. call_rcu(head, rcu_free_slab);
  1037. } else
  1038. __free_slab(s, page);
  1039. }
  1040. static void discard_slab(struct kmem_cache *s, struct page *page)
  1041. {
  1042. dec_slabs_node(s, page_to_nid(page), page->objects);
  1043. free_slab(s, page);
  1044. }
  1045. /*
  1046. * Per slab locking using the pagelock
  1047. */
  1048. static __always_inline void slab_lock(struct page *page)
  1049. {
  1050. bit_spin_lock(PG_locked, &page->flags);
  1051. }
  1052. static __always_inline void slab_unlock(struct page *page)
  1053. {
  1054. __bit_spin_unlock(PG_locked, &page->flags);
  1055. }
  1056. static __always_inline int slab_trylock(struct page *page)
  1057. {
  1058. int rc = 1;
  1059. rc = bit_spin_trylock(PG_locked, &page->flags);
  1060. return rc;
  1061. }
  1062. /*
  1063. * Management of partially allocated slabs
  1064. */
  1065. static void add_partial(struct kmem_cache_node *n,
  1066. struct page *page, int tail)
  1067. {
  1068. spin_lock(&n->list_lock);
  1069. n->nr_partial++;
  1070. if (tail)
  1071. list_add_tail(&page->lru, &n->partial);
  1072. else
  1073. list_add(&page->lru, &n->partial);
  1074. spin_unlock(&n->list_lock);
  1075. }
  1076. static void remove_partial(struct kmem_cache *s,
  1077. struct page *page)
  1078. {
  1079. struct kmem_cache_node *n = get_node(s, page_to_nid(page));
  1080. spin_lock(&n->list_lock);
  1081. list_del(&page->lru);
  1082. n->nr_partial--;
  1083. spin_unlock(&n->list_lock);
  1084. }
  1085. /*
  1086. * Lock slab and remove from the partial list.
  1087. *
  1088. * Must hold list_lock.
  1089. */
  1090. static inline int lock_and_freeze_slab(struct kmem_cache_node *n, struct page *page)
  1091. {
  1092. if (slab_trylock(page)) {
  1093. list_del(&page->lru);
  1094. n->nr_partial--;
  1095. SetSlabFrozen(page);
  1096. return 1;
  1097. }
  1098. return 0;
  1099. }
  1100. /*
  1101. * Try to allocate a partial slab from a specific node.
  1102. */
  1103. static struct page *get_partial_node(struct kmem_cache_node *n)
  1104. {
  1105. struct page *page;
  1106. /*
  1107. * Racy check. If we mistakenly see no partial slabs then we
  1108. * just allocate an empty slab. If we mistakenly try to get a
  1109. * partial slab and there is none available then get_partials()
  1110. * will return NULL.
  1111. */
  1112. if (!n || !n->nr_partial)
  1113. return NULL;
  1114. spin_lock(&n->list_lock);
  1115. list_for_each_entry(page, &n->partial, lru)
  1116. if (lock_and_freeze_slab(n, page))
  1117. goto out;
  1118. page = NULL;
  1119. out:
  1120. spin_unlock(&n->list_lock);
  1121. return page;
  1122. }
  1123. /*
  1124. * Get a page from somewhere. Search in increasing NUMA distances.
  1125. */
  1126. static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
  1127. {
  1128. #ifdef CONFIG_NUMA
  1129. struct zonelist *zonelist;
  1130. struct zoneref *z;
  1131. struct zone *zone;
  1132. enum zone_type high_zoneidx = gfp_zone(flags);
  1133. struct page *page;
  1134. /*
  1135. * The defrag ratio allows a configuration of the tradeoffs between
  1136. * inter node defragmentation and node local allocations. A lower
  1137. * defrag_ratio increases the tendency to do local allocations
  1138. * instead of attempting to obtain partial slabs from other nodes.
  1139. *
  1140. * If the defrag_ratio is set to 0 then kmalloc() always
  1141. * returns node local objects. If the ratio is higher then kmalloc()
  1142. * may return off node objects because partial slabs are obtained
  1143. * from other nodes and filled up.
  1144. *
  1145. * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
  1146. * defrag_ratio = 1000) then every (well almost) allocation will
  1147. * first attempt to defrag slab caches on other nodes. This means
  1148. * scanning over all nodes to look for partial slabs which may be
  1149. * expensive if we do it every time we are trying to find a slab
  1150. * with available objects.
  1151. */
  1152. if (!s->remote_node_defrag_ratio ||
  1153. get_cycles() % 1024 > s->remote_node_defrag_ratio)
  1154. return NULL;
  1155. zonelist = node_zonelist(slab_node(current->mempolicy), flags);
  1156. for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
  1157. struct kmem_cache_node *n;
  1158. n = get_node(s, zone_to_nid(zone));
  1159. if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
  1160. n->nr_partial > MIN_PARTIAL) {
  1161. page = get_partial_node(n);
  1162. if (page)
  1163. return page;
  1164. }
  1165. }
  1166. #endif
  1167. return NULL;
  1168. }
  1169. /*
  1170. * Get a partial page, lock it and return it.
  1171. */
  1172. static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
  1173. {
  1174. struct page *page;
  1175. int searchnode = (node == -1) ? numa_node_id() : node;
  1176. page = get_partial_node(get_node(s, searchnode));
  1177. if (page || (flags & __GFP_THISNODE))
  1178. return page;
  1179. return get_any_partial(s, flags);
  1180. }
  1181. /*
  1182. * Move a page back to the lists.
  1183. *
  1184. * Must be called with the slab lock held.
  1185. *
  1186. * On exit the slab lock will have been dropped.
  1187. */
  1188. static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail)
  1189. {
  1190. struct kmem_cache_node *n = get_node(s, page_to_nid(page));
  1191. struct kmem_cache_cpu *c = get_cpu_slab(s, smp_processor_id());
  1192. ClearSlabFrozen(page);
  1193. if (page->inuse) {
  1194. if (page->freelist) {
  1195. add_partial(n, page, tail);
  1196. stat(c, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD);
  1197. } else {
  1198. stat(c, DEACTIVATE_FULL);
  1199. if (SlabDebug(page) && (s->flags & SLAB_STORE_USER))
  1200. add_full(n, page);
  1201. }
  1202. slab_unlock(page);
  1203. } else {
  1204. stat(c, DEACTIVATE_EMPTY);
  1205. if (n->nr_partial < MIN_PARTIAL) {
  1206. /*
  1207. * Adding an empty slab to the partial slabs in order
  1208. * to avoid page allocator overhead. This slab needs
  1209. * to come after the other slabs with objects in
  1210. * so that the others get filled first. That way the
  1211. * size of the partial list stays small.
  1212. *
  1213. * kmem_cache_shrink can reclaim any empty slabs from the
  1214. * partial list.
  1215. */
  1216. add_partial(n, page, 1);
  1217. slab_unlock(page);
  1218. } else {
  1219. slab_unlock(page);
  1220. stat(get_cpu_slab(s, raw_smp_processor_id()), FREE_SLAB);
  1221. discard_slab(s, page);
  1222. }
  1223. }
  1224. }
  1225. /*
  1226. * Remove the cpu slab
  1227. */
  1228. static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
  1229. {
  1230. struct page *page = c->page;
  1231. int tail = 1;
  1232. if (page->freelist)
  1233. stat(c, DEACTIVATE_REMOTE_FREES);
  1234. /*
  1235. * Merge cpu freelist into slab freelist. Typically we get here
  1236. * because both freelists are empty. So this is unlikely
  1237. * to occur.
  1238. */
  1239. while (unlikely(c->freelist)) {
  1240. void **object;
  1241. tail = 0; /* Hot objects. Put the slab first */
  1242. /* Retrieve object from cpu_freelist */
  1243. object = c->freelist;
  1244. c->freelist = c->freelist[c->offset];
  1245. /* And put onto the regular freelist */
  1246. object[c->offset] = page->freelist;
  1247. page->freelist = object;
  1248. page->inuse--;
  1249. }
  1250. c->page = NULL;
  1251. unfreeze_slab(s, page, tail);
  1252. }
  1253. static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
  1254. {
  1255. stat(c, CPUSLAB_FLUSH);
  1256. slab_lock(c->page);
  1257. deactivate_slab(s, c);
  1258. }
  1259. /*
  1260. * Flush cpu slab.
  1261. *
  1262. * Called from IPI handler with interrupts disabled.
  1263. */
  1264. static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
  1265. {
  1266. struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
  1267. if (likely(c && c->page))
  1268. flush_slab(s, c);
  1269. }
  1270. static void flush_cpu_slab(void *d)
  1271. {
  1272. struct kmem_cache *s = d;
  1273. __flush_cpu_slab(s, smp_processor_id());
  1274. }
  1275. static void flush_all(struct kmem_cache *s)
  1276. {
  1277. #ifdef CONFIG_SMP
  1278. on_each_cpu(flush_cpu_slab, s, 1, 1);
  1279. #else
  1280. unsigned long flags;
  1281. local_irq_save(flags);
  1282. flush_cpu_slab(s);
  1283. local_irq_restore(flags);
  1284. #endif
  1285. }
  1286. /*
  1287. * Check if the objects in a per cpu structure fit numa
  1288. * locality expectations.
  1289. */
  1290. static inline int node_match(struct kmem_cache_cpu *c, int node)
  1291. {
  1292. #ifdef CONFIG_NUMA
  1293. if (node != -1 && c->node != node)
  1294. return 0;
  1295. #endif
  1296. return 1;
  1297. }
  1298. /*
  1299. * Slow path. The lockless freelist is empty or we need to perform
  1300. * debugging duties.
  1301. *
  1302. * Interrupts are disabled.
  1303. *
  1304. * Processing is still very fast if new objects have been freed to the
  1305. * regular freelist. In that case we simply take over the regular freelist
  1306. * as the lockless freelist and zap the regular freelist.
  1307. *
  1308. * If that is not working then we fall back to the partial lists. We take the
  1309. * first element of the freelist as the object to allocate now and move the
  1310. * rest of the freelist to the lockless freelist.
  1311. *
  1312. * And if we were unable to get a new slab from the partial slab lists then
  1313. * we need to allocate a new slab. This is the slowest path since it involves
  1314. * a call to the page allocator and the setup of a new slab.
  1315. */
  1316. static void *__slab_alloc(struct kmem_cache *s,
  1317. gfp_t gfpflags, int node, void *addr, struct kmem_cache_cpu *c)
  1318. {
  1319. void **object;
  1320. struct page *new;
  1321. /* We handle __GFP_ZERO in the caller */
  1322. gfpflags &= ~__GFP_ZERO;
  1323. if (!c->page)
  1324. goto new_slab;
  1325. slab_lock(c->page);
  1326. if (unlikely(!node_match(c, node)))
  1327. goto another_slab;
  1328. stat(c, ALLOC_REFILL);
  1329. load_freelist:
  1330. object = c->page->freelist;
  1331. if (unlikely(!object))
  1332. goto another_slab;
  1333. if (unlikely(SlabDebug(c->page)))
  1334. goto debug;
  1335. c->freelist = object[c->offset];
  1336. c->page->inuse = c->page->objects;
  1337. c->page->freelist = NULL;
  1338. c->node = page_to_nid(c->page);
  1339. unlock_out:
  1340. slab_unlock(c->page);
  1341. stat(c, ALLOC_SLOWPATH);
  1342. return object;
  1343. another_slab:
  1344. deactivate_slab(s, c);
  1345. new_slab:
  1346. new = get_partial(s, gfpflags, node);
  1347. if (new) {
  1348. c->page = new;
  1349. stat(c, ALLOC_FROM_PARTIAL);
  1350. goto load_freelist;
  1351. }
  1352. if (gfpflags & __GFP_WAIT)
  1353. local_irq_enable();
  1354. new = new_slab(s, gfpflags, node);
  1355. if (gfpflags & __GFP_WAIT)
  1356. local_irq_disable();
  1357. if (new) {
  1358. c = get_cpu_slab(s, smp_processor_id());
  1359. stat(c, ALLOC_SLAB);
  1360. if (c->page)
  1361. flush_slab(s, c);
  1362. slab_lock(new);
  1363. SetSlabFrozen(new);
  1364. c->page = new;
  1365. goto load_freelist;
  1366. }
  1367. return NULL;
  1368. debug:
  1369. if (!alloc_debug_processing(s, c->page, object, addr))
  1370. goto another_slab;
  1371. c->page->inuse++;
  1372. c->page->freelist = object[c->offset];
  1373. c->node = -1;
  1374. goto unlock_out;
  1375. }
  1376. /*
  1377. * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
  1378. * have the fastpath folded into their functions. So no function call
  1379. * overhead for requests that can be satisfied on the fastpath.
  1380. *
  1381. * The fastpath works by first checking if the lockless freelist can be used.
  1382. * If not then __slab_alloc is called for slow processing.
  1383. *
  1384. * Otherwise we can simply pick the next object from the lockless free list.
  1385. */
  1386. static __always_inline void *slab_alloc(struct kmem_cache *s,
  1387. gfp_t gfpflags, int node, void *addr)
  1388. {
  1389. void **object;
  1390. struct kmem_cache_cpu *c;
  1391. unsigned long flags;
  1392. local_irq_save(flags);
  1393. c = get_cpu_slab(s, smp_processor_id());
  1394. if (unlikely(!c->freelist || !node_match(c, node)))
  1395. object = __slab_alloc(s, gfpflags, node, addr, c);
  1396. else {
  1397. object = c->freelist;
  1398. c->freelist = object[c->offset];
  1399. stat(c, ALLOC_FASTPATH);
  1400. }
  1401. local_irq_restore(flags);
  1402. if (unlikely((gfpflags & __GFP_ZERO) && object))
  1403. memset(object, 0, c->objsize);
  1404. return object;
  1405. }
  1406. void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
  1407. {
  1408. return slab_alloc(s, gfpflags, -1, __builtin_return_address(0));
  1409. }
  1410. EXPORT_SYMBOL(kmem_cache_alloc);
  1411. #ifdef CONFIG_NUMA
  1412. void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
  1413. {
  1414. return slab_alloc(s, gfpflags, node, __builtin_return_address(0));
  1415. }
  1416. EXPORT_SYMBOL(kmem_cache_alloc_node);
  1417. #endif
  1418. /*
  1419. * Slow patch handling. This may still be called frequently since objects
  1420. * have a longer lifetime than the cpu slabs in most processing loads.
  1421. *
  1422. * So we still attempt to reduce cache line usage. Just take the slab
  1423. * lock and free the item. If there is no additional partial page
  1424. * handling required then we can return immediately.
  1425. */
  1426. static void __slab_free(struct kmem_cache *s, struct page *page,
  1427. void *x, void *addr, unsigned int offset)
  1428. {
  1429. void *prior;
  1430. void **object = (void *)x;
  1431. struct kmem_cache_cpu *c;
  1432. c = get_cpu_slab(s, raw_smp_processor_id());
  1433. stat(c, FREE_SLOWPATH);
  1434. slab_lock(page);
  1435. if (unlikely(SlabDebug(page)))
  1436. goto debug;
  1437. checks_ok:
  1438. prior = object[offset] = page->freelist;
  1439. page->freelist = object;
  1440. page->inuse--;
  1441. if (unlikely(SlabFrozen(page))) {
  1442. stat(c, FREE_FROZEN);
  1443. goto out_unlock;
  1444. }
  1445. if (unlikely(!page->inuse))
  1446. goto slab_empty;
  1447. /*
  1448. * Objects left in the slab. If it was not on the partial list before
  1449. * then add it.
  1450. */
  1451. if (unlikely(!prior)) {
  1452. add_partial(get_node(s, page_to_nid(page)), page, 1);
  1453. stat(c, FREE_ADD_PARTIAL);
  1454. }
  1455. out_unlock:
  1456. slab_unlock(page);
  1457. return;
  1458. slab_empty:
  1459. if (prior) {
  1460. /*
  1461. * Slab still on the partial list.
  1462. */
  1463. remove_partial(s, page);
  1464. stat(c, FREE_REMOVE_PARTIAL);
  1465. }
  1466. slab_unlock(page);
  1467. stat(c, FREE_SLAB);
  1468. discard_slab(s, page);
  1469. return;
  1470. debug:
  1471. if (!free_debug_processing(s, page, x, addr))
  1472. goto out_unlock;
  1473. goto checks_ok;
  1474. }
  1475. /*
  1476. * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
  1477. * can perform fastpath freeing without additional function calls.
  1478. *
  1479. * The fastpath is only possible if we are freeing to the current cpu slab
  1480. * of this processor. This typically the case if we have just allocated
  1481. * the item before.
  1482. *
  1483. * If fastpath is not possible then fall back to __slab_free where we deal
  1484. * with all sorts of special processing.
  1485. */
  1486. static __always_inline void slab_free(struct kmem_cache *s,
  1487. struct page *page, void *x, void *addr)
  1488. {
  1489. void **object = (void *)x;
  1490. struct kmem_cache_cpu *c;
  1491. unsigned long flags;
  1492. local_irq_save(flags);
  1493. c = get_cpu_slab(s, smp_processor_id());
  1494. debug_check_no_locks_freed(object, c->objsize);
  1495. if (likely(page == c->page && c->node >= 0)) {
  1496. object[c->offset] = c->freelist;
  1497. c->freelist = object;
  1498. stat(c, FREE_FASTPATH);
  1499. } else
  1500. __slab_free(s, page, x, addr, c->offset);
  1501. local_irq_restore(flags);
  1502. }
  1503. void kmem_cache_free(struct kmem_cache *s, void *x)
  1504. {
  1505. struct page *page;
  1506. page = virt_to_head_page(x);
  1507. slab_free(s, page, x, __builtin_return_address(0));
  1508. }
  1509. EXPORT_SYMBOL(kmem_cache_free);
  1510. /* Figure out on which slab object the object resides */
  1511. static struct page *get_object_page(const void *x)
  1512. {
  1513. struct page *page = virt_to_head_page(x);
  1514. if (!PageSlab(page))
  1515. return NULL;
  1516. return page;
  1517. }
  1518. /*
  1519. * Object placement in a slab is made very easy because we always start at
  1520. * offset 0. If we tune the size of the object to the alignment then we can
  1521. * get the required alignment by putting one properly sized object after
  1522. * another.
  1523. *
  1524. * Notice that the allocation order determines the sizes of the per cpu
  1525. * caches. Each processor has always one slab available for allocations.
  1526. * Increasing the allocation order reduces the number of times that slabs
  1527. * must be moved on and off the partial lists and is therefore a factor in
  1528. * locking overhead.
  1529. */
  1530. /*
  1531. * Mininum / Maximum order of slab pages. This influences locking overhead
  1532. * and slab fragmentation. A higher order reduces the number of partial slabs
  1533. * and increases the number of allocations possible without having to
  1534. * take the list_lock.
  1535. */
  1536. static int slub_min_order;
  1537. static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
  1538. static int slub_min_objects;
  1539. /*
  1540. * Merge control. If this is set then no merging of slab caches will occur.
  1541. * (Could be removed. This was introduced to pacify the merge skeptics.)
  1542. */
  1543. static int slub_nomerge;
  1544. /*
  1545. * Calculate the order of allocation given an slab object size.
  1546. *
  1547. * The order of allocation has significant impact on performance and other
  1548. * system components. Generally order 0 allocations should be preferred since
  1549. * order 0 does not cause fragmentation in the page allocator. Larger objects
  1550. * be problematic to put into order 0 slabs because there may be too much
  1551. * unused space left. We go to a higher order if more than 1/16th of the slab
  1552. * would be wasted.
  1553. *
  1554. * In order to reach satisfactory performance we must ensure that a minimum
  1555. * number of objects is in one slab. Otherwise we may generate too much
  1556. * activity on the partial lists which requires taking the list_lock. This is
  1557. * less a concern for large slabs though which are rarely used.
  1558. *
  1559. * slub_max_order specifies the order where we begin to stop considering the
  1560. * number of objects in a slab as critical. If we reach slub_max_order then
  1561. * we try to keep the page order as low as possible. So we accept more waste
  1562. * of space in favor of a small page order.
  1563. *
  1564. * Higher order allocations also allow the placement of more objects in a
  1565. * slab and thereby reduce object handling overhead. If the user has
  1566. * requested a higher mininum order then we start with that one instead of
  1567. * the smallest order which will fit the object.
  1568. */
  1569. static inline int slab_order(int size, int min_objects,
  1570. int max_order, int fract_leftover)
  1571. {
  1572. int order;
  1573. int rem;
  1574. int min_order = slub_min_order;
  1575. if ((PAGE_SIZE << min_order) / size > 65535)
  1576. return get_order(size * 65535) - 1;
  1577. for (order = max(min_order,
  1578. fls(min_objects * size - 1) - PAGE_SHIFT);
  1579. order <= max_order; order++) {
  1580. unsigned long slab_size = PAGE_SIZE << order;
  1581. if (slab_size < min_objects * size)
  1582. continue;
  1583. rem = slab_size % size;
  1584. if (rem <= slab_size / fract_leftover)
  1585. break;
  1586. }
  1587. return order;
  1588. }
  1589. static inline int calculate_order(int size)
  1590. {
  1591. int order;
  1592. int min_objects;
  1593. int fraction;
  1594. /*
  1595. * Attempt to find best configuration for a slab. This
  1596. * works by first attempting to generate a layout with
  1597. * the best configuration and backing off gradually.
  1598. *
  1599. * First we reduce the acceptable waste in a slab. Then
  1600. * we reduce the minimum objects required in a slab.
  1601. */
  1602. min_objects = slub_min_objects;
  1603. if (!min_objects)
  1604. min_objects = 4 * (fls(nr_cpu_ids) + 1);
  1605. while (min_objects > 1) {
  1606. fraction = 16;
  1607. while (fraction >= 4) {
  1608. order = slab_order(size, min_objects,
  1609. slub_max_order, fraction);
  1610. if (order <= slub_max_order)
  1611. return order;
  1612. fraction /= 2;
  1613. }
  1614. min_objects /= 2;
  1615. }
  1616. /*
  1617. * We were unable to place multiple objects in a slab. Now
  1618. * lets see if we can place a single object there.
  1619. */
  1620. order = slab_order(size, 1, slub_max_order, 1);
  1621. if (order <= slub_max_order)
  1622. return order;
  1623. /*
  1624. * Doh this slab cannot be placed using slub_max_order.
  1625. */
  1626. order = slab_order(size, 1, MAX_ORDER, 1);
  1627. if (order <= MAX_ORDER)
  1628. return order;
  1629. return -ENOSYS;
  1630. }
  1631. /*
  1632. * Figure out what the alignment of the objects will be.
  1633. */
  1634. static unsigned long calculate_alignment(unsigned long flags,
  1635. unsigned long align, unsigned long size)
  1636. {
  1637. /*
  1638. * If the user wants hardware cache aligned objects then follow that
  1639. * suggestion if the object is sufficiently large.
  1640. *
  1641. * The hardware cache alignment cannot override the specified
  1642. * alignment though. If that is greater then use it.
  1643. */
  1644. if (flags & SLAB_HWCACHE_ALIGN) {
  1645. unsigned long ralign = cache_line_size();
  1646. while (size <= ralign / 2)
  1647. ralign /= 2;
  1648. align = max(align, ralign);
  1649. }
  1650. if (align < ARCH_SLAB_MINALIGN)
  1651. align = ARCH_SLAB_MINALIGN;
  1652. return ALIGN(align, sizeof(void *));
  1653. }
  1654. static void init_kmem_cache_cpu(struct kmem_cache *s,
  1655. struct kmem_cache_cpu *c)
  1656. {
  1657. c->page = NULL;
  1658. c->freelist = NULL;
  1659. c->node = 0;
  1660. c->offset = s->offset / sizeof(void *);
  1661. c->objsize = s->objsize;
  1662. #ifdef CONFIG_SLUB_STATS
  1663. memset(c->stat, 0, NR_SLUB_STAT_ITEMS * sizeof(unsigned));
  1664. #endif
  1665. }
  1666. static void init_kmem_cache_node(struct kmem_cache_node *n)
  1667. {
  1668. n->nr_partial = 0;
  1669. spin_lock_init(&n->list_lock);
  1670. INIT_LIST_HEAD(&n->partial);
  1671. #ifdef CONFIG_SLUB_DEBUG
  1672. atomic_long_set(&n->nr_slabs, 0);
  1673. INIT_LIST_HEAD(&n->full);
  1674. #endif
  1675. }
  1676. #ifdef CONFIG_SMP
  1677. /*
  1678. * Per cpu array for per cpu structures.
  1679. *
  1680. * The per cpu array places all kmem_cache_cpu structures from one processor
  1681. * close together meaning that it becomes possible that multiple per cpu
  1682. * structures are contained in one cacheline. This may be particularly
  1683. * beneficial for the kmalloc caches.
  1684. *
  1685. * A desktop system typically has around 60-80 slabs. With 100 here we are
  1686. * likely able to get per cpu structures for all caches from the array defined
  1687. * here. We must be able to cover all kmalloc caches during bootstrap.
  1688. *
  1689. * If the per cpu array is exhausted then fall back to kmalloc
  1690. * of individual cachelines. No sharing is possible then.
  1691. */
  1692. #define NR_KMEM_CACHE_CPU 100
  1693. static DEFINE_PER_CPU(struct kmem_cache_cpu,
  1694. kmem_cache_cpu)[NR_KMEM_CACHE_CPU];
  1695. static DEFINE_PER_CPU(struct kmem_cache_cpu *, kmem_cache_cpu_free);
  1696. static cpumask_t kmem_cach_cpu_free_init_once = CPU_MASK_NONE;
  1697. static struct kmem_cache_cpu *alloc_kmem_cache_cpu(struct kmem_cache *s,
  1698. int cpu, gfp_t flags)
  1699. {
  1700. struct kmem_cache_cpu *c = per_cpu(kmem_cache_cpu_free, cpu);
  1701. if (c)
  1702. per_cpu(kmem_cache_cpu_free, cpu) =
  1703. (void *)c->freelist;
  1704. else {
  1705. /* Table overflow: So allocate ourselves */
  1706. c = kmalloc_node(
  1707. ALIGN(sizeof(struct kmem_cache_cpu), cache_line_size()),
  1708. flags, cpu_to_node(cpu));
  1709. if (!c)
  1710. return NULL;
  1711. }
  1712. init_kmem_cache_cpu(s, c);
  1713. return c;
  1714. }
  1715. static void free_kmem_cache_cpu(struct kmem_cache_cpu *c, int cpu)
  1716. {
  1717. if (c < per_cpu(kmem_cache_cpu, cpu) ||
  1718. c > per_cpu(kmem_cache_cpu, cpu) + NR_KMEM_CACHE_CPU) {
  1719. kfree(c);
  1720. return;
  1721. }
  1722. c->freelist = (void *)per_cpu(kmem_cache_cpu_free, cpu);
  1723. per_cpu(kmem_cache_cpu_free, cpu) = c;
  1724. }
  1725. static void free_kmem_cache_cpus(struct kmem_cache *s)
  1726. {
  1727. int cpu;
  1728. for_each_online_cpu(cpu) {
  1729. struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
  1730. if (c) {
  1731. s->cpu_slab[cpu] = NULL;
  1732. free_kmem_cache_cpu(c, cpu);
  1733. }
  1734. }
  1735. }
  1736. static int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
  1737. {
  1738. int cpu;
  1739. for_each_online_cpu(cpu) {
  1740. struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
  1741. if (c)
  1742. continue;
  1743. c = alloc_kmem_cache_cpu(s, cpu, flags);
  1744. if (!c) {
  1745. free_kmem_cache_cpus(s);
  1746. return 0;
  1747. }
  1748. s->cpu_slab[cpu] = c;
  1749. }
  1750. return 1;
  1751. }
  1752. /*
  1753. * Initialize the per cpu array.
  1754. */
  1755. static void init_alloc_cpu_cpu(int cpu)
  1756. {
  1757. int i;
  1758. if (cpu_isset(cpu, kmem_cach_cpu_free_init_once))
  1759. return;
  1760. for (i = NR_KMEM_CACHE_CPU - 1; i >= 0; i--)
  1761. free_kmem_cache_cpu(&per_cpu(kmem_cache_cpu, cpu)[i], cpu);
  1762. cpu_set(cpu, kmem_cach_cpu_free_init_once);
  1763. }
  1764. static void __init init_alloc_cpu(void)
  1765. {
  1766. int cpu;
  1767. for_each_online_cpu(cpu)
  1768. init_alloc_cpu_cpu(cpu);
  1769. }
  1770. #else
  1771. static inline void free_kmem_cache_cpus(struct kmem_cache *s) {}
  1772. static inline void init_alloc_cpu(void) {}
  1773. static inline int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
  1774. {
  1775. init_kmem_cache_cpu(s, &s->cpu_slab);
  1776. return 1;
  1777. }
  1778. #endif
  1779. #ifdef CONFIG_NUMA
  1780. /*
  1781. * No kmalloc_node yet so do it by hand. We know that this is the first
  1782. * slab on the node for this slabcache. There are no concurrent accesses
  1783. * possible.
  1784. *
  1785. * Note that this function only works on the kmalloc_node_cache
  1786. * when allocating for the kmalloc_node_cache. This is used for bootstrapping
  1787. * memory on a fresh node that has no slab structures yet.
  1788. */
  1789. static struct kmem_cache_node *early_kmem_cache_node_alloc(gfp_t gfpflags,
  1790. int node)
  1791. {
  1792. struct page *page;
  1793. struct kmem_cache_node *n;
  1794. unsigned long flags;
  1795. BUG_ON(kmalloc_caches->size < sizeof(struct kmem_cache_node));
  1796. page = new_slab(kmalloc_caches, gfpflags, node);
  1797. BUG_ON(!page);
  1798. if (page_to_nid(page) != node) {
  1799. printk(KERN_ERR "SLUB: Unable to allocate memory from "
  1800. "node %d\n", node);
  1801. printk(KERN_ERR "SLUB: Allocating a useless per node structure "
  1802. "in order to be able to continue\n");
  1803. }
  1804. n = page->freelist;
  1805. BUG_ON(!n);
  1806. page->freelist = get_freepointer(kmalloc_caches, n);
  1807. page->inuse++;
  1808. kmalloc_caches->node[node] = n;
  1809. #ifdef CONFIG_SLUB_DEBUG
  1810. init_object(kmalloc_caches, n, 1);
  1811. init_tracking(kmalloc_caches, n);
  1812. #endif
  1813. init_kmem_cache_node(n);
  1814. inc_slabs_node(kmalloc_caches, node, page->objects);
  1815. /*
  1816. * lockdep requires consistent irq usage for each lock
  1817. * so even though there cannot be a race this early in
  1818. * the boot sequence, we still disable irqs.
  1819. */
  1820. local_irq_save(flags);
  1821. add_partial(n, page, 0);
  1822. local_irq_restore(flags);
  1823. return n;
  1824. }
  1825. static void free_kmem_cache_nodes(struct kmem_cache *s)
  1826. {
  1827. int node;
  1828. for_each_node_state(node, N_NORMAL_MEMORY) {
  1829. struct kmem_cache_node *n = s->node[node];
  1830. if (n && n != &s->local_node)
  1831. kmem_cache_free(kmalloc_caches, n);
  1832. s->node[node] = NULL;
  1833. }
  1834. }
  1835. static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
  1836. {
  1837. int node;
  1838. int local_node;
  1839. if (slab_state >= UP)
  1840. local_node = page_to_nid(virt_to_page(s));
  1841. else
  1842. local_node = 0;
  1843. for_each_node_state(node, N_NORMAL_MEMORY) {
  1844. struct kmem_cache_node *n;
  1845. if (local_node == node)
  1846. n = &s->local_node;
  1847. else {
  1848. if (slab_state == DOWN) {
  1849. n = early_kmem_cache_node_alloc(gfpflags,
  1850. node);
  1851. continue;
  1852. }
  1853. n = kmem_cache_alloc_node(kmalloc_caches,
  1854. gfpflags, node);
  1855. if (!n) {
  1856. free_kmem_cache_nodes(s);
  1857. return 0;
  1858. }
  1859. }
  1860. s->node[node] = n;
  1861. init_kmem_cache_node(n);
  1862. }
  1863. return 1;
  1864. }
  1865. #else
  1866. static void free_kmem_cache_nodes(struct kmem_cache *s)
  1867. {
  1868. }
  1869. static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
  1870. {
  1871. init_kmem_cache_node(&s->local_node);
  1872. return 1;
  1873. }
  1874. #endif
  1875. /*
  1876. * calculate_sizes() determines the order and the distribution of data within
  1877. * a slab object.
  1878. */
  1879. static int calculate_sizes(struct kmem_cache *s, int forced_order)
  1880. {
  1881. unsigned long flags = s->flags;
  1882. unsigned long size = s->objsize;
  1883. unsigned long align = s->align;
  1884. int order;
  1885. /*
  1886. * Round up object size to the next word boundary. We can only
  1887. * place the free pointer at word boundaries and this determines
  1888. * the possible location of the free pointer.
  1889. */
  1890. size = ALIGN(size, sizeof(void *));
  1891. #ifdef CONFIG_SLUB_DEBUG
  1892. /*
  1893. * Determine if we can poison the object itself. If the user of
  1894. * the slab may touch the object after free or before allocation
  1895. * then we should never poison the object itself.
  1896. */
  1897. if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
  1898. !s->ctor)
  1899. s->flags |= __OBJECT_POISON;
  1900. else
  1901. s->flags &= ~__OBJECT_POISON;
  1902. /*
  1903. * If we are Redzoning then check if there is some space between the
  1904. * end of the object and the free pointer. If not then add an
  1905. * additional word to have some bytes to store Redzone information.
  1906. */
  1907. if ((flags & SLAB_RED_ZONE) && size == s->objsize)
  1908. size += sizeof(void *);
  1909. #endif
  1910. /*
  1911. * With that we have determined the number of bytes in actual use
  1912. * by the object. This is the potential offset to the free pointer.
  1913. */
  1914. s->inuse = size;
  1915. if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
  1916. s->ctor)) {
  1917. /*
  1918. * Relocate free pointer after the object if it is not
  1919. * permitted to overwrite the first word of the object on
  1920. * kmem_cache_free.
  1921. *
  1922. * This is the case if we do RCU, have a constructor or
  1923. * destructor or are poisoning the objects.
  1924. */
  1925. s->offset = size;
  1926. size += sizeof(void *);
  1927. }
  1928. #ifdef CONFIG_SLUB_DEBUG
  1929. if (flags & SLAB_STORE_USER)
  1930. /*
  1931. * Need to store information about allocs and frees after
  1932. * the object.
  1933. */
  1934. size += 2 * sizeof(struct track);
  1935. if (flags & SLAB_RED_ZONE)
  1936. /*
  1937. * Add some empty padding so that we can catch
  1938. * overwrites from earlier objects rather than let
  1939. * tracking information or the free pointer be
  1940. * corrupted if an user writes before the start
  1941. * of the object.
  1942. */
  1943. size += sizeof(void *);
  1944. #endif
  1945. /*
  1946. * Determine the alignment based on various parameters that the
  1947. * user specified and the dynamic determination of cache line size
  1948. * on bootup.
  1949. */
  1950. align = calculate_alignment(flags, align, s->objsize);
  1951. /*
  1952. * SLUB stores one object immediately after another beginning from
  1953. * offset 0. In order to align the objects we have to simply size
  1954. * each object to conform to the alignment.
  1955. */
  1956. size = ALIGN(size, align);
  1957. s->size = size;
  1958. if (forced_order >= 0)
  1959. order = forced_order;
  1960. else
  1961. order = calculate_order(size);
  1962. if (order < 0)
  1963. return 0;
  1964. s->allocflags = 0;
  1965. if (order)
  1966. s->allocflags |= __GFP_COMP;
  1967. if (s->flags & SLAB_CACHE_DMA)
  1968. s->allocflags |= SLUB_DMA;
  1969. if (s->flags & SLAB_RECLAIM_ACCOUNT)
  1970. s->allocflags |= __GFP_RECLAIMABLE;
  1971. /*
  1972. * Determine the number of objects per slab
  1973. */
  1974. s->oo = oo_make(order, size);
  1975. s->min = oo_make(get_order(size), size);
  1976. if (oo_objects(s->oo) > oo_objects(s->max))
  1977. s->max = s->oo;
  1978. return !!oo_objects(s->oo);
  1979. }
  1980. static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags,
  1981. const char *name, size_t size,
  1982. size_t align, unsigned long flags,
  1983. void (*ctor)(struct kmem_cache *, void *))
  1984. {
  1985. memset(s, 0, kmem_size);
  1986. s->name = name;
  1987. s->ctor = ctor;
  1988. s->objsize = size;
  1989. s->align = align;
  1990. s->flags = kmem_cache_flags(size, flags, name, ctor);
  1991. if (!calculate_sizes(s, -1))
  1992. goto error;
  1993. s->refcount = 1;
  1994. #ifdef CONFIG_NUMA
  1995. s->remote_node_defrag_ratio = 100;
  1996. #endif
  1997. if (!init_kmem_cache_nodes(s, gfpflags & ~SLUB_DMA))
  1998. goto error;
  1999. if (alloc_kmem_cache_cpus(s, gfpflags & ~SLUB_DMA))
  2000. return 1;
  2001. free_kmem_cache_nodes(s);
  2002. error:
  2003. if (flags & SLAB_PANIC)
  2004. panic("Cannot create slab %s size=%lu realsize=%u "
  2005. "order=%u offset=%u flags=%lx\n",
  2006. s->name, (unsigned long)size, s->size, oo_order(s->oo),
  2007. s->offset, flags);
  2008. return 0;
  2009. }
  2010. /*
  2011. * Check if a given pointer is valid
  2012. */
  2013. int kmem_ptr_validate(struct kmem_cache *s, const void *object)
  2014. {
  2015. struct page *page;
  2016. page = get_object_page(object);
  2017. if (!page || s != page->slab)
  2018. /* No slab or wrong slab */
  2019. return 0;
  2020. if (!check_valid_pointer(s, page, object))
  2021. return 0;
  2022. /*
  2023. * We could also check if the object is on the slabs freelist.
  2024. * But this would be too expensive and it seems that the main
  2025. * purpose of kmem_ptr_valid() is to check if the object belongs
  2026. * to a certain slab.
  2027. */
  2028. return 1;
  2029. }
  2030. EXPORT_SYMBOL(kmem_ptr_validate);
  2031. /*
  2032. * Determine the size of a slab object
  2033. */
  2034. unsigned int kmem_cache_size(struct kmem_cache *s)
  2035. {
  2036. return s->objsize;
  2037. }
  2038. EXPORT_SYMBOL(kmem_cache_size);
  2039. const char *kmem_cache_name(struct kmem_cache *s)
  2040. {
  2041. return s->name;
  2042. }
  2043. EXPORT_SYMBOL(kmem_cache_name);
  2044. static void list_slab_objects(struct kmem_cache *s, struct page *page,
  2045. const char *text)
  2046. {
  2047. #ifdef CONFIG_SLUB_DEBUG
  2048. void *addr = page_address(page);
  2049. void *p;
  2050. DECLARE_BITMAP(map, page->objects);
  2051. bitmap_zero(map, page->objects);
  2052. slab_err(s, page, "%s", text);
  2053. slab_lock(page);
  2054. for_each_free_object(p, s, page->freelist)
  2055. set_bit(slab_index(p, s, addr), map);
  2056. for_each_object(p, s, addr, page->objects) {
  2057. if (!test_bit(slab_index(p, s, addr), map)) {
  2058. printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
  2059. p, p - addr);
  2060. print_tracking(s, p);
  2061. }
  2062. }
  2063. slab_unlock(page);
  2064. #endif
  2065. }
  2066. /*
  2067. * Attempt to free all partial slabs on a node.
  2068. */
  2069. static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
  2070. {
  2071. unsigned long flags;
  2072. struct page *page, *h;
  2073. spin_lock_irqsave(&n->list_lock, flags);
  2074. list_for_each_entry_safe(page, h, &n->partial, lru) {
  2075. if (!page->inuse) {
  2076. list_del(&page->lru);
  2077. discard_slab(s, page);
  2078. n->nr_partial--;
  2079. } else {
  2080. list_slab_objects(s, page,
  2081. "Objects remaining on kmem_cache_close()");
  2082. }
  2083. }
  2084. spin_unlock_irqrestore(&n->list_lock, flags);
  2085. }
  2086. /*
  2087. * Release all resources used by a slab cache.
  2088. */
  2089. static inline int kmem_cache_close(struct kmem_cache *s)
  2090. {
  2091. int node;
  2092. flush_all(s);
  2093. /* Attempt to free all objects */
  2094. free_kmem_cache_cpus(s);
  2095. for_each_node_state(node, N_NORMAL_MEMORY) {
  2096. struct kmem_cache_node *n = get_node(s, node);
  2097. free_partial(s, n);
  2098. if (n->nr_partial || slabs_node(s, node))
  2099. return 1;
  2100. }
  2101. free_kmem_cache_nodes(s);
  2102. return 0;
  2103. }
  2104. /*
  2105. * Close a cache and release the kmem_cache structure
  2106. * (must be used for caches created using kmem_cache_create)
  2107. */
  2108. void kmem_cache_destroy(struct kmem_cache *s)
  2109. {
  2110. down_write(&slub_lock);
  2111. s->refcount--;
  2112. if (!s->refcount) {
  2113. list_del(&s->list);
  2114. up_write(&slub_lock);
  2115. if (kmem_cache_close(s)) {
  2116. printk(KERN_ERR "SLUB %s: %s called for cache that "
  2117. "still has objects.\n", s->name, __func__);
  2118. dump_stack();
  2119. }
  2120. sysfs_slab_remove(s);
  2121. } else
  2122. up_write(&slub_lock);
  2123. }
  2124. EXPORT_SYMBOL(kmem_cache_destroy);
  2125. /********************************************************************
  2126. * Kmalloc subsystem
  2127. *******************************************************************/
  2128. struct kmem_cache kmalloc_caches[PAGE_SHIFT + 1] __cacheline_aligned;
  2129. EXPORT_SYMBOL(kmalloc_caches);
  2130. static int __init setup_slub_min_order(char *str)
  2131. {
  2132. get_option(&str, &slub_min_order);
  2133. return 1;
  2134. }
  2135. __setup("slub_min_order=", setup_slub_min_order);
  2136. static int __init setup_slub_max_order(char *str)
  2137. {
  2138. get_option(&str, &slub_max_order);
  2139. return 1;
  2140. }
  2141. __setup("slub_max_order=", setup_slub_max_order);
  2142. static int __init setup_slub_min_objects(char *str)
  2143. {
  2144. get_option(&str, &slub_min_objects);
  2145. return 1;
  2146. }
  2147. __setup("slub_min_objects=", setup_slub_min_objects);
  2148. static int __init setup_slub_nomerge(char *str)
  2149. {
  2150. slub_nomerge = 1;
  2151. return 1;
  2152. }
  2153. __setup("slub_nomerge", setup_slub_nomerge);
  2154. static struct kmem_cache *create_kmalloc_cache(struct kmem_cache *s,
  2155. const char *name, int size, gfp_t gfp_flags)
  2156. {
  2157. unsigned int flags = 0;
  2158. if (gfp_flags & SLUB_DMA)
  2159. flags = SLAB_CACHE_DMA;
  2160. down_write(&slub_lock);
  2161. if (!kmem_cache_open(s, gfp_flags, name, size, ARCH_KMALLOC_MINALIGN,
  2162. flags, NULL))
  2163. goto panic;
  2164. list_add(&s->list, &slab_caches);
  2165. up_write(&slub_lock);
  2166. if (sysfs_slab_add(s))
  2167. goto panic;
  2168. return s;
  2169. panic:
  2170. panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
  2171. }
  2172. #ifdef CONFIG_ZONE_DMA
  2173. static struct kmem_cache *kmalloc_caches_dma[PAGE_SHIFT + 1];
  2174. static void sysfs_add_func(struct work_struct *w)
  2175. {
  2176. struct kmem_cache *s;
  2177. down_write(&slub_lock);
  2178. list_for_each_entry(s, &slab_caches, list) {
  2179. if (s->flags & __SYSFS_ADD_DEFERRED) {
  2180. s->flags &= ~__SYSFS_ADD_DEFERRED;
  2181. sysfs_slab_add(s);
  2182. }
  2183. }
  2184. up_write(&slub_lock);
  2185. }
  2186. static DECLARE_WORK(sysfs_add_work, sysfs_add_func);
  2187. static noinline struct kmem_cache *dma_kmalloc_cache(int index, gfp_t flags)
  2188. {
  2189. struct kmem_cache *s;
  2190. char *text;
  2191. size_t realsize;
  2192. s = kmalloc_caches_dma[index];
  2193. if (s)
  2194. return s;
  2195. /* Dynamically create dma cache */
  2196. if (flags & __GFP_WAIT)
  2197. down_write(&slub_lock);
  2198. else {
  2199. if (!down_write_trylock(&slub_lock))
  2200. goto out;
  2201. }
  2202. if (kmalloc_caches_dma[index])
  2203. goto unlock_out;
  2204. realsize = kmalloc_caches[index].objsize;
  2205. text = kasprintf(flags & ~SLUB_DMA, "kmalloc_dma-%d",
  2206. (unsigned int)realsize);
  2207. s = kmalloc(kmem_size, flags & ~SLUB_DMA);
  2208. if (!s || !text || !kmem_cache_open(s, flags, text,
  2209. realsize, ARCH_KMALLOC_MINALIGN,
  2210. SLAB_CACHE_DMA|__SYSFS_ADD_DEFERRED, NULL)) {
  2211. kfree(s);
  2212. kfree(text);
  2213. goto unlock_out;
  2214. }
  2215. list_add(&s->list, &slab_caches);
  2216. kmalloc_caches_dma[index] = s;
  2217. schedule_work(&sysfs_add_work);
  2218. unlock_out:
  2219. up_write(&slub_lock);
  2220. out:
  2221. return kmalloc_caches_dma[index];
  2222. }
  2223. #endif
  2224. /*
  2225. * Conversion table for small slabs sizes / 8 to the index in the
  2226. * kmalloc array. This is necessary for slabs < 192 since we have non power
  2227. * of two cache sizes there. The size of larger slabs can be determined using
  2228. * fls.
  2229. */
  2230. static s8 size_index[24] = {
  2231. 3, /* 8 */
  2232. 4, /* 16 */
  2233. 5, /* 24 */
  2234. 5, /* 32 */
  2235. 6, /* 40 */
  2236. 6, /* 48 */
  2237. 6, /* 56 */
  2238. 6, /* 64 */
  2239. 1, /* 72 */
  2240. 1, /* 80 */
  2241. 1, /* 88 */
  2242. 1, /* 96 */
  2243. 7, /* 104 */
  2244. 7, /* 112 */
  2245. 7, /* 120 */
  2246. 7, /* 128 */
  2247. 2, /* 136 */
  2248. 2, /* 144 */
  2249. 2, /* 152 */
  2250. 2, /* 160 */
  2251. 2, /* 168 */
  2252. 2, /* 176 */
  2253. 2, /* 184 */
  2254. 2 /* 192 */
  2255. };
  2256. static struct kmem_cache *get_slab(size_t size, gfp_t flags)
  2257. {
  2258. int index;
  2259. if (size <= 192) {
  2260. if (!size)
  2261. return ZERO_SIZE_PTR;
  2262. index = size_index[(size - 1) / 8];
  2263. } else
  2264. index = fls(size - 1);
  2265. #ifdef CONFIG_ZONE_DMA
  2266. if (unlikely((flags & SLUB_DMA)))
  2267. return dma_kmalloc_cache(index, flags);
  2268. #endif
  2269. return &kmalloc_caches[index];
  2270. }
  2271. void *__kmalloc(size_t size, gfp_t flags)
  2272. {
  2273. struct kmem_cache *s;
  2274. if (unlikely(size > PAGE_SIZE))
  2275. return kmalloc_large(size, flags);
  2276. s = get_slab(size, flags);
  2277. if (unlikely(ZERO_OR_NULL_PTR(s)))
  2278. return s;
  2279. return slab_alloc(s, flags, -1, __builtin_return_address(0));
  2280. }
  2281. EXPORT_SYMBOL(__kmalloc);
  2282. static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
  2283. {
  2284. struct page *page = alloc_pages_node(node, flags | __GFP_COMP,
  2285. get_order(size));
  2286. if (page)
  2287. return page_address(page);
  2288. else
  2289. return NULL;
  2290. }
  2291. #ifdef CONFIG_NUMA
  2292. void *__kmalloc_node(size_t size, gfp_t flags, int node)
  2293. {
  2294. struct kmem_cache *s;
  2295. if (unlikely(size > PAGE_SIZE))
  2296. return kmalloc_large_node(size, flags, node);
  2297. s = get_slab(size, flags);
  2298. if (unlikely(ZERO_OR_NULL_PTR(s)))
  2299. return s;
  2300. return slab_alloc(s, flags, node, __builtin_return_address(0));
  2301. }
  2302. EXPORT_SYMBOL(__kmalloc_node);
  2303. #endif
  2304. size_t ksize(const void *object)
  2305. {
  2306. struct page *page;
  2307. struct kmem_cache *s;
  2308. if (unlikely(object == ZERO_SIZE_PTR))
  2309. return 0;
  2310. page = virt_to_head_page(object);
  2311. if (unlikely(!PageSlab(page)))
  2312. return PAGE_SIZE << compound_order(page);
  2313. s = page->slab;
  2314. #ifdef CONFIG_SLUB_DEBUG
  2315. /*
  2316. * Debugging requires use of the padding between object
  2317. * and whatever may come after it.
  2318. */
  2319. if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
  2320. return s->objsize;
  2321. #endif
  2322. /*
  2323. * If we have the need to store the freelist pointer
  2324. * back there or track user information then we can
  2325. * only use the space before that information.
  2326. */
  2327. if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
  2328. return s->inuse;
  2329. /*
  2330. * Else we can use all the padding etc for the allocation
  2331. */
  2332. return s->size;
  2333. }
  2334. EXPORT_SYMBOL(ksize);
  2335. void kfree(const void *x)
  2336. {
  2337. struct page *page;
  2338. void *object = (void *)x;
  2339. if (unlikely(ZERO_OR_NULL_PTR(x)))
  2340. return;
  2341. page = virt_to_head_page(x);
  2342. if (unlikely(!PageSlab(page))) {
  2343. put_page(page);
  2344. return;
  2345. }
  2346. slab_free(page->slab, page, object, __builtin_return_address(0));
  2347. }
  2348. EXPORT_SYMBOL(kfree);
  2349. /*
  2350. * kmem_cache_shrink removes empty slabs from the partial lists and sorts
  2351. * the remaining slabs by the number of items in use. The slabs with the
  2352. * most items in use come first. New allocations will then fill those up
  2353. * and thus they can be removed from the partial lists.
  2354. *
  2355. * The slabs with the least items are placed last. This results in them
  2356. * being allocated from last increasing the chance that the last objects
  2357. * are freed in them.
  2358. */
  2359. int kmem_cache_shrink(struct kmem_cache *s)
  2360. {
  2361. int node;
  2362. int i;
  2363. struct kmem_cache_node *n;
  2364. struct page *page;
  2365. struct page *t;
  2366. int objects = oo_objects(s->max);
  2367. struct list_head *slabs_by_inuse =
  2368. kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
  2369. unsigned long flags;
  2370. if (!slabs_by_inuse)
  2371. return -ENOMEM;
  2372. flush_all(s);
  2373. for_each_node_state(node, N_NORMAL_MEMORY) {
  2374. n = get_node(s, node);
  2375. if (!n->nr_partial)
  2376. continue;
  2377. for (i = 0; i < objects; i++)
  2378. INIT_LIST_HEAD(slabs_by_inuse + i);
  2379. spin_lock_irqsave(&n->list_lock, flags);
  2380. /*
  2381. * Build lists indexed by the items in use in each slab.
  2382. *
  2383. * Note that concurrent frees may occur while we hold the
  2384. * list_lock. page->inuse here is the upper limit.
  2385. */
  2386. list_for_each_entry_safe(page, t, &n->partial, lru) {
  2387. if (!page->inuse && slab_trylock(page)) {
  2388. /*
  2389. * Must hold slab lock here because slab_free
  2390. * may have freed the last object and be
  2391. * waiting to release the slab.
  2392. */
  2393. list_del(&page->lru);
  2394. n->nr_partial--;
  2395. slab_unlock(page);
  2396. discard_slab(s, page);
  2397. } else {
  2398. list_move(&page->lru,
  2399. slabs_by_inuse + page->inuse);
  2400. }
  2401. }
  2402. /*
  2403. * Rebuild the partial list with the slabs filled up most
  2404. * first and the least used slabs at the end.
  2405. */
  2406. for (i = objects - 1; i >= 0; i--)
  2407. list_splice(slabs_by_inuse + i, n->partial.prev);
  2408. spin_unlock_irqrestore(&n->list_lock, flags);
  2409. }
  2410. kfree(slabs_by_inuse);
  2411. return 0;
  2412. }
  2413. EXPORT_SYMBOL(kmem_cache_shrink);
  2414. #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
  2415. static int slab_mem_going_offline_callback(void *arg)
  2416. {
  2417. struct kmem_cache *s;
  2418. down_read(&slub_lock);
  2419. list_for_each_entry(s, &slab_caches, list)
  2420. kmem_cache_shrink(s);
  2421. up_read(&slub_lock);
  2422. return 0;
  2423. }
  2424. static void slab_mem_offline_callback(void *arg)
  2425. {
  2426. struct kmem_cache_node *n;
  2427. struct kmem_cache *s;
  2428. struct memory_notify *marg = arg;
  2429. int offline_node;
  2430. offline_node = marg->status_change_nid;
  2431. /*
  2432. * If the node still has available memory. we need kmem_cache_node
  2433. * for it yet.
  2434. */
  2435. if (offline_node < 0)
  2436. return;
  2437. down_read(&slub_lock);
  2438. list_for_each_entry(s, &slab_caches, list) {
  2439. n = get_node(s, offline_node);
  2440. if (n) {
  2441. /*
  2442. * if n->nr_slabs > 0, slabs still exist on the node
  2443. * that is going down. We were unable to free them,
  2444. * and offline_pages() function shoudn't call this
  2445. * callback. So, we must fail.
  2446. */
  2447. BUG_ON(slabs_node(s, offline_node));
  2448. s->node[offline_node] = NULL;
  2449. kmem_cache_free(kmalloc_caches, n);
  2450. }
  2451. }
  2452. up_read(&slub_lock);
  2453. }
  2454. static int slab_mem_going_online_callback(void *arg)
  2455. {
  2456. struct kmem_cache_node *n;
  2457. struct kmem_cache *s;
  2458. struct memory_notify *marg = arg;
  2459. int nid = marg->status_change_nid;
  2460. int ret = 0;
  2461. /*
  2462. * If the node's memory is already available, then kmem_cache_node is
  2463. * already created. Nothing to do.
  2464. */
  2465. if (nid < 0)
  2466. return 0;
  2467. /*
  2468. * We are bringing a node online. No memory is availabe yet. We must
  2469. * allocate a kmem_cache_node structure in order to bring the node
  2470. * online.
  2471. */
  2472. down_read(&slub_lock);
  2473. list_for_each_entry(s, &slab_caches, list) {
  2474. /*
  2475. * XXX: kmem_cache_alloc_node will fallback to other nodes
  2476. * since memory is not yet available from the node that
  2477. * is brought up.
  2478. */
  2479. n = kmem_cache_alloc(kmalloc_caches, GFP_KERNEL);
  2480. if (!n) {
  2481. ret = -ENOMEM;
  2482. goto out;
  2483. }
  2484. init_kmem_cache_node(n);
  2485. s->node[nid] = n;
  2486. }
  2487. out:
  2488. up_read(&slub_lock);
  2489. return ret;
  2490. }
  2491. static int slab_memory_callback(struct notifier_block *self,
  2492. unsigned long action, void *arg)
  2493. {
  2494. int ret = 0;
  2495. switch (action) {
  2496. case MEM_GOING_ONLINE:
  2497. ret = slab_mem_going_online_callback(arg);
  2498. break;
  2499. case MEM_GOING_OFFLINE:
  2500. ret = slab_mem_going_offline_callback(arg);
  2501. break;
  2502. case MEM_OFFLINE:
  2503. case MEM_CANCEL_ONLINE:
  2504. slab_mem_offline_callback(arg);
  2505. break;
  2506. case MEM_ONLINE:
  2507. case MEM_CANCEL_OFFLINE:
  2508. break;
  2509. }
  2510. ret = notifier_from_errno(ret);
  2511. return ret;
  2512. }
  2513. #endif /* CONFIG_MEMORY_HOTPLUG */
  2514. /********************************************************************
  2515. * Basic setup of slabs
  2516. *******************************************************************/
  2517. void __init kmem_cache_init(void)
  2518. {
  2519. int i;
  2520. int caches = 0;
  2521. init_alloc_cpu();
  2522. #ifdef CONFIG_NUMA
  2523. /*
  2524. * Must first have the slab cache available for the allocations of the
  2525. * struct kmem_cache_node's. There is special bootstrap code in
  2526. * kmem_cache_open for slab_state == DOWN.
  2527. */
  2528. create_kmalloc_cache(&kmalloc_caches[0], "kmem_cache_node",
  2529. sizeof(struct kmem_cache_node), GFP_KERNEL);
  2530. kmalloc_caches[0].refcount = -1;
  2531. caches++;
  2532. hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
  2533. #endif
  2534. /* Able to allocate the per node structures */
  2535. slab_state = PARTIAL;
  2536. /* Caches that are not of the two-to-the-power-of size */
  2537. if (KMALLOC_MIN_SIZE <= 64) {
  2538. create_kmalloc_cache(&kmalloc_caches[1],
  2539. "kmalloc-96", 96, GFP_KERNEL);
  2540. caches++;
  2541. }
  2542. if (KMALLOC_MIN_SIZE <= 128) {
  2543. create_kmalloc_cache(&kmalloc_caches[2],
  2544. "kmalloc-192", 192, GFP_KERNEL);
  2545. caches++;
  2546. }
  2547. for (i = KMALLOC_SHIFT_LOW; i <= PAGE_SHIFT; i++) {
  2548. create_kmalloc_cache(&kmalloc_caches[i],
  2549. "kmalloc", 1 << i, GFP_KERNEL);
  2550. caches++;
  2551. }
  2552. /*
  2553. * Patch up the size_index table if we have strange large alignment
  2554. * requirements for the kmalloc array. This is only the case for
  2555. * MIPS it seems. The standard arches will not generate any code here.
  2556. *
  2557. * Largest permitted alignment is 256 bytes due to the way we
  2558. * handle the index determination for the smaller caches.
  2559. *
  2560. * Make sure that nothing crazy happens if someone starts tinkering
  2561. * around with ARCH_KMALLOC_MINALIGN
  2562. */
  2563. BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
  2564. (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
  2565. for (i = 8; i < KMALLOC_MIN_SIZE; i += 8)
  2566. size_index[(i - 1) / 8] = KMALLOC_SHIFT_LOW;
  2567. slab_state = UP;
  2568. /* Provide the correct kmalloc names now that the caches are up */
  2569. for (i = KMALLOC_SHIFT_LOW; i <= PAGE_SHIFT; i++)
  2570. kmalloc_caches[i]. name =
  2571. kasprintf(GFP_KERNEL, "kmalloc-%d", 1 << i);
  2572. #ifdef CONFIG_SMP
  2573. register_cpu_notifier(&slab_notifier);
  2574. kmem_size = offsetof(struct kmem_cache, cpu_slab) +
  2575. nr_cpu_ids * sizeof(struct kmem_cache_cpu *);
  2576. #else
  2577. kmem_size = sizeof(struct kmem_cache);
  2578. #endif
  2579. printk(KERN_INFO
  2580. "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
  2581. " CPUs=%d, Nodes=%d\n",
  2582. caches, cache_line_size(),
  2583. slub_min_order, slub_max_order, slub_min_objects,
  2584. nr_cpu_ids, nr_node_ids);
  2585. }
  2586. /*
  2587. * Find a mergeable slab cache
  2588. */
  2589. static int slab_unmergeable(struct kmem_cache *s)
  2590. {
  2591. if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
  2592. return 1;
  2593. if (s->ctor)
  2594. return 1;
  2595. /*
  2596. * We may have set a slab to be unmergeable during bootstrap.
  2597. */
  2598. if (s->refcount < 0)
  2599. return 1;
  2600. return 0;
  2601. }
  2602. static struct kmem_cache *find_mergeable(size_t size,
  2603. size_t align, unsigned long flags, const char *name,
  2604. void (*ctor)(struct kmem_cache *, void *))
  2605. {
  2606. struct kmem_cache *s;
  2607. if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
  2608. return NULL;
  2609. if (ctor)
  2610. return NULL;
  2611. size = ALIGN(size, sizeof(void *));
  2612. align = calculate_alignment(flags, align, size);
  2613. size = ALIGN(size, align);
  2614. flags = kmem_cache_flags(size, flags, name, NULL);
  2615. list_for_each_entry(s, &slab_caches, list) {
  2616. if (slab_unmergeable(s))
  2617. continue;
  2618. if (size > s->size)
  2619. continue;
  2620. if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
  2621. continue;
  2622. /*
  2623. * Check if alignment is compatible.
  2624. * Courtesy of Adrian Drzewiecki
  2625. */
  2626. if ((s->size & ~(align - 1)) != s->size)
  2627. continue;
  2628. if (s->size - size >= sizeof(void *))
  2629. continue;
  2630. return s;
  2631. }
  2632. return NULL;
  2633. }
  2634. struct kmem_cache *kmem_cache_create(const char *name, size_t size,
  2635. size_t align, unsigned long flags,
  2636. void (*ctor)(struct kmem_cache *, void *))
  2637. {
  2638. struct kmem_cache *s;
  2639. down_write(&slub_lock);
  2640. s = find_mergeable(size, align, flags, name, ctor);
  2641. if (s) {
  2642. int cpu;
  2643. s->refcount++;
  2644. /*
  2645. * Adjust the object sizes so that we clear
  2646. * the complete object on kzalloc.
  2647. */
  2648. s->objsize = max(s->objsize, (int)size);
  2649. /*
  2650. * And then we need to update the object size in the
  2651. * per cpu structures
  2652. */
  2653. for_each_online_cpu(cpu)
  2654. get_cpu_slab(s, cpu)->objsize = s->objsize;
  2655. s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
  2656. up_write(&slub_lock);
  2657. if (sysfs_slab_alias(s, name))
  2658. goto err;
  2659. return s;
  2660. }
  2661. s = kmalloc(kmem_size, GFP_KERNEL);
  2662. if (s) {
  2663. if (kmem_cache_open(s, GFP_KERNEL, name,
  2664. size, align, flags, ctor)) {
  2665. list_add(&s->list, &slab_caches);
  2666. up_write(&slub_lock);
  2667. if (sysfs_slab_add(s))
  2668. goto err;
  2669. return s;
  2670. }
  2671. kfree(s);
  2672. }
  2673. up_write(&slub_lock);
  2674. err:
  2675. if (flags & SLAB_PANIC)
  2676. panic("Cannot create slabcache %s\n", name);
  2677. else
  2678. s = NULL;
  2679. return s;
  2680. }
  2681. EXPORT_SYMBOL(kmem_cache_create);
  2682. #ifdef CONFIG_SMP
  2683. /*
  2684. * Use the cpu notifier to insure that the cpu slabs are flushed when
  2685. * necessary.
  2686. */
  2687. static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
  2688. unsigned long action, void *hcpu)
  2689. {
  2690. long cpu = (long)hcpu;
  2691. struct kmem_cache *s;
  2692. unsigned long flags;
  2693. switch (action) {
  2694. case CPU_UP_PREPARE:
  2695. case CPU_UP_PREPARE_FROZEN:
  2696. init_alloc_cpu_cpu(cpu);
  2697. down_read(&slub_lock);
  2698. list_for_each_entry(s, &slab_caches, list)
  2699. s->cpu_slab[cpu] = alloc_kmem_cache_cpu(s, cpu,
  2700. GFP_KERNEL);
  2701. up_read(&slub_lock);
  2702. break;
  2703. case CPU_UP_CANCELED:
  2704. case CPU_UP_CANCELED_FROZEN:
  2705. case CPU_DEAD:
  2706. case CPU_DEAD_FROZEN:
  2707. down_read(&slub_lock);
  2708. list_for_each_entry(s, &slab_caches, list) {
  2709. struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
  2710. local_irq_save(flags);
  2711. __flush_cpu_slab(s, cpu);
  2712. local_irq_restore(flags);
  2713. free_kmem_cache_cpu(c, cpu);
  2714. s->cpu_slab[cpu] = NULL;
  2715. }
  2716. up_read(&slub_lock);
  2717. break;
  2718. default:
  2719. break;
  2720. }
  2721. return NOTIFY_OK;
  2722. }
  2723. static struct notifier_block __cpuinitdata slab_notifier = {
  2724. .notifier_call = slab_cpuup_callback
  2725. };
  2726. #endif
  2727. void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, void *caller)
  2728. {
  2729. struct kmem_cache *s;
  2730. if (unlikely(size > PAGE_SIZE))
  2731. return kmalloc_large(size, gfpflags);
  2732. s = get_slab(size, gfpflags);
  2733. if (unlikely(ZERO_OR_NULL_PTR(s)))
  2734. return s;
  2735. return slab_alloc(s, gfpflags, -1, caller);
  2736. }
  2737. void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
  2738. int node, void *caller)
  2739. {
  2740. struct kmem_cache *s;
  2741. if (unlikely(size > PAGE_SIZE))
  2742. return kmalloc_large_node(size, gfpflags, node);
  2743. s = get_slab(size, gfpflags);
  2744. if (unlikely(ZERO_OR_NULL_PTR(s)))
  2745. return s;
  2746. return slab_alloc(s, gfpflags, node, caller);
  2747. }
  2748. #if (defined(CONFIG_SYSFS) && defined(CONFIG_SLUB_DEBUG)) || defined(CONFIG_SLABINFO)
  2749. static unsigned long count_partial(struct kmem_cache_node *n,
  2750. int (*get_count)(struct page *))
  2751. {
  2752. unsigned long flags;
  2753. unsigned long x = 0;
  2754. struct page *page;
  2755. spin_lock_irqsave(&n->list_lock, flags);
  2756. list_for_each_entry(page, &n->partial, lru)
  2757. x += get_count(page);
  2758. spin_unlock_irqrestore(&n->list_lock, flags);
  2759. return x;
  2760. }
  2761. static int count_inuse(struct page *page)
  2762. {
  2763. return page->inuse;
  2764. }
  2765. static int count_total(struct page *page)
  2766. {
  2767. return page->objects;
  2768. }
  2769. static int count_free(struct page *page)
  2770. {
  2771. return page->objects - page->inuse;
  2772. }
  2773. #endif
  2774. #if defined(CONFIG_SYSFS) && defined(CONFIG_SLUB_DEBUG)
  2775. static int validate_slab(struct kmem_cache *s, struct page *page,
  2776. unsigned long *map)
  2777. {
  2778. void *p;
  2779. void *addr = page_address(page);
  2780. if (!check_slab(s, page) ||
  2781. !on_freelist(s, page, NULL))
  2782. return 0;
  2783. /* Now we know that a valid freelist exists */
  2784. bitmap_zero(map, page->objects);
  2785. for_each_free_object(p, s, page->freelist) {
  2786. set_bit(slab_index(p, s, addr), map);
  2787. if (!check_object(s, page, p, 0))
  2788. return 0;
  2789. }
  2790. for_each_object(p, s, addr, page->objects)
  2791. if (!test_bit(slab_index(p, s, addr), map))
  2792. if (!check_object(s, page, p, 1))
  2793. return 0;
  2794. return 1;
  2795. }
  2796. static void validate_slab_slab(struct kmem_cache *s, struct page *page,
  2797. unsigned long *map)
  2798. {
  2799. if (slab_trylock(page)) {
  2800. validate_slab(s, page, map);
  2801. slab_unlock(page);
  2802. } else
  2803. printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
  2804. s->name, page);
  2805. if (s->flags & DEBUG_DEFAULT_FLAGS) {
  2806. if (!SlabDebug(page))
  2807. printk(KERN_ERR "SLUB %s: SlabDebug not set "
  2808. "on slab 0x%p\n", s->name, page);
  2809. } else {
  2810. if (SlabDebug(page))
  2811. printk(KERN_ERR "SLUB %s: SlabDebug set on "
  2812. "slab 0x%p\n", s->name, page);
  2813. }
  2814. }
  2815. static int validate_slab_node(struct kmem_cache *s,
  2816. struct kmem_cache_node *n, unsigned long *map)
  2817. {
  2818. unsigned long count = 0;
  2819. struct page *page;
  2820. unsigned long flags;
  2821. spin_lock_irqsave(&n->list_lock, flags);
  2822. list_for_each_entry(page, &n->partial, lru) {
  2823. validate_slab_slab(s, page, map);
  2824. count++;
  2825. }
  2826. if (count != n->nr_partial)
  2827. printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
  2828. "counter=%ld\n", s->name, count, n->nr_partial);
  2829. if (!(s->flags & SLAB_STORE_USER))
  2830. goto out;
  2831. list_for_each_entry(page, &n->full, lru) {
  2832. validate_slab_slab(s, page, map);
  2833. count++;
  2834. }
  2835. if (count != atomic_long_read(&n->nr_slabs))
  2836. printk(KERN_ERR "SLUB: %s %ld slabs counted but "
  2837. "counter=%ld\n", s->name, count,
  2838. atomic_long_read(&n->nr_slabs));
  2839. out:
  2840. spin_unlock_irqrestore(&n->list_lock, flags);
  2841. return count;
  2842. }
  2843. static long validate_slab_cache(struct kmem_cache *s)
  2844. {
  2845. int node;
  2846. unsigned long count = 0;
  2847. unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
  2848. sizeof(unsigned long), GFP_KERNEL);
  2849. if (!map)
  2850. return -ENOMEM;
  2851. flush_all(s);
  2852. for_each_node_state(node, N_NORMAL_MEMORY) {
  2853. struct kmem_cache_node *n = get_node(s, node);
  2854. count += validate_slab_node(s, n, map);
  2855. }
  2856. kfree(map);
  2857. return count;
  2858. }
  2859. #ifdef SLUB_RESILIENCY_TEST
  2860. static void resiliency_test(void)
  2861. {
  2862. u8 *p;
  2863. printk(KERN_ERR "SLUB resiliency testing\n");
  2864. printk(KERN_ERR "-----------------------\n");
  2865. printk(KERN_ERR "A. Corruption after allocation\n");
  2866. p = kzalloc(16, GFP_KERNEL);
  2867. p[16] = 0x12;
  2868. printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
  2869. " 0x12->0x%p\n\n", p + 16);
  2870. validate_slab_cache(kmalloc_caches + 4);
  2871. /* Hmmm... The next two are dangerous */
  2872. p = kzalloc(32, GFP_KERNEL);
  2873. p[32 + sizeof(void *)] = 0x34;
  2874. printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
  2875. " 0x34 -> -0x%p\n", p);
  2876. printk(KERN_ERR
  2877. "If allocated object is overwritten then not detectable\n\n");
  2878. validate_slab_cache(kmalloc_caches + 5);
  2879. p = kzalloc(64, GFP_KERNEL);
  2880. p += 64 + (get_cycles() & 0xff) * sizeof(void *);
  2881. *p = 0x56;
  2882. printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
  2883. p);
  2884. printk(KERN_ERR
  2885. "If allocated object is overwritten then not detectable\n\n");
  2886. validate_slab_cache(kmalloc_caches + 6);
  2887. printk(KERN_ERR "\nB. Corruption after free\n");
  2888. p = kzalloc(128, GFP_KERNEL);
  2889. kfree(p);
  2890. *p = 0x78;
  2891. printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
  2892. validate_slab_cache(kmalloc_caches + 7);
  2893. p = kzalloc(256, GFP_KERNEL);
  2894. kfree(p);
  2895. p[50] = 0x9a;
  2896. printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
  2897. p);
  2898. validate_slab_cache(kmalloc_caches + 8);
  2899. p = kzalloc(512, GFP_KERNEL);
  2900. kfree(p);
  2901. p[512] = 0xab;
  2902. printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
  2903. validate_slab_cache(kmalloc_caches + 9);
  2904. }
  2905. #else
  2906. static void resiliency_test(void) {};
  2907. #endif
  2908. /*
  2909. * Generate lists of code addresses where slabcache objects are allocated
  2910. * and freed.
  2911. */
  2912. struct location {
  2913. unsigned long count;
  2914. void *addr;
  2915. long long sum_time;
  2916. long min_time;
  2917. long max_time;
  2918. long min_pid;
  2919. long max_pid;
  2920. cpumask_t cpus;
  2921. nodemask_t nodes;
  2922. };
  2923. struct loc_track {
  2924. unsigned long max;
  2925. unsigned long count;
  2926. struct location *loc;
  2927. };
  2928. static void free_loc_track(struct loc_track *t)
  2929. {
  2930. if (t->max)
  2931. free_pages((unsigned long)t->loc,
  2932. get_order(sizeof(struct location) * t->max));
  2933. }
  2934. static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
  2935. {
  2936. struct location *l;
  2937. int order;
  2938. order = get_order(sizeof(struct location) * max);
  2939. l = (void *)__get_free_pages(flags, order);
  2940. if (!l)
  2941. return 0;
  2942. if (t->count) {
  2943. memcpy(l, t->loc, sizeof(struct location) * t->count);
  2944. free_loc_track(t);
  2945. }
  2946. t->max = max;
  2947. t->loc = l;
  2948. return 1;
  2949. }
  2950. static int add_location(struct loc_track *t, struct kmem_cache *s,
  2951. const struct track *track)
  2952. {
  2953. long start, end, pos;
  2954. struct location *l;
  2955. void *caddr;
  2956. unsigned long age = jiffies - track->when;
  2957. start = -1;
  2958. end = t->count;
  2959. for ( ; ; ) {
  2960. pos = start + (end - start + 1) / 2;
  2961. /*
  2962. * There is nothing at "end". If we end up there
  2963. * we need to add something to before end.
  2964. */
  2965. if (pos == end)
  2966. break;
  2967. caddr = t->loc[pos].addr;
  2968. if (track->addr == caddr) {
  2969. l = &t->loc[pos];
  2970. l->count++;
  2971. if (track->when) {
  2972. l->sum_time += age;
  2973. if (age < l->min_time)
  2974. l->min_time = age;
  2975. if (age > l->max_time)
  2976. l->max_time = age;
  2977. if (track->pid < l->min_pid)
  2978. l->min_pid = track->pid;
  2979. if (track->pid > l->max_pid)
  2980. l->max_pid = track->pid;
  2981. cpu_set(track->cpu, l->cpus);
  2982. }
  2983. node_set(page_to_nid(virt_to_page(track)), l->nodes);
  2984. return 1;
  2985. }
  2986. if (track->addr < caddr)
  2987. end = pos;
  2988. else
  2989. start = pos;
  2990. }
  2991. /*
  2992. * Not found. Insert new tracking element.
  2993. */
  2994. if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
  2995. return 0;
  2996. l = t->loc + pos;
  2997. if (pos < t->count)
  2998. memmove(l + 1, l,
  2999. (t->count - pos) * sizeof(struct location));
  3000. t->count++;
  3001. l->count = 1;
  3002. l->addr = track->addr;
  3003. l->sum_time = age;
  3004. l->min_time = age;
  3005. l->max_time = age;
  3006. l->min_pid = track->pid;
  3007. l->max_pid = track->pid;
  3008. cpus_clear(l->cpus);
  3009. cpu_set(track->cpu, l->cpus);
  3010. nodes_clear(l->nodes);
  3011. node_set(page_to_nid(virt_to_page(track)), l->nodes);
  3012. return 1;
  3013. }
  3014. static void process_slab(struct loc_track *t, struct kmem_cache *s,
  3015. struct page *page, enum track_item alloc)
  3016. {
  3017. void *addr = page_address(page);
  3018. DECLARE_BITMAP(map, page->objects);
  3019. void *p;
  3020. bitmap_zero(map, page->objects);
  3021. for_each_free_object(p, s, page->freelist)
  3022. set_bit(slab_index(p, s, addr), map);
  3023. for_each_object(p, s, addr, page->objects)
  3024. if (!test_bit(slab_index(p, s, addr), map))
  3025. add_location(t, s, get_track(s, p, alloc));
  3026. }
  3027. static int list_locations(struct kmem_cache *s, char *buf,
  3028. enum track_item alloc)
  3029. {
  3030. int len = 0;
  3031. unsigned long i;
  3032. struct loc_track t = { 0, 0, NULL };
  3033. int node;
  3034. if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
  3035. GFP_TEMPORARY))
  3036. return sprintf(buf, "Out of memory\n");
  3037. /* Push back cpu slabs */
  3038. flush_all(s);
  3039. for_each_node_state(node, N_NORMAL_MEMORY) {
  3040. struct kmem_cache_node *n = get_node(s, node);
  3041. unsigned long flags;
  3042. struct page *page;
  3043. if (!atomic_long_read(&n->nr_slabs))
  3044. continue;
  3045. spin_lock_irqsave(&n->list_lock, flags);
  3046. list_for_each_entry(page, &n->partial, lru)
  3047. process_slab(&t, s, page, alloc);
  3048. list_for_each_entry(page, &n->full, lru)
  3049. process_slab(&t, s, page, alloc);
  3050. spin_unlock_irqrestore(&n->list_lock, flags);
  3051. }
  3052. for (i = 0; i < t.count; i++) {
  3053. struct location *l = &t.loc[i];
  3054. if (len > PAGE_SIZE - 100)
  3055. break;
  3056. len += sprintf(buf + len, "%7ld ", l->count);
  3057. if (l->addr)
  3058. len += sprint_symbol(buf + len, (unsigned long)l->addr);
  3059. else
  3060. len += sprintf(buf + len, "<not-available>");
  3061. if (l->sum_time != l->min_time) {
  3062. unsigned long remainder;
  3063. len += sprintf(buf + len, " age=%ld/%ld/%ld",
  3064. l->min_time,
  3065. div_long_long_rem(l->sum_time, l->count, &remainder),
  3066. l->max_time);
  3067. } else
  3068. len += sprintf(buf + len, " age=%ld",
  3069. l->min_time);
  3070. if (l->min_pid != l->max_pid)
  3071. len += sprintf(buf + len, " pid=%ld-%ld",
  3072. l->min_pid, l->max_pid);
  3073. else
  3074. len += sprintf(buf + len, " pid=%ld",
  3075. l->min_pid);
  3076. if (num_online_cpus() > 1 && !cpus_empty(l->cpus) &&
  3077. len < PAGE_SIZE - 60) {
  3078. len += sprintf(buf + len, " cpus=");
  3079. len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
  3080. l->cpus);
  3081. }
  3082. if (num_online_nodes() > 1 && !nodes_empty(l->nodes) &&
  3083. len < PAGE_SIZE - 60) {
  3084. len += sprintf(buf + len, " nodes=");
  3085. len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
  3086. l->nodes);
  3087. }
  3088. len += sprintf(buf + len, "\n");
  3089. }
  3090. free_loc_track(&t);
  3091. if (!t.count)
  3092. len += sprintf(buf, "No data\n");
  3093. return len;
  3094. }
  3095. enum slab_stat_type {
  3096. SL_ALL, /* All slabs */
  3097. SL_PARTIAL, /* Only partially allocated slabs */
  3098. SL_CPU, /* Only slabs used for cpu caches */
  3099. SL_OBJECTS, /* Determine allocated objects not slabs */
  3100. SL_TOTAL /* Determine object capacity not slabs */
  3101. };
  3102. #define SO_ALL (1 << SL_ALL)
  3103. #define SO_PARTIAL (1 << SL_PARTIAL)
  3104. #define SO_CPU (1 << SL_CPU)
  3105. #define SO_OBJECTS (1 << SL_OBJECTS)
  3106. #define SO_TOTAL (1 << SL_TOTAL)
  3107. static ssize_t show_slab_objects(struct kmem_cache *s,
  3108. char *buf, unsigned long flags)
  3109. {
  3110. unsigned long total = 0;
  3111. int node;
  3112. int x;
  3113. unsigned long *nodes;
  3114. unsigned long *per_cpu;
  3115. nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
  3116. if (!nodes)
  3117. return -ENOMEM;
  3118. per_cpu = nodes + nr_node_ids;
  3119. if (flags & SO_CPU) {
  3120. int cpu;
  3121. for_each_possible_cpu(cpu) {
  3122. struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
  3123. if (!c || c->node < 0)
  3124. continue;
  3125. if (c->page) {
  3126. if (flags & SO_TOTAL)
  3127. x = c->page->objects;
  3128. else if (flags & SO_OBJECTS)
  3129. x = c->page->inuse;
  3130. else
  3131. x = 1;
  3132. total += x;
  3133. nodes[c->node] += x;
  3134. }
  3135. per_cpu[c->node]++;
  3136. }
  3137. }
  3138. if (flags & SO_ALL) {
  3139. for_each_node_state(node, N_NORMAL_MEMORY) {
  3140. struct kmem_cache_node *n = get_node(s, node);
  3141. if (flags & SO_TOTAL)
  3142. x = atomic_long_read(&n->total_objects);
  3143. else if (flags & SO_OBJECTS)
  3144. x = atomic_long_read(&n->total_objects) -
  3145. count_partial(n, count_free);
  3146. else
  3147. x = atomic_long_read(&n->nr_slabs);
  3148. total += x;
  3149. nodes[node] += x;
  3150. }
  3151. } else if (flags & SO_PARTIAL) {
  3152. for_each_node_state(node, N_NORMAL_MEMORY) {
  3153. struct kmem_cache_node *n = get_node(s, node);
  3154. if (flags & SO_TOTAL)
  3155. x = count_partial(n, count_total);
  3156. else if (flags & SO_OBJECTS)
  3157. x = count_partial(n, count_inuse);
  3158. else
  3159. x = n->nr_partial;
  3160. total += x;
  3161. nodes[node] += x;
  3162. }
  3163. }
  3164. x = sprintf(buf, "%lu", total);
  3165. #ifdef CONFIG_NUMA
  3166. for_each_node_state(node, N_NORMAL_MEMORY)
  3167. if (nodes[node])
  3168. x += sprintf(buf + x, " N%d=%lu",
  3169. node, nodes[node]);
  3170. #endif
  3171. kfree(nodes);
  3172. return x + sprintf(buf + x, "\n");
  3173. }
  3174. static int any_slab_objects(struct kmem_cache *s)
  3175. {
  3176. int node;
  3177. for_each_online_node(node) {
  3178. struct kmem_cache_node *n = get_node(s, node);
  3179. if (!n)
  3180. continue;
  3181. if (atomic_read(&n->total_objects))
  3182. return 1;
  3183. }
  3184. return 0;
  3185. }
  3186. #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
  3187. #define to_slab(n) container_of(n, struct kmem_cache, kobj);
  3188. struct slab_attribute {
  3189. struct attribute attr;
  3190. ssize_t (*show)(struct kmem_cache *s, char *buf);
  3191. ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
  3192. };
  3193. #define SLAB_ATTR_RO(_name) \
  3194. static struct slab_attribute _name##_attr = __ATTR_RO(_name)
  3195. #define SLAB_ATTR(_name) \
  3196. static struct slab_attribute _name##_attr = \
  3197. __ATTR(_name, 0644, _name##_show, _name##_store)
  3198. static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
  3199. {
  3200. return sprintf(buf, "%d\n", s->size);
  3201. }
  3202. SLAB_ATTR_RO(slab_size);
  3203. static ssize_t align_show(struct kmem_cache *s, char *buf)
  3204. {
  3205. return sprintf(buf, "%d\n", s->align);
  3206. }
  3207. SLAB_ATTR_RO(align);
  3208. static ssize_t object_size_show(struct kmem_cache *s, char *buf)
  3209. {
  3210. return sprintf(buf, "%d\n", s->objsize);
  3211. }
  3212. SLAB_ATTR_RO(object_size);
  3213. static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
  3214. {
  3215. return sprintf(buf, "%d\n", oo_objects(s->oo));
  3216. }
  3217. SLAB_ATTR_RO(objs_per_slab);
  3218. static ssize_t order_store(struct kmem_cache *s,
  3219. const char *buf, size_t length)
  3220. {
  3221. int order = simple_strtoul(buf, NULL, 10);
  3222. if (order > slub_max_order || order < slub_min_order)
  3223. return -EINVAL;
  3224. calculate_sizes(s, order);
  3225. return length;
  3226. }
  3227. static ssize_t order_show(struct kmem_cache *s, char *buf)
  3228. {
  3229. return sprintf(buf, "%d\n", oo_order(s->oo));
  3230. }
  3231. SLAB_ATTR(order);
  3232. static ssize_t ctor_show(struct kmem_cache *s, char *buf)
  3233. {
  3234. if (s->ctor) {
  3235. int n = sprint_symbol(buf, (unsigned long)s->ctor);
  3236. return n + sprintf(buf + n, "\n");
  3237. }
  3238. return 0;
  3239. }
  3240. SLAB_ATTR_RO(ctor);
  3241. static ssize_t aliases_show(struct kmem_cache *s, char *buf)
  3242. {
  3243. return sprintf(buf, "%d\n", s->refcount - 1);
  3244. }
  3245. SLAB_ATTR_RO(aliases);
  3246. static ssize_t slabs_show(struct kmem_cache *s, char *buf)
  3247. {
  3248. return show_slab_objects(s, buf, SO_ALL);
  3249. }
  3250. SLAB_ATTR_RO(slabs);
  3251. static ssize_t partial_show(struct kmem_cache *s, char *buf)
  3252. {
  3253. return show_slab_objects(s, buf, SO_PARTIAL);
  3254. }
  3255. SLAB_ATTR_RO(partial);
  3256. static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
  3257. {
  3258. return show_slab_objects(s, buf, SO_CPU);
  3259. }
  3260. SLAB_ATTR_RO(cpu_slabs);
  3261. static ssize_t objects_show(struct kmem_cache *s, char *buf)
  3262. {
  3263. return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
  3264. }
  3265. SLAB_ATTR_RO(objects);
  3266. static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
  3267. {
  3268. return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
  3269. }
  3270. SLAB_ATTR_RO(objects_partial);
  3271. static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
  3272. {
  3273. return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
  3274. }
  3275. SLAB_ATTR_RO(total_objects);
  3276. static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
  3277. {
  3278. return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
  3279. }
  3280. static ssize_t sanity_checks_store(struct kmem_cache *s,
  3281. const char *buf, size_t length)
  3282. {
  3283. s->flags &= ~SLAB_DEBUG_FREE;
  3284. if (buf[0] == '1')
  3285. s->flags |= SLAB_DEBUG_FREE;
  3286. return length;
  3287. }
  3288. SLAB_ATTR(sanity_checks);
  3289. static ssize_t trace_show(struct kmem_cache *s, char *buf)
  3290. {
  3291. return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
  3292. }
  3293. static ssize_t trace_store(struct kmem_cache *s, const char *buf,
  3294. size_t length)
  3295. {
  3296. s->flags &= ~SLAB_TRACE;
  3297. if (buf[0] == '1')
  3298. s->flags |= SLAB_TRACE;
  3299. return length;
  3300. }
  3301. SLAB_ATTR(trace);
  3302. static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
  3303. {
  3304. return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
  3305. }
  3306. static ssize_t reclaim_account_store(struct kmem_cache *s,
  3307. const char *buf, size_t length)
  3308. {
  3309. s->flags &= ~SLAB_RECLAIM_ACCOUNT;
  3310. if (buf[0] == '1')
  3311. s->flags |= SLAB_RECLAIM_ACCOUNT;
  3312. return length;
  3313. }
  3314. SLAB_ATTR(reclaim_account);
  3315. static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
  3316. {
  3317. return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
  3318. }
  3319. SLAB_ATTR_RO(hwcache_align);
  3320. #ifdef CONFIG_ZONE_DMA
  3321. static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
  3322. {
  3323. return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
  3324. }
  3325. SLAB_ATTR_RO(cache_dma);
  3326. #endif
  3327. static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
  3328. {
  3329. return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
  3330. }
  3331. SLAB_ATTR_RO(destroy_by_rcu);
  3332. static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
  3333. {
  3334. return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
  3335. }
  3336. static ssize_t red_zone_store(struct kmem_cache *s,
  3337. const char *buf, size_t length)
  3338. {
  3339. if (any_slab_objects(s))
  3340. return -EBUSY;
  3341. s->flags &= ~SLAB_RED_ZONE;
  3342. if (buf[0] == '1')
  3343. s->flags |= SLAB_RED_ZONE;
  3344. calculate_sizes(s, -1);
  3345. return length;
  3346. }
  3347. SLAB_ATTR(red_zone);
  3348. static ssize_t poison_show(struct kmem_cache *s, char *buf)
  3349. {
  3350. return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
  3351. }
  3352. static ssize_t poison_store(struct kmem_cache *s,
  3353. const char *buf, size_t length)
  3354. {
  3355. if (any_slab_objects(s))
  3356. return -EBUSY;
  3357. s->flags &= ~SLAB_POISON;
  3358. if (buf[0] == '1')
  3359. s->flags |= SLAB_POISON;
  3360. calculate_sizes(s, -1);
  3361. return length;
  3362. }
  3363. SLAB_ATTR(poison);
  3364. static ssize_t store_user_show(struct kmem_cache *s, char *buf)
  3365. {
  3366. return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
  3367. }
  3368. static ssize_t store_user_store(struct kmem_cache *s,
  3369. const char *buf, size_t length)
  3370. {
  3371. if (any_slab_objects(s))
  3372. return -EBUSY;
  3373. s->flags &= ~SLAB_STORE_USER;
  3374. if (buf[0] == '1')
  3375. s->flags |= SLAB_STORE_USER;
  3376. calculate_sizes(s, -1);
  3377. return length;
  3378. }
  3379. SLAB_ATTR(store_user);
  3380. static ssize_t validate_show(struct kmem_cache *s, char *buf)
  3381. {
  3382. return 0;
  3383. }
  3384. static ssize_t validate_store(struct kmem_cache *s,
  3385. const char *buf, size_t length)
  3386. {
  3387. int ret = -EINVAL;
  3388. if (buf[0] == '1') {
  3389. ret = validate_slab_cache(s);
  3390. if (ret >= 0)
  3391. ret = length;
  3392. }
  3393. return ret;
  3394. }
  3395. SLAB_ATTR(validate);
  3396. static ssize_t shrink_show(struct kmem_cache *s, char *buf)
  3397. {
  3398. return 0;
  3399. }
  3400. static ssize_t shrink_store(struct kmem_cache *s,
  3401. const char *buf, size_t length)
  3402. {
  3403. if (buf[0] == '1') {
  3404. int rc = kmem_cache_shrink(s);
  3405. if (rc)
  3406. return rc;
  3407. } else
  3408. return -EINVAL;
  3409. return length;
  3410. }
  3411. SLAB_ATTR(shrink);
  3412. static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
  3413. {
  3414. if (!(s->flags & SLAB_STORE_USER))
  3415. return -ENOSYS;
  3416. return list_locations(s, buf, TRACK_ALLOC);
  3417. }
  3418. SLAB_ATTR_RO(alloc_calls);
  3419. static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
  3420. {
  3421. if (!(s->flags & SLAB_STORE_USER))
  3422. return -ENOSYS;
  3423. return list_locations(s, buf, TRACK_FREE);
  3424. }
  3425. SLAB_ATTR_RO(free_calls);
  3426. #ifdef CONFIG_NUMA
  3427. static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
  3428. {
  3429. return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
  3430. }
  3431. static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
  3432. const char *buf, size_t length)
  3433. {
  3434. int n = simple_strtoul(buf, NULL, 10);
  3435. if (n < 100)
  3436. s->remote_node_defrag_ratio = n * 10;
  3437. return length;
  3438. }
  3439. SLAB_ATTR(remote_node_defrag_ratio);
  3440. #endif
  3441. #ifdef CONFIG_SLUB_STATS
  3442. static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
  3443. {
  3444. unsigned long sum = 0;
  3445. int cpu;
  3446. int len;
  3447. int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
  3448. if (!data)
  3449. return -ENOMEM;
  3450. for_each_online_cpu(cpu) {
  3451. unsigned x = get_cpu_slab(s, cpu)->stat[si];
  3452. data[cpu] = x;
  3453. sum += x;
  3454. }
  3455. len = sprintf(buf, "%lu", sum);
  3456. #ifdef CONFIG_SMP
  3457. for_each_online_cpu(cpu) {
  3458. if (data[cpu] && len < PAGE_SIZE - 20)
  3459. len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
  3460. }
  3461. #endif
  3462. kfree(data);
  3463. return len + sprintf(buf + len, "\n");
  3464. }
  3465. #define STAT_ATTR(si, text) \
  3466. static ssize_t text##_show(struct kmem_cache *s, char *buf) \
  3467. { \
  3468. return show_stat(s, buf, si); \
  3469. } \
  3470. SLAB_ATTR_RO(text); \
  3471. STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
  3472. STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
  3473. STAT_ATTR(FREE_FASTPATH, free_fastpath);
  3474. STAT_ATTR(FREE_SLOWPATH, free_slowpath);
  3475. STAT_ATTR(FREE_FROZEN, free_frozen);
  3476. STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
  3477. STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
  3478. STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
  3479. STAT_ATTR(ALLOC_SLAB, alloc_slab);
  3480. STAT_ATTR(ALLOC_REFILL, alloc_refill);
  3481. STAT_ATTR(FREE_SLAB, free_slab);
  3482. STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
  3483. STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
  3484. STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
  3485. STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
  3486. STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
  3487. STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
  3488. STAT_ATTR(ORDER_FALLBACK, order_fallback);
  3489. #endif
  3490. static struct attribute *slab_attrs[] = {
  3491. &slab_size_attr.attr,
  3492. &object_size_attr.attr,
  3493. &objs_per_slab_attr.attr,
  3494. &order_attr.attr,
  3495. &objects_attr.attr,
  3496. &objects_partial_attr.attr,
  3497. &total_objects_attr.attr,
  3498. &slabs_attr.attr,
  3499. &partial_attr.attr,
  3500. &cpu_slabs_attr.attr,
  3501. &ctor_attr.attr,
  3502. &aliases_attr.attr,
  3503. &align_attr.attr,
  3504. &sanity_checks_attr.attr,
  3505. &trace_attr.attr,
  3506. &hwcache_align_attr.attr,
  3507. &reclaim_account_attr.attr,
  3508. &destroy_by_rcu_attr.attr,
  3509. &red_zone_attr.attr,
  3510. &poison_attr.attr,
  3511. &store_user_attr.attr,
  3512. &validate_attr.attr,
  3513. &shrink_attr.attr,
  3514. &alloc_calls_attr.attr,
  3515. &free_calls_attr.attr,
  3516. #ifdef CONFIG_ZONE_DMA
  3517. &cache_dma_attr.attr,
  3518. #endif
  3519. #ifdef CONFIG_NUMA
  3520. &remote_node_defrag_ratio_attr.attr,
  3521. #endif
  3522. #ifdef CONFIG_SLUB_STATS
  3523. &alloc_fastpath_attr.attr,
  3524. &alloc_slowpath_attr.attr,
  3525. &free_fastpath_attr.attr,
  3526. &free_slowpath_attr.attr,
  3527. &free_frozen_attr.attr,
  3528. &free_add_partial_attr.attr,
  3529. &free_remove_partial_attr.attr,
  3530. &alloc_from_partial_attr.attr,
  3531. &alloc_slab_attr.attr,
  3532. &alloc_refill_attr.attr,
  3533. &free_slab_attr.attr,
  3534. &cpuslab_flush_attr.attr,
  3535. &deactivate_full_attr.attr,
  3536. &deactivate_empty_attr.attr,
  3537. &deactivate_to_head_attr.attr,
  3538. &deactivate_to_tail_attr.attr,
  3539. &deactivate_remote_frees_attr.attr,
  3540. &order_fallback_attr.attr,
  3541. #endif
  3542. NULL
  3543. };
  3544. static struct attribute_group slab_attr_group = {
  3545. .attrs = slab_attrs,
  3546. };
  3547. static ssize_t slab_attr_show(struct kobject *kobj,
  3548. struct attribute *attr,
  3549. char *buf)
  3550. {
  3551. struct slab_attribute *attribute;
  3552. struct kmem_cache *s;
  3553. int err;
  3554. attribute = to_slab_attr(attr);
  3555. s = to_slab(kobj);
  3556. if (!attribute->show)
  3557. return -EIO;
  3558. err = attribute->show(s, buf);
  3559. return err;
  3560. }
  3561. static ssize_t slab_attr_store(struct kobject *kobj,
  3562. struct attribute *attr,
  3563. const char *buf, size_t len)
  3564. {
  3565. struct slab_attribute *attribute;
  3566. struct kmem_cache *s;
  3567. int err;
  3568. attribute = to_slab_attr(attr);
  3569. s = to_slab(kobj);
  3570. if (!attribute->store)
  3571. return -EIO;
  3572. err = attribute->store(s, buf, len);
  3573. return err;
  3574. }
  3575. static void kmem_cache_release(struct kobject *kobj)
  3576. {
  3577. struct kmem_cache *s = to_slab(kobj);
  3578. kfree(s);
  3579. }
  3580. static struct sysfs_ops slab_sysfs_ops = {
  3581. .show = slab_attr_show,
  3582. .store = slab_attr_store,
  3583. };
  3584. static struct kobj_type slab_ktype = {
  3585. .sysfs_ops = &slab_sysfs_ops,
  3586. .release = kmem_cache_release
  3587. };
  3588. static int uevent_filter(struct kset *kset, struct kobject *kobj)
  3589. {
  3590. struct kobj_type *ktype = get_ktype(kobj);
  3591. if (ktype == &slab_ktype)
  3592. return 1;
  3593. return 0;
  3594. }
  3595. static struct kset_uevent_ops slab_uevent_ops = {
  3596. .filter = uevent_filter,
  3597. };
  3598. static struct kset *slab_kset;
  3599. #define ID_STR_LENGTH 64
  3600. /* Create a unique string id for a slab cache:
  3601. *
  3602. * Format :[flags-]size
  3603. */
  3604. static char *create_unique_id(struct kmem_cache *s)
  3605. {
  3606. char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
  3607. char *p = name;
  3608. BUG_ON(!name);
  3609. *p++ = ':';
  3610. /*
  3611. * First flags affecting slabcache operations. We will only
  3612. * get here for aliasable slabs so we do not need to support
  3613. * too many flags. The flags here must cover all flags that
  3614. * are matched during merging to guarantee that the id is
  3615. * unique.
  3616. */
  3617. if (s->flags & SLAB_CACHE_DMA)
  3618. *p++ = 'd';
  3619. if (s->flags & SLAB_RECLAIM_ACCOUNT)
  3620. *p++ = 'a';
  3621. if (s->flags & SLAB_DEBUG_FREE)
  3622. *p++ = 'F';
  3623. if (p != name + 1)
  3624. *p++ = '-';
  3625. p += sprintf(p, "%07d", s->size);
  3626. BUG_ON(p > name + ID_STR_LENGTH - 1);
  3627. return name;
  3628. }
  3629. static int sysfs_slab_add(struct kmem_cache *s)
  3630. {
  3631. int err;
  3632. const char *name;
  3633. int unmergeable;
  3634. if (slab_state < SYSFS)
  3635. /* Defer until later */
  3636. return 0;
  3637. unmergeable = slab_unmergeable(s);
  3638. if (unmergeable) {
  3639. /*
  3640. * Slabcache can never be merged so we can use the name proper.
  3641. * This is typically the case for debug situations. In that
  3642. * case we can catch duplicate names easily.
  3643. */
  3644. sysfs_remove_link(&slab_kset->kobj, s->name);
  3645. name = s->name;
  3646. } else {
  3647. /*
  3648. * Create a unique name for the slab as a target
  3649. * for the symlinks.
  3650. */
  3651. name = create_unique_id(s);
  3652. }
  3653. s->kobj.kset = slab_kset;
  3654. err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
  3655. if (err) {
  3656. kobject_put(&s->kobj);
  3657. return err;
  3658. }
  3659. err = sysfs_create_group(&s->kobj, &slab_attr_group);
  3660. if (err)
  3661. return err;
  3662. kobject_uevent(&s->kobj, KOBJ_ADD);
  3663. if (!unmergeable) {
  3664. /* Setup first alias */
  3665. sysfs_slab_alias(s, s->name);
  3666. kfree(name);
  3667. }
  3668. return 0;
  3669. }
  3670. static void sysfs_slab_remove(struct kmem_cache *s)
  3671. {
  3672. kobject_uevent(&s->kobj, KOBJ_REMOVE);
  3673. kobject_del(&s->kobj);
  3674. kobject_put(&s->kobj);
  3675. }
  3676. /*
  3677. * Need to buffer aliases during bootup until sysfs becomes
  3678. * available lest we loose that information.
  3679. */
  3680. struct saved_alias {
  3681. struct kmem_cache *s;
  3682. const char *name;
  3683. struct saved_alias *next;
  3684. };
  3685. static struct saved_alias *alias_list;
  3686. static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
  3687. {
  3688. struct saved_alias *al;
  3689. if (slab_state == SYSFS) {
  3690. /*
  3691. * If we have a leftover link then remove it.
  3692. */
  3693. sysfs_remove_link(&slab_kset->kobj, name);
  3694. return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
  3695. }
  3696. al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
  3697. if (!al)
  3698. return -ENOMEM;
  3699. al->s = s;
  3700. al->name = name;
  3701. al->next = alias_list;
  3702. alias_list = al;
  3703. return 0;
  3704. }
  3705. static int __init slab_sysfs_init(void)
  3706. {
  3707. struct kmem_cache *s;
  3708. int err;
  3709. slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
  3710. if (!slab_kset) {
  3711. printk(KERN_ERR "Cannot register slab subsystem.\n");
  3712. return -ENOSYS;
  3713. }
  3714. slab_state = SYSFS;
  3715. list_for_each_entry(s, &slab_caches, list) {
  3716. err = sysfs_slab_add(s);
  3717. if (err)
  3718. printk(KERN_ERR "SLUB: Unable to add boot slab %s"
  3719. " to sysfs\n", s->name);
  3720. }
  3721. while (alias_list) {
  3722. struct saved_alias *al = alias_list;
  3723. alias_list = alias_list->next;
  3724. err = sysfs_slab_alias(al->s, al->name);
  3725. if (err)
  3726. printk(KERN_ERR "SLUB: Unable to add boot slab alias"
  3727. " %s to sysfs\n", s->name);
  3728. kfree(al);
  3729. }
  3730. resiliency_test();
  3731. return 0;
  3732. }
  3733. __initcall(slab_sysfs_init);
  3734. #endif
  3735. /*
  3736. * The /proc/slabinfo ABI
  3737. */
  3738. #ifdef CONFIG_SLABINFO
  3739. ssize_t slabinfo_write(struct file *file, const char __user * buffer,
  3740. size_t count, loff_t *ppos)
  3741. {
  3742. return -EINVAL;
  3743. }
  3744. static void print_slabinfo_header(struct seq_file *m)
  3745. {
  3746. seq_puts(m, "slabinfo - version: 2.1\n");
  3747. seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
  3748. "<objperslab> <pagesperslab>");
  3749. seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
  3750. seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
  3751. seq_putc(m, '\n');
  3752. }
  3753. static void *s_start(struct seq_file *m, loff_t *pos)
  3754. {
  3755. loff_t n = *pos;
  3756. down_read(&slub_lock);
  3757. if (!n)
  3758. print_slabinfo_header(m);
  3759. return seq_list_start(&slab_caches, *pos);
  3760. }
  3761. static void *s_next(struct seq_file *m, void *p, loff_t *pos)
  3762. {
  3763. return seq_list_next(p, &slab_caches, pos);
  3764. }
  3765. static void s_stop(struct seq_file *m, void *p)
  3766. {
  3767. up_read(&slub_lock);
  3768. }
  3769. static int s_show(struct seq_file *m, void *p)
  3770. {
  3771. unsigned long nr_partials = 0;
  3772. unsigned long nr_slabs = 0;
  3773. unsigned long nr_inuse = 0;
  3774. unsigned long nr_objs = 0;
  3775. unsigned long nr_free = 0;
  3776. struct kmem_cache *s;
  3777. int node;
  3778. s = list_entry(p, struct kmem_cache, list);
  3779. for_each_online_node(node) {
  3780. struct kmem_cache_node *n = get_node(s, node);
  3781. if (!n)
  3782. continue;
  3783. nr_partials += n->nr_partial;
  3784. nr_slabs += atomic_long_read(&n->nr_slabs);
  3785. nr_objs += atomic_long_read(&n->total_objects);
  3786. nr_free += count_partial(n, count_free);
  3787. }
  3788. nr_inuse = nr_objs - nr_free;
  3789. seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
  3790. nr_objs, s->size, oo_objects(s->oo),
  3791. (1 << oo_order(s->oo)));
  3792. seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
  3793. seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
  3794. 0UL);
  3795. seq_putc(m, '\n');
  3796. return 0;
  3797. }
  3798. const struct seq_operations slabinfo_op = {
  3799. .start = s_start,
  3800. .next = s_next,
  3801. .stop = s_stop,
  3802. .show = s_show,
  3803. };
  3804. #endif /* CONFIG_SLABINFO */