ctree.c 113 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418
  1. /*
  2. * Copyright (C) 2007,2008 Oracle. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public
  6. * License v2 as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public
  14. * License along with this program; if not, write to the
  15. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16. * Boston, MA 021110-1307, USA.
  17. */
  18. #include <linux/sched.h>
  19. #include <linux/slab.h>
  20. #include "ctree.h"
  21. #include "disk-io.h"
  22. #include "transaction.h"
  23. #include "print-tree.h"
  24. #include "locking.h"
  25. static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
  26. *root, struct btrfs_path *path, int level);
  27. static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
  28. *root, struct btrfs_key *ins_key,
  29. struct btrfs_path *path, int data_size, int extend);
  30. static int push_node_left(struct btrfs_trans_handle *trans,
  31. struct btrfs_root *root, struct extent_buffer *dst,
  32. struct extent_buffer *src, int empty);
  33. static int balance_node_right(struct btrfs_trans_handle *trans,
  34. struct btrfs_root *root,
  35. struct extent_buffer *dst_buf,
  36. struct extent_buffer *src_buf);
  37. static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  38. struct btrfs_path *path, int level, int slot);
  39. struct btrfs_path *btrfs_alloc_path(void)
  40. {
  41. struct btrfs_path *path;
  42. path = kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
  43. return path;
  44. }
  45. /*
  46. * set all locked nodes in the path to blocking locks. This should
  47. * be done before scheduling
  48. */
  49. noinline void btrfs_set_path_blocking(struct btrfs_path *p)
  50. {
  51. int i;
  52. for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
  53. if (!p->nodes[i] || !p->locks[i])
  54. continue;
  55. btrfs_set_lock_blocking_rw(p->nodes[i], p->locks[i]);
  56. if (p->locks[i] == BTRFS_READ_LOCK)
  57. p->locks[i] = BTRFS_READ_LOCK_BLOCKING;
  58. else if (p->locks[i] == BTRFS_WRITE_LOCK)
  59. p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING;
  60. }
  61. }
  62. /*
  63. * reset all the locked nodes in the patch to spinning locks.
  64. *
  65. * held is used to keep lockdep happy, when lockdep is enabled
  66. * we set held to a blocking lock before we go around and
  67. * retake all the spinlocks in the path. You can safely use NULL
  68. * for held
  69. */
  70. noinline void btrfs_clear_path_blocking(struct btrfs_path *p,
  71. struct extent_buffer *held, int held_rw)
  72. {
  73. int i;
  74. #ifdef CONFIG_DEBUG_LOCK_ALLOC
  75. /* lockdep really cares that we take all of these spinlocks
  76. * in the right order. If any of the locks in the path are not
  77. * currently blocking, it is going to complain. So, make really
  78. * really sure by forcing the path to blocking before we clear
  79. * the path blocking.
  80. */
  81. if (held) {
  82. btrfs_set_lock_blocking_rw(held, held_rw);
  83. if (held_rw == BTRFS_WRITE_LOCK)
  84. held_rw = BTRFS_WRITE_LOCK_BLOCKING;
  85. else if (held_rw == BTRFS_READ_LOCK)
  86. held_rw = BTRFS_READ_LOCK_BLOCKING;
  87. }
  88. btrfs_set_path_blocking(p);
  89. #endif
  90. for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) {
  91. if (p->nodes[i] && p->locks[i]) {
  92. btrfs_clear_lock_blocking_rw(p->nodes[i], p->locks[i]);
  93. if (p->locks[i] == BTRFS_WRITE_LOCK_BLOCKING)
  94. p->locks[i] = BTRFS_WRITE_LOCK;
  95. else if (p->locks[i] == BTRFS_READ_LOCK_BLOCKING)
  96. p->locks[i] = BTRFS_READ_LOCK;
  97. }
  98. }
  99. #ifdef CONFIG_DEBUG_LOCK_ALLOC
  100. if (held)
  101. btrfs_clear_lock_blocking_rw(held, held_rw);
  102. #endif
  103. }
  104. /* this also releases the path */
  105. void btrfs_free_path(struct btrfs_path *p)
  106. {
  107. if (!p)
  108. return;
  109. btrfs_release_path(p);
  110. kmem_cache_free(btrfs_path_cachep, p);
  111. }
  112. /*
  113. * path release drops references on the extent buffers in the path
  114. * and it drops any locks held by this path
  115. *
  116. * It is safe to call this on paths that no locks or extent buffers held.
  117. */
  118. noinline void btrfs_release_path(struct btrfs_path *p)
  119. {
  120. int i;
  121. for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
  122. p->slots[i] = 0;
  123. if (!p->nodes[i])
  124. continue;
  125. if (p->locks[i]) {
  126. btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
  127. p->locks[i] = 0;
  128. }
  129. free_extent_buffer(p->nodes[i]);
  130. p->nodes[i] = NULL;
  131. }
  132. }
  133. /*
  134. * safely gets a reference on the root node of a tree. A lock
  135. * is not taken, so a concurrent writer may put a different node
  136. * at the root of the tree. See btrfs_lock_root_node for the
  137. * looping required.
  138. *
  139. * The extent buffer returned by this has a reference taken, so
  140. * it won't disappear. It may stop being the root of the tree
  141. * at any time because there are no locks held.
  142. */
  143. struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
  144. {
  145. struct extent_buffer *eb;
  146. while (1) {
  147. rcu_read_lock();
  148. eb = rcu_dereference(root->node);
  149. /*
  150. * RCU really hurts here, we could free up the root node because
  151. * it was cow'ed but we may not get the new root node yet so do
  152. * the inc_not_zero dance and if it doesn't work then
  153. * synchronize_rcu and try again.
  154. */
  155. if (atomic_inc_not_zero(&eb->refs)) {
  156. rcu_read_unlock();
  157. break;
  158. }
  159. rcu_read_unlock();
  160. synchronize_rcu();
  161. }
  162. return eb;
  163. }
  164. /* loop around taking references on and locking the root node of the
  165. * tree until you end up with a lock on the root. A locked buffer
  166. * is returned, with a reference held.
  167. */
  168. struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
  169. {
  170. struct extent_buffer *eb;
  171. while (1) {
  172. eb = btrfs_root_node(root);
  173. btrfs_tree_lock(eb);
  174. if (eb == root->node)
  175. break;
  176. btrfs_tree_unlock(eb);
  177. free_extent_buffer(eb);
  178. }
  179. return eb;
  180. }
  181. /* loop around taking references on and locking the root node of the
  182. * tree until you end up with a lock on the root. A locked buffer
  183. * is returned, with a reference held.
  184. */
  185. struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root)
  186. {
  187. struct extent_buffer *eb;
  188. while (1) {
  189. eb = btrfs_root_node(root);
  190. btrfs_tree_read_lock(eb);
  191. if (eb == root->node)
  192. break;
  193. btrfs_tree_read_unlock(eb);
  194. free_extent_buffer(eb);
  195. }
  196. return eb;
  197. }
  198. /* cowonly root (everything not a reference counted cow subvolume), just get
  199. * put onto a simple dirty list. transaction.c walks this to make sure they
  200. * get properly updated on disk.
  201. */
  202. static void add_root_to_dirty_list(struct btrfs_root *root)
  203. {
  204. if (root->track_dirty && list_empty(&root->dirty_list)) {
  205. list_add(&root->dirty_list,
  206. &root->fs_info->dirty_cowonly_roots);
  207. }
  208. }
  209. /*
  210. * used by snapshot creation to make a copy of a root for a tree with
  211. * a given objectid. The buffer with the new root node is returned in
  212. * cow_ret, and this func returns zero on success or a negative error code.
  213. */
  214. int btrfs_copy_root(struct btrfs_trans_handle *trans,
  215. struct btrfs_root *root,
  216. struct extent_buffer *buf,
  217. struct extent_buffer **cow_ret, u64 new_root_objectid)
  218. {
  219. struct extent_buffer *cow;
  220. int ret = 0;
  221. int level;
  222. struct btrfs_disk_key disk_key;
  223. WARN_ON(root->ref_cows && trans->transid !=
  224. root->fs_info->running_transaction->transid);
  225. WARN_ON(root->ref_cows && trans->transid != root->last_trans);
  226. level = btrfs_header_level(buf);
  227. if (level == 0)
  228. btrfs_item_key(buf, &disk_key, 0);
  229. else
  230. btrfs_node_key(buf, &disk_key, 0);
  231. cow = btrfs_alloc_free_block(trans, root, buf->len, 0,
  232. new_root_objectid, &disk_key, level,
  233. buf->start, 0, 1);
  234. if (IS_ERR(cow))
  235. return PTR_ERR(cow);
  236. copy_extent_buffer(cow, buf, 0, 0, cow->len);
  237. btrfs_set_header_bytenr(cow, cow->start);
  238. btrfs_set_header_generation(cow, trans->transid);
  239. btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
  240. btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
  241. BTRFS_HEADER_FLAG_RELOC);
  242. if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
  243. btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
  244. else
  245. btrfs_set_header_owner(cow, new_root_objectid);
  246. write_extent_buffer(cow, root->fs_info->fsid,
  247. (unsigned long)btrfs_header_fsid(cow),
  248. BTRFS_FSID_SIZE);
  249. WARN_ON(btrfs_header_generation(buf) > trans->transid);
  250. if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
  251. ret = btrfs_inc_ref(trans, root, cow, 1, 1);
  252. else
  253. ret = btrfs_inc_ref(trans, root, cow, 0, 1);
  254. if (ret)
  255. return ret;
  256. btrfs_mark_buffer_dirty(cow);
  257. *cow_ret = cow;
  258. return 0;
  259. }
  260. /*
  261. * check if the tree block can be shared by multiple trees
  262. */
  263. int btrfs_block_can_be_shared(struct btrfs_root *root,
  264. struct extent_buffer *buf)
  265. {
  266. /*
  267. * Tree blocks not in refernece counted trees and tree roots
  268. * are never shared. If a block was allocated after the last
  269. * snapshot and the block was not allocated by tree relocation,
  270. * we know the block is not shared.
  271. */
  272. if (root->ref_cows &&
  273. buf != root->node && buf != root->commit_root &&
  274. (btrfs_header_generation(buf) <=
  275. btrfs_root_last_snapshot(&root->root_item) ||
  276. btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
  277. return 1;
  278. #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
  279. if (root->ref_cows &&
  280. btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
  281. return 1;
  282. #endif
  283. return 0;
  284. }
  285. static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
  286. struct btrfs_root *root,
  287. struct extent_buffer *buf,
  288. struct extent_buffer *cow,
  289. int *last_ref)
  290. {
  291. u64 refs;
  292. u64 owner;
  293. u64 flags;
  294. u64 new_flags = 0;
  295. int ret;
  296. /*
  297. * Backrefs update rules:
  298. *
  299. * Always use full backrefs for extent pointers in tree block
  300. * allocated by tree relocation.
  301. *
  302. * If a shared tree block is no longer referenced by its owner
  303. * tree (btrfs_header_owner(buf) == root->root_key.objectid),
  304. * use full backrefs for extent pointers in tree block.
  305. *
  306. * If a tree block is been relocating
  307. * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
  308. * use full backrefs for extent pointers in tree block.
  309. * The reason for this is some operations (such as drop tree)
  310. * are only allowed for blocks use full backrefs.
  311. */
  312. if (btrfs_block_can_be_shared(root, buf)) {
  313. ret = btrfs_lookup_extent_info(trans, root, buf->start,
  314. buf->len, &refs, &flags);
  315. BUG_ON(ret);
  316. BUG_ON(refs == 0);
  317. } else {
  318. refs = 1;
  319. if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
  320. btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
  321. flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
  322. else
  323. flags = 0;
  324. }
  325. owner = btrfs_header_owner(buf);
  326. BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
  327. !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
  328. if (refs > 1) {
  329. if ((owner == root->root_key.objectid ||
  330. root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
  331. !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
  332. ret = btrfs_inc_ref(trans, root, buf, 1, 1);
  333. BUG_ON(ret);
  334. if (root->root_key.objectid ==
  335. BTRFS_TREE_RELOC_OBJECTID) {
  336. ret = btrfs_dec_ref(trans, root, buf, 0, 1);
  337. BUG_ON(ret);
  338. ret = btrfs_inc_ref(trans, root, cow, 1, 1);
  339. BUG_ON(ret);
  340. }
  341. new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
  342. } else {
  343. if (root->root_key.objectid ==
  344. BTRFS_TREE_RELOC_OBJECTID)
  345. ret = btrfs_inc_ref(trans, root, cow, 1, 1);
  346. else
  347. ret = btrfs_inc_ref(trans, root, cow, 0, 1);
  348. BUG_ON(ret);
  349. }
  350. if (new_flags != 0) {
  351. ret = btrfs_set_disk_extent_flags(trans, root,
  352. buf->start,
  353. buf->len,
  354. new_flags, 0);
  355. BUG_ON(ret);
  356. }
  357. } else {
  358. if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
  359. if (root->root_key.objectid ==
  360. BTRFS_TREE_RELOC_OBJECTID)
  361. ret = btrfs_inc_ref(trans, root, cow, 1, 1);
  362. else
  363. ret = btrfs_inc_ref(trans, root, cow, 0, 1);
  364. BUG_ON(ret);
  365. ret = btrfs_dec_ref(trans, root, buf, 1, 1);
  366. BUG_ON(ret);
  367. }
  368. clean_tree_block(trans, root, buf);
  369. *last_ref = 1;
  370. }
  371. return 0;
  372. }
  373. /*
  374. * does the dirty work in cow of a single block. The parent block (if
  375. * supplied) is updated to point to the new cow copy. The new buffer is marked
  376. * dirty and returned locked. If you modify the block it needs to be marked
  377. * dirty again.
  378. *
  379. * search_start -- an allocation hint for the new block
  380. *
  381. * empty_size -- a hint that you plan on doing more cow. This is the size in
  382. * bytes the allocator should try to find free next to the block it returns.
  383. * This is just a hint and may be ignored by the allocator.
  384. */
  385. static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
  386. struct btrfs_root *root,
  387. struct extent_buffer *buf,
  388. struct extent_buffer *parent, int parent_slot,
  389. struct extent_buffer **cow_ret,
  390. u64 search_start, u64 empty_size)
  391. {
  392. struct btrfs_disk_key disk_key;
  393. struct extent_buffer *cow;
  394. int level;
  395. int last_ref = 0;
  396. int unlock_orig = 0;
  397. u64 parent_start;
  398. if (*cow_ret == buf)
  399. unlock_orig = 1;
  400. btrfs_assert_tree_locked(buf);
  401. WARN_ON(root->ref_cows && trans->transid !=
  402. root->fs_info->running_transaction->transid);
  403. WARN_ON(root->ref_cows && trans->transid != root->last_trans);
  404. level = btrfs_header_level(buf);
  405. if (level == 0)
  406. btrfs_item_key(buf, &disk_key, 0);
  407. else
  408. btrfs_node_key(buf, &disk_key, 0);
  409. if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
  410. if (parent)
  411. parent_start = parent->start;
  412. else
  413. parent_start = 0;
  414. } else
  415. parent_start = 0;
  416. cow = btrfs_alloc_free_block(trans, root, buf->len, parent_start,
  417. root->root_key.objectid, &disk_key,
  418. level, search_start, empty_size, 1);
  419. if (IS_ERR(cow))
  420. return PTR_ERR(cow);
  421. /* cow is set to blocking by btrfs_init_new_buffer */
  422. copy_extent_buffer(cow, buf, 0, 0, cow->len);
  423. btrfs_set_header_bytenr(cow, cow->start);
  424. btrfs_set_header_generation(cow, trans->transid);
  425. btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
  426. btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
  427. BTRFS_HEADER_FLAG_RELOC);
  428. if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
  429. btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
  430. else
  431. btrfs_set_header_owner(cow, root->root_key.objectid);
  432. write_extent_buffer(cow, root->fs_info->fsid,
  433. (unsigned long)btrfs_header_fsid(cow),
  434. BTRFS_FSID_SIZE);
  435. update_ref_for_cow(trans, root, buf, cow, &last_ref);
  436. if (root->ref_cows)
  437. btrfs_reloc_cow_block(trans, root, buf, cow);
  438. if (buf == root->node) {
  439. WARN_ON(parent && parent != buf);
  440. if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
  441. btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
  442. parent_start = buf->start;
  443. else
  444. parent_start = 0;
  445. extent_buffer_get(cow);
  446. rcu_assign_pointer(root->node, cow);
  447. btrfs_free_tree_block(trans, root, buf, parent_start,
  448. last_ref, 1);
  449. free_extent_buffer(buf);
  450. add_root_to_dirty_list(root);
  451. } else {
  452. if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
  453. parent_start = parent->start;
  454. else
  455. parent_start = 0;
  456. WARN_ON(trans->transid != btrfs_header_generation(parent));
  457. btrfs_set_node_blockptr(parent, parent_slot,
  458. cow->start);
  459. btrfs_set_node_ptr_generation(parent, parent_slot,
  460. trans->transid);
  461. btrfs_mark_buffer_dirty(parent);
  462. btrfs_free_tree_block(trans, root, buf, parent_start,
  463. last_ref, 1);
  464. }
  465. if (unlock_orig)
  466. btrfs_tree_unlock(buf);
  467. free_extent_buffer_stale(buf);
  468. btrfs_mark_buffer_dirty(cow);
  469. *cow_ret = cow;
  470. return 0;
  471. }
  472. static inline int should_cow_block(struct btrfs_trans_handle *trans,
  473. struct btrfs_root *root,
  474. struct extent_buffer *buf)
  475. {
  476. /* ensure we can see the force_cow */
  477. smp_rmb();
  478. /*
  479. * We do not need to cow a block if
  480. * 1) this block is not created or changed in this transaction;
  481. * 2) this block does not belong to TREE_RELOC tree;
  482. * 3) the root is not forced COW.
  483. *
  484. * What is forced COW:
  485. * when we create snapshot during commiting the transaction,
  486. * after we've finished coping src root, we must COW the shared
  487. * block to ensure the metadata consistency.
  488. */
  489. if (btrfs_header_generation(buf) == trans->transid &&
  490. !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
  491. !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
  492. btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
  493. !root->force_cow)
  494. return 0;
  495. return 1;
  496. }
  497. /*
  498. * cows a single block, see __btrfs_cow_block for the real work.
  499. * This version of it has extra checks so that a block isn't cow'd more than
  500. * once per transaction, as long as it hasn't been written yet
  501. */
  502. noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
  503. struct btrfs_root *root, struct extent_buffer *buf,
  504. struct extent_buffer *parent, int parent_slot,
  505. struct extent_buffer **cow_ret)
  506. {
  507. u64 search_start;
  508. int ret;
  509. if (trans->transaction != root->fs_info->running_transaction) {
  510. printk(KERN_CRIT "trans %llu running %llu\n",
  511. (unsigned long long)trans->transid,
  512. (unsigned long long)
  513. root->fs_info->running_transaction->transid);
  514. WARN_ON(1);
  515. }
  516. if (trans->transid != root->fs_info->generation) {
  517. printk(KERN_CRIT "trans %llu running %llu\n",
  518. (unsigned long long)trans->transid,
  519. (unsigned long long)root->fs_info->generation);
  520. WARN_ON(1);
  521. }
  522. if (!should_cow_block(trans, root, buf)) {
  523. *cow_ret = buf;
  524. return 0;
  525. }
  526. search_start = buf->start & ~((u64)(1024 * 1024 * 1024) - 1);
  527. if (parent)
  528. btrfs_set_lock_blocking(parent);
  529. btrfs_set_lock_blocking(buf);
  530. ret = __btrfs_cow_block(trans, root, buf, parent,
  531. parent_slot, cow_ret, search_start, 0);
  532. trace_btrfs_cow_block(root, buf, *cow_ret);
  533. return ret;
  534. }
  535. /*
  536. * helper function for defrag to decide if two blocks pointed to by a
  537. * node are actually close by
  538. */
  539. static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
  540. {
  541. if (blocknr < other && other - (blocknr + blocksize) < 32768)
  542. return 1;
  543. if (blocknr > other && blocknr - (other + blocksize) < 32768)
  544. return 1;
  545. return 0;
  546. }
  547. /*
  548. * compare two keys in a memcmp fashion
  549. */
  550. static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2)
  551. {
  552. struct btrfs_key k1;
  553. btrfs_disk_key_to_cpu(&k1, disk);
  554. return btrfs_comp_cpu_keys(&k1, k2);
  555. }
  556. /*
  557. * same as comp_keys only with two btrfs_key's
  558. */
  559. int btrfs_comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2)
  560. {
  561. if (k1->objectid > k2->objectid)
  562. return 1;
  563. if (k1->objectid < k2->objectid)
  564. return -1;
  565. if (k1->type > k2->type)
  566. return 1;
  567. if (k1->type < k2->type)
  568. return -1;
  569. if (k1->offset > k2->offset)
  570. return 1;
  571. if (k1->offset < k2->offset)
  572. return -1;
  573. return 0;
  574. }
  575. /*
  576. * this is used by the defrag code to go through all the
  577. * leaves pointed to by a node and reallocate them so that
  578. * disk order is close to key order
  579. */
  580. int btrfs_realloc_node(struct btrfs_trans_handle *trans,
  581. struct btrfs_root *root, struct extent_buffer *parent,
  582. int start_slot, int cache_only, u64 *last_ret,
  583. struct btrfs_key *progress)
  584. {
  585. struct extent_buffer *cur;
  586. u64 blocknr;
  587. u64 gen;
  588. u64 search_start = *last_ret;
  589. u64 last_block = 0;
  590. u64 other;
  591. u32 parent_nritems;
  592. int end_slot;
  593. int i;
  594. int err = 0;
  595. int parent_level;
  596. int uptodate;
  597. u32 blocksize;
  598. int progress_passed = 0;
  599. struct btrfs_disk_key disk_key;
  600. parent_level = btrfs_header_level(parent);
  601. if (cache_only && parent_level != 1)
  602. return 0;
  603. if (trans->transaction != root->fs_info->running_transaction)
  604. WARN_ON(1);
  605. if (trans->transid != root->fs_info->generation)
  606. WARN_ON(1);
  607. parent_nritems = btrfs_header_nritems(parent);
  608. blocksize = btrfs_level_size(root, parent_level - 1);
  609. end_slot = parent_nritems;
  610. if (parent_nritems == 1)
  611. return 0;
  612. btrfs_set_lock_blocking(parent);
  613. for (i = start_slot; i < end_slot; i++) {
  614. int close = 1;
  615. btrfs_node_key(parent, &disk_key, i);
  616. if (!progress_passed && comp_keys(&disk_key, progress) < 0)
  617. continue;
  618. progress_passed = 1;
  619. blocknr = btrfs_node_blockptr(parent, i);
  620. gen = btrfs_node_ptr_generation(parent, i);
  621. if (last_block == 0)
  622. last_block = blocknr;
  623. if (i > 0) {
  624. other = btrfs_node_blockptr(parent, i - 1);
  625. close = close_blocks(blocknr, other, blocksize);
  626. }
  627. if (!close && i < end_slot - 2) {
  628. other = btrfs_node_blockptr(parent, i + 1);
  629. close = close_blocks(blocknr, other, blocksize);
  630. }
  631. if (close) {
  632. last_block = blocknr;
  633. continue;
  634. }
  635. cur = btrfs_find_tree_block(root, blocknr, blocksize);
  636. if (cur)
  637. uptodate = btrfs_buffer_uptodate(cur, gen);
  638. else
  639. uptodate = 0;
  640. if (!cur || !uptodate) {
  641. if (cache_only) {
  642. free_extent_buffer(cur);
  643. continue;
  644. }
  645. if (!cur) {
  646. cur = read_tree_block(root, blocknr,
  647. blocksize, gen);
  648. if (!cur)
  649. return -EIO;
  650. } else if (!uptodate) {
  651. btrfs_read_buffer(cur, gen);
  652. }
  653. }
  654. if (search_start == 0)
  655. search_start = last_block;
  656. btrfs_tree_lock(cur);
  657. btrfs_set_lock_blocking(cur);
  658. err = __btrfs_cow_block(trans, root, cur, parent, i,
  659. &cur, search_start,
  660. min(16 * blocksize,
  661. (end_slot - i) * blocksize));
  662. if (err) {
  663. btrfs_tree_unlock(cur);
  664. free_extent_buffer(cur);
  665. break;
  666. }
  667. search_start = cur->start;
  668. last_block = cur->start;
  669. *last_ret = search_start;
  670. btrfs_tree_unlock(cur);
  671. free_extent_buffer(cur);
  672. }
  673. return err;
  674. }
  675. /*
  676. * The leaf data grows from end-to-front in the node.
  677. * this returns the address of the start of the last item,
  678. * which is the stop of the leaf data stack
  679. */
  680. static inline unsigned int leaf_data_end(struct btrfs_root *root,
  681. struct extent_buffer *leaf)
  682. {
  683. u32 nr = btrfs_header_nritems(leaf);
  684. if (nr == 0)
  685. return BTRFS_LEAF_DATA_SIZE(root);
  686. return btrfs_item_offset_nr(leaf, nr - 1);
  687. }
  688. /*
  689. * search for key in the extent_buffer. The items start at offset p,
  690. * and they are item_size apart. There are 'max' items in p.
  691. *
  692. * the slot in the array is returned via slot, and it points to
  693. * the place where you would insert key if it is not found in
  694. * the array.
  695. *
  696. * slot may point to max if the key is bigger than all of the keys
  697. */
  698. static noinline int generic_bin_search(struct extent_buffer *eb,
  699. unsigned long p,
  700. int item_size, struct btrfs_key *key,
  701. int max, int *slot)
  702. {
  703. int low = 0;
  704. int high = max;
  705. int mid;
  706. int ret;
  707. struct btrfs_disk_key *tmp = NULL;
  708. struct btrfs_disk_key unaligned;
  709. unsigned long offset;
  710. char *kaddr = NULL;
  711. unsigned long map_start = 0;
  712. unsigned long map_len = 0;
  713. int err;
  714. while (low < high) {
  715. mid = (low + high) / 2;
  716. offset = p + mid * item_size;
  717. if (!kaddr || offset < map_start ||
  718. (offset + sizeof(struct btrfs_disk_key)) >
  719. map_start + map_len) {
  720. err = map_private_extent_buffer(eb, offset,
  721. sizeof(struct btrfs_disk_key),
  722. &kaddr, &map_start, &map_len);
  723. if (!err) {
  724. tmp = (struct btrfs_disk_key *)(kaddr + offset -
  725. map_start);
  726. } else {
  727. read_extent_buffer(eb, &unaligned,
  728. offset, sizeof(unaligned));
  729. tmp = &unaligned;
  730. }
  731. } else {
  732. tmp = (struct btrfs_disk_key *)(kaddr + offset -
  733. map_start);
  734. }
  735. ret = comp_keys(tmp, key);
  736. if (ret < 0)
  737. low = mid + 1;
  738. else if (ret > 0)
  739. high = mid;
  740. else {
  741. *slot = mid;
  742. return 0;
  743. }
  744. }
  745. *slot = low;
  746. return 1;
  747. }
  748. /*
  749. * simple bin_search frontend that does the right thing for
  750. * leaves vs nodes
  751. */
  752. static int bin_search(struct extent_buffer *eb, struct btrfs_key *key,
  753. int level, int *slot)
  754. {
  755. if (level == 0) {
  756. return generic_bin_search(eb,
  757. offsetof(struct btrfs_leaf, items),
  758. sizeof(struct btrfs_item),
  759. key, btrfs_header_nritems(eb),
  760. slot);
  761. } else {
  762. return generic_bin_search(eb,
  763. offsetof(struct btrfs_node, ptrs),
  764. sizeof(struct btrfs_key_ptr),
  765. key, btrfs_header_nritems(eb),
  766. slot);
  767. }
  768. return -1;
  769. }
  770. int btrfs_bin_search(struct extent_buffer *eb, struct btrfs_key *key,
  771. int level, int *slot)
  772. {
  773. return bin_search(eb, key, level, slot);
  774. }
  775. static void root_add_used(struct btrfs_root *root, u32 size)
  776. {
  777. spin_lock(&root->accounting_lock);
  778. btrfs_set_root_used(&root->root_item,
  779. btrfs_root_used(&root->root_item) + size);
  780. spin_unlock(&root->accounting_lock);
  781. }
  782. static void root_sub_used(struct btrfs_root *root, u32 size)
  783. {
  784. spin_lock(&root->accounting_lock);
  785. btrfs_set_root_used(&root->root_item,
  786. btrfs_root_used(&root->root_item) - size);
  787. spin_unlock(&root->accounting_lock);
  788. }
  789. /* given a node and slot number, this reads the blocks it points to. The
  790. * extent buffer is returned with a reference taken (but unlocked).
  791. * NULL is returned on error.
  792. */
  793. static noinline struct extent_buffer *read_node_slot(struct btrfs_root *root,
  794. struct extent_buffer *parent, int slot)
  795. {
  796. int level = btrfs_header_level(parent);
  797. if (slot < 0)
  798. return NULL;
  799. if (slot >= btrfs_header_nritems(parent))
  800. return NULL;
  801. BUG_ON(level == 0);
  802. return read_tree_block(root, btrfs_node_blockptr(parent, slot),
  803. btrfs_level_size(root, level - 1),
  804. btrfs_node_ptr_generation(parent, slot));
  805. }
  806. /*
  807. * node level balancing, used to make sure nodes are in proper order for
  808. * item deletion. We balance from the top down, so we have to make sure
  809. * that a deletion won't leave an node completely empty later on.
  810. */
  811. static noinline int balance_level(struct btrfs_trans_handle *trans,
  812. struct btrfs_root *root,
  813. struct btrfs_path *path, int level)
  814. {
  815. struct extent_buffer *right = NULL;
  816. struct extent_buffer *mid;
  817. struct extent_buffer *left = NULL;
  818. struct extent_buffer *parent = NULL;
  819. int ret = 0;
  820. int wret;
  821. int pslot;
  822. int orig_slot = path->slots[level];
  823. u64 orig_ptr;
  824. if (level == 0)
  825. return 0;
  826. mid = path->nodes[level];
  827. WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK &&
  828. path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING);
  829. WARN_ON(btrfs_header_generation(mid) != trans->transid);
  830. orig_ptr = btrfs_node_blockptr(mid, orig_slot);
  831. if (level < BTRFS_MAX_LEVEL - 1) {
  832. parent = path->nodes[level + 1];
  833. pslot = path->slots[level + 1];
  834. }
  835. /*
  836. * deal with the case where there is only one pointer in the root
  837. * by promoting the node below to a root
  838. */
  839. if (!parent) {
  840. struct extent_buffer *child;
  841. if (btrfs_header_nritems(mid) != 1)
  842. return 0;
  843. /* promote the child to a root */
  844. child = read_node_slot(root, mid, 0);
  845. BUG_ON(!child);
  846. btrfs_tree_lock(child);
  847. btrfs_set_lock_blocking(child);
  848. ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
  849. if (ret) {
  850. btrfs_tree_unlock(child);
  851. free_extent_buffer(child);
  852. goto enospc;
  853. }
  854. rcu_assign_pointer(root->node, child);
  855. add_root_to_dirty_list(root);
  856. btrfs_tree_unlock(child);
  857. path->locks[level] = 0;
  858. path->nodes[level] = NULL;
  859. clean_tree_block(trans, root, mid);
  860. btrfs_tree_unlock(mid);
  861. /* once for the path */
  862. free_extent_buffer(mid);
  863. root_sub_used(root, mid->len);
  864. btrfs_free_tree_block(trans, root, mid, 0, 1, 0);
  865. /* once for the root ptr */
  866. free_extent_buffer_stale(mid);
  867. return 0;
  868. }
  869. if (btrfs_header_nritems(mid) >
  870. BTRFS_NODEPTRS_PER_BLOCK(root) / 4)
  871. return 0;
  872. btrfs_header_nritems(mid);
  873. left = read_node_slot(root, parent, pslot - 1);
  874. if (left) {
  875. btrfs_tree_lock(left);
  876. btrfs_set_lock_blocking(left);
  877. wret = btrfs_cow_block(trans, root, left,
  878. parent, pslot - 1, &left);
  879. if (wret) {
  880. ret = wret;
  881. goto enospc;
  882. }
  883. }
  884. right = read_node_slot(root, parent, pslot + 1);
  885. if (right) {
  886. btrfs_tree_lock(right);
  887. btrfs_set_lock_blocking(right);
  888. wret = btrfs_cow_block(trans, root, right,
  889. parent, pslot + 1, &right);
  890. if (wret) {
  891. ret = wret;
  892. goto enospc;
  893. }
  894. }
  895. /* first, try to make some room in the middle buffer */
  896. if (left) {
  897. orig_slot += btrfs_header_nritems(left);
  898. wret = push_node_left(trans, root, left, mid, 1);
  899. if (wret < 0)
  900. ret = wret;
  901. btrfs_header_nritems(mid);
  902. }
  903. /*
  904. * then try to empty the right most buffer into the middle
  905. */
  906. if (right) {
  907. wret = push_node_left(trans, root, mid, right, 1);
  908. if (wret < 0 && wret != -ENOSPC)
  909. ret = wret;
  910. if (btrfs_header_nritems(right) == 0) {
  911. clean_tree_block(trans, root, right);
  912. btrfs_tree_unlock(right);
  913. wret = del_ptr(trans, root, path, level + 1, pslot +
  914. 1);
  915. if (wret)
  916. ret = wret;
  917. root_sub_used(root, right->len);
  918. btrfs_free_tree_block(trans, root, right, 0, 1, 0);
  919. free_extent_buffer_stale(right);
  920. right = NULL;
  921. } else {
  922. struct btrfs_disk_key right_key;
  923. btrfs_node_key(right, &right_key, 0);
  924. btrfs_set_node_key(parent, &right_key, pslot + 1);
  925. btrfs_mark_buffer_dirty(parent);
  926. }
  927. }
  928. if (btrfs_header_nritems(mid) == 1) {
  929. /*
  930. * we're not allowed to leave a node with one item in the
  931. * tree during a delete. A deletion from lower in the tree
  932. * could try to delete the only pointer in this node.
  933. * So, pull some keys from the left.
  934. * There has to be a left pointer at this point because
  935. * otherwise we would have pulled some pointers from the
  936. * right
  937. */
  938. BUG_ON(!left);
  939. wret = balance_node_right(trans, root, mid, left);
  940. if (wret < 0) {
  941. ret = wret;
  942. goto enospc;
  943. }
  944. if (wret == 1) {
  945. wret = push_node_left(trans, root, left, mid, 1);
  946. if (wret < 0)
  947. ret = wret;
  948. }
  949. BUG_ON(wret == 1);
  950. }
  951. if (btrfs_header_nritems(mid) == 0) {
  952. clean_tree_block(trans, root, mid);
  953. btrfs_tree_unlock(mid);
  954. wret = del_ptr(trans, root, path, level + 1, pslot);
  955. if (wret)
  956. ret = wret;
  957. root_sub_used(root, mid->len);
  958. btrfs_free_tree_block(trans, root, mid, 0, 1, 0);
  959. free_extent_buffer_stale(mid);
  960. mid = NULL;
  961. } else {
  962. /* update the parent key to reflect our changes */
  963. struct btrfs_disk_key mid_key;
  964. btrfs_node_key(mid, &mid_key, 0);
  965. btrfs_set_node_key(parent, &mid_key, pslot);
  966. btrfs_mark_buffer_dirty(parent);
  967. }
  968. /* update the path */
  969. if (left) {
  970. if (btrfs_header_nritems(left) > orig_slot) {
  971. extent_buffer_get(left);
  972. /* left was locked after cow */
  973. path->nodes[level] = left;
  974. path->slots[level + 1] -= 1;
  975. path->slots[level] = orig_slot;
  976. if (mid) {
  977. btrfs_tree_unlock(mid);
  978. free_extent_buffer(mid);
  979. }
  980. } else {
  981. orig_slot -= btrfs_header_nritems(left);
  982. path->slots[level] = orig_slot;
  983. }
  984. }
  985. /* double check we haven't messed things up */
  986. if (orig_ptr !=
  987. btrfs_node_blockptr(path->nodes[level], path->slots[level]))
  988. BUG();
  989. enospc:
  990. if (right) {
  991. btrfs_tree_unlock(right);
  992. free_extent_buffer(right);
  993. }
  994. if (left) {
  995. if (path->nodes[level] != left)
  996. btrfs_tree_unlock(left);
  997. free_extent_buffer(left);
  998. }
  999. return ret;
  1000. }
  1001. /* Node balancing for insertion. Here we only split or push nodes around
  1002. * when they are completely full. This is also done top down, so we
  1003. * have to be pessimistic.
  1004. */
  1005. static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
  1006. struct btrfs_root *root,
  1007. struct btrfs_path *path, int level)
  1008. {
  1009. struct extent_buffer *right = NULL;
  1010. struct extent_buffer *mid;
  1011. struct extent_buffer *left = NULL;
  1012. struct extent_buffer *parent = NULL;
  1013. int ret = 0;
  1014. int wret;
  1015. int pslot;
  1016. int orig_slot = path->slots[level];
  1017. if (level == 0)
  1018. return 1;
  1019. mid = path->nodes[level];
  1020. WARN_ON(btrfs_header_generation(mid) != trans->transid);
  1021. if (level < BTRFS_MAX_LEVEL - 1) {
  1022. parent = path->nodes[level + 1];
  1023. pslot = path->slots[level + 1];
  1024. }
  1025. if (!parent)
  1026. return 1;
  1027. left = read_node_slot(root, parent, pslot - 1);
  1028. /* first, try to make some room in the middle buffer */
  1029. if (left) {
  1030. u32 left_nr;
  1031. btrfs_tree_lock(left);
  1032. btrfs_set_lock_blocking(left);
  1033. left_nr = btrfs_header_nritems(left);
  1034. if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
  1035. wret = 1;
  1036. } else {
  1037. ret = btrfs_cow_block(trans, root, left, parent,
  1038. pslot - 1, &left);
  1039. if (ret)
  1040. wret = 1;
  1041. else {
  1042. wret = push_node_left(trans, root,
  1043. left, mid, 0);
  1044. }
  1045. }
  1046. if (wret < 0)
  1047. ret = wret;
  1048. if (wret == 0) {
  1049. struct btrfs_disk_key disk_key;
  1050. orig_slot += left_nr;
  1051. btrfs_node_key(mid, &disk_key, 0);
  1052. btrfs_set_node_key(parent, &disk_key, pslot);
  1053. btrfs_mark_buffer_dirty(parent);
  1054. if (btrfs_header_nritems(left) > orig_slot) {
  1055. path->nodes[level] = left;
  1056. path->slots[level + 1] -= 1;
  1057. path->slots[level] = orig_slot;
  1058. btrfs_tree_unlock(mid);
  1059. free_extent_buffer(mid);
  1060. } else {
  1061. orig_slot -=
  1062. btrfs_header_nritems(left);
  1063. path->slots[level] = orig_slot;
  1064. btrfs_tree_unlock(left);
  1065. free_extent_buffer(left);
  1066. }
  1067. return 0;
  1068. }
  1069. btrfs_tree_unlock(left);
  1070. free_extent_buffer(left);
  1071. }
  1072. right = read_node_slot(root, parent, pslot + 1);
  1073. /*
  1074. * then try to empty the right most buffer into the middle
  1075. */
  1076. if (right) {
  1077. u32 right_nr;
  1078. btrfs_tree_lock(right);
  1079. btrfs_set_lock_blocking(right);
  1080. right_nr = btrfs_header_nritems(right);
  1081. if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
  1082. wret = 1;
  1083. } else {
  1084. ret = btrfs_cow_block(trans, root, right,
  1085. parent, pslot + 1,
  1086. &right);
  1087. if (ret)
  1088. wret = 1;
  1089. else {
  1090. wret = balance_node_right(trans, root,
  1091. right, mid);
  1092. }
  1093. }
  1094. if (wret < 0)
  1095. ret = wret;
  1096. if (wret == 0) {
  1097. struct btrfs_disk_key disk_key;
  1098. btrfs_node_key(right, &disk_key, 0);
  1099. btrfs_set_node_key(parent, &disk_key, pslot + 1);
  1100. btrfs_mark_buffer_dirty(parent);
  1101. if (btrfs_header_nritems(mid) <= orig_slot) {
  1102. path->nodes[level] = right;
  1103. path->slots[level + 1] += 1;
  1104. path->slots[level] = orig_slot -
  1105. btrfs_header_nritems(mid);
  1106. btrfs_tree_unlock(mid);
  1107. free_extent_buffer(mid);
  1108. } else {
  1109. btrfs_tree_unlock(right);
  1110. free_extent_buffer(right);
  1111. }
  1112. return 0;
  1113. }
  1114. btrfs_tree_unlock(right);
  1115. free_extent_buffer(right);
  1116. }
  1117. return 1;
  1118. }
  1119. /*
  1120. * readahead one full node of leaves, finding things that are close
  1121. * to the block in 'slot', and triggering ra on them.
  1122. */
  1123. static void reada_for_search(struct btrfs_root *root,
  1124. struct btrfs_path *path,
  1125. int level, int slot, u64 objectid)
  1126. {
  1127. struct extent_buffer *node;
  1128. struct btrfs_disk_key disk_key;
  1129. u32 nritems;
  1130. u64 search;
  1131. u64 target;
  1132. u64 nread = 0;
  1133. u64 gen;
  1134. int direction = path->reada;
  1135. struct extent_buffer *eb;
  1136. u32 nr;
  1137. u32 blocksize;
  1138. u32 nscan = 0;
  1139. if (level != 1)
  1140. return;
  1141. if (!path->nodes[level])
  1142. return;
  1143. node = path->nodes[level];
  1144. search = btrfs_node_blockptr(node, slot);
  1145. blocksize = btrfs_level_size(root, level - 1);
  1146. eb = btrfs_find_tree_block(root, search, blocksize);
  1147. if (eb) {
  1148. free_extent_buffer(eb);
  1149. return;
  1150. }
  1151. target = search;
  1152. nritems = btrfs_header_nritems(node);
  1153. nr = slot;
  1154. while (1) {
  1155. if (direction < 0) {
  1156. if (nr == 0)
  1157. break;
  1158. nr--;
  1159. } else if (direction > 0) {
  1160. nr++;
  1161. if (nr >= nritems)
  1162. break;
  1163. }
  1164. if (path->reada < 0 && objectid) {
  1165. btrfs_node_key(node, &disk_key, nr);
  1166. if (btrfs_disk_key_objectid(&disk_key) != objectid)
  1167. break;
  1168. }
  1169. search = btrfs_node_blockptr(node, nr);
  1170. if ((search <= target && target - search <= 65536) ||
  1171. (search > target && search - target <= 65536)) {
  1172. gen = btrfs_node_ptr_generation(node, nr);
  1173. readahead_tree_block(root, search, blocksize, gen);
  1174. nread += blocksize;
  1175. }
  1176. nscan++;
  1177. if ((nread > 65536 || nscan > 32))
  1178. break;
  1179. }
  1180. }
  1181. /*
  1182. * returns -EAGAIN if it had to drop the path, or zero if everything was in
  1183. * cache
  1184. */
  1185. static noinline int reada_for_balance(struct btrfs_root *root,
  1186. struct btrfs_path *path, int level)
  1187. {
  1188. int slot;
  1189. int nritems;
  1190. struct extent_buffer *parent;
  1191. struct extent_buffer *eb;
  1192. u64 gen;
  1193. u64 block1 = 0;
  1194. u64 block2 = 0;
  1195. int ret = 0;
  1196. int blocksize;
  1197. parent = path->nodes[level + 1];
  1198. if (!parent)
  1199. return 0;
  1200. nritems = btrfs_header_nritems(parent);
  1201. slot = path->slots[level + 1];
  1202. blocksize = btrfs_level_size(root, level);
  1203. if (slot > 0) {
  1204. block1 = btrfs_node_blockptr(parent, slot - 1);
  1205. gen = btrfs_node_ptr_generation(parent, slot - 1);
  1206. eb = btrfs_find_tree_block(root, block1, blocksize);
  1207. if (eb && btrfs_buffer_uptodate(eb, gen))
  1208. block1 = 0;
  1209. free_extent_buffer(eb);
  1210. }
  1211. if (slot + 1 < nritems) {
  1212. block2 = btrfs_node_blockptr(parent, slot + 1);
  1213. gen = btrfs_node_ptr_generation(parent, slot + 1);
  1214. eb = btrfs_find_tree_block(root, block2, blocksize);
  1215. if (eb && btrfs_buffer_uptodate(eb, gen))
  1216. block2 = 0;
  1217. free_extent_buffer(eb);
  1218. }
  1219. if (block1 || block2) {
  1220. ret = -EAGAIN;
  1221. /* release the whole path */
  1222. btrfs_release_path(path);
  1223. /* read the blocks */
  1224. if (block1)
  1225. readahead_tree_block(root, block1, blocksize, 0);
  1226. if (block2)
  1227. readahead_tree_block(root, block2, blocksize, 0);
  1228. if (block1) {
  1229. eb = read_tree_block(root, block1, blocksize, 0);
  1230. free_extent_buffer(eb);
  1231. }
  1232. if (block2) {
  1233. eb = read_tree_block(root, block2, blocksize, 0);
  1234. free_extent_buffer(eb);
  1235. }
  1236. }
  1237. return ret;
  1238. }
  1239. /*
  1240. * when we walk down the tree, it is usually safe to unlock the higher layers
  1241. * in the tree. The exceptions are when our path goes through slot 0, because
  1242. * operations on the tree might require changing key pointers higher up in the
  1243. * tree.
  1244. *
  1245. * callers might also have set path->keep_locks, which tells this code to keep
  1246. * the lock if the path points to the last slot in the block. This is part of
  1247. * walking through the tree, and selecting the next slot in the higher block.
  1248. *
  1249. * lowest_unlock sets the lowest level in the tree we're allowed to unlock. so
  1250. * if lowest_unlock is 1, level 0 won't be unlocked
  1251. */
  1252. static noinline void unlock_up(struct btrfs_path *path, int level,
  1253. int lowest_unlock, int min_write_lock_level,
  1254. int *write_lock_level)
  1255. {
  1256. int i;
  1257. int skip_level = level;
  1258. int no_skips = 0;
  1259. struct extent_buffer *t;
  1260. for (i = level; i < BTRFS_MAX_LEVEL; i++) {
  1261. if (!path->nodes[i])
  1262. break;
  1263. if (!path->locks[i])
  1264. break;
  1265. if (!no_skips && path->slots[i] == 0) {
  1266. skip_level = i + 1;
  1267. continue;
  1268. }
  1269. if (!no_skips && path->keep_locks) {
  1270. u32 nritems;
  1271. t = path->nodes[i];
  1272. nritems = btrfs_header_nritems(t);
  1273. if (nritems < 1 || path->slots[i] >= nritems - 1) {
  1274. skip_level = i + 1;
  1275. continue;
  1276. }
  1277. }
  1278. if (skip_level < i && i >= lowest_unlock)
  1279. no_skips = 1;
  1280. t = path->nodes[i];
  1281. if (i >= lowest_unlock && i > skip_level && path->locks[i]) {
  1282. btrfs_tree_unlock_rw(t, path->locks[i]);
  1283. path->locks[i] = 0;
  1284. if (write_lock_level &&
  1285. i > min_write_lock_level &&
  1286. i <= *write_lock_level) {
  1287. *write_lock_level = i - 1;
  1288. }
  1289. }
  1290. }
  1291. }
  1292. /*
  1293. * This releases any locks held in the path starting at level and
  1294. * going all the way up to the root.
  1295. *
  1296. * btrfs_search_slot will keep the lock held on higher nodes in a few
  1297. * corner cases, such as COW of the block at slot zero in the node. This
  1298. * ignores those rules, and it should only be called when there are no
  1299. * more updates to be done higher up in the tree.
  1300. */
  1301. noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
  1302. {
  1303. int i;
  1304. if (path->keep_locks)
  1305. return;
  1306. for (i = level; i < BTRFS_MAX_LEVEL; i++) {
  1307. if (!path->nodes[i])
  1308. continue;
  1309. if (!path->locks[i])
  1310. continue;
  1311. btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
  1312. path->locks[i] = 0;
  1313. }
  1314. }
  1315. /*
  1316. * helper function for btrfs_search_slot. The goal is to find a block
  1317. * in cache without setting the path to blocking. If we find the block
  1318. * we return zero and the path is unchanged.
  1319. *
  1320. * If we can't find the block, we set the path blocking and do some
  1321. * reada. -EAGAIN is returned and the search must be repeated.
  1322. */
  1323. static int
  1324. read_block_for_search(struct btrfs_trans_handle *trans,
  1325. struct btrfs_root *root, struct btrfs_path *p,
  1326. struct extent_buffer **eb_ret, int level, int slot,
  1327. struct btrfs_key *key)
  1328. {
  1329. u64 blocknr;
  1330. u64 gen;
  1331. u32 blocksize;
  1332. struct extent_buffer *b = *eb_ret;
  1333. struct extent_buffer *tmp;
  1334. int ret;
  1335. blocknr = btrfs_node_blockptr(b, slot);
  1336. gen = btrfs_node_ptr_generation(b, slot);
  1337. blocksize = btrfs_level_size(root, level - 1);
  1338. tmp = btrfs_find_tree_block(root, blocknr, blocksize);
  1339. if (tmp) {
  1340. if (btrfs_buffer_uptodate(tmp, 0)) {
  1341. if (btrfs_buffer_uptodate(tmp, gen)) {
  1342. /*
  1343. * we found an up to date block without
  1344. * sleeping, return
  1345. * right away
  1346. */
  1347. *eb_ret = tmp;
  1348. return 0;
  1349. }
  1350. /* the pages were up to date, but we failed
  1351. * the generation number check. Do a full
  1352. * read for the generation number that is correct.
  1353. * We must do this without dropping locks so
  1354. * we can trust our generation number
  1355. */
  1356. free_extent_buffer(tmp);
  1357. btrfs_set_path_blocking(p);
  1358. tmp = read_tree_block(root, blocknr, blocksize, gen);
  1359. if (tmp && btrfs_buffer_uptodate(tmp, gen)) {
  1360. *eb_ret = tmp;
  1361. return 0;
  1362. }
  1363. free_extent_buffer(tmp);
  1364. btrfs_release_path(p);
  1365. return -EIO;
  1366. }
  1367. }
  1368. /*
  1369. * reduce lock contention at high levels
  1370. * of the btree by dropping locks before
  1371. * we read. Don't release the lock on the current
  1372. * level because we need to walk this node to figure
  1373. * out which blocks to read.
  1374. */
  1375. btrfs_unlock_up_safe(p, level + 1);
  1376. btrfs_set_path_blocking(p);
  1377. free_extent_buffer(tmp);
  1378. if (p->reada)
  1379. reada_for_search(root, p, level, slot, key->objectid);
  1380. btrfs_release_path(p);
  1381. ret = -EAGAIN;
  1382. tmp = read_tree_block(root, blocknr, blocksize, 0);
  1383. if (tmp) {
  1384. /*
  1385. * If the read above didn't mark this buffer up to date,
  1386. * it will never end up being up to date. Set ret to EIO now
  1387. * and give up so that our caller doesn't loop forever
  1388. * on our EAGAINs.
  1389. */
  1390. if (!btrfs_buffer_uptodate(tmp, 0))
  1391. ret = -EIO;
  1392. free_extent_buffer(tmp);
  1393. }
  1394. return ret;
  1395. }
  1396. /*
  1397. * helper function for btrfs_search_slot. This does all of the checks
  1398. * for node-level blocks and does any balancing required based on
  1399. * the ins_len.
  1400. *
  1401. * If no extra work was required, zero is returned. If we had to
  1402. * drop the path, -EAGAIN is returned and btrfs_search_slot must
  1403. * start over
  1404. */
  1405. static int
  1406. setup_nodes_for_search(struct btrfs_trans_handle *trans,
  1407. struct btrfs_root *root, struct btrfs_path *p,
  1408. struct extent_buffer *b, int level, int ins_len,
  1409. int *write_lock_level)
  1410. {
  1411. int ret;
  1412. if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
  1413. BTRFS_NODEPTRS_PER_BLOCK(root) - 3) {
  1414. int sret;
  1415. if (*write_lock_level < level + 1) {
  1416. *write_lock_level = level + 1;
  1417. btrfs_release_path(p);
  1418. goto again;
  1419. }
  1420. sret = reada_for_balance(root, p, level);
  1421. if (sret)
  1422. goto again;
  1423. btrfs_set_path_blocking(p);
  1424. sret = split_node(trans, root, p, level);
  1425. btrfs_clear_path_blocking(p, NULL, 0);
  1426. BUG_ON(sret > 0);
  1427. if (sret) {
  1428. ret = sret;
  1429. goto done;
  1430. }
  1431. b = p->nodes[level];
  1432. } else if (ins_len < 0 && btrfs_header_nritems(b) <
  1433. BTRFS_NODEPTRS_PER_BLOCK(root) / 2) {
  1434. int sret;
  1435. if (*write_lock_level < level + 1) {
  1436. *write_lock_level = level + 1;
  1437. btrfs_release_path(p);
  1438. goto again;
  1439. }
  1440. sret = reada_for_balance(root, p, level);
  1441. if (sret)
  1442. goto again;
  1443. btrfs_set_path_blocking(p);
  1444. sret = balance_level(trans, root, p, level);
  1445. btrfs_clear_path_blocking(p, NULL, 0);
  1446. if (sret) {
  1447. ret = sret;
  1448. goto done;
  1449. }
  1450. b = p->nodes[level];
  1451. if (!b) {
  1452. btrfs_release_path(p);
  1453. goto again;
  1454. }
  1455. BUG_ON(btrfs_header_nritems(b) == 1);
  1456. }
  1457. return 0;
  1458. again:
  1459. ret = -EAGAIN;
  1460. done:
  1461. return ret;
  1462. }
  1463. /*
  1464. * look for key in the tree. path is filled in with nodes along the way
  1465. * if key is found, we return zero and you can find the item in the leaf
  1466. * level of the path (level 0)
  1467. *
  1468. * If the key isn't found, the path points to the slot where it should
  1469. * be inserted, and 1 is returned. If there are other errors during the
  1470. * search a negative error number is returned.
  1471. *
  1472. * if ins_len > 0, nodes and leaves will be split as we walk down the
  1473. * tree. if ins_len < 0, nodes will be merged as we walk down the tree (if
  1474. * possible)
  1475. */
  1476. int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
  1477. *root, struct btrfs_key *key, struct btrfs_path *p, int
  1478. ins_len, int cow)
  1479. {
  1480. struct extent_buffer *b;
  1481. int slot;
  1482. int ret;
  1483. int err;
  1484. int level;
  1485. int lowest_unlock = 1;
  1486. int root_lock;
  1487. /* everything at write_lock_level or lower must be write locked */
  1488. int write_lock_level = 0;
  1489. u8 lowest_level = 0;
  1490. int min_write_lock_level;
  1491. lowest_level = p->lowest_level;
  1492. WARN_ON(lowest_level && ins_len > 0);
  1493. WARN_ON(p->nodes[0] != NULL);
  1494. if (ins_len < 0) {
  1495. lowest_unlock = 2;
  1496. /* when we are removing items, we might have to go up to level
  1497. * two as we update tree pointers Make sure we keep write
  1498. * for those levels as well
  1499. */
  1500. write_lock_level = 2;
  1501. } else if (ins_len > 0) {
  1502. /*
  1503. * for inserting items, make sure we have a write lock on
  1504. * level 1 so we can update keys
  1505. */
  1506. write_lock_level = 1;
  1507. }
  1508. if (!cow)
  1509. write_lock_level = -1;
  1510. if (cow && (p->keep_locks || p->lowest_level))
  1511. write_lock_level = BTRFS_MAX_LEVEL;
  1512. min_write_lock_level = write_lock_level;
  1513. again:
  1514. /*
  1515. * we try very hard to do read locks on the root
  1516. */
  1517. root_lock = BTRFS_READ_LOCK;
  1518. level = 0;
  1519. if (p->search_commit_root) {
  1520. /*
  1521. * the commit roots are read only
  1522. * so we always do read locks
  1523. */
  1524. b = root->commit_root;
  1525. extent_buffer_get(b);
  1526. level = btrfs_header_level(b);
  1527. if (!p->skip_locking)
  1528. btrfs_tree_read_lock(b);
  1529. } else {
  1530. if (p->skip_locking) {
  1531. b = btrfs_root_node(root);
  1532. level = btrfs_header_level(b);
  1533. } else {
  1534. /* we don't know the level of the root node
  1535. * until we actually have it read locked
  1536. */
  1537. b = btrfs_read_lock_root_node(root);
  1538. level = btrfs_header_level(b);
  1539. if (level <= write_lock_level) {
  1540. /* whoops, must trade for write lock */
  1541. btrfs_tree_read_unlock(b);
  1542. free_extent_buffer(b);
  1543. b = btrfs_lock_root_node(root);
  1544. root_lock = BTRFS_WRITE_LOCK;
  1545. /* the level might have changed, check again */
  1546. level = btrfs_header_level(b);
  1547. }
  1548. }
  1549. }
  1550. p->nodes[level] = b;
  1551. if (!p->skip_locking)
  1552. p->locks[level] = root_lock;
  1553. while (b) {
  1554. level = btrfs_header_level(b);
  1555. /*
  1556. * setup the path here so we can release it under lock
  1557. * contention with the cow code
  1558. */
  1559. if (cow) {
  1560. /*
  1561. * if we don't really need to cow this block
  1562. * then we don't want to set the path blocking,
  1563. * so we test it here
  1564. */
  1565. if (!should_cow_block(trans, root, b))
  1566. goto cow_done;
  1567. btrfs_set_path_blocking(p);
  1568. /*
  1569. * must have write locks on this node and the
  1570. * parent
  1571. */
  1572. if (level + 1 > write_lock_level) {
  1573. write_lock_level = level + 1;
  1574. btrfs_release_path(p);
  1575. goto again;
  1576. }
  1577. err = btrfs_cow_block(trans, root, b,
  1578. p->nodes[level + 1],
  1579. p->slots[level + 1], &b);
  1580. if (err) {
  1581. ret = err;
  1582. goto done;
  1583. }
  1584. }
  1585. cow_done:
  1586. BUG_ON(!cow && ins_len);
  1587. p->nodes[level] = b;
  1588. btrfs_clear_path_blocking(p, NULL, 0);
  1589. /*
  1590. * we have a lock on b and as long as we aren't changing
  1591. * the tree, there is no way to for the items in b to change.
  1592. * It is safe to drop the lock on our parent before we
  1593. * go through the expensive btree search on b.
  1594. *
  1595. * If cow is true, then we might be changing slot zero,
  1596. * which may require changing the parent. So, we can't
  1597. * drop the lock until after we know which slot we're
  1598. * operating on.
  1599. */
  1600. if (!cow)
  1601. btrfs_unlock_up_safe(p, level + 1);
  1602. ret = bin_search(b, key, level, &slot);
  1603. if (level != 0) {
  1604. int dec = 0;
  1605. if (ret && slot > 0) {
  1606. dec = 1;
  1607. slot -= 1;
  1608. }
  1609. p->slots[level] = slot;
  1610. err = setup_nodes_for_search(trans, root, p, b, level,
  1611. ins_len, &write_lock_level);
  1612. if (err == -EAGAIN)
  1613. goto again;
  1614. if (err) {
  1615. ret = err;
  1616. goto done;
  1617. }
  1618. b = p->nodes[level];
  1619. slot = p->slots[level];
  1620. /*
  1621. * slot 0 is special, if we change the key
  1622. * we have to update the parent pointer
  1623. * which means we must have a write lock
  1624. * on the parent
  1625. */
  1626. if (slot == 0 && cow &&
  1627. write_lock_level < level + 1) {
  1628. write_lock_level = level + 1;
  1629. btrfs_release_path(p);
  1630. goto again;
  1631. }
  1632. unlock_up(p, level, lowest_unlock,
  1633. min_write_lock_level, &write_lock_level);
  1634. if (level == lowest_level) {
  1635. if (dec)
  1636. p->slots[level]++;
  1637. goto done;
  1638. }
  1639. err = read_block_for_search(trans, root, p,
  1640. &b, level, slot, key);
  1641. if (err == -EAGAIN)
  1642. goto again;
  1643. if (err) {
  1644. ret = err;
  1645. goto done;
  1646. }
  1647. if (!p->skip_locking) {
  1648. level = btrfs_header_level(b);
  1649. if (level <= write_lock_level) {
  1650. err = btrfs_try_tree_write_lock(b);
  1651. if (!err) {
  1652. btrfs_set_path_blocking(p);
  1653. btrfs_tree_lock(b);
  1654. btrfs_clear_path_blocking(p, b,
  1655. BTRFS_WRITE_LOCK);
  1656. }
  1657. p->locks[level] = BTRFS_WRITE_LOCK;
  1658. } else {
  1659. err = btrfs_try_tree_read_lock(b);
  1660. if (!err) {
  1661. btrfs_set_path_blocking(p);
  1662. btrfs_tree_read_lock(b);
  1663. btrfs_clear_path_blocking(p, b,
  1664. BTRFS_READ_LOCK);
  1665. }
  1666. p->locks[level] = BTRFS_READ_LOCK;
  1667. }
  1668. p->nodes[level] = b;
  1669. }
  1670. } else {
  1671. p->slots[level] = slot;
  1672. if (ins_len > 0 &&
  1673. btrfs_leaf_free_space(root, b) < ins_len) {
  1674. if (write_lock_level < 1) {
  1675. write_lock_level = 1;
  1676. btrfs_release_path(p);
  1677. goto again;
  1678. }
  1679. btrfs_set_path_blocking(p);
  1680. err = split_leaf(trans, root, key,
  1681. p, ins_len, ret == 0);
  1682. btrfs_clear_path_blocking(p, NULL, 0);
  1683. BUG_ON(err > 0);
  1684. if (err) {
  1685. ret = err;
  1686. goto done;
  1687. }
  1688. }
  1689. if (!p->search_for_split)
  1690. unlock_up(p, level, lowest_unlock,
  1691. min_write_lock_level, &write_lock_level);
  1692. goto done;
  1693. }
  1694. }
  1695. ret = 1;
  1696. done:
  1697. /*
  1698. * we don't really know what they plan on doing with the path
  1699. * from here on, so for now just mark it as blocking
  1700. */
  1701. if (!p->leave_spinning)
  1702. btrfs_set_path_blocking(p);
  1703. if (ret < 0)
  1704. btrfs_release_path(p);
  1705. return ret;
  1706. }
  1707. /*
  1708. * adjust the pointers going up the tree, starting at level
  1709. * making sure the right key of each node is points to 'key'.
  1710. * This is used after shifting pointers to the left, so it stops
  1711. * fixing up pointers when a given leaf/node is not in slot 0 of the
  1712. * higher levels
  1713. *
  1714. * If this fails to write a tree block, it returns -1, but continues
  1715. * fixing up the blocks in ram so the tree is consistent.
  1716. */
  1717. static int fixup_low_keys(struct btrfs_trans_handle *trans,
  1718. struct btrfs_root *root, struct btrfs_path *path,
  1719. struct btrfs_disk_key *key, int level)
  1720. {
  1721. int i;
  1722. int ret = 0;
  1723. struct extent_buffer *t;
  1724. for (i = level; i < BTRFS_MAX_LEVEL; i++) {
  1725. int tslot = path->slots[i];
  1726. if (!path->nodes[i])
  1727. break;
  1728. t = path->nodes[i];
  1729. btrfs_set_node_key(t, key, tslot);
  1730. btrfs_mark_buffer_dirty(path->nodes[i]);
  1731. if (tslot != 0)
  1732. break;
  1733. }
  1734. return ret;
  1735. }
  1736. /*
  1737. * update item key.
  1738. *
  1739. * This function isn't completely safe. It's the caller's responsibility
  1740. * that the new key won't break the order
  1741. */
  1742. int btrfs_set_item_key_safe(struct btrfs_trans_handle *trans,
  1743. struct btrfs_root *root, struct btrfs_path *path,
  1744. struct btrfs_key *new_key)
  1745. {
  1746. struct btrfs_disk_key disk_key;
  1747. struct extent_buffer *eb;
  1748. int slot;
  1749. eb = path->nodes[0];
  1750. slot = path->slots[0];
  1751. if (slot > 0) {
  1752. btrfs_item_key(eb, &disk_key, slot - 1);
  1753. if (comp_keys(&disk_key, new_key) >= 0)
  1754. return -1;
  1755. }
  1756. if (slot < btrfs_header_nritems(eb) - 1) {
  1757. btrfs_item_key(eb, &disk_key, slot + 1);
  1758. if (comp_keys(&disk_key, new_key) <= 0)
  1759. return -1;
  1760. }
  1761. btrfs_cpu_key_to_disk(&disk_key, new_key);
  1762. btrfs_set_item_key(eb, &disk_key, slot);
  1763. btrfs_mark_buffer_dirty(eb);
  1764. if (slot == 0)
  1765. fixup_low_keys(trans, root, path, &disk_key, 1);
  1766. return 0;
  1767. }
  1768. /*
  1769. * try to push data from one node into the next node left in the
  1770. * tree.
  1771. *
  1772. * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
  1773. * error, and > 0 if there was no room in the left hand block.
  1774. */
  1775. static int push_node_left(struct btrfs_trans_handle *trans,
  1776. struct btrfs_root *root, struct extent_buffer *dst,
  1777. struct extent_buffer *src, int empty)
  1778. {
  1779. int push_items = 0;
  1780. int src_nritems;
  1781. int dst_nritems;
  1782. int ret = 0;
  1783. src_nritems = btrfs_header_nritems(src);
  1784. dst_nritems = btrfs_header_nritems(dst);
  1785. push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
  1786. WARN_ON(btrfs_header_generation(src) != trans->transid);
  1787. WARN_ON(btrfs_header_generation(dst) != trans->transid);
  1788. if (!empty && src_nritems <= 8)
  1789. return 1;
  1790. if (push_items <= 0)
  1791. return 1;
  1792. if (empty) {
  1793. push_items = min(src_nritems, push_items);
  1794. if (push_items < src_nritems) {
  1795. /* leave at least 8 pointers in the node if
  1796. * we aren't going to empty it
  1797. */
  1798. if (src_nritems - push_items < 8) {
  1799. if (push_items <= 8)
  1800. return 1;
  1801. push_items -= 8;
  1802. }
  1803. }
  1804. } else
  1805. push_items = min(src_nritems - 8, push_items);
  1806. copy_extent_buffer(dst, src,
  1807. btrfs_node_key_ptr_offset(dst_nritems),
  1808. btrfs_node_key_ptr_offset(0),
  1809. push_items * sizeof(struct btrfs_key_ptr));
  1810. if (push_items < src_nritems) {
  1811. memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
  1812. btrfs_node_key_ptr_offset(push_items),
  1813. (src_nritems - push_items) *
  1814. sizeof(struct btrfs_key_ptr));
  1815. }
  1816. btrfs_set_header_nritems(src, src_nritems - push_items);
  1817. btrfs_set_header_nritems(dst, dst_nritems + push_items);
  1818. btrfs_mark_buffer_dirty(src);
  1819. btrfs_mark_buffer_dirty(dst);
  1820. return ret;
  1821. }
  1822. /*
  1823. * try to push data from one node into the next node right in the
  1824. * tree.
  1825. *
  1826. * returns 0 if some ptrs were pushed, < 0 if there was some horrible
  1827. * error, and > 0 if there was no room in the right hand block.
  1828. *
  1829. * this will only push up to 1/2 the contents of the left node over
  1830. */
  1831. static int balance_node_right(struct btrfs_trans_handle *trans,
  1832. struct btrfs_root *root,
  1833. struct extent_buffer *dst,
  1834. struct extent_buffer *src)
  1835. {
  1836. int push_items = 0;
  1837. int max_push;
  1838. int src_nritems;
  1839. int dst_nritems;
  1840. int ret = 0;
  1841. WARN_ON(btrfs_header_generation(src) != trans->transid);
  1842. WARN_ON(btrfs_header_generation(dst) != trans->transid);
  1843. src_nritems = btrfs_header_nritems(src);
  1844. dst_nritems = btrfs_header_nritems(dst);
  1845. push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
  1846. if (push_items <= 0)
  1847. return 1;
  1848. if (src_nritems < 4)
  1849. return 1;
  1850. max_push = src_nritems / 2 + 1;
  1851. /* don't try to empty the node */
  1852. if (max_push >= src_nritems)
  1853. return 1;
  1854. if (max_push < push_items)
  1855. push_items = max_push;
  1856. memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
  1857. btrfs_node_key_ptr_offset(0),
  1858. (dst_nritems) *
  1859. sizeof(struct btrfs_key_ptr));
  1860. copy_extent_buffer(dst, src,
  1861. btrfs_node_key_ptr_offset(0),
  1862. btrfs_node_key_ptr_offset(src_nritems - push_items),
  1863. push_items * sizeof(struct btrfs_key_ptr));
  1864. btrfs_set_header_nritems(src, src_nritems - push_items);
  1865. btrfs_set_header_nritems(dst, dst_nritems + push_items);
  1866. btrfs_mark_buffer_dirty(src);
  1867. btrfs_mark_buffer_dirty(dst);
  1868. return ret;
  1869. }
  1870. /*
  1871. * helper function to insert a new root level in the tree.
  1872. * A new node is allocated, and a single item is inserted to
  1873. * point to the existing root
  1874. *
  1875. * returns zero on success or < 0 on failure.
  1876. */
  1877. static noinline int insert_new_root(struct btrfs_trans_handle *trans,
  1878. struct btrfs_root *root,
  1879. struct btrfs_path *path, int level)
  1880. {
  1881. u64 lower_gen;
  1882. struct extent_buffer *lower;
  1883. struct extent_buffer *c;
  1884. struct extent_buffer *old;
  1885. struct btrfs_disk_key lower_key;
  1886. BUG_ON(path->nodes[level]);
  1887. BUG_ON(path->nodes[level-1] != root->node);
  1888. lower = path->nodes[level-1];
  1889. if (level == 1)
  1890. btrfs_item_key(lower, &lower_key, 0);
  1891. else
  1892. btrfs_node_key(lower, &lower_key, 0);
  1893. c = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
  1894. root->root_key.objectid, &lower_key,
  1895. level, root->node->start, 0, 0);
  1896. if (IS_ERR(c))
  1897. return PTR_ERR(c);
  1898. root_add_used(root, root->nodesize);
  1899. memset_extent_buffer(c, 0, 0, sizeof(struct btrfs_header));
  1900. btrfs_set_header_nritems(c, 1);
  1901. btrfs_set_header_level(c, level);
  1902. btrfs_set_header_bytenr(c, c->start);
  1903. btrfs_set_header_generation(c, trans->transid);
  1904. btrfs_set_header_backref_rev(c, BTRFS_MIXED_BACKREF_REV);
  1905. btrfs_set_header_owner(c, root->root_key.objectid);
  1906. write_extent_buffer(c, root->fs_info->fsid,
  1907. (unsigned long)btrfs_header_fsid(c),
  1908. BTRFS_FSID_SIZE);
  1909. write_extent_buffer(c, root->fs_info->chunk_tree_uuid,
  1910. (unsigned long)btrfs_header_chunk_tree_uuid(c),
  1911. BTRFS_UUID_SIZE);
  1912. btrfs_set_node_key(c, &lower_key, 0);
  1913. btrfs_set_node_blockptr(c, 0, lower->start);
  1914. lower_gen = btrfs_header_generation(lower);
  1915. WARN_ON(lower_gen != trans->transid);
  1916. btrfs_set_node_ptr_generation(c, 0, lower_gen);
  1917. btrfs_mark_buffer_dirty(c);
  1918. old = root->node;
  1919. rcu_assign_pointer(root->node, c);
  1920. /* the super has an extra ref to root->node */
  1921. free_extent_buffer(old);
  1922. add_root_to_dirty_list(root);
  1923. extent_buffer_get(c);
  1924. path->nodes[level] = c;
  1925. path->locks[level] = BTRFS_WRITE_LOCK;
  1926. path->slots[level] = 0;
  1927. return 0;
  1928. }
  1929. /*
  1930. * worker function to insert a single pointer in a node.
  1931. * the node should have enough room for the pointer already
  1932. *
  1933. * slot and level indicate where you want the key to go, and
  1934. * blocknr is the block the key points to.
  1935. *
  1936. * returns zero on success and < 0 on any error
  1937. */
  1938. static int insert_ptr(struct btrfs_trans_handle *trans, struct btrfs_root
  1939. *root, struct btrfs_path *path, struct btrfs_disk_key
  1940. *key, u64 bytenr, int slot, int level)
  1941. {
  1942. struct extent_buffer *lower;
  1943. int nritems;
  1944. BUG_ON(!path->nodes[level]);
  1945. btrfs_assert_tree_locked(path->nodes[level]);
  1946. lower = path->nodes[level];
  1947. nritems = btrfs_header_nritems(lower);
  1948. BUG_ON(slot > nritems);
  1949. if (nritems == BTRFS_NODEPTRS_PER_BLOCK(root))
  1950. BUG();
  1951. if (slot != nritems) {
  1952. memmove_extent_buffer(lower,
  1953. btrfs_node_key_ptr_offset(slot + 1),
  1954. btrfs_node_key_ptr_offset(slot),
  1955. (nritems - slot) * sizeof(struct btrfs_key_ptr));
  1956. }
  1957. btrfs_set_node_key(lower, key, slot);
  1958. btrfs_set_node_blockptr(lower, slot, bytenr);
  1959. WARN_ON(trans->transid == 0);
  1960. btrfs_set_node_ptr_generation(lower, slot, trans->transid);
  1961. btrfs_set_header_nritems(lower, nritems + 1);
  1962. btrfs_mark_buffer_dirty(lower);
  1963. return 0;
  1964. }
  1965. /*
  1966. * split the node at the specified level in path in two.
  1967. * The path is corrected to point to the appropriate node after the split
  1968. *
  1969. * Before splitting this tries to make some room in the node by pushing
  1970. * left and right, if either one works, it returns right away.
  1971. *
  1972. * returns 0 on success and < 0 on failure
  1973. */
  1974. static noinline int split_node(struct btrfs_trans_handle *trans,
  1975. struct btrfs_root *root,
  1976. struct btrfs_path *path, int level)
  1977. {
  1978. struct extent_buffer *c;
  1979. struct extent_buffer *split;
  1980. struct btrfs_disk_key disk_key;
  1981. int mid;
  1982. int ret;
  1983. int wret;
  1984. u32 c_nritems;
  1985. c = path->nodes[level];
  1986. WARN_ON(btrfs_header_generation(c) != trans->transid);
  1987. if (c == root->node) {
  1988. /* trying to split the root, lets make a new one */
  1989. ret = insert_new_root(trans, root, path, level + 1);
  1990. if (ret)
  1991. return ret;
  1992. } else {
  1993. ret = push_nodes_for_insert(trans, root, path, level);
  1994. c = path->nodes[level];
  1995. if (!ret && btrfs_header_nritems(c) <
  1996. BTRFS_NODEPTRS_PER_BLOCK(root) - 3)
  1997. return 0;
  1998. if (ret < 0)
  1999. return ret;
  2000. }
  2001. c_nritems = btrfs_header_nritems(c);
  2002. mid = (c_nritems + 1) / 2;
  2003. btrfs_node_key(c, &disk_key, mid);
  2004. split = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
  2005. root->root_key.objectid,
  2006. &disk_key, level, c->start, 0, 0);
  2007. if (IS_ERR(split))
  2008. return PTR_ERR(split);
  2009. root_add_used(root, root->nodesize);
  2010. memset_extent_buffer(split, 0, 0, sizeof(struct btrfs_header));
  2011. btrfs_set_header_level(split, btrfs_header_level(c));
  2012. btrfs_set_header_bytenr(split, split->start);
  2013. btrfs_set_header_generation(split, trans->transid);
  2014. btrfs_set_header_backref_rev(split, BTRFS_MIXED_BACKREF_REV);
  2015. btrfs_set_header_owner(split, root->root_key.objectid);
  2016. write_extent_buffer(split, root->fs_info->fsid,
  2017. (unsigned long)btrfs_header_fsid(split),
  2018. BTRFS_FSID_SIZE);
  2019. write_extent_buffer(split, root->fs_info->chunk_tree_uuid,
  2020. (unsigned long)btrfs_header_chunk_tree_uuid(split),
  2021. BTRFS_UUID_SIZE);
  2022. copy_extent_buffer(split, c,
  2023. btrfs_node_key_ptr_offset(0),
  2024. btrfs_node_key_ptr_offset(mid),
  2025. (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
  2026. btrfs_set_header_nritems(split, c_nritems - mid);
  2027. btrfs_set_header_nritems(c, mid);
  2028. ret = 0;
  2029. btrfs_mark_buffer_dirty(c);
  2030. btrfs_mark_buffer_dirty(split);
  2031. wret = insert_ptr(trans, root, path, &disk_key, split->start,
  2032. path->slots[level + 1] + 1,
  2033. level + 1);
  2034. if (wret)
  2035. ret = wret;
  2036. if (path->slots[level] >= mid) {
  2037. path->slots[level] -= mid;
  2038. btrfs_tree_unlock(c);
  2039. free_extent_buffer(c);
  2040. path->nodes[level] = split;
  2041. path->slots[level + 1] += 1;
  2042. } else {
  2043. btrfs_tree_unlock(split);
  2044. free_extent_buffer(split);
  2045. }
  2046. return ret;
  2047. }
  2048. /*
  2049. * how many bytes are required to store the items in a leaf. start
  2050. * and nr indicate which items in the leaf to check. This totals up the
  2051. * space used both by the item structs and the item data
  2052. */
  2053. static int leaf_space_used(struct extent_buffer *l, int start, int nr)
  2054. {
  2055. int data_len;
  2056. int nritems = btrfs_header_nritems(l);
  2057. int end = min(nritems, start + nr) - 1;
  2058. if (!nr)
  2059. return 0;
  2060. data_len = btrfs_item_end_nr(l, start);
  2061. data_len = data_len - btrfs_item_offset_nr(l, end);
  2062. data_len += sizeof(struct btrfs_item) * nr;
  2063. WARN_ON(data_len < 0);
  2064. return data_len;
  2065. }
  2066. /*
  2067. * The space between the end of the leaf items and
  2068. * the start of the leaf data. IOW, how much room
  2069. * the leaf has left for both items and data
  2070. */
  2071. noinline int btrfs_leaf_free_space(struct btrfs_root *root,
  2072. struct extent_buffer *leaf)
  2073. {
  2074. int nritems = btrfs_header_nritems(leaf);
  2075. int ret;
  2076. ret = BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems);
  2077. if (ret < 0) {
  2078. printk(KERN_CRIT "leaf free space ret %d, leaf data size %lu, "
  2079. "used %d nritems %d\n",
  2080. ret, (unsigned long) BTRFS_LEAF_DATA_SIZE(root),
  2081. leaf_space_used(leaf, 0, nritems), nritems);
  2082. }
  2083. return ret;
  2084. }
  2085. /*
  2086. * min slot controls the lowest index we're willing to push to the
  2087. * right. We'll push up to and including min_slot, but no lower
  2088. */
  2089. static noinline int __push_leaf_right(struct btrfs_trans_handle *trans,
  2090. struct btrfs_root *root,
  2091. struct btrfs_path *path,
  2092. int data_size, int empty,
  2093. struct extent_buffer *right,
  2094. int free_space, u32 left_nritems,
  2095. u32 min_slot)
  2096. {
  2097. struct extent_buffer *left = path->nodes[0];
  2098. struct extent_buffer *upper = path->nodes[1];
  2099. struct btrfs_map_token token;
  2100. struct btrfs_disk_key disk_key;
  2101. int slot;
  2102. u32 i;
  2103. int push_space = 0;
  2104. int push_items = 0;
  2105. struct btrfs_item *item;
  2106. u32 nr;
  2107. u32 right_nritems;
  2108. u32 data_end;
  2109. u32 this_item_size;
  2110. btrfs_init_map_token(&token);
  2111. if (empty)
  2112. nr = 0;
  2113. else
  2114. nr = max_t(u32, 1, min_slot);
  2115. if (path->slots[0] >= left_nritems)
  2116. push_space += data_size;
  2117. slot = path->slots[1];
  2118. i = left_nritems - 1;
  2119. while (i >= nr) {
  2120. item = btrfs_item_nr(left, i);
  2121. if (!empty && push_items > 0) {
  2122. if (path->slots[0] > i)
  2123. break;
  2124. if (path->slots[0] == i) {
  2125. int space = btrfs_leaf_free_space(root, left);
  2126. if (space + push_space * 2 > free_space)
  2127. break;
  2128. }
  2129. }
  2130. if (path->slots[0] == i)
  2131. push_space += data_size;
  2132. this_item_size = btrfs_item_size(left, item);
  2133. if (this_item_size + sizeof(*item) + push_space > free_space)
  2134. break;
  2135. push_items++;
  2136. push_space += this_item_size + sizeof(*item);
  2137. if (i == 0)
  2138. break;
  2139. i--;
  2140. }
  2141. if (push_items == 0)
  2142. goto out_unlock;
  2143. if (!empty && push_items == left_nritems)
  2144. WARN_ON(1);
  2145. /* push left to right */
  2146. right_nritems = btrfs_header_nritems(right);
  2147. push_space = btrfs_item_end_nr(left, left_nritems - push_items);
  2148. push_space -= leaf_data_end(root, left);
  2149. /* make room in the right data area */
  2150. data_end = leaf_data_end(root, right);
  2151. memmove_extent_buffer(right,
  2152. btrfs_leaf_data(right) + data_end - push_space,
  2153. btrfs_leaf_data(right) + data_end,
  2154. BTRFS_LEAF_DATA_SIZE(root) - data_end);
  2155. /* copy from the left data area */
  2156. copy_extent_buffer(right, left, btrfs_leaf_data(right) +
  2157. BTRFS_LEAF_DATA_SIZE(root) - push_space,
  2158. btrfs_leaf_data(left) + leaf_data_end(root, left),
  2159. push_space);
  2160. memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
  2161. btrfs_item_nr_offset(0),
  2162. right_nritems * sizeof(struct btrfs_item));
  2163. /* copy the items from left to right */
  2164. copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
  2165. btrfs_item_nr_offset(left_nritems - push_items),
  2166. push_items * sizeof(struct btrfs_item));
  2167. /* update the item pointers */
  2168. right_nritems += push_items;
  2169. btrfs_set_header_nritems(right, right_nritems);
  2170. push_space = BTRFS_LEAF_DATA_SIZE(root);
  2171. for (i = 0; i < right_nritems; i++) {
  2172. item = btrfs_item_nr(right, i);
  2173. push_space -= btrfs_token_item_size(right, item, &token);
  2174. btrfs_set_token_item_offset(right, item, push_space, &token);
  2175. }
  2176. left_nritems -= push_items;
  2177. btrfs_set_header_nritems(left, left_nritems);
  2178. if (left_nritems)
  2179. btrfs_mark_buffer_dirty(left);
  2180. else
  2181. clean_tree_block(trans, root, left);
  2182. btrfs_mark_buffer_dirty(right);
  2183. btrfs_item_key(right, &disk_key, 0);
  2184. btrfs_set_node_key(upper, &disk_key, slot + 1);
  2185. btrfs_mark_buffer_dirty(upper);
  2186. /* then fixup the leaf pointer in the path */
  2187. if (path->slots[0] >= left_nritems) {
  2188. path->slots[0] -= left_nritems;
  2189. if (btrfs_header_nritems(path->nodes[0]) == 0)
  2190. clean_tree_block(trans, root, path->nodes[0]);
  2191. btrfs_tree_unlock(path->nodes[0]);
  2192. free_extent_buffer(path->nodes[0]);
  2193. path->nodes[0] = right;
  2194. path->slots[1] += 1;
  2195. } else {
  2196. btrfs_tree_unlock(right);
  2197. free_extent_buffer(right);
  2198. }
  2199. return 0;
  2200. out_unlock:
  2201. btrfs_tree_unlock(right);
  2202. free_extent_buffer(right);
  2203. return 1;
  2204. }
  2205. /*
  2206. * push some data in the path leaf to the right, trying to free up at
  2207. * least data_size bytes. returns zero if the push worked, nonzero otherwise
  2208. *
  2209. * returns 1 if the push failed because the other node didn't have enough
  2210. * room, 0 if everything worked out and < 0 if there were major errors.
  2211. *
  2212. * this will push starting from min_slot to the end of the leaf. It won't
  2213. * push any slot lower than min_slot
  2214. */
  2215. static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
  2216. *root, struct btrfs_path *path,
  2217. int min_data_size, int data_size,
  2218. int empty, u32 min_slot)
  2219. {
  2220. struct extent_buffer *left = path->nodes[0];
  2221. struct extent_buffer *right;
  2222. struct extent_buffer *upper;
  2223. int slot;
  2224. int free_space;
  2225. u32 left_nritems;
  2226. int ret;
  2227. if (!path->nodes[1])
  2228. return 1;
  2229. slot = path->slots[1];
  2230. upper = path->nodes[1];
  2231. if (slot >= btrfs_header_nritems(upper) - 1)
  2232. return 1;
  2233. btrfs_assert_tree_locked(path->nodes[1]);
  2234. right = read_node_slot(root, upper, slot + 1);
  2235. if (right == NULL)
  2236. return 1;
  2237. btrfs_tree_lock(right);
  2238. btrfs_set_lock_blocking(right);
  2239. free_space = btrfs_leaf_free_space(root, right);
  2240. if (free_space < data_size)
  2241. goto out_unlock;
  2242. /* cow and double check */
  2243. ret = btrfs_cow_block(trans, root, right, upper,
  2244. slot + 1, &right);
  2245. if (ret)
  2246. goto out_unlock;
  2247. free_space = btrfs_leaf_free_space(root, right);
  2248. if (free_space < data_size)
  2249. goto out_unlock;
  2250. left_nritems = btrfs_header_nritems(left);
  2251. if (left_nritems == 0)
  2252. goto out_unlock;
  2253. return __push_leaf_right(trans, root, path, min_data_size, empty,
  2254. right, free_space, left_nritems, min_slot);
  2255. out_unlock:
  2256. btrfs_tree_unlock(right);
  2257. free_extent_buffer(right);
  2258. return 1;
  2259. }
  2260. /*
  2261. * push some data in the path leaf to the left, trying to free up at
  2262. * least data_size bytes. returns zero if the push worked, nonzero otherwise
  2263. *
  2264. * max_slot can put a limit on how far into the leaf we'll push items. The
  2265. * item at 'max_slot' won't be touched. Use (u32)-1 to make us do all the
  2266. * items
  2267. */
  2268. static noinline int __push_leaf_left(struct btrfs_trans_handle *trans,
  2269. struct btrfs_root *root,
  2270. struct btrfs_path *path, int data_size,
  2271. int empty, struct extent_buffer *left,
  2272. int free_space, u32 right_nritems,
  2273. u32 max_slot)
  2274. {
  2275. struct btrfs_disk_key disk_key;
  2276. struct extent_buffer *right = path->nodes[0];
  2277. int i;
  2278. int push_space = 0;
  2279. int push_items = 0;
  2280. struct btrfs_item *item;
  2281. u32 old_left_nritems;
  2282. u32 nr;
  2283. int ret = 0;
  2284. int wret;
  2285. u32 this_item_size;
  2286. u32 old_left_item_size;
  2287. struct btrfs_map_token token;
  2288. btrfs_init_map_token(&token);
  2289. if (empty)
  2290. nr = min(right_nritems, max_slot);
  2291. else
  2292. nr = min(right_nritems - 1, max_slot);
  2293. for (i = 0; i < nr; i++) {
  2294. item = btrfs_item_nr(right, i);
  2295. if (!empty && push_items > 0) {
  2296. if (path->slots[0] < i)
  2297. break;
  2298. if (path->slots[0] == i) {
  2299. int space = btrfs_leaf_free_space(root, right);
  2300. if (space + push_space * 2 > free_space)
  2301. break;
  2302. }
  2303. }
  2304. if (path->slots[0] == i)
  2305. push_space += data_size;
  2306. this_item_size = btrfs_item_size(right, item);
  2307. if (this_item_size + sizeof(*item) + push_space > free_space)
  2308. break;
  2309. push_items++;
  2310. push_space += this_item_size + sizeof(*item);
  2311. }
  2312. if (push_items == 0) {
  2313. ret = 1;
  2314. goto out;
  2315. }
  2316. if (!empty && push_items == btrfs_header_nritems(right))
  2317. WARN_ON(1);
  2318. /* push data from right to left */
  2319. copy_extent_buffer(left, right,
  2320. btrfs_item_nr_offset(btrfs_header_nritems(left)),
  2321. btrfs_item_nr_offset(0),
  2322. push_items * sizeof(struct btrfs_item));
  2323. push_space = BTRFS_LEAF_DATA_SIZE(root) -
  2324. btrfs_item_offset_nr(right, push_items - 1);
  2325. copy_extent_buffer(left, right, btrfs_leaf_data(left) +
  2326. leaf_data_end(root, left) - push_space,
  2327. btrfs_leaf_data(right) +
  2328. btrfs_item_offset_nr(right, push_items - 1),
  2329. push_space);
  2330. old_left_nritems = btrfs_header_nritems(left);
  2331. BUG_ON(old_left_nritems <= 0);
  2332. old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
  2333. for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
  2334. u32 ioff;
  2335. item = btrfs_item_nr(left, i);
  2336. ioff = btrfs_token_item_offset(left, item, &token);
  2337. btrfs_set_token_item_offset(left, item,
  2338. ioff - (BTRFS_LEAF_DATA_SIZE(root) - old_left_item_size),
  2339. &token);
  2340. }
  2341. btrfs_set_header_nritems(left, old_left_nritems + push_items);
  2342. /* fixup right node */
  2343. if (push_items > right_nritems) {
  2344. printk(KERN_CRIT "push items %d nr %u\n", push_items,
  2345. right_nritems);
  2346. WARN_ON(1);
  2347. }
  2348. if (push_items < right_nritems) {
  2349. push_space = btrfs_item_offset_nr(right, push_items - 1) -
  2350. leaf_data_end(root, right);
  2351. memmove_extent_buffer(right, btrfs_leaf_data(right) +
  2352. BTRFS_LEAF_DATA_SIZE(root) - push_space,
  2353. btrfs_leaf_data(right) +
  2354. leaf_data_end(root, right), push_space);
  2355. memmove_extent_buffer(right, btrfs_item_nr_offset(0),
  2356. btrfs_item_nr_offset(push_items),
  2357. (btrfs_header_nritems(right) - push_items) *
  2358. sizeof(struct btrfs_item));
  2359. }
  2360. right_nritems -= push_items;
  2361. btrfs_set_header_nritems(right, right_nritems);
  2362. push_space = BTRFS_LEAF_DATA_SIZE(root);
  2363. for (i = 0; i < right_nritems; i++) {
  2364. item = btrfs_item_nr(right, i);
  2365. push_space = push_space - btrfs_token_item_size(right,
  2366. item, &token);
  2367. btrfs_set_token_item_offset(right, item, push_space, &token);
  2368. }
  2369. btrfs_mark_buffer_dirty(left);
  2370. if (right_nritems)
  2371. btrfs_mark_buffer_dirty(right);
  2372. else
  2373. clean_tree_block(trans, root, right);
  2374. btrfs_item_key(right, &disk_key, 0);
  2375. wret = fixup_low_keys(trans, root, path, &disk_key, 1);
  2376. if (wret)
  2377. ret = wret;
  2378. /* then fixup the leaf pointer in the path */
  2379. if (path->slots[0] < push_items) {
  2380. path->slots[0] += old_left_nritems;
  2381. btrfs_tree_unlock(path->nodes[0]);
  2382. free_extent_buffer(path->nodes[0]);
  2383. path->nodes[0] = left;
  2384. path->slots[1] -= 1;
  2385. } else {
  2386. btrfs_tree_unlock(left);
  2387. free_extent_buffer(left);
  2388. path->slots[0] -= push_items;
  2389. }
  2390. BUG_ON(path->slots[0] < 0);
  2391. return ret;
  2392. out:
  2393. btrfs_tree_unlock(left);
  2394. free_extent_buffer(left);
  2395. return ret;
  2396. }
  2397. /*
  2398. * push some data in the path leaf to the left, trying to free up at
  2399. * least data_size bytes. returns zero if the push worked, nonzero otherwise
  2400. *
  2401. * max_slot can put a limit on how far into the leaf we'll push items. The
  2402. * item at 'max_slot' won't be touched. Use (u32)-1 to make us push all the
  2403. * items
  2404. */
  2405. static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
  2406. *root, struct btrfs_path *path, int min_data_size,
  2407. int data_size, int empty, u32 max_slot)
  2408. {
  2409. struct extent_buffer *right = path->nodes[0];
  2410. struct extent_buffer *left;
  2411. int slot;
  2412. int free_space;
  2413. u32 right_nritems;
  2414. int ret = 0;
  2415. slot = path->slots[1];
  2416. if (slot == 0)
  2417. return 1;
  2418. if (!path->nodes[1])
  2419. return 1;
  2420. right_nritems = btrfs_header_nritems(right);
  2421. if (right_nritems == 0)
  2422. return 1;
  2423. btrfs_assert_tree_locked(path->nodes[1]);
  2424. left = read_node_slot(root, path->nodes[1], slot - 1);
  2425. if (left == NULL)
  2426. return 1;
  2427. btrfs_tree_lock(left);
  2428. btrfs_set_lock_blocking(left);
  2429. free_space = btrfs_leaf_free_space(root, left);
  2430. if (free_space < data_size) {
  2431. ret = 1;
  2432. goto out;
  2433. }
  2434. /* cow and double check */
  2435. ret = btrfs_cow_block(trans, root, left,
  2436. path->nodes[1], slot - 1, &left);
  2437. if (ret) {
  2438. /* we hit -ENOSPC, but it isn't fatal here */
  2439. ret = 1;
  2440. goto out;
  2441. }
  2442. free_space = btrfs_leaf_free_space(root, left);
  2443. if (free_space < data_size) {
  2444. ret = 1;
  2445. goto out;
  2446. }
  2447. return __push_leaf_left(trans, root, path, min_data_size,
  2448. empty, left, free_space, right_nritems,
  2449. max_slot);
  2450. out:
  2451. btrfs_tree_unlock(left);
  2452. free_extent_buffer(left);
  2453. return ret;
  2454. }
  2455. /*
  2456. * split the path's leaf in two, making sure there is at least data_size
  2457. * available for the resulting leaf level of the path.
  2458. *
  2459. * returns 0 if all went well and < 0 on failure.
  2460. */
  2461. static noinline int copy_for_split(struct btrfs_trans_handle *trans,
  2462. struct btrfs_root *root,
  2463. struct btrfs_path *path,
  2464. struct extent_buffer *l,
  2465. struct extent_buffer *right,
  2466. int slot, int mid, int nritems)
  2467. {
  2468. int data_copy_size;
  2469. int rt_data_off;
  2470. int i;
  2471. int ret = 0;
  2472. int wret;
  2473. struct btrfs_disk_key disk_key;
  2474. struct btrfs_map_token token;
  2475. btrfs_init_map_token(&token);
  2476. nritems = nritems - mid;
  2477. btrfs_set_header_nritems(right, nritems);
  2478. data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(root, l);
  2479. copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
  2480. btrfs_item_nr_offset(mid),
  2481. nritems * sizeof(struct btrfs_item));
  2482. copy_extent_buffer(right, l,
  2483. btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) -
  2484. data_copy_size, btrfs_leaf_data(l) +
  2485. leaf_data_end(root, l), data_copy_size);
  2486. rt_data_off = BTRFS_LEAF_DATA_SIZE(root) -
  2487. btrfs_item_end_nr(l, mid);
  2488. for (i = 0; i < nritems; i++) {
  2489. struct btrfs_item *item = btrfs_item_nr(right, i);
  2490. u32 ioff;
  2491. ioff = btrfs_token_item_offset(right, item, &token);
  2492. btrfs_set_token_item_offset(right, item,
  2493. ioff + rt_data_off, &token);
  2494. }
  2495. btrfs_set_header_nritems(l, mid);
  2496. ret = 0;
  2497. btrfs_item_key(right, &disk_key, 0);
  2498. wret = insert_ptr(trans, root, path, &disk_key, right->start,
  2499. path->slots[1] + 1, 1);
  2500. if (wret)
  2501. ret = wret;
  2502. btrfs_mark_buffer_dirty(right);
  2503. btrfs_mark_buffer_dirty(l);
  2504. BUG_ON(path->slots[0] != slot);
  2505. if (mid <= slot) {
  2506. btrfs_tree_unlock(path->nodes[0]);
  2507. free_extent_buffer(path->nodes[0]);
  2508. path->nodes[0] = right;
  2509. path->slots[0] -= mid;
  2510. path->slots[1] += 1;
  2511. } else {
  2512. btrfs_tree_unlock(right);
  2513. free_extent_buffer(right);
  2514. }
  2515. BUG_ON(path->slots[0] < 0);
  2516. return ret;
  2517. }
  2518. /*
  2519. * double splits happen when we need to insert a big item in the middle
  2520. * of a leaf. A double split can leave us with 3 mostly empty leaves:
  2521. * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
  2522. * A B C
  2523. *
  2524. * We avoid this by trying to push the items on either side of our target
  2525. * into the adjacent leaves. If all goes well we can avoid the double split
  2526. * completely.
  2527. */
  2528. static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
  2529. struct btrfs_root *root,
  2530. struct btrfs_path *path,
  2531. int data_size)
  2532. {
  2533. int ret;
  2534. int progress = 0;
  2535. int slot;
  2536. u32 nritems;
  2537. slot = path->slots[0];
  2538. /*
  2539. * try to push all the items after our slot into the
  2540. * right leaf
  2541. */
  2542. ret = push_leaf_right(trans, root, path, 1, data_size, 0, slot);
  2543. if (ret < 0)
  2544. return ret;
  2545. if (ret == 0)
  2546. progress++;
  2547. nritems = btrfs_header_nritems(path->nodes[0]);
  2548. /*
  2549. * our goal is to get our slot at the start or end of a leaf. If
  2550. * we've done so we're done
  2551. */
  2552. if (path->slots[0] == 0 || path->slots[0] == nritems)
  2553. return 0;
  2554. if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
  2555. return 0;
  2556. /* try to push all the items before our slot into the next leaf */
  2557. slot = path->slots[0];
  2558. ret = push_leaf_left(trans, root, path, 1, data_size, 0, slot);
  2559. if (ret < 0)
  2560. return ret;
  2561. if (ret == 0)
  2562. progress++;
  2563. if (progress)
  2564. return 0;
  2565. return 1;
  2566. }
  2567. /*
  2568. * split the path's leaf in two, making sure there is at least data_size
  2569. * available for the resulting leaf level of the path.
  2570. *
  2571. * returns 0 if all went well and < 0 on failure.
  2572. */
  2573. static noinline int split_leaf(struct btrfs_trans_handle *trans,
  2574. struct btrfs_root *root,
  2575. struct btrfs_key *ins_key,
  2576. struct btrfs_path *path, int data_size,
  2577. int extend)
  2578. {
  2579. struct btrfs_disk_key disk_key;
  2580. struct extent_buffer *l;
  2581. u32 nritems;
  2582. int mid;
  2583. int slot;
  2584. struct extent_buffer *right;
  2585. int ret = 0;
  2586. int wret;
  2587. int split;
  2588. int num_doubles = 0;
  2589. int tried_avoid_double = 0;
  2590. l = path->nodes[0];
  2591. slot = path->slots[0];
  2592. if (extend && data_size + btrfs_item_size_nr(l, slot) +
  2593. sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(root))
  2594. return -EOVERFLOW;
  2595. /* first try to make some room by pushing left and right */
  2596. if (data_size) {
  2597. wret = push_leaf_right(trans, root, path, data_size,
  2598. data_size, 0, 0);
  2599. if (wret < 0)
  2600. return wret;
  2601. if (wret) {
  2602. wret = push_leaf_left(trans, root, path, data_size,
  2603. data_size, 0, (u32)-1);
  2604. if (wret < 0)
  2605. return wret;
  2606. }
  2607. l = path->nodes[0];
  2608. /* did the pushes work? */
  2609. if (btrfs_leaf_free_space(root, l) >= data_size)
  2610. return 0;
  2611. }
  2612. if (!path->nodes[1]) {
  2613. ret = insert_new_root(trans, root, path, 1);
  2614. if (ret)
  2615. return ret;
  2616. }
  2617. again:
  2618. split = 1;
  2619. l = path->nodes[0];
  2620. slot = path->slots[0];
  2621. nritems = btrfs_header_nritems(l);
  2622. mid = (nritems + 1) / 2;
  2623. if (mid <= slot) {
  2624. if (nritems == 1 ||
  2625. leaf_space_used(l, mid, nritems - mid) + data_size >
  2626. BTRFS_LEAF_DATA_SIZE(root)) {
  2627. if (slot >= nritems) {
  2628. split = 0;
  2629. } else {
  2630. mid = slot;
  2631. if (mid != nritems &&
  2632. leaf_space_used(l, mid, nritems - mid) +
  2633. data_size > BTRFS_LEAF_DATA_SIZE(root)) {
  2634. if (data_size && !tried_avoid_double)
  2635. goto push_for_double;
  2636. split = 2;
  2637. }
  2638. }
  2639. }
  2640. } else {
  2641. if (leaf_space_used(l, 0, mid) + data_size >
  2642. BTRFS_LEAF_DATA_SIZE(root)) {
  2643. if (!extend && data_size && slot == 0) {
  2644. split = 0;
  2645. } else if ((extend || !data_size) && slot == 0) {
  2646. mid = 1;
  2647. } else {
  2648. mid = slot;
  2649. if (mid != nritems &&
  2650. leaf_space_used(l, mid, nritems - mid) +
  2651. data_size > BTRFS_LEAF_DATA_SIZE(root)) {
  2652. if (data_size && !tried_avoid_double)
  2653. goto push_for_double;
  2654. split = 2 ;
  2655. }
  2656. }
  2657. }
  2658. }
  2659. if (split == 0)
  2660. btrfs_cpu_key_to_disk(&disk_key, ins_key);
  2661. else
  2662. btrfs_item_key(l, &disk_key, mid);
  2663. right = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
  2664. root->root_key.objectid,
  2665. &disk_key, 0, l->start, 0, 0);
  2666. if (IS_ERR(right))
  2667. return PTR_ERR(right);
  2668. root_add_used(root, root->leafsize);
  2669. memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header));
  2670. btrfs_set_header_bytenr(right, right->start);
  2671. btrfs_set_header_generation(right, trans->transid);
  2672. btrfs_set_header_backref_rev(right, BTRFS_MIXED_BACKREF_REV);
  2673. btrfs_set_header_owner(right, root->root_key.objectid);
  2674. btrfs_set_header_level(right, 0);
  2675. write_extent_buffer(right, root->fs_info->fsid,
  2676. (unsigned long)btrfs_header_fsid(right),
  2677. BTRFS_FSID_SIZE);
  2678. write_extent_buffer(right, root->fs_info->chunk_tree_uuid,
  2679. (unsigned long)btrfs_header_chunk_tree_uuid(right),
  2680. BTRFS_UUID_SIZE);
  2681. if (split == 0) {
  2682. if (mid <= slot) {
  2683. btrfs_set_header_nritems(right, 0);
  2684. wret = insert_ptr(trans, root, path,
  2685. &disk_key, right->start,
  2686. path->slots[1] + 1, 1);
  2687. if (wret)
  2688. ret = wret;
  2689. btrfs_tree_unlock(path->nodes[0]);
  2690. free_extent_buffer(path->nodes[0]);
  2691. path->nodes[0] = right;
  2692. path->slots[0] = 0;
  2693. path->slots[1] += 1;
  2694. } else {
  2695. btrfs_set_header_nritems(right, 0);
  2696. wret = insert_ptr(trans, root, path,
  2697. &disk_key,
  2698. right->start,
  2699. path->slots[1], 1);
  2700. if (wret)
  2701. ret = wret;
  2702. btrfs_tree_unlock(path->nodes[0]);
  2703. free_extent_buffer(path->nodes[0]);
  2704. path->nodes[0] = right;
  2705. path->slots[0] = 0;
  2706. if (path->slots[1] == 0) {
  2707. wret = fixup_low_keys(trans, root,
  2708. path, &disk_key, 1);
  2709. if (wret)
  2710. ret = wret;
  2711. }
  2712. }
  2713. btrfs_mark_buffer_dirty(right);
  2714. return ret;
  2715. }
  2716. ret = copy_for_split(trans, root, path, l, right, slot, mid, nritems);
  2717. BUG_ON(ret);
  2718. if (split == 2) {
  2719. BUG_ON(num_doubles != 0);
  2720. num_doubles++;
  2721. goto again;
  2722. }
  2723. return ret;
  2724. push_for_double:
  2725. push_for_double_split(trans, root, path, data_size);
  2726. tried_avoid_double = 1;
  2727. if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
  2728. return 0;
  2729. goto again;
  2730. }
  2731. static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
  2732. struct btrfs_root *root,
  2733. struct btrfs_path *path, int ins_len)
  2734. {
  2735. struct btrfs_key key;
  2736. struct extent_buffer *leaf;
  2737. struct btrfs_file_extent_item *fi;
  2738. u64 extent_len = 0;
  2739. u32 item_size;
  2740. int ret;
  2741. leaf = path->nodes[0];
  2742. btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
  2743. BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
  2744. key.type != BTRFS_EXTENT_CSUM_KEY);
  2745. if (btrfs_leaf_free_space(root, leaf) >= ins_len)
  2746. return 0;
  2747. item_size = btrfs_item_size_nr(leaf, path->slots[0]);
  2748. if (key.type == BTRFS_EXTENT_DATA_KEY) {
  2749. fi = btrfs_item_ptr(leaf, path->slots[0],
  2750. struct btrfs_file_extent_item);
  2751. extent_len = btrfs_file_extent_num_bytes(leaf, fi);
  2752. }
  2753. btrfs_release_path(path);
  2754. path->keep_locks = 1;
  2755. path->search_for_split = 1;
  2756. ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
  2757. path->search_for_split = 0;
  2758. if (ret < 0)
  2759. goto err;
  2760. ret = -EAGAIN;
  2761. leaf = path->nodes[0];
  2762. /* if our item isn't there or got smaller, return now */
  2763. if (ret > 0 || item_size != btrfs_item_size_nr(leaf, path->slots[0]))
  2764. goto err;
  2765. /* the leaf has changed, it now has room. return now */
  2766. if (btrfs_leaf_free_space(root, path->nodes[0]) >= ins_len)
  2767. goto err;
  2768. if (key.type == BTRFS_EXTENT_DATA_KEY) {
  2769. fi = btrfs_item_ptr(leaf, path->slots[0],
  2770. struct btrfs_file_extent_item);
  2771. if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
  2772. goto err;
  2773. }
  2774. btrfs_set_path_blocking(path);
  2775. ret = split_leaf(trans, root, &key, path, ins_len, 1);
  2776. if (ret)
  2777. goto err;
  2778. path->keep_locks = 0;
  2779. btrfs_unlock_up_safe(path, 1);
  2780. return 0;
  2781. err:
  2782. path->keep_locks = 0;
  2783. return ret;
  2784. }
  2785. static noinline int split_item(struct btrfs_trans_handle *trans,
  2786. struct btrfs_root *root,
  2787. struct btrfs_path *path,
  2788. struct btrfs_key *new_key,
  2789. unsigned long split_offset)
  2790. {
  2791. struct extent_buffer *leaf;
  2792. struct btrfs_item *item;
  2793. struct btrfs_item *new_item;
  2794. int slot;
  2795. char *buf;
  2796. u32 nritems;
  2797. u32 item_size;
  2798. u32 orig_offset;
  2799. struct btrfs_disk_key disk_key;
  2800. leaf = path->nodes[0];
  2801. BUG_ON(btrfs_leaf_free_space(root, leaf) < sizeof(struct btrfs_item));
  2802. btrfs_set_path_blocking(path);
  2803. item = btrfs_item_nr(leaf, path->slots[0]);
  2804. orig_offset = btrfs_item_offset(leaf, item);
  2805. item_size = btrfs_item_size(leaf, item);
  2806. buf = kmalloc(item_size, GFP_NOFS);
  2807. if (!buf)
  2808. return -ENOMEM;
  2809. read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
  2810. path->slots[0]), item_size);
  2811. slot = path->slots[0] + 1;
  2812. nritems = btrfs_header_nritems(leaf);
  2813. if (slot != nritems) {
  2814. /* shift the items */
  2815. memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
  2816. btrfs_item_nr_offset(slot),
  2817. (nritems - slot) * sizeof(struct btrfs_item));
  2818. }
  2819. btrfs_cpu_key_to_disk(&disk_key, new_key);
  2820. btrfs_set_item_key(leaf, &disk_key, slot);
  2821. new_item = btrfs_item_nr(leaf, slot);
  2822. btrfs_set_item_offset(leaf, new_item, orig_offset);
  2823. btrfs_set_item_size(leaf, new_item, item_size - split_offset);
  2824. btrfs_set_item_offset(leaf, item,
  2825. orig_offset + item_size - split_offset);
  2826. btrfs_set_item_size(leaf, item, split_offset);
  2827. btrfs_set_header_nritems(leaf, nritems + 1);
  2828. /* write the data for the start of the original item */
  2829. write_extent_buffer(leaf, buf,
  2830. btrfs_item_ptr_offset(leaf, path->slots[0]),
  2831. split_offset);
  2832. /* write the data for the new item */
  2833. write_extent_buffer(leaf, buf + split_offset,
  2834. btrfs_item_ptr_offset(leaf, slot),
  2835. item_size - split_offset);
  2836. btrfs_mark_buffer_dirty(leaf);
  2837. BUG_ON(btrfs_leaf_free_space(root, leaf) < 0);
  2838. kfree(buf);
  2839. return 0;
  2840. }
  2841. /*
  2842. * This function splits a single item into two items,
  2843. * giving 'new_key' to the new item and splitting the
  2844. * old one at split_offset (from the start of the item).
  2845. *
  2846. * The path may be released by this operation. After
  2847. * the split, the path is pointing to the old item. The
  2848. * new item is going to be in the same node as the old one.
  2849. *
  2850. * Note, the item being split must be smaller enough to live alone on
  2851. * a tree block with room for one extra struct btrfs_item
  2852. *
  2853. * This allows us to split the item in place, keeping a lock on the
  2854. * leaf the entire time.
  2855. */
  2856. int btrfs_split_item(struct btrfs_trans_handle *trans,
  2857. struct btrfs_root *root,
  2858. struct btrfs_path *path,
  2859. struct btrfs_key *new_key,
  2860. unsigned long split_offset)
  2861. {
  2862. int ret;
  2863. ret = setup_leaf_for_split(trans, root, path,
  2864. sizeof(struct btrfs_item));
  2865. if (ret)
  2866. return ret;
  2867. ret = split_item(trans, root, path, new_key, split_offset);
  2868. return ret;
  2869. }
  2870. /*
  2871. * This function duplicate a item, giving 'new_key' to the new item.
  2872. * It guarantees both items live in the same tree leaf and the new item
  2873. * is contiguous with the original item.
  2874. *
  2875. * This allows us to split file extent in place, keeping a lock on the
  2876. * leaf the entire time.
  2877. */
  2878. int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
  2879. struct btrfs_root *root,
  2880. struct btrfs_path *path,
  2881. struct btrfs_key *new_key)
  2882. {
  2883. struct extent_buffer *leaf;
  2884. int ret;
  2885. u32 item_size;
  2886. leaf = path->nodes[0];
  2887. item_size = btrfs_item_size_nr(leaf, path->slots[0]);
  2888. ret = setup_leaf_for_split(trans, root, path,
  2889. item_size + sizeof(struct btrfs_item));
  2890. if (ret)
  2891. return ret;
  2892. path->slots[0]++;
  2893. ret = setup_items_for_insert(trans, root, path, new_key, &item_size,
  2894. item_size, item_size +
  2895. sizeof(struct btrfs_item), 1);
  2896. BUG_ON(ret);
  2897. leaf = path->nodes[0];
  2898. memcpy_extent_buffer(leaf,
  2899. btrfs_item_ptr_offset(leaf, path->slots[0]),
  2900. btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
  2901. item_size);
  2902. return 0;
  2903. }
  2904. /*
  2905. * make the item pointed to by the path smaller. new_size indicates
  2906. * how small to make it, and from_end tells us if we just chop bytes
  2907. * off the end of the item or if we shift the item to chop bytes off
  2908. * the front.
  2909. */
  2910. int btrfs_truncate_item(struct btrfs_trans_handle *trans,
  2911. struct btrfs_root *root,
  2912. struct btrfs_path *path,
  2913. u32 new_size, int from_end)
  2914. {
  2915. int slot;
  2916. struct extent_buffer *leaf;
  2917. struct btrfs_item *item;
  2918. u32 nritems;
  2919. unsigned int data_end;
  2920. unsigned int old_data_start;
  2921. unsigned int old_size;
  2922. unsigned int size_diff;
  2923. int i;
  2924. struct btrfs_map_token token;
  2925. btrfs_init_map_token(&token);
  2926. leaf = path->nodes[0];
  2927. slot = path->slots[0];
  2928. old_size = btrfs_item_size_nr(leaf, slot);
  2929. if (old_size == new_size)
  2930. return 0;
  2931. nritems = btrfs_header_nritems(leaf);
  2932. data_end = leaf_data_end(root, leaf);
  2933. old_data_start = btrfs_item_offset_nr(leaf, slot);
  2934. size_diff = old_size - new_size;
  2935. BUG_ON(slot < 0);
  2936. BUG_ON(slot >= nritems);
  2937. /*
  2938. * item0..itemN ... dataN.offset..dataN.size .. data0.size
  2939. */
  2940. /* first correct the data pointers */
  2941. for (i = slot; i < nritems; i++) {
  2942. u32 ioff;
  2943. item = btrfs_item_nr(leaf, i);
  2944. ioff = btrfs_token_item_offset(leaf, item, &token);
  2945. btrfs_set_token_item_offset(leaf, item,
  2946. ioff + size_diff, &token);
  2947. }
  2948. /* shift the data */
  2949. if (from_end) {
  2950. memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
  2951. data_end + size_diff, btrfs_leaf_data(leaf) +
  2952. data_end, old_data_start + new_size - data_end);
  2953. } else {
  2954. struct btrfs_disk_key disk_key;
  2955. u64 offset;
  2956. btrfs_item_key(leaf, &disk_key, slot);
  2957. if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
  2958. unsigned long ptr;
  2959. struct btrfs_file_extent_item *fi;
  2960. fi = btrfs_item_ptr(leaf, slot,
  2961. struct btrfs_file_extent_item);
  2962. fi = (struct btrfs_file_extent_item *)(
  2963. (unsigned long)fi - size_diff);
  2964. if (btrfs_file_extent_type(leaf, fi) ==
  2965. BTRFS_FILE_EXTENT_INLINE) {
  2966. ptr = btrfs_item_ptr_offset(leaf, slot);
  2967. memmove_extent_buffer(leaf, ptr,
  2968. (unsigned long)fi,
  2969. offsetof(struct btrfs_file_extent_item,
  2970. disk_bytenr));
  2971. }
  2972. }
  2973. memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
  2974. data_end + size_diff, btrfs_leaf_data(leaf) +
  2975. data_end, old_data_start - data_end);
  2976. offset = btrfs_disk_key_offset(&disk_key);
  2977. btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
  2978. btrfs_set_item_key(leaf, &disk_key, slot);
  2979. if (slot == 0)
  2980. fixup_low_keys(trans, root, path, &disk_key, 1);
  2981. }
  2982. item = btrfs_item_nr(leaf, slot);
  2983. btrfs_set_item_size(leaf, item, new_size);
  2984. btrfs_mark_buffer_dirty(leaf);
  2985. if (btrfs_leaf_free_space(root, leaf) < 0) {
  2986. btrfs_print_leaf(root, leaf);
  2987. BUG();
  2988. }
  2989. return 0;
  2990. }
  2991. /*
  2992. * make the item pointed to by the path bigger, data_size is the new size.
  2993. */
  2994. int btrfs_extend_item(struct btrfs_trans_handle *trans,
  2995. struct btrfs_root *root, struct btrfs_path *path,
  2996. u32 data_size)
  2997. {
  2998. int slot;
  2999. struct extent_buffer *leaf;
  3000. struct btrfs_item *item;
  3001. u32 nritems;
  3002. unsigned int data_end;
  3003. unsigned int old_data;
  3004. unsigned int old_size;
  3005. int i;
  3006. struct btrfs_map_token token;
  3007. btrfs_init_map_token(&token);
  3008. leaf = path->nodes[0];
  3009. nritems = btrfs_header_nritems(leaf);
  3010. data_end = leaf_data_end(root, leaf);
  3011. if (btrfs_leaf_free_space(root, leaf) < data_size) {
  3012. btrfs_print_leaf(root, leaf);
  3013. BUG();
  3014. }
  3015. slot = path->slots[0];
  3016. old_data = btrfs_item_end_nr(leaf, slot);
  3017. BUG_ON(slot < 0);
  3018. if (slot >= nritems) {
  3019. btrfs_print_leaf(root, leaf);
  3020. printk(KERN_CRIT "slot %d too large, nritems %d\n",
  3021. slot, nritems);
  3022. BUG_ON(1);
  3023. }
  3024. /*
  3025. * item0..itemN ... dataN.offset..dataN.size .. data0.size
  3026. */
  3027. /* first correct the data pointers */
  3028. for (i = slot; i < nritems; i++) {
  3029. u32 ioff;
  3030. item = btrfs_item_nr(leaf, i);
  3031. ioff = btrfs_token_item_offset(leaf, item, &token);
  3032. btrfs_set_token_item_offset(leaf, item,
  3033. ioff - data_size, &token);
  3034. }
  3035. /* shift the data */
  3036. memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
  3037. data_end - data_size, btrfs_leaf_data(leaf) +
  3038. data_end, old_data - data_end);
  3039. data_end = old_data;
  3040. old_size = btrfs_item_size_nr(leaf, slot);
  3041. item = btrfs_item_nr(leaf, slot);
  3042. btrfs_set_item_size(leaf, item, old_size + data_size);
  3043. btrfs_mark_buffer_dirty(leaf);
  3044. if (btrfs_leaf_free_space(root, leaf) < 0) {
  3045. btrfs_print_leaf(root, leaf);
  3046. BUG();
  3047. }
  3048. return 0;
  3049. }
  3050. /*
  3051. * Given a key and some data, insert items into the tree.
  3052. * This does all the path init required, making room in the tree if needed.
  3053. * Returns the number of keys that were inserted.
  3054. */
  3055. int btrfs_insert_some_items(struct btrfs_trans_handle *trans,
  3056. struct btrfs_root *root,
  3057. struct btrfs_path *path,
  3058. struct btrfs_key *cpu_key, u32 *data_size,
  3059. int nr)
  3060. {
  3061. struct extent_buffer *leaf;
  3062. struct btrfs_item *item;
  3063. int ret = 0;
  3064. int slot;
  3065. int i;
  3066. u32 nritems;
  3067. u32 total_data = 0;
  3068. u32 total_size = 0;
  3069. unsigned int data_end;
  3070. struct btrfs_disk_key disk_key;
  3071. struct btrfs_key found_key;
  3072. struct btrfs_map_token token;
  3073. btrfs_init_map_token(&token);
  3074. for (i = 0; i < nr; i++) {
  3075. if (total_size + data_size[i] + sizeof(struct btrfs_item) >
  3076. BTRFS_LEAF_DATA_SIZE(root)) {
  3077. break;
  3078. nr = i;
  3079. }
  3080. total_data += data_size[i];
  3081. total_size += data_size[i] + sizeof(struct btrfs_item);
  3082. }
  3083. BUG_ON(nr == 0);
  3084. ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
  3085. if (ret == 0)
  3086. return -EEXIST;
  3087. if (ret < 0)
  3088. goto out;
  3089. leaf = path->nodes[0];
  3090. nritems = btrfs_header_nritems(leaf);
  3091. data_end = leaf_data_end(root, leaf);
  3092. if (btrfs_leaf_free_space(root, leaf) < total_size) {
  3093. for (i = nr; i >= 0; i--) {
  3094. total_data -= data_size[i];
  3095. total_size -= data_size[i] + sizeof(struct btrfs_item);
  3096. if (total_size < btrfs_leaf_free_space(root, leaf))
  3097. break;
  3098. }
  3099. nr = i;
  3100. }
  3101. slot = path->slots[0];
  3102. BUG_ON(slot < 0);
  3103. if (slot != nritems) {
  3104. unsigned int old_data = btrfs_item_end_nr(leaf, slot);
  3105. item = btrfs_item_nr(leaf, slot);
  3106. btrfs_item_key_to_cpu(leaf, &found_key, slot);
  3107. /* figure out how many keys we can insert in here */
  3108. total_data = data_size[0];
  3109. for (i = 1; i < nr; i++) {
  3110. if (btrfs_comp_cpu_keys(&found_key, cpu_key + i) <= 0)
  3111. break;
  3112. total_data += data_size[i];
  3113. }
  3114. nr = i;
  3115. if (old_data < data_end) {
  3116. btrfs_print_leaf(root, leaf);
  3117. printk(KERN_CRIT "slot %d old_data %d data_end %d\n",
  3118. slot, old_data, data_end);
  3119. BUG_ON(1);
  3120. }
  3121. /*
  3122. * item0..itemN ... dataN.offset..dataN.size .. data0.size
  3123. */
  3124. /* first correct the data pointers */
  3125. for (i = slot; i < nritems; i++) {
  3126. u32 ioff;
  3127. item = btrfs_item_nr(leaf, i);
  3128. ioff = btrfs_token_item_offset(leaf, item, &token);
  3129. btrfs_set_token_item_offset(leaf, item,
  3130. ioff - total_data, &token);
  3131. }
  3132. /* shift the items */
  3133. memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
  3134. btrfs_item_nr_offset(slot),
  3135. (nritems - slot) * sizeof(struct btrfs_item));
  3136. /* shift the data */
  3137. memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
  3138. data_end - total_data, btrfs_leaf_data(leaf) +
  3139. data_end, old_data - data_end);
  3140. data_end = old_data;
  3141. } else {
  3142. /*
  3143. * this sucks but it has to be done, if we are inserting at
  3144. * the end of the leaf only insert 1 of the items, since we
  3145. * have no way of knowing whats on the next leaf and we'd have
  3146. * to drop our current locks to figure it out
  3147. */
  3148. nr = 1;
  3149. }
  3150. /* setup the item for the new data */
  3151. for (i = 0; i < nr; i++) {
  3152. btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
  3153. btrfs_set_item_key(leaf, &disk_key, slot + i);
  3154. item = btrfs_item_nr(leaf, slot + i);
  3155. btrfs_set_token_item_offset(leaf, item,
  3156. data_end - data_size[i], &token);
  3157. data_end -= data_size[i];
  3158. btrfs_set_token_item_size(leaf, item, data_size[i], &token);
  3159. }
  3160. btrfs_set_header_nritems(leaf, nritems + nr);
  3161. btrfs_mark_buffer_dirty(leaf);
  3162. ret = 0;
  3163. if (slot == 0) {
  3164. btrfs_cpu_key_to_disk(&disk_key, cpu_key);
  3165. ret = fixup_low_keys(trans, root, path, &disk_key, 1);
  3166. }
  3167. if (btrfs_leaf_free_space(root, leaf) < 0) {
  3168. btrfs_print_leaf(root, leaf);
  3169. BUG();
  3170. }
  3171. out:
  3172. if (!ret)
  3173. ret = nr;
  3174. return ret;
  3175. }
  3176. /*
  3177. * this is a helper for btrfs_insert_empty_items, the main goal here is
  3178. * to save stack depth by doing the bulk of the work in a function
  3179. * that doesn't call btrfs_search_slot
  3180. */
  3181. int setup_items_for_insert(struct btrfs_trans_handle *trans,
  3182. struct btrfs_root *root, struct btrfs_path *path,
  3183. struct btrfs_key *cpu_key, u32 *data_size,
  3184. u32 total_data, u32 total_size, int nr)
  3185. {
  3186. struct btrfs_item *item;
  3187. int i;
  3188. u32 nritems;
  3189. unsigned int data_end;
  3190. struct btrfs_disk_key disk_key;
  3191. int ret;
  3192. struct extent_buffer *leaf;
  3193. int slot;
  3194. struct btrfs_map_token token;
  3195. btrfs_init_map_token(&token);
  3196. leaf = path->nodes[0];
  3197. slot = path->slots[0];
  3198. nritems = btrfs_header_nritems(leaf);
  3199. data_end = leaf_data_end(root, leaf);
  3200. if (btrfs_leaf_free_space(root, leaf) < total_size) {
  3201. btrfs_print_leaf(root, leaf);
  3202. printk(KERN_CRIT "not enough freespace need %u have %d\n",
  3203. total_size, btrfs_leaf_free_space(root, leaf));
  3204. BUG();
  3205. }
  3206. if (slot != nritems) {
  3207. unsigned int old_data = btrfs_item_end_nr(leaf, slot);
  3208. if (old_data < data_end) {
  3209. btrfs_print_leaf(root, leaf);
  3210. printk(KERN_CRIT "slot %d old_data %d data_end %d\n",
  3211. slot, old_data, data_end);
  3212. BUG_ON(1);
  3213. }
  3214. /*
  3215. * item0..itemN ... dataN.offset..dataN.size .. data0.size
  3216. */
  3217. /* first correct the data pointers */
  3218. for (i = slot; i < nritems; i++) {
  3219. u32 ioff;
  3220. item = btrfs_item_nr(leaf, i);
  3221. ioff = btrfs_token_item_offset(leaf, item, &token);
  3222. btrfs_set_token_item_offset(leaf, item,
  3223. ioff - total_data, &token);
  3224. }
  3225. /* shift the items */
  3226. memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
  3227. btrfs_item_nr_offset(slot),
  3228. (nritems - slot) * sizeof(struct btrfs_item));
  3229. /* shift the data */
  3230. memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
  3231. data_end - total_data, btrfs_leaf_data(leaf) +
  3232. data_end, old_data - data_end);
  3233. data_end = old_data;
  3234. }
  3235. /* setup the item for the new data */
  3236. for (i = 0; i < nr; i++) {
  3237. btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
  3238. btrfs_set_item_key(leaf, &disk_key, slot + i);
  3239. item = btrfs_item_nr(leaf, slot + i);
  3240. btrfs_set_token_item_offset(leaf, item,
  3241. data_end - data_size[i], &token);
  3242. data_end -= data_size[i];
  3243. btrfs_set_token_item_size(leaf, item, data_size[i], &token);
  3244. }
  3245. btrfs_set_header_nritems(leaf, nritems + nr);
  3246. ret = 0;
  3247. if (slot == 0) {
  3248. btrfs_cpu_key_to_disk(&disk_key, cpu_key);
  3249. ret = fixup_low_keys(trans, root, path, &disk_key, 1);
  3250. }
  3251. btrfs_unlock_up_safe(path, 1);
  3252. btrfs_mark_buffer_dirty(leaf);
  3253. if (btrfs_leaf_free_space(root, leaf) < 0) {
  3254. btrfs_print_leaf(root, leaf);
  3255. BUG();
  3256. }
  3257. return ret;
  3258. }
  3259. /*
  3260. * Given a key and some data, insert items into the tree.
  3261. * This does all the path init required, making room in the tree if needed.
  3262. */
  3263. int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
  3264. struct btrfs_root *root,
  3265. struct btrfs_path *path,
  3266. struct btrfs_key *cpu_key, u32 *data_size,
  3267. int nr)
  3268. {
  3269. int ret = 0;
  3270. int slot;
  3271. int i;
  3272. u32 total_size = 0;
  3273. u32 total_data = 0;
  3274. for (i = 0; i < nr; i++)
  3275. total_data += data_size[i];
  3276. total_size = total_data + (nr * sizeof(struct btrfs_item));
  3277. ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
  3278. if (ret == 0)
  3279. return -EEXIST;
  3280. if (ret < 0)
  3281. goto out;
  3282. slot = path->slots[0];
  3283. BUG_ON(slot < 0);
  3284. ret = setup_items_for_insert(trans, root, path, cpu_key, data_size,
  3285. total_data, total_size, nr);
  3286. out:
  3287. return ret;
  3288. }
  3289. /*
  3290. * Given a key and some data, insert an item into the tree.
  3291. * This does all the path init required, making room in the tree if needed.
  3292. */
  3293. int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
  3294. *root, struct btrfs_key *cpu_key, void *data, u32
  3295. data_size)
  3296. {
  3297. int ret = 0;
  3298. struct btrfs_path *path;
  3299. struct extent_buffer *leaf;
  3300. unsigned long ptr;
  3301. path = btrfs_alloc_path();
  3302. if (!path)
  3303. return -ENOMEM;
  3304. ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
  3305. if (!ret) {
  3306. leaf = path->nodes[0];
  3307. ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
  3308. write_extent_buffer(leaf, data, ptr, data_size);
  3309. btrfs_mark_buffer_dirty(leaf);
  3310. }
  3311. btrfs_free_path(path);
  3312. return ret;
  3313. }
  3314. /*
  3315. * delete the pointer from a given node.
  3316. *
  3317. * the tree should have been previously balanced so the deletion does not
  3318. * empty a node.
  3319. */
  3320. static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  3321. struct btrfs_path *path, int level, int slot)
  3322. {
  3323. struct extent_buffer *parent = path->nodes[level];
  3324. u32 nritems;
  3325. int ret = 0;
  3326. int wret;
  3327. nritems = btrfs_header_nritems(parent);
  3328. if (slot != nritems - 1) {
  3329. memmove_extent_buffer(parent,
  3330. btrfs_node_key_ptr_offset(slot),
  3331. btrfs_node_key_ptr_offset(slot + 1),
  3332. sizeof(struct btrfs_key_ptr) *
  3333. (nritems - slot - 1));
  3334. }
  3335. nritems--;
  3336. btrfs_set_header_nritems(parent, nritems);
  3337. if (nritems == 0 && parent == root->node) {
  3338. BUG_ON(btrfs_header_level(root->node) != 1);
  3339. /* just turn the root into a leaf and break */
  3340. btrfs_set_header_level(root->node, 0);
  3341. } else if (slot == 0) {
  3342. struct btrfs_disk_key disk_key;
  3343. btrfs_node_key(parent, &disk_key, 0);
  3344. wret = fixup_low_keys(trans, root, path, &disk_key, level + 1);
  3345. if (wret)
  3346. ret = wret;
  3347. }
  3348. btrfs_mark_buffer_dirty(parent);
  3349. return ret;
  3350. }
  3351. /*
  3352. * a helper function to delete the leaf pointed to by path->slots[1] and
  3353. * path->nodes[1].
  3354. *
  3355. * This deletes the pointer in path->nodes[1] and frees the leaf
  3356. * block extent. zero is returned if it all worked out, < 0 otherwise.
  3357. *
  3358. * The path must have already been setup for deleting the leaf, including
  3359. * all the proper balancing. path->nodes[1] must be locked.
  3360. */
  3361. static noinline int btrfs_del_leaf(struct btrfs_trans_handle *trans,
  3362. struct btrfs_root *root,
  3363. struct btrfs_path *path,
  3364. struct extent_buffer *leaf)
  3365. {
  3366. int ret;
  3367. WARN_ON(btrfs_header_generation(leaf) != trans->transid);
  3368. ret = del_ptr(trans, root, path, 1, path->slots[1]);
  3369. if (ret)
  3370. return ret;
  3371. /*
  3372. * btrfs_free_extent is expensive, we want to make sure we
  3373. * aren't holding any locks when we call it
  3374. */
  3375. btrfs_unlock_up_safe(path, 0);
  3376. root_sub_used(root, leaf->len);
  3377. extent_buffer_get(leaf);
  3378. btrfs_free_tree_block(trans, root, leaf, 0, 1, 0);
  3379. free_extent_buffer_stale(leaf);
  3380. return 0;
  3381. }
  3382. /*
  3383. * delete the item at the leaf level in path. If that empties
  3384. * the leaf, remove it from the tree
  3385. */
  3386. int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  3387. struct btrfs_path *path, int slot, int nr)
  3388. {
  3389. struct extent_buffer *leaf;
  3390. struct btrfs_item *item;
  3391. int last_off;
  3392. int dsize = 0;
  3393. int ret = 0;
  3394. int wret;
  3395. int i;
  3396. u32 nritems;
  3397. struct btrfs_map_token token;
  3398. btrfs_init_map_token(&token);
  3399. leaf = path->nodes[0];
  3400. last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
  3401. for (i = 0; i < nr; i++)
  3402. dsize += btrfs_item_size_nr(leaf, slot + i);
  3403. nritems = btrfs_header_nritems(leaf);
  3404. if (slot + nr != nritems) {
  3405. int data_end = leaf_data_end(root, leaf);
  3406. memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
  3407. data_end + dsize,
  3408. btrfs_leaf_data(leaf) + data_end,
  3409. last_off - data_end);
  3410. for (i = slot + nr; i < nritems; i++) {
  3411. u32 ioff;
  3412. item = btrfs_item_nr(leaf, i);
  3413. ioff = btrfs_token_item_offset(leaf, item, &token);
  3414. btrfs_set_token_item_offset(leaf, item,
  3415. ioff + dsize, &token);
  3416. }
  3417. memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
  3418. btrfs_item_nr_offset(slot + nr),
  3419. sizeof(struct btrfs_item) *
  3420. (nritems - slot - nr));
  3421. }
  3422. btrfs_set_header_nritems(leaf, nritems - nr);
  3423. nritems -= nr;
  3424. /* delete the leaf if we've emptied it */
  3425. if (nritems == 0) {
  3426. if (leaf == root->node) {
  3427. btrfs_set_header_level(leaf, 0);
  3428. } else {
  3429. btrfs_set_path_blocking(path);
  3430. clean_tree_block(trans, root, leaf);
  3431. ret = btrfs_del_leaf(trans, root, path, leaf);
  3432. BUG_ON(ret);
  3433. }
  3434. } else {
  3435. int used = leaf_space_used(leaf, 0, nritems);
  3436. if (slot == 0) {
  3437. struct btrfs_disk_key disk_key;
  3438. btrfs_item_key(leaf, &disk_key, 0);
  3439. wret = fixup_low_keys(trans, root, path,
  3440. &disk_key, 1);
  3441. if (wret)
  3442. ret = wret;
  3443. }
  3444. /* delete the leaf if it is mostly empty */
  3445. if (used < BTRFS_LEAF_DATA_SIZE(root) / 3) {
  3446. /* push_leaf_left fixes the path.
  3447. * make sure the path still points to our leaf
  3448. * for possible call to del_ptr below
  3449. */
  3450. slot = path->slots[1];
  3451. extent_buffer_get(leaf);
  3452. btrfs_set_path_blocking(path);
  3453. wret = push_leaf_left(trans, root, path, 1, 1,
  3454. 1, (u32)-1);
  3455. if (wret < 0 && wret != -ENOSPC)
  3456. ret = wret;
  3457. if (path->nodes[0] == leaf &&
  3458. btrfs_header_nritems(leaf)) {
  3459. wret = push_leaf_right(trans, root, path, 1,
  3460. 1, 1, 0);
  3461. if (wret < 0 && wret != -ENOSPC)
  3462. ret = wret;
  3463. }
  3464. if (btrfs_header_nritems(leaf) == 0) {
  3465. path->slots[1] = slot;
  3466. ret = btrfs_del_leaf(trans, root, path, leaf);
  3467. BUG_ON(ret);
  3468. free_extent_buffer(leaf);
  3469. } else {
  3470. /* if we're still in the path, make sure
  3471. * we're dirty. Otherwise, one of the
  3472. * push_leaf functions must have already
  3473. * dirtied this buffer
  3474. */
  3475. if (path->nodes[0] == leaf)
  3476. btrfs_mark_buffer_dirty(leaf);
  3477. free_extent_buffer(leaf);
  3478. }
  3479. } else {
  3480. btrfs_mark_buffer_dirty(leaf);
  3481. }
  3482. }
  3483. return ret;
  3484. }
  3485. /*
  3486. * search the tree again to find a leaf with lesser keys
  3487. * returns 0 if it found something or 1 if there are no lesser leaves.
  3488. * returns < 0 on io errors.
  3489. *
  3490. * This may release the path, and so you may lose any locks held at the
  3491. * time you call it.
  3492. */
  3493. int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
  3494. {
  3495. struct btrfs_key key;
  3496. struct btrfs_disk_key found_key;
  3497. int ret;
  3498. btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
  3499. if (key.offset > 0)
  3500. key.offset--;
  3501. else if (key.type > 0)
  3502. key.type--;
  3503. else if (key.objectid > 0)
  3504. key.objectid--;
  3505. else
  3506. return 1;
  3507. btrfs_release_path(path);
  3508. ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
  3509. if (ret < 0)
  3510. return ret;
  3511. btrfs_item_key(path->nodes[0], &found_key, 0);
  3512. ret = comp_keys(&found_key, &key);
  3513. if (ret < 0)
  3514. return 0;
  3515. return 1;
  3516. }
  3517. /*
  3518. * A helper function to walk down the tree starting at min_key, and looking
  3519. * for nodes or leaves that are either in cache or have a minimum
  3520. * transaction id. This is used by the btree defrag code, and tree logging
  3521. *
  3522. * This does not cow, but it does stuff the starting key it finds back
  3523. * into min_key, so you can call btrfs_search_slot with cow=1 on the
  3524. * key and get a writable path.
  3525. *
  3526. * This does lock as it descends, and path->keep_locks should be set
  3527. * to 1 by the caller.
  3528. *
  3529. * This honors path->lowest_level to prevent descent past a given level
  3530. * of the tree.
  3531. *
  3532. * min_trans indicates the oldest transaction that you are interested
  3533. * in walking through. Any nodes or leaves older than min_trans are
  3534. * skipped over (without reading them).
  3535. *
  3536. * returns zero if something useful was found, < 0 on error and 1 if there
  3537. * was nothing in the tree that matched the search criteria.
  3538. */
  3539. int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
  3540. struct btrfs_key *max_key,
  3541. struct btrfs_path *path, int cache_only,
  3542. u64 min_trans)
  3543. {
  3544. struct extent_buffer *cur;
  3545. struct btrfs_key found_key;
  3546. int slot;
  3547. int sret;
  3548. u32 nritems;
  3549. int level;
  3550. int ret = 1;
  3551. WARN_ON(!path->keep_locks);
  3552. again:
  3553. cur = btrfs_read_lock_root_node(root);
  3554. level = btrfs_header_level(cur);
  3555. WARN_ON(path->nodes[level]);
  3556. path->nodes[level] = cur;
  3557. path->locks[level] = BTRFS_READ_LOCK;
  3558. if (btrfs_header_generation(cur) < min_trans) {
  3559. ret = 1;
  3560. goto out;
  3561. }
  3562. while (1) {
  3563. nritems = btrfs_header_nritems(cur);
  3564. level = btrfs_header_level(cur);
  3565. sret = bin_search(cur, min_key, level, &slot);
  3566. /* at the lowest level, we're done, setup the path and exit */
  3567. if (level == path->lowest_level) {
  3568. if (slot >= nritems)
  3569. goto find_next_key;
  3570. ret = 0;
  3571. path->slots[level] = slot;
  3572. btrfs_item_key_to_cpu(cur, &found_key, slot);
  3573. goto out;
  3574. }
  3575. if (sret && slot > 0)
  3576. slot--;
  3577. /*
  3578. * check this node pointer against the cache_only and
  3579. * min_trans parameters. If it isn't in cache or is too
  3580. * old, skip to the next one.
  3581. */
  3582. while (slot < nritems) {
  3583. u64 blockptr;
  3584. u64 gen;
  3585. struct extent_buffer *tmp;
  3586. struct btrfs_disk_key disk_key;
  3587. blockptr = btrfs_node_blockptr(cur, slot);
  3588. gen = btrfs_node_ptr_generation(cur, slot);
  3589. if (gen < min_trans) {
  3590. slot++;
  3591. continue;
  3592. }
  3593. if (!cache_only)
  3594. break;
  3595. if (max_key) {
  3596. btrfs_node_key(cur, &disk_key, slot);
  3597. if (comp_keys(&disk_key, max_key) >= 0) {
  3598. ret = 1;
  3599. goto out;
  3600. }
  3601. }
  3602. tmp = btrfs_find_tree_block(root, blockptr,
  3603. btrfs_level_size(root, level - 1));
  3604. if (tmp && btrfs_buffer_uptodate(tmp, gen)) {
  3605. free_extent_buffer(tmp);
  3606. break;
  3607. }
  3608. if (tmp)
  3609. free_extent_buffer(tmp);
  3610. slot++;
  3611. }
  3612. find_next_key:
  3613. /*
  3614. * we didn't find a candidate key in this node, walk forward
  3615. * and find another one
  3616. */
  3617. if (slot >= nritems) {
  3618. path->slots[level] = slot;
  3619. btrfs_set_path_blocking(path);
  3620. sret = btrfs_find_next_key(root, path, min_key, level,
  3621. cache_only, min_trans);
  3622. if (sret == 0) {
  3623. btrfs_release_path(path);
  3624. goto again;
  3625. } else {
  3626. goto out;
  3627. }
  3628. }
  3629. /* save our key for returning back */
  3630. btrfs_node_key_to_cpu(cur, &found_key, slot);
  3631. path->slots[level] = slot;
  3632. if (level == path->lowest_level) {
  3633. ret = 0;
  3634. unlock_up(path, level, 1, 0, NULL);
  3635. goto out;
  3636. }
  3637. btrfs_set_path_blocking(path);
  3638. cur = read_node_slot(root, cur, slot);
  3639. BUG_ON(!cur);
  3640. btrfs_tree_read_lock(cur);
  3641. path->locks[level - 1] = BTRFS_READ_LOCK;
  3642. path->nodes[level - 1] = cur;
  3643. unlock_up(path, level, 1, 0, NULL);
  3644. btrfs_clear_path_blocking(path, NULL, 0);
  3645. }
  3646. out:
  3647. if (ret == 0)
  3648. memcpy(min_key, &found_key, sizeof(found_key));
  3649. btrfs_set_path_blocking(path);
  3650. return ret;
  3651. }
  3652. /*
  3653. * this is similar to btrfs_next_leaf, but does not try to preserve
  3654. * and fixup the path. It looks for and returns the next key in the
  3655. * tree based on the current path and the cache_only and min_trans
  3656. * parameters.
  3657. *
  3658. * 0 is returned if another key is found, < 0 if there are any errors
  3659. * and 1 is returned if there are no higher keys in the tree
  3660. *
  3661. * path->keep_locks should be set to 1 on the search made before
  3662. * calling this function.
  3663. */
  3664. int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
  3665. struct btrfs_key *key, int level,
  3666. int cache_only, u64 min_trans)
  3667. {
  3668. int slot;
  3669. struct extent_buffer *c;
  3670. WARN_ON(!path->keep_locks);
  3671. while (level < BTRFS_MAX_LEVEL) {
  3672. if (!path->nodes[level])
  3673. return 1;
  3674. slot = path->slots[level] + 1;
  3675. c = path->nodes[level];
  3676. next:
  3677. if (slot >= btrfs_header_nritems(c)) {
  3678. int ret;
  3679. int orig_lowest;
  3680. struct btrfs_key cur_key;
  3681. if (level + 1 >= BTRFS_MAX_LEVEL ||
  3682. !path->nodes[level + 1])
  3683. return 1;
  3684. if (path->locks[level + 1]) {
  3685. level++;
  3686. continue;
  3687. }
  3688. slot = btrfs_header_nritems(c) - 1;
  3689. if (level == 0)
  3690. btrfs_item_key_to_cpu(c, &cur_key, slot);
  3691. else
  3692. btrfs_node_key_to_cpu(c, &cur_key, slot);
  3693. orig_lowest = path->lowest_level;
  3694. btrfs_release_path(path);
  3695. path->lowest_level = level;
  3696. ret = btrfs_search_slot(NULL, root, &cur_key, path,
  3697. 0, 0);
  3698. path->lowest_level = orig_lowest;
  3699. if (ret < 0)
  3700. return ret;
  3701. c = path->nodes[level];
  3702. slot = path->slots[level];
  3703. if (ret == 0)
  3704. slot++;
  3705. goto next;
  3706. }
  3707. if (level == 0)
  3708. btrfs_item_key_to_cpu(c, key, slot);
  3709. else {
  3710. u64 blockptr = btrfs_node_blockptr(c, slot);
  3711. u64 gen = btrfs_node_ptr_generation(c, slot);
  3712. if (cache_only) {
  3713. struct extent_buffer *cur;
  3714. cur = btrfs_find_tree_block(root, blockptr,
  3715. btrfs_level_size(root, level - 1));
  3716. if (!cur || !btrfs_buffer_uptodate(cur, gen)) {
  3717. slot++;
  3718. if (cur)
  3719. free_extent_buffer(cur);
  3720. goto next;
  3721. }
  3722. free_extent_buffer(cur);
  3723. }
  3724. if (gen < min_trans) {
  3725. slot++;
  3726. goto next;
  3727. }
  3728. btrfs_node_key_to_cpu(c, key, slot);
  3729. }
  3730. return 0;
  3731. }
  3732. return 1;
  3733. }
  3734. /*
  3735. * search the tree again to find a leaf with greater keys
  3736. * returns 0 if it found something or 1 if there are no greater leaves.
  3737. * returns < 0 on io errors.
  3738. */
  3739. int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
  3740. {
  3741. int slot;
  3742. int level;
  3743. struct extent_buffer *c;
  3744. struct extent_buffer *next;
  3745. struct btrfs_key key;
  3746. u32 nritems;
  3747. int ret;
  3748. int old_spinning = path->leave_spinning;
  3749. int next_rw_lock = 0;
  3750. nritems = btrfs_header_nritems(path->nodes[0]);
  3751. if (nritems == 0)
  3752. return 1;
  3753. btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
  3754. again:
  3755. level = 1;
  3756. next = NULL;
  3757. next_rw_lock = 0;
  3758. btrfs_release_path(path);
  3759. path->keep_locks = 1;
  3760. path->leave_spinning = 1;
  3761. ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
  3762. path->keep_locks = 0;
  3763. if (ret < 0)
  3764. return ret;
  3765. nritems = btrfs_header_nritems(path->nodes[0]);
  3766. /*
  3767. * by releasing the path above we dropped all our locks. A balance
  3768. * could have added more items next to the key that used to be
  3769. * at the very end of the block. So, check again here and
  3770. * advance the path if there are now more items available.
  3771. */
  3772. if (nritems > 0 && path->slots[0] < nritems - 1) {
  3773. if (ret == 0)
  3774. path->slots[0]++;
  3775. ret = 0;
  3776. goto done;
  3777. }
  3778. while (level < BTRFS_MAX_LEVEL) {
  3779. if (!path->nodes[level]) {
  3780. ret = 1;
  3781. goto done;
  3782. }
  3783. slot = path->slots[level] + 1;
  3784. c = path->nodes[level];
  3785. if (slot >= btrfs_header_nritems(c)) {
  3786. level++;
  3787. if (level == BTRFS_MAX_LEVEL) {
  3788. ret = 1;
  3789. goto done;
  3790. }
  3791. continue;
  3792. }
  3793. if (next) {
  3794. btrfs_tree_unlock_rw(next, next_rw_lock);
  3795. free_extent_buffer(next);
  3796. }
  3797. next = c;
  3798. next_rw_lock = path->locks[level];
  3799. ret = read_block_for_search(NULL, root, path, &next, level,
  3800. slot, &key);
  3801. if (ret == -EAGAIN)
  3802. goto again;
  3803. if (ret < 0) {
  3804. btrfs_release_path(path);
  3805. goto done;
  3806. }
  3807. if (!path->skip_locking) {
  3808. ret = btrfs_try_tree_read_lock(next);
  3809. if (!ret) {
  3810. btrfs_set_path_blocking(path);
  3811. btrfs_tree_read_lock(next);
  3812. btrfs_clear_path_blocking(path, next,
  3813. BTRFS_READ_LOCK);
  3814. }
  3815. next_rw_lock = BTRFS_READ_LOCK;
  3816. }
  3817. break;
  3818. }
  3819. path->slots[level] = slot;
  3820. while (1) {
  3821. level--;
  3822. c = path->nodes[level];
  3823. if (path->locks[level])
  3824. btrfs_tree_unlock_rw(c, path->locks[level]);
  3825. free_extent_buffer(c);
  3826. path->nodes[level] = next;
  3827. path->slots[level] = 0;
  3828. if (!path->skip_locking)
  3829. path->locks[level] = next_rw_lock;
  3830. if (!level)
  3831. break;
  3832. ret = read_block_for_search(NULL, root, path, &next, level,
  3833. 0, &key);
  3834. if (ret == -EAGAIN)
  3835. goto again;
  3836. if (ret < 0) {
  3837. btrfs_release_path(path);
  3838. goto done;
  3839. }
  3840. if (!path->skip_locking) {
  3841. ret = btrfs_try_tree_read_lock(next);
  3842. if (!ret) {
  3843. btrfs_set_path_blocking(path);
  3844. btrfs_tree_read_lock(next);
  3845. btrfs_clear_path_blocking(path, next,
  3846. BTRFS_READ_LOCK);
  3847. }
  3848. next_rw_lock = BTRFS_READ_LOCK;
  3849. }
  3850. }
  3851. ret = 0;
  3852. done:
  3853. unlock_up(path, 0, 1, 0, NULL);
  3854. path->leave_spinning = old_spinning;
  3855. if (!old_spinning)
  3856. btrfs_set_path_blocking(path);
  3857. return ret;
  3858. }
  3859. /*
  3860. * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
  3861. * searching until it gets past min_objectid or finds an item of 'type'
  3862. *
  3863. * returns 0 if something is found, 1 if nothing was found and < 0 on error
  3864. */
  3865. int btrfs_previous_item(struct btrfs_root *root,
  3866. struct btrfs_path *path, u64 min_objectid,
  3867. int type)
  3868. {
  3869. struct btrfs_key found_key;
  3870. struct extent_buffer *leaf;
  3871. u32 nritems;
  3872. int ret;
  3873. while (1) {
  3874. if (path->slots[0] == 0) {
  3875. btrfs_set_path_blocking(path);
  3876. ret = btrfs_prev_leaf(root, path);
  3877. if (ret != 0)
  3878. return ret;
  3879. } else {
  3880. path->slots[0]--;
  3881. }
  3882. leaf = path->nodes[0];
  3883. nritems = btrfs_header_nritems(leaf);
  3884. if (nritems == 0)
  3885. return 1;
  3886. if (path->slots[0] == nritems)
  3887. path->slots[0]--;
  3888. btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
  3889. if (found_key.objectid < min_objectid)
  3890. break;
  3891. if (found_key.type == type)
  3892. return 0;
  3893. if (found_key.objectid == min_objectid &&
  3894. found_key.type < type)
  3895. break;
  3896. }
  3897. return 1;
  3898. }