init.c 46 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738
  1. /* $Id: init.c,v 1.209 2002/02/09 19:49:31 davem Exp $
  2. * arch/sparc64/mm/init.c
  3. *
  4. * Copyright (C) 1996-1999 David S. Miller (davem@caip.rutgers.edu)
  5. * Copyright (C) 1997-1999 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
  6. */
  7. #include <linux/config.h>
  8. #include <linux/module.h>
  9. #include <linux/kernel.h>
  10. #include <linux/sched.h>
  11. #include <linux/string.h>
  12. #include <linux/init.h>
  13. #include <linux/bootmem.h>
  14. #include <linux/mm.h>
  15. #include <linux/hugetlb.h>
  16. #include <linux/slab.h>
  17. #include <linux/initrd.h>
  18. #include <linux/swap.h>
  19. #include <linux/pagemap.h>
  20. #include <linux/fs.h>
  21. #include <linux/seq_file.h>
  22. #include <linux/kprobes.h>
  23. #include <linux/cache.h>
  24. #include <linux/sort.h>
  25. #include <asm/head.h>
  26. #include <asm/system.h>
  27. #include <asm/page.h>
  28. #include <asm/pgalloc.h>
  29. #include <asm/pgtable.h>
  30. #include <asm/oplib.h>
  31. #include <asm/iommu.h>
  32. #include <asm/io.h>
  33. #include <asm/uaccess.h>
  34. #include <asm/mmu_context.h>
  35. #include <asm/tlbflush.h>
  36. #include <asm/dma.h>
  37. #include <asm/starfire.h>
  38. #include <asm/tlb.h>
  39. #include <asm/spitfire.h>
  40. #include <asm/sections.h>
  41. #include <asm/tsb.h>
  42. #include <asm/hypervisor.h>
  43. extern void device_scan(void);
  44. #define MAX_PHYS_ADDRESS (1UL << 42UL)
  45. #define KPTE_BITMAP_CHUNK_SZ (256UL * 1024UL * 1024UL)
  46. #define KPTE_BITMAP_BYTES \
  47. ((MAX_PHYS_ADDRESS / KPTE_BITMAP_CHUNK_SZ) / 8)
  48. unsigned long kern_linear_pte_xor[2] __read_mostly;
  49. /* A bitmap, one bit for every 256MB of physical memory. If the bit
  50. * is clear, we should use a 4MB page (via kern_linear_pte_xor[0]) else
  51. * if set we should use a 256MB page (via kern_linear_pte_xor[1]).
  52. */
  53. unsigned long kpte_linear_bitmap[KPTE_BITMAP_BYTES / sizeof(unsigned long)];
  54. /* A special kernel TSB for 4MB and 256MB linear mappings. */
  55. struct tsb swapper_4m_tsb[KERNEL_TSB4M_NENTRIES];
  56. #define MAX_BANKS 32
  57. static struct linux_prom64_registers pavail[MAX_BANKS] __initdata;
  58. static struct linux_prom64_registers pavail_rescan[MAX_BANKS] __initdata;
  59. static int pavail_ents __initdata;
  60. static int pavail_rescan_ents __initdata;
  61. static int cmp_p64(const void *a, const void *b)
  62. {
  63. const struct linux_prom64_registers *x = a, *y = b;
  64. if (x->phys_addr > y->phys_addr)
  65. return 1;
  66. if (x->phys_addr < y->phys_addr)
  67. return -1;
  68. return 0;
  69. }
  70. static void __init read_obp_memory(const char *property,
  71. struct linux_prom64_registers *regs,
  72. int *num_ents)
  73. {
  74. int node = prom_finddevice("/memory");
  75. int prop_size = prom_getproplen(node, property);
  76. int ents, ret, i;
  77. ents = prop_size / sizeof(struct linux_prom64_registers);
  78. if (ents > MAX_BANKS) {
  79. prom_printf("The machine has more %s property entries than "
  80. "this kernel can support (%d).\n",
  81. property, MAX_BANKS);
  82. prom_halt();
  83. }
  84. ret = prom_getproperty(node, property, (char *) regs, prop_size);
  85. if (ret == -1) {
  86. prom_printf("Couldn't get %s property from /memory.\n");
  87. prom_halt();
  88. }
  89. *num_ents = ents;
  90. /* Sanitize what we got from the firmware, by page aligning
  91. * everything.
  92. */
  93. for (i = 0; i < ents; i++) {
  94. unsigned long base, size;
  95. base = regs[i].phys_addr;
  96. size = regs[i].reg_size;
  97. size &= PAGE_MASK;
  98. if (base & ~PAGE_MASK) {
  99. unsigned long new_base = PAGE_ALIGN(base);
  100. size -= new_base - base;
  101. if ((long) size < 0L)
  102. size = 0UL;
  103. base = new_base;
  104. }
  105. regs[i].phys_addr = base;
  106. regs[i].reg_size = size;
  107. }
  108. sort(regs, ents, sizeof(struct linux_prom64_registers),
  109. cmp_p64, NULL);
  110. }
  111. unsigned long *sparc64_valid_addr_bitmap __read_mostly;
  112. /* Ugly, but necessary... -DaveM */
  113. unsigned long phys_base __read_mostly;
  114. unsigned long kern_base __read_mostly;
  115. unsigned long kern_size __read_mostly;
  116. unsigned long pfn_base __read_mostly;
  117. /* get_new_mmu_context() uses "cache + 1". */
  118. DEFINE_SPINLOCK(ctx_alloc_lock);
  119. unsigned long tlb_context_cache = CTX_FIRST_VERSION - 1;
  120. #define CTX_BMAP_SLOTS (1UL << (CTX_NR_BITS - 6))
  121. unsigned long mmu_context_bmap[CTX_BMAP_SLOTS];
  122. /* References to special section boundaries */
  123. extern char _start[], _end[];
  124. /* Initial ramdisk setup */
  125. extern unsigned long sparc_ramdisk_image64;
  126. extern unsigned int sparc_ramdisk_image;
  127. extern unsigned int sparc_ramdisk_size;
  128. struct page *mem_map_zero __read_mostly;
  129. unsigned int sparc64_highest_unlocked_tlb_ent __read_mostly;
  130. unsigned long sparc64_kern_pri_context __read_mostly;
  131. unsigned long sparc64_kern_pri_nuc_bits __read_mostly;
  132. unsigned long sparc64_kern_sec_context __read_mostly;
  133. int bigkernel = 0;
  134. kmem_cache_t *pgtable_cache __read_mostly;
  135. static void zero_ctor(void *addr, kmem_cache_t *cache, unsigned long flags)
  136. {
  137. clear_page(addr);
  138. }
  139. void pgtable_cache_init(void)
  140. {
  141. pgtable_cache = kmem_cache_create("pgtable_cache",
  142. PAGE_SIZE, PAGE_SIZE,
  143. SLAB_HWCACHE_ALIGN |
  144. SLAB_MUST_HWCACHE_ALIGN,
  145. zero_ctor,
  146. NULL);
  147. if (!pgtable_cache) {
  148. prom_printf("pgtable_cache_init(): Could not create!\n");
  149. prom_halt();
  150. }
  151. }
  152. #ifdef CONFIG_DEBUG_DCFLUSH
  153. atomic_t dcpage_flushes = ATOMIC_INIT(0);
  154. #ifdef CONFIG_SMP
  155. atomic_t dcpage_flushes_xcall = ATOMIC_INIT(0);
  156. #endif
  157. #endif
  158. inline void flush_dcache_page_impl(struct page *page)
  159. {
  160. BUG_ON(tlb_type == hypervisor);
  161. #ifdef CONFIG_DEBUG_DCFLUSH
  162. atomic_inc(&dcpage_flushes);
  163. #endif
  164. #ifdef DCACHE_ALIASING_POSSIBLE
  165. __flush_dcache_page(page_address(page),
  166. ((tlb_type == spitfire) &&
  167. page_mapping(page) != NULL));
  168. #else
  169. if (page_mapping(page) != NULL &&
  170. tlb_type == spitfire)
  171. __flush_icache_page(__pa(page_address(page)));
  172. #endif
  173. }
  174. #define PG_dcache_dirty PG_arch_1
  175. #define PG_dcache_cpu_shift 24
  176. #define PG_dcache_cpu_mask (256 - 1)
  177. #if NR_CPUS > 256
  178. #error D-cache dirty tracking and thread_info->cpu need fixing for > 256 cpus
  179. #endif
  180. #define dcache_dirty_cpu(page) \
  181. (((page)->flags >> PG_dcache_cpu_shift) & PG_dcache_cpu_mask)
  182. static __inline__ void set_dcache_dirty(struct page *page, int this_cpu)
  183. {
  184. unsigned long mask = this_cpu;
  185. unsigned long non_cpu_bits;
  186. non_cpu_bits = ~(PG_dcache_cpu_mask << PG_dcache_cpu_shift);
  187. mask = (mask << PG_dcache_cpu_shift) | (1UL << PG_dcache_dirty);
  188. __asm__ __volatile__("1:\n\t"
  189. "ldx [%2], %%g7\n\t"
  190. "and %%g7, %1, %%g1\n\t"
  191. "or %%g1, %0, %%g1\n\t"
  192. "casx [%2], %%g7, %%g1\n\t"
  193. "cmp %%g7, %%g1\n\t"
  194. "membar #StoreLoad | #StoreStore\n\t"
  195. "bne,pn %%xcc, 1b\n\t"
  196. " nop"
  197. : /* no outputs */
  198. : "r" (mask), "r" (non_cpu_bits), "r" (&page->flags)
  199. : "g1", "g7");
  200. }
  201. static __inline__ void clear_dcache_dirty_cpu(struct page *page, unsigned long cpu)
  202. {
  203. unsigned long mask = (1UL << PG_dcache_dirty);
  204. __asm__ __volatile__("! test_and_clear_dcache_dirty\n"
  205. "1:\n\t"
  206. "ldx [%2], %%g7\n\t"
  207. "srlx %%g7, %4, %%g1\n\t"
  208. "and %%g1, %3, %%g1\n\t"
  209. "cmp %%g1, %0\n\t"
  210. "bne,pn %%icc, 2f\n\t"
  211. " andn %%g7, %1, %%g1\n\t"
  212. "casx [%2], %%g7, %%g1\n\t"
  213. "cmp %%g7, %%g1\n\t"
  214. "membar #StoreLoad | #StoreStore\n\t"
  215. "bne,pn %%xcc, 1b\n\t"
  216. " nop\n"
  217. "2:"
  218. : /* no outputs */
  219. : "r" (cpu), "r" (mask), "r" (&page->flags),
  220. "i" (PG_dcache_cpu_mask),
  221. "i" (PG_dcache_cpu_shift)
  222. : "g1", "g7");
  223. }
  224. static inline void tsb_insert(struct tsb *ent, unsigned long tag, unsigned long pte)
  225. {
  226. unsigned long tsb_addr = (unsigned long) ent;
  227. if (tlb_type == cheetah_plus || tlb_type == hypervisor)
  228. tsb_addr = __pa(tsb_addr);
  229. __tsb_insert(tsb_addr, tag, pte);
  230. }
  231. unsigned long _PAGE_ALL_SZ_BITS __read_mostly;
  232. unsigned long _PAGE_SZBITS __read_mostly;
  233. void update_mmu_cache(struct vm_area_struct *vma, unsigned long address, pte_t pte)
  234. {
  235. struct mm_struct *mm;
  236. struct tsb *tsb;
  237. unsigned long tag;
  238. if (tlb_type != hypervisor) {
  239. unsigned long pfn = pte_pfn(pte);
  240. unsigned long pg_flags;
  241. struct page *page;
  242. if (pfn_valid(pfn) &&
  243. (page = pfn_to_page(pfn), page_mapping(page)) &&
  244. ((pg_flags = page->flags) & (1UL << PG_dcache_dirty))) {
  245. int cpu = ((pg_flags >> PG_dcache_cpu_shift) &
  246. PG_dcache_cpu_mask);
  247. int this_cpu = get_cpu();
  248. /* This is just to optimize away some function calls
  249. * in the SMP case.
  250. */
  251. if (cpu == this_cpu)
  252. flush_dcache_page_impl(page);
  253. else
  254. smp_flush_dcache_page_impl(page, cpu);
  255. clear_dcache_dirty_cpu(page, cpu);
  256. put_cpu();
  257. }
  258. }
  259. mm = vma->vm_mm;
  260. tsb = &mm->context.tsb[(address >> PAGE_SHIFT) &
  261. (mm->context.tsb_nentries - 1UL)];
  262. tag = (address >> 22UL);
  263. tsb_insert(tsb, tag, pte_val(pte));
  264. }
  265. void flush_dcache_page(struct page *page)
  266. {
  267. struct address_space *mapping;
  268. int this_cpu;
  269. if (tlb_type == hypervisor)
  270. return;
  271. /* Do not bother with the expensive D-cache flush if it
  272. * is merely the zero page. The 'bigcore' testcase in GDB
  273. * causes this case to run millions of times.
  274. */
  275. if (page == ZERO_PAGE(0))
  276. return;
  277. this_cpu = get_cpu();
  278. mapping = page_mapping(page);
  279. if (mapping && !mapping_mapped(mapping)) {
  280. int dirty = test_bit(PG_dcache_dirty, &page->flags);
  281. if (dirty) {
  282. int dirty_cpu = dcache_dirty_cpu(page);
  283. if (dirty_cpu == this_cpu)
  284. goto out;
  285. smp_flush_dcache_page_impl(page, dirty_cpu);
  286. }
  287. set_dcache_dirty(page, this_cpu);
  288. } else {
  289. /* We could delay the flush for the !page_mapping
  290. * case too. But that case is for exec env/arg
  291. * pages and those are %99 certainly going to get
  292. * faulted into the tlb (and thus flushed) anyways.
  293. */
  294. flush_dcache_page_impl(page);
  295. }
  296. out:
  297. put_cpu();
  298. }
  299. void __kprobes flush_icache_range(unsigned long start, unsigned long end)
  300. {
  301. /* Cheetah and Hypervisor platform cpus have coherent I-cache. */
  302. if (tlb_type == spitfire) {
  303. unsigned long kaddr;
  304. for (kaddr = start; kaddr < end; kaddr += PAGE_SIZE)
  305. __flush_icache_page(__get_phys(kaddr));
  306. }
  307. }
  308. unsigned long page_to_pfn(struct page *page)
  309. {
  310. return (unsigned long) ((page - mem_map) + pfn_base);
  311. }
  312. struct page *pfn_to_page(unsigned long pfn)
  313. {
  314. return (mem_map + (pfn - pfn_base));
  315. }
  316. void show_mem(void)
  317. {
  318. printk("Mem-info:\n");
  319. show_free_areas();
  320. printk("Free swap: %6ldkB\n",
  321. nr_swap_pages << (PAGE_SHIFT-10));
  322. printk("%ld pages of RAM\n", num_physpages);
  323. printk("%d free pages\n", nr_free_pages());
  324. }
  325. void mmu_info(struct seq_file *m)
  326. {
  327. if (tlb_type == cheetah)
  328. seq_printf(m, "MMU Type\t: Cheetah\n");
  329. else if (tlb_type == cheetah_plus)
  330. seq_printf(m, "MMU Type\t: Cheetah+\n");
  331. else if (tlb_type == spitfire)
  332. seq_printf(m, "MMU Type\t: Spitfire\n");
  333. else if (tlb_type == hypervisor)
  334. seq_printf(m, "MMU Type\t: Hypervisor (sun4v)\n");
  335. else
  336. seq_printf(m, "MMU Type\t: ???\n");
  337. #ifdef CONFIG_DEBUG_DCFLUSH
  338. seq_printf(m, "DCPageFlushes\t: %d\n",
  339. atomic_read(&dcpage_flushes));
  340. #ifdef CONFIG_SMP
  341. seq_printf(m, "DCPageFlushesXC\t: %d\n",
  342. atomic_read(&dcpage_flushes_xcall));
  343. #endif /* CONFIG_SMP */
  344. #endif /* CONFIG_DEBUG_DCFLUSH */
  345. }
  346. struct linux_prom_translation {
  347. unsigned long virt;
  348. unsigned long size;
  349. unsigned long data;
  350. };
  351. /* Exported for kernel TLB miss handling in ktlb.S */
  352. struct linux_prom_translation prom_trans[512] __read_mostly;
  353. unsigned int prom_trans_ents __read_mostly;
  354. /* Exported for SMP bootup purposes. */
  355. unsigned long kern_locked_tte_data;
  356. /* The obp translations are saved based on 8k pagesize, since obp can
  357. * use a mixture of pagesizes. Misses to the LOW_OBP_ADDRESS ->
  358. * HI_OBP_ADDRESS range are handled in ktlb.S.
  359. */
  360. static inline int in_obp_range(unsigned long vaddr)
  361. {
  362. return (vaddr >= LOW_OBP_ADDRESS &&
  363. vaddr < HI_OBP_ADDRESS);
  364. }
  365. static int cmp_ptrans(const void *a, const void *b)
  366. {
  367. const struct linux_prom_translation *x = a, *y = b;
  368. if (x->virt > y->virt)
  369. return 1;
  370. if (x->virt < y->virt)
  371. return -1;
  372. return 0;
  373. }
  374. /* Read OBP translations property into 'prom_trans[]'. */
  375. static void __init read_obp_translations(void)
  376. {
  377. int n, node, ents, first, last, i;
  378. node = prom_finddevice("/virtual-memory");
  379. n = prom_getproplen(node, "translations");
  380. if (unlikely(n == 0 || n == -1)) {
  381. prom_printf("prom_mappings: Couldn't get size.\n");
  382. prom_halt();
  383. }
  384. if (unlikely(n > sizeof(prom_trans))) {
  385. prom_printf("prom_mappings: Size %Zd is too big.\n", n);
  386. prom_halt();
  387. }
  388. if ((n = prom_getproperty(node, "translations",
  389. (char *)&prom_trans[0],
  390. sizeof(prom_trans))) == -1) {
  391. prom_printf("prom_mappings: Couldn't get property.\n");
  392. prom_halt();
  393. }
  394. n = n / sizeof(struct linux_prom_translation);
  395. ents = n;
  396. sort(prom_trans, ents, sizeof(struct linux_prom_translation),
  397. cmp_ptrans, NULL);
  398. /* Now kick out all the non-OBP entries. */
  399. for (i = 0; i < ents; i++) {
  400. if (in_obp_range(prom_trans[i].virt))
  401. break;
  402. }
  403. first = i;
  404. for (; i < ents; i++) {
  405. if (!in_obp_range(prom_trans[i].virt))
  406. break;
  407. }
  408. last = i;
  409. for (i = 0; i < (last - first); i++) {
  410. struct linux_prom_translation *src = &prom_trans[i + first];
  411. struct linux_prom_translation *dest = &prom_trans[i];
  412. *dest = *src;
  413. }
  414. for (; i < ents; i++) {
  415. struct linux_prom_translation *dest = &prom_trans[i];
  416. dest->virt = dest->size = dest->data = 0x0UL;
  417. }
  418. prom_trans_ents = last - first;
  419. if (tlb_type == spitfire) {
  420. /* Clear diag TTE bits. */
  421. for (i = 0; i < prom_trans_ents; i++)
  422. prom_trans[i].data &= ~0x0003fe0000000000UL;
  423. }
  424. }
  425. static void __init hypervisor_tlb_lock(unsigned long vaddr,
  426. unsigned long pte,
  427. unsigned long mmu)
  428. {
  429. register unsigned long func asm("%o5");
  430. register unsigned long arg0 asm("%o0");
  431. register unsigned long arg1 asm("%o1");
  432. register unsigned long arg2 asm("%o2");
  433. register unsigned long arg3 asm("%o3");
  434. func = HV_FAST_MMU_MAP_PERM_ADDR;
  435. arg0 = vaddr;
  436. arg1 = 0;
  437. arg2 = pte;
  438. arg3 = mmu;
  439. __asm__ __volatile__("ta 0x80"
  440. : "=&r" (func), "=&r" (arg0),
  441. "=&r" (arg1), "=&r" (arg2),
  442. "=&r" (arg3)
  443. : "0" (func), "1" (arg0), "2" (arg1),
  444. "3" (arg2), "4" (arg3));
  445. if (arg0 != 0) {
  446. prom_printf("hypervisor_tlb_lock[%lx:%lx:%lx:%lx]: "
  447. "errors with %lx\n", vaddr, 0, pte, mmu, arg0);
  448. prom_halt();
  449. }
  450. }
  451. static unsigned long kern_large_tte(unsigned long paddr);
  452. static void __init remap_kernel(void)
  453. {
  454. unsigned long phys_page, tte_vaddr, tte_data;
  455. int tlb_ent = sparc64_highest_locked_tlbent();
  456. tte_vaddr = (unsigned long) KERNBASE;
  457. phys_page = (prom_boot_mapping_phys_low >> 22UL) << 22UL;
  458. tte_data = kern_large_tte(phys_page);
  459. kern_locked_tte_data = tte_data;
  460. /* Now lock us into the TLBs via Hypervisor or OBP. */
  461. if (tlb_type == hypervisor) {
  462. hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_DMMU);
  463. hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_IMMU);
  464. if (bigkernel) {
  465. tte_vaddr += 0x400000;
  466. tte_data += 0x400000;
  467. hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_DMMU);
  468. hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_IMMU);
  469. }
  470. } else {
  471. prom_dtlb_load(tlb_ent, tte_data, tte_vaddr);
  472. prom_itlb_load(tlb_ent, tte_data, tte_vaddr);
  473. if (bigkernel) {
  474. tlb_ent -= 1;
  475. prom_dtlb_load(tlb_ent,
  476. tte_data + 0x400000,
  477. tte_vaddr + 0x400000);
  478. prom_itlb_load(tlb_ent,
  479. tte_data + 0x400000,
  480. tte_vaddr + 0x400000);
  481. }
  482. sparc64_highest_unlocked_tlb_ent = tlb_ent - 1;
  483. }
  484. if (tlb_type == cheetah_plus) {
  485. sparc64_kern_pri_context = (CTX_CHEETAH_PLUS_CTX0 |
  486. CTX_CHEETAH_PLUS_NUC);
  487. sparc64_kern_pri_nuc_bits = CTX_CHEETAH_PLUS_NUC;
  488. sparc64_kern_sec_context = CTX_CHEETAH_PLUS_CTX0;
  489. }
  490. }
  491. static void __init inherit_prom_mappings(void)
  492. {
  493. read_obp_translations();
  494. /* Now fixup OBP's idea about where we really are mapped. */
  495. prom_printf("Remapping the kernel... ");
  496. remap_kernel();
  497. prom_printf("done.\n");
  498. }
  499. void prom_world(int enter)
  500. {
  501. if (!enter)
  502. set_fs((mm_segment_t) { get_thread_current_ds() });
  503. __asm__ __volatile__("flushw");
  504. }
  505. #ifdef DCACHE_ALIASING_POSSIBLE
  506. void __flush_dcache_range(unsigned long start, unsigned long end)
  507. {
  508. unsigned long va;
  509. if (tlb_type == spitfire) {
  510. int n = 0;
  511. for (va = start; va < end; va += 32) {
  512. spitfire_put_dcache_tag(va & 0x3fe0, 0x0);
  513. if (++n >= 512)
  514. break;
  515. }
  516. } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
  517. start = __pa(start);
  518. end = __pa(end);
  519. for (va = start; va < end; va += 32)
  520. __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
  521. "membar #Sync"
  522. : /* no outputs */
  523. : "r" (va),
  524. "i" (ASI_DCACHE_INVALIDATE));
  525. }
  526. }
  527. #endif /* DCACHE_ALIASING_POSSIBLE */
  528. /* Caller does TLB context flushing on local CPU if necessary.
  529. * The caller also ensures that CTX_VALID(mm->context) is false.
  530. *
  531. * We must be careful about boundary cases so that we never
  532. * let the user have CTX 0 (nucleus) or we ever use a CTX
  533. * version of zero (and thus NO_CONTEXT would not be caught
  534. * by version mis-match tests in mmu_context.h).
  535. *
  536. * Always invoked with interrupts disabled.
  537. */
  538. void get_new_mmu_context(struct mm_struct *mm)
  539. {
  540. unsigned long ctx, new_ctx;
  541. unsigned long orig_pgsz_bits;
  542. int new_version;
  543. spin_lock(&ctx_alloc_lock);
  544. orig_pgsz_bits = (mm->context.sparc64_ctx_val & CTX_PGSZ_MASK);
  545. ctx = (tlb_context_cache + 1) & CTX_NR_MASK;
  546. new_ctx = find_next_zero_bit(mmu_context_bmap, 1 << CTX_NR_BITS, ctx);
  547. new_version = 0;
  548. if (new_ctx >= (1 << CTX_NR_BITS)) {
  549. new_ctx = find_next_zero_bit(mmu_context_bmap, ctx, 1);
  550. if (new_ctx >= ctx) {
  551. int i;
  552. new_ctx = (tlb_context_cache & CTX_VERSION_MASK) +
  553. CTX_FIRST_VERSION;
  554. if (new_ctx == 1)
  555. new_ctx = CTX_FIRST_VERSION;
  556. /* Don't call memset, for 16 entries that's just
  557. * plain silly...
  558. */
  559. mmu_context_bmap[0] = 3;
  560. mmu_context_bmap[1] = 0;
  561. mmu_context_bmap[2] = 0;
  562. mmu_context_bmap[3] = 0;
  563. for (i = 4; i < CTX_BMAP_SLOTS; i += 4) {
  564. mmu_context_bmap[i + 0] = 0;
  565. mmu_context_bmap[i + 1] = 0;
  566. mmu_context_bmap[i + 2] = 0;
  567. mmu_context_bmap[i + 3] = 0;
  568. }
  569. new_version = 1;
  570. goto out;
  571. }
  572. }
  573. mmu_context_bmap[new_ctx>>6] |= (1UL << (new_ctx & 63));
  574. new_ctx |= (tlb_context_cache & CTX_VERSION_MASK);
  575. out:
  576. tlb_context_cache = new_ctx;
  577. mm->context.sparc64_ctx_val = new_ctx | orig_pgsz_bits;
  578. spin_unlock(&ctx_alloc_lock);
  579. if (unlikely(new_version))
  580. smp_new_mmu_context_version();
  581. }
  582. void sparc_ultra_dump_itlb(void)
  583. {
  584. int slot;
  585. if (tlb_type == spitfire) {
  586. printk ("Contents of itlb: ");
  587. for (slot = 0; slot < 14; slot++) printk (" ");
  588. printk ("%2x:%016lx,%016lx\n",
  589. 0,
  590. spitfire_get_itlb_tag(0), spitfire_get_itlb_data(0));
  591. for (slot = 1; slot < 64; slot+=3) {
  592. printk ("%2x:%016lx,%016lx %2x:%016lx,%016lx %2x:%016lx,%016lx\n",
  593. slot,
  594. spitfire_get_itlb_tag(slot), spitfire_get_itlb_data(slot),
  595. slot+1,
  596. spitfire_get_itlb_tag(slot+1), spitfire_get_itlb_data(slot+1),
  597. slot+2,
  598. spitfire_get_itlb_tag(slot+2), spitfire_get_itlb_data(slot+2));
  599. }
  600. } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
  601. printk ("Contents of itlb0:\n");
  602. for (slot = 0; slot < 16; slot+=2) {
  603. printk ("%2x:%016lx,%016lx %2x:%016lx,%016lx\n",
  604. slot,
  605. cheetah_get_litlb_tag(slot), cheetah_get_litlb_data(slot),
  606. slot+1,
  607. cheetah_get_litlb_tag(slot+1), cheetah_get_litlb_data(slot+1));
  608. }
  609. printk ("Contents of itlb2:\n");
  610. for (slot = 0; slot < 128; slot+=2) {
  611. printk ("%2x:%016lx,%016lx %2x:%016lx,%016lx\n",
  612. slot,
  613. cheetah_get_itlb_tag(slot), cheetah_get_itlb_data(slot),
  614. slot+1,
  615. cheetah_get_itlb_tag(slot+1), cheetah_get_itlb_data(slot+1));
  616. }
  617. }
  618. }
  619. void sparc_ultra_dump_dtlb(void)
  620. {
  621. int slot;
  622. if (tlb_type == spitfire) {
  623. printk ("Contents of dtlb: ");
  624. for (slot = 0; slot < 14; slot++) printk (" ");
  625. printk ("%2x:%016lx,%016lx\n", 0,
  626. spitfire_get_dtlb_tag(0), spitfire_get_dtlb_data(0));
  627. for (slot = 1; slot < 64; slot+=3) {
  628. printk ("%2x:%016lx,%016lx %2x:%016lx,%016lx %2x:%016lx,%016lx\n",
  629. slot,
  630. spitfire_get_dtlb_tag(slot), spitfire_get_dtlb_data(slot),
  631. slot+1,
  632. spitfire_get_dtlb_tag(slot+1), spitfire_get_dtlb_data(slot+1),
  633. slot+2,
  634. spitfire_get_dtlb_tag(slot+2), spitfire_get_dtlb_data(slot+2));
  635. }
  636. } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
  637. printk ("Contents of dtlb0:\n");
  638. for (slot = 0; slot < 16; slot+=2) {
  639. printk ("%2x:%016lx,%016lx %2x:%016lx,%016lx\n",
  640. slot,
  641. cheetah_get_ldtlb_tag(slot), cheetah_get_ldtlb_data(slot),
  642. slot+1,
  643. cheetah_get_ldtlb_tag(slot+1), cheetah_get_ldtlb_data(slot+1));
  644. }
  645. printk ("Contents of dtlb2:\n");
  646. for (slot = 0; slot < 512; slot+=2) {
  647. printk ("%2x:%016lx,%016lx %2x:%016lx,%016lx\n",
  648. slot,
  649. cheetah_get_dtlb_tag(slot, 2), cheetah_get_dtlb_data(slot, 2),
  650. slot+1,
  651. cheetah_get_dtlb_tag(slot+1, 2), cheetah_get_dtlb_data(slot+1, 2));
  652. }
  653. if (tlb_type == cheetah_plus) {
  654. printk ("Contents of dtlb3:\n");
  655. for (slot = 0; slot < 512; slot+=2) {
  656. printk ("%2x:%016lx,%016lx %2x:%016lx,%016lx\n",
  657. slot,
  658. cheetah_get_dtlb_tag(slot, 3), cheetah_get_dtlb_data(slot, 3),
  659. slot+1,
  660. cheetah_get_dtlb_tag(slot+1, 3), cheetah_get_dtlb_data(slot+1, 3));
  661. }
  662. }
  663. }
  664. }
  665. extern unsigned long cmdline_memory_size;
  666. unsigned long __init bootmem_init(unsigned long *pages_avail)
  667. {
  668. unsigned long bootmap_size, start_pfn, end_pfn;
  669. unsigned long end_of_phys_memory = 0UL;
  670. unsigned long bootmap_pfn, bytes_avail, size;
  671. int i;
  672. #ifdef CONFIG_DEBUG_BOOTMEM
  673. prom_printf("bootmem_init: Scan pavail, ");
  674. #endif
  675. bytes_avail = 0UL;
  676. for (i = 0; i < pavail_ents; i++) {
  677. end_of_phys_memory = pavail[i].phys_addr +
  678. pavail[i].reg_size;
  679. bytes_avail += pavail[i].reg_size;
  680. if (cmdline_memory_size) {
  681. if (bytes_avail > cmdline_memory_size) {
  682. unsigned long slack = bytes_avail - cmdline_memory_size;
  683. bytes_avail -= slack;
  684. end_of_phys_memory -= slack;
  685. pavail[i].reg_size -= slack;
  686. if ((long)pavail[i].reg_size <= 0L) {
  687. pavail[i].phys_addr = 0xdeadbeefUL;
  688. pavail[i].reg_size = 0UL;
  689. pavail_ents = i;
  690. } else {
  691. pavail[i+1].reg_size = 0Ul;
  692. pavail[i+1].phys_addr = 0xdeadbeefUL;
  693. pavail_ents = i + 1;
  694. }
  695. break;
  696. }
  697. }
  698. }
  699. *pages_avail = bytes_avail >> PAGE_SHIFT;
  700. /* Start with page aligned address of last symbol in kernel
  701. * image. The kernel is hard mapped below PAGE_OFFSET in a
  702. * 4MB locked TLB translation.
  703. */
  704. start_pfn = PAGE_ALIGN(kern_base + kern_size) >> PAGE_SHIFT;
  705. bootmap_pfn = start_pfn;
  706. end_pfn = end_of_phys_memory >> PAGE_SHIFT;
  707. #ifdef CONFIG_BLK_DEV_INITRD
  708. /* Now have to check initial ramdisk, so that bootmap does not overwrite it */
  709. if (sparc_ramdisk_image || sparc_ramdisk_image64) {
  710. unsigned long ramdisk_image = sparc_ramdisk_image ?
  711. sparc_ramdisk_image : sparc_ramdisk_image64;
  712. if (ramdisk_image >= (unsigned long)_end - 2 * PAGE_SIZE)
  713. ramdisk_image -= KERNBASE;
  714. initrd_start = ramdisk_image + phys_base;
  715. initrd_end = initrd_start + sparc_ramdisk_size;
  716. if (initrd_end > end_of_phys_memory) {
  717. printk(KERN_CRIT "initrd extends beyond end of memory "
  718. "(0x%016lx > 0x%016lx)\ndisabling initrd\n",
  719. initrd_end, end_of_phys_memory);
  720. initrd_start = 0;
  721. }
  722. if (initrd_start) {
  723. if (initrd_start >= (start_pfn << PAGE_SHIFT) &&
  724. initrd_start < (start_pfn << PAGE_SHIFT) + 2 * PAGE_SIZE)
  725. bootmap_pfn = PAGE_ALIGN (initrd_end) >> PAGE_SHIFT;
  726. }
  727. }
  728. #endif
  729. /* Initialize the boot-time allocator. */
  730. max_pfn = max_low_pfn = end_pfn;
  731. min_low_pfn = pfn_base;
  732. #ifdef CONFIG_DEBUG_BOOTMEM
  733. prom_printf("init_bootmem(min[%lx], bootmap[%lx], max[%lx])\n",
  734. min_low_pfn, bootmap_pfn, max_low_pfn);
  735. #endif
  736. bootmap_size = init_bootmem_node(NODE_DATA(0), bootmap_pfn, pfn_base, end_pfn);
  737. /* Now register the available physical memory with the
  738. * allocator.
  739. */
  740. for (i = 0; i < pavail_ents; i++) {
  741. #ifdef CONFIG_DEBUG_BOOTMEM
  742. prom_printf("free_bootmem(pavail:%d): base[%lx] size[%lx]\n",
  743. i, pavail[i].phys_addr, pavail[i].reg_size);
  744. #endif
  745. free_bootmem(pavail[i].phys_addr, pavail[i].reg_size);
  746. }
  747. #ifdef CONFIG_BLK_DEV_INITRD
  748. if (initrd_start) {
  749. size = initrd_end - initrd_start;
  750. /* Resert the initrd image area. */
  751. #ifdef CONFIG_DEBUG_BOOTMEM
  752. prom_printf("reserve_bootmem(initrd): base[%llx] size[%lx]\n",
  753. initrd_start, initrd_end);
  754. #endif
  755. reserve_bootmem(initrd_start, size);
  756. *pages_avail -= PAGE_ALIGN(size) >> PAGE_SHIFT;
  757. initrd_start += PAGE_OFFSET;
  758. initrd_end += PAGE_OFFSET;
  759. }
  760. #endif
  761. /* Reserve the kernel text/data/bss. */
  762. #ifdef CONFIG_DEBUG_BOOTMEM
  763. prom_printf("reserve_bootmem(kernel): base[%lx] size[%lx]\n", kern_base, kern_size);
  764. #endif
  765. reserve_bootmem(kern_base, kern_size);
  766. *pages_avail -= PAGE_ALIGN(kern_size) >> PAGE_SHIFT;
  767. /* Reserve the bootmem map. We do not account for it
  768. * in pages_avail because we will release that memory
  769. * in free_all_bootmem.
  770. */
  771. size = bootmap_size;
  772. #ifdef CONFIG_DEBUG_BOOTMEM
  773. prom_printf("reserve_bootmem(bootmap): base[%lx] size[%lx]\n",
  774. (bootmap_pfn << PAGE_SHIFT), size);
  775. #endif
  776. reserve_bootmem((bootmap_pfn << PAGE_SHIFT), size);
  777. *pages_avail -= PAGE_ALIGN(size) >> PAGE_SHIFT;
  778. return end_pfn;
  779. }
  780. static struct linux_prom64_registers pall[MAX_BANKS] __initdata;
  781. static int pall_ents __initdata;
  782. #ifdef CONFIG_DEBUG_PAGEALLOC
  783. static unsigned long kernel_map_range(unsigned long pstart, unsigned long pend, pgprot_t prot)
  784. {
  785. unsigned long vstart = PAGE_OFFSET + pstart;
  786. unsigned long vend = PAGE_OFFSET + pend;
  787. unsigned long alloc_bytes = 0UL;
  788. if ((vstart & ~PAGE_MASK) || (vend & ~PAGE_MASK)) {
  789. prom_printf("kernel_map: Unaligned physmem[%lx:%lx]\n",
  790. vstart, vend);
  791. prom_halt();
  792. }
  793. while (vstart < vend) {
  794. unsigned long this_end, paddr = __pa(vstart);
  795. pgd_t *pgd = pgd_offset_k(vstart);
  796. pud_t *pud;
  797. pmd_t *pmd;
  798. pte_t *pte;
  799. pud = pud_offset(pgd, vstart);
  800. if (pud_none(*pud)) {
  801. pmd_t *new;
  802. new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
  803. alloc_bytes += PAGE_SIZE;
  804. pud_populate(&init_mm, pud, new);
  805. }
  806. pmd = pmd_offset(pud, vstart);
  807. if (!pmd_present(*pmd)) {
  808. pte_t *new;
  809. new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
  810. alloc_bytes += PAGE_SIZE;
  811. pmd_populate_kernel(&init_mm, pmd, new);
  812. }
  813. pte = pte_offset_kernel(pmd, vstart);
  814. this_end = (vstart + PMD_SIZE) & PMD_MASK;
  815. if (this_end > vend)
  816. this_end = vend;
  817. while (vstart < this_end) {
  818. pte_val(*pte) = (paddr | pgprot_val(prot));
  819. vstart += PAGE_SIZE;
  820. paddr += PAGE_SIZE;
  821. pte++;
  822. }
  823. }
  824. return alloc_bytes;
  825. }
  826. extern unsigned int kvmap_linear_patch[1];
  827. #endif /* CONFIG_DEBUG_PAGEALLOC */
  828. static void __init mark_kpte_bitmap(unsigned long start, unsigned long end)
  829. {
  830. const unsigned long shift_256MB = 28;
  831. const unsigned long mask_256MB = ((1UL << shift_256MB) - 1UL);
  832. const unsigned long size_256MB = (1UL << shift_256MB);
  833. while (start < end) {
  834. long remains;
  835. remains = end - start;
  836. if (remains < size_256MB)
  837. break;
  838. if (start & mask_256MB) {
  839. start = (start + size_256MB) & ~mask_256MB;
  840. continue;
  841. }
  842. while (remains >= size_256MB) {
  843. unsigned long index = start >> shift_256MB;
  844. __set_bit(index, kpte_linear_bitmap);
  845. start += size_256MB;
  846. remains -= size_256MB;
  847. }
  848. }
  849. }
  850. static void __init kernel_physical_mapping_init(void)
  851. {
  852. unsigned long i;
  853. #ifdef CONFIG_DEBUG_PAGEALLOC
  854. unsigned long mem_alloced = 0UL;
  855. #endif
  856. read_obp_memory("reg", &pall[0], &pall_ents);
  857. for (i = 0; i < pall_ents; i++) {
  858. unsigned long phys_start, phys_end;
  859. phys_start = pall[i].phys_addr;
  860. phys_end = phys_start + pall[i].reg_size;
  861. mark_kpte_bitmap(phys_start, phys_end);
  862. #ifdef CONFIG_DEBUG_PAGEALLOC
  863. mem_alloced += kernel_map_range(phys_start, phys_end,
  864. PAGE_KERNEL);
  865. #endif
  866. }
  867. #ifdef CONFIG_DEBUG_PAGEALLOC
  868. printk("Allocated %ld bytes for kernel page tables.\n",
  869. mem_alloced);
  870. kvmap_linear_patch[0] = 0x01000000; /* nop */
  871. flushi(&kvmap_linear_patch[0]);
  872. __flush_tlb_all();
  873. #endif
  874. }
  875. #ifdef CONFIG_DEBUG_PAGEALLOC
  876. void kernel_map_pages(struct page *page, int numpages, int enable)
  877. {
  878. unsigned long phys_start = page_to_pfn(page) << PAGE_SHIFT;
  879. unsigned long phys_end = phys_start + (numpages * PAGE_SIZE);
  880. kernel_map_range(phys_start, phys_end,
  881. (enable ? PAGE_KERNEL : __pgprot(0)));
  882. flush_tsb_kernel_range(PAGE_OFFSET + phys_start,
  883. PAGE_OFFSET + phys_end);
  884. /* we should perform an IPI and flush all tlbs,
  885. * but that can deadlock->flush only current cpu.
  886. */
  887. __flush_tlb_kernel_range(PAGE_OFFSET + phys_start,
  888. PAGE_OFFSET + phys_end);
  889. }
  890. #endif
  891. unsigned long __init find_ecache_flush_span(unsigned long size)
  892. {
  893. int i;
  894. for (i = 0; i < pavail_ents; i++) {
  895. if (pavail[i].reg_size >= size)
  896. return pavail[i].phys_addr;
  897. }
  898. return ~0UL;
  899. }
  900. static void __init tsb_phys_patch(void)
  901. {
  902. struct tsb_ldquad_phys_patch_entry *pquad;
  903. struct tsb_phys_patch_entry *p;
  904. pquad = &__tsb_ldquad_phys_patch;
  905. while (pquad < &__tsb_ldquad_phys_patch_end) {
  906. unsigned long addr = pquad->addr;
  907. if (tlb_type == hypervisor)
  908. *(unsigned int *) addr = pquad->sun4v_insn;
  909. else
  910. *(unsigned int *) addr = pquad->sun4u_insn;
  911. wmb();
  912. __asm__ __volatile__("flush %0"
  913. : /* no outputs */
  914. : "r" (addr));
  915. pquad++;
  916. }
  917. p = &__tsb_phys_patch;
  918. while (p < &__tsb_phys_patch_end) {
  919. unsigned long addr = p->addr;
  920. *(unsigned int *) addr = p->insn;
  921. wmb();
  922. __asm__ __volatile__("flush %0"
  923. : /* no outputs */
  924. : "r" (addr));
  925. p++;
  926. }
  927. }
  928. /* Don't mark as init, we give this to the Hypervisor. */
  929. static struct hv_tsb_descr ktsb_descr[2];
  930. extern struct tsb swapper_tsb[KERNEL_TSB_NENTRIES];
  931. static void __init sun4v_ktsb_init(void)
  932. {
  933. unsigned long ktsb_pa;
  934. /* First KTSB for PAGE_SIZE mappings. */
  935. ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE);
  936. switch (PAGE_SIZE) {
  937. case 8 * 1024:
  938. default:
  939. ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_8K;
  940. ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_8K;
  941. break;
  942. case 64 * 1024:
  943. ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_64K;
  944. ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_64K;
  945. break;
  946. case 512 * 1024:
  947. ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_512K;
  948. ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_512K;
  949. break;
  950. case 4 * 1024 * 1024:
  951. ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_4MB;
  952. ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_4MB;
  953. break;
  954. };
  955. ktsb_descr[0].assoc = 1;
  956. ktsb_descr[0].num_ttes = KERNEL_TSB_NENTRIES;
  957. ktsb_descr[0].ctx_idx = 0;
  958. ktsb_descr[0].tsb_base = ktsb_pa;
  959. ktsb_descr[0].resv = 0;
  960. /* Second KTSB for 4MB/256MB mappings. */
  961. ktsb_pa = (kern_base +
  962. ((unsigned long)&swapper_4m_tsb[0] - KERNBASE));
  963. ktsb_descr[1].pgsz_idx = HV_PGSZ_IDX_4MB;
  964. ktsb_descr[1].pgsz_mask = (HV_PGSZ_MASK_4MB |
  965. HV_PGSZ_MASK_256MB);
  966. ktsb_descr[1].assoc = 1;
  967. ktsb_descr[1].num_ttes = KERNEL_TSB4M_NENTRIES;
  968. ktsb_descr[1].ctx_idx = 0;
  969. ktsb_descr[1].tsb_base = ktsb_pa;
  970. ktsb_descr[1].resv = 0;
  971. }
  972. void __cpuinit sun4v_ktsb_register(void)
  973. {
  974. register unsigned long func asm("%o5");
  975. register unsigned long arg0 asm("%o0");
  976. register unsigned long arg1 asm("%o1");
  977. unsigned long pa;
  978. pa = kern_base + ((unsigned long)&ktsb_descr[0] - KERNBASE);
  979. func = HV_FAST_MMU_TSB_CTX0;
  980. arg0 = 2;
  981. arg1 = pa;
  982. __asm__ __volatile__("ta %6"
  983. : "=&r" (func), "=&r" (arg0), "=&r" (arg1)
  984. : "0" (func), "1" (arg0), "2" (arg1),
  985. "i" (HV_FAST_TRAP));
  986. }
  987. /* paging_init() sets up the page tables */
  988. extern void cheetah_ecache_flush_init(void);
  989. extern void sun4v_patch_tlb_handlers(void);
  990. static unsigned long last_valid_pfn;
  991. pgd_t swapper_pg_dir[2048];
  992. static void sun4u_pgprot_init(void);
  993. static void sun4v_pgprot_init(void);
  994. void __init paging_init(void)
  995. {
  996. unsigned long end_pfn, pages_avail, shift;
  997. unsigned long real_end, i;
  998. kern_base = (prom_boot_mapping_phys_low >> 22UL) << 22UL;
  999. kern_size = (unsigned long)&_end - (unsigned long)KERNBASE;
  1000. /* Invalidate both kernel TSBs. */
  1001. memset(swapper_tsb, 0x40, sizeof(swapper_tsb));
  1002. memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb));
  1003. if (tlb_type == hypervisor)
  1004. sun4v_pgprot_init();
  1005. else
  1006. sun4u_pgprot_init();
  1007. if (tlb_type == cheetah_plus ||
  1008. tlb_type == hypervisor)
  1009. tsb_phys_patch();
  1010. if (tlb_type == hypervisor) {
  1011. sun4v_patch_tlb_handlers();
  1012. sun4v_ktsb_init();
  1013. }
  1014. /* Find available physical memory... */
  1015. read_obp_memory("available", &pavail[0], &pavail_ents);
  1016. phys_base = 0xffffffffffffffffUL;
  1017. for (i = 0; i < pavail_ents; i++)
  1018. phys_base = min(phys_base, pavail[i].phys_addr);
  1019. pfn_base = phys_base >> PAGE_SHIFT;
  1020. set_bit(0, mmu_context_bmap);
  1021. shift = kern_base + PAGE_OFFSET - ((unsigned long)KERNBASE);
  1022. real_end = (unsigned long)_end;
  1023. if ((real_end > ((unsigned long)KERNBASE + 0x400000)))
  1024. bigkernel = 1;
  1025. if ((real_end > ((unsigned long)KERNBASE + 0x800000))) {
  1026. prom_printf("paging_init: Kernel > 8MB, too large.\n");
  1027. prom_halt();
  1028. }
  1029. /* Set kernel pgd to upper alias so physical page computations
  1030. * work.
  1031. */
  1032. init_mm.pgd += ((shift) / (sizeof(pgd_t)));
  1033. memset(swapper_low_pmd_dir, 0, sizeof(swapper_low_pmd_dir));
  1034. /* Now can init the kernel/bad page tables. */
  1035. pud_set(pud_offset(&swapper_pg_dir[0], 0),
  1036. swapper_low_pmd_dir + (shift / sizeof(pgd_t)));
  1037. inherit_prom_mappings();
  1038. /* Ok, we can use our TLB miss and window trap handlers safely. */
  1039. setup_tba();
  1040. __flush_tlb_all();
  1041. if (tlb_type == hypervisor)
  1042. sun4v_ktsb_register();
  1043. /* Setup bootmem... */
  1044. pages_avail = 0;
  1045. last_valid_pfn = end_pfn = bootmem_init(&pages_avail);
  1046. kernel_physical_mapping_init();
  1047. {
  1048. unsigned long zones_size[MAX_NR_ZONES];
  1049. unsigned long zholes_size[MAX_NR_ZONES];
  1050. unsigned long npages;
  1051. int znum;
  1052. for (znum = 0; znum < MAX_NR_ZONES; znum++)
  1053. zones_size[znum] = zholes_size[znum] = 0;
  1054. npages = end_pfn - pfn_base;
  1055. zones_size[ZONE_DMA] = npages;
  1056. zholes_size[ZONE_DMA] = npages - pages_avail;
  1057. free_area_init_node(0, &contig_page_data, zones_size,
  1058. phys_base >> PAGE_SHIFT, zholes_size);
  1059. }
  1060. device_scan();
  1061. }
  1062. static void __init taint_real_pages(void)
  1063. {
  1064. int i;
  1065. read_obp_memory("available", &pavail_rescan[0], &pavail_rescan_ents);
  1066. /* Find changes discovered in the physmem available rescan and
  1067. * reserve the lost portions in the bootmem maps.
  1068. */
  1069. for (i = 0; i < pavail_ents; i++) {
  1070. unsigned long old_start, old_end;
  1071. old_start = pavail[i].phys_addr;
  1072. old_end = old_start +
  1073. pavail[i].reg_size;
  1074. while (old_start < old_end) {
  1075. int n;
  1076. for (n = 0; pavail_rescan_ents; n++) {
  1077. unsigned long new_start, new_end;
  1078. new_start = pavail_rescan[n].phys_addr;
  1079. new_end = new_start +
  1080. pavail_rescan[n].reg_size;
  1081. if (new_start <= old_start &&
  1082. new_end >= (old_start + PAGE_SIZE)) {
  1083. set_bit(old_start >> 22,
  1084. sparc64_valid_addr_bitmap);
  1085. goto do_next_page;
  1086. }
  1087. }
  1088. reserve_bootmem(old_start, PAGE_SIZE);
  1089. do_next_page:
  1090. old_start += PAGE_SIZE;
  1091. }
  1092. }
  1093. }
  1094. void __init mem_init(void)
  1095. {
  1096. unsigned long codepages, datapages, initpages;
  1097. unsigned long addr, last;
  1098. int i;
  1099. i = last_valid_pfn >> ((22 - PAGE_SHIFT) + 6);
  1100. i += 1;
  1101. sparc64_valid_addr_bitmap = (unsigned long *) alloc_bootmem(i << 3);
  1102. if (sparc64_valid_addr_bitmap == NULL) {
  1103. prom_printf("mem_init: Cannot alloc valid_addr_bitmap.\n");
  1104. prom_halt();
  1105. }
  1106. memset(sparc64_valid_addr_bitmap, 0, i << 3);
  1107. addr = PAGE_OFFSET + kern_base;
  1108. last = PAGE_ALIGN(kern_size) + addr;
  1109. while (addr < last) {
  1110. set_bit(__pa(addr) >> 22, sparc64_valid_addr_bitmap);
  1111. addr += PAGE_SIZE;
  1112. }
  1113. taint_real_pages();
  1114. max_mapnr = last_valid_pfn - pfn_base;
  1115. high_memory = __va(last_valid_pfn << PAGE_SHIFT);
  1116. #ifdef CONFIG_DEBUG_BOOTMEM
  1117. prom_printf("mem_init: Calling free_all_bootmem().\n");
  1118. #endif
  1119. totalram_pages = num_physpages = free_all_bootmem() - 1;
  1120. /*
  1121. * Set up the zero page, mark it reserved, so that page count
  1122. * is not manipulated when freeing the page from user ptes.
  1123. */
  1124. mem_map_zero = alloc_pages(GFP_KERNEL|__GFP_ZERO, 0);
  1125. if (mem_map_zero == NULL) {
  1126. prom_printf("paging_init: Cannot alloc zero page.\n");
  1127. prom_halt();
  1128. }
  1129. SetPageReserved(mem_map_zero);
  1130. codepages = (((unsigned long) _etext) - ((unsigned long) _start));
  1131. codepages = PAGE_ALIGN(codepages) >> PAGE_SHIFT;
  1132. datapages = (((unsigned long) _edata) - ((unsigned long) _etext));
  1133. datapages = PAGE_ALIGN(datapages) >> PAGE_SHIFT;
  1134. initpages = (((unsigned long) __init_end) - ((unsigned long) __init_begin));
  1135. initpages = PAGE_ALIGN(initpages) >> PAGE_SHIFT;
  1136. printk("Memory: %uk available (%ldk kernel code, %ldk data, %ldk init) [%016lx,%016lx]\n",
  1137. nr_free_pages() << (PAGE_SHIFT-10),
  1138. codepages << (PAGE_SHIFT-10),
  1139. datapages << (PAGE_SHIFT-10),
  1140. initpages << (PAGE_SHIFT-10),
  1141. PAGE_OFFSET, (last_valid_pfn << PAGE_SHIFT));
  1142. if (tlb_type == cheetah || tlb_type == cheetah_plus)
  1143. cheetah_ecache_flush_init();
  1144. }
  1145. void free_initmem(void)
  1146. {
  1147. unsigned long addr, initend;
  1148. /*
  1149. * The init section is aligned to 8k in vmlinux.lds. Page align for >8k pagesizes.
  1150. */
  1151. addr = PAGE_ALIGN((unsigned long)(__init_begin));
  1152. initend = (unsigned long)(__init_end) & PAGE_MASK;
  1153. for (; addr < initend; addr += PAGE_SIZE) {
  1154. unsigned long page;
  1155. struct page *p;
  1156. page = (addr +
  1157. ((unsigned long) __va(kern_base)) -
  1158. ((unsigned long) KERNBASE));
  1159. memset((void *)addr, 0xcc, PAGE_SIZE);
  1160. p = virt_to_page(page);
  1161. ClearPageReserved(p);
  1162. set_page_count(p, 1);
  1163. __free_page(p);
  1164. num_physpages++;
  1165. totalram_pages++;
  1166. }
  1167. }
  1168. #ifdef CONFIG_BLK_DEV_INITRD
  1169. void free_initrd_mem(unsigned long start, unsigned long end)
  1170. {
  1171. if (start < end)
  1172. printk ("Freeing initrd memory: %ldk freed\n", (end - start) >> 10);
  1173. for (; start < end; start += PAGE_SIZE) {
  1174. struct page *p = virt_to_page(start);
  1175. ClearPageReserved(p);
  1176. set_page_count(p, 1);
  1177. __free_page(p);
  1178. num_physpages++;
  1179. totalram_pages++;
  1180. }
  1181. }
  1182. #endif
  1183. #define _PAGE_CACHE_4U (_PAGE_CP_4U | _PAGE_CV_4U)
  1184. #define _PAGE_CACHE_4V (_PAGE_CP_4V | _PAGE_CV_4V)
  1185. #define __DIRTY_BITS_4U (_PAGE_MODIFIED_4U | _PAGE_WRITE_4U | _PAGE_W_4U)
  1186. #define __DIRTY_BITS_4V (_PAGE_MODIFIED_4V | _PAGE_WRITE_4V | _PAGE_W_4V)
  1187. #define __ACCESS_BITS_4U (_PAGE_ACCESSED_4U | _PAGE_READ_4U | _PAGE_R)
  1188. #define __ACCESS_BITS_4V (_PAGE_ACCESSED_4V | _PAGE_READ_4V | _PAGE_R)
  1189. pgprot_t PAGE_KERNEL __read_mostly;
  1190. EXPORT_SYMBOL(PAGE_KERNEL);
  1191. pgprot_t PAGE_KERNEL_LOCKED __read_mostly;
  1192. pgprot_t PAGE_COPY __read_mostly;
  1193. pgprot_t PAGE_SHARED __read_mostly;
  1194. EXPORT_SYMBOL(PAGE_SHARED);
  1195. pgprot_t PAGE_EXEC __read_mostly;
  1196. unsigned long pg_iobits __read_mostly;
  1197. unsigned long _PAGE_IE __read_mostly;
  1198. unsigned long _PAGE_E __read_mostly;
  1199. EXPORT_SYMBOL(_PAGE_E);
  1200. unsigned long _PAGE_CACHE __read_mostly;
  1201. EXPORT_SYMBOL(_PAGE_CACHE);
  1202. static void prot_init_common(unsigned long page_none,
  1203. unsigned long page_shared,
  1204. unsigned long page_copy,
  1205. unsigned long page_readonly,
  1206. unsigned long page_exec_bit)
  1207. {
  1208. PAGE_COPY = __pgprot(page_copy);
  1209. PAGE_SHARED = __pgprot(page_shared);
  1210. protection_map[0x0] = __pgprot(page_none);
  1211. protection_map[0x1] = __pgprot(page_readonly & ~page_exec_bit);
  1212. protection_map[0x2] = __pgprot(page_copy & ~page_exec_bit);
  1213. protection_map[0x3] = __pgprot(page_copy & ~page_exec_bit);
  1214. protection_map[0x4] = __pgprot(page_readonly);
  1215. protection_map[0x5] = __pgprot(page_readonly);
  1216. protection_map[0x6] = __pgprot(page_copy);
  1217. protection_map[0x7] = __pgprot(page_copy);
  1218. protection_map[0x8] = __pgprot(page_none);
  1219. protection_map[0x9] = __pgprot(page_readonly & ~page_exec_bit);
  1220. protection_map[0xa] = __pgprot(page_shared & ~page_exec_bit);
  1221. protection_map[0xb] = __pgprot(page_shared & ~page_exec_bit);
  1222. protection_map[0xc] = __pgprot(page_readonly);
  1223. protection_map[0xd] = __pgprot(page_readonly);
  1224. protection_map[0xe] = __pgprot(page_shared);
  1225. protection_map[0xf] = __pgprot(page_shared);
  1226. }
  1227. static void __init sun4u_pgprot_init(void)
  1228. {
  1229. unsigned long page_none, page_shared, page_copy, page_readonly;
  1230. unsigned long page_exec_bit;
  1231. PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
  1232. _PAGE_CACHE_4U | _PAGE_P_4U |
  1233. __ACCESS_BITS_4U | __DIRTY_BITS_4U |
  1234. _PAGE_EXEC_4U);
  1235. PAGE_KERNEL_LOCKED = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
  1236. _PAGE_CACHE_4U | _PAGE_P_4U |
  1237. __ACCESS_BITS_4U | __DIRTY_BITS_4U |
  1238. _PAGE_EXEC_4U | _PAGE_L_4U);
  1239. PAGE_EXEC = __pgprot(_PAGE_EXEC_4U);
  1240. _PAGE_IE = _PAGE_IE_4U;
  1241. _PAGE_E = _PAGE_E_4U;
  1242. _PAGE_CACHE = _PAGE_CACHE_4U;
  1243. pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4U | __DIRTY_BITS_4U |
  1244. __ACCESS_BITS_4U | _PAGE_E_4U);
  1245. kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4U) ^
  1246. 0xfffff80000000000;
  1247. kern_linear_pte_xor[0] |= (_PAGE_CP_4U | _PAGE_CV_4U |
  1248. _PAGE_P_4U | _PAGE_W_4U);
  1249. /* XXX Should use 256MB on Panther. XXX */
  1250. kern_linear_pte_xor[1] = kern_linear_pte_xor[0];
  1251. _PAGE_SZBITS = _PAGE_SZBITS_4U;
  1252. _PAGE_ALL_SZ_BITS = (_PAGE_SZ4MB_4U | _PAGE_SZ512K_4U |
  1253. _PAGE_SZ64K_4U | _PAGE_SZ8K_4U |
  1254. _PAGE_SZ32MB_4U | _PAGE_SZ256MB_4U);
  1255. page_none = _PAGE_PRESENT_4U | _PAGE_ACCESSED_4U | _PAGE_CACHE_4U;
  1256. page_shared = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
  1257. __ACCESS_BITS_4U | _PAGE_WRITE_4U | _PAGE_EXEC_4U);
  1258. page_copy = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
  1259. __ACCESS_BITS_4U | _PAGE_EXEC_4U);
  1260. page_readonly = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
  1261. __ACCESS_BITS_4U | _PAGE_EXEC_4U);
  1262. page_exec_bit = _PAGE_EXEC_4U;
  1263. prot_init_common(page_none, page_shared, page_copy, page_readonly,
  1264. page_exec_bit);
  1265. }
  1266. static void __init sun4v_pgprot_init(void)
  1267. {
  1268. unsigned long page_none, page_shared, page_copy, page_readonly;
  1269. unsigned long page_exec_bit;
  1270. PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4V | _PAGE_VALID |
  1271. _PAGE_CACHE_4V | _PAGE_P_4V |
  1272. __ACCESS_BITS_4V | __DIRTY_BITS_4V |
  1273. _PAGE_EXEC_4V);
  1274. PAGE_KERNEL_LOCKED = PAGE_KERNEL;
  1275. PAGE_EXEC = __pgprot(_PAGE_EXEC_4V);
  1276. _PAGE_IE = _PAGE_IE_4V;
  1277. _PAGE_E = _PAGE_E_4V;
  1278. _PAGE_CACHE = _PAGE_CACHE_4V;
  1279. kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4V) ^
  1280. 0xfffff80000000000;
  1281. kern_linear_pte_xor[0] |= (_PAGE_CP_4V | _PAGE_CV_4V |
  1282. _PAGE_P_4V | _PAGE_W_4V);
  1283. kern_linear_pte_xor[1] = (_PAGE_VALID | _PAGE_SZ256MB_4V) ^
  1284. 0xfffff80000000000;
  1285. kern_linear_pte_xor[1] |= (_PAGE_CP_4V | _PAGE_CV_4V |
  1286. _PAGE_P_4V | _PAGE_W_4V);
  1287. pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4V | __DIRTY_BITS_4V |
  1288. __ACCESS_BITS_4V | _PAGE_E_4V);
  1289. _PAGE_SZBITS = _PAGE_SZBITS_4V;
  1290. _PAGE_ALL_SZ_BITS = (_PAGE_SZ16GB_4V | _PAGE_SZ2GB_4V |
  1291. _PAGE_SZ256MB_4V | _PAGE_SZ32MB_4V |
  1292. _PAGE_SZ4MB_4V | _PAGE_SZ512K_4V |
  1293. _PAGE_SZ64K_4V | _PAGE_SZ8K_4V);
  1294. page_none = _PAGE_PRESENT_4V | _PAGE_ACCESSED_4V | _PAGE_CACHE_4V;
  1295. page_shared = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
  1296. __ACCESS_BITS_4V | _PAGE_WRITE_4V | _PAGE_EXEC_4V);
  1297. page_copy = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
  1298. __ACCESS_BITS_4V | _PAGE_EXEC_4V);
  1299. page_readonly = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
  1300. __ACCESS_BITS_4V | _PAGE_EXEC_4V);
  1301. page_exec_bit = _PAGE_EXEC_4V;
  1302. prot_init_common(page_none, page_shared, page_copy, page_readonly,
  1303. page_exec_bit);
  1304. }
  1305. unsigned long pte_sz_bits(unsigned long sz)
  1306. {
  1307. if (tlb_type == hypervisor) {
  1308. switch (sz) {
  1309. case 8 * 1024:
  1310. default:
  1311. return _PAGE_SZ8K_4V;
  1312. case 64 * 1024:
  1313. return _PAGE_SZ64K_4V;
  1314. case 512 * 1024:
  1315. return _PAGE_SZ512K_4V;
  1316. case 4 * 1024 * 1024:
  1317. return _PAGE_SZ4MB_4V;
  1318. };
  1319. } else {
  1320. switch (sz) {
  1321. case 8 * 1024:
  1322. default:
  1323. return _PAGE_SZ8K_4U;
  1324. case 64 * 1024:
  1325. return _PAGE_SZ64K_4U;
  1326. case 512 * 1024:
  1327. return _PAGE_SZ512K_4U;
  1328. case 4 * 1024 * 1024:
  1329. return _PAGE_SZ4MB_4U;
  1330. };
  1331. }
  1332. }
  1333. pte_t mk_pte_io(unsigned long page, pgprot_t prot, int space, unsigned long page_size)
  1334. {
  1335. pte_t pte;
  1336. pte_val(pte) = page | pgprot_val(pgprot_noncached(prot));
  1337. pte_val(pte) |= (((unsigned long)space) << 32);
  1338. pte_val(pte) |= pte_sz_bits(page_size);
  1339. return pte;
  1340. }
  1341. static unsigned long kern_large_tte(unsigned long paddr)
  1342. {
  1343. unsigned long val;
  1344. val = (_PAGE_VALID | _PAGE_SZ4MB_4U |
  1345. _PAGE_CP_4U | _PAGE_CV_4U | _PAGE_P_4U |
  1346. _PAGE_EXEC_4U | _PAGE_L_4U | _PAGE_W_4U);
  1347. if (tlb_type == hypervisor)
  1348. val = (_PAGE_VALID | _PAGE_SZ4MB_4V |
  1349. _PAGE_CP_4V | _PAGE_CV_4V | _PAGE_P_4V |
  1350. _PAGE_EXEC_4V | _PAGE_W_4V);
  1351. return val | paddr;
  1352. }
  1353. /*
  1354. * Translate PROM's mapping we capture at boot time into physical address.
  1355. * The second parameter is only set from prom_callback() invocations.
  1356. */
  1357. unsigned long prom_virt_to_phys(unsigned long promva, int *error)
  1358. {
  1359. unsigned long mask;
  1360. int i;
  1361. mask = _PAGE_PADDR_4U;
  1362. if (tlb_type == hypervisor)
  1363. mask = _PAGE_PADDR_4V;
  1364. for (i = 0; i < prom_trans_ents; i++) {
  1365. struct linux_prom_translation *p = &prom_trans[i];
  1366. if (promva >= p->virt &&
  1367. promva < (p->virt + p->size)) {
  1368. unsigned long base = p->data & mask;
  1369. if (error)
  1370. *error = 0;
  1371. return base + (promva & (8192 - 1));
  1372. }
  1373. }
  1374. if (error)
  1375. *error = 1;
  1376. return 0UL;
  1377. }
  1378. /* XXX We should kill off this ugly thing at so me point. XXX */
  1379. unsigned long sun4u_get_pte(unsigned long addr)
  1380. {
  1381. pgd_t *pgdp;
  1382. pud_t *pudp;
  1383. pmd_t *pmdp;
  1384. pte_t *ptep;
  1385. unsigned long mask = _PAGE_PADDR_4U;
  1386. if (tlb_type == hypervisor)
  1387. mask = _PAGE_PADDR_4V;
  1388. if (addr >= PAGE_OFFSET)
  1389. return addr & mask;
  1390. if ((addr >= LOW_OBP_ADDRESS) && (addr < HI_OBP_ADDRESS))
  1391. return prom_virt_to_phys(addr, NULL);
  1392. pgdp = pgd_offset_k(addr);
  1393. pudp = pud_offset(pgdp, addr);
  1394. pmdp = pmd_offset(pudp, addr);
  1395. ptep = pte_offset_kernel(pmdp, addr);
  1396. return pte_val(*ptep) & mask;
  1397. }
  1398. /* If not locked, zap it. */
  1399. void __flush_tlb_all(void)
  1400. {
  1401. unsigned long pstate;
  1402. int i;
  1403. __asm__ __volatile__("flushw\n\t"
  1404. "rdpr %%pstate, %0\n\t"
  1405. "wrpr %0, %1, %%pstate"
  1406. : "=r" (pstate)
  1407. : "i" (PSTATE_IE));
  1408. if (tlb_type == spitfire) {
  1409. for (i = 0; i < 64; i++) {
  1410. /* Spitfire Errata #32 workaround */
  1411. /* NOTE: Always runs on spitfire, so no
  1412. * cheetah+ page size encodings.
  1413. */
  1414. __asm__ __volatile__("stxa %0, [%1] %2\n\t"
  1415. "flush %%g6"
  1416. : /* No outputs */
  1417. : "r" (0),
  1418. "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
  1419. if (!(spitfire_get_dtlb_data(i) & _PAGE_L_4U)) {
  1420. __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
  1421. "membar #Sync"
  1422. : /* no outputs */
  1423. : "r" (TLB_TAG_ACCESS), "i" (ASI_DMMU));
  1424. spitfire_put_dtlb_data(i, 0x0UL);
  1425. }
  1426. /* Spitfire Errata #32 workaround */
  1427. /* NOTE: Always runs on spitfire, so no
  1428. * cheetah+ page size encodings.
  1429. */
  1430. __asm__ __volatile__("stxa %0, [%1] %2\n\t"
  1431. "flush %%g6"
  1432. : /* No outputs */
  1433. : "r" (0),
  1434. "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
  1435. if (!(spitfire_get_itlb_data(i) & _PAGE_L_4U)) {
  1436. __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
  1437. "membar #Sync"
  1438. : /* no outputs */
  1439. : "r" (TLB_TAG_ACCESS), "i" (ASI_IMMU));
  1440. spitfire_put_itlb_data(i, 0x0UL);
  1441. }
  1442. }
  1443. } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
  1444. cheetah_flush_dtlb_all();
  1445. cheetah_flush_itlb_all();
  1446. }
  1447. __asm__ __volatile__("wrpr %0, 0, %%pstate"
  1448. : : "r" (pstate));
  1449. }