mac-fcc.c 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579
  1. /*
  2. * FCC driver for Motorola MPC82xx (PQ2).
  3. *
  4. * Copyright (c) 2003 Intracom S.A.
  5. * by Pantelis Antoniou <panto@intracom.gr>
  6. *
  7. * 2005 (c) MontaVista Software, Inc.
  8. * Vitaly Bordug <vbordug@ru.mvista.com>
  9. *
  10. * This file is licensed under the terms of the GNU General Public License
  11. * version 2. This program is licensed "as is" without any warranty of any
  12. * kind, whether express or implied.
  13. */
  14. #include <linux/config.h>
  15. #include <linux/module.h>
  16. #include <linux/kernel.h>
  17. #include <linux/types.h>
  18. #include <linux/sched.h>
  19. #include <linux/string.h>
  20. #include <linux/ptrace.h>
  21. #include <linux/errno.h>
  22. #include <linux/ioport.h>
  23. #include <linux/slab.h>
  24. #include <linux/interrupt.h>
  25. #include <linux/pci.h>
  26. #include <linux/init.h>
  27. #include <linux/delay.h>
  28. #include <linux/netdevice.h>
  29. #include <linux/etherdevice.h>
  30. #include <linux/skbuff.h>
  31. #include <linux/spinlock.h>
  32. #include <linux/mii.h>
  33. #include <linux/ethtool.h>
  34. #include <linux/bitops.h>
  35. #include <linux/fs.h>
  36. #include <linux/platform_device.h>
  37. #include <asm/immap_cpm2.h>
  38. #include <asm/mpc8260.h>
  39. #include <asm/cpm2.h>
  40. #include <asm/pgtable.h>
  41. #include <asm/irq.h>
  42. #include <asm/uaccess.h>
  43. #include "fs_enet.h"
  44. /*************************************************/
  45. /* FCC access macros */
  46. #define __fcc_out32(addr, x) out_be32((unsigned *)addr, x)
  47. #define __fcc_out16(addr, x) out_be16((unsigned short *)addr, x)
  48. #define __fcc_out8(addr, x) out_8((unsigned char *)addr, x)
  49. #define __fcc_in32(addr) in_be32((unsigned *)addr)
  50. #define __fcc_in16(addr) in_be16((unsigned short *)addr)
  51. #define __fcc_in8(addr) in_8((unsigned char *)addr)
  52. /* parameter space */
  53. /* write, read, set bits, clear bits */
  54. #define W32(_p, _m, _v) __fcc_out32(&(_p)->_m, (_v))
  55. #define R32(_p, _m) __fcc_in32(&(_p)->_m)
  56. #define S32(_p, _m, _v) W32(_p, _m, R32(_p, _m) | (_v))
  57. #define C32(_p, _m, _v) W32(_p, _m, R32(_p, _m) & ~(_v))
  58. #define W16(_p, _m, _v) __fcc_out16(&(_p)->_m, (_v))
  59. #define R16(_p, _m) __fcc_in16(&(_p)->_m)
  60. #define S16(_p, _m, _v) W16(_p, _m, R16(_p, _m) | (_v))
  61. #define C16(_p, _m, _v) W16(_p, _m, R16(_p, _m) & ~(_v))
  62. #define W8(_p, _m, _v) __fcc_out8(&(_p)->_m, (_v))
  63. #define R8(_p, _m) __fcc_in8(&(_p)->_m)
  64. #define S8(_p, _m, _v) W8(_p, _m, R8(_p, _m) | (_v))
  65. #define C8(_p, _m, _v) W8(_p, _m, R8(_p, _m) & ~(_v))
  66. /*************************************************/
  67. #define FCC_MAX_MULTICAST_ADDRS 64
  68. #define mk_mii_read(REG) (0x60020000 | ((REG & 0x1f) << 18))
  69. #define mk_mii_write(REG, VAL) (0x50020000 | ((REG & 0x1f) << 18) | (VAL & 0xffff))
  70. #define mk_mii_end 0
  71. #define MAX_CR_CMD_LOOPS 10000
  72. static inline int fcc_cr_cmd(struct fs_enet_private *fep, u32 mcn, u32 op)
  73. {
  74. const struct fs_platform_info *fpi = fep->fpi;
  75. cpm2_map_t *immap = fs_enet_immap;
  76. cpm_cpm2_t *cpmp = &immap->im_cpm;
  77. u32 v;
  78. int i;
  79. /* Currently I don't know what feature call will look like. But
  80. I guess there'd be something like do_cpm_cmd() which will require page & sblock */
  81. v = mk_cr_cmd(fpi->cp_page, fpi->cp_block, mcn, op);
  82. W32(cpmp, cp_cpcr, v | CPM_CR_FLG);
  83. for (i = 0; i < MAX_CR_CMD_LOOPS; i++)
  84. if ((R32(cpmp, cp_cpcr) & CPM_CR_FLG) == 0)
  85. break;
  86. if (i >= MAX_CR_CMD_LOOPS) {
  87. printk(KERN_ERR "%s(): Not able to issue CPM command\n",
  88. __FUNCTION__);
  89. return 1;
  90. }
  91. return 0;
  92. }
  93. static int do_pd_setup(struct fs_enet_private *fep)
  94. {
  95. struct platform_device *pdev = to_platform_device(fep->dev);
  96. struct resource *r;
  97. /* Fill out IRQ field */
  98. fep->interrupt = platform_get_irq(pdev, 0);
  99. /* Attach the memory for the FCC Parameter RAM */
  100. r = platform_get_resource_byname(pdev, IORESOURCE_MEM, "fcc_pram");
  101. fep->fcc.ep = (void *)r->start;
  102. if (fep->fcc.ep == NULL)
  103. return -EINVAL;
  104. r = platform_get_resource_byname(pdev, IORESOURCE_MEM, "fcc_regs");
  105. fep->fcc.fccp = (void *)r->start;
  106. if (fep->fcc.fccp == NULL)
  107. return -EINVAL;
  108. fep->fcc.fcccp = (void *)fep->fpi->fcc_regs_c;
  109. if (fep->fcc.fcccp == NULL)
  110. return -EINVAL;
  111. return 0;
  112. }
  113. #define FCC_NAPI_RX_EVENT_MSK (FCC_ENET_RXF | FCC_ENET_RXB)
  114. #define FCC_RX_EVENT (FCC_ENET_RXF)
  115. #define FCC_TX_EVENT (FCC_ENET_TXB)
  116. #define FCC_ERR_EVENT_MSK (FCC_ENET_TXE | FCC_ENET_BSY)
  117. static int setup_data(struct net_device *dev)
  118. {
  119. struct fs_enet_private *fep = netdev_priv(dev);
  120. const struct fs_platform_info *fpi = fep->fpi;
  121. fep->fcc.idx = fs_get_fcc_index(fpi->fs_no);
  122. if ((unsigned int)fep->fcc.idx >= 3) /* max 3 FCCs */
  123. return -EINVAL;
  124. fep->fcc.mem = (void *)fpi->mem_offset;
  125. if (do_pd_setup(fep) != 0)
  126. return -EINVAL;
  127. fep->ev_napi_rx = FCC_NAPI_RX_EVENT_MSK;
  128. fep->ev_rx = FCC_RX_EVENT;
  129. fep->ev_tx = FCC_TX_EVENT;
  130. fep->ev_err = FCC_ERR_EVENT_MSK;
  131. return 0;
  132. }
  133. static int allocate_bd(struct net_device *dev)
  134. {
  135. struct fs_enet_private *fep = netdev_priv(dev);
  136. const struct fs_platform_info *fpi = fep->fpi;
  137. fep->ring_base = dma_alloc_coherent(fep->dev,
  138. (fpi->tx_ring + fpi->rx_ring) *
  139. sizeof(cbd_t), &fep->ring_mem_addr,
  140. GFP_KERNEL);
  141. if (fep->ring_base == NULL)
  142. return -ENOMEM;
  143. return 0;
  144. }
  145. static void free_bd(struct net_device *dev)
  146. {
  147. struct fs_enet_private *fep = netdev_priv(dev);
  148. const struct fs_platform_info *fpi = fep->fpi;
  149. if (fep->ring_base)
  150. dma_free_coherent(fep->dev,
  151. (fpi->tx_ring + fpi->rx_ring) * sizeof(cbd_t),
  152. fep->ring_base, fep->ring_mem_addr);
  153. }
  154. static void cleanup_data(struct net_device *dev)
  155. {
  156. /* nothing */
  157. }
  158. static void set_promiscuous_mode(struct net_device *dev)
  159. {
  160. struct fs_enet_private *fep = netdev_priv(dev);
  161. fcc_t *fccp = fep->fcc.fccp;
  162. S32(fccp, fcc_fpsmr, FCC_PSMR_PRO);
  163. }
  164. static void set_multicast_start(struct net_device *dev)
  165. {
  166. struct fs_enet_private *fep = netdev_priv(dev);
  167. fcc_enet_t *ep = fep->fcc.ep;
  168. W32(ep, fen_gaddrh, 0);
  169. W32(ep, fen_gaddrl, 0);
  170. }
  171. static void set_multicast_one(struct net_device *dev, const u8 *mac)
  172. {
  173. struct fs_enet_private *fep = netdev_priv(dev);
  174. fcc_enet_t *ep = fep->fcc.ep;
  175. u16 taddrh, taddrm, taddrl;
  176. taddrh = ((u16)mac[5] << 8) | mac[4];
  177. taddrm = ((u16)mac[3] << 8) | mac[2];
  178. taddrl = ((u16)mac[1] << 8) | mac[0];
  179. W16(ep, fen_taddrh, taddrh);
  180. W16(ep, fen_taddrm, taddrm);
  181. W16(ep, fen_taddrl, taddrl);
  182. fcc_cr_cmd(fep, 0x0C, CPM_CR_SET_GADDR);
  183. }
  184. static void set_multicast_finish(struct net_device *dev)
  185. {
  186. struct fs_enet_private *fep = netdev_priv(dev);
  187. fcc_t *fccp = fep->fcc.fccp;
  188. fcc_enet_t *ep = fep->fcc.ep;
  189. /* clear promiscuous always */
  190. C32(fccp, fcc_fpsmr, FCC_PSMR_PRO);
  191. /* if all multi or too many multicasts; just enable all */
  192. if ((dev->flags & IFF_ALLMULTI) != 0 ||
  193. dev->mc_count > FCC_MAX_MULTICAST_ADDRS) {
  194. W32(ep, fen_gaddrh, 0xffffffff);
  195. W32(ep, fen_gaddrl, 0xffffffff);
  196. }
  197. /* read back */
  198. fep->fcc.gaddrh = R32(ep, fen_gaddrh);
  199. fep->fcc.gaddrl = R32(ep, fen_gaddrl);
  200. }
  201. static void set_multicast_list(struct net_device *dev)
  202. {
  203. struct dev_mc_list *pmc;
  204. if ((dev->flags & IFF_PROMISC) == 0) {
  205. set_multicast_start(dev);
  206. for (pmc = dev->mc_list; pmc != NULL; pmc = pmc->next)
  207. set_multicast_one(dev, pmc->dmi_addr);
  208. set_multicast_finish(dev);
  209. } else
  210. set_promiscuous_mode(dev);
  211. }
  212. static void restart(struct net_device *dev)
  213. {
  214. struct fs_enet_private *fep = netdev_priv(dev);
  215. const struct fs_platform_info *fpi = fep->fpi;
  216. fcc_t *fccp = fep->fcc.fccp;
  217. fcc_c_t *fcccp = fep->fcc.fcccp;
  218. fcc_enet_t *ep = fep->fcc.ep;
  219. dma_addr_t rx_bd_base_phys, tx_bd_base_phys;
  220. u16 paddrh, paddrm, paddrl;
  221. u16 mem_addr;
  222. const unsigned char *mac;
  223. int i;
  224. C32(fccp, fcc_gfmr, FCC_GFMR_ENR | FCC_GFMR_ENT);
  225. /* clear everything (slow & steady does it) */
  226. for (i = 0; i < sizeof(*ep); i++)
  227. __fcc_out8((char *)ep + i, 0);
  228. /* get physical address */
  229. rx_bd_base_phys = fep->ring_mem_addr;
  230. tx_bd_base_phys = rx_bd_base_phys + sizeof(cbd_t) * fpi->rx_ring;
  231. /* point to bds */
  232. W32(ep, fen_genfcc.fcc_rbase, rx_bd_base_phys);
  233. W32(ep, fen_genfcc.fcc_tbase, tx_bd_base_phys);
  234. /* Set maximum bytes per receive buffer.
  235. * It must be a multiple of 32.
  236. */
  237. W16(ep, fen_genfcc.fcc_mrblr, PKT_MAXBLR_SIZE);
  238. W32(ep, fen_genfcc.fcc_rstate, (CPMFCR_GBL | CPMFCR_EB) << 24);
  239. W32(ep, fen_genfcc.fcc_tstate, (CPMFCR_GBL | CPMFCR_EB) << 24);
  240. /* Allocate space in the reserved FCC area of DPRAM for the
  241. * internal buffers. No one uses this space (yet), so we
  242. * can do this. Later, we will add resource management for
  243. * this area.
  244. */
  245. mem_addr = (u32) fep->fcc.mem; /* de-fixup dpram offset */
  246. W16(ep, fen_genfcc.fcc_riptr, (mem_addr & 0xffff));
  247. W16(ep, fen_genfcc.fcc_tiptr, ((mem_addr + 32) & 0xffff));
  248. W16(ep, fen_padptr, mem_addr + 64);
  249. /* fill with special symbol... */
  250. memset(fep->fcc.mem + fpi->dpram_offset + 64, 0x88, 32);
  251. W32(ep, fen_genfcc.fcc_rbptr, 0);
  252. W32(ep, fen_genfcc.fcc_tbptr, 0);
  253. W32(ep, fen_genfcc.fcc_rcrc, 0);
  254. W32(ep, fen_genfcc.fcc_tcrc, 0);
  255. W16(ep, fen_genfcc.fcc_res1, 0);
  256. W32(ep, fen_genfcc.fcc_res2, 0);
  257. /* no CAM */
  258. W32(ep, fen_camptr, 0);
  259. /* Set CRC preset and mask */
  260. W32(ep, fen_cmask, 0xdebb20e3);
  261. W32(ep, fen_cpres, 0xffffffff);
  262. W32(ep, fen_crcec, 0); /* CRC Error counter */
  263. W32(ep, fen_alec, 0); /* alignment error counter */
  264. W32(ep, fen_disfc, 0); /* discard frame counter */
  265. W16(ep, fen_retlim, 15); /* Retry limit threshold */
  266. W16(ep, fen_pper, 0); /* Normal persistence */
  267. /* set group address */
  268. W32(ep, fen_gaddrh, fep->fcc.gaddrh);
  269. W32(ep, fen_gaddrl, fep->fcc.gaddrh);
  270. /* Clear hash filter tables */
  271. W32(ep, fen_iaddrh, 0);
  272. W32(ep, fen_iaddrl, 0);
  273. /* Clear the Out-of-sequence TxBD */
  274. W16(ep, fen_tfcstat, 0);
  275. W16(ep, fen_tfclen, 0);
  276. W32(ep, fen_tfcptr, 0);
  277. W16(ep, fen_mflr, PKT_MAXBUF_SIZE); /* maximum frame length register */
  278. W16(ep, fen_minflr, PKT_MINBUF_SIZE); /* minimum frame length register */
  279. /* set address */
  280. mac = dev->dev_addr;
  281. paddrh = ((u16)mac[5] << 8) | mac[4];
  282. paddrm = ((u16)mac[3] << 8) | mac[2];
  283. paddrl = ((u16)mac[1] << 8) | mac[0];
  284. W16(ep, fen_paddrh, paddrh);
  285. W16(ep, fen_paddrm, paddrm);
  286. W16(ep, fen_paddrl, paddrl);
  287. W16(ep, fen_taddrh, 0);
  288. W16(ep, fen_taddrm, 0);
  289. W16(ep, fen_taddrl, 0);
  290. W16(ep, fen_maxd1, 1520); /* maximum DMA1 length */
  291. W16(ep, fen_maxd2, 1520); /* maximum DMA2 length */
  292. /* Clear stat counters, in case we ever enable RMON */
  293. W32(ep, fen_octc, 0);
  294. W32(ep, fen_colc, 0);
  295. W32(ep, fen_broc, 0);
  296. W32(ep, fen_mulc, 0);
  297. W32(ep, fen_uspc, 0);
  298. W32(ep, fen_frgc, 0);
  299. W32(ep, fen_ospc, 0);
  300. W32(ep, fen_jbrc, 0);
  301. W32(ep, fen_p64c, 0);
  302. W32(ep, fen_p65c, 0);
  303. W32(ep, fen_p128c, 0);
  304. W32(ep, fen_p256c, 0);
  305. W32(ep, fen_p512c, 0);
  306. W32(ep, fen_p1024c, 0);
  307. W16(ep, fen_rfthr, 0); /* Suggested by manual */
  308. W16(ep, fen_rfcnt, 0);
  309. W16(ep, fen_cftype, 0);
  310. fs_init_bds(dev);
  311. /* adjust to speed (for RMII mode) */
  312. if (fpi->use_rmii) {
  313. if (fep->speed == 100)
  314. C8(fcccp, fcc_gfemr, 0x20);
  315. else
  316. S8(fcccp, fcc_gfemr, 0x20);
  317. }
  318. fcc_cr_cmd(fep, 0x0c, CPM_CR_INIT_TRX);
  319. /* clear events */
  320. W16(fccp, fcc_fcce, 0xffff);
  321. /* Enable interrupts we wish to service */
  322. W16(fccp, fcc_fccm, FCC_ENET_TXE | FCC_ENET_RXF | FCC_ENET_TXB);
  323. /* Set GFMR to enable Ethernet operating mode */
  324. W32(fccp, fcc_gfmr, FCC_GFMR_TCI | FCC_GFMR_MODE_ENET);
  325. /* set sync/delimiters */
  326. W16(fccp, fcc_fdsr, 0xd555);
  327. W32(fccp, fcc_fpsmr, FCC_PSMR_ENCRC);
  328. if (fpi->use_rmii)
  329. S32(fccp, fcc_fpsmr, FCC_PSMR_RMII);
  330. /* adjust to duplex mode */
  331. if (fep->duplex)
  332. S32(fccp, fcc_fpsmr, FCC_PSMR_FDE | FCC_PSMR_LPB);
  333. else
  334. C32(fccp, fcc_fpsmr, FCC_PSMR_FDE | FCC_PSMR_LPB);
  335. S32(fccp, fcc_gfmr, FCC_GFMR_ENR | FCC_GFMR_ENT);
  336. }
  337. static void stop(struct net_device *dev)
  338. {
  339. struct fs_enet_private *fep = netdev_priv(dev);
  340. fcc_t *fccp = fep->fcc.fccp;
  341. /* stop ethernet */
  342. C32(fccp, fcc_gfmr, FCC_GFMR_ENR | FCC_GFMR_ENT);
  343. /* clear events */
  344. W16(fccp, fcc_fcce, 0xffff);
  345. /* clear interrupt mask */
  346. W16(fccp, fcc_fccm, 0);
  347. fs_cleanup_bds(dev);
  348. }
  349. static void pre_request_irq(struct net_device *dev, int irq)
  350. {
  351. /* nothing */
  352. }
  353. static void post_free_irq(struct net_device *dev, int irq)
  354. {
  355. /* nothing */
  356. }
  357. static void napi_clear_rx_event(struct net_device *dev)
  358. {
  359. struct fs_enet_private *fep = netdev_priv(dev);
  360. fcc_t *fccp = fep->fcc.fccp;
  361. W16(fccp, fcc_fcce, FCC_NAPI_RX_EVENT_MSK);
  362. }
  363. static void napi_enable_rx(struct net_device *dev)
  364. {
  365. struct fs_enet_private *fep = netdev_priv(dev);
  366. fcc_t *fccp = fep->fcc.fccp;
  367. S16(fccp, fcc_fccm, FCC_NAPI_RX_EVENT_MSK);
  368. }
  369. static void napi_disable_rx(struct net_device *dev)
  370. {
  371. struct fs_enet_private *fep = netdev_priv(dev);
  372. fcc_t *fccp = fep->fcc.fccp;
  373. C16(fccp, fcc_fccm, FCC_NAPI_RX_EVENT_MSK);
  374. }
  375. static void rx_bd_done(struct net_device *dev)
  376. {
  377. /* nothing */
  378. }
  379. static void tx_kickstart(struct net_device *dev)
  380. {
  381. /* nothing */
  382. }
  383. static u32 get_int_events(struct net_device *dev)
  384. {
  385. struct fs_enet_private *fep = netdev_priv(dev);
  386. fcc_t *fccp = fep->fcc.fccp;
  387. return (u32)R16(fccp, fcc_fcce);
  388. }
  389. static void clear_int_events(struct net_device *dev, u32 int_events)
  390. {
  391. struct fs_enet_private *fep = netdev_priv(dev);
  392. fcc_t *fccp = fep->fcc.fccp;
  393. W16(fccp, fcc_fcce, int_events & 0xffff);
  394. }
  395. static void ev_error(struct net_device *dev, u32 int_events)
  396. {
  397. printk(KERN_WARNING DRV_MODULE_NAME
  398. ": %s FS_ENET ERROR(s) 0x%x\n", dev->name, int_events);
  399. }
  400. int get_regs(struct net_device *dev, void *p, int *sizep)
  401. {
  402. struct fs_enet_private *fep = netdev_priv(dev);
  403. if (*sizep < sizeof(fcc_t) + sizeof(fcc_c_t) + sizeof(fcc_enet_t))
  404. return -EINVAL;
  405. memcpy_fromio(p, fep->fcc.fccp, sizeof(fcc_t));
  406. p = (char *)p + sizeof(fcc_t);
  407. memcpy_fromio(p, fep->fcc.fcccp, sizeof(fcc_c_t));
  408. p = (char *)p + sizeof(fcc_c_t);
  409. memcpy_fromio(p, fep->fcc.ep, sizeof(fcc_enet_t));
  410. return 0;
  411. }
  412. int get_regs_len(struct net_device *dev)
  413. {
  414. return sizeof(fcc_t) + sizeof(fcc_c_t) + sizeof(fcc_enet_t);
  415. }
  416. /* Some transmit errors cause the transmitter to shut
  417. * down. We now issue a restart transmit. Since the
  418. * errors close the BD and update the pointers, the restart
  419. * _should_ pick up without having to reset any of our
  420. * pointers either. Also, To workaround 8260 device erratum
  421. * CPM37, we must disable and then re-enable the transmitter
  422. * following a Late Collision, Underrun, or Retry Limit error.
  423. */
  424. void tx_restart(struct net_device *dev)
  425. {
  426. struct fs_enet_private *fep = netdev_priv(dev);
  427. fcc_t *fccp = fep->fcc.fccp;
  428. C32(fccp, fcc_gfmr, FCC_GFMR_ENT);
  429. udelay(10);
  430. S32(fccp, fcc_gfmr, FCC_GFMR_ENT);
  431. fcc_cr_cmd(fep, 0x0C, CPM_CR_RESTART_TX);
  432. }
  433. /*************************************************************************/
  434. const struct fs_ops fs_fcc_ops = {
  435. .setup_data = setup_data,
  436. .cleanup_data = cleanup_data,
  437. .set_multicast_list = set_multicast_list,
  438. .restart = restart,
  439. .stop = stop,
  440. .pre_request_irq = pre_request_irq,
  441. .post_free_irq = post_free_irq,
  442. .napi_clear_rx_event = napi_clear_rx_event,
  443. .napi_enable_rx = napi_enable_rx,
  444. .napi_disable_rx = napi_disable_rx,
  445. .rx_bd_done = rx_bd_done,
  446. .tx_kickstart = tx_kickstart,
  447. .get_int_events = get_int_events,
  448. .clear_int_events = clear_int_events,
  449. .ev_error = ev_error,
  450. .get_regs = get_regs,
  451. .get_regs_len = get_regs_len,
  452. .tx_restart = tx_restart,
  453. .allocate_bd = allocate_bd,
  454. .free_bd = free_bd,
  455. };