fs_enet-main.c 28 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230
  1. /*
  2. * Combined Ethernet driver for Motorola MPC8xx and MPC82xx.
  3. *
  4. * Copyright (c) 2003 Intracom S.A.
  5. * by Pantelis Antoniou <panto@intracom.gr>
  6. *
  7. * 2005 (c) MontaVista Software, Inc.
  8. * Vitaly Bordug <vbordug@ru.mvista.com>
  9. *
  10. * Heavily based on original FEC driver by Dan Malek <dan@embeddededge.com>
  11. * and modifications by Joakim Tjernlund <joakim.tjernlund@lumentis.se>
  12. *
  13. * This file is licensed under the terms of the GNU General Public License
  14. * version 2. This program is licensed "as is" without any warranty of any
  15. * kind, whether express or implied.
  16. */
  17. #include <linux/config.h>
  18. #include <linux/module.h>
  19. #include <linux/kernel.h>
  20. #include <linux/types.h>
  21. #include <linux/sched.h>
  22. #include <linux/string.h>
  23. #include <linux/ptrace.h>
  24. #include <linux/errno.h>
  25. #include <linux/ioport.h>
  26. #include <linux/slab.h>
  27. #include <linux/interrupt.h>
  28. #include <linux/pci.h>
  29. #include <linux/init.h>
  30. #include <linux/delay.h>
  31. #include <linux/netdevice.h>
  32. #include <linux/etherdevice.h>
  33. #include <linux/skbuff.h>
  34. #include <linux/spinlock.h>
  35. #include <linux/mii.h>
  36. #include <linux/ethtool.h>
  37. #include <linux/bitops.h>
  38. #include <linux/fs.h>
  39. #include <linux/platform_device.h>
  40. #include <linux/vmalloc.h>
  41. #include <asm/pgtable.h>
  42. #include <asm/pgtable.h>
  43. #include <asm/irq.h>
  44. #include <asm/uaccess.h>
  45. #include "fs_enet.h"
  46. /*************************************************/
  47. static char version[] __devinitdata =
  48. DRV_MODULE_NAME ".c:v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")" "\n";
  49. MODULE_AUTHOR("Pantelis Antoniou <panto@intracom.gr>");
  50. MODULE_DESCRIPTION("Freescale Ethernet Driver");
  51. MODULE_LICENSE("GPL");
  52. MODULE_VERSION(DRV_MODULE_VERSION);
  53. MODULE_PARM(fs_enet_debug, "i");
  54. MODULE_PARM_DESC(fs_enet_debug,
  55. "Freescale bitmapped debugging message enable value");
  56. int fs_enet_debug = -1; /* -1 == use FS_ENET_DEF_MSG_ENABLE as value */
  57. static void fs_set_multicast_list(struct net_device *dev)
  58. {
  59. struct fs_enet_private *fep = netdev_priv(dev);
  60. (*fep->ops->set_multicast_list)(dev);
  61. }
  62. /* NAPI receive function */
  63. static int fs_enet_rx_napi(struct net_device *dev, int *budget)
  64. {
  65. struct fs_enet_private *fep = netdev_priv(dev);
  66. const struct fs_platform_info *fpi = fep->fpi;
  67. cbd_t *bdp;
  68. struct sk_buff *skb, *skbn, *skbt;
  69. int received = 0;
  70. u16 pkt_len, sc;
  71. int curidx;
  72. int rx_work_limit = 0; /* pacify gcc */
  73. rx_work_limit = min(dev->quota, *budget);
  74. if (!netif_running(dev))
  75. return 0;
  76. /*
  77. * First, grab all of the stats for the incoming packet.
  78. * These get messed up if we get called due to a busy condition.
  79. */
  80. bdp = fep->cur_rx;
  81. /* clear RX status bits for napi*/
  82. (*fep->ops->napi_clear_rx_event)(dev);
  83. while (((sc = CBDR_SC(bdp)) & BD_ENET_RX_EMPTY) == 0) {
  84. curidx = bdp - fep->rx_bd_base;
  85. /*
  86. * Since we have allocated space to hold a complete frame,
  87. * the last indicator should be set.
  88. */
  89. if ((sc & BD_ENET_RX_LAST) == 0)
  90. printk(KERN_WARNING DRV_MODULE_NAME
  91. ": %s rcv is not +last\n",
  92. dev->name);
  93. /*
  94. * Check for errors.
  95. */
  96. if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_CL |
  97. BD_ENET_RX_NO | BD_ENET_RX_CR | BD_ENET_RX_OV)) {
  98. fep->stats.rx_errors++;
  99. /* Frame too long or too short. */
  100. if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH))
  101. fep->stats.rx_length_errors++;
  102. /* Frame alignment */
  103. if (sc & (BD_ENET_RX_NO | BD_ENET_RX_CL))
  104. fep->stats.rx_frame_errors++;
  105. /* CRC Error */
  106. if (sc & BD_ENET_RX_CR)
  107. fep->stats.rx_crc_errors++;
  108. /* FIFO overrun */
  109. if (sc & BD_ENET_RX_OV)
  110. fep->stats.rx_crc_errors++;
  111. skb = fep->rx_skbuff[curidx];
  112. dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
  113. L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
  114. DMA_FROM_DEVICE);
  115. skbn = skb;
  116. } else {
  117. /* napi, got packet but no quota */
  118. if (--rx_work_limit < 0)
  119. break;
  120. skb = fep->rx_skbuff[curidx];
  121. dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
  122. L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
  123. DMA_FROM_DEVICE);
  124. /*
  125. * Process the incoming frame.
  126. */
  127. fep->stats.rx_packets++;
  128. pkt_len = CBDR_DATLEN(bdp) - 4; /* remove CRC */
  129. fep->stats.rx_bytes += pkt_len + 4;
  130. if (pkt_len <= fpi->rx_copybreak) {
  131. /* +2 to make IP header L1 cache aligned */
  132. skbn = dev_alloc_skb(pkt_len + 2);
  133. if (skbn != NULL) {
  134. skb_reserve(skbn, 2); /* align IP header */
  135. memcpy(skbn->data, skb->data, pkt_len);
  136. /* swap */
  137. skbt = skb;
  138. skb = skbn;
  139. skbn = skbt;
  140. }
  141. } else
  142. skbn = dev_alloc_skb(ENET_RX_FRSIZE);
  143. if (skbn != NULL) {
  144. skb->dev = dev;
  145. skb_put(skb, pkt_len); /* Make room */
  146. skb->protocol = eth_type_trans(skb, dev);
  147. received++;
  148. netif_receive_skb(skb);
  149. } else {
  150. printk(KERN_WARNING DRV_MODULE_NAME
  151. ": %s Memory squeeze, dropping packet.\n",
  152. dev->name);
  153. fep->stats.rx_dropped++;
  154. skbn = skb;
  155. }
  156. }
  157. fep->rx_skbuff[curidx] = skbn;
  158. CBDW_BUFADDR(bdp, dma_map_single(fep->dev, skbn->data,
  159. L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
  160. DMA_FROM_DEVICE));
  161. CBDW_DATLEN(bdp, 0);
  162. CBDW_SC(bdp, (sc & ~BD_ENET_RX_STATS) | BD_ENET_RX_EMPTY);
  163. /*
  164. * Update BD pointer to next entry.
  165. */
  166. if ((sc & BD_ENET_RX_WRAP) == 0)
  167. bdp++;
  168. else
  169. bdp = fep->rx_bd_base;
  170. (*fep->ops->rx_bd_done)(dev);
  171. }
  172. fep->cur_rx = bdp;
  173. dev->quota -= received;
  174. *budget -= received;
  175. if (rx_work_limit < 0)
  176. return 1; /* not done */
  177. /* done */
  178. netif_rx_complete(dev);
  179. (*fep->ops->napi_enable_rx)(dev);
  180. return 0;
  181. }
  182. /* non NAPI receive function */
  183. static int fs_enet_rx_non_napi(struct net_device *dev)
  184. {
  185. struct fs_enet_private *fep = netdev_priv(dev);
  186. const struct fs_platform_info *fpi = fep->fpi;
  187. cbd_t *bdp;
  188. struct sk_buff *skb, *skbn, *skbt;
  189. int received = 0;
  190. u16 pkt_len, sc;
  191. int curidx;
  192. /*
  193. * First, grab all of the stats for the incoming packet.
  194. * These get messed up if we get called due to a busy condition.
  195. */
  196. bdp = fep->cur_rx;
  197. while (((sc = CBDR_SC(bdp)) & BD_ENET_RX_EMPTY) == 0) {
  198. curidx = bdp - fep->rx_bd_base;
  199. /*
  200. * Since we have allocated space to hold a complete frame,
  201. * the last indicator should be set.
  202. */
  203. if ((sc & BD_ENET_RX_LAST) == 0)
  204. printk(KERN_WARNING DRV_MODULE_NAME
  205. ": %s rcv is not +last\n",
  206. dev->name);
  207. /*
  208. * Check for errors.
  209. */
  210. if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_CL |
  211. BD_ENET_RX_NO | BD_ENET_RX_CR | BD_ENET_RX_OV)) {
  212. fep->stats.rx_errors++;
  213. /* Frame too long or too short. */
  214. if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH))
  215. fep->stats.rx_length_errors++;
  216. /* Frame alignment */
  217. if (sc & (BD_ENET_RX_NO | BD_ENET_RX_CL))
  218. fep->stats.rx_frame_errors++;
  219. /* CRC Error */
  220. if (sc & BD_ENET_RX_CR)
  221. fep->stats.rx_crc_errors++;
  222. /* FIFO overrun */
  223. if (sc & BD_ENET_RX_OV)
  224. fep->stats.rx_crc_errors++;
  225. skb = fep->rx_skbuff[curidx];
  226. dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
  227. L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
  228. DMA_FROM_DEVICE);
  229. skbn = skb;
  230. } else {
  231. skb = fep->rx_skbuff[curidx];
  232. dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
  233. L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
  234. DMA_FROM_DEVICE);
  235. /*
  236. * Process the incoming frame.
  237. */
  238. fep->stats.rx_packets++;
  239. pkt_len = CBDR_DATLEN(bdp) - 4; /* remove CRC */
  240. fep->stats.rx_bytes += pkt_len + 4;
  241. if (pkt_len <= fpi->rx_copybreak) {
  242. /* +2 to make IP header L1 cache aligned */
  243. skbn = dev_alloc_skb(pkt_len + 2);
  244. if (skbn != NULL) {
  245. skb_reserve(skbn, 2); /* align IP header */
  246. memcpy(skbn->data, skb->data, pkt_len);
  247. /* swap */
  248. skbt = skb;
  249. skb = skbn;
  250. skbn = skbt;
  251. }
  252. } else
  253. skbn = dev_alloc_skb(ENET_RX_FRSIZE);
  254. if (skbn != NULL) {
  255. skb->dev = dev;
  256. skb_put(skb, pkt_len); /* Make room */
  257. skb->protocol = eth_type_trans(skb, dev);
  258. received++;
  259. netif_rx(skb);
  260. } else {
  261. printk(KERN_WARNING DRV_MODULE_NAME
  262. ": %s Memory squeeze, dropping packet.\n",
  263. dev->name);
  264. fep->stats.rx_dropped++;
  265. skbn = skb;
  266. }
  267. }
  268. fep->rx_skbuff[curidx] = skbn;
  269. CBDW_BUFADDR(bdp, dma_map_single(fep->dev, skbn->data,
  270. L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
  271. DMA_FROM_DEVICE));
  272. CBDW_DATLEN(bdp, 0);
  273. CBDW_SC(bdp, (sc & ~BD_ENET_RX_STATS) | BD_ENET_RX_EMPTY);
  274. /*
  275. * Update BD pointer to next entry.
  276. */
  277. if ((sc & BD_ENET_RX_WRAP) == 0)
  278. bdp++;
  279. else
  280. bdp = fep->rx_bd_base;
  281. (*fep->ops->rx_bd_done)(dev);
  282. }
  283. fep->cur_rx = bdp;
  284. return 0;
  285. }
  286. static void fs_enet_tx(struct net_device *dev)
  287. {
  288. struct fs_enet_private *fep = netdev_priv(dev);
  289. cbd_t *bdp;
  290. struct sk_buff *skb;
  291. int dirtyidx, do_wake, do_restart;
  292. u16 sc;
  293. spin_lock(&fep->lock);
  294. bdp = fep->dirty_tx;
  295. do_wake = do_restart = 0;
  296. while (((sc = CBDR_SC(bdp)) & BD_ENET_TX_READY) == 0) {
  297. dirtyidx = bdp - fep->tx_bd_base;
  298. if (fep->tx_free == fep->tx_ring)
  299. break;
  300. skb = fep->tx_skbuff[dirtyidx];
  301. /*
  302. * Check for errors.
  303. */
  304. if (sc & (BD_ENET_TX_HB | BD_ENET_TX_LC |
  305. BD_ENET_TX_RL | BD_ENET_TX_UN | BD_ENET_TX_CSL)) {
  306. if (sc & BD_ENET_TX_HB) /* No heartbeat */
  307. fep->stats.tx_heartbeat_errors++;
  308. if (sc & BD_ENET_TX_LC) /* Late collision */
  309. fep->stats.tx_window_errors++;
  310. if (sc & BD_ENET_TX_RL) /* Retrans limit */
  311. fep->stats.tx_aborted_errors++;
  312. if (sc & BD_ENET_TX_UN) /* Underrun */
  313. fep->stats.tx_fifo_errors++;
  314. if (sc & BD_ENET_TX_CSL) /* Carrier lost */
  315. fep->stats.tx_carrier_errors++;
  316. if (sc & (BD_ENET_TX_LC | BD_ENET_TX_RL | BD_ENET_TX_UN)) {
  317. fep->stats.tx_errors++;
  318. do_restart = 1;
  319. }
  320. } else
  321. fep->stats.tx_packets++;
  322. if (sc & BD_ENET_TX_READY)
  323. printk(KERN_WARNING DRV_MODULE_NAME
  324. ": %s HEY! Enet xmit interrupt and TX_READY.\n",
  325. dev->name);
  326. /*
  327. * Deferred means some collisions occurred during transmit,
  328. * but we eventually sent the packet OK.
  329. */
  330. if (sc & BD_ENET_TX_DEF)
  331. fep->stats.collisions++;
  332. /* unmap */
  333. dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
  334. skb->len, DMA_TO_DEVICE);
  335. /*
  336. * Free the sk buffer associated with this last transmit.
  337. */
  338. dev_kfree_skb_irq(skb);
  339. fep->tx_skbuff[dirtyidx] = NULL;
  340. /*
  341. * Update pointer to next buffer descriptor to be transmitted.
  342. */
  343. if ((sc & BD_ENET_TX_WRAP) == 0)
  344. bdp++;
  345. else
  346. bdp = fep->tx_bd_base;
  347. /*
  348. * Since we have freed up a buffer, the ring is no longer
  349. * full.
  350. */
  351. if (!fep->tx_free++)
  352. do_wake = 1;
  353. }
  354. fep->dirty_tx = bdp;
  355. if (do_restart)
  356. (*fep->ops->tx_restart)(dev);
  357. spin_unlock(&fep->lock);
  358. if (do_wake)
  359. netif_wake_queue(dev);
  360. }
  361. /*
  362. * The interrupt handler.
  363. * This is called from the MPC core interrupt.
  364. */
  365. static irqreturn_t
  366. fs_enet_interrupt(int irq, void *dev_id, struct pt_regs *regs)
  367. {
  368. struct net_device *dev = dev_id;
  369. struct fs_enet_private *fep;
  370. const struct fs_platform_info *fpi;
  371. u32 int_events;
  372. u32 int_clr_events;
  373. int nr, napi_ok;
  374. int handled;
  375. fep = netdev_priv(dev);
  376. fpi = fep->fpi;
  377. nr = 0;
  378. while ((int_events = (*fep->ops->get_int_events)(dev)) != 0) {
  379. nr++;
  380. int_clr_events = int_events;
  381. if (fpi->use_napi)
  382. int_clr_events &= ~fep->ev_napi_rx;
  383. (*fep->ops->clear_int_events)(dev, int_clr_events);
  384. if (int_events & fep->ev_err)
  385. (*fep->ops->ev_error)(dev, int_events);
  386. if (int_events & fep->ev_rx) {
  387. if (!fpi->use_napi)
  388. fs_enet_rx_non_napi(dev);
  389. else {
  390. napi_ok = netif_rx_schedule_prep(dev);
  391. (*fep->ops->napi_disable_rx)(dev);
  392. (*fep->ops->clear_int_events)(dev, fep->ev_napi_rx);
  393. /* NOTE: it is possible for FCCs in NAPI mode */
  394. /* to submit a spurious interrupt while in poll */
  395. if (napi_ok)
  396. __netif_rx_schedule(dev);
  397. }
  398. }
  399. if (int_events & fep->ev_tx)
  400. fs_enet_tx(dev);
  401. }
  402. handled = nr > 0;
  403. return IRQ_RETVAL(handled);
  404. }
  405. void fs_init_bds(struct net_device *dev)
  406. {
  407. struct fs_enet_private *fep = netdev_priv(dev);
  408. cbd_t *bdp;
  409. struct sk_buff *skb;
  410. int i;
  411. fs_cleanup_bds(dev);
  412. fep->dirty_tx = fep->cur_tx = fep->tx_bd_base;
  413. fep->tx_free = fep->tx_ring;
  414. fep->cur_rx = fep->rx_bd_base;
  415. /*
  416. * Initialize the receive buffer descriptors.
  417. */
  418. for (i = 0, bdp = fep->rx_bd_base; i < fep->rx_ring; i++, bdp++) {
  419. skb = dev_alloc_skb(ENET_RX_FRSIZE);
  420. if (skb == NULL) {
  421. printk(KERN_WARNING DRV_MODULE_NAME
  422. ": %s Memory squeeze, unable to allocate skb\n",
  423. dev->name);
  424. break;
  425. }
  426. fep->rx_skbuff[i] = skb;
  427. skb->dev = dev;
  428. CBDW_BUFADDR(bdp,
  429. dma_map_single(fep->dev, skb->data,
  430. L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
  431. DMA_FROM_DEVICE));
  432. CBDW_DATLEN(bdp, 0); /* zero */
  433. CBDW_SC(bdp, BD_ENET_RX_EMPTY |
  434. ((i < fep->rx_ring - 1) ? 0 : BD_SC_WRAP));
  435. }
  436. /*
  437. * if we failed, fillup remainder
  438. */
  439. for (; i < fep->rx_ring; i++, bdp++) {
  440. fep->rx_skbuff[i] = NULL;
  441. CBDW_SC(bdp, (i < fep->rx_ring - 1) ? 0 : BD_SC_WRAP);
  442. }
  443. /*
  444. * ...and the same for transmit.
  445. */
  446. for (i = 0, bdp = fep->tx_bd_base; i < fep->tx_ring; i++, bdp++) {
  447. fep->tx_skbuff[i] = NULL;
  448. CBDW_BUFADDR(bdp, 0);
  449. CBDW_DATLEN(bdp, 0);
  450. CBDW_SC(bdp, (i < fep->tx_ring - 1) ? 0 : BD_SC_WRAP);
  451. }
  452. }
  453. void fs_cleanup_bds(struct net_device *dev)
  454. {
  455. struct fs_enet_private *fep = netdev_priv(dev);
  456. struct sk_buff *skb;
  457. cbd_t *bdp;
  458. int i;
  459. /*
  460. * Reset SKB transmit buffers.
  461. */
  462. for (i = 0, bdp = fep->tx_bd_base; i < fep->tx_ring; i++, bdp++) {
  463. if ((skb = fep->tx_skbuff[i]) == NULL)
  464. continue;
  465. /* unmap */
  466. dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
  467. skb->len, DMA_TO_DEVICE);
  468. fep->tx_skbuff[i] = NULL;
  469. dev_kfree_skb(skb);
  470. }
  471. /*
  472. * Reset SKB receive buffers
  473. */
  474. for (i = 0, bdp = fep->rx_bd_base; i < fep->rx_ring; i++, bdp++) {
  475. if ((skb = fep->rx_skbuff[i]) == NULL)
  476. continue;
  477. /* unmap */
  478. dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
  479. L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
  480. DMA_FROM_DEVICE);
  481. fep->rx_skbuff[i] = NULL;
  482. dev_kfree_skb(skb);
  483. }
  484. }
  485. /**********************************************************************************/
  486. static int fs_enet_start_xmit(struct sk_buff *skb, struct net_device *dev)
  487. {
  488. struct fs_enet_private *fep = netdev_priv(dev);
  489. cbd_t *bdp;
  490. int curidx;
  491. u16 sc;
  492. unsigned long flags;
  493. spin_lock_irqsave(&fep->tx_lock, flags);
  494. /*
  495. * Fill in a Tx ring entry
  496. */
  497. bdp = fep->cur_tx;
  498. if (!fep->tx_free || (CBDR_SC(bdp) & BD_ENET_TX_READY)) {
  499. netif_stop_queue(dev);
  500. spin_unlock_irqrestore(&fep->tx_lock, flags);
  501. /*
  502. * Ooops. All transmit buffers are full. Bail out.
  503. * This should not happen, since the tx queue should be stopped.
  504. */
  505. printk(KERN_WARNING DRV_MODULE_NAME
  506. ": %s tx queue full!.\n", dev->name);
  507. return NETDEV_TX_BUSY;
  508. }
  509. curidx = bdp - fep->tx_bd_base;
  510. /*
  511. * Clear all of the status flags.
  512. */
  513. CBDC_SC(bdp, BD_ENET_TX_STATS);
  514. /*
  515. * Save skb pointer.
  516. */
  517. fep->tx_skbuff[curidx] = skb;
  518. fep->stats.tx_bytes += skb->len;
  519. /*
  520. * Push the data cache so the CPM does not get stale memory data.
  521. */
  522. CBDW_BUFADDR(bdp, dma_map_single(fep->dev,
  523. skb->data, skb->len, DMA_TO_DEVICE));
  524. CBDW_DATLEN(bdp, skb->len);
  525. dev->trans_start = jiffies;
  526. /*
  527. * If this was the last BD in the ring, start at the beginning again.
  528. */
  529. if ((CBDR_SC(bdp) & BD_ENET_TX_WRAP) == 0)
  530. fep->cur_tx++;
  531. else
  532. fep->cur_tx = fep->tx_bd_base;
  533. if (!--fep->tx_free)
  534. netif_stop_queue(dev);
  535. /* Trigger transmission start */
  536. sc = BD_ENET_TX_READY | BD_ENET_TX_INTR |
  537. BD_ENET_TX_LAST | BD_ENET_TX_TC;
  538. /* note that while FEC does not have this bit
  539. * it marks it as available for software use
  540. * yay for hw reuse :) */
  541. if (skb->len <= 60)
  542. sc |= BD_ENET_TX_PAD;
  543. CBDS_SC(bdp, sc);
  544. (*fep->ops->tx_kickstart)(dev);
  545. spin_unlock_irqrestore(&fep->tx_lock, flags);
  546. return NETDEV_TX_OK;
  547. }
  548. static int fs_request_irq(struct net_device *dev, int irq, const char *name,
  549. irqreturn_t (*irqf)(int irq, void *dev_id, struct pt_regs *regs))
  550. {
  551. struct fs_enet_private *fep = netdev_priv(dev);
  552. (*fep->ops->pre_request_irq)(dev, irq);
  553. return request_irq(irq, irqf, SA_SHIRQ, name, dev);
  554. }
  555. static void fs_free_irq(struct net_device *dev, int irq)
  556. {
  557. struct fs_enet_private *fep = netdev_priv(dev);
  558. free_irq(irq, dev);
  559. (*fep->ops->post_free_irq)(dev, irq);
  560. }
  561. /**********************************************************************************/
  562. /* This interrupt occurs when the PHY detects a link change. */
  563. static irqreturn_t
  564. fs_mii_link_interrupt(int irq, void *dev_id, struct pt_regs *regs)
  565. {
  566. struct net_device *dev = dev_id;
  567. struct fs_enet_private *fep;
  568. const struct fs_platform_info *fpi;
  569. fep = netdev_priv(dev);
  570. fpi = fep->fpi;
  571. /*
  572. * Acknowledge the interrupt if possible. If we have not
  573. * found the PHY yet we can't process or acknowledge the
  574. * interrupt now. Instead we ignore this interrupt for now,
  575. * which we can do since it is edge triggered. It will be
  576. * acknowledged later by fs_enet_open().
  577. */
  578. if (!fep->phy)
  579. return IRQ_NONE;
  580. fs_mii_ack_int(dev);
  581. fs_mii_link_status_change_check(dev, 0);
  582. return IRQ_HANDLED;
  583. }
  584. static void fs_timeout(struct net_device *dev)
  585. {
  586. struct fs_enet_private *fep = netdev_priv(dev);
  587. unsigned long flags;
  588. int wake = 0;
  589. fep->stats.tx_errors++;
  590. spin_lock_irqsave(&fep->lock, flags);
  591. if (dev->flags & IFF_UP) {
  592. (*fep->ops->stop)(dev);
  593. (*fep->ops->restart)(dev);
  594. }
  595. wake = fep->tx_free && !(CBDR_SC(fep->cur_tx) & BD_ENET_TX_READY);
  596. spin_unlock_irqrestore(&fep->lock, flags);
  597. if (wake)
  598. netif_wake_queue(dev);
  599. }
  600. static int fs_enet_open(struct net_device *dev)
  601. {
  602. struct fs_enet_private *fep = netdev_priv(dev);
  603. const struct fs_platform_info *fpi = fep->fpi;
  604. int r;
  605. /* Install our interrupt handler. */
  606. r = fs_request_irq(dev, fep->interrupt, "fs_enet-mac", fs_enet_interrupt);
  607. if (r != 0) {
  608. printk(KERN_ERR DRV_MODULE_NAME
  609. ": %s Could not allocate FEC IRQ!", dev->name);
  610. return -EINVAL;
  611. }
  612. /* Install our phy interrupt handler */
  613. if (fpi->phy_irq != -1) {
  614. r = fs_request_irq(dev, fpi->phy_irq, "fs_enet-phy", fs_mii_link_interrupt);
  615. if (r != 0) {
  616. printk(KERN_ERR DRV_MODULE_NAME
  617. ": %s Could not allocate PHY IRQ!", dev->name);
  618. fs_free_irq(dev, fep->interrupt);
  619. return -EINVAL;
  620. }
  621. }
  622. fs_mii_startup(dev);
  623. netif_carrier_off(dev);
  624. fs_mii_link_status_change_check(dev, 1);
  625. return 0;
  626. }
  627. static int fs_enet_close(struct net_device *dev)
  628. {
  629. struct fs_enet_private *fep = netdev_priv(dev);
  630. const struct fs_platform_info *fpi = fep->fpi;
  631. unsigned long flags;
  632. netif_stop_queue(dev);
  633. netif_carrier_off(dev);
  634. fs_mii_shutdown(dev);
  635. spin_lock_irqsave(&fep->lock, flags);
  636. (*fep->ops->stop)(dev);
  637. spin_unlock_irqrestore(&fep->lock, flags);
  638. /* release any irqs */
  639. if (fpi->phy_irq != -1)
  640. fs_free_irq(dev, fpi->phy_irq);
  641. fs_free_irq(dev, fep->interrupt);
  642. return 0;
  643. }
  644. static struct net_device_stats *fs_enet_get_stats(struct net_device *dev)
  645. {
  646. struct fs_enet_private *fep = netdev_priv(dev);
  647. return &fep->stats;
  648. }
  649. /*************************************************************************/
  650. static void fs_get_drvinfo(struct net_device *dev,
  651. struct ethtool_drvinfo *info)
  652. {
  653. strcpy(info->driver, DRV_MODULE_NAME);
  654. strcpy(info->version, DRV_MODULE_VERSION);
  655. }
  656. static int fs_get_regs_len(struct net_device *dev)
  657. {
  658. struct fs_enet_private *fep = netdev_priv(dev);
  659. return (*fep->ops->get_regs_len)(dev);
  660. }
  661. static void fs_get_regs(struct net_device *dev, struct ethtool_regs *regs,
  662. void *p)
  663. {
  664. struct fs_enet_private *fep = netdev_priv(dev);
  665. unsigned long flags;
  666. int r, len;
  667. len = regs->len;
  668. spin_lock_irqsave(&fep->lock, flags);
  669. r = (*fep->ops->get_regs)(dev, p, &len);
  670. spin_unlock_irqrestore(&fep->lock, flags);
  671. if (r == 0)
  672. regs->version = 0;
  673. }
  674. static int fs_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  675. {
  676. struct fs_enet_private *fep = netdev_priv(dev);
  677. unsigned long flags;
  678. int rc;
  679. spin_lock_irqsave(&fep->lock, flags);
  680. rc = mii_ethtool_gset(&fep->mii_if, cmd);
  681. spin_unlock_irqrestore(&fep->lock, flags);
  682. return rc;
  683. }
  684. static int fs_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  685. {
  686. struct fs_enet_private *fep = netdev_priv(dev);
  687. unsigned long flags;
  688. int rc;
  689. spin_lock_irqsave(&fep->lock, flags);
  690. rc = mii_ethtool_sset(&fep->mii_if, cmd);
  691. spin_unlock_irqrestore(&fep->lock, flags);
  692. return rc;
  693. }
  694. static int fs_nway_reset(struct net_device *dev)
  695. {
  696. struct fs_enet_private *fep = netdev_priv(dev);
  697. return mii_nway_restart(&fep->mii_if);
  698. }
  699. static u32 fs_get_msglevel(struct net_device *dev)
  700. {
  701. struct fs_enet_private *fep = netdev_priv(dev);
  702. return fep->msg_enable;
  703. }
  704. static void fs_set_msglevel(struct net_device *dev, u32 value)
  705. {
  706. struct fs_enet_private *fep = netdev_priv(dev);
  707. fep->msg_enable = value;
  708. }
  709. static struct ethtool_ops fs_ethtool_ops = {
  710. .get_drvinfo = fs_get_drvinfo,
  711. .get_regs_len = fs_get_regs_len,
  712. .get_settings = fs_get_settings,
  713. .set_settings = fs_set_settings,
  714. .nway_reset = fs_nway_reset,
  715. .get_link = ethtool_op_get_link,
  716. .get_msglevel = fs_get_msglevel,
  717. .set_msglevel = fs_set_msglevel,
  718. .get_tx_csum = ethtool_op_get_tx_csum,
  719. .set_tx_csum = ethtool_op_set_tx_csum, /* local! */
  720. .get_sg = ethtool_op_get_sg,
  721. .set_sg = ethtool_op_set_sg,
  722. .get_regs = fs_get_regs,
  723. };
  724. static int fs_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
  725. {
  726. struct fs_enet_private *fep = netdev_priv(dev);
  727. struct mii_ioctl_data *mii = (struct mii_ioctl_data *)&rq->ifr_data;
  728. unsigned long flags;
  729. int rc;
  730. if (!netif_running(dev))
  731. return -EINVAL;
  732. spin_lock_irqsave(&fep->lock, flags);
  733. rc = generic_mii_ioctl(&fep->mii_if, mii, cmd, NULL);
  734. spin_unlock_irqrestore(&fep->lock, flags);
  735. return rc;
  736. }
  737. extern int fs_mii_connect(struct net_device *dev);
  738. extern void fs_mii_disconnect(struct net_device *dev);
  739. static struct net_device *fs_init_instance(struct device *dev,
  740. const struct fs_platform_info *fpi)
  741. {
  742. struct net_device *ndev = NULL;
  743. struct fs_enet_private *fep = NULL;
  744. int privsize, i, r, err = 0, registered = 0;
  745. /* guard */
  746. if ((unsigned int)fpi->fs_no >= FS_MAX_INDEX)
  747. return ERR_PTR(-EINVAL);
  748. privsize = sizeof(*fep) + (sizeof(struct sk_buff **) *
  749. (fpi->rx_ring + fpi->tx_ring));
  750. ndev = alloc_etherdev(privsize);
  751. if (!ndev) {
  752. err = -ENOMEM;
  753. goto err;
  754. }
  755. SET_MODULE_OWNER(ndev);
  756. fep = netdev_priv(ndev);
  757. memset(fep, 0, privsize); /* clear everything */
  758. fep->dev = dev;
  759. dev_set_drvdata(dev, ndev);
  760. fep->fpi = fpi;
  761. if (fpi->init_ioports)
  762. fpi->init_ioports();
  763. #ifdef CONFIG_FS_ENET_HAS_FEC
  764. if (fs_get_fec_index(fpi->fs_no) >= 0)
  765. fep->ops = &fs_fec_ops;
  766. #endif
  767. #ifdef CONFIG_FS_ENET_HAS_SCC
  768. if (fs_get_scc_index(fpi->fs_no) >=0 )
  769. fep->ops = &fs_scc_ops;
  770. #endif
  771. #ifdef CONFIG_FS_ENET_HAS_FCC
  772. if (fs_get_fcc_index(fpi->fs_no) >= 0)
  773. fep->ops = &fs_fcc_ops;
  774. #endif
  775. if (fep->ops == NULL) {
  776. printk(KERN_ERR DRV_MODULE_NAME
  777. ": %s No matching ops found (%d).\n",
  778. ndev->name, fpi->fs_no);
  779. err = -EINVAL;
  780. goto err;
  781. }
  782. r = (*fep->ops->setup_data)(ndev);
  783. if (r != 0) {
  784. printk(KERN_ERR DRV_MODULE_NAME
  785. ": %s setup_data failed\n",
  786. ndev->name);
  787. err = r;
  788. goto err;
  789. }
  790. /* point rx_skbuff, tx_skbuff */
  791. fep->rx_skbuff = (struct sk_buff **)&fep[1];
  792. fep->tx_skbuff = fep->rx_skbuff + fpi->rx_ring;
  793. /* init locks */
  794. spin_lock_init(&fep->lock);
  795. spin_lock_init(&fep->tx_lock);
  796. /*
  797. * Set the Ethernet address.
  798. */
  799. for (i = 0; i < 6; i++)
  800. ndev->dev_addr[i] = fpi->macaddr[i];
  801. r = (*fep->ops->allocate_bd)(ndev);
  802. if (fep->ring_base == NULL) {
  803. printk(KERN_ERR DRV_MODULE_NAME
  804. ": %s buffer descriptor alloc failed (%d).\n", ndev->name, r);
  805. err = r;
  806. goto err;
  807. }
  808. /*
  809. * Set receive and transmit descriptor base.
  810. */
  811. fep->rx_bd_base = fep->ring_base;
  812. fep->tx_bd_base = fep->rx_bd_base + fpi->rx_ring;
  813. /* initialize ring size variables */
  814. fep->tx_ring = fpi->tx_ring;
  815. fep->rx_ring = fpi->rx_ring;
  816. /*
  817. * The FEC Ethernet specific entries in the device structure.
  818. */
  819. ndev->open = fs_enet_open;
  820. ndev->hard_start_xmit = fs_enet_start_xmit;
  821. ndev->tx_timeout = fs_timeout;
  822. ndev->watchdog_timeo = 2 * HZ;
  823. ndev->stop = fs_enet_close;
  824. ndev->get_stats = fs_enet_get_stats;
  825. ndev->set_multicast_list = fs_set_multicast_list;
  826. if (fpi->use_napi) {
  827. ndev->poll = fs_enet_rx_napi;
  828. ndev->weight = fpi->napi_weight;
  829. }
  830. ndev->ethtool_ops = &fs_ethtool_ops;
  831. ndev->do_ioctl = fs_ioctl;
  832. init_timer(&fep->phy_timer_list);
  833. netif_carrier_off(ndev);
  834. err = register_netdev(ndev);
  835. if (err != 0) {
  836. printk(KERN_ERR DRV_MODULE_NAME
  837. ": %s register_netdev failed.\n", ndev->name);
  838. goto err;
  839. }
  840. registered = 1;
  841. err = fs_mii_connect(ndev);
  842. if (err != 0) {
  843. printk(KERN_ERR DRV_MODULE_NAME
  844. ": %s fs_mii_connect failed.\n", ndev->name);
  845. goto err;
  846. }
  847. return ndev;
  848. err:
  849. if (ndev != NULL) {
  850. if (registered)
  851. unregister_netdev(ndev);
  852. if (fep != NULL) {
  853. (*fep->ops->free_bd)(ndev);
  854. (*fep->ops->cleanup_data)(ndev);
  855. }
  856. free_netdev(ndev);
  857. }
  858. dev_set_drvdata(dev, NULL);
  859. return ERR_PTR(err);
  860. }
  861. static int fs_cleanup_instance(struct net_device *ndev)
  862. {
  863. struct fs_enet_private *fep;
  864. const struct fs_platform_info *fpi;
  865. struct device *dev;
  866. if (ndev == NULL)
  867. return -EINVAL;
  868. fep = netdev_priv(ndev);
  869. if (fep == NULL)
  870. return -EINVAL;
  871. fpi = fep->fpi;
  872. fs_mii_disconnect(ndev);
  873. unregister_netdev(ndev);
  874. dma_free_coherent(fep->dev, (fpi->tx_ring + fpi->rx_ring) * sizeof(cbd_t),
  875. fep->ring_base, fep->ring_mem_addr);
  876. /* reset it */
  877. (*fep->ops->cleanup_data)(ndev);
  878. dev = fep->dev;
  879. if (dev != NULL) {
  880. dev_set_drvdata(dev, NULL);
  881. fep->dev = NULL;
  882. }
  883. free_netdev(ndev);
  884. return 0;
  885. }
  886. /**************************************************************************************/
  887. /* handy pointer to the immap */
  888. void *fs_enet_immap = NULL;
  889. static int setup_immap(void)
  890. {
  891. phys_addr_t paddr = 0;
  892. unsigned long size = 0;
  893. #ifdef CONFIG_CPM1
  894. paddr = IMAP_ADDR;
  895. size = 0x10000; /* map 64K */
  896. #endif
  897. #ifdef CONFIG_CPM2
  898. paddr = CPM_MAP_ADDR;
  899. size = 0x40000; /* map 256 K */
  900. #endif
  901. fs_enet_immap = ioremap(paddr, size);
  902. if (fs_enet_immap == NULL)
  903. return -EBADF; /* XXX ahem; maybe just BUG_ON? */
  904. return 0;
  905. }
  906. static void cleanup_immap(void)
  907. {
  908. if (fs_enet_immap != NULL) {
  909. iounmap(fs_enet_immap);
  910. fs_enet_immap = NULL;
  911. }
  912. }
  913. /**************************************************************************************/
  914. static int __devinit fs_enet_probe(struct device *dev)
  915. {
  916. struct net_device *ndev;
  917. /* no fixup - no device */
  918. if (dev->platform_data == NULL) {
  919. printk(KERN_INFO "fs_enet: "
  920. "probe called with no platform data; "
  921. "remove unused devices\n");
  922. return -ENODEV;
  923. }
  924. ndev = fs_init_instance(dev, dev->platform_data);
  925. if (IS_ERR(ndev))
  926. return PTR_ERR(ndev);
  927. return 0;
  928. }
  929. static int fs_enet_remove(struct device *dev)
  930. {
  931. return fs_cleanup_instance(dev_get_drvdata(dev));
  932. }
  933. static struct device_driver fs_enet_fec_driver = {
  934. .name = "fsl-cpm-fec",
  935. .bus = &platform_bus_type,
  936. .probe = fs_enet_probe,
  937. .remove = fs_enet_remove,
  938. #ifdef CONFIG_PM
  939. /* .suspend = fs_enet_suspend, TODO */
  940. /* .resume = fs_enet_resume, TODO */
  941. #endif
  942. };
  943. static struct device_driver fs_enet_scc_driver = {
  944. .name = "fsl-cpm-scc",
  945. .bus = &platform_bus_type,
  946. .probe = fs_enet_probe,
  947. .remove = fs_enet_remove,
  948. #ifdef CONFIG_PM
  949. /* .suspend = fs_enet_suspend, TODO */
  950. /* .resume = fs_enet_resume, TODO */
  951. #endif
  952. };
  953. static struct device_driver fs_enet_fcc_driver = {
  954. .name = "fsl-cpm-fcc",
  955. .bus = &platform_bus_type,
  956. .probe = fs_enet_probe,
  957. .remove = fs_enet_remove,
  958. #ifdef CONFIG_PM
  959. /* .suspend = fs_enet_suspend, TODO */
  960. /* .resume = fs_enet_resume, TODO */
  961. #endif
  962. };
  963. static int __init fs_init(void)
  964. {
  965. int r;
  966. printk(KERN_INFO
  967. "%s", version);
  968. r = setup_immap();
  969. if (r != 0)
  970. return r;
  971. r = driver_register(&fs_enet_fec_driver);
  972. if (r != 0)
  973. goto err;
  974. r = driver_register(&fs_enet_fcc_driver);
  975. if (r != 0)
  976. goto err;
  977. r = driver_register(&fs_enet_scc_driver);
  978. if (r != 0)
  979. goto err;
  980. return 0;
  981. err:
  982. cleanup_immap();
  983. return r;
  984. }
  985. static void __exit fs_cleanup(void)
  986. {
  987. driver_unregister(&fs_enet_fec_driver);
  988. driver_unregister(&fs_enet_fcc_driver);
  989. driver_unregister(&fs_enet_scc_driver);
  990. cleanup_immap();
  991. }
  992. /**************************************************************************************/
  993. module_init(fs_init);
  994. module_exit(fs_cleanup);