setup.c 28 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126
  1. /*
  2. * linux/arch/x86-64/kernel/setup.c
  3. *
  4. * Copyright (C) 1995 Linus Torvalds
  5. *
  6. * Nov 2001 Dave Jones <davej@suse.de>
  7. * Forked from i386 setup code.
  8. */
  9. /*
  10. * This file handles the architecture-dependent parts of initialization
  11. */
  12. #include <linux/errno.h>
  13. #include <linux/sched.h>
  14. #include <linux/kernel.h>
  15. #include <linux/mm.h>
  16. #include <linux/stddef.h>
  17. #include <linux/unistd.h>
  18. #include <linux/ptrace.h>
  19. #include <linux/slab.h>
  20. #include <linux/user.h>
  21. #include <linux/a.out.h>
  22. #include <linux/screen_info.h>
  23. #include <linux/ioport.h>
  24. #include <linux/delay.h>
  25. #include <linux/init.h>
  26. #include <linux/initrd.h>
  27. #include <linux/highmem.h>
  28. #include <linux/bootmem.h>
  29. #include <linux/module.h>
  30. #include <asm/processor.h>
  31. #include <linux/console.h>
  32. #include <linux/seq_file.h>
  33. #include <linux/crash_dump.h>
  34. #include <linux/root_dev.h>
  35. #include <linux/pci.h>
  36. #include <linux/acpi.h>
  37. #include <linux/kallsyms.h>
  38. #include <linux/edd.h>
  39. #include <linux/mmzone.h>
  40. #include <linux/kexec.h>
  41. #include <linux/cpufreq.h>
  42. #include <linux/dmi.h>
  43. #include <linux/dma-mapping.h>
  44. #include <linux/ctype.h>
  45. #include <asm/mtrr.h>
  46. #include <asm/uaccess.h>
  47. #include <asm/system.h>
  48. #include <asm/io.h>
  49. #include <asm/smp.h>
  50. #include <asm/msr.h>
  51. #include <asm/desc.h>
  52. #include <video/edid.h>
  53. #include <asm/e820.h>
  54. #include <asm/dma.h>
  55. #include <asm/mpspec.h>
  56. #include <asm/mmu_context.h>
  57. #include <asm/bootsetup.h>
  58. #include <asm/proto.h>
  59. #include <asm/setup.h>
  60. #include <asm/mach_apic.h>
  61. #include <asm/numa.h>
  62. #include <asm/sections.h>
  63. #include <asm/dmi.h>
  64. /*
  65. * Machine setup..
  66. */
  67. struct cpuinfo_x86 boot_cpu_data __read_mostly;
  68. EXPORT_SYMBOL(boot_cpu_data);
  69. unsigned long mmu_cr4_features;
  70. /* Boot loader ID as an integer, for the benefit of proc_dointvec */
  71. int bootloader_type;
  72. unsigned long saved_video_mode;
  73. /*
  74. * Early DMI memory
  75. */
  76. int dmi_alloc_index;
  77. char dmi_alloc_data[DMI_MAX_DATA];
  78. /*
  79. * Setup options
  80. */
  81. struct screen_info screen_info;
  82. EXPORT_SYMBOL(screen_info);
  83. struct sys_desc_table_struct {
  84. unsigned short length;
  85. unsigned char table[0];
  86. };
  87. struct edid_info edid_info;
  88. EXPORT_SYMBOL_GPL(edid_info);
  89. extern int root_mountflags;
  90. char __initdata command_line[COMMAND_LINE_SIZE];
  91. struct resource standard_io_resources[] = {
  92. { .name = "dma1", .start = 0x00, .end = 0x1f,
  93. .flags = IORESOURCE_BUSY | IORESOURCE_IO },
  94. { .name = "pic1", .start = 0x20, .end = 0x21,
  95. .flags = IORESOURCE_BUSY | IORESOURCE_IO },
  96. { .name = "timer0", .start = 0x40, .end = 0x43,
  97. .flags = IORESOURCE_BUSY | IORESOURCE_IO },
  98. { .name = "timer1", .start = 0x50, .end = 0x53,
  99. .flags = IORESOURCE_BUSY | IORESOURCE_IO },
  100. { .name = "keyboard", .start = 0x60, .end = 0x6f,
  101. .flags = IORESOURCE_BUSY | IORESOURCE_IO },
  102. { .name = "dma page reg", .start = 0x80, .end = 0x8f,
  103. .flags = IORESOURCE_BUSY | IORESOURCE_IO },
  104. { .name = "pic2", .start = 0xa0, .end = 0xa1,
  105. .flags = IORESOURCE_BUSY | IORESOURCE_IO },
  106. { .name = "dma2", .start = 0xc0, .end = 0xdf,
  107. .flags = IORESOURCE_BUSY | IORESOURCE_IO },
  108. { .name = "fpu", .start = 0xf0, .end = 0xff,
  109. .flags = IORESOURCE_BUSY | IORESOURCE_IO }
  110. };
  111. #define IORESOURCE_RAM (IORESOURCE_BUSY | IORESOURCE_MEM)
  112. struct resource data_resource = {
  113. .name = "Kernel data",
  114. .start = 0,
  115. .end = 0,
  116. .flags = IORESOURCE_RAM,
  117. };
  118. struct resource code_resource = {
  119. .name = "Kernel code",
  120. .start = 0,
  121. .end = 0,
  122. .flags = IORESOURCE_RAM,
  123. };
  124. #ifdef CONFIG_PROC_VMCORE
  125. /* elfcorehdr= specifies the location of elf core header
  126. * stored by the crashed kernel. This option will be passed
  127. * by kexec loader to the capture kernel.
  128. */
  129. static int __init setup_elfcorehdr(char *arg)
  130. {
  131. char *end;
  132. if (!arg)
  133. return -EINVAL;
  134. elfcorehdr_addr = memparse(arg, &end);
  135. return end > arg ? 0 : -EINVAL;
  136. }
  137. early_param("elfcorehdr", setup_elfcorehdr);
  138. #endif
  139. #ifndef CONFIG_NUMA
  140. static void __init
  141. contig_initmem_init(unsigned long start_pfn, unsigned long end_pfn)
  142. {
  143. unsigned long bootmap_size, bootmap;
  144. bootmap_size = bootmem_bootmap_pages(end_pfn)<<PAGE_SHIFT;
  145. bootmap = find_e820_area(0, end_pfn<<PAGE_SHIFT, bootmap_size);
  146. if (bootmap == -1L)
  147. panic("Cannot find bootmem map of size %ld\n",bootmap_size);
  148. bootmap_size = init_bootmem(bootmap >> PAGE_SHIFT, end_pfn);
  149. e820_register_active_regions(0, start_pfn, end_pfn);
  150. free_bootmem_with_active_regions(0, end_pfn);
  151. reserve_bootmem(bootmap, bootmap_size);
  152. }
  153. #endif
  154. #if defined(CONFIG_EDD) || defined(CONFIG_EDD_MODULE)
  155. struct edd edd;
  156. #ifdef CONFIG_EDD_MODULE
  157. EXPORT_SYMBOL(edd);
  158. #endif
  159. /**
  160. * copy_edd() - Copy the BIOS EDD information
  161. * from boot_params into a safe place.
  162. *
  163. */
  164. static inline void copy_edd(void)
  165. {
  166. memcpy(edd.mbr_signature, EDD_MBR_SIGNATURE, sizeof(edd.mbr_signature));
  167. memcpy(edd.edd_info, EDD_BUF, sizeof(edd.edd_info));
  168. edd.mbr_signature_nr = EDD_MBR_SIG_NR;
  169. edd.edd_info_nr = EDD_NR;
  170. }
  171. #else
  172. static inline void copy_edd(void)
  173. {
  174. }
  175. #endif
  176. #define EBDA_ADDR_POINTER 0x40E
  177. unsigned __initdata ebda_addr;
  178. unsigned __initdata ebda_size;
  179. static void discover_ebda(void)
  180. {
  181. /*
  182. * there is a real-mode segmented pointer pointing to the
  183. * 4K EBDA area at 0x40E
  184. */
  185. ebda_addr = *(unsigned short *)EBDA_ADDR_POINTER;
  186. ebda_addr <<= 4;
  187. ebda_size = *(unsigned short *)(unsigned long)ebda_addr;
  188. /* Round EBDA up to pages */
  189. if (ebda_size == 0)
  190. ebda_size = 1;
  191. ebda_size <<= 10;
  192. ebda_size = round_up(ebda_size + (ebda_addr & ~PAGE_MASK), PAGE_SIZE);
  193. if (ebda_size > 64*1024)
  194. ebda_size = 64*1024;
  195. }
  196. void __init setup_arch(char **cmdline_p)
  197. {
  198. printk(KERN_INFO "Command line: %s\n", boot_command_line);
  199. ROOT_DEV = old_decode_dev(ORIG_ROOT_DEV);
  200. screen_info = SCREEN_INFO;
  201. edid_info = EDID_INFO;
  202. saved_video_mode = SAVED_VIDEO_MODE;
  203. bootloader_type = LOADER_TYPE;
  204. #ifdef CONFIG_BLK_DEV_RAM
  205. rd_image_start = RAMDISK_FLAGS & RAMDISK_IMAGE_START_MASK;
  206. rd_prompt = ((RAMDISK_FLAGS & RAMDISK_PROMPT_FLAG) != 0);
  207. rd_doload = ((RAMDISK_FLAGS & RAMDISK_LOAD_FLAG) != 0);
  208. #endif
  209. setup_memory_region();
  210. copy_edd();
  211. if (!MOUNT_ROOT_RDONLY)
  212. root_mountflags &= ~MS_RDONLY;
  213. init_mm.start_code = (unsigned long) &_text;
  214. init_mm.end_code = (unsigned long) &_etext;
  215. init_mm.end_data = (unsigned long) &_edata;
  216. init_mm.brk = (unsigned long) &_end;
  217. code_resource.start = virt_to_phys(&_text);
  218. code_resource.end = virt_to_phys(&_etext)-1;
  219. data_resource.start = virt_to_phys(&_etext);
  220. data_resource.end = virt_to_phys(&_edata)-1;
  221. early_identify_cpu(&boot_cpu_data);
  222. strlcpy(command_line, boot_command_line, COMMAND_LINE_SIZE);
  223. *cmdline_p = command_line;
  224. parse_early_param();
  225. finish_e820_parsing();
  226. e820_register_active_regions(0, 0, -1UL);
  227. /*
  228. * partially used pages are not usable - thus
  229. * we are rounding upwards:
  230. */
  231. end_pfn = e820_end_of_ram();
  232. num_physpages = end_pfn;
  233. check_efer();
  234. discover_ebda();
  235. init_memory_mapping(0, (end_pfn_map << PAGE_SHIFT));
  236. dmi_scan_machine();
  237. zap_low_mappings(0);
  238. #ifdef CONFIG_ACPI
  239. /*
  240. * Initialize the ACPI boot-time table parser (gets the RSDP and SDT).
  241. * Call this early for SRAT node setup.
  242. */
  243. acpi_boot_table_init();
  244. #endif
  245. /* How many end-of-memory variables you have, grandma! */
  246. max_low_pfn = end_pfn;
  247. max_pfn = end_pfn;
  248. high_memory = (void *)__va(end_pfn * PAGE_SIZE - 1) + 1;
  249. /* Remove active ranges so rediscovery with NUMA-awareness happens */
  250. remove_all_active_ranges();
  251. #ifdef CONFIG_ACPI_NUMA
  252. /*
  253. * Parse SRAT to discover nodes.
  254. */
  255. acpi_numa_init();
  256. #endif
  257. #ifdef CONFIG_NUMA
  258. numa_initmem_init(0, end_pfn);
  259. #else
  260. contig_initmem_init(0, end_pfn);
  261. #endif
  262. /* Reserve direct mapping */
  263. reserve_bootmem_generic(table_start << PAGE_SHIFT,
  264. (table_end - table_start) << PAGE_SHIFT);
  265. /* reserve kernel */
  266. reserve_bootmem_generic(__pa_symbol(&_text),
  267. __pa_symbol(&_end) - __pa_symbol(&_text));
  268. /*
  269. * reserve physical page 0 - it's a special BIOS page on many boxes,
  270. * enabling clean reboots, SMP operation, laptop functions.
  271. */
  272. reserve_bootmem_generic(0, PAGE_SIZE);
  273. /* reserve ebda region */
  274. if (ebda_addr)
  275. reserve_bootmem_generic(ebda_addr, ebda_size);
  276. #ifdef CONFIG_NUMA
  277. /* reserve nodemap region */
  278. if (nodemap_addr)
  279. reserve_bootmem_generic(nodemap_addr, nodemap_size);
  280. #endif
  281. #ifdef CONFIG_SMP
  282. /*
  283. * But first pinch a few for the stack/trampoline stuff
  284. * FIXME: Don't need the extra page at 4K, but need to fix
  285. * trampoline before removing it. (see the GDT stuff)
  286. */
  287. reserve_bootmem_generic(PAGE_SIZE, PAGE_SIZE);
  288. /* Reserve SMP trampoline */
  289. reserve_bootmem_generic(SMP_TRAMPOLINE_BASE, PAGE_SIZE);
  290. #endif
  291. #ifdef CONFIG_ACPI_SLEEP
  292. /*
  293. * Reserve low memory region for sleep support.
  294. */
  295. acpi_reserve_bootmem();
  296. #endif
  297. /*
  298. * Find and reserve possible boot-time SMP configuration:
  299. */
  300. find_smp_config();
  301. #ifdef CONFIG_BLK_DEV_INITRD
  302. if (LOADER_TYPE && INITRD_START) {
  303. if (INITRD_START + INITRD_SIZE <= (end_pfn << PAGE_SHIFT)) {
  304. reserve_bootmem_generic(INITRD_START, INITRD_SIZE);
  305. initrd_start = INITRD_START + PAGE_OFFSET;
  306. initrd_end = initrd_start+INITRD_SIZE;
  307. }
  308. else {
  309. printk(KERN_ERR "initrd extends beyond end of memory "
  310. "(0x%08lx > 0x%08lx)\ndisabling initrd\n",
  311. (unsigned long)(INITRD_START + INITRD_SIZE),
  312. (unsigned long)(end_pfn << PAGE_SHIFT));
  313. initrd_start = 0;
  314. }
  315. }
  316. #endif
  317. #ifdef CONFIG_KEXEC
  318. if (crashk_res.start != crashk_res.end) {
  319. reserve_bootmem_generic(crashk_res.start,
  320. crashk_res.end - crashk_res.start + 1);
  321. }
  322. #endif
  323. paging_init();
  324. #ifdef CONFIG_PCI
  325. early_quirks();
  326. #endif
  327. /*
  328. * set this early, so we dont allocate cpu0
  329. * if MADT list doesnt list BSP first
  330. * mpparse.c/MP_processor_info() allocates logical cpu numbers.
  331. */
  332. cpu_set(0, cpu_present_map);
  333. #ifdef CONFIG_ACPI
  334. /*
  335. * Read APIC and some other early information from ACPI tables.
  336. */
  337. acpi_boot_init();
  338. #endif
  339. init_cpu_to_node();
  340. /*
  341. * get boot-time SMP configuration:
  342. */
  343. if (smp_found_config)
  344. get_smp_config();
  345. init_apic_mappings();
  346. /*
  347. * We trust e820 completely. No explicit ROM probing in memory.
  348. */
  349. e820_reserve_resources();
  350. e820_mark_nosave_regions();
  351. {
  352. unsigned i;
  353. /* request I/O space for devices used on all i[345]86 PCs */
  354. for (i = 0; i < ARRAY_SIZE(standard_io_resources); i++)
  355. request_resource(&ioport_resource, &standard_io_resources[i]);
  356. }
  357. e820_setup_gap();
  358. #ifdef CONFIG_VT
  359. #if defined(CONFIG_VGA_CONSOLE)
  360. conswitchp = &vga_con;
  361. #elif defined(CONFIG_DUMMY_CONSOLE)
  362. conswitchp = &dummy_con;
  363. #endif
  364. #endif
  365. }
  366. static int __cpuinit get_model_name(struct cpuinfo_x86 *c)
  367. {
  368. unsigned int *v;
  369. if (c->extended_cpuid_level < 0x80000004)
  370. return 0;
  371. v = (unsigned int *) c->x86_model_id;
  372. cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
  373. cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
  374. cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
  375. c->x86_model_id[48] = 0;
  376. return 1;
  377. }
  378. static void __cpuinit display_cacheinfo(struct cpuinfo_x86 *c)
  379. {
  380. unsigned int n, dummy, eax, ebx, ecx, edx;
  381. n = c->extended_cpuid_level;
  382. if (n >= 0x80000005) {
  383. cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
  384. printk(KERN_INFO "CPU: L1 I Cache: %dK (%d bytes/line), D cache %dK (%d bytes/line)\n",
  385. edx>>24, edx&0xFF, ecx>>24, ecx&0xFF);
  386. c->x86_cache_size=(ecx>>24)+(edx>>24);
  387. /* On K8 L1 TLB is inclusive, so don't count it */
  388. c->x86_tlbsize = 0;
  389. }
  390. if (n >= 0x80000006) {
  391. cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
  392. ecx = cpuid_ecx(0x80000006);
  393. c->x86_cache_size = ecx >> 16;
  394. c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
  395. printk(KERN_INFO "CPU: L2 Cache: %dK (%d bytes/line)\n",
  396. c->x86_cache_size, ecx & 0xFF);
  397. }
  398. if (n >= 0x80000007)
  399. cpuid(0x80000007, &dummy, &dummy, &dummy, &c->x86_power);
  400. if (n >= 0x80000008) {
  401. cpuid(0x80000008, &eax, &dummy, &dummy, &dummy);
  402. c->x86_virt_bits = (eax >> 8) & 0xff;
  403. c->x86_phys_bits = eax & 0xff;
  404. }
  405. }
  406. #ifdef CONFIG_NUMA
  407. static int nearby_node(int apicid)
  408. {
  409. int i;
  410. for (i = apicid - 1; i >= 0; i--) {
  411. int node = apicid_to_node[i];
  412. if (node != NUMA_NO_NODE && node_online(node))
  413. return node;
  414. }
  415. for (i = apicid + 1; i < MAX_LOCAL_APIC; i++) {
  416. int node = apicid_to_node[i];
  417. if (node != NUMA_NO_NODE && node_online(node))
  418. return node;
  419. }
  420. return first_node(node_online_map); /* Shouldn't happen */
  421. }
  422. #endif
  423. /*
  424. * On a AMD dual core setup the lower bits of the APIC id distingush the cores.
  425. * Assumes number of cores is a power of two.
  426. */
  427. static void __init amd_detect_cmp(struct cpuinfo_x86 *c)
  428. {
  429. #ifdef CONFIG_SMP
  430. unsigned bits;
  431. #ifdef CONFIG_NUMA
  432. int cpu = smp_processor_id();
  433. int node = 0;
  434. unsigned apicid = hard_smp_processor_id();
  435. #endif
  436. unsigned ecx = cpuid_ecx(0x80000008);
  437. c->x86_max_cores = (ecx & 0xff) + 1;
  438. /* CPU telling us the core id bits shift? */
  439. bits = (ecx >> 12) & 0xF;
  440. /* Otherwise recompute */
  441. if (bits == 0) {
  442. while ((1 << bits) < c->x86_max_cores)
  443. bits++;
  444. }
  445. /* Low order bits define the core id (index of core in socket) */
  446. c->cpu_core_id = c->phys_proc_id & ((1 << bits)-1);
  447. /* Convert the APIC ID into the socket ID */
  448. c->phys_proc_id = phys_pkg_id(bits);
  449. #ifdef CONFIG_NUMA
  450. node = c->phys_proc_id;
  451. if (apicid_to_node[apicid] != NUMA_NO_NODE)
  452. node = apicid_to_node[apicid];
  453. if (!node_online(node)) {
  454. /* Two possibilities here:
  455. - The CPU is missing memory and no node was created.
  456. In that case try picking one from a nearby CPU
  457. - The APIC IDs differ from the HyperTransport node IDs
  458. which the K8 northbridge parsing fills in.
  459. Assume they are all increased by a constant offset,
  460. but in the same order as the HT nodeids.
  461. If that doesn't result in a usable node fall back to the
  462. path for the previous case. */
  463. int ht_nodeid = apicid - (cpu_data[0].phys_proc_id << bits);
  464. if (ht_nodeid >= 0 &&
  465. apicid_to_node[ht_nodeid] != NUMA_NO_NODE)
  466. node = apicid_to_node[ht_nodeid];
  467. /* Pick a nearby node */
  468. if (!node_online(node))
  469. node = nearby_node(apicid);
  470. }
  471. numa_set_node(cpu, node);
  472. printk(KERN_INFO "CPU %d/%x -> Node %d\n", cpu, apicid, node);
  473. #endif
  474. #endif
  475. }
  476. static void __cpuinit init_amd(struct cpuinfo_x86 *c)
  477. {
  478. unsigned level;
  479. #ifdef CONFIG_SMP
  480. unsigned long value;
  481. /*
  482. * Disable TLB flush filter by setting HWCR.FFDIS on K8
  483. * bit 6 of msr C001_0015
  484. *
  485. * Errata 63 for SH-B3 steppings
  486. * Errata 122 for all steppings (F+ have it disabled by default)
  487. */
  488. if (c->x86 == 15) {
  489. rdmsrl(MSR_K8_HWCR, value);
  490. value |= 1 << 6;
  491. wrmsrl(MSR_K8_HWCR, value);
  492. }
  493. #endif
  494. /* Bit 31 in normal CPUID used for nonstandard 3DNow ID;
  495. 3DNow is IDd by bit 31 in extended CPUID (1*32+31) anyway */
  496. clear_bit(0*32+31, &c->x86_capability);
  497. /* On C+ stepping K8 rep microcode works well for copy/memset */
  498. level = cpuid_eax(1);
  499. if (c->x86 == 15 && ((level >= 0x0f48 && level < 0x0f50) || level >= 0x0f58))
  500. set_bit(X86_FEATURE_REP_GOOD, &c->x86_capability);
  501. /* Enable workaround for FXSAVE leak */
  502. if (c->x86 >= 6)
  503. set_bit(X86_FEATURE_FXSAVE_LEAK, &c->x86_capability);
  504. level = get_model_name(c);
  505. if (!level) {
  506. switch (c->x86) {
  507. case 15:
  508. /* Should distinguish Models here, but this is only
  509. a fallback anyways. */
  510. strcpy(c->x86_model_id, "Hammer");
  511. break;
  512. }
  513. }
  514. display_cacheinfo(c);
  515. /* c->x86_power is 8000_0007 edx. Bit 8 is constant TSC */
  516. if (c->x86_power & (1<<8))
  517. set_bit(X86_FEATURE_CONSTANT_TSC, &c->x86_capability);
  518. /* Multi core CPU? */
  519. if (c->extended_cpuid_level >= 0x80000008)
  520. amd_detect_cmp(c);
  521. /* Fix cpuid4 emulation for more */
  522. num_cache_leaves = 3;
  523. /* RDTSC can be speculated around */
  524. clear_bit(X86_FEATURE_SYNC_RDTSC, &c->x86_capability);
  525. }
  526. static void __cpuinit detect_ht(struct cpuinfo_x86 *c)
  527. {
  528. #ifdef CONFIG_SMP
  529. u32 eax, ebx, ecx, edx;
  530. int index_msb, core_bits;
  531. cpuid(1, &eax, &ebx, &ecx, &edx);
  532. if (!cpu_has(c, X86_FEATURE_HT))
  533. return;
  534. if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
  535. goto out;
  536. smp_num_siblings = (ebx & 0xff0000) >> 16;
  537. if (smp_num_siblings == 1) {
  538. printk(KERN_INFO "CPU: Hyper-Threading is disabled\n");
  539. } else if (smp_num_siblings > 1 ) {
  540. if (smp_num_siblings > NR_CPUS) {
  541. printk(KERN_WARNING "CPU: Unsupported number of the siblings %d", smp_num_siblings);
  542. smp_num_siblings = 1;
  543. return;
  544. }
  545. index_msb = get_count_order(smp_num_siblings);
  546. c->phys_proc_id = phys_pkg_id(index_msb);
  547. smp_num_siblings = smp_num_siblings / c->x86_max_cores;
  548. index_msb = get_count_order(smp_num_siblings) ;
  549. core_bits = get_count_order(c->x86_max_cores);
  550. c->cpu_core_id = phys_pkg_id(index_msb) &
  551. ((1 << core_bits) - 1);
  552. }
  553. out:
  554. if ((c->x86_max_cores * smp_num_siblings) > 1) {
  555. printk(KERN_INFO "CPU: Physical Processor ID: %d\n", c->phys_proc_id);
  556. printk(KERN_INFO "CPU: Processor Core ID: %d\n", c->cpu_core_id);
  557. }
  558. #endif
  559. }
  560. /*
  561. * find out the number of processor cores on the die
  562. */
  563. static int __cpuinit intel_num_cpu_cores(struct cpuinfo_x86 *c)
  564. {
  565. unsigned int eax, t;
  566. if (c->cpuid_level < 4)
  567. return 1;
  568. cpuid_count(4, 0, &eax, &t, &t, &t);
  569. if (eax & 0x1f)
  570. return ((eax >> 26) + 1);
  571. else
  572. return 1;
  573. }
  574. static void srat_detect_node(void)
  575. {
  576. #ifdef CONFIG_NUMA
  577. unsigned node;
  578. int cpu = smp_processor_id();
  579. int apicid = hard_smp_processor_id();
  580. /* Don't do the funky fallback heuristics the AMD version employs
  581. for now. */
  582. node = apicid_to_node[apicid];
  583. if (node == NUMA_NO_NODE)
  584. node = first_node(node_online_map);
  585. numa_set_node(cpu, node);
  586. printk(KERN_INFO "CPU %d/%x -> Node %d\n", cpu, apicid, node);
  587. #endif
  588. }
  589. static void __cpuinit init_intel(struct cpuinfo_x86 *c)
  590. {
  591. /* Cache sizes */
  592. unsigned n;
  593. init_intel_cacheinfo(c);
  594. if (c->cpuid_level > 9 ) {
  595. unsigned eax = cpuid_eax(10);
  596. /* Check for version and the number of counters */
  597. if ((eax & 0xff) && (((eax>>8) & 0xff) > 1))
  598. set_bit(X86_FEATURE_ARCH_PERFMON, &c->x86_capability);
  599. }
  600. if (cpu_has_ds) {
  601. unsigned int l1, l2;
  602. rdmsr(MSR_IA32_MISC_ENABLE, l1, l2);
  603. if (!(l1 & (1<<11)))
  604. set_bit(X86_FEATURE_BTS, c->x86_capability);
  605. if (!(l1 & (1<<12)))
  606. set_bit(X86_FEATURE_PEBS, c->x86_capability);
  607. }
  608. n = c->extended_cpuid_level;
  609. if (n >= 0x80000008) {
  610. unsigned eax = cpuid_eax(0x80000008);
  611. c->x86_virt_bits = (eax >> 8) & 0xff;
  612. c->x86_phys_bits = eax & 0xff;
  613. /* CPUID workaround for Intel 0F34 CPU */
  614. if (c->x86_vendor == X86_VENDOR_INTEL &&
  615. c->x86 == 0xF && c->x86_model == 0x3 &&
  616. c->x86_mask == 0x4)
  617. c->x86_phys_bits = 36;
  618. }
  619. if (c->x86 == 15)
  620. c->x86_cache_alignment = c->x86_clflush_size * 2;
  621. if ((c->x86 == 0xf && c->x86_model >= 0x03) ||
  622. (c->x86 == 0x6 && c->x86_model >= 0x0e))
  623. set_bit(X86_FEATURE_CONSTANT_TSC, &c->x86_capability);
  624. if (c->x86 == 6)
  625. set_bit(X86_FEATURE_REP_GOOD, &c->x86_capability);
  626. if (c->x86 == 15)
  627. set_bit(X86_FEATURE_SYNC_RDTSC, &c->x86_capability);
  628. else
  629. clear_bit(X86_FEATURE_SYNC_RDTSC, &c->x86_capability);
  630. c->x86_max_cores = intel_num_cpu_cores(c);
  631. srat_detect_node();
  632. }
  633. static void __cpuinit get_cpu_vendor(struct cpuinfo_x86 *c)
  634. {
  635. char *v = c->x86_vendor_id;
  636. if (!strcmp(v, "AuthenticAMD"))
  637. c->x86_vendor = X86_VENDOR_AMD;
  638. else if (!strcmp(v, "GenuineIntel"))
  639. c->x86_vendor = X86_VENDOR_INTEL;
  640. else
  641. c->x86_vendor = X86_VENDOR_UNKNOWN;
  642. }
  643. struct cpu_model_info {
  644. int vendor;
  645. int family;
  646. char *model_names[16];
  647. };
  648. /* Do some early cpuid on the boot CPU to get some parameter that are
  649. needed before check_bugs. Everything advanced is in identify_cpu
  650. below. */
  651. void __cpuinit early_identify_cpu(struct cpuinfo_x86 *c)
  652. {
  653. u32 tfms;
  654. c->loops_per_jiffy = loops_per_jiffy;
  655. c->x86_cache_size = -1;
  656. c->x86_vendor = X86_VENDOR_UNKNOWN;
  657. c->x86_model = c->x86_mask = 0; /* So far unknown... */
  658. c->x86_vendor_id[0] = '\0'; /* Unset */
  659. c->x86_model_id[0] = '\0'; /* Unset */
  660. c->x86_clflush_size = 64;
  661. c->x86_cache_alignment = c->x86_clflush_size;
  662. c->x86_max_cores = 1;
  663. c->extended_cpuid_level = 0;
  664. memset(&c->x86_capability, 0, sizeof c->x86_capability);
  665. /* Get vendor name */
  666. cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
  667. (unsigned int *)&c->x86_vendor_id[0],
  668. (unsigned int *)&c->x86_vendor_id[8],
  669. (unsigned int *)&c->x86_vendor_id[4]);
  670. get_cpu_vendor(c);
  671. /* Initialize the standard set of capabilities */
  672. /* Note that the vendor-specific code below might override */
  673. /* Intel-defined flags: level 0x00000001 */
  674. if (c->cpuid_level >= 0x00000001) {
  675. __u32 misc;
  676. cpuid(0x00000001, &tfms, &misc, &c->x86_capability[4],
  677. &c->x86_capability[0]);
  678. c->x86 = (tfms >> 8) & 0xf;
  679. c->x86_model = (tfms >> 4) & 0xf;
  680. c->x86_mask = tfms & 0xf;
  681. if (c->x86 == 0xf)
  682. c->x86 += (tfms >> 20) & 0xff;
  683. if (c->x86 >= 0x6)
  684. c->x86_model += ((tfms >> 16) & 0xF) << 4;
  685. if (c->x86_capability[0] & (1<<19))
  686. c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
  687. } else {
  688. /* Have CPUID level 0 only - unheard of */
  689. c->x86 = 4;
  690. }
  691. #ifdef CONFIG_SMP
  692. c->phys_proc_id = (cpuid_ebx(1) >> 24) & 0xff;
  693. #endif
  694. }
  695. /*
  696. * This does the hard work of actually picking apart the CPU stuff...
  697. */
  698. void __cpuinit identify_cpu(struct cpuinfo_x86 *c)
  699. {
  700. int i;
  701. u32 xlvl;
  702. early_identify_cpu(c);
  703. /* AMD-defined flags: level 0x80000001 */
  704. xlvl = cpuid_eax(0x80000000);
  705. c->extended_cpuid_level = xlvl;
  706. if ((xlvl & 0xffff0000) == 0x80000000) {
  707. if (xlvl >= 0x80000001) {
  708. c->x86_capability[1] = cpuid_edx(0x80000001);
  709. c->x86_capability[6] = cpuid_ecx(0x80000001);
  710. }
  711. if (xlvl >= 0x80000004)
  712. get_model_name(c); /* Default name */
  713. }
  714. /* Transmeta-defined flags: level 0x80860001 */
  715. xlvl = cpuid_eax(0x80860000);
  716. if ((xlvl & 0xffff0000) == 0x80860000) {
  717. /* Don't set x86_cpuid_level here for now to not confuse. */
  718. if (xlvl >= 0x80860001)
  719. c->x86_capability[2] = cpuid_edx(0x80860001);
  720. }
  721. c->apicid = phys_pkg_id(0);
  722. /*
  723. * Vendor-specific initialization. In this section we
  724. * canonicalize the feature flags, meaning if there are
  725. * features a certain CPU supports which CPUID doesn't
  726. * tell us, CPUID claiming incorrect flags, or other bugs,
  727. * we handle them here.
  728. *
  729. * At the end of this section, c->x86_capability better
  730. * indicate the features this CPU genuinely supports!
  731. */
  732. switch (c->x86_vendor) {
  733. case X86_VENDOR_AMD:
  734. init_amd(c);
  735. break;
  736. case X86_VENDOR_INTEL:
  737. init_intel(c);
  738. break;
  739. case X86_VENDOR_UNKNOWN:
  740. default:
  741. display_cacheinfo(c);
  742. break;
  743. }
  744. select_idle_routine(c);
  745. detect_ht(c);
  746. /*
  747. * On SMP, boot_cpu_data holds the common feature set between
  748. * all CPUs; so make sure that we indicate which features are
  749. * common between the CPUs. The first time this routine gets
  750. * executed, c == &boot_cpu_data.
  751. */
  752. if (c != &boot_cpu_data) {
  753. /* AND the already accumulated flags with these */
  754. for (i = 0 ; i < NCAPINTS ; i++)
  755. boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
  756. }
  757. #ifdef CONFIG_X86_MCE
  758. mcheck_init(c);
  759. #endif
  760. if (c == &boot_cpu_data)
  761. mtrr_bp_init();
  762. else
  763. mtrr_ap_init();
  764. #ifdef CONFIG_NUMA
  765. numa_add_cpu(smp_processor_id());
  766. #endif
  767. }
  768. void __cpuinit print_cpu_info(struct cpuinfo_x86 *c)
  769. {
  770. if (c->x86_model_id[0])
  771. printk("%s", c->x86_model_id);
  772. if (c->x86_mask || c->cpuid_level >= 0)
  773. printk(" stepping %02x\n", c->x86_mask);
  774. else
  775. printk("\n");
  776. }
  777. /*
  778. * Get CPU information for use by the procfs.
  779. */
  780. static int show_cpuinfo(struct seq_file *m, void *v)
  781. {
  782. struct cpuinfo_x86 *c = v;
  783. /*
  784. * These flag bits must match the definitions in <asm/cpufeature.h>.
  785. * NULL means this bit is undefined or reserved; either way it doesn't
  786. * have meaning as far as Linux is concerned. Note that it's important
  787. * to realize there is a difference between this table and CPUID -- if
  788. * applications want to get the raw CPUID data, they should access
  789. * /dev/cpu/<cpu_nr>/cpuid instead.
  790. */
  791. static char *x86_cap_flags[] = {
  792. /* Intel-defined */
  793. "fpu", "vme", "de", "pse", "tsc", "msr", "pae", "mce",
  794. "cx8", "apic", NULL, "sep", "mtrr", "pge", "mca", "cmov",
  795. "pat", "pse36", "pn", "clflush", NULL, "dts", "acpi", "mmx",
  796. "fxsr", "sse", "sse2", "ss", "ht", "tm", "ia64", NULL,
  797. /* AMD-defined */
  798. NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  799. NULL, NULL, NULL, "syscall", NULL, NULL, NULL, NULL,
  800. NULL, NULL, NULL, NULL, "nx", NULL, "mmxext", NULL,
  801. NULL, "fxsr_opt", "pdpe1gb", "rdtscp", NULL, "lm",
  802. "3dnowext", "3dnow",
  803. /* Transmeta-defined */
  804. "recovery", "longrun", NULL, "lrti", NULL, NULL, NULL, NULL,
  805. NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  806. NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  807. NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  808. /* Other (Linux-defined) */
  809. "cxmmx", NULL, "cyrix_arr", "centaur_mcr", NULL,
  810. "constant_tsc", NULL, NULL,
  811. "up", NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  812. NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  813. NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  814. /* Intel-defined (#2) */
  815. "pni", NULL, NULL, "monitor", "ds_cpl", "vmx", "smx", "est",
  816. "tm2", "ssse3", "cid", NULL, NULL, "cx16", "xtpr", NULL,
  817. NULL, NULL, "dca", NULL, NULL, NULL, NULL, "popcnt",
  818. NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  819. /* VIA/Cyrix/Centaur-defined */
  820. NULL, NULL, "rng", "rng_en", NULL, NULL, "ace", "ace_en",
  821. NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  822. NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  823. NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  824. /* AMD-defined (#2) */
  825. "lahf_lm", "cmp_legacy", "svm", "extapic", "cr8_legacy",
  826. "altmovcr8", "abm", "sse4a",
  827. "misalignsse", "3dnowprefetch",
  828. "osvw", "ibs", NULL, NULL, NULL, NULL,
  829. NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  830. NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  831. };
  832. static char *x86_power_flags[] = {
  833. "ts", /* temperature sensor */
  834. "fid", /* frequency id control */
  835. "vid", /* voltage id control */
  836. "ttp", /* thermal trip */
  837. "tm",
  838. "stc",
  839. "100mhzsteps",
  840. "hwpstate",
  841. NULL, /* tsc invariant mapped to constant_tsc */
  842. NULL,
  843. /* nothing */ /* constant_tsc - moved to flags */
  844. };
  845. #ifdef CONFIG_SMP
  846. if (!cpu_online(c-cpu_data))
  847. return 0;
  848. #endif
  849. seq_printf(m,"processor\t: %u\n"
  850. "vendor_id\t: %s\n"
  851. "cpu family\t: %d\n"
  852. "model\t\t: %d\n"
  853. "model name\t: %s\n",
  854. (unsigned)(c-cpu_data),
  855. c->x86_vendor_id[0] ? c->x86_vendor_id : "unknown",
  856. c->x86,
  857. (int)c->x86_model,
  858. c->x86_model_id[0] ? c->x86_model_id : "unknown");
  859. if (c->x86_mask || c->cpuid_level >= 0)
  860. seq_printf(m, "stepping\t: %d\n", c->x86_mask);
  861. else
  862. seq_printf(m, "stepping\t: unknown\n");
  863. if (cpu_has(c,X86_FEATURE_TSC)) {
  864. unsigned int freq = cpufreq_quick_get((unsigned)(c-cpu_data));
  865. if (!freq)
  866. freq = cpu_khz;
  867. seq_printf(m, "cpu MHz\t\t: %u.%03u\n",
  868. freq / 1000, (freq % 1000));
  869. }
  870. /* Cache size */
  871. if (c->x86_cache_size >= 0)
  872. seq_printf(m, "cache size\t: %d KB\n", c->x86_cache_size);
  873. #ifdef CONFIG_SMP
  874. if (smp_num_siblings * c->x86_max_cores > 1) {
  875. int cpu = c - cpu_data;
  876. seq_printf(m, "physical id\t: %d\n", c->phys_proc_id);
  877. seq_printf(m, "siblings\t: %d\n", cpus_weight(cpu_core_map[cpu]));
  878. seq_printf(m, "core id\t\t: %d\n", c->cpu_core_id);
  879. seq_printf(m, "cpu cores\t: %d\n", c->booted_cores);
  880. }
  881. #endif
  882. seq_printf(m,
  883. "fpu\t\t: yes\n"
  884. "fpu_exception\t: yes\n"
  885. "cpuid level\t: %d\n"
  886. "wp\t\t: yes\n"
  887. "flags\t\t:",
  888. c->cpuid_level);
  889. {
  890. int i;
  891. for ( i = 0 ; i < 32*NCAPINTS ; i++ )
  892. if (cpu_has(c, i) && x86_cap_flags[i] != NULL)
  893. seq_printf(m, " %s", x86_cap_flags[i]);
  894. }
  895. seq_printf(m, "\nbogomips\t: %lu.%02lu\n",
  896. c->loops_per_jiffy/(500000/HZ),
  897. (c->loops_per_jiffy/(5000/HZ)) % 100);
  898. if (c->x86_tlbsize > 0)
  899. seq_printf(m, "TLB size\t: %d 4K pages\n", c->x86_tlbsize);
  900. seq_printf(m, "clflush size\t: %d\n", c->x86_clflush_size);
  901. seq_printf(m, "cache_alignment\t: %d\n", c->x86_cache_alignment);
  902. seq_printf(m, "address sizes\t: %u bits physical, %u bits virtual\n",
  903. c->x86_phys_bits, c->x86_virt_bits);
  904. seq_printf(m, "power management:");
  905. {
  906. unsigned i;
  907. for (i = 0; i < 32; i++)
  908. if (c->x86_power & (1 << i)) {
  909. if (i < ARRAY_SIZE(x86_power_flags) &&
  910. x86_power_flags[i])
  911. seq_printf(m, "%s%s",
  912. x86_power_flags[i][0]?" ":"",
  913. x86_power_flags[i]);
  914. else
  915. seq_printf(m, " [%d]", i);
  916. }
  917. }
  918. seq_printf(m, "\n\n");
  919. return 0;
  920. }
  921. static void *c_start(struct seq_file *m, loff_t *pos)
  922. {
  923. return *pos < NR_CPUS ? cpu_data + *pos : NULL;
  924. }
  925. static void *c_next(struct seq_file *m, void *v, loff_t *pos)
  926. {
  927. ++*pos;
  928. return c_start(m, pos);
  929. }
  930. static void c_stop(struct seq_file *m, void *v)
  931. {
  932. }
  933. struct seq_operations cpuinfo_op = {
  934. .start =c_start,
  935. .next = c_next,
  936. .stop = c_stop,
  937. .show = show_cpuinfo,
  938. };
  939. #if defined(CONFIG_INPUT_PCSPKR) || defined(CONFIG_INPUT_PCSPKR_MODULE)
  940. #include <linux/platform_device.h>
  941. static __init int add_pcspkr(void)
  942. {
  943. struct platform_device *pd;
  944. int ret;
  945. pd = platform_device_alloc("pcspkr", -1);
  946. if (!pd)
  947. return -ENOMEM;
  948. ret = platform_device_add(pd);
  949. if (ret)
  950. platform_device_put(pd);
  951. return ret;
  952. }
  953. device_initcall(add_pcspkr);
  954. #endif