vmx.c 67 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * Copyright (C) 2006 Qumranet, Inc.
  8. *
  9. * Authors:
  10. * Avi Kivity <avi@qumranet.com>
  11. * Yaniv Kamay <yaniv@qumranet.com>
  12. *
  13. * This work is licensed under the terms of the GNU GPL, version 2. See
  14. * the COPYING file in the top-level directory.
  15. *
  16. */
  17. #include "kvm.h"
  18. #include "x86.h"
  19. #include "x86_emulate.h"
  20. #include "irq.h"
  21. #include "vmx.h"
  22. #include "segment_descriptor.h"
  23. #include <linux/module.h>
  24. #include <linux/kernel.h>
  25. #include <linux/mm.h>
  26. #include <linux/highmem.h>
  27. #include <linux/sched.h>
  28. #include <linux/moduleparam.h>
  29. #include <asm/io.h>
  30. #include <asm/desc.h>
  31. MODULE_AUTHOR("Qumranet");
  32. MODULE_LICENSE("GPL");
  33. static int bypass_guest_pf = 1;
  34. module_param(bypass_guest_pf, bool, 0);
  35. struct vmcs {
  36. u32 revision_id;
  37. u32 abort;
  38. char data[0];
  39. };
  40. struct vcpu_vmx {
  41. struct kvm_vcpu vcpu;
  42. int launched;
  43. u8 fail;
  44. struct kvm_msr_entry *guest_msrs;
  45. struct kvm_msr_entry *host_msrs;
  46. int nmsrs;
  47. int save_nmsrs;
  48. int msr_offset_efer;
  49. #ifdef CONFIG_X86_64
  50. int msr_offset_kernel_gs_base;
  51. #endif
  52. struct vmcs *vmcs;
  53. struct {
  54. int loaded;
  55. u16 fs_sel, gs_sel, ldt_sel;
  56. int gs_ldt_reload_needed;
  57. int fs_reload_needed;
  58. int guest_efer_loaded;
  59. } host_state;
  60. };
  61. static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
  62. {
  63. return container_of(vcpu, struct vcpu_vmx, vcpu);
  64. }
  65. static int init_rmode_tss(struct kvm *kvm);
  66. static DEFINE_PER_CPU(struct vmcs *, vmxarea);
  67. static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
  68. static struct page *vmx_io_bitmap_a;
  69. static struct page *vmx_io_bitmap_b;
  70. static struct vmcs_config {
  71. int size;
  72. int order;
  73. u32 revision_id;
  74. u32 pin_based_exec_ctrl;
  75. u32 cpu_based_exec_ctrl;
  76. u32 cpu_based_2nd_exec_ctrl;
  77. u32 vmexit_ctrl;
  78. u32 vmentry_ctrl;
  79. } vmcs_config;
  80. #define VMX_SEGMENT_FIELD(seg) \
  81. [VCPU_SREG_##seg] = { \
  82. .selector = GUEST_##seg##_SELECTOR, \
  83. .base = GUEST_##seg##_BASE, \
  84. .limit = GUEST_##seg##_LIMIT, \
  85. .ar_bytes = GUEST_##seg##_AR_BYTES, \
  86. }
  87. static struct kvm_vmx_segment_field {
  88. unsigned selector;
  89. unsigned base;
  90. unsigned limit;
  91. unsigned ar_bytes;
  92. } kvm_vmx_segment_fields[] = {
  93. VMX_SEGMENT_FIELD(CS),
  94. VMX_SEGMENT_FIELD(DS),
  95. VMX_SEGMENT_FIELD(ES),
  96. VMX_SEGMENT_FIELD(FS),
  97. VMX_SEGMENT_FIELD(GS),
  98. VMX_SEGMENT_FIELD(SS),
  99. VMX_SEGMENT_FIELD(TR),
  100. VMX_SEGMENT_FIELD(LDTR),
  101. };
  102. /*
  103. * Keep MSR_K6_STAR at the end, as setup_msrs() will try to optimize it
  104. * away by decrementing the array size.
  105. */
  106. static const u32 vmx_msr_index[] = {
  107. #ifdef CONFIG_X86_64
  108. MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR, MSR_KERNEL_GS_BASE,
  109. #endif
  110. MSR_EFER, MSR_K6_STAR,
  111. };
  112. #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
  113. static void load_msrs(struct kvm_msr_entry *e, int n)
  114. {
  115. int i;
  116. for (i = 0; i < n; ++i)
  117. wrmsrl(e[i].index, e[i].data);
  118. }
  119. static void save_msrs(struct kvm_msr_entry *e, int n)
  120. {
  121. int i;
  122. for (i = 0; i < n; ++i)
  123. rdmsrl(e[i].index, e[i].data);
  124. }
  125. static inline int is_page_fault(u32 intr_info)
  126. {
  127. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  128. INTR_INFO_VALID_MASK)) ==
  129. (INTR_TYPE_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
  130. }
  131. static inline int is_no_device(u32 intr_info)
  132. {
  133. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  134. INTR_INFO_VALID_MASK)) ==
  135. (INTR_TYPE_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
  136. }
  137. static inline int is_invalid_opcode(u32 intr_info)
  138. {
  139. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  140. INTR_INFO_VALID_MASK)) ==
  141. (INTR_TYPE_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
  142. }
  143. static inline int is_external_interrupt(u32 intr_info)
  144. {
  145. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
  146. == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
  147. }
  148. static inline int cpu_has_vmx_tpr_shadow(void)
  149. {
  150. return (vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW);
  151. }
  152. static inline int vm_need_tpr_shadow(struct kvm *kvm)
  153. {
  154. return ((cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm)));
  155. }
  156. static inline int cpu_has_secondary_exec_ctrls(void)
  157. {
  158. return (vmcs_config.cpu_based_exec_ctrl &
  159. CPU_BASED_ACTIVATE_SECONDARY_CONTROLS);
  160. }
  161. static inline int vm_need_secondary_exec_ctrls(struct kvm *kvm)
  162. {
  163. return ((cpu_has_secondary_exec_ctrls()) && (irqchip_in_kernel(kvm)));
  164. }
  165. static inline int cpu_has_vmx_virtualize_apic_accesses(void)
  166. {
  167. return (vmcs_config.cpu_based_2nd_exec_ctrl &
  168. SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
  169. }
  170. static inline int vm_need_virtualize_apic_accesses(struct kvm *kvm)
  171. {
  172. return ((cpu_has_vmx_virtualize_apic_accesses()) &&
  173. (irqchip_in_kernel(kvm)));
  174. }
  175. static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
  176. {
  177. int i;
  178. for (i = 0; i < vmx->nmsrs; ++i)
  179. if (vmx->guest_msrs[i].index == msr)
  180. return i;
  181. return -1;
  182. }
  183. static struct kvm_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
  184. {
  185. int i;
  186. i = __find_msr_index(vmx, msr);
  187. if (i >= 0)
  188. return &vmx->guest_msrs[i];
  189. return NULL;
  190. }
  191. static void vmcs_clear(struct vmcs *vmcs)
  192. {
  193. u64 phys_addr = __pa(vmcs);
  194. u8 error;
  195. asm volatile (ASM_VMX_VMCLEAR_RAX "; setna %0"
  196. : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
  197. : "cc", "memory");
  198. if (error)
  199. printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
  200. vmcs, phys_addr);
  201. }
  202. static void __vcpu_clear(void *arg)
  203. {
  204. struct vcpu_vmx *vmx = arg;
  205. int cpu = raw_smp_processor_id();
  206. if (vmx->vcpu.cpu == cpu)
  207. vmcs_clear(vmx->vmcs);
  208. if (per_cpu(current_vmcs, cpu) == vmx->vmcs)
  209. per_cpu(current_vmcs, cpu) = NULL;
  210. rdtscll(vmx->vcpu.host_tsc);
  211. }
  212. static void vcpu_clear(struct vcpu_vmx *vmx)
  213. {
  214. if (vmx->vcpu.cpu == -1)
  215. return;
  216. smp_call_function_single(vmx->vcpu.cpu, __vcpu_clear, vmx, 0, 1);
  217. vmx->launched = 0;
  218. }
  219. static unsigned long vmcs_readl(unsigned long field)
  220. {
  221. unsigned long value;
  222. asm volatile (ASM_VMX_VMREAD_RDX_RAX
  223. : "=a"(value) : "d"(field) : "cc");
  224. return value;
  225. }
  226. static u16 vmcs_read16(unsigned long field)
  227. {
  228. return vmcs_readl(field);
  229. }
  230. static u32 vmcs_read32(unsigned long field)
  231. {
  232. return vmcs_readl(field);
  233. }
  234. static u64 vmcs_read64(unsigned long field)
  235. {
  236. #ifdef CONFIG_X86_64
  237. return vmcs_readl(field);
  238. #else
  239. return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
  240. #endif
  241. }
  242. static noinline void vmwrite_error(unsigned long field, unsigned long value)
  243. {
  244. printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
  245. field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
  246. dump_stack();
  247. }
  248. static void vmcs_writel(unsigned long field, unsigned long value)
  249. {
  250. u8 error;
  251. asm volatile (ASM_VMX_VMWRITE_RAX_RDX "; setna %0"
  252. : "=q"(error) : "a"(value), "d"(field) : "cc");
  253. if (unlikely(error))
  254. vmwrite_error(field, value);
  255. }
  256. static void vmcs_write16(unsigned long field, u16 value)
  257. {
  258. vmcs_writel(field, value);
  259. }
  260. static void vmcs_write32(unsigned long field, u32 value)
  261. {
  262. vmcs_writel(field, value);
  263. }
  264. static void vmcs_write64(unsigned long field, u64 value)
  265. {
  266. #ifdef CONFIG_X86_64
  267. vmcs_writel(field, value);
  268. #else
  269. vmcs_writel(field, value);
  270. asm volatile ("");
  271. vmcs_writel(field+1, value >> 32);
  272. #endif
  273. }
  274. static void vmcs_clear_bits(unsigned long field, u32 mask)
  275. {
  276. vmcs_writel(field, vmcs_readl(field) & ~mask);
  277. }
  278. static void vmcs_set_bits(unsigned long field, u32 mask)
  279. {
  280. vmcs_writel(field, vmcs_readl(field) | mask);
  281. }
  282. static void update_exception_bitmap(struct kvm_vcpu *vcpu)
  283. {
  284. u32 eb;
  285. eb = (1u << PF_VECTOR) | (1u << UD_VECTOR);
  286. if (!vcpu->fpu_active)
  287. eb |= 1u << NM_VECTOR;
  288. if (vcpu->guest_debug.enabled)
  289. eb |= 1u << 1;
  290. if (vcpu->rmode.active)
  291. eb = ~0;
  292. vmcs_write32(EXCEPTION_BITMAP, eb);
  293. }
  294. static void reload_tss(void)
  295. {
  296. #ifndef CONFIG_X86_64
  297. /*
  298. * VT restores TR but not its size. Useless.
  299. */
  300. struct descriptor_table gdt;
  301. struct segment_descriptor *descs;
  302. get_gdt(&gdt);
  303. descs = (void *)gdt.base;
  304. descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
  305. load_TR_desc();
  306. #endif
  307. }
  308. static void load_transition_efer(struct vcpu_vmx *vmx)
  309. {
  310. int efer_offset = vmx->msr_offset_efer;
  311. u64 host_efer = vmx->host_msrs[efer_offset].data;
  312. u64 guest_efer = vmx->guest_msrs[efer_offset].data;
  313. u64 ignore_bits;
  314. if (efer_offset < 0)
  315. return;
  316. /*
  317. * NX is emulated; LMA and LME handled by hardware; SCE meaninless
  318. * outside long mode
  319. */
  320. ignore_bits = EFER_NX | EFER_SCE;
  321. #ifdef CONFIG_X86_64
  322. ignore_bits |= EFER_LMA | EFER_LME;
  323. /* SCE is meaningful only in long mode on Intel */
  324. if (guest_efer & EFER_LMA)
  325. ignore_bits &= ~(u64)EFER_SCE;
  326. #endif
  327. if ((guest_efer & ~ignore_bits) == (host_efer & ~ignore_bits))
  328. return;
  329. vmx->host_state.guest_efer_loaded = 1;
  330. guest_efer &= ~ignore_bits;
  331. guest_efer |= host_efer & ignore_bits;
  332. wrmsrl(MSR_EFER, guest_efer);
  333. vmx->vcpu.stat.efer_reload++;
  334. }
  335. static void reload_host_efer(struct vcpu_vmx *vmx)
  336. {
  337. if (vmx->host_state.guest_efer_loaded) {
  338. vmx->host_state.guest_efer_loaded = 0;
  339. load_msrs(vmx->host_msrs + vmx->msr_offset_efer, 1);
  340. }
  341. }
  342. static void vmx_save_host_state(struct kvm_vcpu *vcpu)
  343. {
  344. struct vcpu_vmx *vmx = to_vmx(vcpu);
  345. if (vmx->host_state.loaded)
  346. return;
  347. vmx->host_state.loaded = 1;
  348. /*
  349. * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
  350. * allow segment selectors with cpl > 0 or ti == 1.
  351. */
  352. vmx->host_state.ldt_sel = read_ldt();
  353. vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
  354. vmx->host_state.fs_sel = read_fs();
  355. if (!(vmx->host_state.fs_sel & 7)) {
  356. vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
  357. vmx->host_state.fs_reload_needed = 0;
  358. } else {
  359. vmcs_write16(HOST_FS_SELECTOR, 0);
  360. vmx->host_state.fs_reload_needed = 1;
  361. }
  362. vmx->host_state.gs_sel = read_gs();
  363. if (!(vmx->host_state.gs_sel & 7))
  364. vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
  365. else {
  366. vmcs_write16(HOST_GS_SELECTOR, 0);
  367. vmx->host_state.gs_ldt_reload_needed = 1;
  368. }
  369. #ifdef CONFIG_X86_64
  370. vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
  371. vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
  372. #else
  373. vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
  374. vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
  375. #endif
  376. #ifdef CONFIG_X86_64
  377. if (is_long_mode(&vmx->vcpu))
  378. save_msrs(vmx->host_msrs +
  379. vmx->msr_offset_kernel_gs_base, 1);
  380. #endif
  381. load_msrs(vmx->guest_msrs, vmx->save_nmsrs);
  382. load_transition_efer(vmx);
  383. }
  384. static void vmx_load_host_state(struct vcpu_vmx *vmx)
  385. {
  386. unsigned long flags;
  387. if (!vmx->host_state.loaded)
  388. return;
  389. vmx->host_state.loaded = 0;
  390. if (vmx->host_state.fs_reload_needed)
  391. load_fs(vmx->host_state.fs_sel);
  392. if (vmx->host_state.gs_ldt_reload_needed) {
  393. load_ldt(vmx->host_state.ldt_sel);
  394. /*
  395. * If we have to reload gs, we must take care to
  396. * preserve our gs base.
  397. */
  398. local_irq_save(flags);
  399. load_gs(vmx->host_state.gs_sel);
  400. #ifdef CONFIG_X86_64
  401. wrmsrl(MSR_GS_BASE, vmcs_readl(HOST_GS_BASE));
  402. #endif
  403. local_irq_restore(flags);
  404. }
  405. reload_tss();
  406. save_msrs(vmx->guest_msrs, vmx->save_nmsrs);
  407. load_msrs(vmx->host_msrs, vmx->save_nmsrs);
  408. reload_host_efer(vmx);
  409. }
  410. /*
  411. * Switches to specified vcpu, until a matching vcpu_put(), but assumes
  412. * vcpu mutex is already taken.
  413. */
  414. static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
  415. {
  416. struct vcpu_vmx *vmx = to_vmx(vcpu);
  417. u64 phys_addr = __pa(vmx->vmcs);
  418. u64 tsc_this, delta;
  419. if (vcpu->cpu != cpu) {
  420. vcpu_clear(vmx);
  421. kvm_migrate_apic_timer(vcpu);
  422. }
  423. if (per_cpu(current_vmcs, cpu) != vmx->vmcs) {
  424. u8 error;
  425. per_cpu(current_vmcs, cpu) = vmx->vmcs;
  426. asm volatile (ASM_VMX_VMPTRLD_RAX "; setna %0"
  427. : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
  428. : "cc");
  429. if (error)
  430. printk(KERN_ERR "kvm: vmptrld %p/%llx fail\n",
  431. vmx->vmcs, phys_addr);
  432. }
  433. if (vcpu->cpu != cpu) {
  434. struct descriptor_table dt;
  435. unsigned long sysenter_esp;
  436. vcpu->cpu = cpu;
  437. /*
  438. * Linux uses per-cpu TSS and GDT, so set these when switching
  439. * processors.
  440. */
  441. vmcs_writel(HOST_TR_BASE, read_tr_base()); /* 22.2.4 */
  442. get_gdt(&dt);
  443. vmcs_writel(HOST_GDTR_BASE, dt.base); /* 22.2.4 */
  444. rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
  445. vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
  446. /*
  447. * Make sure the time stamp counter is monotonous.
  448. */
  449. rdtscll(tsc_this);
  450. delta = vcpu->host_tsc - tsc_this;
  451. vmcs_write64(TSC_OFFSET, vmcs_read64(TSC_OFFSET) + delta);
  452. }
  453. }
  454. static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
  455. {
  456. vmx_load_host_state(to_vmx(vcpu));
  457. kvm_put_guest_fpu(vcpu);
  458. }
  459. static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
  460. {
  461. if (vcpu->fpu_active)
  462. return;
  463. vcpu->fpu_active = 1;
  464. vmcs_clear_bits(GUEST_CR0, X86_CR0_TS);
  465. if (vcpu->cr0 & X86_CR0_TS)
  466. vmcs_set_bits(GUEST_CR0, X86_CR0_TS);
  467. update_exception_bitmap(vcpu);
  468. }
  469. static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
  470. {
  471. if (!vcpu->fpu_active)
  472. return;
  473. vcpu->fpu_active = 0;
  474. vmcs_set_bits(GUEST_CR0, X86_CR0_TS);
  475. update_exception_bitmap(vcpu);
  476. }
  477. static void vmx_vcpu_decache(struct kvm_vcpu *vcpu)
  478. {
  479. vcpu_clear(to_vmx(vcpu));
  480. }
  481. static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
  482. {
  483. return vmcs_readl(GUEST_RFLAGS);
  484. }
  485. static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
  486. {
  487. if (vcpu->rmode.active)
  488. rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
  489. vmcs_writel(GUEST_RFLAGS, rflags);
  490. }
  491. static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
  492. {
  493. unsigned long rip;
  494. u32 interruptibility;
  495. rip = vmcs_readl(GUEST_RIP);
  496. rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  497. vmcs_writel(GUEST_RIP, rip);
  498. /*
  499. * We emulated an instruction, so temporary interrupt blocking
  500. * should be removed, if set.
  501. */
  502. interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
  503. if (interruptibility & 3)
  504. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
  505. interruptibility & ~3);
  506. vcpu->interrupt_window_open = 1;
  507. }
  508. static void vmx_inject_gp(struct kvm_vcpu *vcpu, unsigned error_code)
  509. {
  510. printk(KERN_DEBUG "inject_general_protection: rip 0x%lx\n",
  511. vmcs_readl(GUEST_RIP));
  512. vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
  513. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  514. GP_VECTOR |
  515. INTR_TYPE_EXCEPTION |
  516. INTR_INFO_DELIEVER_CODE_MASK |
  517. INTR_INFO_VALID_MASK);
  518. }
  519. static void vmx_inject_ud(struct kvm_vcpu *vcpu)
  520. {
  521. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  522. UD_VECTOR |
  523. INTR_TYPE_EXCEPTION |
  524. INTR_INFO_VALID_MASK);
  525. }
  526. /*
  527. * Swap MSR entry in host/guest MSR entry array.
  528. */
  529. #ifdef CONFIG_X86_64
  530. static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
  531. {
  532. struct kvm_msr_entry tmp;
  533. tmp = vmx->guest_msrs[to];
  534. vmx->guest_msrs[to] = vmx->guest_msrs[from];
  535. vmx->guest_msrs[from] = tmp;
  536. tmp = vmx->host_msrs[to];
  537. vmx->host_msrs[to] = vmx->host_msrs[from];
  538. vmx->host_msrs[from] = tmp;
  539. }
  540. #endif
  541. /*
  542. * Set up the vmcs to automatically save and restore system
  543. * msrs. Don't touch the 64-bit msrs if the guest is in legacy
  544. * mode, as fiddling with msrs is very expensive.
  545. */
  546. static void setup_msrs(struct vcpu_vmx *vmx)
  547. {
  548. int save_nmsrs;
  549. save_nmsrs = 0;
  550. #ifdef CONFIG_X86_64
  551. if (is_long_mode(&vmx->vcpu)) {
  552. int index;
  553. index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
  554. if (index >= 0)
  555. move_msr_up(vmx, index, save_nmsrs++);
  556. index = __find_msr_index(vmx, MSR_LSTAR);
  557. if (index >= 0)
  558. move_msr_up(vmx, index, save_nmsrs++);
  559. index = __find_msr_index(vmx, MSR_CSTAR);
  560. if (index >= 0)
  561. move_msr_up(vmx, index, save_nmsrs++);
  562. index = __find_msr_index(vmx, MSR_KERNEL_GS_BASE);
  563. if (index >= 0)
  564. move_msr_up(vmx, index, save_nmsrs++);
  565. /*
  566. * MSR_K6_STAR is only needed on long mode guests, and only
  567. * if efer.sce is enabled.
  568. */
  569. index = __find_msr_index(vmx, MSR_K6_STAR);
  570. if ((index >= 0) && (vmx->vcpu.shadow_efer & EFER_SCE))
  571. move_msr_up(vmx, index, save_nmsrs++);
  572. }
  573. #endif
  574. vmx->save_nmsrs = save_nmsrs;
  575. #ifdef CONFIG_X86_64
  576. vmx->msr_offset_kernel_gs_base =
  577. __find_msr_index(vmx, MSR_KERNEL_GS_BASE);
  578. #endif
  579. vmx->msr_offset_efer = __find_msr_index(vmx, MSR_EFER);
  580. }
  581. /*
  582. * reads and returns guest's timestamp counter "register"
  583. * guest_tsc = host_tsc + tsc_offset -- 21.3
  584. */
  585. static u64 guest_read_tsc(void)
  586. {
  587. u64 host_tsc, tsc_offset;
  588. rdtscll(host_tsc);
  589. tsc_offset = vmcs_read64(TSC_OFFSET);
  590. return host_tsc + tsc_offset;
  591. }
  592. /*
  593. * writes 'guest_tsc' into guest's timestamp counter "register"
  594. * guest_tsc = host_tsc + tsc_offset ==> tsc_offset = guest_tsc - host_tsc
  595. */
  596. static void guest_write_tsc(u64 guest_tsc)
  597. {
  598. u64 host_tsc;
  599. rdtscll(host_tsc);
  600. vmcs_write64(TSC_OFFSET, guest_tsc - host_tsc);
  601. }
  602. /*
  603. * Reads an msr value (of 'msr_index') into 'pdata'.
  604. * Returns 0 on success, non-0 otherwise.
  605. * Assumes vcpu_load() was already called.
  606. */
  607. static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  608. {
  609. u64 data;
  610. struct kvm_msr_entry *msr;
  611. if (!pdata) {
  612. printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
  613. return -EINVAL;
  614. }
  615. switch (msr_index) {
  616. #ifdef CONFIG_X86_64
  617. case MSR_FS_BASE:
  618. data = vmcs_readl(GUEST_FS_BASE);
  619. break;
  620. case MSR_GS_BASE:
  621. data = vmcs_readl(GUEST_GS_BASE);
  622. break;
  623. case MSR_EFER:
  624. return kvm_get_msr_common(vcpu, msr_index, pdata);
  625. #endif
  626. case MSR_IA32_TIME_STAMP_COUNTER:
  627. data = guest_read_tsc();
  628. break;
  629. case MSR_IA32_SYSENTER_CS:
  630. data = vmcs_read32(GUEST_SYSENTER_CS);
  631. break;
  632. case MSR_IA32_SYSENTER_EIP:
  633. data = vmcs_readl(GUEST_SYSENTER_EIP);
  634. break;
  635. case MSR_IA32_SYSENTER_ESP:
  636. data = vmcs_readl(GUEST_SYSENTER_ESP);
  637. break;
  638. default:
  639. msr = find_msr_entry(to_vmx(vcpu), msr_index);
  640. if (msr) {
  641. data = msr->data;
  642. break;
  643. }
  644. return kvm_get_msr_common(vcpu, msr_index, pdata);
  645. }
  646. *pdata = data;
  647. return 0;
  648. }
  649. /*
  650. * Writes msr value into into the appropriate "register".
  651. * Returns 0 on success, non-0 otherwise.
  652. * Assumes vcpu_load() was already called.
  653. */
  654. static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  655. {
  656. struct vcpu_vmx *vmx = to_vmx(vcpu);
  657. struct kvm_msr_entry *msr;
  658. int ret = 0;
  659. switch (msr_index) {
  660. #ifdef CONFIG_X86_64
  661. case MSR_EFER:
  662. ret = kvm_set_msr_common(vcpu, msr_index, data);
  663. if (vmx->host_state.loaded) {
  664. reload_host_efer(vmx);
  665. load_transition_efer(vmx);
  666. }
  667. break;
  668. case MSR_FS_BASE:
  669. vmcs_writel(GUEST_FS_BASE, data);
  670. break;
  671. case MSR_GS_BASE:
  672. vmcs_writel(GUEST_GS_BASE, data);
  673. break;
  674. #endif
  675. case MSR_IA32_SYSENTER_CS:
  676. vmcs_write32(GUEST_SYSENTER_CS, data);
  677. break;
  678. case MSR_IA32_SYSENTER_EIP:
  679. vmcs_writel(GUEST_SYSENTER_EIP, data);
  680. break;
  681. case MSR_IA32_SYSENTER_ESP:
  682. vmcs_writel(GUEST_SYSENTER_ESP, data);
  683. break;
  684. case MSR_IA32_TIME_STAMP_COUNTER:
  685. guest_write_tsc(data);
  686. break;
  687. default:
  688. msr = find_msr_entry(vmx, msr_index);
  689. if (msr) {
  690. msr->data = data;
  691. if (vmx->host_state.loaded)
  692. load_msrs(vmx->guest_msrs, vmx->save_nmsrs);
  693. break;
  694. }
  695. ret = kvm_set_msr_common(vcpu, msr_index, data);
  696. }
  697. return ret;
  698. }
  699. /*
  700. * Sync the rsp and rip registers into the vcpu structure. This allows
  701. * registers to be accessed by indexing vcpu->regs.
  702. */
  703. static void vcpu_load_rsp_rip(struct kvm_vcpu *vcpu)
  704. {
  705. vcpu->regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
  706. vcpu->rip = vmcs_readl(GUEST_RIP);
  707. }
  708. /*
  709. * Syncs rsp and rip back into the vmcs. Should be called after possible
  710. * modification.
  711. */
  712. static void vcpu_put_rsp_rip(struct kvm_vcpu *vcpu)
  713. {
  714. vmcs_writel(GUEST_RSP, vcpu->regs[VCPU_REGS_RSP]);
  715. vmcs_writel(GUEST_RIP, vcpu->rip);
  716. }
  717. static int set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_debug_guest *dbg)
  718. {
  719. unsigned long dr7 = 0x400;
  720. int old_singlestep;
  721. old_singlestep = vcpu->guest_debug.singlestep;
  722. vcpu->guest_debug.enabled = dbg->enabled;
  723. if (vcpu->guest_debug.enabled) {
  724. int i;
  725. dr7 |= 0x200; /* exact */
  726. for (i = 0; i < 4; ++i) {
  727. if (!dbg->breakpoints[i].enabled)
  728. continue;
  729. vcpu->guest_debug.bp[i] = dbg->breakpoints[i].address;
  730. dr7 |= 2 << (i*2); /* global enable */
  731. dr7 |= 0 << (i*4+16); /* execution breakpoint */
  732. }
  733. vcpu->guest_debug.singlestep = dbg->singlestep;
  734. } else
  735. vcpu->guest_debug.singlestep = 0;
  736. if (old_singlestep && !vcpu->guest_debug.singlestep) {
  737. unsigned long flags;
  738. flags = vmcs_readl(GUEST_RFLAGS);
  739. flags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
  740. vmcs_writel(GUEST_RFLAGS, flags);
  741. }
  742. update_exception_bitmap(vcpu);
  743. vmcs_writel(GUEST_DR7, dr7);
  744. return 0;
  745. }
  746. static int vmx_get_irq(struct kvm_vcpu *vcpu)
  747. {
  748. u32 idtv_info_field;
  749. idtv_info_field = vmcs_read32(IDT_VECTORING_INFO_FIELD);
  750. if (idtv_info_field & INTR_INFO_VALID_MASK) {
  751. if (is_external_interrupt(idtv_info_field))
  752. return idtv_info_field & VECTORING_INFO_VECTOR_MASK;
  753. else
  754. printk(KERN_DEBUG "pending exception: not handled yet\n");
  755. }
  756. return -1;
  757. }
  758. static __init int cpu_has_kvm_support(void)
  759. {
  760. unsigned long ecx = cpuid_ecx(1);
  761. return test_bit(5, &ecx); /* CPUID.1:ECX.VMX[bit 5] -> VT */
  762. }
  763. static __init int vmx_disabled_by_bios(void)
  764. {
  765. u64 msr;
  766. rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
  767. return (msr & (MSR_IA32_FEATURE_CONTROL_LOCKED |
  768. MSR_IA32_FEATURE_CONTROL_VMXON_ENABLED))
  769. == MSR_IA32_FEATURE_CONTROL_LOCKED;
  770. /* locked but not enabled */
  771. }
  772. static void hardware_enable(void *garbage)
  773. {
  774. int cpu = raw_smp_processor_id();
  775. u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
  776. u64 old;
  777. rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
  778. if ((old & (MSR_IA32_FEATURE_CONTROL_LOCKED |
  779. MSR_IA32_FEATURE_CONTROL_VMXON_ENABLED))
  780. != (MSR_IA32_FEATURE_CONTROL_LOCKED |
  781. MSR_IA32_FEATURE_CONTROL_VMXON_ENABLED))
  782. /* enable and lock */
  783. wrmsrl(MSR_IA32_FEATURE_CONTROL, old |
  784. MSR_IA32_FEATURE_CONTROL_LOCKED |
  785. MSR_IA32_FEATURE_CONTROL_VMXON_ENABLED);
  786. write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */
  787. asm volatile (ASM_VMX_VMXON_RAX : : "a"(&phys_addr), "m"(phys_addr)
  788. : "memory", "cc");
  789. }
  790. static void hardware_disable(void *garbage)
  791. {
  792. asm volatile (ASM_VMX_VMXOFF : : : "cc");
  793. }
  794. static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
  795. u32 msr, u32 *result)
  796. {
  797. u32 vmx_msr_low, vmx_msr_high;
  798. u32 ctl = ctl_min | ctl_opt;
  799. rdmsr(msr, vmx_msr_low, vmx_msr_high);
  800. ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
  801. ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
  802. /* Ensure minimum (required) set of control bits are supported. */
  803. if (ctl_min & ~ctl)
  804. return -EIO;
  805. *result = ctl;
  806. return 0;
  807. }
  808. static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
  809. {
  810. u32 vmx_msr_low, vmx_msr_high;
  811. u32 min, opt;
  812. u32 _pin_based_exec_control = 0;
  813. u32 _cpu_based_exec_control = 0;
  814. u32 _cpu_based_2nd_exec_control = 0;
  815. u32 _vmexit_control = 0;
  816. u32 _vmentry_control = 0;
  817. min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
  818. opt = 0;
  819. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
  820. &_pin_based_exec_control) < 0)
  821. return -EIO;
  822. min = CPU_BASED_HLT_EXITING |
  823. #ifdef CONFIG_X86_64
  824. CPU_BASED_CR8_LOAD_EXITING |
  825. CPU_BASED_CR8_STORE_EXITING |
  826. #endif
  827. CPU_BASED_USE_IO_BITMAPS |
  828. CPU_BASED_MOV_DR_EXITING |
  829. CPU_BASED_USE_TSC_OFFSETING;
  830. opt = CPU_BASED_TPR_SHADOW |
  831. CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
  832. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
  833. &_cpu_based_exec_control) < 0)
  834. return -EIO;
  835. #ifdef CONFIG_X86_64
  836. if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
  837. _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
  838. ~CPU_BASED_CR8_STORE_EXITING;
  839. #endif
  840. if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
  841. min = 0;
  842. opt = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
  843. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS2,
  844. &_cpu_based_2nd_exec_control) < 0)
  845. return -EIO;
  846. }
  847. #ifndef CONFIG_X86_64
  848. if (!(_cpu_based_2nd_exec_control &
  849. SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
  850. _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
  851. #endif
  852. min = 0;
  853. #ifdef CONFIG_X86_64
  854. min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
  855. #endif
  856. opt = 0;
  857. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
  858. &_vmexit_control) < 0)
  859. return -EIO;
  860. min = opt = 0;
  861. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
  862. &_vmentry_control) < 0)
  863. return -EIO;
  864. rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
  865. /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
  866. if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
  867. return -EIO;
  868. #ifdef CONFIG_X86_64
  869. /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
  870. if (vmx_msr_high & (1u<<16))
  871. return -EIO;
  872. #endif
  873. /* Require Write-Back (WB) memory type for VMCS accesses. */
  874. if (((vmx_msr_high >> 18) & 15) != 6)
  875. return -EIO;
  876. vmcs_conf->size = vmx_msr_high & 0x1fff;
  877. vmcs_conf->order = get_order(vmcs_config.size);
  878. vmcs_conf->revision_id = vmx_msr_low;
  879. vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
  880. vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
  881. vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
  882. vmcs_conf->vmexit_ctrl = _vmexit_control;
  883. vmcs_conf->vmentry_ctrl = _vmentry_control;
  884. return 0;
  885. }
  886. static struct vmcs *alloc_vmcs_cpu(int cpu)
  887. {
  888. int node = cpu_to_node(cpu);
  889. struct page *pages;
  890. struct vmcs *vmcs;
  891. pages = alloc_pages_node(node, GFP_KERNEL, vmcs_config.order);
  892. if (!pages)
  893. return NULL;
  894. vmcs = page_address(pages);
  895. memset(vmcs, 0, vmcs_config.size);
  896. vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
  897. return vmcs;
  898. }
  899. static struct vmcs *alloc_vmcs(void)
  900. {
  901. return alloc_vmcs_cpu(raw_smp_processor_id());
  902. }
  903. static void free_vmcs(struct vmcs *vmcs)
  904. {
  905. free_pages((unsigned long)vmcs, vmcs_config.order);
  906. }
  907. static void free_kvm_area(void)
  908. {
  909. int cpu;
  910. for_each_online_cpu(cpu)
  911. free_vmcs(per_cpu(vmxarea, cpu));
  912. }
  913. static __init int alloc_kvm_area(void)
  914. {
  915. int cpu;
  916. for_each_online_cpu(cpu) {
  917. struct vmcs *vmcs;
  918. vmcs = alloc_vmcs_cpu(cpu);
  919. if (!vmcs) {
  920. free_kvm_area();
  921. return -ENOMEM;
  922. }
  923. per_cpu(vmxarea, cpu) = vmcs;
  924. }
  925. return 0;
  926. }
  927. static __init int hardware_setup(void)
  928. {
  929. if (setup_vmcs_config(&vmcs_config) < 0)
  930. return -EIO;
  931. return alloc_kvm_area();
  932. }
  933. static __exit void hardware_unsetup(void)
  934. {
  935. free_kvm_area();
  936. }
  937. static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save)
  938. {
  939. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  940. if (vmcs_readl(sf->base) == save->base && (save->base & AR_S_MASK)) {
  941. vmcs_write16(sf->selector, save->selector);
  942. vmcs_writel(sf->base, save->base);
  943. vmcs_write32(sf->limit, save->limit);
  944. vmcs_write32(sf->ar_bytes, save->ar);
  945. } else {
  946. u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK)
  947. << AR_DPL_SHIFT;
  948. vmcs_write32(sf->ar_bytes, 0x93 | dpl);
  949. }
  950. }
  951. static void enter_pmode(struct kvm_vcpu *vcpu)
  952. {
  953. unsigned long flags;
  954. vcpu->rmode.active = 0;
  955. vmcs_writel(GUEST_TR_BASE, vcpu->rmode.tr.base);
  956. vmcs_write32(GUEST_TR_LIMIT, vcpu->rmode.tr.limit);
  957. vmcs_write32(GUEST_TR_AR_BYTES, vcpu->rmode.tr.ar);
  958. flags = vmcs_readl(GUEST_RFLAGS);
  959. flags &= ~(X86_EFLAGS_IOPL | X86_EFLAGS_VM);
  960. flags |= (vcpu->rmode.save_iopl << IOPL_SHIFT);
  961. vmcs_writel(GUEST_RFLAGS, flags);
  962. vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
  963. (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
  964. update_exception_bitmap(vcpu);
  965. fix_pmode_dataseg(VCPU_SREG_ES, &vcpu->rmode.es);
  966. fix_pmode_dataseg(VCPU_SREG_DS, &vcpu->rmode.ds);
  967. fix_pmode_dataseg(VCPU_SREG_GS, &vcpu->rmode.gs);
  968. fix_pmode_dataseg(VCPU_SREG_FS, &vcpu->rmode.fs);
  969. vmcs_write16(GUEST_SS_SELECTOR, 0);
  970. vmcs_write32(GUEST_SS_AR_BYTES, 0x93);
  971. vmcs_write16(GUEST_CS_SELECTOR,
  972. vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK);
  973. vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
  974. }
  975. static gva_t rmode_tss_base(struct kvm *kvm)
  976. {
  977. if (!kvm->tss_addr) {
  978. gfn_t base_gfn = kvm->memslots[0].base_gfn +
  979. kvm->memslots[0].npages - 3;
  980. return base_gfn << PAGE_SHIFT;
  981. }
  982. return kvm->tss_addr;
  983. }
  984. static void fix_rmode_seg(int seg, struct kvm_save_segment *save)
  985. {
  986. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  987. save->selector = vmcs_read16(sf->selector);
  988. save->base = vmcs_readl(sf->base);
  989. save->limit = vmcs_read32(sf->limit);
  990. save->ar = vmcs_read32(sf->ar_bytes);
  991. vmcs_write16(sf->selector, vmcs_readl(sf->base) >> 4);
  992. vmcs_write32(sf->limit, 0xffff);
  993. vmcs_write32(sf->ar_bytes, 0xf3);
  994. }
  995. static void enter_rmode(struct kvm_vcpu *vcpu)
  996. {
  997. unsigned long flags;
  998. vcpu->rmode.active = 1;
  999. vcpu->rmode.tr.base = vmcs_readl(GUEST_TR_BASE);
  1000. vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
  1001. vcpu->rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT);
  1002. vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
  1003. vcpu->rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES);
  1004. vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
  1005. flags = vmcs_readl(GUEST_RFLAGS);
  1006. vcpu->rmode.save_iopl = (flags & X86_EFLAGS_IOPL) >> IOPL_SHIFT;
  1007. flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
  1008. vmcs_writel(GUEST_RFLAGS, flags);
  1009. vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
  1010. update_exception_bitmap(vcpu);
  1011. vmcs_write16(GUEST_SS_SELECTOR, vmcs_readl(GUEST_SS_BASE) >> 4);
  1012. vmcs_write32(GUEST_SS_LIMIT, 0xffff);
  1013. vmcs_write32(GUEST_SS_AR_BYTES, 0xf3);
  1014. vmcs_write32(GUEST_CS_AR_BYTES, 0xf3);
  1015. vmcs_write32(GUEST_CS_LIMIT, 0xffff);
  1016. if (vmcs_readl(GUEST_CS_BASE) == 0xffff0000)
  1017. vmcs_writel(GUEST_CS_BASE, 0xf0000);
  1018. vmcs_write16(GUEST_CS_SELECTOR, vmcs_readl(GUEST_CS_BASE) >> 4);
  1019. fix_rmode_seg(VCPU_SREG_ES, &vcpu->rmode.es);
  1020. fix_rmode_seg(VCPU_SREG_DS, &vcpu->rmode.ds);
  1021. fix_rmode_seg(VCPU_SREG_GS, &vcpu->rmode.gs);
  1022. fix_rmode_seg(VCPU_SREG_FS, &vcpu->rmode.fs);
  1023. kvm_mmu_reset_context(vcpu);
  1024. init_rmode_tss(vcpu->kvm);
  1025. }
  1026. #ifdef CONFIG_X86_64
  1027. static void enter_lmode(struct kvm_vcpu *vcpu)
  1028. {
  1029. u32 guest_tr_ar;
  1030. guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
  1031. if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
  1032. printk(KERN_DEBUG "%s: tss fixup for long mode. \n",
  1033. __FUNCTION__);
  1034. vmcs_write32(GUEST_TR_AR_BYTES,
  1035. (guest_tr_ar & ~AR_TYPE_MASK)
  1036. | AR_TYPE_BUSY_64_TSS);
  1037. }
  1038. vcpu->shadow_efer |= EFER_LMA;
  1039. find_msr_entry(to_vmx(vcpu), MSR_EFER)->data |= EFER_LMA | EFER_LME;
  1040. vmcs_write32(VM_ENTRY_CONTROLS,
  1041. vmcs_read32(VM_ENTRY_CONTROLS)
  1042. | VM_ENTRY_IA32E_MODE);
  1043. }
  1044. static void exit_lmode(struct kvm_vcpu *vcpu)
  1045. {
  1046. vcpu->shadow_efer &= ~EFER_LMA;
  1047. vmcs_write32(VM_ENTRY_CONTROLS,
  1048. vmcs_read32(VM_ENTRY_CONTROLS)
  1049. & ~VM_ENTRY_IA32E_MODE);
  1050. }
  1051. #endif
  1052. static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
  1053. {
  1054. vcpu->cr4 &= KVM_GUEST_CR4_MASK;
  1055. vcpu->cr4 |= vmcs_readl(GUEST_CR4) & ~KVM_GUEST_CR4_MASK;
  1056. }
  1057. static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  1058. {
  1059. vmx_fpu_deactivate(vcpu);
  1060. if (vcpu->rmode.active && (cr0 & X86_CR0_PE))
  1061. enter_pmode(vcpu);
  1062. if (!vcpu->rmode.active && !(cr0 & X86_CR0_PE))
  1063. enter_rmode(vcpu);
  1064. #ifdef CONFIG_X86_64
  1065. if (vcpu->shadow_efer & EFER_LME) {
  1066. if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
  1067. enter_lmode(vcpu);
  1068. if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
  1069. exit_lmode(vcpu);
  1070. }
  1071. #endif
  1072. vmcs_writel(CR0_READ_SHADOW, cr0);
  1073. vmcs_writel(GUEST_CR0,
  1074. (cr0 & ~KVM_GUEST_CR0_MASK) | KVM_VM_CR0_ALWAYS_ON);
  1075. vcpu->cr0 = cr0;
  1076. if (!(cr0 & X86_CR0_TS) || !(cr0 & X86_CR0_PE))
  1077. vmx_fpu_activate(vcpu);
  1078. }
  1079. static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
  1080. {
  1081. vmcs_writel(GUEST_CR3, cr3);
  1082. if (vcpu->cr0 & X86_CR0_PE)
  1083. vmx_fpu_deactivate(vcpu);
  1084. }
  1085. static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  1086. {
  1087. vmcs_writel(CR4_READ_SHADOW, cr4);
  1088. vmcs_writel(GUEST_CR4, cr4 | (vcpu->rmode.active ?
  1089. KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON));
  1090. vcpu->cr4 = cr4;
  1091. }
  1092. #ifdef CONFIG_X86_64
  1093. static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
  1094. {
  1095. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1096. struct kvm_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
  1097. vcpu->shadow_efer = efer;
  1098. if (efer & EFER_LMA) {
  1099. vmcs_write32(VM_ENTRY_CONTROLS,
  1100. vmcs_read32(VM_ENTRY_CONTROLS) |
  1101. VM_ENTRY_IA32E_MODE);
  1102. msr->data = efer;
  1103. } else {
  1104. vmcs_write32(VM_ENTRY_CONTROLS,
  1105. vmcs_read32(VM_ENTRY_CONTROLS) &
  1106. ~VM_ENTRY_IA32E_MODE);
  1107. msr->data = efer & ~EFER_LME;
  1108. }
  1109. setup_msrs(vmx);
  1110. }
  1111. #endif
  1112. static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
  1113. {
  1114. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1115. return vmcs_readl(sf->base);
  1116. }
  1117. static void vmx_get_segment(struct kvm_vcpu *vcpu,
  1118. struct kvm_segment *var, int seg)
  1119. {
  1120. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1121. u32 ar;
  1122. var->base = vmcs_readl(sf->base);
  1123. var->limit = vmcs_read32(sf->limit);
  1124. var->selector = vmcs_read16(sf->selector);
  1125. ar = vmcs_read32(sf->ar_bytes);
  1126. if (ar & AR_UNUSABLE_MASK)
  1127. ar = 0;
  1128. var->type = ar & 15;
  1129. var->s = (ar >> 4) & 1;
  1130. var->dpl = (ar >> 5) & 3;
  1131. var->present = (ar >> 7) & 1;
  1132. var->avl = (ar >> 12) & 1;
  1133. var->l = (ar >> 13) & 1;
  1134. var->db = (ar >> 14) & 1;
  1135. var->g = (ar >> 15) & 1;
  1136. var->unusable = (ar >> 16) & 1;
  1137. }
  1138. static u32 vmx_segment_access_rights(struct kvm_segment *var)
  1139. {
  1140. u32 ar;
  1141. if (var->unusable)
  1142. ar = 1 << 16;
  1143. else {
  1144. ar = var->type & 15;
  1145. ar |= (var->s & 1) << 4;
  1146. ar |= (var->dpl & 3) << 5;
  1147. ar |= (var->present & 1) << 7;
  1148. ar |= (var->avl & 1) << 12;
  1149. ar |= (var->l & 1) << 13;
  1150. ar |= (var->db & 1) << 14;
  1151. ar |= (var->g & 1) << 15;
  1152. }
  1153. if (ar == 0) /* a 0 value means unusable */
  1154. ar = AR_UNUSABLE_MASK;
  1155. return ar;
  1156. }
  1157. static void vmx_set_segment(struct kvm_vcpu *vcpu,
  1158. struct kvm_segment *var, int seg)
  1159. {
  1160. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1161. u32 ar;
  1162. if (vcpu->rmode.active && seg == VCPU_SREG_TR) {
  1163. vcpu->rmode.tr.selector = var->selector;
  1164. vcpu->rmode.tr.base = var->base;
  1165. vcpu->rmode.tr.limit = var->limit;
  1166. vcpu->rmode.tr.ar = vmx_segment_access_rights(var);
  1167. return;
  1168. }
  1169. vmcs_writel(sf->base, var->base);
  1170. vmcs_write32(sf->limit, var->limit);
  1171. vmcs_write16(sf->selector, var->selector);
  1172. if (vcpu->rmode.active && var->s) {
  1173. /*
  1174. * Hack real-mode segments into vm86 compatibility.
  1175. */
  1176. if (var->base == 0xffff0000 && var->selector == 0xf000)
  1177. vmcs_writel(sf->base, 0xf0000);
  1178. ar = 0xf3;
  1179. } else
  1180. ar = vmx_segment_access_rights(var);
  1181. vmcs_write32(sf->ar_bytes, ar);
  1182. }
  1183. static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
  1184. {
  1185. u32 ar = vmcs_read32(GUEST_CS_AR_BYTES);
  1186. *db = (ar >> 14) & 1;
  1187. *l = (ar >> 13) & 1;
  1188. }
  1189. static void vmx_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  1190. {
  1191. dt->limit = vmcs_read32(GUEST_IDTR_LIMIT);
  1192. dt->base = vmcs_readl(GUEST_IDTR_BASE);
  1193. }
  1194. static void vmx_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  1195. {
  1196. vmcs_write32(GUEST_IDTR_LIMIT, dt->limit);
  1197. vmcs_writel(GUEST_IDTR_BASE, dt->base);
  1198. }
  1199. static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  1200. {
  1201. dt->limit = vmcs_read32(GUEST_GDTR_LIMIT);
  1202. dt->base = vmcs_readl(GUEST_GDTR_BASE);
  1203. }
  1204. static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  1205. {
  1206. vmcs_write32(GUEST_GDTR_LIMIT, dt->limit);
  1207. vmcs_writel(GUEST_GDTR_BASE, dt->base);
  1208. }
  1209. static int init_rmode_tss(struct kvm *kvm)
  1210. {
  1211. gfn_t fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
  1212. u16 data = 0;
  1213. int r;
  1214. r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
  1215. if (r < 0)
  1216. return 0;
  1217. data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
  1218. r = kvm_write_guest_page(kvm, fn++, &data, 0x66, sizeof(u16));
  1219. if (r < 0)
  1220. return 0;
  1221. r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
  1222. if (r < 0)
  1223. return 0;
  1224. r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
  1225. if (r < 0)
  1226. return 0;
  1227. data = ~0;
  1228. r = kvm_write_guest_page(kvm, fn, &data, RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
  1229. sizeof(u8));
  1230. if (r < 0)
  1231. return 0;
  1232. return 1;
  1233. }
  1234. static void seg_setup(int seg)
  1235. {
  1236. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1237. vmcs_write16(sf->selector, 0);
  1238. vmcs_writel(sf->base, 0);
  1239. vmcs_write32(sf->limit, 0xffff);
  1240. vmcs_write32(sf->ar_bytes, 0x93);
  1241. }
  1242. static int alloc_apic_access_page(struct kvm *kvm)
  1243. {
  1244. struct kvm_userspace_memory_region kvm_userspace_mem;
  1245. int r = 0;
  1246. mutex_lock(&kvm->lock);
  1247. if (kvm->apic_access_page)
  1248. goto out;
  1249. kvm_userspace_mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
  1250. kvm_userspace_mem.flags = 0;
  1251. kvm_userspace_mem.guest_phys_addr = 0xfee00000ULL;
  1252. kvm_userspace_mem.memory_size = PAGE_SIZE;
  1253. r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
  1254. if (r)
  1255. goto out;
  1256. kvm->apic_access_page = gfn_to_page(kvm, 0xfee00);
  1257. out:
  1258. mutex_unlock(&kvm->lock);
  1259. return r;
  1260. }
  1261. /*
  1262. * Sets up the vmcs for emulated real mode.
  1263. */
  1264. static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
  1265. {
  1266. u32 host_sysenter_cs;
  1267. u32 junk;
  1268. unsigned long a;
  1269. struct descriptor_table dt;
  1270. int i;
  1271. unsigned long kvm_vmx_return;
  1272. u32 exec_control;
  1273. /* I/O */
  1274. vmcs_write64(IO_BITMAP_A, page_to_phys(vmx_io_bitmap_a));
  1275. vmcs_write64(IO_BITMAP_B, page_to_phys(vmx_io_bitmap_b));
  1276. vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
  1277. /* Control */
  1278. vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
  1279. vmcs_config.pin_based_exec_ctrl);
  1280. exec_control = vmcs_config.cpu_based_exec_ctrl;
  1281. if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) {
  1282. exec_control &= ~CPU_BASED_TPR_SHADOW;
  1283. #ifdef CONFIG_X86_64
  1284. exec_control |= CPU_BASED_CR8_STORE_EXITING |
  1285. CPU_BASED_CR8_LOAD_EXITING;
  1286. #endif
  1287. }
  1288. if (!vm_need_secondary_exec_ctrls(vmx->vcpu.kvm))
  1289. exec_control &= ~CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
  1290. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
  1291. if (vm_need_secondary_exec_ctrls(vmx->vcpu.kvm))
  1292. vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
  1293. vmcs_config.cpu_based_2nd_exec_ctrl);
  1294. vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, !!bypass_guest_pf);
  1295. vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, !!bypass_guest_pf);
  1296. vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
  1297. vmcs_writel(HOST_CR0, read_cr0()); /* 22.2.3 */
  1298. vmcs_writel(HOST_CR4, read_cr4()); /* 22.2.3, 22.2.5 */
  1299. vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */
  1300. vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
  1301. vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  1302. vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  1303. vmcs_write16(HOST_FS_SELECTOR, read_fs()); /* 22.2.4 */
  1304. vmcs_write16(HOST_GS_SELECTOR, read_gs()); /* 22.2.4 */
  1305. vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  1306. #ifdef CONFIG_X86_64
  1307. rdmsrl(MSR_FS_BASE, a);
  1308. vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
  1309. rdmsrl(MSR_GS_BASE, a);
  1310. vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
  1311. #else
  1312. vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
  1313. vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
  1314. #endif
  1315. vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
  1316. get_idt(&dt);
  1317. vmcs_writel(HOST_IDTR_BASE, dt.base); /* 22.2.4 */
  1318. asm("mov $.Lkvm_vmx_return, %0" : "=r"(kvm_vmx_return));
  1319. vmcs_writel(HOST_RIP, kvm_vmx_return); /* 22.2.5 */
  1320. vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
  1321. vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
  1322. vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
  1323. rdmsr(MSR_IA32_SYSENTER_CS, host_sysenter_cs, junk);
  1324. vmcs_write32(HOST_IA32_SYSENTER_CS, host_sysenter_cs);
  1325. rdmsrl(MSR_IA32_SYSENTER_ESP, a);
  1326. vmcs_writel(HOST_IA32_SYSENTER_ESP, a); /* 22.2.3 */
  1327. rdmsrl(MSR_IA32_SYSENTER_EIP, a);
  1328. vmcs_writel(HOST_IA32_SYSENTER_EIP, a); /* 22.2.3 */
  1329. for (i = 0; i < NR_VMX_MSR; ++i) {
  1330. u32 index = vmx_msr_index[i];
  1331. u32 data_low, data_high;
  1332. u64 data;
  1333. int j = vmx->nmsrs;
  1334. if (rdmsr_safe(index, &data_low, &data_high) < 0)
  1335. continue;
  1336. if (wrmsr_safe(index, data_low, data_high) < 0)
  1337. continue;
  1338. data = data_low | ((u64)data_high << 32);
  1339. vmx->host_msrs[j].index = index;
  1340. vmx->host_msrs[j].reserved = 0;
  1341. vmx->host_msrs[j].data = data;
  1342. vmx->guest_msrs[j] = vmx->host_msrs[j];
  1343. ++vmx->nmsrs;
  1344. }
  1345. vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
  1346. /* 22.2.1, 20.8.1 */
  1347. vmcs_write32(VM_ENTRY_CONTROLS, vmcs_config.vmentry_ctrl);
  1348. vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
  1349. vmcs_writel(CR4_GUEST_HOST_MASK, KVM_GUEST_CR4_MASK);
  1350. if (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
  1351. if (alloc_apic_access_page(vmx->vcpu.kvm) != 0)
  1352. return -ENOMEM;
  1353. return 0;
  1354. }
  1355. static int vmx_vcpu_reset(struct kvm_vcpu *vcpu)
  1356. {
  1357. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1358. u64 msr;
  1359. int ret;
  1360. if (!init_rmode_tss(vmx->vcpu.kvm)) {
  1361. ret = -ENOMEM;
  1362. goto out;
  1363. }
  1364. vmx->vcpu.rmode.active = 0;
  1365. vmx->vcpu.regs[VCPU_REGS_RDX] = get_rdx_init_val();
  1366. set_cr8(&vmx->vcpu, 0);
  1367. msr = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
  1368. if (vmx->vcpu.vcpu_id == 0)
  1369. msr |= MSR_IA32_APICBASE_BSP;
  1370. kvm_set_apic_base(&vmx->vcpu, msr);
  1371. fx_init(&vmx->vcpu);
  1372. /*
  1373. * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
  1374. * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4. Sigh.
  1375. */
  1376. if (vmx->vcpu.vcpu_id == 0) {
  1377. vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
  1378. vmcs_writel(GUEST_CS_BASE, 0x000f0000);
  1379. } else {
  1380. vmcs_write16(GUEST_CS_SELECTOR, vmx->vcpu.sipi_vector << 8);
  1381. vmcs_writel(GUEST_CS_BASE, vmx->vcpu.sipi_vector << 12);
  1382. }
  1383. vmcs_write32(GUEST_CS_LIMIT, 0xffff);
  1384. vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
  1385. seg_setup(VCPU_SREG_DS);
  1386. seg_setup(VCPU_SREG_ES);
  1387. seg_setup(VCPU_SREG_FS);
  1388. seg_setup(VCPU_SREG_GS);
  1389. seg_setup(VCPU_SREG_SS);
  1390. vmcs_write16(GUEST_TR_SELECTOR, 0);
  1391. vmcs_writel(GUEST_TR_BASE, 0);
  1392. vmcs_write32(GUEST_TR_LIMIT, 0xffff);
  1393. vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
  1394. vmcs_write16(GUEST_LDTR_SELECTOR, 0);
  1395. vmcs_writel(GUEST_LDTR_BASE, 0);
  1396. vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
  1397. vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
  1398. vmcs_write32(GUEST_SYSENTER_CS, 0);
  1399. vmcs_writel(GUEST_SYSENTER_ESP, 0);
  1400. vmcs_writel(GUEST_SYSENTER_EIP, 0);
  1401. vmcs_writel(GUEST_RFLAGS, 0x02);
  1402. if (vmx->vcpu.vcpu_id == 0)
  1403. vmcs_writel(GUEST_RIP, 0xfff0);
  1404. else
  1405. vmcs_writel(GUEST_RIP, 0);
  1406. vmcs_writel(GUEST_RSP, 0);
  1407. /* todo: dr0 = dr1 = dr2 = dr3 = 0; dr6 = 0xffff0ff0 */
  1408. vmcs_writel(GUEST_DR7, 0x400);
  1409. vmcs_writel(GUEST_GDTR_BASE, 0);
  1410. vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
  1411. vmcs_writel(GUEST_IDTR_BASE, 0);
  1412. vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
  1413. vmcs_write32(GUEST_ACTIVITY_STATE, 0);
  1414. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
  1415. vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
  1416. guest_write_tsc(0);
  1417. /* Special registers */
  1418. vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
  1419. setup_msrs(vmx);
  1420. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
  1421. if (cpu_has_vmx_tpr_shadow()) {
  1422. vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
  1423. if (vm_need_tpr_shadow(vmx->vcpu.kvm))
  1424. vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
  1425. page_to_phys(vmx->vcpu.apic->regs_page));
  1426. vmcs_write32(TPR_THRESHOLD, 0);
  1427. }
  1428. if (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
  1429. vmcs_write64(APIC_ACCESS_ADDR,
  1430. page_to_phys(vmx->vcpu.kvm->apic_access_page));
  1431. vmx->vcpu.cr0 = 0x60000010;
  1432. vmx_set_cr0(&vmx->vcpu, vmx->vcpu.cr0); /* enter rmode */
  1433. vmx_set_cr4(&vmx->vcpu, 0);
  1434. #ifdef CONFIG_X86_64
  1435. vmx_set_efer(&vmx->vcpu, 0);
  1436. #endif
  1437. vmx_fpu_activate(&vmx->vcpu);
  1438. update_exception_bitmap(&vmx->vcpu);
  1439. return 0;
  1440. out:
  1441. return ret;
  1442. }
  1443. static void inject_rmode_irq(struct kvm_vcpu *vcpu, int irq)
  1444. {
  1445. u16 ent[2];
  1446. u16 cs;
  1447. u16 ip;
  1448. unsigned long flags;
  1449. unsigned long ss_base = vmcs_readl(GUEST_SS_BASE);
  1450. u16 sp = vmcs_readl(GUEST_RSP);
  1451. u32 ss_limit = vmcs_read32(GUEST_SS_LIMIT);
  1452. if (sp > ss_limit || sp < 6) {
  1453. vcpu_printf(vcpu, "%s: #SS, rsp 0x%lx ss 0x%lx limit 0x%x\n",
  1454. __FUNCTION__,
  1455. vmcs_readl(GUEST_RSP),
  1456. vmcs_readl(GUEST_SS_BASE),
  1457. vmcs_read32(GUEST_SS_LIMIT));
  1458. return;
  1459. }
  1460. if (emulator_read_std(irq * sizeof(ent), &ent, sizeof(ent), vcpu) !=
  1461. X86EMUL_CONTINUE) {
  1462. vcpu_printf(vcpu, "%s: read guest err\n", __FUNCTION__);
  1463. return;
  1464. }
  1465. flags = vmcs_readl(GUEST_RFLAGS);
  1466. cs = vmcs_readl(GUEST_CS_BASE) >> 4;
  1467. ip = vmcs_readl(GUEST_RIP);
  1468. if (emulator_write_emulated(
  1469. ss_base + sp - 2, &flags, 2, vcpu) != X86EMUL_CONTINUE ||
  1470. emulator_write_emulated(
  1471. ss_base + sp - 4, &cs, 2, vcpu) != X86EMUL_CONTINUE ||
  1472. emulator_write_emulated(
  1473. ss_base + sp - 6, &ip, 2, vcpu) != X86EMUL_CONTINUE) {
  1474. vcpu_printf(vcpu, "%s: write guest err\n", __FUNCTION__);
  1475. return;
  1476. }
  1477. vmcs_writel(GUEST_RFLAGS, flags &
  1478. ~(X86_EFLAGS_IF | X86_EFLAGS_AC | X86_EFLAGS_TF));
  1479. vmcs_write16(GUEST_CS_SELECTOR, ent[1]) ;
  1480. vmcs_writel(GUEST_CS_BASE, ent[1] << 4);
  1481. vmcs_writel(GUEST_RIP, ent[0]);
  1482. vmcs_writel(GUEST_RSP, (vmcs_readl(GUEST_RSP) & ~0xffff) | (sp - 6));
  1483. }
  1484. static void vmx_inject_irq(struct kvm_vcpu *vcpu, int irq)
  1485. {
  1486. if (vcpu->rmode.active) {
  1487. inject_rmode_irq(vcpu, irq);
  1488. return;
  1489. }
  1490. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  1491. irq | INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
  1492. }
  1493. static void kvm_do_inject_irq(struct kvm_vcpu *vcpu)
  1494. {
  1495. int word_index = __ffs(vcpu->irq_summary);
  1496. int bit_index = __ffs(vcpu->irq_pending[word_index]);
  1497. int irq = word_index * BITS_PER_LONG + bit_index;
  1498. clear_bit(bit_index, &vcpu->irq_pending[word_index]);
  1499. if (!vcpu->irq_pending[word_index])
  1500. clear_bit(word_index, &vcpu->irq_summary);
  1501. vmx_inject_irq(vcpu, irq);
  1502. }
  1503. static void do_interrupt_requests(struct kvm_vcpu *vcpu,
  1504. struct kvm_run *kvm_run)
  1505. {
  1506. u32 cpu_based_vm_exec_control;
  1507. vcpu->interrupt_window_open =
  1508. ((vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
  1509. (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0);
  1510. if (vcpu->interrupt_window_open &&
  1511. vcpu->irq_summary &&
  1512. !(vmcs_read32(VM_ENTRY_INTR_INFO_FIELD) & INTR_INFO_VALID_MASK))
  1513. /*
  1514. * If interrupts enabled, and not blocked by sti or mov ss. Good.
  1515. */
  1516. kvm_do_inject_irq(vcpu);
  1517. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  1518. if (!vcpu->interrupt_window_open &&
  1519. (vcpu->irq_summary || kvm_run->request_interrupt_window))
  1520. /*
  1521. * Interrupts blocked. Wait for unblock.
  1522. */
  1523. cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
  1524. else
  1525. cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
  1526. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  1527. }
  1528. static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
  1529. {
  1530. int ret;
  1531. struct kvm_userspace_memory_region tss_mem = {
  1532. .slot = 8,
  1533. .guest_phys_addr = addr,
  1534. .memory_size = PAGE_SIZE * 3,
  1535. .flags = 0,
  1536. };
  1537. ret = kvm_set_memory_region(kvm, &tss_mem, 0);
  1538. if (ret)
  1539. return ret;
  1540. kvm->tss_addr = addr;
  1541. return 0;
  1542. }
  1543. static void kvm_guest_debug_pre(struct kvm_vcpu *vcpu)
  1544. {
  1545. struct kvm_guest_debug *dbg = &vcpu->guest_debug;
  1546. set_debugreg(dbg->bp[0], 0);
  1547. set_debugreg(dbg->bp[1], 1);
  1548. set_debugreg(dbg->bp[2], 2);
  1549. set_debugreg(dbg->bp[3], 3);
  1550. if (dbg->singlestep) {
  1551. unsigned long flags;
  1552. flags = vmcs_readl(GUEST_RFLAGS);
  1553. flags |= X86_EFLAGS_TF | X86_EFLAGS_RF;
  1554. vmcs_writel(GUEST_RFLAGS, flags);
  1555. }
  1556. }
  1557. static int handle_rmode_exception(struct kvm_vcpu *vcpu,
  1558. int vec, u32 err_code)
  1559. {
  1560. if (!vcpu->rmode.active)
  1561. return 0;
  1562. /*
  1563. * Instruction with address size override prefix opcode 0x67
  1564. * Cause the #SS fault with 0 error code in VM86 mode.
  1565. */
  1566. if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0)
  1567. if (emulate_instruction(vcpu, NULL, 0, 0, 0) == EMULATE_DONE)
  1568. return 1;
  1569. return 0;
  1570. }
  1571. static int handle_exception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1572. {
  1573. u32 intr_info, error_code;
  1574. unsigned long cr2, rip;
  1575. u32 vect_info;
  1576. enum emulation_result er;
  1577. vect_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
  1578. intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  1579. if ((vect_info & VECTORING_INFO_VALID_MASK) &&
  1580. !is_page_fault(intr_info))
  1581. printk(KERN_ERR "%s: unexpected, vectoring info 0x%x "
  1582. "intr info 0x%x\n", __FUNCTION__, vect_info, intr_info);
  1583. if (!irqchip_in_kernel(vcpu->kvm) && is_external_interrupt(vect_info)) {
  1584. int irq = vect_info & VECTORING_INFO_VECTOR_MASK;
  1585. set_bit(irq, vcpu->irq_pending);
  1586. set_bit(irq / BITS_PER_LONG, &vcpu->irq_summary);
  1587. }
  1588. if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == 0x200) /* nmi */
  1589. return 1; /* already handled by vmx_vcpu_run() */
  1590. if (is_no_device(intr_info)) {
  1591. vmx_fpu_activate(vcpu);
  1592. return 1;
  1593. }
  1594. if (is_invalid_opcode(intr_info)) {
  1595. er = emulate_instruction(vcpu, kvm_run, 0, 0, 0);
  1596. if (er != EMULATE_DONE)
  1597. vmx_inject_ud(vcpu);
  1598. return 1;
  1599. }
  1600. error_code = 0;
  1601. rip = vmcs_readl(GUEST_RIP);
  1602. if (intr_info & INTR_INFO_DELIEVER_CODE_MASK)
  1603. error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
  1604. if (is_page_fault(intr_info)) {
  1605. cr2 = vmcs_readl(EXIT_QUALIFICATION);
  1606. return kvm_mmu_page_fault(vcpu, cr2, error_code);
  1607. }
  1608. if (vcpu->rmode.active &&
  1609. handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK,
  1610. error_code)) {
  1611. if (vcpu->halt_request) {
  1612. vcpu->halt_request = 0;
  1613. return kvm_emulate_halt(vcpu);
  1614. }
  1615. return 1;
  1616. }
  1617. if ((intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK)) ==
  1618. (INTR_TYPE_EXCEPTION | 1)) {
  1619. kvm_run->exit_reason = KVM_EXIT_DEBUG;
  1620. return 0;
  1621. }
  1622. kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
  1623. kvm_run->ex.exception = intr_info & INTR_INFO_VECTOR_MASK;
  1624. kvm_run->ex.error_code = error_code;
  1625. return 0;
  1626. }
  1627. static int handle_external_interrupt(struct kvm_vcpu *vcpu,
  1628. struct kvm_run *kvm_run)
  1629. {
  1630. ++vcpu->stat.irq_exits;
  1631. return 1;
  1632. }
  1633. static int handle_triple_fault(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1634. {
  1635. kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
  1636. return 0;
  1637. }
  1638. static int handle_io(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1639. {
  1640. unsigned long exit_qualification;
  1641. int size, down, in, string, rep;
  1642. unsigned port;
  1643. ++vcpu->stat.io_exits;
  1644. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  1645. string = (exit_qualification & 16) != 0;
  1646. if (string) {
  1647. if (emulate_instruction(vcpu,
  1648. kvm_run, 0, 0, 0) == EMULATE_DO_MMIO)
  1649. return 0;
  1650. return 1;
  1651. }
  1652. size = (exit_qualification & 7) + 1;
  1653. in = (exit_qualification & 8) != 0;
  1654. down = (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_DF) != 0;
  1655. rep = (exit_qualification & 32) != 0;
  1656. port = exit_qualification >> 16;
  1657. return kvm_emulate_pio(vcpu, kvm_run, in, size, port);
  1658. }
  1659. static void
  1660. vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
  1661. {
  1662. /*
  1663. * Patch in the VMCALL instruction:
  1664. */
  1665. hypercall[0] = 0x0f;
  1666. hypercall[1] = 0x01;
  1667. hypercall[2] = 0xc1;
  1668. }
  1669. static int handle_cr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1670. {
  1671. unsigned long exit_qualification;
  1672. int cr;
  1673. int reg;
  1674. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  1675. cr = exit_qualification & 15;
  1676. reg = (exit_qualification >> 8) & 15;
  1677. switch ((exit_qualification >> 4) & 3) {
  1678. case 0: /* mov to cr */
  1679. switch (cr) {
  1680. case 0:
  1681. vcpu_load_rsp_rip(vcpu);
  1682. set_cr0(vcpu, vcpu->regs[reg]);
  1683. skip_emulated_instruction(vcpu);
  1684. return 1;
  1685. case 3:
  1686. vcpu_load_rsp_rip(vcpu);
  1687. set_cr3(vcpu, vcpu->regs[reg]);
  1688. skip_emulated_instruction(vcpu);
  1689. return 1;
  1690. case 4:
  1691. vcpu_load_rsp_rip(vcpu);
  1692. set_cr4(vcpu, vcpu->regs[reg]);
  1693. skip_emulated_instruction(vcpu);
  1694. return 1;
  1695. case 8:
  1696. vcpu_load_rsp_rip(vcpu);
  1697. set_cr8(vcpu, vcpu->regs[reg]);
  1698. skip_emulated_instruction(vcpu);
  1699. kvm_run->exit_reason = KVM_EXIT_SET_TPR;
  1700. return 0;
  1701. };
  1702. break;
  1703. case 2: /* clts */
  1704. vcpu_load_rsp_rip(vcpu);
  1705. vmx_fpu_deactivate(vcpu);
  1706. vcpu->cr0 &= ~X86_CR0_TS;
  1707. vmcs_writel(CR0_READ_SHADOW, vcpu->cr0);
  1708. vmx_fpu_activate(vcpu);
  1709. skip_emulated_instruction(vcpu);
  1710. return 1;
  1711. case 1: /*mov from cr*/
  1712. switch (cr) {
  1713. case 3:
  1714. vcpu_load_rsp_rip(vcpu);
  1715. vcpu->regs[reg] = vcpu->cr3;
  1716. vcpu_put_rsp_rip(vcpu);
  1717. skip_emulated_instruction(vcpu);
  1718. return 1;
  1719. case 8:
  1720. vcpu_load_rsp_rip(vcpu);
  1721. vcpu->regs[reg] = get_cr8(vcpu);
  1722. vcpu_put_rsp_rip(vcpu);
  1723. skip_emulated_instruction(vcpu);
  1724. return 1;
  1725. }
  1726. break;
  1727. case 3: /* lmsw */
  1728. lmsw(vcpu, (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f);
  1729. skip_emulated_instruction(vcpu);
  1730. return 1;
  1731. default:
  1732. break;
  1733. }
  1734. kvm_run->exit_reason = 0;
  1735. pr_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
  1736. (int)(exit_qualification >> 4) & 3, cr);
  1737. return 0;
  1738. }
  1739. static int handle_dr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1740. {
  1741. unsigned long exit_qualification;
  1742. unsigned long val;
  1743. int dr, reg;
  1744. /*
  1745. * FIXME: this code assumes the host is debugging the guest.
  1746. * need to deal with guest debugging itself too.
  1747. */
  1748. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  1749. dr = exit_qualification & 7;
  1750. reg = (exit_qualification >> 8) & 15;
  1751. vcpu_load_rsp_rip(vcpu);
  1752. if (exit_qualification & 16) {
  1753. /* mov from dr */
  1754. switch (dr) {
  1755. case 6:
  1756. val = 0xffff0ff0;
  1757. break;
  1758. case 7:
  1759. val = 0x400;
  1760. break;
  1761. default:
  1762. val = 0;
  1763. }
  1764. vcpu->regs[reg] = val;
  1765. } else {
  1766. /* mov to dr */
  1767. }
  1768. vcpu_put_rsp_rip(vcpu);
  1769. skip_emulated_instruction(vcpu);
  1770. return 1;
  1771. }
  1772. static int handle_cpuid(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1773. {
  1774. kvm_emulate_cpuid(vcpu);
  1775. return 1;
  1776. }
  1777. static int handle_rdmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1778. {
  1779. u32 ecx = vcpu->regs[VCPU_REGS_RCX];
  1780. u64 data;
  1781. if (vmx_get_msr(vcpu, ecx, &data)) {
  1782. vmx_inject_gp(vcpu, 0);
  1783. return 1;
  1784. }
  1785. /* FIXME: handling of bits 32:63 of rax, rdx */
  1786. vcpu->regs[VCPU_REGS_RAX] = data & -1u;
  1787. vcpu->regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
  1788. skip_emulated_instruction(vcpu);
  1789. return 1;
  1790. }
  1791. static int handle_wrmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1792. {
  1793. u32 ecx = vcpu->regs[VCPU_REGS_RCX];
  1794. u64 data = (vcpu->regs[VCPU_REGS_RAX] & -1u)
  1795. | ((u64)(vcpu->regs[VCPU_REGS_RDX] & -1u) << 32);
  1796. if (vmx_set_msr(vcpu, ecx, data) != 0) {
  1797. vmx_inject_gp(vcpu, 0);
  1798. return 1;
  1799. }
  1800. skip_emulated_instruction(vcpu);
  1801. return 1;
  1802. }
  1803. static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu,
  1804. struct kvm_run *kvm_run)
  1805. {
  1806. return 1;
  1807. }
  1808. static int handle_interrupt_window(struct kvm_vcpu *vcpu,
  1809. struct kvm_run *kvm_run)
  1810. {
  1811. u32 cpu_based_vm_exec_control;
  1812. /* clear pending irq */
  1813. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  1814. cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
  1815. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  1816. /*
  1817. * If the user space waits to inject interrupts, exit as soon as
  1818. * possible
  1819. */
  1820. if (kvm_run->request_interrupt_window &&
  1821. !vcpu->irq_summary) {
  1822. kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
  1823. ++vcpu->stat.irq_window_exits;
  1824. return 0;
  1825. }
  1826. return 1;
  1827. }
  1828. static int handle_halt(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1829. {
  1830. skip_emulated_instruction(vcpu);
  1831. return kvm_emulate_halt(vcpu);
  1832. }
  1833. static int handle_vmcall(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1834. {
  1835. skip_emulated_instruction(vcpu);
  1836. kvm_emulate_hypercall(vcpu);
  1837. return 1;
  1838. }
  1839. static int handle_apic_access(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1840. {
  1841. u64 exit_qualification;
  1842. enum emulation_result er;
  1843. unsigned long offset;
  1844. exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
  1845. offset = exit_qualification & 0xffful;
  1846. er = emulate_instruction(vcpu, kvm_run, 0, 0, 0);
  1847. if (er != EMULATE_DONE) {
  1848. printk(KERN_ERR
  1849. "Fail to handle apic access vmexit! Offset is 0x%lx\n",
  1850. offset);
  1851. return -ENOTSUPP;
  1852. }
  1853. return 1;
  1854. }
  1855. /*
  1856. * The exit handlers return 1 if the exit was handled fully and guest execution
  1857. * may resume. Otherwise they set the kvm_run parameter to indicate what needs
  1858. * to be done to userspace and return 0.
  1859. */
  1860. static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu,
  1861. struct kvm_run *kvm_run) = {
  1862. [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
  1863. [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
  1864. [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
  1865. [EXIT_REASON_IO_INSTRUCTION] = handle_io,
  1866. [EXIT_REASON_CR_ACCESS] = handle_cr,
  1867. [EXIT_REASON_DR_ACCESS] = handle_dr,
  1868. [EXIT_REASON_CPUID] = handle_cpuid,
  1869. [EXIT_REASON_MSR_READ] = handle_rdmsr,
  1870. [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
  1871. [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
  1872. [EXIT_REASON_HLT] = handle_halt,
  1873. [EXIT_REASON_VMCALL] = handle_vmcall,
  1874. [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
  1875. [EXIT_REASON_APIC_ACCESS] = handle_apic_access,
  1876. };
  1877. static const int kvm_vmx_max_exit_handlers =
  1878. ARRAY_SIZE(kvm_vmx_exit_handlers);
  1879. /*
  1880. * The guest has exited. See if we can fix it or if we need userspace
  1881. * assistance.
  1882. */
  1883. static int kvm_handle_exit(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
  1884. {
  1885. u32 vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
  1886. u32 exit_reason = vmcs_read32(VM_EXIT_REASON);
  1887. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1888. if (unlikely(vmx->fail)) {
  1889. kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
  1890. kvm_run->fail_entry.hardware_entry_failure_reason
  1891. = vmcs_read32(VM_INSTRUCTION_ERROR);
  1892. return 0;
  1893. }
  1894. if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
  1895. exit_reason != EXIT_REASON_EXCEPTION_NMI)
  1896. printk(KERN_WARNING "%s: unexpected, valid vectoring info and "
  1897. "exit reason is 0x%x\n", __FUNCTION__, exit_reason);
  1898. if (exit_reason < kvm_vmx_max_exit_handlers
  1899. && kvm_vmx_exit_handlers[exit_reason])
  1900. return kvm_vmx_exit_handlers[exit_reason](vcpu, kvm_run);
  1901. else {
  1902. kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
  1903. kvm_run->hw.hardware_exit_reason = exit_reason;
  1904. }
  1905. return 0;
  1906. }
  1907. static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
  1908. {
  1909. }
  1910. static void update_tpr_threshold(struct kvm_vcpu *vcpu)
  1911. {
  1912. int max_irr, tpr;
  1913. if (!vm_need_tpr_shadow(vcpu->kvm))
  1914. return;
  1915. if (!kvm_lapic_enabled(vcpu) ||
  1916. ((max_irr = kvm_lapic_find_highest_irr(vcpu)) == -1)) {
  1917. vmcs_write32(TPR_THRESHOLD, 0);
  1918. return;
  1919. }
  1920. tpr = (kvm_lapic_get_cr8(vcpu) & 0x0f) << 4;
  1921. vmcs_write32(TPR_THRESHOLD, (max_irr > tpr) ? tpr >> 4 : max_irr >> 4);
  1922. }
  1923. static void enable_irq_window(struct kvm_vcpu *vcpu)
  1924. {
  1925. u32 cpu_based_vm_exec_control;
  1926. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  1927. cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
  1928. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  1929. }
  1930. static void vmx_intr_assist(struct kvm_vcpu *vcpu)
  1931. {
  1932. u32 idtv_info_field, intr_info_field;
  1933. int has_ext_irq, interrupt_window_open;
  1934. int vector;
  1935. update_tpr_threshold(vcpu);
  1936. has_ext_irq = kvm_cpu_has_interrupt(vcpu);
  1937. intr_info_field = vmcs_read32(VM_ENTRY_INTR_INFO_FIELD);
  1938. idtv_info_field = vmcs_read32(IDT_VECTORING_INFO_FIELD);
  1939. if (intr_info_field & INTR_INFO_VALID_MASK) {
  1940. if (idtv_info_field & INTR_INFO_VALID_MASK) {
  1941. /* TODO: fault when IDT_Vectoring */
  1942. printk(KERN_ERR "Fault when IDT_Vectoring\n");
  1943. }
  1944. if (has_ext_irq)
  1945. enable_irq_window(vcpu);
  1946. return;
  1947. }
  1948. if (unlikely(idtv_info_field & INTR_INFO_VALID_MASK)) {
  1949. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, idtv_info_field);
  1950. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
  1951. vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
  1952. if (unlikely(idtv_info_field & INTR_INFO_DELIEVER_CODE_MASK))
  1953. vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
  1954. vmcs_read32(IDT_VECTORING_ERROR_CODE));
  1955. if (unlikely(has_ext_irq))
  1956. enable_irq_window(vcpu);
  1957. return;
  1958. }
  1959. if (!has_ext_irq)
  1960. return;
  1961. interrupt_window_open =
  1962. ((vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
  1963. (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0);
  1964. if (interrupt_window_open) {
  1965. vector = kvm_cpu_get_interrupt(vcpu);
  1966. vmx_inject_irq(vcpu, vector);
  1967. kvm_timer_intr_post(vcpu, vector);
  1968. } else
  1969. enable_irq_window(vcpu);
  1970. }
  1971. static void vmx_vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1972. {
  1973. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1974. u32 intr_info;
  1975. /*
  1976. * Loading guest fpu may have cleared host cr0.ts
  1977. */
  1978. vmcs_writel(HOST_CR0, read_cr0());
  1979. asm(
  1980. /* Store host registers */
  1981. #ifdef CONFIG_X86_64
  1982. "push %%rdx; push %%rbp;"
  1983. "push %%rcx \n\t"
  1984. #else
  1985. "push %%edx; push %%ebp;"
  1986. "push %%ecx \n\t"
  1987. #endif
  1988. ASM_VMX_VMWRITE_RSP_RDX "\n\t"
  1989. /* Check if vmlaunch of vmresume is needed */
  1990. "cmp $0, %1 \n\t"
  1991. /* Load guest registers. Don't clobber flags. */
  1992. #ifdef CONFIG_X86_64
  1993. "mov %c[cr2](%3), %%rax \n\t"
  1994. "mov %%rax, %%cr2 \n\t"
  1995. "mov %c[rax](%3), %%rax \n\t"
  1996. "mov %c[rbx](%3), %%rbx \n\t"
  1997. "mov %c[rdx](%3), %%rdx \n\t"
  1998. "mov %c[rsi](%3), %%rsi \n\t"
  1999. "mov %c[rdi](%3), %%rdi \n\t"
  2000. "mov %c[rbp](%3), %%rbp \n\t"
  2001. "mov %c[r8](%3), %%r8 \n\t"
  2002. "mov %c[r9](%3), %%r9 \n\t"
  2003. "mov %c[r10](%3), %%r10 \n\t"
  2004. "mov %c[r11](%3), %%r11 \n\t"
  2005. "mov %c[r12](%3), %%r12 \n\t"
  2006. "mov %c[r13](%3), %%r13 \n\t"
  2007. "mov %c[r14](%3), %%r14 \n\t"
  2008. "mov %c[r15](%3), %%r15 \n\t"
  2009. "mov %c[rcx](%3), %%rcx \n\t" /* kills %3 (rcx) */
  2010. #else
  2011. "mov %c[cr2](%3), %%eax \n\t"
  2012. "mov %%eax, %%cr2 \n\t"
  2013. "mov %c[rax](%3), %%eax \n\t"
  2014. "mov %c[rbx](%3), %%ebx \n\t"
  2015. "mov %c[rdx](%3), %%edx \n\t"
  2016. "mov %c[rsi](%3), %%esi \n\t"
  2017. "mov %c[rdi](%3), %%edi \n\t"
  2018. "mov %c[rbp](%3), %%ebp \n\t"
  2019. "mov %c[rcx](%3), %%ecx \n\t" /* kills %3 (ecx) */
  2020. #endif
  2021. /* Enter guest mode */
  2022. "jne .Llaunched \n\t"
  2023. ASM_VMX_VMLAUNCH "\n\t"
  2024. "jmp .Lkvm_vmx_return \n\t"
  2025. ".Llaunched: " ASM_VMX_VMRESUME "\n\t"
  2026. ".Lkvm_vmx_return: "
  2027. /* Save guest registers, load host registers, keep flags */
  2028. #ifdef CONFIG_X86_64
  2029. "xchg %3, (%%rsp) \n\t"
  2030. "mov %%rax, %c[rax](%3) \n\t"
  2031. "mov %%rbx, %c[rbx](%3) \n\t"
  2032. "pushq (%%rsp); popq %c[rcx](%3) \n\t"
  2033. "mov %%rdx, %c[rdx](%3) \n\t"
  2034. "mov %%rsi, %c[rsi](%3) \n\t"
  2035. "mov %%rdi, %c[rdi](%3) \n\t"
  2036. "mov %%rbp, %c[rbp](%3) \n\t"
  2037. "mov %%r8, %c[r8](%3) \n\t"
  2038. "mov %%r9, %c[r9](%3) \n\t"
  2039. "mov %%r10, %c[r10](%3) \n\t"
  2040. "mov %%r11, %c[r11](%3) \n\t"
  2041. "mov %%r12, %c[r12](%3) \n\t"
  2042. "mov %%r13, %c[r13](%3) \n\t"
  2043. "mov %%r14, %c[r14](%3) \n\t"
  2044. "mov %%r15, %c[r15](%3) \n\t"
  2045. "mov %%cr2, %%rax \n\t"
  2046. "mov %%rax, %c[cr2](%3) \n\t"
  2047. "pop %%rcx; pop %%rbp; pop %%rdx \n\t"
  2048. #else
  2049. "xchg %3, (%%esp) \n\t"
  2050. "mov %%eax, %c[rax](%3) \n\t"
  2051. "mov %%ebx, %c[rbx](%3) \n\t"
  2052. "pushl (%%esp); popl %c[rcx](%3) \n\t"
  2053. "mov %%edx, %c[rdx](%3) \n\t"
  2054. "mov %%esi, %c[rsi](%3) \n\t"
  2055. "mov %%edi, %c[rdi](%3) \n\t"
  2056. "mov %%ebp, %c[rbp](%3) \n\t"
  2057. "mov %%cr2, %%eax \n\t"
  2058. "mov %%eax, %c[cr2](%3) \n\t"
  2059. "pop %%ecx; pop %%ebp; pop %%edx \n\t"
  2060. #endif
  2061. "setbe %0 \n\t"
  2062. : "=q" (vmx->fail)
  2063. : "r"(vmx->launched), "d"((unsigned long)HOST_RSP),
  2064. "c"(vcpu),
  2065. [rax]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RAX])),
  2066. [rbx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RBX])),
  2067. [rcx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RCX])),
  2068. [rdx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RDX])),
  2069. [rsi]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RSI])),
  2070. [rdi]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RDI])),
  2071. [rbp]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RBP])),
  2072. #ifdef CONFIG_X86_64
  2073. [r8]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R8])),
  2074. [r9]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R9])),
  2075. [r10]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R10])),
  2076. [r11]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R11])),
  2077. [r12]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R12])),
  2078. [r13]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R13])),
  2079. [r14]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R14])),
  2080. [r15]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R15])),
  2081. #endif
  2082. [cr2]"i"(offsetof(struct kvm_vcpu, cr2))
  2083. : "cc", "memory"
  2084. #ifdef CONFIG_X86_64
  2085. , "rbx", "rdi", "rsi"
  2086. , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
  2087. #else
  2088. , "ebx", "edi", "rsi"
  2089. #endif
  2090. );
  2091. vcpu->interrupt_window_open =
  2092. (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0;
  2093. asm("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS));
  2094. vmx->launched = 1;
  2095. intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  2096. /* We need to handle NMIs before interrupts are enabled */
  2097. if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == 0x200) /* nmi */
  2098. asm("int $2");
  2099. }
  2100. static void vmx_inject_page_fault(struct kvm_vcpu *vcpu,
  2101. unsigned long addr,
  2102. u32 err_code)
  2103. {
  2104. u32 vect_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
  2105. ++vcpu->stat.pf_guest;
  2106. if (is_page_fault(vect_info)) {
  2107. printk(KERN_DEBUG "inject_page_fault: "
  2108. "double fault 0x%lx @ 0x%lx\n",
  2109. addr, vmcs_readl(GUEST_RIP));
  2110. vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, 0);
  2111. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  2112. DF_VECTOR |
  2113. INTR_TYPE_EXCEPTION |
  2114. INTR_INFO_DELIEVER_CODE_MASK |
  2115. INTR_INFO_VALID_MASK);
  2116. return;
  2117. }
  2118. vcpu->cr2 = addr;
  2119. vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, err_code);
  2120. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  2121. PF_VECTOR |
  2122. INTR_TYPE_EXCEPTION |
  2123. INTR_INFO_DELIEVER_CODE_MASK |
  2124. INTR_INFO_VALID_MASK);
  2125. }
  2126. static void vmx_free_vmcs(struct kvm_vcpu *vcpu)
  2127. {
  2128. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2129. if (vmx->vmcs) {
  2130. on_each_cpu(__vcpu_clear, vmx, 0, 1);
  2131. free_vmcs(vmx->vmcs);
  2132. vmx->vmcs = NULL;
  2133. }
  2134. }
  2135. static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
  2136. {
  2137. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2138. vmx_free_vmcs(vcpu);
  2139. kfree(vmx->host_msrs);
  2140. kfree(vmx->guest_msrs);
  2141. kvm_vcpu_uninit(vcpu);
  2142. kmem_cache_free(kvm_vcpu_cache, vmx);
  2143. }
  2144. static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
  2145. {
  2146. int err;
  2147. struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
  2148. int cpu;
  2149. if (!vmx)
  2150. return ERR_PTR(-ENOMEM);
  2151. err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
  2152. if (err)
  2153. goto free_vcpu;
  2154. vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
  2155. if (!vmx->guest_msrs) {
  2156. err = -ENOMEM;
  2157. goto uninit_vcpu;
  2158. }
  2159. vmx->host_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
  2160. if (!vmx->host_msrs)
  2161. goto free_guest_msrs;
  2162. vmx->vmcs = alloc_vmcs();
  2163. if (!vmx->vmcs)
  2164. goto free_msrs;
  2165. vmcs_clear(vmx->vmcs);
  2166. cpu = get_cpu();
  2167. vmx_vcpu_load(&vmx->vcpu, cpu);
  2168. err = vmx_vcpu_setup(vmx);
  2169. vmx_vcpu_put(&vmx->vcpu);
  2170. put_cpu();
  2171. if (err)
  2172. goto free_vmcs;
  2173. return &vmx->vcpu;
  2174. free_vmcs:
  2175. free_vmcs(vmx->vmcs);
  2176. free_msrs:
  2177. kfree(vmx->host_msrs);
  2178. free_guest_msrs:
  2179. kfree(vmx->guest_msrs);
  2180. uninit_vcpu:
  2181. kvm_vcpu_uninit(&vmx->vcpu);
  2182. free_vcpu:
  2183. kmem_cache_free(kvm_vcpu_cache, vmx);
  2184. return ERR_PTR(err);
  2185. }
  2186. static void __init vmx_check_processor_compat(void *rtn)
  2187. {
  2188. struct vmcs_config vmcs_conf;
  2189. *(int *)rtn = 0;
  2190. if (setup_vmcs_config(&vmcs_conf) < 0)
  2191. *(int *)rtn = -EIO;
  2192. if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
  2193. printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
  2194. smp_processor_id());
  2195. *(int *)rtn = -EIO;
  2196. }
  2197. }
  2198. static struct kvm_x86_ops vmx_x86_ops = {
  2199. .cpu_has_kvm_support = cpu_has_kvm_support,
  2200. .disabled_by_bios = vmx_disabled_by_bios,
  2201. .hardware_setup = hardware_setup,
  2202. .hardware_unsetup = hardware_unsetup,
  2203. .check_processor_compatibility = vmx_check_processor_compat,
  2204. .hardware_enable = hardware_enable,
  2205. .hardware_disable = hardware_disable,
  2206. .vcpu_create = vmx_create_vcpu,
  2207. .vcpu_free = vmx_free_vcpu,
  2208. .vcpu_reset = vmx_vcpu_reset,
  2209. .prepare_guest_switch = vmx_save_host_state,
  2210. .vcpu_load = vmx_vcpu_load,
  2211. .vcpu_put = vmx_vcpu_put,
  2212. .vcpu_decache = vmx_vcpu_decache,
  2213. .set_guest_debug = set_guest_debug,
  2214. .guest_debug_pre = kvm_guest_debug_pre,
  2215. .get_msr = vmx_get_msr,
  2216. .set_msr = vmx_set_msr,
  2217. .get_segment_base = vmx_get_segment_base,
  2218. .get_segment = vmx_get_segment,
  2219. .set_segment = vmx_set_segment,
  2220. .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
  2221. .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
  2222. .set_cr0 = vmx_set_cr0,
  2223. .set_cr3 = vmx_set_cr3,
  2224. .set_cr4 = vmx_set_cr4,
  2225. #ifdef CONFIG_X86_64
  2226. .set_efer = vmx_set_efer,
  2227. #endif
  2228. .get_idt = vmx_get_idt,
  2229. .set_idt = vmx_set_idt,
  2230. .get_gdt = vmx_get_gdt,
  2231. .set_gdt = vmx_set_gdt,
  2232. .cache_regs = vcpu_load_rsp_rip,
  2233. .decache_regs = vcpu_put_rsp_rip,
  2234. .get_rflags = vmx_get_rflags,
  2235. .set_rflags = vmx_set_rflags,
  2236. .tlb_flush = vmx_flush_tlb,
  2237. .inject_page_fault = vmx_inject_page_fault,
  2238. .inject_gp = vmx_inject_gp,
  2239. .run = vmx_vcpu_run,
  2240. .handle_exit = kvm_handle_exit,
  2241. .skip_emulated_instruction = skip_emulated_instruction,
  2242. .patch_hypercall = vmx_patch_hypercall,
  2243. .get_irq = vmx_get_irq,
  2244. .set_irq = vmx_inject_irq,
  2245. .inject_pending_irq = vmx_intr_assist,
  2246. .inject_pending_vectors = do_interrupt_requests,
  2247. .set_tss_addr = vmx_set_tss_addr,
  2248. };
  2249. static int __init vmx_init(void)
  2250. {
  2251. void *iova;
  2252. int r;
  2253. vmx_io_bitmap_a = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
  2254. if (!vmx_io_bitmap_a)
  2255. return -ENOMEM;
  2256. vmx_io_bitmap_b = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
  2257. if (!vmx_io_bitmap_b) {
  2258. r = -ENOMEM;
  2259. goto out;
  2260. }
  2261. /*
  2262. * Allow direct access to the PC debug port (it is often used for I/O
  2263. * delays, but the vmexits simply slow things down).
  2264. */
  2265. iova = kmap(vmx_io_bitmap_a);
  2266. memset(iova, 0xff, PAGE_SIZE);
  2267. clear_bit(0x80, iova);
  2268. kunmap(vmx_io_bitmap_a);
  2269. iova = kmap(vmx_io_bitmap_b);
  2270. memset(iova, 0xff, PAGE_SIZE);
  2271. kunmap(vmx_io_bitmap_b);
  2272. r = kvm_init_x86(&vmx_x86_ops, sizeof(struct vcpu_vmx), THIS_MODULE);
  2273. if (r)
  2274. goto out1;
  2275. if (bypass_guest_pf)
  2276. kvm_mmu_set_nonpresent_ptes(~0xffeull, 0ull);
  2277. return 0;
  2278. out1:
  2279. __free_page(vmx_io_bitmap_b);
  2280. out:
  2281. __free_page(vmx_io_bitmap_a);
  2282. return r;
  2283. }
  2284. static void __exit vmx_exit(void)
  2285. {
  2286. __free_page(vmx_io_bitmap_b);
  2287. __free_page(vmx_io_bitmap_a);
  2288. kvm_exit_x86();
  2289. }
  2290. module_init(vmx_init)
  2291. module_exit(vmx_exit)