kvm_main.c 67 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * Copyright (C) 2006 Qumranet, Inc.
  8. *
  9. * Authors:
  10. * Avi Kivity <avi@qumranet.com>
  11. * Yaniv Kamay <yaniv@qumranet.com>
  12. *
  13. * This work is licensed under the terms of the GNU GPL, version 2. See
  14. * the COPYING file in the top-level directory.
  15. *
  16. */
  17. #include "kvm.h"
  18. #include "x86.h"
  19. #include "x86_emulate.h"
  20. #include "irq.h"
  21. #include <linux/kvm.h>
  22. #include <linux/module.h>
  23. #include <linux/errno.h>
  24. #include <linux/percpu.h>
  25. #include <linux/gfp.h>
  26. #include <linux/mm.h>
  27. #include <linux/miscdevice.h>
  28. #include <linux/vmalloc.h>
  29. #include <linux/reboot.h>
  30. #include <linux/debugfs.h>
  31. #include <linux/highmem.h>
  32. #include <linux/file.h>
  33. #include <linux/sysdev.h>
  34. #include <linux/cpu.h>
  35. #include <linux/sched.h>
  36. #include <linux/cpumask.h>
  37. #include <linux/smp.h>
  38. #include <linux/anon_inodes.h>
  39. #include <linux/profile.h>
  40. #include <linux/kvm_para.h>
  41. #include <linux/pagemap.h>
  42. #include <linux/mman.h>
  43. #include <asm/processor.h>
  44. #include <asm/msr.h>
  45. #include <asm/io.h>
  46. #include <asm/uaccess.h>
  47. #include <asm/desc.h>
  48. MODULE_AUTHOR("Qumranet");
  49. MODULE_LICENSE("GPL");
  50. static DEFINE_SPINLOCK(kvm_lock);
  51. static LIST_HEAD(vm_list);
  52. static cpumask_t cpus_hardware_enabled;
  53. struct kvm_x86_ops *kvm_x86_ops;
  54. struct kmem_cache *kvm_vcpu_cache;
  55. EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
  56. static __read_mostly struct preempt_ops kvm_preempt_ops;
  57. #define STAT_OFFSET(x) offsetof(struct kvm_vcpu, stat.x)
  58. static struct kvm_stats_debugfs_item {
  59. const char *name;
  60. int offset;
  61. struct dentry *dentry;
  62. } debugfs_entries[] = {
  63. { "pf_fixed", STAT_OFFSET(pf_fixed) },
  64. { "pf_guest", STAT_OFFSET(pf_guest) },
  65. { "tlb_flush", STAT_OFFSET(tlb_flush) },
  66. { "invlpg", STAT_OFFSET(invlpg) },
  67. { "exits", STAT_OFFSET(exits) },
  68. { "io_exits", STAT_OFFSET(io_exits) },
  69. { "mmio_exits", STAT_OFFSET(mmio_exits) },
  70. { "signal_exits", STAT_OFFSET(signal_exits) },
  71. { "irq_window", STAT_OFFSET(irq_window_exits) },
  72. { "halt_exits", STAT_OFFSET(halt_exits) },
  73. { "halt_wakeup", STAT_OFFSET(halt_wakeup) },
  74. { "request_irq", STAT_OFFSET(request_irq_exits) },
  75. { "irq_exits", STAT_OFFSET(irq_exits) },
  76. { "light_exits", STAT_OFFSET(light_exits) },
  77. { "efer_reload", STAT_OFFSET(efer_reload) },
  78. { NULL }
  79. };
  80. static struct dentry *debugfs_dir;
  81. #define EFER_RESERVED_BITS 0xfffffffffffff2fe
  82. static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
  83. unsigned long arg);
  84. static inline int valid_vcpu(int n)
  85. {
  86. return likely(n >= 0 && n < KVM_MAX_VCPUS);
  87. }
  88. void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
  89. {
  90. if (!vcpu->fpu_active || vcpu->guest_fpu_loaded)
  91. return;
  92. vcpu->guest_fpu_loaded = 1;
  93. fx_save(&vcpu->host_fx_image);
  94. fx_restore(&vcpu->guest_fx_image);
  95. }
  96. EXPORT_SYMBOL_GPL(kvm_load_guest_fpu);
  97. void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
  98. {
  99. if (!vcpu->guest_fpu_loaded)
  100. return;
  101. vcpu->guest_fpu_loaded = 0;
  102. fx_save(&vcpu->guest_fx_image);
  103. fx_restore(&vcpu->host_fx_image);
  104. }
  105. EXPORT_SYMBOL_GPL(kvm_put_guest_fpu);
  106. /*
  107. * Switches to specified vcpu, until a matching vcpu_put()
  108. */
  109. void vcpu_load(struct kvm_vcpu *vcpu)
  110. {
  111. int cpu;
  112. mutex_lock(&vcpu->mutex);
  113. cpu = get_cpu();
  114. preempt_notifier_register(&vcpu->preempt_notifier);
  115. kvm_arch_vcpu_load(vcpu, cpu);
  116. put_cpu();
  117. }
  118. void vcpu_put(struct kvm_vcpu *vcpu)
  119. {
  120. preempt_disable();
  121. kvm_arch_vcpu_put(vcpu);
  122. preempt_notifier_unregister(&vcpu->preempt_notifier);
  123. preempt_enable();
  124. mutex_unlock(&vcpu->mutex);
  125. }
  126. static void ack_flush(void *_completed)
  127. {
  128. }
  129. void kvm_flush_remote_tlbs(struct kvm *kvm)
  130. {
  131. int i, cpu;
  132. cpumask_t cpus;
  133. struct kvm_vcpu *vcpu;
  134. cpus_clear(cpus);
  135. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  136. vcpu = kvm->vcpus[i];
  137. if (!vcpu)
  138. continue;
  139. if (test_and_set_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
  140. continue;
  141. cpu = vcpu->cpu;
  142. if (cpu != -1 && cpu != raw_smp_processor_id())
  143. cpu_set(cpu, cpus);
  144. }
  145. smp_call_function_mask(cpus, ack_flush, NULL, 1);
  146. }
  147. int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
  148. {
  149. struct page *page;
  150. int r;
  151. mutex_init(&vcpu->mutex);
  152. vcpu->cpu = -1;
  153. vcpu->mmu.root_hpa = INVALID_PAGE;
  154. vcpu->kvm = kvm;
  155. vcpu->vcpu_id = id;
  156. if (!irqchip_in_kernel(kvm) || id == 0)
  157. vcpu->mp_state = VCPU_MP_STATE_RUNNABLE;
  158. else
  159. vcpu->mp_state = VCPU_MP_STATE_UNINITIALIZED;
  160. init_waitqueue_head(&vcpu->wq);
  161. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  162. if (!page) {
  163. r = -ENOMEM;
  164. goto fail;
  165. }
  166. vcpu->run = page_address(page);
  167. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  168. if (!page) {
  169. r = -ENOMEM;
  170. goto fail_free_run;
  171. }
  172. vcpu->pio_data = page_address(page);
  173. r = kvm_mmu_create(vcpu);
  174. if (r < 0)
  175. goto fail_free_pio_data;
  176. if (irqchip_in_kernel(kvm)) {
  177. r = kvm_create_lapic(vcpu);
  178. if (r < 0)
  179. goto fail_mmu_destroy;
  180. }
  181. return 0;
  182. fail_mmu_destroy:
  183. kvm_mmu_destroy(vcpu);
  184. fail_free_pio_data:
  185. free_page((unsigned long)vcpu->pio_data);
  186. fail_free_run:
  187. free_page((unsigned long)vcpu->run);
  188. fail:
  189. return r;
  190. }
  191. EXPORT_SYMBOL_GPL(kvm_vcpu_init);
  192. void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
  193. {
  194. kvm_free_lapic(vcpu);
  195. kvm_mmu_destroy(vcpu);
  196. free_page((unsigned long)vcpu->pio_data);
  197. free_page((unsigned long)vcpu->run);
  198. }
  199. EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
  200. static struct kvm *kvm_create_vm(void)
  201. {
  202. struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
  203. if (!kvm)
  204. return ERR_PTR(-ENOMEM);
  205. kvm_io_bus_init(&kvm->pio_bus);
  206. mutex_init(&kvm->lock);
  207. INIT_LIST_HEAD(&kvm->active_mmu_pages);
  208. kvm_io_bus_init(&kvm->mmio_bus);
  209. spin_lock(&kvm_lock);
  210. list_add(&kvm->vm_list, &vm_list);
  211. spin_unlock(&kvm_lock);
  212. return kvm;
  213. }
  214. /*
  215. * Free any memory in @free but not in @dont.
  216. */
  217. static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
  218. struct kvm_memory_slot *dont)
  219. {
  220. if (!dont || free->rmap != dont->rmap)
  221. vfree(free->rmap);
  222. if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
  223. vfree(free->dirty_bitmap);
  224. free->npages = 0;
  225. free->dirty_bitmap = NULL;
  226. free->rmap = NULL;
  227. }
  228. static void kvm_free_physmem(struct kvm *kvm)
  229. {
  230. int i;
  231. for (i = 0; i < kvm->nmemslots; ++i)
  232. kvm_free_physmem_slot(&kvm->memslots[i], NULL);
  233. }
  234. static void free_pio_guest_pages(struct kvm_vcpu *vcpu)
  235. {
  236. int i;
  237. for (i = 0; i < ARRAY_SIZE(vcpu->pio.guest_pages); ++i)
  238. if (vcpu->pio.guest_pages[i]) {
  239. kvm_release_page(vcpu->pio.guest_pages[i]);
  240. vcpu->pio.guest_pages[i] = NULL;
  241. }
  242. }
  243. static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
  244. {
  245. vcpu_load(vcpu);
  246. kvm_mmu_unload(vcpu);
  247. vcpu_put(vcpu);
  248. }
  249. static void kvm_free_vcpus(struct kvm *kvm)
  250. {
  251. unsigned int i;
  252. /*
  253. * Unpin any mmu pages first.
  254. */
  255. for (i = 0; i < KVM_MAX_VCPUS; ++i)
  256. if (kvm->vcpus[i])
  257. kvm_unload_vcpu_mmu(kvm->vcpus[i]);
  258. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  259. if (kvm->vcpus[i]) {
  260. kvm_x86_ops->vcpu_free(kvm->vcpus[i]);
  261. kvm->vcpus[i] = NULL;
  262. }
  263. }
  264. }
  265. static void kvm_destroy_vm(struct kvm *kvm)
  266. {
  267. spin_lock(&kvm_lock);
  268. list_del(&kvm->vm_list);
  269. spin_unlock(&kvm_lock);
  270. kvm_io_bus_destroy(&kvm->pio_bus);
  271. kvm_io_bus_destroy(&kvm->mmio_bus);
  272. kfree(kvm->vpic);
  273. kfree(kvm->vioapic);
  274. kvm_free_vcpus(kvm);
  275. kvm_free_physmem(kvm);
  276. kfree(kvm);
  277. }
  278. static int kvm_vm_release(struct inode *inode, struct file *filp)
  279. {
  280. struct kvm *kvm = filp->private_data;
  281. kvm_destroy_vm(kvm);
  282. return 0;
  283. }
  284. static void inject_gp(struct kvm_vcpu *vcpu)
  285. {
  286. kvm_x86_ops->inject_gp(vcpu, 0);
  287. }
  288. void fx_init(struct kvm_vcpu *vcpu)
  289. {
  290. unsigned after_mxcsr_mask;
  291. /* Initialize guest FPU by resetting ours and saving into guest's */
  292. preempt_disable();
  293. fx_save(&vcpu->host_fx_image);
  294. fpu_init();
  295. fx_save(&vcpu->guest_fx_image);
  296. fx_restore(&vcpu->host_fx_image);
  297. preempt_enable();
  298. vcpu->cr0 |= X86_CR0_ET;
  299. after_mxcsr_mask = offsetof(struct i387_fxsave_struct, st_space);
  300. vcpu->guest_fx_image.mxcsr = 0x1f80;
  301. memset((void *)&vcpu->guest_fx_image + after_mxcsr_mask,
  302. 0, sizeof(struct i387_fxsave_struct) - after_mxcsr_mask);
  303. }
  304. EXPORT_SYMBOL_GPL(fx_init);
  305. /*
  306. * Allocate some memory and give it an address in the guest physical address
  307. * space.
  308. *
  309. * Discontiguous memory is allowed, mostly for framebuffers.
  310. *
  311. * Must be called holding kvm->lock.
  312. */
  313. int __kvm_set_memory_region(struct kvm *kvm,
  314. struct kvm_userspace_memory_region *mem,
  315. int user_alloc)
  316. {
  317. int r;
  318. gfn_t base_gfn;
  319. unsigned long npages;
  320. unsigned long i;
  321. struct kvm_memory_slot *memslot;
  322. struct kvm_memory_slot old, new;
  323. r = -EINVAL;
  324. /* General sanity checks */
  325. if (mem->memory_size & (PAGE_SIZE - 1))
  326. goto out;
  327. if (mem->guest_phys_addr & (PAGE_SIZE - 1))
  328. goto out;
  329. if (mem->slot >= KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS)
  330. goto out;
  331. if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
  332. goto out;
  333. memslot = &kvm->memslots[mem->slot];
  334. base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
  335. npages = mem->memory_size >> PAGE_SHIFT;
  336. if (!npages)
  337. mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
  338. new = old = *memslot;
  339. new.base_gfn = base_gfn;
  340. new.npages = npages;
  341. new.flags = mem->flags;
  342. /* Disallow changing a memory slot's size. */
  343. r = -EINVAL;
  344. if (npages && old.npages && npages != old.npages)
  345. goto out_free;
  346. /* Check for overlaps */
  347. r = -EEXIST;
  348. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  349. struct kvm_memory_slot *s = &kvm->memslots[i];
  350. if (s == memslot)
  351. continue;
  352. if (!((base_gfn + npages <= s->base_gfn) ||
  353. (base_gfn >= s->base_gfn + s->npages)))
  354. goto out_free;
  355. }
  356. /* Free page dirty bitmap if unneeded */
  357. if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
  358. new.dirty_bitmap = NULL;
  359. r = -ENOMEM;
  360. /* Allocate if a slot is being created */
  361. if (npages && !new.rmap) {
  362. new.rmap = vmalloc(npages * sizeof(struct page *));
  363. if (!new.rmap)
  364. goto out_free;
  365. memset(new.rmap, 0, npages * sizeof(*new.rmap));
  366. new.user_alloc = user_alloc;
  367. if (user_alloc)
  368. new.userspace_addr = mem->userspace_addr;
  369. else {
  370. down_write(&current->mm->mmap_sem);
  371. new.userspace_addr = do_mmap(NULL, 0,
  372. npages * PAGE_SIZE,
  373. PROT_READ | PROT_WRITE,
  374. MAP_SHARED | MAP_ANONYMOUS,
  375. 0);
  376. up_write(&current->mm->mmap_sem);
  377. if (IS_ERR((void *)new.userspace_addr))
  378. goto out_free;
  379. }
  380. } else {
  381. if (!old.user_alloc && old.rmap) {
  382. int ret;
  383. down_write(&current->mm->mmap_sem);
  384. ret = do_munmap(current->mm, old.userspace_addr,
  385. old.npages * PAGE_SIZE);
  386. up_write(&current->mm->mmap_sem);
  387. if (ret < 0)
  388. printk(KERN_WARNING
  389. "kvm_vm_ioctl_set_memory_region: "
  390. "failed to munmap memory\n");
  391. }
  392. }
  393. /* Allocate page dirty bitmap if needed */
  394. if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
  395. unsigned dirty_bytes = ALIGN(npages, BITS_PER_LONG) / 8;
  396. new.dirty_bitmap = vmalloc(dirty_bytes);
  397. if (!new.dirty_bitmap)
  398. goto out_free;
  399. memset(new.dirty_bitmap, 0, dirty_bytes);
  400. }
  401. if (mem->slot >= kvm->nmemslots)
  402. kvm->nmemslots = mem->slot + 1;
  403. if (!kvm->n_requested_mmu_pages) {
  404. unsigned int n_pages;
  405. if (npages) {
  406. n_pages = npages * KVM_PERMILLE_MMU_PAGES / 1000;
  407. kvm_mmu_change_mmu_pages(kvm, kvm->n_alloc_mmu_pages +
  408. n_pages);
  409. } else {
  410. unsigned int nr_mmu_pages;
  411. n_pages = old.npages * KVM_PERMILLE_MMU_PAGES / 1000;
  412. nr_mmu_pages = kvm->n_alloc_mmu_pages - n_pages;
  413. nr_mmu_pages = max(nr_mmu_pages,
  414. (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
  415. kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
  416. }
  417. }
  418. *memslot = new;
  419. kvm_mmu_slot_remove_write_access(kvm, mem->slot);
  420. kvm_flush_remote_tlbs(kvm);
  421. kvm_free_physmem_slot(&old, &new);
  422. return 0;
  423. out_free:
  424. kvm_free_physmem_slot(&new, &old);
  425. out:
  426. return r;
  427. }
  428. EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
  429. int kvm_set_memory_region(struct kvm *kvm,
  430. struct kvm_userspace_memory_region *mem,
  431. int user_alloc)
  432. {
  433. int r;
  434. mutex_lock(&kvm->lock);
  435. r = __kvm_set_memory_region(kvm, mem, user_alloc);
  436. mutex_unlock(&kvm->lock);
  437. return r;
  438. }
  439. EXPORT_SYMBOL_GPL(kvm_set_memory_region);
  440. int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
  441. struct
  442. kvm_userspace_memory_region *mem,
  443. int user_alloc)
  444. {
  445. if (mem->slot >= KVM_MEMORY_SLOTS)
  446. return -EINVAL;
  447. return kvm_set_memory_region(kvm, mem, user_alloc);
  448. }
  449. /*
  450. * Get (and clear) the dirty memory log for a memory slot.
  451. */
  452. static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
  453. struct kvm_dirty_log *log)
  454. {
  455. struct kvm_memory_slot *memslot;
  456. int r, i;
  457. int n;
  458. unsigned long any = 0;
  459. mutex_lock(&kvm->lock);
  460. r = -EINVAL;
  461. if (log->slot >= KVM_MEMORY_SLOTS)
  462. goto out;
  463. memslot = &kvm->memslots[log->slot];
  464. r = -ENOENT;
  465. if (!memslot->dirty_bitmap)
  466. goto out;
  467. n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
  468. for (i = 0; !any && i < n/sizeof(long); ++i)
  469. any = memslot->dirty_bitmap[i];
  470. r = -EFAULT;
  471. if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
  472. goto out;
  473. /* If nothing is dirty, don't bother messing with page tables. */
  474. if (any) {
  475. kvm_mmu_slot_remove_write_access(kvm, log->slot);
  476. kvm_flush_remote_tlbs(kvm);
  477. memset(memslot->dirty_bitmap, 0, n);
  478. }
  479. r = 0;
  480. out:
  481. mutex_unlock(&kvm->lock);
  482. return r;
  483. }
  484. int is_error_page(struct page *page)
  485. {
  486. return page == bad_page;
  487. }
  488. EXPORT_SYMBOL_GPL(is_error_page);
  489. gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
  490. {
  491. int i;
  492. struct kvm_mem_alias *alias;
  493. for (i = 0; i < kvm->naliases; ++i) {
  494. alias = &kvm->aliases[i];
  495. if (gfn >= alias->base_gfn
  496. && gfn < alias->base_gfn + alias->npages)
  497. return alias->target_gfn + gfn - alias->base_gfn;
  498. }
  499. return gfn;
  500. }
  501. static struct kvm_memory_slot *__gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
  502. {
  503. int i;
  504. for (i = 0; i < kvm->nmemslots; ++i) {
  505. struct kvm_memory_slot *memslot = &kvm->memslots[i];
  506. if (gfn >= memslot->base_gfn
  507. && gfn < memslot->base_gfn + memslot->npages)
  508. return memslot;
  509. }
  510. return NULL;
  511. }
  512. struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
  513. {
  514. gfn = unalias_gfn(kvm, gfn);
  515. return __gfn_to_memslot(kvm, gfn);
  516. }
  517. int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
  518. {
  519. int i;
  520. gfn = unalias_gfn(kvm, gfn);
  521. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  522. struct kvm_memory_slot *memslot = &kvm->memslots[i];
  523. if (gfn >= memslot->base_gfn
  524. && gfn < memslot->base_gfn + memslot->npages)
  525. return 1;
  526. }
  527. return 0;
  528. }
  529. EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
  530. struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
  531. {
  532. struct kvm_memory_slot *slot;
  533. struct page *page[1];
  534. int npages;
  535. might_sleep();
  536. gfn = unalias_gfn(kvm, gfn);
  537. slot = __gfn_to_memslot(kvm, gfn);
  538. if (!slot) {
  539. get_page(bad_page);
  540. return bad_page;
  541. }
  542. down_read(&current->mm->mmap_sem);
  543. npages = get_user_pages(current, current->mm,
  544. slot->userspace_addr
  545. + (gfn - slot->base_gfn) * PAGE_SIZE, 1,
  546. 1, 1, page, NULL);
  547. up_read(&current->mm->mmap_sem);
  548. if (npages != 1) {
  549. get_page(bad_page);
  550. return bad_page;
  551. }
  552. return page[0];
  553. }
  554. EXPORT_SYMBOL_GPL(gfn_to_page);
  555. void kvm_release_page(struct page *page)
  556. {
  557. if (!PageReserved(page))
  558. SetPageDirty(page);
  559. put_page(page);
  560. }
  561. EXPORT_SYMBOL_GPL(kvm_release_page);
  562. static int next_segment(unsigned long len, int offset)
  563. {
  564. if (len > PAGE_SIZE - offset)
  565. return PAGE_SIZE - offset;
  566. else
  567. return len;
  568. }
  569. int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
  570. int len)
  571. {
  572. void *page_virt;
  573. struct page *page;
  574. page = gfn_to_page(kvm, gfn);
  575. if (is_error_page(page)) {
  576. kvm_release_page(page);
  577. return -EFAULT;
  578. }
  579. page_virt = kmap_atomic(page, KM_USER0);
  580. memcpy(data, page_virt + offset, len);
  581. kunmap_atomic(page_virt, KM_USER0);
  582. kvm_release_page(page);
  583. return 0;
  584. }
  585. EXPORT_SYMBOL_GPL(kvm_read_guest_page);
  586. int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
  587. {
  588. gfn_t gfn = gpa >> PAGE_SHIFT;
  589. int seg;
  590. int offset = offset_in_page(gpa);
  591. int ret;
  592. while ((seg = next_segment(len, offset)) != 0) {
  593. ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
  594. if (ret < 0)
  595. return ret;
  596. offset = 0;
  597. len -= seg;
  598. data += seg;
  599. ++gfn;
  600. }
  601. return 0;
  602. }
  603. EXPORT_SYMBOL_GPL(kvm_read_guest);
  604. int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
  605. int offset, int len)
  606. {
  607. void *page_virt;
  608. struct page *page;
  609. page = gfn_to_page(kvm, gfn);
  610. if (is_error_page(page)) {
  611. kvm_release_page(page);
  612. return -EFAULT;
  613. }
  614. page_virt = kmap_atomic(page, KM_USER0);
  615. memcpy(page_virt + offset, data, len);
  616. kunmap_atomic(page_virt, KM_USER0);
  617. mark_page_dirty(kvm, gfn);
  618. kvm_release_page(page);
  619. return 0;
  620. }
  621. EXPORT_SYMBOL_GPL(kvm_write_guest_page);
  622. int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
  623. unsigned long len)
  624. {
  625. gfn_t gfn = gpa >> PAGE_SHIFT;
  626. int seg;
  627. int offset = offset_in_page(gpa);
  628. int ret;
  629. while ((seg = next_segment(len, offset)) != 0) {
  630. ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
  631. if (ret < 0)
  632. return ret;
  633. offset = 0;
  634. len -= seg;
  635. data += seg;
  636. ++gfn;
  637. }
  638. return 0;
  639. }
  640. int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
  641. {
  642. void *page_virt;
  643. struct page *page;
  644. page = gfn_to_page(kvm, gfn);
  645. if (is_error_page(page)) {
  646. kvm_release_page(page);
  647. return -EFAULT;
  648. }
  649. page_virt = kmap_atomic(page, KM_USER0);
  650. memset(page_virt + offset, 0, len);
  651. kunmap_atomic(page_virt, KM_USER0);
  652. kvm_release_page(page);
  653. return 0;
  654. }
  655. EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
  656. int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
  657. {
  658. gfn_t gfn = gpa >> PAGE_SHIFT;
  659. int seg;
  660. int offset = offset_in_page(gpa);
  661. int ret;
  662. while ((seg = next_segment(len, offset)) != 0) {
  663. ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
  664. if (ret < 0)
  665. return ret;
  666. offset = 0;
  667. len -= seg;
  668. ++gfn;
  669. }
  670. return 0;
  671. }
  672. EXPORT_SYMBOL_GPL(kvm_clear_guest);
  673. /* WARNING: Does not work on aliased pages. */
  674. void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
  675. {
  676. struct kvm_memory_slot *memslot;
  677. memslot = __gfn_to_memslot(kvm, gfn);
  678. if (memslot && memslot->dirty_bitmap) {
  679. unsigned long rel_gfn = gfn - memslot->base_gfn;
  680. /* avoid RMW */
  681. if (!test_bit(rel_gfn, memslot->dirty_bitmap))
  682. set_bit(rel_gfn, memslot->dirty_bitmap);
  683. }
  684. }
  685. int emulator_read_std(unsigned long addr,
  686. void *val,
  687. unsigned int bytes,
  688. struct kvm_vcpu *vcpu)
  689. {
  690. void *data = val;
  691. while (bytes) {
  692. gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
  693. unsigned offset = addr & (PAGE_SIZE-1);
  694. unsigned tocopy = min(bytes, (unsigned)PAGE_SIZE - offset);
  695. int ret;
  696. if (gpa == UNMAPPED_GVA)
  697. return X86EMUL_PROPAGATE_FAULT;
  698. ret = kvm_read_guest(vcpu->kvm, gpa, data, tocopy);
  699. if (ret < 0)
  700. return X86EMUL_UNHANDLEABLE;
  701. bytes -= tocopy;
  702. data += tocopy;
  703. addr += tocopy;
  704. }
  705. return X86EMUL_CONTINUE;
  706. }
  707. EXPORT_SYMBOL_GPL(emulator_read_std);
  708. static int emulator_write_std(unsigned long addr,
  709. const void *val,
  710. unsigned int bytes,
  711. struct kvm_vcpu *vcpu)
  712. {
  713. pr_unimpl(vcpu, "emulator_write_std: addr %lx n %d\n", addr, bytes);
  714. return X86EMUL_UNHANDLEABLE;
  715. }
  716. /*
  717. * Only apic need an MMIO device hook, so shortcut now..
  718. */
  719. static struct kvm_io_device *vcpu_find_pervcpu_dev(struct kvm_vcpu *vcpu,
  720. gpa_t addr)
  721. {
  722. struct kvm_io_device *dev;
  723. if (vcpu->apic) {
  724. dev = &vcpu->apic->dev;
  725. if (dev->in_range(dev, addr))
  726. return dev;
  727. }
  728. return NULL;
  729. }
  730. static struct kvm_io_device *vcpu_find_mmio_dev(struct kvm_vcpu *vcpu,
  731. gpa_t addr)
  732. {
  733. struct kvm_io_device *dev;
  734. dev = vcpu_find_pervcpu_dev(vcpu, addr);
  735. if (dev == NULL)
  736. dev = kvm_io_bus_find_dev(&vcpu->kvm->mmio_bus, addr);
  737. return dev;
  738. }
  739. static struct kvm_io_device *vcpu_find_pio_dev(struct kvm_vcpu *vcpu,
  740. gpa_t addr)
  741. {
  742. return kvm_io_bus_find_dev(&vcpu->kvm->pio_bus, addr);
  743. }
  744. static int emulator_read_emulated(unsigned long addr,
  745. void *val,
  746. unsigned int bytes,
  747. struct kvm_vcpu *vcpu)
  748. {
  749. struct kvm_io_device *mmio_dev;
  750. gpa_t gpa;
  751. if (vcpu->mmio_read_completed) {
  752. memcpy(val, vcpu->mmio_data, bytes);
  753. vcpu->mmio_read_completed = 0;
  754. return X86EMUL_CONTINUE;
  755. }
  756. gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
  757. /* For APIC access vmexit */
  758. if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
  759. goto mmio;
  760. if (emulator_read_std(addr, val, bytes, vcpu)
  761. == X86EMUL_CONTINUE)
  762. return X86EMUL_CONTINUE;
  763. if (gpa == UNMAPPED_GVA)
  764. return X86EMUL_PROPAGATE_FAULT;
  765. mmio:
  766. /*
  767. * Is this MMIO handled locally?
  768. */
  769. mmio_dev = vcpu_find_mmio_dev(vcpu, gpa);
  770. if (mmio_dev) {
  771. kvm_iodevice_read(mmio_dev, gpa, bytes, val);
  772. return X86EMUL_CONTINUE;
  773. }
  774. vcpu->mmio_needed = 1;
  775. vcpu->mmio_phys_addr = gpa;
  776. vcpu->mmio_size = bytes;
  777. vcpu->mmio_is_write = 0;
  778. return X86EMUL_UNHANDLEABLE;
  779. }
  780. static int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
  781. const void *val, int bytes)
  782. {
  783. int ret;
  784. ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
  785. if (ret < 0)
  786. return 0;
  787. kvm_mmu_pte_write(vcpu, gpa, val, bytes);
  788. return 1;
  789. }
  790. static int emulator_write_emulated_onepage(unsigned long addr,
  791. const void *val,
  792. unsigned int bytes,
  793. struct kvm_vcpu *vcpu)
  794. {
  795. struct kvm_io_device *mmio_dev;
  796. gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
  797. if (gpa == UNMAPPED_GVA) {
  798. kvm_x86_ops->inject_page_fault(vcpu, addr, 2);
  799. return X86EMUL_PROPAGATE_FAULT;
  800. }
  801. /* For APIC access vmexit */
  802. if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
  803. goto mmio;
  804. if (emulator_write_phys(vcpu, gpa, val, bytes))
  805. return X86EMUL_CONTINUE;
  806. mmio:
  807. /*
  808. * Is this MMIO handled locally?
  809. */
  810. mmio_dev = vcpu_find_mmio_dev(vcpu, gpa);
  811. if (mmio_dev) {
  812. kvm_iodevice_write(mmio_dev, gpa, bytes, val);
  813. return X86EMUL_CONTINUE;
  814. }
  815. vcpu->mmio_needed = 1;
  816. vcpu->mmio_phys_addr = gpa;
  817. vcpu->mmio_size = bytes;
  818. vcpu->mmio_is_write = 1;
  819. memcpy(vcpu->mmio_data, val, bytes);
  820. return X86EMUL_CONTINUE;
  821. }
  822. int emulator_write_emulated(unsigned long addr,
  823. const void *val,
  824. unsigned int bytes,
  825. struct kvm_vcpu *vcpu)
  826. {
  827. /* Crossing a page boundary? */
  828. if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
  829. int rc, now;
  830. now = -addr & ~PAGE_MASK;
  831. rc = emulator_write_emulated_onepage(addr, val, now, vcpu);
  832. if (rc != X86EMUL_CONTINUE)
  833. return rc;
  834. addr += now;
  835. val += now;
  836. bytes -= now;
  837. }
  838. return emulator_write_emulated_onepage(addr, val, bytes, vcpu);
  839. }
  840. EXPORT_SYMBOL_GPL(emulator_write_emulated);
  841. static int emulator_cmpxchg_emulated(unsigned long addr,
  842. const void *old,
  843. const void *new,
  844. unsigned int bytes,
  845. struct kvm_vcpu *vcpu)
  846. {
  847. static int reported;
  848. if (!reported) {
  849. reported = 1;
  850. printk(KERN_WARNING "kvm: emulating exchange as write\n");
  851. }
  852. return emulator_write_emulated(addr, new, bytes, vcpu);
  853. }
  854. static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
  855. {
  856. return kvm_x86_ops->get_segment_base(vcpu, seg);
  857. }
  858. int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
  859. {
  860. return X86EMUL_CONTINUE;
  861. }
  862. int emulate_clts(struct kvm_vcpu *vcpu)
  863. {
  864. kvm_x86_ops->set_cr0(vcpu, vcpu->cr0 & ~X86_CR0_TS);
  865. return X86EMUL_CONTINUE;
  866. }
  867. int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
  868. {
  869. struct kvm_vcpu *vcpu = ctxt->vcpu;
  870. switch (dr) {
  871. case 0 ... 3:
  872. *dest = kvm_x86_ops->get_dr(vcpu, dr);
  873. return X86EMUL_CONTINUE;
  874. default:
  875. pr_unimpl(vcpu, "%s: unexpected dr %u\n", __FUNCTION__, dr);
  876. return X86EMUL_UNHANDLEABLE;
  877. }
  878. }
  879. int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
  880. {
  881. unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
  882. int exception;
  883. kvm_x86_ops->set_dr(ctxt->vcpu, dr, value & mask, &exception);
  884. if (exception) {
  885. /* FIXME: better handling */
  886. return X86EMUL_UNHANDLEABLE;
  887. }
  888. return X86EMUL_CONTINUE;
  889. }
  890. void kvm_report_emulation_failure(struct kvm_vcpu *vcpu, const char *context)
  891. {
  892. static int reported;
  893. u8 opcodes[4];
  894. unsigned long rip = vcpu->rip;
  895. unsigned long rip_linear;
  896. rip_linear = rip + get_segment_base(vcpu, VCPU_SREG_CS);
  897. if (reported)
  898. return;
  899. emulator_read_std(rip_linear, (void *)opcodes, 4, vcpu);
  900. printk(KERN_ERR "emulation failed (%s) rip %lx %02x %02x %02x %02x\n",
  901. context, rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
  902. reported = 1;
  903. }
  904. EXPORT_SYMBOL_GPL(kvm_report_emulation_failure);
  905. struct x86_emulate_ops emulate_ops = {
  906. .read_std = emulator_read_std,
  907. .write_std = emulator_write_std,
  908. .read_emulated = emulator_read_emulated,
  909. .write_emulated = emulator_write_emulated,
  910. .cmpxchg_emulated = emulator_cmpxchg_emulated,
  911. };
  912. int emulate_instruction(struct kvm_vcpu *vcpu,
  913. struct kvm_run *run,
  914. unsigned long cr2,
  915. u16 error_code,
  916. int no_decode)
  917. {
  918. int r;
  919. vcpu->mmio_fault_cr2 = cr2;
  920. kvm_x86_ops->cache_regs(vcpu);
  921. vcpu->mmio_is_write = 0;
  922. vcpu->pio.string = 0;
  923. if (!no_decode) {
  924. int cs_db, cs_l;
  925. kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  926. vcpu->emulate_ctxt.vcpu = vcpu;
  927. vcpu->emulate_ctxt.eflags = kvm_x86_ops->get_rflags(vcpu);
  928. vcpu->emulate_ctxt.cr2 = cr2;
  929. vcpu->emulate_ctxt.mode =
  930. (vcpu->emulate_ctxt.eflags & X86_EFLAGS_VM)
  931. ? X86EMUL_MODE_REAL : cs_l
  932. ? X86EMUL_MODE_PROT64 : cs_db
  933. ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
  934. if (vcpu->emulate_ctxt.mode == X86EMUL_MODE_PROT64) {
  935. vcpu->emulate_ctxt.cs_base = 0;
  936. vcpu->emulate_ctxt.ds_base = 0;
  937. vcpu->emulate_ctxt.es_base = 0;
  938. vcpu->emulate_ctxt.ss_base = 0;
  939. } else {
  940. vcpu->emulate_ctxt.cs_base =
  941. get_segment_base(vcpu, VCPU_SREG_CS);
  942. vcpu->emulate_ctxt.ds_base =
  943. get_segment_base(vcpu, VCPU_SREG_DS);
  944. vcpu->emulate_ctxt.es_base =
  945. get_segment_base(vcpu, VCPU_SREG_ES);
  946. vcpu->emulate_ctxt.ss_base =
  947. get_segment_base(vcpu, VCPU_SREG_SS);
  948. }
  949. vcpu->emulate_ctxt.gs_base =
  950. get_segment_base(vcpu, VCPU_SREG_GS);
  951. vcpu->emulate_ctxt.fs_base =
  952. get_segment_base(vcpu, VCPU_SREG_FS);
  953. r = x86_decode_insn(&vcpu->emulate_ctxt, &emulate_ops);
  954. if (r) {
  955. if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
  956. return EMULATE_DONE;
  957. return EMULATE_FAIL;
  958. }
  959. }
  960. r = x86_emulate_insn(&vcpu->emulate_ctxt, &emulate_ops);
  961. if (vcpu->pio.string)
  962. return EMULATE_DO_MMIO;
  963. if ((r || vcpu->mmio_is_write) && run) {
  964. run->exit_reason = KVM_EXIT_MMIO;
  965. run->mmio.phys_addr = vcpu->mmio_phys_addr;
  966. memcpy(run->mmio.data, vcpu->mmio_data, 8);
  967. run->mmio.len = vcpu->mmio_size;
  968. run->mmio.is_write = vcpu->mmio_is_write;
  969. }
  970. if (r) {
  971. if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
  972. return EMULATE_DONE;
  973. if (!vcpu->mmio_needed) {
  974. kvm_report_emulation_failure(vcpu, "mmio");
  975. return EMULATE_FAIL;
  976. }
  977. return EMULATE_DO_MMIO;
  978. }
  979. kvm_x86_ops->decache_regs(vcpu);
  980. kvm_x86_ops->set_rflags(vcpu, vcpu->emulate_ctxt.eflags);
  981. if (vcpu->mmio_is_write) {
  982. vcpu->mmio_needed = 0;
  983. return EMULATE_DO_MMIO;
  984. }
  985. return EMULATE_DONE;
  986. }
  987. EXPORT_SYMBOL_GPL(emulate_instruction);
  988. /*
  989. * The vCPU has executed a HLT instruction with in-kernel mode enabled.
  990. */
  991. static void kvm_vcpu_block(struct kvm_vcpu *vcpu)
  992. {
  993. DECLARE_WAITQUEUE(wait, current);
  994. add_wait_queue(&vcpu->wq, &wait);
  995. /*
  996. * We will block until either an interrupt or a signal wakes us up
  997. */
  998. while (!kvm_cpu_has_interrupt(vcpu)
  999. && !signal_pending(current)
  1000. && vcpu->mp_state != VCPU_MP_STATE_RUNNABLE
  1001. && vcpu->mp_state != VCPU_MP_STATE_SIPI_RECEIVED) {
  1002. set_current_state(TASK_INTERRUPTIBLE);
  1003. vcpu_put(vcpu);
  1004. schedule();
  1005. vcpu_load(vcpu);
  1006. }
  1007. __set_current_state(TASK_RUNNING);
  1008. remove_wait_queue(&vcpu->wq, &wait);
  1009. }
  1010. int kvm_emulate_halt(struct kvm_vcpu *vcpu)
  1011. {
  1012. ++vcpu->stat.halt_exits;
  1013. if (irqchip_in_kernel(vcpu->kvm)) {
  1014. vcpu->mp_state = VCPU_MP_STATE_HALTED;
  1015. kvm_vcpu_block(vcpu);
  1016. if (vcpu->mp_state != VCPU_MP_STATE_RUNNABLE)
  1017. return -EINTR;
  1018. return 1;
  1019. } else {
  1020. vcpu->run->exit_reason = KVM_EXIT_HLT;
  1021. return 0;
  1022. }
  1023. }
  1024. EXPORT_SYMBOL_GPL(kvm_emulate_halt);
  1025. int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
  1026. {
  1027. unsigned long nr, a0, a1, a2, a3, ret;
  1028. kvm_x86_ops->cache_regs(vcpu);
  1029. nr = vcpu->regs[VCPU_REGS_RAX];
  1030. a0 = vcpu->regs[VCPU_REGS_RBX];
  1031. a1 = vcpu->regs[VCPU_REGS_RCX];
  1032. a2 = vcpu->regs[VCPU_REGS_RDX];
  1033. a3 = vcpu->regs[VCPU_REGS_RSI];
  1034. if (!is_long_mode(vcpu)) {
  1035. nr &= 0xFFFFFFFF;
  1036. a0 &= 0xFFFFFFFF;
  1037. a1 &= 0xFFFFFFFF;
  1038. a2 &= 0xFFFFFFFF;
  1039. a3 &= 0xFFFFFFFF;
  1040. }
  1041. switch (nr) {
  1042. default:
  1043. ret = -KVM_ENOSYS;
  1044. break;
  1045. }
  1046. vcpu->regs[VCPU_REGS_RAX] = ret;
  1047. kvm_x86_ops->decache_regs(vcpu);
  1048. return 0;
  1049. }
  1050. EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
  1051. int kvm_fix_hypercall(struct kvm_vcpu *vcpu)
  1052. {
  1053. char instruction[3];
  1054. int ret = 0;
  1055. mutex_lock(&vcpu->kvm->lock);
  1056. /*
  1057. * Blow out the MMU to ensure that no other VCPU has an active mapping
  1058. * to ensure that the updated hypercall appears atomically across all
  1059. * VCPUs.
  1060. */
  1061. kvm_mmu_zap_all(vcpu->kvm);
  1062. kvm_x86_ops->cache_regs(vcpu);
  1063. kvm_x86_ops->patch_hypercall(vcpu, instruction);
  1064. if (emulator_write_emulated(vcpu->rip, instruction, 3, vcpu)
  1065. != X86EMUL_CONTINUE)
  1066. ret = -EFAULT;
  1067. mutex_unlock(&vcpu->kvm->lock);
  1068. return ret;
  1069. }
  1070. static u64 mk_cr_64(u64 curr_cr, u32 new_val)
  1071. {
  1072. return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
  1073. }
  1074. void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  1075. {
  1076. struct descriptor_table dt = { limit, base };
  1077. kvm_x86_ops->set_gdt(vcpu, &dt);
  1078. }
  1079. void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  1080. {
  1081. struct descriptor_table dt = { limit, base };
  1082. kvm_x86_ops->set_idt(vcpu, &dt);
  1083. }
  1084. void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
  1085. unsigned long *rflags)
  1086. {
  1087. lmsw(vcpu, msw);
  1088. *rflags = kvm_x86_ops->get_rflags(vcpu);
  1089. }
  1090. unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
  1091. {
  1092. kvm_x86_ops->decache_cr4_guest_bits(vcpu);
  1093. switch (cr) {
  1094. case 0:
  1095. return vcpu->cr0;
  1096. case 2:
  1097. return vcpu->cr2;
  1098. case 3:
  1099. return vcpu->cr3;
  1100. case 4:
  1101. return vcpu->cr4;
  1102. default:
  1103. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
  1104. return 0;
  1105. }
  1106. }
  1107. void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
  1108. unsigned long *rflags)
  1109. {
  1110. switch (cr) {
  1111. case 0:
  1112. set_cr0(vcpu, mk_cr_64(vcpu->cr0, val));
  1113. *rflags = kvm_x86_ops->get_rflags(vcpu);
  1114. break;
  1115. case 2:
  1116. vcpu->cr2 = val;
  1117. break;
  1118. case 3:
  1119. set_cr3(vcpu, val);
  1120. break;
  1121. case 4:
  1122. set_cr4(vcpu, mk_cr_64(vcpu->cr4, val));
  1123. break;
  1124. default:
  1125. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
  1126. }
  1127. }
  1128. int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  1129. {
  1130. u64 data;
  1131. switch (msr) {
  1132. case 0xc0010010: /* SYSCFG */
  1133. case 0xc0010015: /* HWCR */
  1134. case MSR_IA32_PLATFORM_ID:
  1135. case MSR_IA32_P5_MC_ADDR:
  1136. case MSR_IA32_P5_MC_TYPE:
  1137. case MSR_IA32_MC0_CTL:
  1138. case MSR_IA32_MCG_STATUS:
  1139. case MSR_IA32_MCG_CAP:
  1140. case MSR_IA32_MC0_MISC:
  1141. case MSR_IA32_MC0_MISC+4:
  1142. case MSR_IA32_MC0_MISC+8:
  1143. case MSR_IA32_MC0_MISC+12:
  1144. case MSR_IA32_MC0_MISC+16:
  1145. case MSR_IA32_UCODE_REV:
  1146. case MSR_IA32_PERF_STATUS:
  1147. case MSR_IA32_EBL_CR_POWERON:
  1148. /* MTRR registers */
  1149. case 0xfe:
  1150. case 0x200 ... 0x2ff:
  1151. data = 0;
  1152. break;
  1153. case 0xcd: /* fsb frequency */
  1154. data = 3;
  1155. break;
  1156. case MSR_IA32_APICBASE:
  1157. data = kvm_get_apic_base(vcpu);
  1158. break;
  1159. case MSR_IA32_MISC_ENABLE:
  1160. data = vcpu->ia32_misc_enable_msr;
  1161. break;
  1162. #ifdef CONFIG_X86_64
  1163. case MSR_EFER:
  1164. data = vcpu->shadow_efer;
  1165. break;
  1166. #endif
  1167. default:
  1168. pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
  1169. return 1;
  1170. }
  1171. *pdata = data;
  1172. return 0;
  1173. }
  1174. EXPORT_SYMBOL_GPL(kvm_get_msr_common);
  1175. /*
  1176. * Reads an msr value (of 'msr_index') into 'pdata'.
  1177. * Returns 0 on success, non-0 otherwise.
  1178. * Assumes vcpu_load() was already called.
  1179. */
  1180. int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  1181. {
  1182. return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
  1183. }
  1184. #ifdef CONFIG_X86_64
  1185. static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
  1186. {
  1187. if (efer & EFER_RESERVED_BITS) {
  1188. printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n",
  1189. efer);
  1190. inject_gp(vcpu);
  1191. return;
  1192. }
  1193. if (is_paging(vcpu)
  1194. && (vcpu->shadow_efer & EFER_LME) != (efer & EFER_LME)) {
  1195. printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n");
  1196. inject_gp(vcpu);
  1197. return;
  1198. }
  1199. kvm_x86_ops->set_efer(vcpu, efer);
  1200. efer &= ~EFER_LMA;
  1201. efer |= vcpu->shadow_efer & EFER_LMA;
  1202. vcpu->shadow_efer = efer;
  1203. }
  1204. #endif
  1205. int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  1206. {
  1207. switch (msr) {
  1208. #ifdef CONFIG_X86_64
  1209. case MSR_EFER:
  1210. set_efer(vcpu, data);
  1211. break;
  1212. #endif
  1213. case MSR_IA32_MC0_STATUS:
  1214. pr_unimpl(vcpu, "%s: MSR_IA32_MC0_STATUS 0x%llx, nop\n",
  1215. __FUNCTION__, data);
  1216. break;
  1217. case MSR_IA32_MCG_STATUS:
  1218. pr_unimpl(vcpu, "%s: MSR_IA32_MCG_STATUS 0x%llx, nop\n",
  1219. __FUNCTION__, data);
  1220. break;
  1221. case MSR_IA32_UCODE_REV:
  1222. case MSR_IA32_UCODE_WRITE:
  1223. case 0x200 ... 0x2ff: /* MTRRs */
  1224. break;
  1225. case MSR_IA32_APICBASE:
  1226. kvm_set_apic_base(vcpu, data);
  1227. break;
  1228. case MSR_IA32_MISC_ENABLE:
  1229. vcpu->ia32_misc_enable_msr = data;
  1230. break;
  1231. default:
  1232. pr_unimpl(vcpu, "unhandled wrmsr: 0x%x\n", msr);
  1233. return 1;
  1234. }
  1235. return 0;
  1236. }
  1237. EXPORT_SYMBOL_GPL(kvm_set_msr_common);
  1238. /*
  1239. * Writes msr value into into the appropriate "register".
  1240. * Returns 0 on success, non-0 otherwise.
  1241. * Assumes vcpu_load() was already called.
  1242. */
  1243. int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  1244. {
  1245. return kvm_x86_ops->set_msr(vcpu, msr_index, data);
  1246. }
  1247. void kvm_resched(struct kvm_vcpu *vcpu)
  1248. {
  1249. if (!need_resched())
  1250. return;
  1251. cond_resched();
  1252. }
  1253. EXPORT_SYMBOL_GPL(kvm_resched);
  1254. void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
  1255. {
  1256. int i;
  1257. u32 function;
  1258. struct kvm_cpuid_entry *e, *best;
  1259. kvm_x86_ops->cache_regs(vcpu);
  1260. function = vcpu->regs[VCPU_REGS_RAX];
  1261. vcpu->regs[VCPU_REGS_RAX] = 0;
  1262. vcpu->regs[VCPU_REGS_RBX] = 0;
  1263. vcpu->regs[VCPU_REGS_RCX] = 0;
  1264. vcpu->regs[VCPU_REGS_RDX] = 0;
  1265. best = NULL;
  1266. for (i = 0; i < vcpu->cpuid_nent; ++i) {
  1267. e = &vcpu->cpuid_entries[i];
  1268. if (e->function == function) {
  1269. best = e;
  1270. break;
  1271. }
  1272. /*
  1273. * Both basic or both extended?
  1274. */
  1275. if (((e->function ^ function) & 0x80000000) == 0)
  1276. if (!best || e->function > best->function)
  1277. best = e;
  1278. }
  1279. if (best) {
  1280. vcpu->regs[VCPU_REGS_RAX] = best->eax;
  1281. vcpu->regs[VCPU_REGS_RBX] = best->ebx;
  1282. vcpu->regs[VCPU_REGS_RCX] = best->ecx;
  1283. vcpu->regs[VCPU_REGS_RDX] = best->edx;
  1284. }
  1285. kvm_x86_ops->decache_regs(vcpu);
  1286. kvm_x86_ops->skip_emulated_instruction(vcpu);
  1287. }
  1288. EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
  1289. static int pio_copy_data(struct kvm_vcpu *vcpu)
  1290. {
  1291. void *p = vcpu->pio_data;
  1292. void *q;
  1293. unsigned bytes;
  1294. int nr_pages = vcpu->pio.guest_pages[1] ? 2 : 1;
  1295. q = vmap(vcpu->pio.guest_pages, nr_pages, VM_READ|VM_WRITE,
  1296. PAGE_KERNEL);
  1297. if (!q) {
  1298. free_pio_guest_pages(vcpu);
  1299. return -ENOMEM;
  1300. }
  1301. q += vcpu->pio.guest_page_offset;
  1302. bytes = vcpu->pio.size * vcpu->pio.cur_count;
  1303. if (vcpu->pio.in)
  1304. memcpy(q, p, bytes);
  1305. else
  1306. memcpy(p, q, bytes);
  1307. q -= vcpu->pio.guest_page_offset;
  1308. vunmap(q);
  1309. free_pio_guest_pages(vcpu);
  1310. return 0;
  1311. }
  1312. static int complete_pio(struct kvm_vcpu *vcpu)
  1313. {
  1314. struct kvm_pio_request *io = &vcpu->pio;
  1315. long delta;
  1316. int r;
  1317. kvm_x86_ops->cache_regs(vcpu);
  1318. if (!io->string) {
  1319. if (io->in)
  1320. memcpy(&vcpu->regs[VCPU_REGS_RAX], vcpu->pio_data,
  1321. io->size);
  1322. } else {
  1323. if (io->in) {
  1324. r = pio_copy_data(vcpu);
  1325. if (r) {
  1326. kvm_x86_ops->cache_regs(vcpu);
  1327. return r;
  1328. }
  1329. }
  1330. delta = 1;
  1331. if (io->rep) {
  1332. delta *= io->cur_count;
  1333. /*
  1334. * The size of the register should really depend on
  1335. * current address size.
  1336. */
  1337. vcpu->regs[VCPU_REGS_RCX] -= delta;
  1338. }
  1339. if (io->down)
  1340. delta = -delta;
  1341. delta *= io->size;
  1342. if (io->in)
  1343. vcpu->regs[VCPU_REGS_RDI] += delta;
  1344. else
  1345. vcpu->regs[VCPU_REGS_RSI] += delta;
  1346. }
  1347. kvm_x86_ops->decache_regs(vcpu);
  1348. io->count -= io->cur_count;
  1349. io->cur_count = 0;
  1350. return 0;
  1351. }
  1352. static void kernel_pio(struct kvm_io_device *pio_dev,
  1353. struct kvm_vcpu *vcpu,
  1354. void *pd)
  1355. {
  1356. /* TODO: String I/O for in kernel device */
  1357. mutex_lock(&vcpu->kvm->lock);
  1358. if (vcpu->pio.in)
  1359. kvm_iodevice_read(pio_dev, vcpu->pio.port,
  1360. vcpu->pio.size,
  1361. pd);
  1362. else
  1363. kvm_iodevice_write(pio_dev, vcpu->pio.port,
  1364. vcpu->pio.size,
  1365. pd);
  1366. mutex_unlock(&vcpu->kvm->lock);
  1367. }
  1368. static void pio_string_write(struct kvm_io_device *pio_dev,
  1369. struct kvm_vcpu *vcpu)
  1370. {
  1371. struct kvm_pio_request *io = &vcpu->pio;
  1372. void *pd = vcpu->pio_data;
  1373. int i;
  1374. mutex_lock(&vcpu->kvm->lock);
  1375. for (i = 0; i < io->cur_count; i++) {
  1376. kvm_iodevice_write(pio_dev, io->port,
  1377. io->size,
  1378. pd);
  1379. pd += io->size;
  1380. }
  1381. mutex_unlock(&vcpu->kvm->lock);
  1382. }
  1383. int kvm_emulate_pio(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
  1384. int size, unsigned port)
  1385. {
  1386. struct kvm_io_device *pio_dev;
  1387. vcpu->run->exit_reason = KVM_EXIT_IO;
  1388. vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
  1389. vcpu->run->io.size = vcpu->pio.size = size;
  1390. vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
  1391. vcpu->run->io.count = vcpu->pio.count = vcpu->pio.cur_count = 1;
  1392. vcpu->run->io.port = vcpu->pio.port = port;
  1393. vcpu->pio.in = in;
  1394. vcpu->pio.string = 0;
  1395. vcpu->pio.down = 0;
  1396. vcpu->pio.guest_page_offset = 0;
  1397. vcpu->pio.rep = 0;
  1398. kvm_x86_ops->cache_regs(vcpu);
  1399. memcpy(vcpu->pio_data, &vcpu->regs[VCPU_REGS_RAX], 4);
  1400. kvm_x86_ops->decache_regs(vcpu);
  1401. kvm_x86_ops->skip_emulated_instruction(vcpu);
  1402. pio_dev = vcpu_find_pio_dev(vcpu, port);
  1403. if (pio_dev) {
  1404. kernel_pio(pio_dev, vcpu, vcpu->pio_data);
  1405. complete_pio(vcpu);
  1406. return 1;
  1407. }
  1408. return 0;
  1409. }
  1410. EXPORT_SYMBOL_GPL(kvm_emulate_pio);
  1411. int kvm_emulate_pio_string(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
  1412. int size, unsigned long count, int down,
  1413. gva_t address, int rep, unsigned port)
  1414. {
  1415. unsigned now, in_page;
  1416. int i, ret = 0;
  1417. int nr_pages = 1;
  1418. struct page *page;
  1419. struct kvm_io_device *pio_dev;
  1420. vcpu->run->exit_reason = KVM_EXIT_IO;
  1421. vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
  1422. vcpu->run->io.size = vcpu->pio.size = size;
  1423. vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
  1424. vcpu->run->io.count = vcpu->pio.count = vcpu->pio.cur_count = count;
  1425. vcpu->run->io.port = vcpu->pio.port = port;
  1426. vcpu->pio.in = in;
  1427. vcpu->pio.string = 1;
  1428. vcpu->pio.down = down;
  1429. vcpu->pio.guest_page_offset = offset_in_page(address);
  1430. vcpu->pio.rep = rep;
  1431. if (!count) {
  1432. kvm_x86_ops->skip_emulated_instruction(vcpu);
  1433. return 1;
  1434. }
  1435. if (!down)
  1436. in_page = PAGE_SIZE - offset_in_page(address);
  1437. else
  1438. in_page = offset_in_page(address) + size;
  1439. now = min(count, (unsigned long)in_page / size);
  1440. if (!now) {
  1441. /*
  1442. * String I/O straddles page boundary. Pin two guest pages
  1443. * so that we satisfy atomicity constraints. Do just one
  1444. * transaction to avoid complexity.
  1445. */
  1446. nr_pages = 2;
  1447. now = 1;
  1448. }
  1449. if (down) {
  1450. /*
  1451. * String I/O in reverse. Yuck. Kill the guest, fix later.
  1452. */
  1453. pr_unimpl(vcpu, "guest string pio down\n");
  1454. inject_gp(vcpu);
  1455. return 1;
  1456. }
  1457. vcpu->run->io.count = now;
  1458. vcpu->pio.cur_count = now;
  1459. if (vcpu->pio.cur_count == vcpu->pio.count)
  1460. kvm_x86_ops->skip_emulated_instruction(vcpu);
  1461. for (i = 0; i < nr_pages; ++i) {
  1462. mutex_lock(&vcpu->kvm->lock);
  1463. page = gva_to_page(vcpu, address + i * PAGE_SIZE);
  1464. vcpu->pio.guest_pages[i] = page;
  1465. mutex_unlock(&vcpu->kvm->lock);
  1466. if (!page) {
  1467. inject_gp(vcpu);
  1468. free_pio_guest_pages(vcpu);
  1469. return 1;
  1470. }
  1471. }
  1472. pio_dev = vcpu_find_pio_dev(vcpu, port);
  1473. if (!vcpu->pio.in) {
  1474. /* string PIO write */
  1475. ret = pio_copy_data(vcpu);
  1476. if (ret >= 0 && pio_dev) {
  1477. pio_string_write(pio_dev, vcpu);
  1478. complete_pio(vcpu);
  1479. if (vcpu->pio.count == 0)
  1480. ret = 1;
  1481. }
  1482. } else if (pio_dev)
  1483. pr_unimpl(vcpu, "no string pio read support yet, "
  1484. "port %x size %d count %ld\n",
  1485. port, size, count);
  1486. return ret;
  1487. }
  1488. EXPORT_SYMBOL_GPL(kvm_emulate_pio_string);
  1489. /*
  1490. * Check if userspace requested an interrupt window, and that the
  1491. * interrupt window is open.
  1492. *
  1493. * No need to exit to userspace if we already have an interrupt queued.
  1494. */
  1495. static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu,
  1496. struct kvm_run *kvm_run)
  1497. {
  1498. return (!vcpu->irq_summary &&
  1499. kvm_run->request_interrupt_window &&
  1500. vcpu->interrupt_window_open &&
  1501. (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF));
  1502. }
  1503. static void post_kvm_run_save(struct kvm_vcpu *vcpu,
  1504. struct kvm_run *kvm_run)
  1505. {
  1506. kvm_run->if_flag = (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
  1507. kvm_run->cr8 = get_cr8(vcpu);
  1508. kvm_run->apic_base = kvm_get_apic_base(vcpu);
  1509. if (irqchip_in_kernel(vcpu->kvm))
  1510. kvm_run->ready_for_interrupt_injection = 1;
  1511. else
  1512. kvm_run->ready_for_interrupt_injection =
  1513. (vcpu->interrupt_window_open &&
  1514. vcpu->irq_summary == 0);
  1515. }
  1516. static int __vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1517. {
  1518. int r;
  1519. if (unlikely(vcpu->mp_state == VCPU_MP_STATE_SIPI_RECEIVED)) {
  1520. pr_debug("vcpu %d received sipi with vector # %x\n",
  1521. vcpu->vcpu_id, vcpu->sipi_vector);
  1522. kvm_lapic_reset(vcpu);
  1523. r = kvm_x86_ops->vcpu_reset(vcpu);
  1524. if (r)
  1525. return r;
  1526. vcpu->mp_state = VCPU_MP_STATE_RUNNABLE;
  1527. }
  1528. preempted:
  1529. if (vcpu->guest_debug.enabled)
  1530. kvm_x86_ops->guest_debug_pre(vcpu);
  1531. again:
  1532. r = kvm_mmu_reload(vcpu);
  1533. if (unlikely(r))
  1534. goto out;
  1535. kvm_inject_pending_timer_irqs(vcpu);
  1536. preempt_disable();
  1537. kvm_x86_ops->prepare_guest_switch(vcpu);
  1538. kvm_load_guest_fpu(vcpu);
  1539. local_irq_disable();
  1540. if (signal_pending(current)) {
  1541. local_irq_enable();
  1542. preempt_enable();
  1543. r = -EINTR;
  1544. kvm_run->exit_reason = KVM_EXIT_INTR;
  1545. ++vcpu->stat.signal_exits;
  1546. goto out;
  1547. }
  1548. if (irqchip_in_kernel(vcpu->kvm))
  1549. kvm_x86_ops->inject_pending_irq(vcpu);
  1550. else if (!vcpu->mmio_read_completed)
  1551. kvm_x86_ops->inject_pending_vectors(vcpu, kvm_run);
  1552. vcpu->guest_mode = 1;
  1553. kvm_guest_enter();
  1554. if (vcpu->requests)
  1555. if (test_and_clear_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
  1556. kvm_x86_ops->tlb_flush(vcpu);
  1557. kvm_x86_ops->run(vcpu, kvm_run);
  1558. vcpu->guest_mode = 0;
  1559. local_irq_enable();
  1560. ++vcpu->stat.exits;
  1561. /*
  1562. * We must have an instruction between local_irq_enable() and
  1563. * kvm_guest_exit(), so the timer interrupt isn't delayed by
  1564. * the interrupt shadow. The stat.exits increment will do nicely.
  1565. * But we need to prevent reordering, hence this barrier():
  1566. */
  1567. barrier();
  1568. kvm_guest_exit();
  1569. preempt_enable();
  1570. /*
  1571. * Profile KVM exit RIPs:
  1572. */
  1573. if (unlikely(prof_on == KVM_PROFILING)) {
  1574. kvm_x86_ops->cache_regs(vcpu);
  1575. profile_hit(KVM_PROFILING, (void *)vcpu->rip);
  1576. }
  1577. r = kvm_x86_ops->handle_exit(kvm_run, vcpu);
  1578. if (r > 0) {
  1579. if (dm_request_for_irq_injection(vcpu, kvm_run)) {
  1580. r = -EINTR;
  1581. kvm_run->exit_reason = KVM_EXIT_INTR;
  1582. ++vcpu->stat.request_irq_exits;
  1583. goto out;
  1584. }
  1585. if (!need_resched()) {
  1586. ++vcpu->stat.light_exits;
  1587. goto again;
  1588. }
  1589. }
  1590. out:
  1591. if (r > 0) {
  1592. kvm_resched(vcpu);
  1593. goto preempted;
  1594. }
  1595. post_kvm_run_save(vcpu, kvm_run);
  1596. return r;
  1597. }
  1598. static int kvm_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1599. {
  1600. int r;
  1601. sigset_t sigsaved;
  1602. vcpu_load(vcpu);
  1603. if (unlikely(vcpu->mp_state == VCPU_MP_STATE_UNINITIALIZED)) {
  1604. kvm_vcpu_block(vcpu);
  1605. vcpu_put(vcpu);
  1606. return -EAGAIN;
  1607. }
  1608. if (vcpu->sigset_active)
  1609. sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
  1610. /* re-sync apic's tpr */
  1611. if (!irqchip_in_kernel(vcpu->kvm))
  1612. set_cr8(vcpu, kvm_run->cr8);
  1613. if (vcpu->pio.cur_count) {
  1614. r = complete_pio(vcpu);
  1615. if (r)
  1616. goto out;
  1617. }
  1618. #if CONFIG_HAS_IOMEM
  1619. if (vcpu->mmio_needed) {
  1620. memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
  1621. vcpu->mmio_read_completed = 1;
  1622. vcpu->mmio_needed = 0;
  1623. r = emulate_instruction(vcpu, kvm_run,
  1624. vcpu->mmio_fault_cr2, 0, 1);
  1625. if (r == EMULATE_DO_MMIO) {
  1626. /*
  1627. * Read-modify-write. Back to userspace.
  1628. */
  1629. r = 0;
  1630. goto out;
  1631. }
  1632. }
  1633. #endif
  1634. if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL) {
  1635. kvm_x86_ops->cache_regs(vcpu);
  1636. vcpu->regs[VCPU_REGS_RAX] = kvm_run->hypercall.ret;
  1637. kvm_x86_ops->decache_regs(vcpu);
  1638. }
  1639. r = __vcpu_run(vcpu, kvm_run);
  1640. out:
  1641. if (vcpu->sigset_active)
  1642. sigprocmask(SIG_SETMASK, &sigsaved, NULL);
  1643. vcpu_put(vcpu);
  1644. return r;
  1645. }
  1646. static int kvm_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu,
  1647. struct kvm_regs *regs)
  1648. {
  1649. vcpu_load(vcpu);
  1650. kvm_x86_ops->cache_regs(vcpu);
  1651. regs->rax = vcpu->regs[VCPU_REGS_RAX];
  1652. regs->rbx = vcpu->regs[VCPU_REGS_RBX];
  1653. regs->rcx = vcpu->regs[VCPU_REGS_RCX];
  1654. regs->rdx = vcpu->regs[VCPU_REGS_RDX];
  1655. regs->rsi = vcpu->regs[VCPU_REGS_RSI];
  1656. regs->rdi = vcpu->regs[VCPU_REGS_RDI];
  1657. regs->rsp = vcpu->regs[VCPU_REGS_RSP];
  1658. regs->rbp = vcpu->regs[VCPU_REGS_RBP];
  1659. #ifdef CONFIG_X86_64
  1660. regs->r8 = vcpu->regs[VCPU_REGS_R8];
  1661. regs->r9 = vcpu->regs[VCPU_REGS_R9];
  1662. regs->r10 = vcpu->regs[VCPU_REGS_R10];
  1663. regs->r11 = vcpu->regs[VCPU_REGS_R11];
  1664. regs->r12 = vcpu->regs[VCPU_REGS_R12];
  1665. regs->r13 = vcpu->regs[VCPU_REGS_R13];
  1666. regs->r14 = vcpu->regs[VCPU_REGS_R14];
  1667. regs->r15 = vcpu->regs[VCPU_REGS_R15];
  1668. #endif
  1669. regs->rip = vcpu->rip;
  1670. regs->rflags = kvm_x86_ops->get_rflags(vcpu);
  1671. /*
  1672. * Don't leak debug flags in case they were set for guest debugging
  1673. */
  1674. if (vcpu->guest_debug.enabled && vcpu->guest_debug.singlestep)
  1675. regs->rflags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
  1676. vcpu_put(vcpu);
  1677. return 0;
  1678. }
  1679. static int kvm_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu,
  1680. struct kvm_regs *regs)
  1681. {
  1682. vcpu_load(vcpu);
  1683. vcpu->regs[VCPU_REGS_RAX] = regs->rax;
  1684. vcpu->regs[VCPU_REGS_RBX] = regs->rbx;
  1685. vcpu->regs[VCPU_REGS_RCX] = regs->rcx;
  1686. vcpu->regs[VCPU_REGS_RDX] = regs->rdx;
  1687. vcpu->regs[VCPU_REGS_RSI] = regs->rsi;
  1688. vcpu->regs[VCPU_REGS_RDI] = regs->rdi;
  1689. vcpu->regs[VCPU_REGS_RSP] = regs->rsp;
  1690. vcpu->regs[VCPU_REGS_RBP] = regs->rbp;
  1691. #ifdef CONFIG_X86_64
  1692. vcpu->regs[VCPU_REGS_R8] = regs->r8;
  1693. vcpu->regs[VCPU_REGS_R9] = regs->r9;
  1694. vcpu->regs[VCPU_REGS_R10] = regs->r10;
  1695. vcpu->regs[VCPU_REGS_R11] = regs->r11;
  1696. vcpu->regs[VCPU_REGS_R12] = regs->r12;
  1697. vcpu->regs[VCPU_REGS_R13] = regs->r13;
  1698. vcpu->regs[VCPU_REGS_R14] = regs->r14;
  1699. vcpu->regs[VCPU_REGS_R15] = regs->r15;
  1700. #endif
  1701. vcpu->rip = regs->rip;
  1702. kvm_x86_ops->set_rflags(vcpu, regs->rflags);
  1703. kvm_x86_ops->decache_regs(vcpu);
  1704. vcpu_put(vcpu);
  1705. return 0;
  1706. }
  1707. static void get_segment(struct kvm_vcpu *vcpu,
  1708. struct kvm_segment *var, int seg)
  1709. {
  1710. return kvm_x86_ops->get_segment(vcpu, var, seg);
  1711. }
  1712. static int kvm_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
  1713. struct kvm_sregs *sregs)
  1714. {
  1715. struct descriptor_table dt;
  1716. int pending_vec;
  1717. vcpu_load(vcpu);
  1718. get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  1719. get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  1720. get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  1721. get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  1722. get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  1723. get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  1724. get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  1725. get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  1726. kvm_x86_ops->get_idt(vcpu, &dt);
  1727. sregs->idt.limit = dt.limit;
  1728. sregs->idt.base = dt.base;
  1729. kvm_x86_ops->get_gdt(vcpu, &dt);
  1730. sregs->gdt.limit = dt.limit;
  1731. sregs->gdt.base = dt.base;
  1732. kvm_x86_ops->decache_cr4_guest_bits(vcpu);
  1733. sregs->cr0 = vcpu->cr0;
  1734. sregs->cr2 = vcpu->cr2;
  1735. sregs->cr3 = vcpu->cr3;
  1736. sregs->cr4 = vcpu->cr4;
  1737. sregs->cr8 = get_cr8(vcpu);
  1738. sregs->efer = vcpu->shadow_efer;
  1739. sregs->apic_base = kvm_get_apic_base(vcpu);
  1740. if (irqchip_in_kernel(vcpu->kvm)) {
  1741. memset(sregs->interrupt_bitmap, 0,
  1742. sizeof sregs->interrupt_bitmap);
  1743. pending_vec = kvm_x86_ops->get_irq(vcpu);
  1744. if (pending_vec >= 0)
  1745. set_bit(pending_vec,
  1746. (unsigned long *)sregs->interrupt_bitmap);
  1747. } else
  1748. memcpy(sregs->interrupt_bitmap, vcpu->irq_pending,
  1749. sizeof sregs->interrupt_bitmap);
  1750. vcpu_put(vcpu);
  1751. return 0;
  1752. }
  1753. static void set_segment(struct kvm_vcpu *vcpu,
  1754. struct kvm_segment *var, int seg)
  1755. {
  1756. return kvm_x86_ops->set_segment(vcpu, var, seg);
  1757. }
  1758. static int kvm_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
  1759. struct kvm_sregs *sregs)
  1760. {
  1761. int mmu_reset_needed = 0;
  1762. int i, pending_vec, max_bits;
  1763. struct descriptor_table dt;
  1764. vcpu_load(vcpu);
  1765. dt.limit = sregs->idt.limit;
  1766. dt.base = sregs->idt.base;
  1767. kvm_x86_ops->set_idt(vcpu, &dt);
  1768. dt.limit = sregs->gdt.limit;
  1769. dt.base = sregs->gdt.base;
  1770. kvm_x86_ops->set_gdt(vcpu, &dt);
  1771. vcpu->cr2 = sregs->cr2;
  1772. mmu_reset_needed |= vcpu->cr3 != sregs->cr3;
  1773. vcpu->cr3 = sregs->cr3;
  1774. set_cr8(vcpu, sregs->cr8);
  1775. mmu_reset_needed |= vcpu->shadow_efer != sregs->efer;
  1776. #ifdef CONFIG_X86_64
  1777. kvm_x86_ops->set_efer(vcpu, sregs->efer);
  1778. #endif
  1779. kvm_set_apic_base(vcpu, sregs->apic_base);
  1780. kvm_x86_ops->decache_cr4_guest_bits(vcpu);
  1781. mmu_reset_needed |= vcpu->cr0 != sregs->cr0;
  1782. vcpu->cr0 = sregs->cr0;
  1783. kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
  1784. mmu_reset_needed |= vcpu->cr4 != sregs->cr4;
  1785. kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
  1786. if (!is_long_mode(vcpu) && is_pae(vcpu))
  1787. load_pdptrs(vcpu, vcpu->cr3);
  1788. if (mmu_reset_needed)
  1789. kvm_mmu_reset_context(vcpu);
  1790. if (!irqchip_in_kernel(vcpu->kvm)) {
  1791. memcpy(vcpu->irq_pending, sregs->interrupt_bitmap,
  1792. sizeof vcpu->irq_pending);
  1793. vcpu->irq_summary = 0;
  1794. for (i = 0; i < ARRAY_SIZE(vcpu->irq_pending); ++i)
  1795. if (vcpu->irq_pending[i])
  1796. __set_bit(i, &vcpu->irq_summary);
  1797. } else {
  1798. max_bits = (sizeof sregs->interrupt_bitmap) << 3;
  1799. pending_vec = find_first_bit(
  1800. (const unsigned long *)sregs->interrupt_bitmap,
  1801. max_bits);
  1802. /* Only pending external irq is handled here */
  1803. if (pending_vec < max_bits) {
  1804. kvm_x86_ops->set_irq(vcpu, pending_vec);
  1805. pr_debug("Set back pending irq %d\n",
  1806. pending_vec);
  1807. }
  1808. }
  1809. set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  1810. set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  1811. set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  1812. set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  1813. set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  1814. set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  1815. set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  1816. set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  1817. vcpu_put(vcpu);
  1818. return 0;
  1819. }
  1820. void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
  1821. {
  1822. struct kvm_segment cs;
  1823. get_segment(vcpu, &cs, VCPU_SREG_CS);
  1824. *db = cs.db;
  1825. *l = cs.l;
  1826. }
  1827. EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
  1828. /*
  1829. * Translate a guest virtual address to a guest physical address.
  1830. */
  1831. static int kvm_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
  1832. struct kvm_translation *tr)
  1833. {
  1834. unsigned long vaddr = tr->linear_address;
  1835. gpa_t gpa;
  1836. vcpu_load(vcpu);
  1837. mutex_lock(&vcpu->kvm->lock);
  1838. gpa = vcpu->mmu.gva_to_gpa(vcpu, vaddr);
  1839. tr->physical_address = gpa;
  1840. tr->valid = gpa != UNMAPPED_GVA;
  1841. tr->writeable = 1;
  1842. tr->usermode = 0;
  1843. mutex_unlock(&vcpu->kvm->lock);
  1844. vcpu_put(vcpu);
  1845. return 0;
  1846. }
  1847. static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
  1848. struct kvm_interrupt *irq)
  1849. {
  1850. if (irq->irq < 0 || irq->irq >= 256)
  1851. return -EINVAL;
  1852. if (irqchip_in_kernel(vcpu->kvm))
  1853. return -ENXIO;
  1854. vcpu_load(vcpu);
  1855. set_bit(irq->irq, vcpu->irq_pending);
  1856. set_bit(irq->irq / BITS_PER_LONG, &vcpu->irq_summary);
  1857. vcpu_put(vcpu);
  1858. return 0;
  1859. }
  1860. static int kvm_vcpu_ioctl_debug_guest(struct kvm_vcpu *vcpu,
  1861. struct kvm_debug_guest *dbg)
  1862. {
  1863. int r;
  1864. vcpu_load(vcpu);
  1865. r = kvm_x86_ops->set_guest_debug(vcpu, dbg);
  1866. vcpu_put(vcpu);
  1867. return r;
  1868. }
  1869. static struct page *kvm_vcpu_nopage(struct vm_area_struct *vma,
  1870. unsigned long address,
  1871. int *type)
  1872. {
  1873. struct kvm_vcpu *vcpu = vma->vm_file->private_data;
  1874. unsigned long pgoff;
  1875. struct page *page;
  1876. pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
  1877. if (pgoff == 0)
  1878. page = virt_to_page(vcpu->run);
  1879. else if (pgoff == KVM_PIO_PAGE_OFFSET)
  1880. page = virt_to_page(vcpu->pio_data);
  1881. else
  1882. return NOPAGE_SIGBUS;
  1883. get_page(page);
  1884. if (type != NULL)
  1885. *type = VM_FAULT_MINOR;
  1886. return page;
  1887. }
  1888. static struct vm_operations_struct kvm_vcpu_vm_ops = {
  1889. .nopage = kvm_vcpu_nopage,
  1890. };
  1891. static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
  1892. {
  1893. vma->vm_ops = &kvm_vcpu_vm_ops;
  1894. return 0;
  1895. }
  1896. static int kvm_vcpu_release(struct inode *inode, struct file *filp)
  1897. {
  1898. struct kvm_vcpu *vcpu = filp->private_data;
  1899. fput(vcpu->kvm->filp);
  1900. return 0;
  1901. }
  1902. static struct file_operations kvm_vcpu_fops = {
  1903. .release = kvm_vcpu_release,
  1904. .unlocked_ioctl = kvm_vcpu_ioctl,
  1905. .compat_ioctl = kvm_vcpu_ioctl,
  1906. .mmap = kvm_vcpu_mmap,
  1907. };
  1908. /*
  1909. * Allocates an inode for the vcpu.
  1910. */
  1911. static int create_vcpu_fd(struct kvm_vcpu *vcpu)
  1912. {
  1913. int fd, r;
  1914. struct inode *inode;
  1915. struct file *file;
  1916. r = anon_inode_getfd(&fd, &inode, &file,
  1917. "kvm-vcpu", &kvm_vcpu_fops, vcpu);
  1918. if (r)
  1919. return r;
  1920. atomic_inc(&vcpu->kvm->filp->f_count);
  1921. return fd;
  1922. }
  1923. /*
  1924. * Creates some virtual cpus. Good luck creating more than one.
  1925. */
  1926. static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, int n)
  1927. {
  1928. int r;
  1929. struct kvm_vcpu *vcpu;
  1930. if (!valid_vcpu(n))
  1931. return -EINVAL;
  1932. vcpu = kvm_x86_ops->vcpu_create(kvm, n);
  1933. if (IS_ERR(vcpu))
  1934. return PTR_ERR(vcpu);
  1935. preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
  1936. /* We do fxsave: this must be aligned. */
  1937. BUG_ON((unsigned long)&vcpu->host_fx_image & 0xF);
  1938. vcpu_load(vcpu);
  1939. r = kvm_x86_ops->vcpu_reset(vcpu);
  1940. if (r == 0)
  1941. r = kvm_mmu_setup(vcpu);
  1942. vcpu_put(vcpu);
  1943. if (r < 0)
  1944. goto free_vcpu;
  1945. mutex_lock(&kvm->lock);
  1946. if (kvm->vcpus[n]) {
  1947. r = -EEXIST;
  1948. mutex_unlock(&kvm->lock);
  1949. goto mmu_unload;
  1950. }
  1951. kvm->vcpus[n] = vcpu;
  1952. mutex_unlock(&kvm->lock);
  1953. /* Now it's all set up, let userspace reach it */
  1954. r = create_vcpu_fd(vcpu);
  1955. if (r < 0)
  1956. goto unlink;
  1957. return r;
  1958. unlink:
  1959. mutex_lock(&kvm->lock);
  1960. kvm->vcpus[n] = NULL;
  1961. mutex_unlock(&kvm->lock);
  1962. mmu_unload:
  1963. vcpu_load(vcpu);
  1964. kvm_mmu_unload(vcpu);
  1965. vcpu_put(vcpu);
  1966. free_vcpu:
  1967. kvm_x86_ops->vcpu_free(vcpu);
  1968. return r;
  1969. }
  1970. static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
  1971. {
  1972. if (sigset) {
  1973. sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
  1974. vcpu->sigset_active = 1;
  1975. vcpu->sigset = *sigset;
  1976. } else
  1977. vcpu->sigset_active = 0;
  1978. return 0;
  1979. }
  1980. /*
  1981. * fxsave fpu state. Taken from x86_64/processor.h. To be killed when
  1982. * we have asm/x86/processor.h
  1983. */
  1984. struct fxsave {
  1985. u16 cwd;
  1986. u16 swd;
  1987. u16 twd;
  1988. u16 fop;
  1989. u64 rip;
  1990. u64 rdp;
  1991. u32 mxcsr;
  1992. u32 mxcsr_mask;
  1993. u32 st_space[32]; /* 8*16 bytes for each FP-reg = 128 bytes */
  1994. #ifdef CONFIG_X86_64
  1995. u32 xmm_space[64]; /* 16*16 bytes for each XMM-reg = 256 bytes */
  1996. #else
  1997. u32 xmm_space[32]; /* 8*16 bytes for each XMM-reg = 128 bytes */
  1998. #endif
  1999. };
  2000. static int kvm_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  2001. {
  2002. struct fxsave *fxsave = (struct fxsave *)&vcpu->guest_fx_image;
  2003. vcpu_load(vcpu);
  2004. memcpy(fpu->fpr, fxsave->st_space, 128);
  2005. fpu->fcw = fxsave->cwd;
  2006. fpu->fsw = fxsave->swd;
  2007. fpu->ftwx = fxsave->twd;
  2008. fpu->last_opcode = fxsave->fop;
  2009. fpu->last_ip = fxsave->rip;
  2010. fpu->last_dp = fxsave->rdp;
  2011. memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
  2012. vcpu_put(vcpu);
  2013. return 0;
  2014. }
  2015. static int kvm_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  2016. {
  2017. struct fxsave *fxsave = (struct fxsave *)&vcpu->guest_fx_image;
  2018. vcpu_load(vcpu);
  2019. memcpy(fxsave->st_space, fpu->fpr, 128);
  2020. fxsave->cwd = fpu->fcw;
  2021. fxsave->swd = fpu->fsw;
  2022. fxsave->twd = fpu->ftwx;
  2023. fxsave->fop = fpu->last_opcode;
  2024. fxsave->rip = fpu->last_ip;
  2025. fxsave->rdp = fpu->last_dp;
  2026. memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
  2027. vcpu_put(vcpu);
  2028. return 0;
  2029. }
  2030. static long kvm_vcpu_ioctl(struct file *filp,
  2031. unsigned int ioctl, unsigned long arg)
  2032. {
  2033. struct kvm_vcpu *vcpu = filp->private_data;
  2034. void __user *argp = (void __user *)arg;
  2035. int r;
  2036. switch (ioctl) {
  2037. case KVM_RUN:
  2038. r = -EINVAL;
  2039. if (arg)
  2040. goto out;
  2041. r = kvm_vcpu_ioctl_run(vcpu, vcpu->run);
  2042. break;
  2043. case KVM_GET_REGS: {
  2044. struct kvm_regs kvm_regs;
  2045. memset(&kvm_regs, 0, sizeof kvm_regs);
  2046. r = kvm_vcpu_ioctl_get_regs(vcpu, &kvm_regs);
  2047. if (r)
  2048. goto out;
  2049. r = -EFAULT;
  2050. if (copy_to_user(argp, &kvm_regs, sizeof kvm_regs))
  2051. goto out;
  2052. r = 0;
  2053. break;
  2054. }
  2055. case KVM_SET_REGS: {
  2056. struct kvm_regs kvm_regs;
  2057. r = -EFAULT;
  2058. if (copy_from_user(&kvm_regs, argp, sizeof kvm_regs))
  2059. goto out;
  2060. r = kvm_vcpu_ioctl_set_regs(vcpu, &kvm_regs);
  2061. if (r)
  2062. goto out;
  2063. r = 0;
  2064. break;
  2065. }
  2066. case KVM_GET_SREGS: {
  2067. struct kvm_sregs kvm_sregs;
  2068. memset(&kvm_sregs, 0, sizeof kvm_sregs);
  2069. r = kvm_vcpu_ioctl_get_sregs(vcpu, &kvm_sregs);
  2070. if (r)
  2071. goto out;
  2072. r = -EFAULT;
  2073. if (copy_to_user(argp, &kvm_sregs, sizeof kvm_sregs))
  2074. goto out;
  2075. r = 0;
  2076. break;
  2077. }
  2078. case KVM_SET_SREGS: {
  2079. struct kvm_sregs kvm_sregs;
  2080. r = -EFAULT;
  2081. if (copy_from_user(&kvm_sregs, argp, sizeof kvm_sregs))
  2082. goto out;
  2083. r = kvm_vcpu_ioctl_set_sregs(vcpu, &kvm_sregs);
  2084. if (r)
  2085. goto out;
  2086. r = 0;
  2087. break;
  2088. }
  2089. case KVM_TRANSLATE: {
  2090. struct kvm_translation tr;
  2091. r = -EFAULT;
  2092. if (copy_from_user(&tr, argp, sizeof tr))
  2093. goto out;
  2094. r = kvm_vcpu_ioctl_translate(vcpu, &tr);
  2095. if (r)
  2096. goto out;
  2097. r = -EFAULT;
  2098. if (copy_to_user(argp, &tr, sizeof tr))
  2099. goto out;
  2100. r = 0;
  2101. break;
  2102. }
  2103. case KVM_INTERRUPT: {
  2104. struct kvm_interrupt irq;
  2105. r = -EFAULT;
  2106. if (copy_from_user(&irq, argp, sizeof irq))
  2107. goto out;
  2108. r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
  2109. if (r)
  2110. goto out;
  2111. r = 0;
  2112. break;
  2113. }
  2114. case KVM_DEBUG_GUEST: {
  2115. struct kvm_debug_guest dbg;
  2116. r = -EFAULT;
  2117. if (copy_from_user(&dbg, argp, sizeof dbg))
  2118. goto out;
  2119. r = kvm_vcpu_ioctl_debug_guest(vcpu, &dbg);
  2120. if (r)
  2121. goto out;
  2122. r = 0;
  2123. break;
  2124. }
  2125. case KVM_SET_SIGNAL_MASK: {
  2126. struct kvm_signal_mask __user *sigmask_arg = argp;
  2127. struct kvm_signal_mask kvm_sigmask;
  2128. sigset_t sigset, *p;
  2129. p = NULL;
  2130. if (argp) {
  2131. r = -EFAULT;
  2132. if (copy_from_user(&kvm_sigmask, argp,
  2133. sizeof kvm_sigmask))
  2134. goto out;
  2135. r = -EINVAL;
  2136. if (kvm_sigmask.len != sizeof sigset)
  2137. goto out;
  2138. r = -EFAULT;
  2139. if (copy_from_user(&sigset, sigmask_arg->sigset,
  2140. sizeof sigset))
  2141. goto out;
  2142. p = &sigset;
  2143. }
  2144. r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
  2145. break;
  2146. }
  2147. case KVM_GET_FPU: {
  2148. struct kvm_fpu fpu;
  2149. memset(&fpu, 0, sizeof fpu);
  2150. r = kvm_vcpu_ioctl_get_fpu(vcpu, &fpu);
  2151. if (r)
  2152. goto out;
  2153. r = -EFAULT;
  2154. if (copy_to_user(argp, &fpu, sizeof fpu))
  2155. goto out;
  2156. r = 0;
  2157. break;
  2158. }
  2159. case KVM_SET_FPU: {
  2160. struct kvm_fpu fpu;
  2161. r = -EFAULT;
  2162. if (copy_from_user(&fpu, argp, sizeof fpu))
  2163. goto out;
  2164. r = kvm_vcpu_ioctl_set_fpu(vcpu, &fpu);
  2165. if (r)
  2166. goto out;
  2167. r = 0;
  2168. break;
  2169. }
  2170. default:
  2171. r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
  2172. }
  2173. out:
  2174. return r;
  2175. }
  2176. static long kvm_vm_ioctl(struct file *filp,
  2177. unsigned int ioctl, unsigned long arg)
  2178. {
  2179. struct kvm *kvm = filp->private_data;
  2180. void __user *argp = (void __user *)arg;
  2181. int r;
  2182. switch (ioctl) {
  2183. case KVM_CREATE_VCPU:
  2184. r = kvm_vm_ioctl_create_vcpu(kvm, arg);
  2185. if (r < 0)
  2186. goto out;
  2187. break;
  2188. case KVM_SET_USER_MEMORY_REGION: {
  2189. struct kvm_userspace_memory_region kvm_userspace_mem;
  2190. r = -EFAULT;
  2191. if (copy_from_user(&kvm_userspace_mem, argp,
  2192. sizeof kvm_userspace_mem))
  2193. goto out;
  2194. r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 1);
  2195. if (r)
  2196. goto out;
  2197. break;
  2198. }
  2199. case KVM_GET_DIRTY_LOG: {
  2200. struct kvm_dirty_log log;
  2201. r = -EFAULT;
  2202. if (copy_from_user(&log, argp, sizeof log))
  2203. goto out;
  2204. r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
  2205. if (r)
  2206. goto out;
  2207. break;
  2208. }
  2209. default:
  2210. r = kvm_arch_vm_ioctl(filp, ioctl, arg);
  2211. }
  2212. out:
  2213. return r;
  2214. }
  2215. static struct page *kvm_vm_nopage(struct vm_area_struct *vma,
  2216. unsigned long address,
  2217. int *type)
  2218. {
  2219. struct kvm *kvm = vma->vm_file->private_data;
  2220. unsigned long pgoff;
  2221. struct page *page;
  2222. pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
  2223. if (!kvm_is_visible_gfn(kvm, pgoff))
  2224. return NOPAGE_SIGBUS;
  2225. page = gfn_to_page(kvm, pgoff);
  2226. if (is_error_page(page)) {
  2227. kvm_release_page(page);
  2228. return NOPAGE_SIGBUS;
  2229. }
  2230. if (type != NULL)
  2231. *type = VM_FAULT_MINOR;
  2232. return page;
  2233. }
  2234. static struct vm_operations_struct kvm_vm_vm_ops = {
  2235. .nopage = kvm_vm_nopage,
  2236. };
  2237. static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
  2238. {
  2239. vma->vm_ops = &kvm_vm_vm_ops;
  2240. return 0;
  2241. }
  2242. static struct file_operations kvm_vm_fops = {
  2243. .release = kvm_vm_release,
  2244. .unlocked_ioctl = kvm_vm_ioctl,
  2245. .compat_ioctl = kvm_vm_ioctl,
  2246. .mmap = kvm_vm_mmap,
  2247. };
  2248. static int kvm_dev_ioctl_create_vm(void)
  2249. {
  2250. int fd, r;
  2251. struct inode *inode;
  2252. struct file *file;
  2253. struct kvm *kvm;
  2254. kvm = kvm_create_vm();
  2255. if (IS_ERR(kvm))
  2256. return PTR_ERR(kvm);
  2257. r = anon_inode_getfd(&fd, &inode, &file, "kvm-vm", &kvm_vm_fops, kvm);
  2258. if (r) {
  2259. kvm_destroy_vm(kvm);
  2260. return r;
  2261. }
  2262. kvm->filp = file;
  2263. return fd;
  2264. }
  2265. static long kvm_dev_ioctl(struct file *filp,
  2266. unsigned int ioctl, unsigned long arg)
  2267. {
  2268. void __user *argp = (void __user *)arg;
  2269. long r = -EINVAL;
  2270. switch (ioctl) {
  2271. case KVM_GET_API_VERSION:
  2272. r = -EINVAL;
  2273. if (arg)
  2274. goto out;
  2275. r = KVM_API_VERSION;
  2276. break;
  2277. case KVM_CREATE_VM:
  2278. r = -EINVAL;
  2279. if (arg)
  2280. goto out;
  2281. r = kvm_dev_ioctl_create_vm();
  2282. break;
  2283. case KVM_CHECK_EXTENSION: {
  2284. int ext = (long)argp;
  2285. switch (ext) {
  2286. case KVM_CAP_IRQCHIP:
  2287. case KVM_CAP_HLT:
  2288. case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
  2289. case KVM_CAP_USER_MEMORY:
  2290. case KVM_CAP_SET_TSS_ADDR:
  2291. r = 1;
  2292. break;
  2293. default:
  2294. r = 0;
  2295. break;
  2296. }
  2297. break;
  2298. }
  2299. case KVM_GET_VCPU_MMAP_SIZE:
  2300. r = -EINVAL;
  2301. if (arg)
  2302. goto out;
  2303. r = 2 * PAGE_SIZE;
  2304. break;
  2305. default:
  2306. return kvm_arch_dev_ioctl(filp, ioctl, arg);
  2307. }
  2308. out:
  2309. return r;
  2310. }
  2311. static struct file_operations kvm_chardev_ops = {
  2312. .unlocked_ioctl = kvm_dev_ioctl,
  2313. .compat_ioctl = kvm_dev_ioctl,
  2314. };
  2315. static struct miscdevice kvm_dev = {
  2316. KVM_MINOR,
  2317. "kvm",
  2318. &kvm_chardev_ops,
  2319. };
  2320. /*
  2321. * Make sure that a cpu that is being hot-unplugged does not have any vcpus
  2322. * cached on it.
  2323. */
  2324. static void decache_vcpus_on_cpu(int cpu)
  2325. {
  2326. struct kvm *vm;
  2327. struct kvm_vcpu *vcpu;
  2328. int i;
  2329. spin_lock(&kvm_lock);
  2330. list_for_each_entry(vm, &vm_list, vm_list)
  2331. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  2332. vcpu = vm->vcpus[i];
  2333. if (!vcpu)
  2334. continue;
  2335. /*
  2336. * If the vcpu is locked, then it is running on some
  2337. * other cpu and therefore it is not cached on the
  2338. * cpu in question.
  2339. *
  2340. * If it's not locked, check the last cpu it executed
  2341. * on.
  2342. */
  2343. if (mutex_trylock(&vcpu->mutex)) {
  2344. if (vcpu->cpu == cpu) {
  2345. kvm_x86_ops->vcpu_decache(vcpu);
  2346. vcpu->cpu = -1;
  2347. }
  2348. mutex_unlock(&vcpu->mutex);
  2349. }
  2350. }
  2351. spin_unlock(&kvm_lock);
  2352. }
  2353. static void hardware_enable(void *junk)
  2354. {
  2355. int cpu = raw_smp_processor_id();
  2356. if (cpu_isset(cpu, cpus_hardware_enabled))
  2357. return;
  2358. cpu_set(cpu, cpus_hardware_enabled);
  2359. kvm_x86_ops->hardware_enable(NULL);
  2360. }
  2361. static void hardware_disable(void *junk)
  2362. {
  2363. int cpu = raw_smp_processor_id();
  2364. if (!cpu_isset(cpu, cpus_hardware_enabled))
  2365. return;
  2366. cpu_clear(cpu, cpus_hardware_enabled);
  2367. decache_vcpus_on_cpu(cpu);
  2368. kvm_x86_ops->hardware_disable(NULL);
  2369. }
  2370. static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
  2371. void *v)
  2372. {
  2373. int cpu = (long)v;
  2374. switch (val) {
  2375. case CPU_DYING:
  2376. case CPU_DYING_FROZEN:
  2377. printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
  2378. cpu);
  2379. hardware_disable(NULL);
  2380. break;
  2381. case CPU_UP_CANCELED:
  2382. case CPU_UP_CANCELED_FROZEN:
  2383. printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
  2384. cpu);
  2385. smp_call_function_single(cpu, hardware_disable, NULL, 0, 1);
  2386. break;
  2387. case CPU_ONLINE:
  2388. case CPU_ONLINE_FROZEN:
  2389. printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
  2390. cpu);
  2391. smp_call_function_single(cpu, hardware_enable, NULL, 0, 1);
  2392. break;
  2393. }
  2394. return NOTIFY_OK;
  2395. }
  2396. static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
  2397. void *v)
  2398. {
  2399. if (val == SYS_RESTART) {
  2400. /*
  2401. * Some (well, at least mine) BIOSes hang on reboot if
  2402. * in vmx root mode.
  2403. */
  2404. printk(KERN_INFO "kvm: exiting hardware virtualization\n");
  2405. on_each_cpu(hardware_disable, NULL, 0, 1);
  2406. }
  2407. return NOTIFY_OK;
  2408. }
  2409. static struct notifier_block kvm_reboot_notifier = {
  2410. .notifier_call = kvm_reboot,
  2411. .priority = 0,
  2412. };
  2413. void kvm_io_bus_init(struct kvm_io_bus *bus)
  2414. {
  2415. memset(bus, 0, sizeof(*bus));
  2416. }
  2417. void kvm_io_bus_destroy(struct kvm_io_bus *bus)
  2418. {
  2419. int i;
  2420. for (i = 0; i < bus->dev_count; i++) {
  2421. struct kvm_io_device *pos = bus->devs[i];
  2422. kvm_iodevice_destructor(pos);
  2423. }
  2424. }
  2425. struct kvm_io_device *kvm_io_bus_find_dev(struct kvm_io_bus *bus, gpa_t addr)
  2426. {
  2427. int i;
  2428. for (i = 0; i < bus->dev_count; i++) {
  2429. struct kvm_io_device *pos = bus->devs[i];
  2430. if (pos->in_range(pos, addr))
  2431. return pos;
  2432. }
  2433. return NULL;
  2434. }
  2435. void kvm_io_bus_register_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev)
  2436. {
  2437. BUG_ON(bus->dev_count > (NR_IOBUS_DEVS-1));
  2438. bus->devs[bus->dev_count++] = dev;
  2439. }
  2440. static struct notifier_block kvm_cpu_notifier = {
  2441. .notifier_call = kvm_cpu_hotplug,
  2442. .priority = 20, /* must be > scheduler priority */
  2443. };
  2444. static u64 stat_get(void *_offset)
  2445. {
  2446. unsigned offset = (long)_offset;
  2447. u64 total = 0;
  2448. struct kvm *kvm;
  2449. struct kvm_vcpu *vcpu;
  2450. int i;
  2451. spin_lock(&kvm_lock);
  2452. list_for_each_entry(kvm, &vm_list, vm_list)
  2453. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  2454. vcpu = kvm->vcpus[i];
  2455. if (vcpu)
  2456. total += *(u32 *)((void *)vcpu + offset);
  2457. }
  2458. spin_unlock(&kvm_lock);
  2459. return total;
  2460. }
  2461. DEFINE_SIMPLE_ATTRIBUTE(stat_fops, stat_get, NULL, "%llu\n");
  2462. static __init void kvm_init_debug(void)
  2463. {
  2464. struct kvm_stats_debugfs_item *p;
  2465. debugfs_dir = debugfs_create_dir("kvm", NULL);
  2466. for (p = debugfs_entries; p->name; ++p)
  2467. p->dentry = debugfs_create_file(p->name, 0444, debugfs_dir,
  2468. (void *)(long)p->offset,
  2469. &stat_fops);
  2470. }
  2471. static void kvm_exit_debug(void)
  2472. {
  2473. struct kvm_stats_debugfs_item *p;
  2474. for (p = debugfs_entries; p->name; ++p)
  2475. debugfs_remove(p->dentry);
  2476. debugfs_remove(debugfs_dir);
  2477. }
  2478. static int kvm_suspend(struct sys_device *dev, pm_message_t state)
  2479. {
  2480. hardware_disable(NULL);
  2481. return 0;
  2482. }
  2483. static int kvm_resume(struct sys_device *dev)
  2484. {
  2485. hardware_enable(NULL);
  2486. return 0;
  2487. }
  2488. static struct sysdev_class kvm_sysdev_class = {
  2489. .name = "kvm",
  2490. .suspend = kvm_suspend,
  2491. .resume = kvm_resume,
  2492. };
  2493. static struct sys_device kvm_sysdev = {
  2494. .id = 0,
  2495. .cls = &kvm_sysdev_class,
  2496. };
  2497. struct page *bad_page;
  2498. static inline
  2499. struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
  2500. {
  2501. return container_of(pn, struct kvm_vcpu, preempt_notifier);
  2502. }
  2503. static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
  2504. {
  2505. struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
  2506. kvm_x86_ops->vcpu_load(vcpu, cpu);
  2507. }
  2508. static void kvm_sched_out(struct preempt_notifier *pn,
  2509. struct task_struct *next)
  2510. {
  2511. struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
  2512. kvm_x86_ops->vcpu_put(vcpu);
  2513. }
  2514. int kvm_init_x86(struct kvm_x86_ops *ops, unsigned int vcpu_size,
  2515. struct module *module)
  2516. {
  2517. int r;
  2518. int cpu;
  2519. if (kvm_x86_ops) {
  2520. printk(KERN_ERR "kvm: already loaded the other module\n");
  2521. return -EEXIST;
  2522. }
  2523. if (!ops->cpu_has_kvm_support()) {
  2524. printk(KERN_ERR "kvm: no hardware support\n");
  2525. return -EOPNOTSUPP;
  2526. }
  2527. if (ops->disabled_by_bios()) {
  2528. printk(KERN_ERR "kvm: disabled by bios\n");
  2529. return -EOPNOTSUPP;
  2530. }
  2531. kvm_x86_ops = ops;
  2532. r = kvm_x86_ops->hardware_setup();
  2533. if (r < 0)
  2534. goto out;
  2535. for_each_online_cpu(cpu) {
  2536. smp_call_function_single(cpu,
  2537. kvm_x86_ops->check_processor_compatibility,
  2538. &r, 0, 1);
  2539. if (r < 0)
  2540. goto out_free_0;
  2541. }
  2542. on_each_cpu(hardware_enable, NULL, 0, 1);
  2543. r = register_cpu_notifier(&kvm_cpu_notifier);
  2544. if (r)
  2545. goto out_free_1;
  2546. register_reboot_notifier(&kvm_reboot_notifier);
  2547. r = sysdev_class_register(&kvm_sysdev_class);
  2548. if (r)
  2549. goto out_free_2;
  2550. r = sysdev_register(&kvm_sysdev);
  2551. if (r)
  2552. goto out_free_3;
  2553. /* A kmem cache lets us meet the alignment requirements of fx_save. */
  2554. kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size,
  2555. __alignof__(struct kvm_vcpu), 0, 0);
  2556. if (!kvm_vcpu_cache) {
  2557. r = -ENOMEM;
  2558. goto out_free_4;
  2559. }
  2560. kvm_chardev_ops.owner = module;
  2561. r = misc_register(&kvm_dev);
  2562. if (r) {
  2563. printk(KERN_ERR "kvm: misc device register failed\n");
  2564. goto out_free;
  2565. }
  2566. kvm_preempt_ops.sched_in = kvm_sched_in;
  2567. kvm_preempt_ops.sched_out = kvm_sched_out;
  2568. kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
  2569. return 0;
  2570. out_free:
  2571. kmem_cache_destroy(kvm_vcpu_cache);
  2572. out_free_4:
  2573. sysdev_unregister(&kvm_sysdev);
  2574. out_free_3:
  2575. sysdev_class_unregister(&kvm_sysdev_class);
  2576. out_free_2:
  2577. unregister_reboot_notifier(&kvm_reboot_notifier);
  2578. unregister_cpu_notifier(&kvm_cpu_notifier);
  2579. out_free_1:
  2580. on_each_cpu(hardware_disable, NULL, 0, 1);
  2581. out_free_0:
  2582. kvm_x86_ops->hardware_unsetup();
  2583. out:
  2584. kvm_x86_ops = NULL;
  2585. return r;
  2586. }
  2587. EXPORT_SYMBOL_GPL(kvm_init_x86);
  2588. void kvm_exit_x86(void)
  2589. {
  2590. misc_deregister(&kvm_dev);
  2591. kmem_cache_destroy(kvm_vcpu_cache);
  2592. sysdev_unregister(&kvm_sysdev);
  2593. sysdev_class_unregister(&kvm_sysdev_class);
  2594. unregister_reboot_notifier(&kvm_reboot_notifier);
  2595. unregister_cpu_notifier(&kvm_cpu_notifier);
  2596. on_each_cpu(hardware_disable, NULL, 0, 1);
  2597. kvm_x86_ops->hardware_unsetup();
  2598. kvm_x86_ops = NULL;
  2599. }
  2600. EXPORT_SYMBOL_GPL(kvm_exit_x86);
  2601. static __init int kvm_init(void)
  2602. {
  2603. int r;
  2604. r = kvm_mmu_module_init();
  2605. if (r)
  2606. goto out4;
  2607. kvm_init_debug();
  2608. kvm_arch_init();
  2609. bad_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  2610. if (bad_page == NULL) {
  2611. r = -ENOMEM;
  2612. goto out;
  2613. }
  2614. return 0;
  2615. out:
  2616. kvm_exit_debug();
  2617. kvm_mmu_module_exit();
  2618. out4:
  2619. return r;
  2620. }
  2621. static __exit void kvm_exit(void)
  2622. {
  2623. kvm_exit_debug();
  2624. __free_page(bad_page);
  2625. kvm_mmu_module_exit();
  2626. }
  2627. module_init(kvm_init)
  2628. module_exit(kvm_exit)