i915_gem.c 131 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053
  1. /*
  2. * Copyright © 2008 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. *
  26. */
  27. #include "drmP.h"
  28. #include "drm.h"
  29. #include "i915_drm.h"
  30. #include "i915_drv.h"
  31. #include "i915_trace.h"
  32. #include "intel_drv.h"
  33. #include <linux/slab.h>
  34. #include <linux/swap.h>
  35. #include <linux/pci.h>
  36. #include <linux/intel-gtt.h>
  37. static uint32_t i915_gem_get_gtt_alignment(struct drm_gem_object *obj);
  38. static int i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj,
  39. bool pipelined);
  40. static void i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj);
  41. static void i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj);
  42. static int i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj,
  43. int write);
  44. static int i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
  45. uint64_t offset,
  46. uint64_t size);
  47. static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj);
  48. static int i915_gem_object_wait_rendering(struct drm_gem_object *obj,
  49. bool interruptible);
  50. static int i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
  51. unsigned alignment);
  52. static void i915_gem_clear_fence_reg(struct drm_gem_object *obj);
  53. static int i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
  54. struct drm_i915_gem_pwrite *args,
  55. struct drm_file *file_priv);
  56. static void i915_gem_free_object_tail(struct drm_gem_object *obj);
  57. static LIST_HEAD(shrink_list);
  58. static DEFINE_SPINLOCK(shrink_list_lock);
  59. static inline bool
  60. i915_gem_object_is_inactive(struct drm_i915_gem_object *obj_priv)
  61. {
  62. return obj_priv->gtt_space &&
  63. !obj_priv->active &&
  64. obj_priv->pin_count == 0;
  65. }
  66. int i915_gem_do_init(struct drm_device *dev, unsigned long start,
  67. unsigned long end)
  68. {
  69. drm_i915_private_t *dev_priv = dev->dev_private;
  70. if (start >= end ||
  71. (start & (PAGE_SIZE - 1)) != 0 ||
  72. (end & (PAGE_SIZE - 1)) != 0) {
  73. return -EINVAL;
  74. }
  75. drm_mm_init(&dev_priv->mm.gtt_space, start,
  76. end - start);
  77. dev->gtt_total = (uint32_t) (end - start);
  78. return 0;
  79. }
  80. int
  81. i915_gem_init_ioctl(struct drm_device *dev, void *data,
  82. struct drm_file *file_priv)
  83. {
  84. struct drm_i915_gem_init *args = data;
  85. int ret;
  86. mutex_lock(&dev->struct_mutex);
  87. ret = i915_gem_do_init(dev, args->gtt_start, args->gtt_end);
  88. mutex_unlock(&dev->struct_mutex);
  89. return ret;
  90. }
  91. int
  92. i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
  93. struct drm_file *file_priv)
  94. {
  95. struct drm_i915_gem_get_aperture *args = data;
  96. if (!(dev->driver->driver_features & DRIVER_GEM))
  97. return -ENODEV;
  98. args->aper_size = dev->gtt_total;
  99. args->aper_available_size = (args->aper_size -
  100. atomic_read(&dev->pin_memory));
  101. return 0;
  102. }
  103. /**
  104. * Creates a new mm object and returns a handle to it.
  105. */
  106. int
  107. i915_gem_create_ioctl(struct drm_device *dev, void *data,
  108. struct drm_file *file_priv)
  109. {
  110. struct drm_i915_gem_create *args = data;
  111. struct drm_gem_object *obj;
  112. int ret;
  113. u32 handle;
  114. args->size = roundup(args->size, PAGE_SIZE);
  115. /* Allocate the new object */
  116. obj = i915_gem_alloc_object(dev, args->size);
  117. if (obj == NULL)
  118. return -ENOMEM;
  119. ret = drm_gem_handle_create(file_priv, obj, &handle);
  120. if (ret) {
  121. drm_gem_object_unreference_unlocked(obj);
  122. return ret;
  123. }
  124. /* Sink the floating reference from kref_init(handlecount) */
  125. drm_gem_object_handle_unreference_unlocked(obj);
  126. args->handle = handle;
  127. return 0;
  128. }
  129. static inline int
  130. fast_shmem_read(struct page **pages,
  131. loff_t page_base, int page_offset,
  132. char __user *data,
  133. int length)
  134. {
  135. char __iomem *vaddr;
  136. int unwritten;
  137. vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
  138. if (vaddr == NULL)
  139. return -ENOMEM;
  140. unwritten = __copy_to_user_inatomic(data, vaddr + page_offset, length);
  141. kunmap_atomic(vaddr, KM_USER0);
  142. if (unwritten)
  143. return -EFAULT;
  144. return 0;
  145. }
  146. static int i915_gem_object_needs_bit17_swizzle(struct drm_gem_object *obj)
  147. {
  148. drm_i915_private_t *dev_priv = obj->dev->dev_private;
  149. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  150. return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
  151. obj_priv->tiling_mode != I915_TILING_NONE;
  152. }
  153. static inline void
  154. slow_shmem_copy(struct page *dst_page,
  155. int dst_offset,
  156. struct page *src_page,
  157. int src_offset,
  158. int length)
  159. {
  160. char *dst_vaddr, *src_vaddr;
  161. dst_vaddr = kmap(dst_page);
  162. src_vaddr = kmap(src_page);
  163. memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);
  164. kunmap(src_page);
  165. kunmap(dst_page);
  166. }
  167. static inline void
  168. slow_shmem_bit17_copy(struct page *gpu_page,
  169. int gpu_offset,
  170. struct page *cpu_page,
  171. int cpu_offset,
  172. int length,
  173. int is_read)
  174. {
  175. char *gpu_vaddr, *cpu_vaddr;
  176. /* Use the unswizzled path if this page isn't affected. */
  177. if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
  178. if (is_read)
  179. return slow_shmem_copy(cpu_page, cpu_offset,
  180. gpu_page, gpu_offset, length);
  181. else
  182. return slow_shmem_copy(gpu_page, gpu_offset,
  183. cpu_page, cpu_offset, length);
  184. }
  185. gpu_vaddr = kmap(gpu_page);
  186. cpu_vaddr = kmap(cpu_page);
  187. /* Copy the data, XORing A6 with A17 (1). The user already knows he's
  188. * XORing with the other bits (A9 for Y, A9 and A10 for X)
  189. */
  190. while (length > 0) {
  191. int cacheline_end = ALIGN(gpu_offset + 1, 64);
  192. int this_length = min(cacheline_end - gpu_offset, length);
  193. int swizzled_gpu_offset = gpu_offset ^ 64;
  194. if (is_read) {
  195. memcpy(cpu_vaddr + cpu_offset,
  196. gpu_vaddr + swizzled_gpu_offset,
  197. this_length);
  198. } else {
  199. memcpy(gpu_vaddr + swizzled_gpu_offset,
  200. cpu_vaddr + cpu_offset,
  201. this_length);
  202. }
  203. cpu_offset += this_length;
  204. gpu_offset += this_length;
  205. length -= this_length;
  206. }
  207. kunmap(cpu_page);
  208. kunmap(gpu_page);
  209. }
  210. /**
  211. * This is the fast shmem pread path, which attempts to copy_from_user directly
  212. * from the backing pages of the object to the user's address space. On a
  213. * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
  214. */
  215. static int
  216. i915_gem_shmem_pread_fast(struct drm_device *dev, struct drm_gem_object *obj,
  217. struct drm_i915_gem_pread *args,
  218. struct drm_file *file_priv)
  219. {
  220. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  221. ssize_t remain;
  222. loff_t offset, page_base;
  223. char __user *user_data;
  224. int page_offset, page_length;
  225. int ret;
  226. user_data = (char __user *) (uintptr_t) args->data_ptr;
  227. remain = args->size;
  228. mutex_lock(&dev->struct_mutex);
  229. ret = i915_gem_object_get_pages(obj, 0);
  230. if (ret != 0)
  231. goto fail_unlock;
  232. ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
  233. args->size);
  234. if (ret != 0)
  235. goto fail_put_pages;
  236. obj_priv = to_intel_bo(obj);
  237. offset = args->offset;
  238. while (remain > 0) {
  239. /* Operation in this page
  240. *
  241. * page_base = page offset within aperture
  242. * page_offset = offset within page
  243. * page_length = bytes to copy for this page
  244. */
  245. page_base = (offset & ~(PAGE_SIZE-1));
  246. page_offset = offset & (PAGE_SIZE-1);
  247. page_length = remain;
  248. if ((page_offset + remain) > PAGE_SIZE)
  249. page_length = PAGE_SIZE - page_offset;
  250. ret = fast_shmem_read(obj_priv->pages,
  251. page_base, page_offset,
  252. user_data, page_length);
  253. if (ret)
  254. goto fail_put_pages;
  255. remain -= page_length;
  256. user_data += page_length;
  257. offset += page_length;
  258. }
  259. fail_put_pages:
  260. i915_gem_object_put_pages(obj);
  261. fail_unlock:
  262. mutex_unlock(&dev->struct_mutex);
  263. return ret;
  264. }
  265. static int
  266. i915_gem_object_get_pages_or_evict(struct drm_gem_object *obj)
  267. {
  268. int ret;
  269. ret = i915_gem_object_get_pages(obj, __GFP_NORETRY | __GFP_NOWARN);
  270. /* If we've insufficient memory to map in the pages, attempt
  271. * to make some space by throwing out some old buffers.
  272. */
  273. if (ret == -ENOMEM) {
  274. struct drm_device *dev = obj->dev;
  275. ret = i915_gem_evict_something(dev, obj->size,
  276. i915_gem_get_gtt_alignment(obj));
  277. if (ret)
  278. return ret;
  279. ret = i915_gem_object_get_pages(obj, 0);
  280. }
  281. return ret;
  282. }
  283. /**
  284. * This is the fallback shmem pread path, which allocates temporary storage
  285. * in kernel space to copy_to_user into outside of the struct_mutex, so we
  286. * can copy out of the object's backing pages while holding the struct mutex
  287. * and not take page faults.
  288. */
  289. static int
  290. i915_gem_shmem_pread_slow(struct drm_device *dev, struct drm_gem_object *obj,
  291. struct drm_i915_gem_pread *args,
  292. struct drm_file *file_priv)
  293. {
  294. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  295. struct mm_struct *mm = current->mm;
  296. struct page **user_pages;
  297. ssize_t remain;
  298. loff_t offset, pinned_pages, i;
  299. loff_t first_data_page, last_data_page, num_pages;
  300. int shmem_page_index, shmem_page_offset;
  301. int data_page_index, data_page_offset;
  302. int page_length;
  303. int ret;
  304. uint64_t data_ptr = args->data_ptr;
  305. int do_bit17_swizzling;
  306. remain = args->size;
  307. /* Pin the user pages containing the data. We can't fault while
  308. * holding the struct mutex, yet we want to hold it while
  309. * dereferencing the user data.
  310. */
  311. first_data_page = data_ptr / PAGE_SIZE;
  312. last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
  313. num_pages = last_data_page - first_data_page + 1;
  314. user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
  315. if (user_pages == NULL)
  316. return -ENOMEM;
  317. down_read(&mm->mmap_sem);
  318. pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
  319. num_pages, 1, 0, user_pages, NULL);
  320. up_read(&mm->mmap_sem);
  321. if (pinned_pages < num_pages) {
  322. ret = -EFAULT;
  323. goto fail_put_user_pages;
  324. }
  325. do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
  326. mutex_lock(&dev->struct_mutex);
  327. ret = i915_gem_object_get_pages_or_evict(obj);
  328. if (ret)
  329. goto fail_unlock;
  330. ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
  331. args->size);
  332. if (ret != 0)
  333. goto fail_put_pages;
  334. obj_priv = to_intel_bo(obj);
  335. offset = args->offset;
  336. while (remain > 0) {
  337. /* Operation in this page
  338. *
  339. * shmem_page_index = page number within shmem file
  340. * shmem_page_offset = offset within page in shmem file
  341. * data_page_index = page number in get_user_pages return
  342. * data_page_offset = offset with data_page_index page.
  343. * page_length = bytes to copy for this page
  344. */
  345. shmem_page_index = offset / PAGE_SIZE;
  346. shmem_page_offset = offset & ~PAGE_MASK;
  347. data_page_index = data_ptr / PAGE_SIZE - first_data_page;
  348. data_page_offset = data_ptr & ~PAGE_MASK;
  349. page_length = remain;
  350. if ((shmem_page_offset + page_length) > PAGE_SIZE)
  351. page_length = PAGE_SIZE - shmem_page_offset;
  352. if ((data_page_offset + page_length) > PAGE_SIZE)
  353. page_length = PAGE_SIZE - data_page_offset;
  354. if (do_bit17_swizzling) {
  355. slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
  356. shmem_page_offset,
  357. user_pages[data_page_index],
  358. data_page_offset,
  359. page_length,
  360. 1);
  361. } else {
  362. slow_shmem_copy(user_pages[data_page_index],
  363. data_page_offset,
  364. obj_priv->pages[shmem_page_index],
  365. shmem_page_offset,
  366. page_length);
  367. }
  368. remain -= page_length;
  369. data_ptr += page_length;
  370. offset += page_length;
  371. }
  372. fail_put_pages:
  373. i915_gem_object_put_pages(obj);
  374. fail_unlock:
  375. mutex_unlock(&dev->struct_mutex);
  376. fail_put_user_pages:
  377. for (i = 0; i < pinned_pages; i++) {
  378. SetPageDirty(user_pages[i]);
  379. page_cache_release(user_pages[i]);
  380. }
  381. drm_free_large(user_pages);
  382. return ret;
  383. }
  384. /**
  385. * Reads data from the object referenced by handle.
  386. *
  387. * On error, the contents of *data are undefined.
  388. */
  389. int
  390. i915_gem_pread_ioctl(struct drm_device *dev, void *data,
  391. struct drm_file *file_priv)
  392. {
  393. struct drm_i915_gem_pread *args = data;
  394. struct drm_gem_object *obj;
  395. struct drm_i915_gem_object *obj_priv;
  396. int ret;
  397. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  398. if (obj == NULL)
  399. return -ENOENT;
  400. obj_priv = to_intel_bo(obj);
  401. /* Bounds check source.
  402. *
  403. * XXX: This could use review for overflow issues...
  404. */
  405. if (args->offset > obj->size || args->size > obj->size ||
  406. args->offset + args->size > obj->size) {
  407. drm_gem_object_unreference_unlocked(obj);
  408. return -EINVAL;
  409. }
  410. if (i915_gem_object_needs_bit17_swizzle(obj)) {
  411. ret = i915_gem_shmem_pread_slow(dev, obj, args, file_priv);
  412. } else {
  413. ret = i915_gem_shmem_pread_fast(dev, obj, args, file_priv);
  414. if (ret != 0)
  415. ret = i915_gem_shmem_pread_slow(dev, obj, args,
  416. file_priv);
  417. }
  418. drm_gem_object_unreference_unlocked(obj);
  419. return ret;
  420. }
  421. /* This is the fast write path which cannot handle
  422. * page faults in the source data
  423. */
  424. static inline int
  425. fast_user_write(struct io_mapping *mapping,
  426. loff_t page_base, int page_offset,
  427. char __user *user_data,
  428. int length)
  429. {
  430. char *vaddr_atomic;
  431. unsigned long unwritten;
  432. vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base, KM_USER0);
  433. unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
  434. user_data, length);
  435. io_mapping_unmap_atomic(vaddr_atomic, KM_USER0);
  436. if (unwritten)
  437. return -EFAULT;
  438. return 0;
  439. }
  440. /* Here's the write path which can sleep for
  441. * page faults
  442. */
  443. static inline void
  444. slow_kernel_write(struct io_mapping *mapping,
  445. loff_t gtt_base, int gtt_offset,
  446. struct page *user_page, int user_offset,
  447. int length)
  448. {
  449. char __iomem *dst_vaddr;
  450. char *src_vaddr;
  451. dst_vaddr = io_mapping_map_wc(mapping, gtt_base);
  452. src_vaddr = kmap(user_page);
  453. memcpy_toio(dst_vaddr + gtt_offset,
  454. src_vaddr + user_offset,
  455. length);
  456. kunmap(user_page);
  457. io_mapping_unmap(dst_vaddr);
  458. }
  459. static inline int
  460. fast_shmem_write(struct page **pages,
  461. loff_t page_base, int page_offset,
  462. char __user *data,
  463. int length)
  464. {
  465. char __iomem *vaddr;
  466. unsigned long unwritten;
  467. vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
  468. if (vaddr == NULL)
  469. return -ENOMEM;
  470. unwritten = __copy_from_user_inatomic(vaddr + page_offset, data, length);
  471. kunmap_atomic(vaddr, KM_USER0);
  472. if (unwritten)
  473. return -EFAULT;
  474. return 0;
  475. }
  476. /**
  477. * This is the fast pwrite path, where we copy the data directly from the
  478. * user into the GTT, uncached.
  479. */
  480. static int
  481. i915_gem_gtt_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
  482. struct drm_i915_gem_pwrite *args,
  483. struct drm_file *file_priv)
  484. {
  485. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  486. drm_i915_private_t *dev_priv = dev->dev_private;
  487. ssize_t remain;
  488. loff_t offset, page_base;
  489. char __user *user_data;
  490. int page_offset, page_length;
  491. int ret;
  492. user_data = (char __user *) (uintptr_t) args->data_ptr;
  493. remain = args->size;
  494. if (!access_ok(VERIFY_READ, user_data, remain))
  495. return -EFAULT;
  496. mutex_lock(&dev->struct_mutex);
  497. ret = i915_gem_object_pin(obj, 0);
  498. if (ret) {
  499. mutex_unlock(&dev->struct_mutex);
  500. return ret;
  501. }
  502. ret = i915_gem_object_set_to_gtt_domain(obj, 1);
  503. if (ret)
  504. goto fail;
  505. obj_priv = to_intel_bo(obj);
  506. offset = obj_priv->gtt_offset + args->offset;
  507. while (remain > 0) {
  508. /* Operation in this page
  509. *
  510. * page_base = page offset within aperture
  511. * page_offset = offset within page
  512. * page_length = bytes to copy for this page
  513. */
  514. page_base = (offset & ~(PAGE_SIZE-1));
  515. page_offset = offset & (PAGE_SIZE-1);
  516. page_length = remain;
  517. if ((page_offset + remain) > PAGE_SIZE)
  518. page_length = PAGE_SIZE - page_offset;
  519. ret = fast_user_write (dev_priv->mm.gtt_mapping, page_base,
  520. page_offset, user_data, page_length);
  521. /* If we get a fault while copying data, then (presumably) our
  522. * source page isn't available. Return the error and we'll
  523. * retry in the slow path.
  524. */
  525. if (ret)
  526. goto fail;
  527. remain -= page_length;
  528. user_data += page_length;
  529. offset += page_length;
  530. }
  531. fail:
  532. i915_gem_object_unpin(obj);
  533. mutex_unlock(&dev->struct_mutex);
  534. return ret;
  535. }
  536. /**
  537. * This is the fallback GTT pwrite path, which uses get_user_pages to pin
  538. * the memory and maps it using kmap_atomic for copying.
  539. *
  540. * This code resulted in x11perf -rgb10text consuming about 10% more CPU
  541. * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
  542. */
  543. static int
  544. i915_gem_gtt_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
  545. struct drm_i915_gem_pwrite *args,
  546. struct drm_file *file_priv)
  547. {
  548. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  549. drm_i915_private_t *dev_priv = dev->dev_private;
  550. ssize_t remain;
  551. loff_t gtt_page_base, offset;
  552. loff_t first_data_page, last_data_page, num_pages;
  553. loff_t pinned_pages, i;
  554. struct page **user_pages;
  555. struct mm_struct *mm = current->mm;
  556. int gtt_page_offset, data_page_offset, data_page_index, page_length;
  557. int ret;
  558. uint64_t data_ptr = args->data_ptr;
  559. remain = args->size;
  560. /* Pin the user pages containing the data. We can't fault while
  561. * holding the struct mutex, and all of the pwrite implementations
  562. * want to hold it while dereferencing the user data.
  563. */
  564. first_data_page = data_ptr / PAGE_SIZE;
  565. last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
  566. num_pages = last_data_page - first_data_page + 1;
  567. user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
  568. if (user_pages == NULL)
  569. return -ENOMEM;
  570. down_read(&mm->mmap_sem);
  571. pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
  572. num_pages, 0, 0, user_pages, NULL);
  573. up_read(&mm->mmap_sem);
  574. if (pinned_pages < num_pages) {
  575. ret = -EFAULT;
  576. goto out_unpin_pages;
  577. }
  578. mutex_lock(&dev->struct_mutex);
  579. ret = i915_gem_object_pin(obj, 0);
  580. if (ret)
  581. goto out_unlock;
  582. ret = i915_gem_object_set_to_gtt_domain(obj, 1);
  583. if (ret)
  584. goto out_unpin_object;
  585. obj_priv = to_intel_bo(obj);
  586. offset = obj_priv->gtt_offset + args->offset;
  587. while (remain > 0) {
  588. /* Operation in this page
  589. *
  590. * gtt_page_base = page offset within aperture
  591. * gtt_page_offset = offset within page in aperture
  592. * data_page_index = page number in get_user_pages return
  593. * data_page_offset = offset with data_page_index page.
  594. * page_length = bytes to copy for this page
  595. */
  596. gtt_page_base = offset & PAGE_MASK;
  597. gtt_page_offset = offset & ~PAGE_MASK;
  598. data_page_index = data_ptr / PAGE_SIZE - first_data_page;
  599. data_page_offset = data_ptr & ~PAGE_MASK;
  600. page_length = remain;
  601. if ((gtt_page_offset + page_length) > PAGE_SIZE)
  602. page_length = PAGE_SIZE - gtt_page_offset;
  603. if ((data_page_offset + page_length) > PAGE_SIZE)
  604. page_length = PAGE_SIZE - data_page_offset;
  605. slow_kernel_write(dev_priv->mm.gtt_mapping,
  606. gtt_page_base, gtt_page_offset,
  607. user_pages[data_page_index],
  608. data_page_offset,
  609. page_length);
  610. remain -= page_length;
  611. offset += page_length;
  612. data_ptr += page_length;
  613. }
  614. out_unpin_object:
  615. i915_gem_object_unpin(obj);
  616. out_unlock:
  617. mutex_unlock(&dev->struct_mutex);
  618. out_unpin_pages:
  619. for (i = 0; i < pinned_pages; i++)
  620. page_cache_release(user_pages[i]);
  621. drm_free_large(user_pages);
  622. return ret;
  623. }
  624. /**
  625. * This is the fast shmem pwrite path, which attempts to directly
  626. * copy_from_user into the kmapped pages backing the object.
  627. */
  628. static int
  629. i915_gem_shmem_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
  630. struct drm_i915_gem_pwrite *args,
  631. struct drm_file *file_priv)
  632. {
  633. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  634. ssize_t remain;
  635. loff_t offset, page_base;
  636. char __user *user_data;
  637. int page_offset, page_length;
  638. int ret;
  639. user_data = (char __user *) (uintptr_t) args->data_ptr;
  640. remain = args->size;
  641. mutex_lock(&dev->struct_mutex);
  642. ret = i915_gem_object_get_pages(obj, 0);
  643. if (ret != 0)
  644. goto fail_unlock;
  645. ret = i915_gem_object_set_to_cpu_domain(obj, 1);
  646. if (ret != 0)
  647. goto fail_put_pages;
  648. obj_priv = to_intel_bo(obj);
  649. offset = args->offset;
  650. obj_priv->dirty = 1;
  651. while (remain > 0) {
  652. /* Operation in this page
  653. *
  654. * page_base = page offset within aperture
  655. * page_offset = offset within page
  656. * page_length = bytes to copy for this page
  657. */
  658. page_base = (offset & ~(PAGE_SIZE-1));
  659. page_offset = offset & (PAGE_SIZE-1);
  660. page_length = remain;
  661. if ((page_offset + remain) > PAGE_SIZE)
  662. page_length = PAGE_SIZE - page_offset;
  663. ret = fast_shmem_write(obj_priv->pages,
  664. page_base, page_offset,
  665. user_data, page_length);
  666. if (ret)
  667. goto fail_put_pages;
  668. remain -= page_length;
  669. user_data += page_length;
  670. offset += page_length;
  671. }
  672. fail_put_pages:
  673. i915_gem_object_put_pages(obj);
  674. fail_unlock:
  675. mutex_unlock(&dev->struct_mutex);
  676. return ret;
  677. }
  678. /**
  679. * This is the fallback shmem pwrite path, which uses get_user_pages to pin
  680. * the memory and maps it using kmap_atomic for copying.
  681. *
  682. * This avoids taking mmap_sem for faulting on the user's address while the
  683. * struct_mutex is held.
  684. */
  685. static int
  686. i915_gem_shmem_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
  687. struct drm_i915_gem_pwrite *args,
  688. struct drm_file *file_priv)
  689. {
  690. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  691. struct mm_struct *mm = current->mm;
  692. struct page **user_pages;
  693. ssize_t remain;
  694. loff_t offset, pinned_pages, i;
  695. loff_t first_data_page, last_data_page, num_pages;
  696. int shmem_page_index, shmem_page_offset;
  697. int data_page_index, data_page_offset;
  698. int page_length;
  699. int ret;
  700. uint64_t data_ptr = args->data_ptr;
  701. int do_bit17_swizzling;
  702. remain = args->size;
  703. /* Pin the user pages containing the data. We can't fault while
  704. * holding the struct mutex, and all of the pwrite implementations
  705. * want to hold it while dereferencing the user data.
  706. */
  707. first_data_page = data_ptr / PAGE_SIZE;
  708. last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
  709. num_pages = last_data_page - first_data_page + 1;
  710. user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
  711. if (user_pages == NULL)
  712. return -ENOMEM;
  713. down_read(&mm->mmap_sem);
  714. pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
  715. num_pages, 0, 0, user_pages, NULL);
  716. up_read(&mm->mmap_sem);
  717. if (pinned_pages < num_pages) {
  718. ret = -EFAULT;
  719. goto fail_put_user_pages;
  720. }
  721. do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
  722. mutex_lock(&dev->struct_mutex);
  723. ret = i915_gem_object_get_pages_or_evict(obj);
  724. if (ret)
  725. goto fail_unlock;
  726. ret = i915_gem_object_set_to_cpu_domain(obj, 1);
  727. if (ret != 0)
  728. goto fail_put_pages;
  729. obj_priv = to_intel_bo(obj);
  730. offset = args->offset;
  731. obj_priv->dirty = 1;
  732. while (remain > 0) {
  733. /* Operation in this page
  734. *
  735. * shmem_page_index = page number within shmem file
  736. * shmem_page_offset = offset within page in shmem file
  737. * data_page_index = page number in get_user_pages return
  738. * data_page_offset = offset with data_page_index page.
  739. * page_length = bytes to copy for this page
  740. */
  741. shmem_page_index = offset / PAGE_SIZE;
  742. shmem_page_offset = offset & ~PAGE_MASK;
  743. data_page_index = data_ptr / PAGE_SIZE - first_data_page;
  744. data_page_offset = data_ptr & ~PAGE_MASK;
  745. page_length = remain;
  746. if ((shmem_page_offset + page_length) > PAGE_SIZE)
  747. page_length = PAGE_SIZE - shmem_page_offset;
  748. if ((data_page_offset + page_length) > PAGE_SIZE)
  749. page_length = PAGE_SIZE - data_page_offset;
  750. if (do_bit17_swizzling) {
  751. slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
  752. shmem_page_offset,
  753. user_pages[data_page_index],
  754. data_page_offset,
  755. page_length,
  756. 0);
  757. } else {
  758. slow_shmem_copy(obj_priv->pages[shmem_page_index],
  759. shmem_page_offset,
  760. user_pages[data_page_index],
  761. data_page_offset,
  762. page_length);
  763. }
  764. remain -= page_length;
  765. data_ptr += page_length;
  766. offset += page_length;
  767. }
  768. fail_put_pages:
  769. i915_gem_object_put_pages(obj);
  770. fail_unlock:
  771. mutex_unlock(&dev->struct_mutex);
  772. fail_put_user_pages:
  773. for (i = 0; i < pinned_pages; i++)
  774. page_cache_release(user_pages[i]);
  775. drm_free_large(user_pages);
  776. return ret;
  777. }
  778. /**
  779. * Writes data to the object referenced by handle.
  780. *
  781. * On error, the contents of the buffer that were to be modified are undefined.
  782. */
  783. int
  784. i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
  785. struct drm_file *file_priv)
  786. {
  787. struct drm_i915_gem_pwrite *args = data;
  788. struct drm_gem_object *obj;
  789. struct drm_i915_gem_object *obj_priv;
  790. int ret = 0;
  791. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  792. if (obj == NULL)
  793. return -ENOENT;
  794. obj_priv = to_intel_bo(obj);
  795. /* Bounds check destination.
  796. *
  797. * XXX: This could use review for overflow issues...
  798. */
  799. if (args->offset > obj->size || args->size > obj->size ||
  800. args->offset + args->size > obj->size) {
  801. drm_gem_object_unreference_unlocked(obj);
  802. return -EINVAL;
  803. }
  804. /* We can only do the GTT pwrite on untiled buffers, as otherwise
  805. * it would end up going through the fenced access, and we'll get
  806. * different detiling behavior between reading and writing.
  807. * pread/pwrite currently are reading and writing from the CPU
  808. * perspective, requiring manual detiling by the client.
  809. */
  810. if (obj_priv->phys_obj)
  811. ret = i915_gem_phys_pwrite(dev, obj, args, file_priv);
  812. else if (obj_priv->tiling_mode == I915_TILING_NONE &&
  813. dev->gtt_total != 0 &&
  814. obj->write_domain != I915_GEM_DOMAIN_CPU) {
  815. ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file_priv);
  816. if (ret == -EFAULT) {
  817. ret = i915_gem_gtt_pwrite_slow(dev, obj, args,
  818. file_priv);
  819. }
  820. } else if (i915_gem_object_needs_bit17_swizzle(obj)) {
  821. ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file_priv);
  822. } else {
  823. ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file_priv);
  824. if (ret == -EFAULT) {
  825. ret = i915_gem_shmem_pwrite_slow(dev, obj, args,
  826. file_priv);
  827. }
  828. }
  829. #if WATCH_PWRITE
  830. if (ret)
  831. DRM_INFO("pwrite failed %d\n", ret);
  832. #endif
  833. drm_gem_object_unreference_unlocked(obj);
  834. return ret;
  835. }
  836. /**
  837. * Called when user space prepares to use an object with the CPU, either
  838. * through the mmap ioctl's mapping or a GTT mapping.
  839. */
  840. int
  841. i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
  842. struct drm_file *file_priv)
  843. {
  844. struct drm_i915_private *dev_priv = dev->dev_private;
  845. struct drm_i915_gem_set_domain *args = data;
  846. struct drm_gem_object *obj;
  847. struct drm_i915_gem_object *obj_priv;
  848. uint32_t read_domains = args->read_domains;
  849. uint32_t write_domain = args->write_domain;
  850. int ret;
  851. if (!(dev->driver->driver_features & DRIVER_GEM))
  852. return -ENODEV;
  853. /* Only handle setting domains to types used by the CPU. */
  854. if (write_domain & I915_GEM_GPU_DOMAINS)
  855. return -EINVAL;
  856. if (read_domains & I915_GEM_GPU_DOMAINS)
  857. return -EINVAL;
  858. /* Having something in the write domain implies it's in the read
  859. * domain, and only that read domain. Enforce that in the request.
  860. */
  861. if (write_domain != 0 && read_domains != write_domain)
  862. return -EINVAL;
  863. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  864. if (obj == NULL)
  865. return -ENOENT;
  866. obj_priv = to_intel_bo(obj);
  867. mutex_lock(&dev->struct_mutex);
  868. intel_mark_busy(dev, obj);
  869. #if WATCH_BUF
  870. DRM_INFO("set_domain_ioctl %p(%zd), %08x %08x\n",
  871. obj, obj->size, read_domains, write_domain);
  872. #endif
  873. if (read_domains & I915_GEM_DOMAIN_GTT) {
  874. ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
  875. /* Update the LRU on the fence for the CPU access that's
  876. * about to occur.
  877. */
  878. if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
  879. struct drm_i915_fence_reg *reg =
  880. &dev_priv->fence_regs[obj_priv->fence_reg];
  881. list_move_tail(&reg->lru_list,
  882. &dev_priv->mm.fence_list);
  883. }
  884. /* Silently promote "you're not bound, there was nothing to do"
  885. * to success, since the client was just asking us to
  886. * make sure everything was done.
  887. */
  888. if (ret == -EINVAL)
  889. ret = 0;
  890. } else {
  891. ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
  892. }
  893. /* Maintain LRU order of "inactive" objects */
  894. if (ret == 0 && i915_gem_object_is_inactive(obj_priv))
  895. list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
  896. drm_gem_object_unreference(obj);
  897. mutex_unlock(&dev->struct_mutex);
  898. return ret;
  899. }
  900. /**
  901. * Called when user space has done writes to this buffer
  902. */
  903. int
  904. i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
  905. struct drm_file *file_priv)
  906. {
  907. struct drm_i915_gem_sw_finish *args = data;
  908. struct drm_gem_object *obj;
  909. struct drm_i915_gem_object *obj_priv;
  910. int ret = 0;
  911. if (!(dev->driver->driver_features & DRIVER_GEM))
  912. return -ENODEV;
  913. mutex_lock(&dev->struct_mutex);
  914. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  915. if (obj == NULL) {
  916. mutex_unlock(&dev->struct_mutex);
  917. return -ENOENT;
  918. }
  919. #if WATCH_BUF
  920. DRM_INFO("%s: sw_finish %d (%p %zd)\n",
  921. __func__, args->handle, obj, obj->size);
  922. #endif
  923. obj_priv = to_intel_bo(obj);
  924. /* Pinned buffers may be scanout, so flush the cache */
  925. if (obj_priv->pin_count)
  926. i915_gem_object_flush_cpu_write_domain(obj);
  927. drm_gem_object_unreference(obj);
  928. mutex_unlock(&dev->struct_mutex);
  929. return ret;
  930. }
  931. /**
  932. * Maps the contents of an object, returning the address it is mapped
  933. * into.
  934. *
  935. * While the mapping holds a reference on the contents of the object, it doesn't
  936. * imply a ref on the object itself.
  937. */
  938. int
  939. i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
  940. struct drm_file *file_priv)
  941. {
  942. struct drm_i915_gem_mmap *args = data;
  943. struct drm_gem_object *obj;
  944. loff_t offset;
  945. unsigned long addr;
  946. if (!(dev->driver->driver_features & DRIVER_GEM))
  947. return -ENODEV;
  948. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  949. if (obj == NULL)
  950. return -ENOENT;
  951. offset = args->offset;
  952. down_write(&current->mm->mmap_sem);
  953. addr = do_mmap(obj->filp, 0, args->size,
  954. PROT_READ | PROT_WRITE, MAP_SHARED,
  955. args->offset);
  956. up_write(&current->mm->mmap_sem);
  957. drm_gem_object_unreference_unlocked(obj);
  958. if (IS_ERR((void *)addr))
  959. return addr;
  960. args->addr_ptr = (uint64_t) addr;
  961. return 0;
  962. }
  963. /**
  964. * i915_gem_fault - fault a page into the GTT
  965. * vma: VMA in question
  966. * vmf: fault info
  967. *
  968. * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
  969. * from userspace. The fault handler takes care of binding the object to
  970. * the GTT (if needed), allocating and programming a fence register (again,
  971. * only if needed based on whether the old reg is still valid or the object
  972. * is tiled) and inserting a new PTE into the faulting process.
  973. *
  974. * Note that the faulting process may involve evicting existing objects
  975. * from the GTT and/or fence registers to make room. So performance may
  976. * suffer if the GTT working set is large or there are few fence registers
  977. * left.
  978. */
  979. int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  980. {
  981. struct drm_gem_object *obj = vma->vm_private_data;
  982. struct drm_device *dev = obj->dev;
  983. drm_i915_private_t *dev_priv = dev->dev_private;
  984. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  985. pgoff_t page_offset;
  986. unsigned long pfn;
  987. int ret = 0;
  988. bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
  989. /* We don't use vmf->pgoff since that has the fake offset */
  990. page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
  991. PAGE_SHIFT;
  992. /* Now bind it into the GTT if needed */
  993. mutex_lock(&dev->struct_mutex);
  994. if (!obj_priv->gtt_space) {
  995. ret = i915_gem_object_bind_to_gtt(obj, 0);
  996. if (ret)
  997. goto unlock;
  998. ret = i915_gem_object_set_to_gtt_domain(obj, write);
  999. if (ret)
  1000. goto unlock;
  1001. }
  1002. /* Need a new fence register? */
  1003. if (obj_priv->tiling_mode != I915_TILING_NONE) {
  1004. ret = i915_gem_object_get_fence_reg(obj, true);
  1005. if (ret)
  1006. goto unlock;
  1007. }
  1008. if (i915_gem_object_is_inactive(obj_priv))
  1009. list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
  1010. pfn = ((dev->agp->base + obj_priv->gtt_offset) >> PAGE_SHIFT) +
  1011. page_offset;
  1012. /* Finally, remap it using the new GTT offset */
  1013. ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
  1014. unlock:
  1015. mutex_unlock(&dev->struct_mutex);
  1016. switch (ret) {
  1017. case 0:
  1018. case -ERESTARTSYS:
  1019. return VM_FAULT_NOPAGE;
  1020. case -ENOMEM:
  1021. case -EAGAIN:
  1022. return VM_FAULT_OOM;
  1023. default:
  1024. return VM_FAULT_SIGBUS;
  1025. }
  1026. }
  1027. /**
  1028. * i915_gem_create_mmap_offset - create a fake mmap offset for an object
  1029. * @obj: obj in question
  1030. *
  1031. * GEM memory mapping works by handing back to userspace a fake mmap offset
  1032. * it can use in a subsequent mmap(2) call. The DRM core code then looks
  1033. * up the object based on the offset and sets up the various memory mapping
  1034. * structures.
  1035. *
  1036. * This routine allocates and attaches a fake offset for @obj.
  1037. */
  1038. static int
  1039. i915_gem_create_mmap_offset(struct drm_gem_object *obj)
  1040. {
  1041. struct drm_device *dev = obj->dev;
  1042. struct drm_gem_mm *mm = dev->mm_private;
  1043. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1044. struct drm_map_list *list;
  1045. struct drm_local_map *map;
  1046. int ret = 0;
  1047. /* Set the object up for mmap'ing */
  1048. list = &obj->map_list;
  1049. list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
  1050. if (!list->map)
  1051. return -ENOMEM;
  1052. map = list->map;
  1053. map->type = _DRM_GEM;
  1054. map->size = obj->size;
  1055. map->handle = obj;
  1056. /* Get a DRM GEM mmap offset allocated... */
  1057. list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
  1058. obj->size / PAGE_SIZE, 0, 0);
  1059. if (!list->file_offset_node) {
  1060. DRM_ERROR("failed to allocate offset for bo %d\n", obj->name);
  1061. ret = -ENOSPC;
  1062. goto out_free_list;
  1063. }
  1064. list->file_offset_node = drm_mm_get_block(list->file_offset_node,
  1065. obj->size / PAGE_SIZE, 0);
  1066. if (!list->file_offset_node) {
  1067. ret = -ENOMEM;
  1068. goto out_free_list;
  1069. }
  1070. list->hash.key = list->file_offset_node->start;
  1071. ret = drm_ht_insert_item(&mm->offset_hash, &list->hash);
  1072. if (ret) {
  1073. DRM_ERROR("failed to add to map hash\n");
  1074. goto out_free_mm;
  1075. }
  1076. /* By now we should be all set, any drm_mmap request on the offset
  1077. * below will get to our mmap & fault handler */
  1078. obj_priv->mmap_offset = ((uint64_t) list->hash.key) << PAGE_SHIFT;
  1079. return 0;
  1080. out_free_mm:
  1081. drm_mm_put_block(list->file_offset_node);
  1082. out_free_list:
  1083. kfree(list->map);
  1084. return ret;
  1085. }
  1086. /**
  1087. * i915_gem_release_mmap - remove physical page mappings
  1088. * @obj: obj in question
  1089. *
  1090. * Preserve the reservation of the mmapping with the DRM core code, but
  1091. * relinquish ownership of the pages back to the system.
  1092. *
  1093. * It is vital that we remove the page mapping if we have mapped a tiled
  1094. * object through the GTT and then lose the fence register due to
  1095. * resource pressure. Similarly if the object has been moved out of the
  1096. * aperture, than pages mapped into userspace must be revoked. Removing the
  1097. * mapping will then trigger a page fault on the next user access, allowing
  1098. * fixup by i915_gem_fault().
  1099. */
  1100. void
  1101. i915_gem_release_mmap(struct drm_gem_object *obj)
  1102. {
  1103. struct drm_device *dev = obj->dev;
  1104. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1105. if (dev->dev_mapping)
  1106. unmap_mapping_range(dev->dev_mapping,
  1107. obj_priv->mmap_offset, obj->size, 1);
  1108. }
  1109. static void
  1110. i915_gem_free_mmap_offset(struct drm_gem_object *obj)
  1111. {
  1112. struct drm_device *dev = obj->dev;
  1113. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1114. struct drm_gem_mm *mm = dev->mm_private;
  1115. struct drm_map_list *list;
  1116. list = &obj->map_list;
  1117. drm_ht_remove_item(&mm->offset_hash, &list->hash);
  1118. if (list->file_offset_node) {
  1119. drm_mm_put_block(list->file_offset_node);
  1120. list->file_offset_node = NULL;
  1121. }
  1122. if (list->map) {
  1123. kfree(list->map);
  1124. list->map = NULL;
  1125. }
  1126. obj_priv->mmap_offset = 0;
  1127. }
  1128. /**
  1129. * i915_gem_get_gtt_alignment - return required GTT alignment for an object
  1130. * @obj: object to check
  1131. *
  1132. * Return the required GTT alignment for an object, taking into account
  1133. * potential fence register mapping if needed.
  1134. */
  1135. static uint32_t
  1136. i915_gem_get_gtt_alignment(struct drm_gem_object *obj)
  1137. {
  1138. struct drm_device *dev = obj->dev;
  1139. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1140. int start, i;
  1141. /*
  1142. * Minimum alignment is 4k (GTT page size), but might be greater
  1143. * if a fence register is needed for the object.
  1144. */
  1145. if (INTEL_INFO(dev)->gen >= 4 || obj_priv->tiling_mode == I915_TILING_NONE)
  1146. return 4096;
  1147. /*
  1148. * Previous chips need to be aligned to the size of the smallest
  1149. * fence register that can contain the object.
  1150. */
  1151. if (INTEL_INFO(dev)->gen == 3)
  1152. start = 1024*1024;
  1153. else
  1154. start = 512*1024;
  1155. for (i = start; i < obj->size; i <<= 1)
  1156. ;
  1157. return i;
  1158. }
  1159. /**
  1160. * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
  1161. * @dev: DRM device
  1162. * @data: GTT mapping ioctl data
  1163. * @file_priv: GEM object info
  1164. *
  1165. * Simply returns the fake offset to userspace so it can mmap it.
  1166. * The mmap call will end up in drm_gem_mmap(), which will set things
  1167. * up so we can get faults in the handler above.
  1168. *
  1169. * The fault handler will take care of binding the object into the GTT
  1170. * (since it may have been evicted to make room for something), allocating
  1171. * a fence register, and mapping the appropriate aperture address into
  1172. * userspace.
  1173. */
  1174. int
  1175. i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
  1176. struct drm_file *file_priv)
  1177. {
  1178. struct drm_i915_gem_mmap_gtt *args = data;
  1179. struct drm_gem_object *obj;
  1180. struct drm_i915_gem_object *obj_priv;
  1181. int ret;
  1182. if (!(dev->driver->driver_features & DRIVER_GEM))
  1183. return -ENODEV;
  1184. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  1185. if (obj == NULL)
  1186. return -ENOENT;
  1187. mutex_lock(&dev->struct_mutex);
  1188. obj_priv = to_intel_bo(obj);
  1189. if (obj_priv->madv != I915_MADV_WILLNEED) {
  1190. DRM_ERROR("Attempting to mmap a purgeable buffer\n");
  1191. drm_gem_object_unreference(obj);
  1192. mutex_unlock(&dev->struct_mutex);
  1193. return -EINVAL;
  1194. }
  1195. if (!obj_priv->mmap_offset) {
  1196. ret = i915_gem_create_mmap_offset(obj);
  1197. if (ret) {
  1198. drm_gem_object_unreference(obj);
  1199. mutex_unlock(&dev->struct_mutex);
  1200. return ret;
  1201. }
  1202. }
  1203. args->offset = obj_priv->mmap_offset;
  1204. /*
  1205. * Pull it into the GTT so that we have a page list (makes the
  1206. * initial fault faster and any subsequent flushing possible).
  1207. */
  1208. if (!obj_priv->agp_mem) {
  1209. ret = i915_gem_object_bind_to_gtt(obj, 0);
  1210. if (ret) {
  1211. drm_gem_object_unreference(obj);
  1212. mutex_unlock(&dev->struct_mutex);
  1213. return ret;
  1214. }
  1215. }
  1216. drm_gem_object_unreference(obj);
  1217. mutex_unlock(&dev->struct_mutex);
  1218. return 0;
  1219. }
  1220. void
  1221. i915_gem_object_put_pages(struct drm_gem_object *obj)
  1222. {
  1223. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1224. int page_count = obj->size / PAGE_SIZE;
  1225. int i;
  1226. BUG_ON(obj_priv->pages_refcount == 0);
  1227. BUG_ON(obj_priv->madv == __I915_MADV_PURGED);
  1228. if (--obj_priv->pages_refcount != 0)
  1229. return;
  1230. if (obj_priv->tiling_mode != I915_TILING_NONE)
  1231. i915_gem_object_save_bit_17_swizzle(obj);
  1232. if (obj_priv->madv == I915_MADV_DONTNEED)
  1233. obj_priv->dirty = 0;
  1234. for (i = 0; i < page_count; i++) {
  1235. if (obj_priv->dirty)
  1236. set_page_dirty(obj_priv->pages[i]);
  1237. if (obj_priv->madv == I915_MADV_WILLNEED)
  1238. mark_page_accessed(obj_priv->pages[i]);
  1239. page_cache_release(obj_priv->pages[i]);
  1240. }
  1241. obj_priv->dirty = 0;
  1242. drm_free_large(obj_priv->pages);
  1243. obj_priv->pages = NULL;
  1244. }
  1245. static void
  1246. i915_gem_object_move_to_active(struct drm_gem_object *obj,
  1247. struct intel_ring_buffer *ring)
  1248. {
  1249. struct drm_i915_private *dev_priv = obj->dev->dev_private;
  1250. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1251. BUG_ON(ring == NULL);
  1252. obj_priv->ring = ring;
  1253. /* Add a reference if we're newly entering the active list. */
  1254. if (!obj_priv->active) {
  1255. drm_gem_object_reference(obj);
  1256. obj_priv->active = 1;
  1257. }
  1258. /* Move from whatever list we were on to the tail of execution. */
  1259. list_move_tail(&obj_priv->list, &ring->active_list);
  1260. obj_priv->last_rendering_seqno = dev_priv->next_seqno;
  1261. }
  1262. static void
  1263. i915_gem_object_move_to_flushing(struct drm_gem_object *obj)
  1264. {
  1265. struct drm_device *dev = obj->dev;
  1266. drm_i915_private_t *dev_priv = dev->dev_private;
  1267. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1268. BUG_ON(!obj_priv->active);
  1269. list_move_tail(&obj_priv->list, &dev_priv->mm.flushing_list);
  1270. obj_priv->last_rendering_seqno = 0;
  1271. }
  1272. /* Immediately discard the backing storage */
  1273. static void
  1274. i915_gem_object_truncate(struct drm_gem_object *obj)
  1275. {
  1276. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1277. struct inode *inode;
  1278. /* Our goal here is to return as much of the memory as
  1279. * is possible back to the system as we are called from OOM.
  1280. * To do this we must instruct the shmfs to drop all of its
  1281. * backing pages, *now*. Here we mirror the actions taken
  1282. * when by shmem_delete_inode() to release the backing store.
  1283. */
  1284. inode = obj->filp->f_path.dentry->d_inode;
  1285. truncate_inode_pages(inode->i_mapping, 0);
  1286. if (inode->i_op->truncate_range)
  1287. inode->i_op->truncate_range(inode, 0, (loff_t)-1);
  1288. obj_priv->madv = __I915_MADV_PURGED;
  1289. }
  1290. static inline int
  1291. i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj_priv)
  1292. {
  1293. return obj_priv->madv == I915_MADV_DONTNEED;
  1294. }
  1295. static void
  1296. i915_gem_object_move_to_inactive(struct drm_gem_object *obj)
  1297. {
  1298. struct drm_device *dev = obj->dev;
  1299. drm_i915_private_t *dev_priv = dev->dev_private;
  1300. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1301. i915_verify_inactive(dev, __FILE__, __LINE__);
  1302. if (obj_priv->pin_count != 0)
  1303. list_move_tail(&obj_priv->list, &dev_priv->mm.pinned_list);
  1304. else
  1305. list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
  1306. BUG_ON(!list_empty(&obj_priv->gpu_write_list));
  1307. obj_priv->last_rendering_seqno = 0;
  1308. obj_priv->ring = NULL;
  1309. if (obj_priv->active) {
  1310. obj_priv->active = 0;
  1311. drm_gem_object_unreference(obj);
  1312. }
  1313. i915_verify_inactive(dev, __FILE__, __LINE__);
  1314. }
  1315. static void
  1316. i915_gem_process_flushing_list(struct drm_device *dev,
  1317. uint32_t flush_domains,
  1318. struct intel_ring_buffer *ring)
  1319. {
  1320. drm_i915_private_t *dev_priv = dev->dev_private;
  1321. struct drm_i915_gem_object *obj_priv, *next;
  1322. list_for_each_entry_safe(obj_priv, next,
  1323. &dev_priv->mm.gpu_write_list,
  1324. gpu_write_list) {
  1325. struct drm_gem_object *obj = &obj_priv->base;
  1326. if (obj->write_domain & flush_domains &&
  1327. obj_priv->ring == ring) {
  1328. uint32_t old_write_domain = obj->write_domain;
  1329. obj->write_domain = 0;
  1330. list_del_init(&obj_priv->gpu_write_list);
  1331. i915_gem_object_move_to_active(obj, ring);
  1332. /* update the fence lru list */
  1333. if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
  1334. struct drm_i915_fence_reg *reg =
  1335. &dev_priv->fence_regs[obj_priv->fence_reg];
  1336. list_move_tail(&reg->lru_list,
  1337. &dev_priv->mm.fence_list);
  1338. }
  1339. trace_i915_gem_object_change_domain(obj,
  1340. obj->read_domains,
  1341. old_write_domain);
  1342. }
  1343. }
  1344. }
  1345. uint32_t
  1346. i915_add_request(struct drm_device *dev,
  1347. struct drm_file *file,
  1348. struct drm_i915_gem_request *request,
  1349. struct intel_ring_buffer *ring)
  1350. {
  1351. drm_i915_private_t *dev_priv = dev->dev_private;
  1352. struct drm_i915_file_private *file_priv = NULL;
  1353. uint32_t seqno;
  1354. int was_empty;
  1355. if (file != NULL)
  1356. file_priv = file->driver_priv;
  1357. if (request == NULL) {
  1358. request = kzalloc(sizeof(*request), GFP_KERNEL);
  1359. if (request == NULL)
  1360. return 0;
  1361. }
  1362. seqno = ring->add_request(dev, ring, 0);
  1363. request->seqno = seqno;
  1364. request->ring = ring;
  1365. request->emitted_jiffies = jiffies;
  1366. was_empty = list_empty(&ring->request_list);
  1367. list_add_tail(&request->list, &ring->request_list);
  1368. if (file_priv) {
  1369. mutex_lock(&file_priv->mutex);
  1370. request->file_priv = file_priv;
  1371. list_add_tail(&request->client_list,
  1372. &file_priv->mm.request_list);
  1373. mutex_unlock(&file_priv->mutex);
  1374. }
  1375. if (!dev_priv->mm.suspended) {
  1376. mod_timer(&dev_priv->hangcheck_timer,
  1377. jiffies + msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
  1378. if (was_empty)
  1379. queue_delayed_work(dev_priv->wq,
  1380. &dev_priv->mm.retire_work, HZ);
  1381. }
  1382. return seqno;
  1383. }
  1384. /**
  1385. * Command execution barrier
  1386. *
  1387. * Ensures that all commands in the ring are finished
  1388. * before signalling the CPU
  1389. */
  1390. static void
  1391. i915_retire_commands(struct drm_device *dev, struct intel_ring_buffer *ring)
  1392. {
  1393. uint32_t flush_domains = 0;
  1394. /* The sampler always gets flushed on i965 (sigh) */
  1395. if (INTEL_INFO(dev)->gen >= 4)
  1396. flush_domains |= I915_GEM_DOMAIN_SAMPLER;
  1397. ring->flush(dev, ring,
  1398. I915_GEM_DOMAIN_COMMAND, flush_domains);
  1399. }
  1400. static inline void
  1401. i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
  1402. {
  1403. if (request->file_priv) {
  1404. mutex_lock(&request->file_priv->mutex);
  1405. list_del(&request->client_list);
  1406. mutex_unlock(&request->file_priv->mutex);
  1407. }
  1408. }
  1409. static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
  1410. struct intel_ring_buffer *ring)
  1411. {
  1412. while (!list_empty(&ring->request_list)) {
  1413. struct drm_i915_gem_request *request;
  1414. request = list_first_entry(&ring->request_list,
  1415. struct drm_i915_gem_request,
  1416. list);
  1417. list_del(&request->list);
  1418. i915_gem_request_remove_from_client(request);
  1419. kfree(request);
  1420. }
  1421. while (!list_empty(&ring->active_list)) {
  1422. struct drm_i915_gem_object *obj_priv;
  1423. obj_priv = list_first_entry(&ring->active_list,
  1424. struct drm_i915_gem_object,
  1425. list);
  1426. obj_priv->base.write_domain = 0;
  1427. list_del_init(&obj_priv->gpu_write_list);
  1428. i915_gem_object_move_to_inactive(&obj_priv->base);
  1429. }
  1430. }
  1431. void i915_gem_reset_lists(struct drm_device *dev)
  1432. {
  1433. struct drm_i915_private *dev_priv = dev->dev_private;
  1434. struct drm_i915_gem_object *obj_priv;
  1435. i915_gem_reset_ring_lists(dev_priv, &dev_priv->render_ring);
  1436. if (HAS_BSD(dev))
  1437. i915_gem_reset_ring_lists(dev_priv, &dev_priv->bsd_ring);
  1438. /* Remove anything from the flushing lists. The GPU cache is likely
  1439. * to be lost on reset along with the data, so simply move the
  1440. * lost bo to the inactive list.
  1441. */
  1442. while (!list_empty(&dev_priv->mm.flushing_list)) {
  1443. obj_priv = list_first_entry(&dev_priv->mm.flushing_list,
  1444. struct drm_i915_gem_object,
  1445. list);
  1446. obj_priv->base.write_domain = 0;
  1447. list_del_init(&obj_priv->gpu_write_list);
  1448. i915_gem_object_move_to_inactive(&obj_priv->base);
  1449. }
  1450. /* Move everything out of the GPU domains to ensure we do any
  1451. * necessary invalidation upon reuse.
  1452. */
  1453. list_for_each_entry(obj_priv,
  1454. &dev_priv->mm.inactive_list,
  1455. list)
  1456. {
  1457. obj_priv->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
  1458. }
  1459. }
  1460. /**
  1461. * This function clears the request list as sequence numbers are passed.
  1462. */
  1463. static void
  1464. i915_gem_retire_requests_ring(struct drm_device *dev,
  1465. struct intel_ring_buffer *ring)
  1466. {
  1467. drm_i915_private_t *dev_priv = dev->dev_private;
  1468. uint32_t seqno;
  1469. if (!ring->status_page.page_addr ||
  1470. list_empty(&ring->request_list))
  1471. return;
  1472. seqno = ring->get_seqno(dev, ring);
  1473. while (!list_empty(&ring->request_list)) {
  1474. struct drm_i915_gem_request *request;
  1475. request = list_first_entry(&ring->request_list,
  1476. struct drm_i915_gem_request,
  1477. list);
  1478. if (!i915_seqno_passed(seqno, request->seqno))
  1479. break;
  1480. trace_i915_gem_request_retire(dev, request->seqno);
  1481. list_del(&request->list);
  1482. i915_gem_request_remove_from_client(request);
  1483. kfree(request);
  1484. }
  1485. /* Move any buffers on the active list that are no longer referenced
  1486. * by the ringbuffer to the flushing/inactive lists as appropriate.
  1487. */
  1488. while (!list_empty(&ring->active_list)) {
  1489. struct drm_gem_object *obj;
  1490. struct drm_i915_gem_object *obj_priv;
  1491. obj_priv = list_first_entry(&ring->active_list,
  1492. struct drm_i915_gem_object,
  1493. list);
  1494. if (!i915_seqno_passed(seqno, obj_priv->last_rendering_seqno))
  1495. break;
  1496. obj = &obj_priv->base;
  1497. #if WATCH_LRU
  1498. DRM_INFO("%s: retire %d moves to inactive list %p\n",
  1499. __func__, request->seqno, obj);
  1500. #endif
  1501. if (obj->write_domain != 0)
  1502. i915_gem_object_move_to_flushing(obj);
  1503. else
  1504. i915_gem_object_move_to_inactive(obj);
  1505. }
  1506. if (unlikely (dev_priv->trace_irq_seqno &&
  1507. i915_seqno_passed(dev_priv->trace_irq_seqno, seqno))) {
  1508. ring->user_irq_put(dev, ring);
  1509. dev_priv->trace_irq_seqno = 0;
  1510. }
  1511. }
  1512. void
  1513. i915_gem_retire_requests(struct drm_device *dev)
  1514. {
  1515. drm_i915_private_t *dev_priv = dev->dev_private;
  1516. if (!list_empty(&dev_priv->mm.deferred_free_list)) {
  1517. struct drm_i915_gem_object *obj_priv, *tmp;
  1518. /* We must be careful that during unbind() we do not
  1519. * accidentally infinitely recurse into retire requests.
  1520. * Currently:
  1521. * retire -> free -> unbind -> wait -> retire_ring
  1522. */
  1523. list_for_each_entry_safe(obj_priv, tmp,
  1524. &dev_priv->mm.deferred_free_list,
  1525. list)
  1526. i915_gem_free_object_tail(&obj_priv->base);
  1527. }
  1528. i915_gem_retire_requests_ring(dev, &dev_priv->render_ring);
  1529. if (HAS_BSD(dev))
  1530. i915_gem_retire_requests_ring(dev, &dev_priv->bsd_ring);
  1531. }
  1532. static void
  1533. i915_gem_retire_work_handler(struct work_struct *work)
  1534. {
  1535. drm_i915_private_t *dev_priv;
  1536. struct drm_device *dev;
  1537. dev_priv = container_of(work, drm_i915_private_t,
  1538. mm.retire_work.work);
  1539. dev = dev_priv->dev;
  1540. mutex_lock(&dev->struct_mutex);
  1541. i915_gem_retire_requests(dev);
  1542. if (!dev_priv->mm.suspended &&
  1543. (!list_empty(&dev_priv->render_ring.request_list) ||
  1544. (HAS_BSD(dev) &&
  1545. !list_empty(&dev_priv->bsd_ring.request_list))))
  1546. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
  1547. mutex_unlock(&dev->struct_mutex);
  1548. }
  1549. int
  1550. i915_do_wait_request(struct drm_device *dev, uint32_t seqno,
  1551. bool interruptible, struct intel_ring_buffer *ring)
  1552. {
  1553. drm_i915_private_t *dev_priv = dev->dev_private;
  1554. u32 ier;
  1555. int ret = 0;
  1556. BUG_ON(seqno == 0);
  1557. if (seqno == dev_priv->next_seqno) {
  1558. seqno = i915_add_request(dev, NULL, NULL, ring);
  1559. if (seqno == 0)
  1560. return -ENOMEM;
  1561. }
  1562. if (atomic_read(&dev_priv->mm.wedged))
  1563. return -EIO;
  1564. if (!i915_seqno_passed(ring->get_seqno(dev, ring), seqno)) {
  1565. if (HAS_PCH_SPLIT(dev))
  1566. ier = I915_READ(DEIER) | I915_READ(GTIER);
  1567. else
  1568. ier = I915_READ(IER);
  1569. if (!ier) {
  1570. DRM_ERROR("something (likely vbetool) disabled "
  1571. "interrupts, re-enabling\n");
  1572. i915_driver_irq_preinstall(dev);
  1573. i915_driver_irq_postinstall(dev);
  1574. }
  1575. trace_i915_gem_request_wait_begin(dev, seqno);
  1576. ring->waiting_gem_seqno = seqno;
  1577. ring->user_irq_get(dev, ring);
  1578. if (interruptible)
  1579. ret = wait_event_interruptible(ring->irq_queue,
  1580. i915_seqno_passed(
  1581. ring->get_seqno(dev, ring), seqno)
  1582. || atomic_read(&dev_priv->mm.wedged));
  1583. else
  1584. wait_event(ring->irq_queue,
  1585. i915_seqno_passed(
  1586. ring->get_seqno(dev, ring), seqno)
  1587. || atomic_read(&dev_priv->mm.wedged));
  1588. ring->user_irq_put(dev, ring);
  1589. ring->waiting_gem_seqno = 0;
  1590. trace_i915_gem_request_wait_end(dev, seqno);
  1591. }
  1592. if (atomic_read(&dev_priv->mm.wedged))
  1593. ret = -EIO;
  1594. if (ret && ret != -ERESTARTSYS)
  1595. DRM_ERROR("%s returns %d (awaiting %d at %d, next %d)\n",
  1596. __func__, ret, seqno, ring->get_seqno(dev, ring),
  1597. dev_priv->next_seqno);
  1598. /* Directly dispatch request retiring. While we have the work queue
  1599. * to handle this, the waiter on a request often wants an associated
  1600. * buffer to have made it to the inactive list, and we would need
  1601. * a separate wait queue to handle that.
  1602. */
  1603. if (ret == 0)
  1604. i915_gem_retire_requests_ring(dev, ring);
  1605. return ret;
  1606. }
  1607. /**
  1608. * Waits for a sequence number to be signaled, and cleans up the
  1609. * request and object lists appropriately for that event.
  1610. */
  1611. static int
  1612. i915_wait_request(struct drm_device *dev, uint32_t seqno,
  1613. struct intel_ring_buffer *ring)
  1614. {
  1615. return i915_do_wait_request(dev, seqno, 1, ring);
  1616. }
  1617. static void
  1618. i915_gem_flush_ring(struct drm_device *dev,
  1619. struct drm_file *file_priv,
  1620. struct intel_ring_buffer *ring,
  1621. uint32_t invalidate_domains,
  1622. uint32_t flush_domains)
  1623. {
  1624. ring->flush(dev, ring, invalidate_domains, flush_domains);
  1625. i915_gem_process_flushing_list(dev, flush_domains, ring);
  1626. }
  1627. static void
  1628. i915_gem_flush(struct drm_device *dev,
  1629. struct drm_file *file_priv,
  1630. uint32_t invalidate_domains,
  1631. uint32_t flush_domains,
  1632. uint32_t flush_rings)
  1633. {
  1634. drm_i915_private_t *dev_priv = dev->dev_private;
  1635. if (flush_domains & I915_GEM_DOMAIN_CPU)
  1636. drm_agp_chipset_flush(dev);
  1637. if ((flush_domains | invalidate_domains) & I915_GEM_GPU_DOMAINS) {
  1638. if (flush_rings & RING_RENDER)
  1639. i915_gem_flush_ring(dev, file_priv,
  1640. &dev_priv->render_ring,
  1641. invalidate_domains, flush_domains);
  1642. if (flush_rings & RING_BSD)
  1643. i915_gem_flush_ring(dev, file_priv,
  1644. &dev_priv->bsd_ring,
  1645. invalidate_domains, flush_domains);
  1646. }
  1647. }
  1648. /**
  1649. * Ensures that all rendering to the object has completed and the object is
  1650. * safe to unbind from the GTT or access from the CPU.
  1651. */
  1652. static int
  1653. i915_gem_object_wait_rendering(struct drm_gem_object *obj,
  1654. bool interruptible)
  1655. {
  1656. struct drm_device *dev = obj->dev;
  1657. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1658. int ret;
  1659. /* This function only exists to support waiting for existing rendering,
  1660. * not for emitting required flushes.
  1661. */
  1662. BUG_ON((obj->write_domain & I915_GEM_GPU_DOMAINS) != 0);
  1663. /* If there is rendering queued on the buffer being evicted, wait for
  1664. * it.
  1665. */
  1666. if (obj_priv->active) {
  1667. #if WATCH_BUF
  1668. DRM_INFO("%s: object %p wait for seqno %08x\n",
  1669. __func__, obj, obj_priv->last_rendering_seqno);
  1670. #endif
  1671. ret = i915_do_wait_request(dev,
  1672. obj_priv->last_rendering_seqno,
  1673. interruptible,
  1674. obj_priv->ring);
  1675. if (ret)
  1676. return ret;
  1677. }
  1678. return 0;
  1679. }
  1680. /**
  1681. * Unbinds an object from the GTT aperture.
  1682. */
  1683. int
  1684. i915_gem_object_unbind(struct drm_gem_object *obj)
  1685. {
  1686. struct drm_device *dev = obj->dev;
  1687. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1688. int ret = 0;
  1689. #if WATCH_BUF
  1690. DRM_INFO("%s:%d %p\n", __func__, __LINE__, obj);
  1691. DRM_INFO("gtt_space %p\n", obj_priv->gtt_space);
  1692. #endif
  1693. if (obj_priv->gtt_space == NULL)
  1694. return 0;
  1695. if (obj_priv->pin_count != 0) {
  1696. DRM_ERROR("Attempting to unbind pinned buffer\n");
  1697. return -EINVAL;
  1698. }
  1699. /* blow away mappings if mapped through GTT */
  1700. i915_gem_release_mmap(obj);
  1701. /* Move the object to the CPU domain to ensure that
  1702. * any possible CPU writes while it's not in the GTT
  1703. * are flushed when we go to remap it. This will
  1704. * also ensure that all pending GPU writes are finished
  1705. * before we unbind.
  1706. */
  1707. ret = i915_gem_object_set_to_cpu_domain(obj, 1);
  1708. if (ret == -ERESTARTSYS)
  1709. return ret;
  1710. /* Continue on if we fail due to EIO, the GPU is hung so we
  1711. * should be safe and we need to cleanup or else we might
  1712. * cause memory corruption through use-after-free.
  1713. */
  1714. /* release the fence reg _after_ flushing */
  1715. if (obj_priv->fence_reg != I915_FENCE_REG_NONE)
  1716. i915_gem_clear_fence_reg(obj);
  1717. if (obj_priv->agp_mem != NULL) {
  1718. drm_unbind_agp(obj_priv->agp_mem);
  1719. drm_free_agp(obj_priv->agp_mem, obj->size / PAGE_SIZE);
  1720. obj_priv->agp_mem = NULL;
  1721. }
  1722. i915_gem_object_put_pages(obj);
  1723. BUG_ON(obj_priv->pages_refcount);
  1724. if (obj_priv->gtt_space) {
  1725. atomic_dec(&dev->gtt_count);
  1726. atomic_sub(obj->size, &dev->gtt_memory);
  1727. drm_mm_put_block(obj_priv->gtt_space);
  1728. obj_priv->gtt_space = NULL;
  1729. }
  1730. list_del_init(&obj_priv->list);
  1731. if (i915_gem_object_is_purgeable(obj_priv))
  1732. i915_gem_object_truncate(obj);
  1733. trace_i915_gem_object_unbind(obj);
  1734. return ret;
  1735. }
  1736. int
  1737. i915_gpu_idle(struct drm_device *dev)
  1738. {
  1739. drm_i915_private_t *dev_priv = dev->dev_private;
  1740. bool lists_empty;
  1741. u32 seqno;
  1742. int ret;
  1743. lists_empty = (list_empty(&dev_priv->mm.flushing_list) &&
  1744. list_empty(&dev_priv->render_ring.active_list) &&
  1745. (!HAS_BSD(dev) ||
  1746. list_empty(&dev_priv->bsd_ring.active_list)));
  1747. if (lists_empty)
  1748. return 0;
  1749. /* Flush everything onto the inactive list. */
  1750. seqno = dev_priv->next_seqno;
  1751. i915_gem_flush_ring(dev, NULL, &dev_priv->render_ring,
  1752. I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
  1753. ret = i915_wait_request(dev, seqno, &dev_priv->render_ring);
  1754. if (ret)
  1755. return ret;
  1756. if (HAS_BSD(dev)) {
  1757. seqno = dev_priv->next_seqno;
  1758. i915_gem_flush_ring(dev, NULL, &dev_priv->bsd_ring,
  1759. I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
  1760. ret = i915_wait_request(dev, seqno, &dev_priv->bsd_ring);
  1761. if (ret)
  1762. return ret;
  1763. }
  1764. return 0;
  1765. }
  1766. int
  1767. i915_gem_object_get_pages(struct drm_gem_object *obj,
  1768. gfp_t gfpmask)
  1769. {
  1770. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1771. int page_count, i;
  1772. struct address_space *mapping;
  1773. struct inode *inode;
  1774. struct page *page;
  1775. BUG_ON(obj_priv->pages_refcount
  1776. == DRM_I915_GEM_OBJECT_MAX_PAGES_REFCOUNT);
  1777. if (obj_priv->pages_refcount++ != 0)
  1778. return 0;
  1779. /* Get the list of pages out of our struct file. They'll be pinned
  1780. * at this point until we release them.
  1781. */
  1782. page_count = obj->size / PAGE_SIZE;
  1783. BUG_ON(obj_priv->pages != NULL);
  1784. obj_priv->pages = drm_calloc_large(page_count, sizeof(struct page *));
  1785. if (obj_priv->pages == NULL) {
  1786. obj_priv->pages_refcount--;
  1787. return -ENOMEM;
  1788. }
  1789. inode = obj->filp->f_path.dentry->d_inode;
  1790. mapping = inode->i_mapping;
  1791. for (i = 0; i < page_count; i++) {
  1792. page = read_cache_page_gfp(mapping, i,
  1793. GFP_HIGHUSER |
  1794. __GFP_COLD |
  1795. __GFP_RECLAIMABLE |
  1796. gfpmask);
  1797. if (IS_ERR(page))
  1798. goto err_pages;
  1799. obj_priv->pages[i] = page;
  1800. }
  1801. if (obj_priv->tiling_mode != I915_TILING_NONE)
  1802. i915_gem_object_do_bit_17_swizzle(obj);
  1803. return 0;
  1804. err_pages:
  1805. while (i--)
  1806. page_cache_release(obj_priv->pages[i]);
  1807. drm_free_large(obj_priv->pages);
  1808. obj_priv->pages = NULL;
  1809. obj_priv->pages_refcount--;
  1810. return PTR_ERR(page);
  1811. }
  1812. static void sandybridge_write_fence_reg(struct drm_i915_fence_reg *reg)
  1813. {
  1814. struct drm_gem_object *obj = reg->obj;
  1815. struct drm_device *dev = obj->dev;
  1816. drm_i915_private_t *dev_priv = dev->dev_private;
  1817. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1818. int regnum = obj_priv->fence_reg;
  1819. uint64_t val;
  1820. val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
  1821. 0xfffff000) << 32;
  1822. val |= obj_priv->gtt_offset & 0xfffff000;
  1823. val |= (uint64_t)((obj_priv->stride / 128) - 1) <<
  1824. SANDYBRIDGE_FENCE_PITCH_SHIFT;
  1825. if (obj_priv->tiling_mode == I915_TILING_Y)
  1826. val |= 1 << I965_FENCE_TILING_Y_SHIFT;
  1827. val |= I965_FENCE_REG_VALID;
  1828. I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (regnum * 8), val);
  1829. }
  1830. static void i965_write_fence_reg(struct drm_i915_fence_reg *reg)
  1831. {
  1832. struct drm_gem_object *obj = reg->obj;
  1833. struct drm_device *dev = obj->dev;
  1834. drm_i915_private_t *dev_priv = dev->dev_private;
  1835. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1836. int regnum = obj_priv->fence_reg;
  1837. uint64_t val;
  1838. val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
  1839. 0xfffff000) << 32;
  1840. val |= obj_priv->gtt_offset & 0xfffff000;
  1841. val |= ((obj_priv->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
  1842. if (obj_priv->tiling_mode == I915_TILING_Y)
  1843. val |= 1 << I965_FENCE_TILING_Y_SHIFT;
  1844. val |= I965_FENCE_REG_VALID;
  1845. I915_WRITE64(FENCE_REG_965_0 + (regnum * 8), val);
  1846. }
  1847. static void i915_write_fence_reg(struct drm_i915_fence_reg *reg)
  1848. {
  1849. struct drm_gem_object *obj = reg->obj;
  1850. struct drm_device *dev = obj->dev;
  1851. drm_i915_private_t *dev_priv = dev->dev_private;
  1852. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1853. int regnum = obj_priv->fence_reg;
  1854. int tile_width;
  1855. uint32_t fence_reg, val;
  1856. uint32_t pitch_val;
  1857. if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
  1858. (obj_priv->gtt_offset & (obj->size - 1))) {
  1859. WARN(1, "%s: object 0x%08x not 1M or size (0x%zx) aligned\n",
  1860. __func__, obj_priv->gtt_offset, obj->size);
  1861. return;
  1862. }
  1863. if (obj_priv->tiling_mode == I915_TILING_Y &&
  1864. HAS_128_BYTE_Y_TILING(dev))
  1865. tile_width = 128;
  1866. else
  1867. tile_width = 512;
  1868. /* Note: pitch better be a power of two tile widths */
  1869. pitch_val = obj_priv->stride / tile_width;
  1870. pitch_val = ffs(pitch_val) - 1;
  1871. if (obj_priv->tiling_mode == I915_TILING_Y &&
  1872. HAS_128_BYTE_Y_TILING(dev))
  1873. WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
  1874. else
  1875. WARN_ON(pitch_val > I915_FENCE_MAX_PITCH_VAL);
  1876. val = obj_priv->gtt_offset;
  1877. if (obj_priv->tiling_mode == I915_TILING_Y)
  1878. val |= 1 << I830_FENCE_TILING_Y_SHIFT;
  1879. val |= I915_FENCE_SIZE_BITS(obj->size);
  1880. val |= pitch_val << I830_FENCE_PITCH_SHIFT;
  1881. val |= I830_FENCE_REG_VALID;
  1882. if (regnum < 8)
  1883. fence_reg = FENCE_REG_830_0 + (regnum * 4);
  1884. else
  1885. fence_reg = FENCE_REG_945_8 + ((regnum - 8) * 4);
  1886. I915_WRITE(fence_reg, val);
  1887. }
  1888. static void i830_write_fence_reg(struct drm_i915_fence_reg *reg)
  1889. {
  1890. struct drm_gem_object *obj = reg->obj;
  1891. struct drm_device *dev = obj->dev;
  1892. drm_i915_private_t *dev_priv = dev->dev_private;
  1893. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1894. int regnum = obj_priv->fence_reg;
  1895. uint32_t val;
  1896. uint32_t pitch_val;
  1897. uint32_t fence_size_bits;
  1898. if ((obj_priv->gtt_offset & ~I830_FENCE_START_MASK) ||
  1899. (obj_priv->gtt_offset & (obj->size - 1))) {
  1900. WARN(1, "%s: object 0x%08x not 512K or size aligned\n",
  1901. __func__, obj_priv->gtt_offset);
  1902. return;
  1903. }
  1904. pitch_val = obj_priv->stride / 128;
  1905. pitch_val = ffs(pitch_val) - 1;
  1906. WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
  1907. val = obj_priv->gtt_offset;
  1908. if (obj_priv->tiling_mode == I915_TILING_Y)
  1909. val |= 1 << I830_FENCE_TILING_Y_SHIFT;
  1910. fence_size_bits = I830_FENCE_SIZE_BITS(obj->size);
  1911. WARN_ON(fence_size_bits & ~0x00000f00);
  1912. val |= fence_size_bits;
  1913. val |= pitch_val << I830_FENCE_PITCH_SHIFT;
  1914. val |= I830_FENCE_REG_VALID;
  1915. I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val);
  1916. }
  1917. static int i915_find_fence_reg(struct drm_device *dev,
  1918. bool interruptible)
  1919. {
  1920. struct drm_i915_fence_reg *reg = NULL;
  1921. struct drm_i915_gem_object *obj_priv = NULL;
  1922. struct drm_i915_private *dev_priv = dev->dev_private;
  1923. struct drm_gem_object *obj = NULL;
  1924. int i, avail, ret;
  1925. /* First try to find a free reg */
  1926. avail = 0;
  1927. for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
  1928. reg = &dev_priv->fence_regs[i];
  1929. if (!reg->obj)
  1930. return i;
  1931. obj_priv = to_intel_bo(reg->obj);
  1932. if (!obj_priv->pin_count)
  1933. avail++;
  1934. }
  1935. if (avail == 0)
  1936. return -ENOSPC;
  1937. /* None available, try to steal one or wait for a user to finish */
  1938. i = I915_FENCE_REG_NONE;
  1939. list_for_each_entry(reg, &dev_priv->mm.fence_list,
  1940. lru_list) {
  1941. obj = reg->obj;
  1942. obj_priv = to_intel_bo(obj);
  1943. if (obj_priv->pin_count)
  1944. continue;
  1945. /* found one! */
  1946. i = obj_priv->fence_reg;
  1947. break;
  1948. }
  1949. BUG_ON(i == I915_FENCE_REG_NONE);
  1950. /* We only have a reference on obj from the active list. put_fence_reg
  1951. * might drop that one, causing a use-after-free in it. So hold a
  1952. * private reference to obj like the other callers of put_fence_reg
  1953. * (set_tiling ioctl) do. */
  1954. drm_gem_object_reference(obj);
  1955. ret = i915_gem_object_put_fence_reg(obj, interruptible);
  1956. drm_gem_object_unreference(obj);
  1957. if (ret != 0)
  1958. return ret;
  1959. return i;
  1960. }
  1961. /**
  1962. * i915_gem_object_get_fence_reg - set up a fence reg for an object
  1963. * @obj: object to map through a fence reg
  1964. *
  1965. * When mapping objects through the GTT, userspace wants to be able to write
  1966. * to them without having to worry about swizzling if the object is tiled.
  1967. *
  1968. * This function walks the fence regs looking for a free one for @obj,
  1969. * stealing one if it can't find any.
  1970. *
  1971. * It then sets up the reg based on the object's properties: address, pitch
  1972. * and tiling format.
  1973. */
  1974. int
  1975. i915_gem_object_get_fence_reg(struct drm_gem_object *obj,
  1976. bool interruptible)
  1977. {
  1978. struct drm_device *dev = obj->dev;
  1979. struct drm_i915_private *dev_priv = dev->dev_private;
  1980. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1981. struct drm_i915_fence_reg *reg = NULL;
  1982. int ret;
  1983. /* Just update our place in the LRU if our fence is getting used. */
  1984. if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
  1985. reg = &dev_priv->fence_regs[obj_priv->fence_reg];
  1986. list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
  1987. return 0;
  1988. }
  1989. switch (obj_priv->tiling_mode) {
  1990. case I915_TILING_NONE:
  1991. WARN(1, "allocating a fence for non-tiled object?\n");
  1992. break;
  1993. case I915_TILING_X:
  1994. if (!obj_priv->stride)
  1995. return -EINVAL;
  1996. WARN((obj_priv->stride & (512 - 1)),
  1997. "object 0x%08x is X tiled but has non-512B pitch\n",
  1998. obj_priv->gtt_offset);
  1999. break;
  2000. case I915_TILING_Y:
  2001. if (!obj_priv->stride)
  2002. return -EINVAL;
  2003. WARN((obj_priv->stride & (128 - 1)),
  2004. "object 0x%08x is Y tiled but has non-128B pitch\n",
  2005. obj_priv->gtt_offset);
  2006. break;
  2007. }
  2008. ret = i915_find_fence_reg(dev, interruptible);
  2009. if (ret < 0)
  2010. return ret;
  2011. obj_priv->fence_reg = ret;
  2012. reg = &dev_priv->fence_regs[obj_priv->fence_reg];
  2013. list_add_tail(&reg->lru_list, &dev_priv->mm.fence_list);
  2014. reg->obj = obj;
  2015. switch (INTEL_INFO(dev)->gen) {
  2016. case 6:
  2017. sandybridge_write_fence_reg(reg);
  2018. break;
  2019. case 5:
  2020. case 4:
  2021. i965_write_fence_reg(reg);
  2022. break;
  2023. case 3:
  2024. i915_write_fence_reg(reg);
  2025. break;
  2026. case 2:
  2027. i830_write_fence_reg(reg);
  2028. break;
  2029. }
  2030. trace_i915_gem_object_get_fence(obj, obj_priv->fence_reg,
  2031. obj_priv->tiling_mode);
  2032. return 0;
  2033. }
  2034. /**
  2035. * i915_gem_clear_fence_reg - clear out fence register info
  2036. * @obj: object to clear
  2037. *
  2038. * Zeroes out the fence register itself and clears out the associated
  2039. * data structures in dev_priv and obj_priv.
  2040. */
  2041. static void
  2042. i915_gem_clear_fence_reg(struct drm_gem_object *obj)
  2043. {
  2044. struct drm_device *dev = obj->dev;
  2045. drm_i915_private_t *dev_priv = dev->dev_private;
  2046. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2047. struct drm_i915_fence_reg *reg =
  2048. &dev_priv->fence_regs[obj_priv->fence_reg];
  2049. uint32_t fence_reg;
  2050. switch (INTEL_INFO(dev)->gen) {
  2051. case 6:
  2052. I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 +
  2053. (obj_priv->fence_reg * 8), 0);
  2054. break;
  2055. case 5:
  2056. case 4:
  2057. I915_WRITE64(FENCE_REG_965_0 + (obj_priv->fence_reg * 8), 0);
  2058. break;
  2059. case 3:
  2060. if (obj_priv->fence_reg > 8)
  2061. fence_reg = FENCE_REG_945_8 + (obj_priv->fence_reg - 8) * 4;
  2062. else
  2063. case 2:
  2064. fence_reg = FENCE_REG_830_0 + obj_priv->fence_reg * 4;
  2065. I915_WRITE(fence_reg, 0);
  2066. break;
  2067. }
  2068. reg->obj = NULL;
  2069. obj_priv->fence_reg = I915_FENCE_REG_NONE;
  2070. list_del_init(&reg->lru_list);
  2071. }
  2072. /**
  2073. * i915_gem_object_put_fence_reg - waits on outstanding fenced access
  2074. * to the buffer to finish, and then resets the fence register.
  2075. * @obj: tiled object holding a fence register.
  2076. * @bool: whether the wait upon the fence is interruptible
  2077. *
  2078. * Zeroes out the fence register itself and clears out the associated
  2079. * data structures in dev_priv and obj_priv.
  2080. */
  2081. int
  2082. i915_gem_object_put_fence_reg(struct drm_gem_object *obj,
  2083. bool interruptible)
  2084. {
  2085. struct drm_device *dev = obj->dev;
  2086. struct drm_i915_private *dev_priv = dev->dev_private;
  2087. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2088. struct drm_i915_fence_reg *reg;
  2089. if (obj_priv->fence_reg == I915_FENCE_REG_NONE)
  2090. return 0;
  2091. /* If we've changed tiling, GTT-mappings of the object
  2092. * need to re-fault to ensure that the correct fence register
  2093. * setup is in place.
  2094. */
  2095. i915_gem_release_mmap(obj);
  2096. /* On the i915, GPU access to tiled buffers is via a fence,
  2097. * therefore we must wait for any outstanding access to complete
  2098. * before clearing the fence.
  2099. */
  2100. reg = &dev_priv->fence_regs[obj_priv->fence_reg];
  2101. if (reg->gpu) {
  2102. int ret;
  2103. ret = i915_gem_object_flush_gpu_write_domain(obj, true);
  2104. if (ret)
  2105. return ret;
  2106. ret = i915_gem_object_wait_rendering(obj, interruptible);
  2107. if (ret)
  2108. return ret;
  2109. reg->gpu = false;
  2110. }
  2111. i915_gem_object_flush_gtt_write_domain(obj);
  2112. i915_gem_clear_fence_reg(obj);
  2113. return 0;
  2114. }
  2115. /**
  2116. * Finds free space in the GTT aperture and binds the object there.
  2117. */
  2118. static int
  2119. i915_gem_object_bind_to_gtt(struct drm_gem_object *obj, unsigned alignment)
  2120. {
  2121. struct drm_device *dev = obj->dev;
  2122. drm_i915_private_t *dev_priv = dev->dev_private;
  2123. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2124. struct drm_mm_node *free_space;
  2125. gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
  2126. int ret;
  2127. if (obj_priv->madv != I915_MADV_WILLNEED) {
  2128. DRM_ERROR("Attempting to bind a purgeable object\n");
  2129. return -EINVAL;
  2130. }
  2131. if (alignment == 0)
  2132. alignment = i915_gem_get_gtt_alignment(obj);
  2133. if (alignment & (i915_gem_get_gtt_alignment(obj) - 1)) {
  2134. DRM_ERROR("Invalid object alignment requested %u\n", alignment);
  2135. return -EINVAL;
  2136. }
  2137. /* If the object is bigger than the entire aperture, reject it early
  2138. * before evicting everything in a vain attempt to find space.
  2139. */
  2140. if (obj->size > dev->gtt_total) {
  2141. DRM_ERROR("Attempting to bind an object larger than the aperture\n");
  2142. return -E2BIG;
  2143. }
  2144. search_free:
  2145. free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
  2146. obj->size, alignment, 0);
  2147. if (free_space != NULL) {
  2148. obj_priv->gtt_space = drm_mm_get_block(free_space, obj->size,
  2149. alignment);
  2150. if (obj_priv->gtt_space != NULL)
  2151. obj_priv->gtt_offset = obj_priv->gtt_space->start;
  2152. }
  2153. if (obj_priv->gtt_space == NULL) {
  2154. /* If the gtt is empty and we're still having trouble
  2155. * fitting our object in, we're out of memory.
  2156. */
  2157. #if WATCH_LRU
  2158. DRM_INFO("%s: GTT full, evicting something\n", __func__);
  2159. #endif
  2160. ret = i915_gem_evict_something(dev, obj->size, alignment);
  2161. if (ret)
  2162. return ret;
  2163. goto search_free;
  2164. }
  2165. #if WATCH_BUF
  2166. DRM_INFO("Binding object of size %zd at 0x%08x\n",
  2167. obj->size, obj_priv->gtt_offset);
  2168. #endif
  2169. ret = i915_gem_object_get_pages(obj, gfpmask);
  2170. if (ret) {
  2171. drm_mm_put_block(obj_priv->gtt_space);
  2172. obj_priv->gtt_space = NULL;
  2173. if (ret == -ENOMEM) {
  2174. /* first try to clear up some space from the GTT */
  2175. ret = i915_gem_evict_something(dev, obj->size,
  2176. alignment);
  2177. if (ret) {
  2178. /* now try to shrink everyone else */
  2179. if (gfpmask) {
  2180. gfpmask = 0;
  2181. goto search_free;
  2182. }
  2183. return ret;
  2184. }
  2185. goto search_free;
  2186. }
  2187. return ret;
  2188. }
  2189. /* Create an AGP memory structure pointing at our pages, and bind it
  2190. * into the GTT.
  2191. */
  2192. obj_priv->agp_mem = drm_agp_bind_pages(dev,
  2193. obj_priv->pages,
  2194. obj->size >> PAGE_SHIFT,
  2195. obj_priv->gtt_offset,
  2196. obj_priv->agp_type);
  2197. if (obj_priv->agp_mem == NULL) {
  2198. i915_gem_object_put_pages(obj);
  2199. drm_mm_put_block(obj_priv->gtt_space);
  2200. obj_priv->gtt_space = NULL;
  2201. ret = i915_gem_evict_something(dev, obj->size, alignment);
  2202. if (ret)
  2203. return ret;
  2204. goto search_free;
  2205. }
  2206. atomic_inc(&dev->gtt_count);
  2207. atomic_add(obj->size, &dev->gtt_memory);
  2208. /* keep track of bounds object by adding it to the inactive list */
  2209. list_add_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
  2210. /* Assert that the object is not currently in any GPU domain. As it
  2211. * wasn't in the GTT, there shouldn't be any way it could have been in
  2212. * a GPU cache
  2213. */
  2214. BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
  2215. BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
  2216. trace_i915_gem_object_bind(obj, obj_priv->gtt_offset);
  2217. return 0;
  2218. }
  2219. void
  2220. i915_gem_clflush_object(struct drm_gem_object *obj)
  2221. {
  2222. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2223. /* If we don't have a page list set up, then we're not pinned
  2224. * to GPU, and we can ignore the cache flush because it'll happen
  2225. * again at bind time.
  2226. */
  2227. if (obj_priv->pages == NULL)
  2228. return;
  2229. trace_i915_gem_object_clflush(obj);
  2230. drm_clflush_pages(obj_priv->pages, obj->size / PAGE_SIZE);
  2231. }
  2232. /** Flushes any GPU write domain for the object if it's dirty. */
  2233. static int
  2234. i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj,
  2235. bool pipelined)
  2236. {
  2237. struct drm_device *dev = obj->dev;
  2238. uint32_t old_write_domain;
  2239. if ((obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
  2240. return 0;
  2241. /* Queue the GPU write cache flushing we need. */
  2242. old_write_domain = obj->write_domain;
  2243. i915_gem_flush_ring(dev, NULL,
  2244. to_intel_bo(obj)->ring,
  2245. 0, obj->write_domain);
  2246. BUG_ON(obj->write_domain);
  2247. trace_i915_gem_object_change_domain(obj,
  2248. obj->read_domains,
  2249. old_write_domain);
  2250. if (pipelined)
  2251. return 0;
  2252. return i915_gem_object_wait_rendering(obj, true);
  2253. }
  2254. /** Flushes the GTT write domain for the object if it's dirty. */
  2255. static void
  2256. i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj)
  2257. {
  2258. uint32_t old_write_domain;
  2259. if (obj->write_domain != I915_GEM_DOMAIN_GTT)
  2260. return;
  2261. /* No actual flushing is required for the GTT write domain. Writes
  2262. * to it immediately go to main memory as far as we know, so there's
  2263. * no chipset flush. It also doesn't land in render cache.
  2264. */
  2265. old_write_domain = obj->write_domain;
  2266. obj->write_domain = 0;
  2267. trace_i915_gem_object_change_domain(obj,
  2268. obj->read_domains,
  2269. old_write_domain);
  2270. }
  2271. /** Flushes the CPU write domain for the object if it's dirty. */
  2272. static void
  2273. i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj)
  2274. {
  2275. struct drm_device *dev = obj->dev;
  2276. uint32_t old_write_domain;
  2277. if (obj->write_domain != I915_GEM_DOMAIN_CPU)
  2278. return;
  2279. i915_gem_clflush_object(obj);
  2280. drm_agp_chipset_flush(dev);
  2281. old_write_domain = obj->write_domain;
  2282. obj->write_domain = 0;
  2283. trace_i915_gem_object_change_domain(obj,
  2284. obj->read_domains,
  2285. old_write_domain);
  2286. }
  2287. /**
  2288. * Moves a single object to the GTT read, and possibly write domain.
  2289. *
  2290. * This function returns when the move is complete, including waiting on
  2291. * flushes to occur.
  2292. */
  2293. int
  2294. i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj, int write)
  2295. {
  2296. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2297. uint32_t old_write_domain, old_read_domains;
  2298. int ret;
  2299. /* Not valid to be called on unbound objects. */
  2300. if (obj_priv->gtt_space == NULL)
  2301. return -EINVAL;
  2302. ret = i915_gem_object_flush_gpu_write_domain(obj, false);
  2303. if (ret != 0)
  2304. return ret;
  2305. i915_gem_object_flush_cpu_write_domain(obj);
  2306. if (write) {
  2307. ret = i915_gem_object_wait_rendering(obj, true);
  2308. if (ret)
  2309. return ret;
  2310. }
  2311. old_write_domain = obj->write_domain;
  2312. old_read_domains = obj->read_domains;
  2313. /* It should now be out of any other write domains, and we can update
  2314. * the domain values for our changes.
  2315. */
  2316. BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
  2317. obj->read_domains |= I915_GEM_DOMAIN_GTT;
  2318. if (write) {
  2319. obj->read_domains = I915_GEM_DOMAIN_GTT;
  2320. obj->write_domain = I915_GEM_DOMAIN_GTT;
  2321. obj_priv->dirty = 1;
  2322. }
  2323. trace_i915_gem_object_change_domain(obj,
  2324. old_read_domains,
  2325. old_write_domain);
  2326. return 0;
  2327. }
  2328. /*
  2329. * Prepare buffer for display plane. Use uninterruptible for possible flush
  2330. * wait, as in modesetting process we're not supposed to be interrupted.
  2331. */
  2332. int
  2333. i915_gem_object_set_to_display_plane(struct drm_gem_object *obj,
  2334. bool pipelined)
  2335. {
  2336. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2337. uint32_t old_read_domains;
  2338. int ret;
  2339. /* Not valid to be called on unbound objects. */
  2340. if (obj_priv->gtt_space == NULL)
  2341. return -EINVAL;
  2342. ret = i915_gem_object_flush_gpu_write_domain(obj, pipelined);
  2343. if (ret)
  2344. return ret;
  2345. i915_gem_object_flush_cpu_write_domain(obj);
  2346. old_read_domains = obj->read_domains;
  2347. obj->read_domains |= I915_GEM_DOMAIN_GTT;
  2348. trace_i915_gem_object_change_domain(obj,
  2349. old_read_domains,
  2350. obj->write_domain);
  2351. return 0;
  2352. }
  2353. /**
  2354. * Moves a single object to the CPU read, and possibly write domain.
  2355. *
  2356. * This function returns when the move is complete, including waiting on
  2357. * flushes to occur.
  2358. */
  2359. static int
  2360. i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj, int write)
  2361. {
  2362. uint32_t old_write_domain, old_read_domains;
  2363. int ret;
  2364. ret = i915_gem_object_flush_gpu_write_domain(obj, false);
  2365. if (ret != 0)
  2366. return ret;
  2367. i915_gem_object_flush_gtt_write_domain(obj);
  2368. /* If we have a partially-valid cache of the object in the CPU,
  2369. * finish invalidating it and free the per-page flags.
  2370. */
  2371. i915_gem_object_set_to_full_cpu_read_domain(obj);
  2372. if (write) {
  2373. ret = i915_gem_object_wait_rendering(obj, true);
  2374. if (ret)
  2375. return ret;
  2376. }
  2377. old_write_domain = obj->write_domain;
  2378. old_read_domains = obj->read_domains;
  2379. /* Flush the CPU cache if it's still invalid. */
  2380. if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
  2381. i915_gem_clflush_object(obj);
  2382. obj->read_domains |= I915_GEM_DOMAIN_CPU;
  2383. }
  2384. /* It should now be out of any other write domains, and we can update
  2385. * the domain values for our changes.
  2386. */
  2387. BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
  2388. /* If we're writing through the CPU, then the GPU read domains will
  2389. * need to be invalidated at next use.
  2390. */
  2391. if (write) {
  2392. obj->read_domains = I915_GEM_DOMAIN_CPU;
  2393. obj->write_domain = I915_GEM_DOMAIN_CPU;
  2394. }
  2395. trace_i915_gem_object_change_domain(obj,
  2396. old_read_domains,
  2397. old_write_domain);
  2398. return 0;
  2399. }
  2400. /*
  2401. * Set the next domain for the specified object. This
  2402. * may not actually perform the necessary flushing/invaliding though,
  2403. * as that may want to be batched with other set_domain operations
  2404. *
  2405. * This is (we hope) the only really tricky part of gem. The goal
  2406. * is fairly simple -- track which caches hold bits of the object
  2407. * and make sure they remain coherent. A few concrete examples may
  2408. * help to explain how it works. For shorthand, we use the notation
  2409. * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
  2410. * a pair of read and write domain masks.
  2411. *
  2412. * Case 1: the batch buffer
  2413. *
  2414. * 1. Allocated
  2415. * 2. Written by CPU
  2416. * 3. Mapped to GTT
  2417. * 4. Read by GPU
  2418. * 5. Unmapped from GTT
  2419. * 6. Freed
  2420. *
  2421. * Let's take these a step at a time
  2422. *
  2423. * 1. Allocated
  2424. * Pages allocated from the kernel may still have
  2425. * cache contents, so we set them to (CPU, CPU) always.
  2426. * 2. Written by CPU (using pwrite)
  2427. * The pwrite function calls set_domain (CPU, CPU) and
  2428. * this function does nothing (as nothing changes)
  2429. * 3. Mapped by GTT
  2430. * This function asserts that the object is not
  2431. * currently in any GPU-based read or write domains
  2432. * 4. Read by GPU
  2433. * i915_gem_execbuffer calls set_domain (COMMAND, 0).
  2434. * As write_domain is zero, this function adds in the
  2435. * current read domains (CPU+COMMAND, 0).
  2436. * flush_domains is set to CPU.
  2437. * invalidate_domains is set to COMMAND
  2438. * clflush is run to get data out of the CPU caches
  2439. * then i915_dev_set_domain calls i915_gem_flush to
  2440. * emit an MI_FLUSH and drm_agp_chipset_flush
  2441. * 5. Unmapped from GTT
  2442. * i915_gem_object_unbind calls set_domain (CPU, CPU)
  2443. * flush_domains and invalidate_domains end up both zero
  2444. * so no flushing/invalidating happens
  2445. * 6. Freed
  2446. * yay, done
  2447. *
  2448. * Case 2: The shared render buffer
  2449. *
  2450. * 1. Allocated
  2451. * 2. Mapped to GTT
  2452. * 3. Read/written by GPU
  2453. * 4. set_domain to (CPU,CPU)
  2454. * 5. Read/written by CPU
  2455. * 6. Read/written by GPU
  2456. *
  2457. * 1. Allocated
  2458. * Same as last example, (CPU, CPU)
  2459. * 2. Mapped to GTT
  2460. * Nothing changes (assertions find that it is not in the GPU)
  2461. * 3. Read/written by GPU
  2462. * execbuffer calls set_domain (RENDER, RENDER)
  2463. * flush_domains gets CPU
  2464. * invalidate_domains gets GPU
  2465. * clflush (obj)
  2466. * MI_FLUSH and drm_agp_chipset_flush
  2467. * 4. set_domain (CPU, CPU)
  2468. * flush_domains gets GPU
  2469. * invalidate_domains gets CPU
  2470. * wait_rendering (obj) to make sure all drawing is complete.
  2471. * This will include an MI_FLUSH to get the data from GPU
  2472. * to memory
  2473. * clflush (obj) to invalidate the CPU cache
  2474. * Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
  2475. * 5. Read/written by CPU
  2476. * cache lines are loaded and dirtied
  2477. * 6. Read written by GPU
  2478. * Same as last GPU access
  2479. *
  2480. * Case 3: The constant buffer
  2481. *
  2482. * 1. Allocated
  2483. * 2. Written by CPU
  2484. * 3. Read by GPU
  2485. * 4. Updated (written) by CPU again
  2486. * 5. Read by GPU
  2487. *
  2488. * 1. Allocated
  2489. * (CPU, CPU)
  2490. * 2. Written by CPU
  2491. * (CPU, CPU)
  2492. * 3. Read by GPU
  2493. * (CPU+RENDER, 0)
  2494. * flush_domains = CPU
  2495. * invalidate_domains = RENDER
  2496. * clflush (obj)
  2497. * MI_FLUSH
  2498. * drm_agp_chipset_flush
  2499. * 4. Updated (written) by CPU again
  2500. * (CPU, CPU)
  2501. * flush_domains = 0 (no previous write domain)
  2502. * invalidate_domains = 0 (no new read domains)
  2503. * 5. Read by GPU
  2504. * (CPU+RENDER, 0)
  2505. * flush_domains = CPU
  2506. * invalidate_domains = RENDER
  2507. * clflush (obj)
  2508. * MI_FLUSH
  2509. * drm_agp_chipset_flush
  2510. */
  2511. static void
  2512. i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj)
  2513. {
  2514. struct drm_device *dev = obj->dev;
  2515. struct drm_i915_private *dev_priv = dev->dev_private;
  2516. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2517. uint32_t invalidate_domains = 0;
  2518. uint32_t flush_domains = 0;
  2519. uint32_t old_read_domains;
  2520. BUG_ON(obj->pending_read_domains & I915_GEM_DOMAIN_CPU);
  2521. BUG_ON(obj->pending_write_domain == I915_GEM_DOMAIN_CPU);
  2522. intel_mark_busy(dev, obj);
  2523. #if WATCH_BUF
  2524. DRM_INFO("%s: object %p read %08x -> %08x write %08x -> %08x\n",
  2525. __func__, obj,
  2526. obj->read_domains, obj->pending_read_domains,
  2527. obj->write_domain, obj->pending_write_domain);
  2528. #endif
  2529. /*
  2530. * If the object isn't moving to a new write domain,
  2531. * let the object stay in multiple read domains
  2532. */
  2533. if (obj->pending_write_domain == 0)
  2534. obj->pending_read_domains |= obj->read_domains;
  2535. else
  2536. obj_priv->dirty = 1;
  2537. /*
  2538. * Flush the current write domain if
  2539. * the new read domains don't match. Invalidate
  2540. * any read domains which differ from the old
  2541. * write domain
  2542. */
  2543. if (obj->write_domain &&
  2544. obj->write_domain != obj->pending_read_domains) {
  2545. flush_domains |= obj->write_domain;
  2546. invalidate_domains |=
  2547. obj->pending_read_domains & ~obj->write_domain;
  2548. }
  2549. /*
  2550. * Invalidate any read caches which may have
  2551. * stale data. That is, any new read domains.
  2552. */
  2553. invalidate_domains |= obj->pending_read_domains & ~obj->read_domains;
  2554. if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU) {
  2555. #if WATCH_BUF
  2556. DRM_INFO("%s: CPU domain flush %08x invalidate %08x\n",
  2557. __func__, flush_domains, invalidate_domains);
  2558. #endif
  2559. i915_gem_clflush_object(obj);
  2560. }
  2561. old_read_domains = obj->read_domains;
  2562. /* The actual obj->write_domain will be updated with
  2563. * pending_write_domain after we emit the accumulated flush for all
  2564. * of our domain changes in execbuffers (which clears objects'
  2565. * write_domains). So if we have a current write domain that we
  2566. * aren't changing, set pending_write_domain to that.
  2567. */
  2568. if (flush_domains == 0 && obj->pending_write_domain == 0)
  2569. obj->pending_write_domain = obj->write_domain;
  2570. obj->read_domains = obj->pending_read_domains;
  2571. dev->invalidate_domains |= invalidate_domains;
  2572. dev->flush_domains |= flush_domains;
  2573. if (obj_priv->ring)
  2574. dev_priv->mm.flush_rings |= obj_priv->ring->id;
  2575. #if WATCH_BUF
  2576. DRM_INFO("%s: read %08x write %08x invalidate %08x flush %08x\n",
  2577. __func__,
  2578. obj->read_domains, obj->write_domain,
  2579. dev->invalidate_domains, dev->flush_domains);
  2580. #endif
  2581. trace_i915_gem_object_change_domain(obj,
  2582. old_read_domains,
  2583. obj->write_domain);
  2584. }
  2585. /**
  2586. * Moves the object from a partially CPU read to a full one.
  2587. *
  2588. * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
  2589. * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
  2590. */
  2591. static void
  2592. i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj)
  2593. {
  2594. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2595. if (!obj_priv->page_cpu_valid)
  2596. return;
  2597. /* If we're partially in the CPU read domain, finish moving it in.
  2598. */
  2599. if (obj->read_domains & I915_GEM_DOMAIN_CPU) {
  2600. int i;
  2601. for (i = 0; i <= (obj->size - 1) / PAGE_SIZE; i++) {
  2602. if (obj_priv->page_cpu_valid[i])
  2603. continue;
  2604. drm_clflush_pages(obj_priv->pages + i, 1);
  2605. }
  2606. }
  2607. /* Free the page_cpu_valid mappings which are now stale, whether
  2608. * or not we've got I915_GEM_DOMAIN_CPU.
  2609. */
  2610. kfree(obj_priv->page_cpu_valid);
  2611. obj_priv->page_cpu_valid = NULL;
  2612. }
  2613. /**
  2614. * Set the CPU read domain on a range of the object.
  2615. *
  2616. * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
  2617. * not entirely valid. The page_cpu_valid member of the object flags which
  2618. * pages have been flushed, and will be respected by
  2619. * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
  2620. * of the whole object.
  2621. *
  2622. * This function returns when the move is complete, including waiting on
  2623. * flushes to occur.
  2624. */
  2625. static int
  2626. i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
  2627. uint64_t offset, uint64_t size)
  2628. {
  2629. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2630. uint32_t old_read_domains;
  2631. int i, ret;
  2632. if (offset == 0 && size == obj->size)
  2633. return i915_gem_object_set_to_cpu_domain(obj, 0);
  2634. ret = i915_gem_object_flush_gpu_write_domain(obj, false);
  2635. if (ret != 0)
  2636. return ret;
  2637. i915_gem_object_flush_gtt_write_domain(obj);
  2638. /* If we're already fully in the CPU read domain, we're done. */
  2639. if (obj_priv->page_cpu_valid == NULL &&
  2640. (obj->read_domains & I915_GEM_DOMAIN_CPU) != 0)
  2641. return 0;
  2642. /* Otherwise, create/clear the per-page CPU read domain flag if we're
  2643. * newly adding I915_GEM_DOMAIN_CPU
  2644. */
  2645. if (obj_priv->page_cpu_valid == NULL) {
  2646. obj_priv->page_cpu_valid = kzalloc(obj->size / PAGE_SIZE,
  2647. GFP_KERNEL);
  2648. if (obj_priv->page_cpu_valid == NULL)
  2649. return -ENOMEM;
  2650. } else if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0)
  2651. memset(obj_priv->page_cpu_valid, 0, obj->size / PAGE_SIZE);
  2652. /* Flush the cache on any pages that are still invalid from the CPU's
  2653. * perspective.
  2654. */
  2655. for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
  2656. i++) {
  2657. if (obj_priv->page_cpu_valid[i])
  2658. continue;
  2659. drm_clflush_pages(obj_priv->pages + i, 1);
  2660. obj_priv->page_cpu_valid[i] = 1;
  2661. }
  2662. /* It should now be out of any other write domains, and we can update
  2663. * the domain values for our changes.
  2664. */
  2665. BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
  2666. old_read_domains = obj->read_domains;
  2667. obj->read_domains |= I915_GEM_DOMAIN_CPU;
  2668. trace_i915_gem_object_change_domain(obj,
  2669. old_read_domains,
  2670. obj->write_domain);
  2671. return 0;
  2672. }
  2673. /**
  2674. * Pin an object to the GTT and evaluate the relocations landing in it.
  2675. */
  2676. static int
  2677. i915_gem_object_pin_and_relocate(struct drm_gem_object *obj,
  2678. struct drm_file *file_priv,
  2679. struct drm_i915_gem_exec_object2 *entry,
  2680. struct drm_i915_gem_relocation_entry *relocs)
  2681. {
  2682. struct drm_device *dev = obj->dev;
  2683. drm_i915_private_t *dev_priv = dev->dev_private;
  2684. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2685. int i, ret;
  2686. void __iomem *reloc_page;
  2687. bool need_fence;
  2688. need_fence = entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
  2689. obj_priv->tiling_mode != I915_TILING_NONE;
  2690. /* Check fence reg constraints and rebind if necessary */
  2691. if (need_fence &&
  2692. !i915_gem_object_fence_offset_ok(obj,
  2693. obj_priv->tiling_mode)) {
  2694. ret = i915_gem_object_unbind(obj);
  2695. if (ret)
  2696. return ret;
  2697. }
  2698. /* Choose the GTT offset for our buffer and put it there. */
  2699. ret = i915_gem_object_pin(obj, (uint32_t) entry->alignment);
  2700. if (ret)
  2701. return ret;
  2702. /*
  2703. * Pre-965 chips need a fence register set up in order to
  2704. * properly handle blits to/from tiled surfaces.
  2705. */
  2706. if (need_fence) {
  2707. ret = i915_gem_object_get_fence_reg(obj, true);
  2708. if (ret != 0) {
  2709. i915_gem_object_unpin(obj);
  2710. return ret;
  2711. }
  2712. dev_priv->fence_regs[obj_priv->fence_reg].gpu = true;
  2713. }
  2714. entry->offset = obj_priv->gtt_offset;
  2715. /* Apply the relocations, using the GTT aperture to avoid cache
  2716. * flushing requirements.
  2717. */
  2718. for (i = 0; i < entry->relocation_count; i++) {
  2719. struct drm_i915_gem_relocation_entry *reloc= &relocs[i];
  2720. struct drm_gem_object *target_obj;
  2721. struct drm_i915_gem_object *target_obj_priv;
  2722. uint32_t reloc_val, reloc_offset;
  2723. uint32_t __iomem *reloc_entry;
  2724. target_obj = drm_gem_object_lookup(obj->dev, file_priv,
  2725. reloc->target_handle);
  2726. if (target_obj == NULL) {
  2727. i915_gem_object_unpin(obj);
  2728. return -ENOENT;
  2729. }
  2730. target_obj_priv = to_intel_bo(target_obj);
  2731. #if WATCH_RELOC
  2732. DRM_INFO("%s: obj %p offset %08x target %d "
  2733. "read %08x write %08x gtt %08x "
  2734. "presumed %08x delta %08x\n",
  2735. __func__,
  2736. obj,
  2737. (int) reloc->offset,
  2738. (int) reloc->target_handle,
  2739. (int) reloc->read_domains,
  2740. (int) reloc->write_domain,
  2741. (int) target_obj_priv->gtt_offset,
  2742. (int) reloc->presumed_offset,
  2743. reloc->delta);
  2744. #endif
  2745. /* The target buffer should have appeared before us in the
  2746. * exec_object list, so it should have a GTT space bound by now.
  2747. */
  2748. if (target_obj_priv->gtt_space == NULL) {
  2749. DRM_ERROR("No GTT space found for object %d\n",
  2750. reloc->target_handle);
  2751. drm_gem_object_unreference(target_obj);
  2752. i915_gem_object_unpin(obj);
  2753. return -EINVAL;
  2754. }
  2755. /* Validate that the target is in a valid r/w GPU domain */
  2756. if (reloc->write_domain & (reloc->write_domain - 1)) {
  2757. DRM_ERROR("reloc with multiple write domains: "
  2758. "obj %p target %d offset %d "
  2759. "read %08x write %08x",
  2760. obj, reloc->target_handle,
  2761. (int) reloc->offset,
  2762. reloc->read_domains,
  2763. reloc->write_domain);
  2764. return -EINVAL;
  2765. }
  2766. if (reloc->write_domain & I915_GEM_DOMAIN_CPU ||
  2767. reloc->read_domains & I915_GEM_DOMAIN_CPU) {
  2768. DRM_ERROR("reloc with read/write CPU domains: "
  2769. "obj %p target %d offset %d "
  2770. "read %08x write %08x",
  2771. obj, reloc->target_handle,
  2772. (int) reloc->offset,
  2773. reloc->read_domains,
  2774. reloc->write_domain);
  2775. drm_gem_object_unreference(target_obj);
  2776. i915_gem_object_unpin(obj);
  2777. return -EINVAL;
  2778. }
  2779. if (reloc->write_domain && target_obj->pending_write_domain &&
  2780. reloc->write_domain != target_obj->pending_write_domain) {
  2781. DRM_ERROR("Write domain conflict: "
  2782. "obj %p target %d offset %d "
  2783. "new %08x old %08x\n",
  2784. obj, reloc->target_handle,
  2785. (int) reloc->offset,
  2786. reloc->write_domain,
  2787. target_obj->pending_write_domain);
  2788. drm_gem_object_unreference(target_obj);
  2789. i915_gem_object_unpin(obj);
  2790. return -EINVAL;
  2791. }
  2792. target_obj->pending_read_domains |= reloc->read_domains;
  2793. target_obj->pending_write_domain |= reloc->write_domain;
  2794. /* If the relocation already has the right value in it, no
  2795. * more work needs to be done.
  2796. */
  2797. if (target_obj_priv->gtt_offset == reloc->presumed_offset) {
  2798. drm_gem_object_unreference(target_obj);
  2799. continue;
  2800. }
  2801. /* Check that the relocation address is valid... */
  2802. if (reloc->offset > obj->size - 4) {
  2803. DRM_ERROR("Relocation beyond object bounds: "
  2804. "obj %p target %d offset %d size %d.\n",
  2805. obj, reloc->target_handle,
  2806. (int) reloc->offset, (int) obj->size);
  2807. drm_gem_object_unreference(target_obj);
  2808. i915_gem_object_unpin(obj);
  2809. return -EINVAL;
  2810. }
  2811. if (reloc->offset & 3) {
  2812. DRM_ERROR("Relocation not 4-byte aligned: "
  2813. "obj %p target %d offset %d.\n",
  2814. obj, reloc->target_handle,
  2815. (int) reloc->offset);
  2816. drm_gem_object_unreference(target_obj);
  2817. i915_gem_object_unpin(obj);
  2818. return -EINVAL;
  2819. }
  2820. /* and points to somewhere within the target object. */
  2821. if (reloc->delta >= target_obj->size) {
  2822. DRM_ERROR("Relocation beyond target object bounds: "
  2823. "obj %p target %d delta %d size %d.\n",
  2824. obj, reloc->target_handle,
  2825. (int) reloc->delta, (int) target_obj->size);
  2826. drm_gem_object_unreference(target_obj);
  2827. i915_gem_object_unpin(obj);
  2828. return -EINVAL;
  2829. }
  2830. ret = i915_gem_object_set_to_gtt_domain(obj, 1);
  2831. if (ret != 0) {
  2832. drm_gem_object_unreference(target_obj);
  2833. i915_gem_object_unpin(obj);
  2834. return -EINVAL;
  2835. }
  2836. /* Map the page containing the relocation we're going to
  2837. * perform.
  2838. */
  2839. reloc_offset = obj_priv->gtt_offset + reloc->offset;
  2840. reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
  2841. (reloc_offset &
  2842. ~(PAGE_SIZE - 1)),
  2843. KM_USER0);
  2844. reloc_entry = (uint32_t __iomem *)(reloc_page +
  2845. (reloc_offset & (PAGE_SIZE - 1)));
  2846. reloc_val = target_obj_priv->gtt_offset + reloc->delta;
  2847. #if WATCH_BUF
  2848. DRM_INFO("Applied relocation: %p@0x%08x %08x -> %08x\n",
  2849. obj, (unsigned int) reloc->offset,
  2850. readl(reloc_entry), reloc_val);
  2851. #endif
  2852. writel(reloc_val, reloc_entry);
  2853. io_mapping_unmap_atomic(reloc_page, KM_USER0);
  2854. /* The updated presumed offset for this entry will be
  2855. * copied back out to the user.
  2856. */
  2857. reloc->presumed_offset = target_obj_priv->gtt_offset;
  2858. drm_gem_object_unreference(target_obj);
  2859. }
  2860. #if WATCH_BUF
  2861. if (0)
  2862. i915_gem_dump_object(obj, 128, __func__, ~0);
  2863. #endif
  2864. return 0;
  2865. }
  2866. /* Throttle our rendering by waiting until the ring has completed our requests
  2867. * emitted over 20 msec ago.
  2868. *
  2869. * Note that if we were to use the current jiffies each time around the loop,
  2870. * we wouldn't escape the function with any frames outstanding if the time to
  2871. * render a frame was over 20ms.
  2872. *
  2873. * This should get us reasonable parallelism between CPU and GPU but also
  2874. * relatively low latency when blocking on a particular request to finish.
  2875. */
  2876. static int
  2877. i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
  2878. {
  2879. struct drm_i915_private *dev_priv = dev->dev_private;
  2880. struct drm_i915_file_private *file_priv = file->driver_priv;
  2881. unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
  2882. struct drm_i915_gem_request *request;
  2883. struct intel_ring_buffer *ring = NULL;
  2884. u32 seqno = 0;
  2885. int ret;
  2886. mutex_lock(&file_priv->mutex);
  2887. list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
  2888. if (time_after_eq(request->emitted_jiffies, recent_enough))
  2889. break;
  2890. ring = request->ring;
  2891. seqno = request->seqno;
  2892. }
  2893. mutex_unlock(&file_priv->mutex);
  2894. if (seqno == 0)
  2895. return 0;
  2896. ret = 0;
  2897. if (!i915_seqno_passed(ring->get_seqno(dev, ring), seqno)) {
  2898. /* And wait for the seqno passing without holding any locks and
  2899. * causing extra latency for others. This is safe as the irq
  2900. * generation is designed to be run atomically and so is
  2901. * lockless.
  2902. */
  2903. ring->user_irq_get(dev, ring);
  2904. ret = wait_event_interruptible(ring->irq_queue,
  2905. i915_seqno_passed(ring->get_seqno(dev, ring), seqno)
  2906. || atomic_read(&dev_priv->mm.wedged));
  2907. ring->user_irq_put(dev, ring);
  2908. if (ret == 0 && atomic_read(&dev_priv->mm.wedged))
  2909. ret = -EIO;
  2910. }
  2911. if (ret == 0)
  2912. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
  2913. return ret;
  2914. }
  2915. static int
  2916. i915_gem_get_relocs_from_user(struct drm_i915_gem_exec_object2 *exec_list,
  2917. uint32_t buffer_count,
  2918. struct drm_i915_gem_relocation_entry **relocs)
  2919. {
  2920. uint32_t reloc_count = 0, reloc_index = 0, i;
  2921. int ret;
  2922. *relocs = NULL;
  2923. for (i = 0; i < buffer_count; i++) {
  2924. if (reloc_count + exec_list[i].relocation_count < reloc_count)
  2925. return -EINVAL;
  2926. reloc_count += exec_list[i].relocation_count;
  2927. }
  2928. *relocs = drm_calloc_large(reloc_count, sizeof(**relocs));
  2929. if (*relocs == NULL) {
  2930. DRM_ERROR("failed to alloc relocs, count %d\n", reloc_count);
  2931. return -ENOMEM;
  2932. }
  2933. for (i = 0; i < buffer_count; i++) {
  2934. struct drm_i915_gem_relocation_entry __user *user_relocs;
  2935. user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
  2936. ret = copy_from_user(&(*relocs)[reloc_index],
  2937. user_relocs,
  2938. exec_list[i].relocation_count *
  2939. sizeof(**relocs));
  2940. if (ret != 0) {
  2941. drm_free_large(*relocs);
  2942. *relocs = NULL;
  2943. return -EFAULT;
  2944. }
  2945. reloc_index += exec_list[i].relocation_count;
  2946. }
  2947. return 0;
  2948. }
  2949. static int
  2950. i915_gem_put_relocs_to_user(struct drm_i915_gem_exec_object2 *exec_list,
  2951. uint32_t buffer_count,
  2952. struct drm_i915_gem_relocation_entry *relocs)
  2953. {
  2954. uint32_t reloc_count = 0, i;
  2955. int ret = 0;
  2956. if (relocs == NULL)
  2957. return 0;
  2958. for (i = 0; i < buffer_count; i++) {
  2959. struct drm_i915_gem_relocation_entry __user *user_relocs;
  2960. int unwritten;
  2961. user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
  2962. unwritten = copy_to_user(user_relocs,
  2963. &relocs[reloc_count],
  2964. exec_list[i].relocation_count *
  2965. sizeof(*relocs));
  2966. if (unwritten) {
  2967. ret = -EFAULT;
  2968. goto err;
  2969. }
  2970. reloc_count += exec_list[i].relocation_count;
  2971. }
  2972. err:
  2973. drm_free_large(relocs);
  2974. return ret;
  2975. }
  2976. static int
  2977. i915_gem_check_execbuffer (struct drm_i915_gem_execbuffer2 *exec,
  2978. uint64_t exec_offset)
  2979. {
  2980. uint32_t exec_start, exec_len;
  2981. exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
  2982. exec_len = (uint32_t) exec->batch_len;
  2983. if ((exec_start | exec_len) & 0x7)
  2984. return -EINVAL;
  2985. if (!exec_start)
  2986. return -EINVAL;
  2987. return 0;
  2988. }
  2989. static int
  2990. i915_gem_wait_for_pending_flip(struct drm_device *dev,
  2991. struct drm_gem_object **object_list,
  2992. int count)
  2993. {
  2994. drm_i915_private_t *dev_priv = dev->dev_private;
  2995. struct drm_i915_gem_object *obj_priv;
  2996. DEFINE_WAIT(wait);
  2997. int i, ret = 0;
  2998. for (;;) {
  2999. prepare_to_wait(&dev_priv->pending_flip_queue,
  3000. &wait, TASK_INTERRUPTIBLE);
  3001. for (i = 0; i < count; i++) {
  3002. obj_priv = to_intel_bo(object_list[i]);
  3003. if (atomic_read(&obj_priv->pending_flip) > 0)
  3004. break;
  3005. }
  3006. if (i == count)
  3007. break;
  3008. if (!signal_pending(current)) {
  3009. mutex_unlock(&dev->struct_mutex);
  3010. schedule();
  3011. mutex_lock(&dev->struct_mutex);
  3012. continue;
  3013. }
  3014. ret = -ERESTARTSYS;
  3015. break;
  3016. }
  3017. finish_wait(&dev_priv->pending_flip_queue, &wait);
  3018. return ret;
  3019. }
  3020. static int
  3021. i915_gem_do_execbuffer(struct drm_device *dev, void *data,
  3022. struct drm_file *file_priv,
  3023. struct drm_i915_gem_execbuffer2 *args,
  3024. struct drm_i915_gem_exec_object2 *exec_list)
  3025. {
  3026. drm_i915_private_t *dev_priv = dev->dev_private;
  3027. struct drm_gem_object **object_list = NULL;
  3028. struct drm_gem_object *batch_obj;
  3029. struct drm_i915_gem_object *obj_priv;
  3030. struct drm_clip_rect *cliprects = NULL;
  3031. struct drm_i915_gem_relocation_entry *relocs = NULL;
  3032. struct drm_i915_gem_request *request = NULL;
  3033. int ret = 0, ret2, i, pinned = 0;
  3034. uint64_t exec_offset;
  3035. uint32_t reloc_index;
  3036. int pin_tries, flips;
  3037. struct intel_ring_buffer *ring = NULL;
  3038. #if WATCH_EXEC
  3039. DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
  3040. (int) args->buffers_ptr, args->buffer_count, args->batch_len);
  3041. #endif
  3042. if (args->flags & I915_EXEC_BSD) {
  3043. if (!HAS_BSD(dev)) {
  3044. DRM_ERROR("execbuf with wrong flag\n");
  3045. return -EINVAL;
  3046. }
  3047. ring = &dev_priv->bsd_ring;
  3048. } else {
  3049. ring = &dev_priv->render_ring;
  3050. }
  3051. if (args->buffer_count < 1) {
  3052. DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
  3053. return -EINVAL;
  3054. }
  3055. object_list = drm_malloc_ab(sizeof(*object_list), args->buffer_count);
  3056. if (object_list == NULL) {
  3057. DRM_ERROR("Failed to allocate object list for %d buffers\n",
  3058. args->buffer_count);
  3059. ret = -ENOMEM;
  3060. goto pre_mutex_err;
  3061. }
  3062. if (args->num_cliprects != 0) {
  3063. cliprects = kcalloc(args->num_cliprects, sizeof(*cliprects),
  3064. GFP_KERNEL);
  3065. if (cliprects == NULL) {
  3066. ret = -ENOMEM;
  3067. goto pre_mutex_err;
  3068. }
  3069. ret = copy_from_user(cliprects,
  3070. (struct drm_clip_rect __user *)
  3071. (uintptr_t) args->cliprects_ptr,
  3072. sizeof(*cliprects) * args->num_cliprects);
  3073. if (ret != 0) {
  3074. DRM_ERROR("copy %d cliprects failed: %d\n",
  3075. args->num_cliprects, ret);
  3076. ret = -EFAULT;
  3077. goto pre_mutex_err;
  3078. }
  3079. }
  3080. request = kzalloc(sizeof(*request), GFP_KERNEL);
  3081. if (request == NULL) {
  3082. ret = -ENOMEM;
  3083. goto pre_mutex_err;
  3084. }
  3085. ret = i915_gem_get_relocs_from_user(exec_list, args->buffer_count,
  3086. &relocs);
  3087. if (ret != 0)
  3088. goto pre_mutex_err;
  3089. mutex_lock(&dev->struct_mutex);
  3090. i915_verify_inactive(dev, __FILE__, __LINE__);
  3091. if (atomic_read(&dev_priv->mm.wedged)) {
  3092. mutex_unlock(&dev->struct_mutex);
  3093. ret = -EIO;
  3094. goto pre_mutex_err;
  3095. }
  3096. if (dev_priv->mm.suspended) {
  3097. mutex_unlock(&dev->struct_mutex);
  3098. ret = -EBUSY;
  3099. goto pre_mutex_err;
  3100. }
  3101. /* Look up object handles */
  3102. flips = 0;
  3103. for (i = 0; i < args->buffer_count; i++) {
  3104. object_list[i] = drm_gem_object_lookup(dev, file_priv,
  3105. exec_list[i].handle);
  3106. if (object_list[i] == NULL) {
  3107. DRM_ERROR("Invalid object handle %d at index %d\n",
  3108. exec_list[i].handle, i);
  3109. /* prevent error path from reading uninitialized data */
  3110. args->buffer_count = i + 1;
  3111. ret = -ENOENT;
  3112. goto err;
  3113. }
  3114. obj_priv = to_intel_bo(object_list[i]);
  3115. if (obj_priv->in_execbuffer) {
  3116. DRM_ERROR("Object %p appears more than once in object list\n",
  3117. object_list[i]);
  3118. /* prevent error path from reading uninitialized data */
  3119. args->buffer_count = i + 1;
  3120. ret = -EINVAL;
  3121. goto err;
  3122. }
  3123. obj_priv->in_execbuffer = true;
  3124. flips += atomic_read(&obj_priv->pending_flip);
  3125. }
  3126. if (flips > 0) {
  3127. ret = i915_gem_wait_for_pending_flip(dev, object_list,
  3128. args->buffer_count);
  3129. if (ret)
  3130. goto err;
  3131. }
  3132. /* Pin and relocate */
  3133. for (pin_tries = 0; ; pin_tries++) {
  3134. ret = 0;
  3135. reloc_index = 0;
  3136. for (i = 0; i < args->buffer_count; i++) {
  3137. object_list[i]->pending_read_domains = 0;
  3138. object_list[i]->pending_write_domain = 0;
  3139. ret = i915_gem_object_pin_and_relocate(object_list[i],
  3140. file_priv,
  3141. &exec_list[i],
  3142. &relocs[reloc_index]);
  3143. if (ret)
  3144. break;
  3145. pinned = i + 1;
  3146. reloc_index += exec_list[i].relocation_count;
  3147. }
  3148. /* success */
  3149. if (ret == 0)
  3150. break;
  3151. /* error other than GTT full, or we've already tried again */
  3152. if (ret != -ENOSPC || pin_tries >= 1) {
  3153. if (ret != -ERESTARTSYS) {
  3154. unsigned long long total_size = 0;
  3155. int num_fences = 0;
  3156. for (i = 0; i < args->buffer_count; i++) {
  3157. obj_priv = to_intel_bo(object_list[i]);
  3158. total_size += object_list[i]->size;
  3159. num_fences +=
  3160. exec_list[i].flags & EXEC_OBJECT_NEEDS_FENCE &&
  3161. obj_priv->tiling_mode != I915_TILING_NONE;
  3162. }
  3163. DRM_ERROR("Failed to pin buffer %d of %d, total %llu bytes, %d fences: %d\n",
  3164. pinned+1, args->buffer_count,
  3165. total_size, num_fences,
  3166. ret);
  3167. DRM_ERROR("%d objects [%d pinned], "
  3168. "%d object bytes [%d pinned], "
  3169. "%d/%d gtt bytes\n",
  3170. atomic_read(&dev->object_count),
  3171. atomic_read(&dev->pin_count),
  3172. atomic_read(&dev->object_memory),
  3173. atomic_read(&dev->pin_memory),
  3174. atomic_read(&dev->gtt_memory),
  3175. dev->gtt_total);
  3176. }
  3177. goto err;
  3178. }
  3179. /* unpin all of our buffers */
  3180. for (i = 0; i < pinned; i++)
  3181. i915_gem_object_unpin(object_list[i]);
  3182. pinned = 0;
  3183. /* evict everyone we can from the aperture */
  3184. ret = i915_gem_evict_everything(dev);
  3185. if (ret && ret != -ENOSPC)
  3186. goto err;
  3187. }
  3188. /* Set the pending read domains for the batch buffer to COMMAND */
  3189. batch_obj = object_list[args->buffer_count-1];
  3190. if (batch_obj->pending_write_domain) {
  3191. DRM_ERROR("Attempting to use self-modifying batch buffer\n");
  3192. ret = -EINVAL;
  3193. goto err;
  3194. }
  3195. batch_obj->pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
  3196. /* Sanity check the batch buffer, prior to moving objects */
  3197. exec_offset = exec_list[args->buffer_count - 1].offset;
  3198. ret = i915_gem_check_execbuffer (args, exec_offset);
  3199. if (ret != 0) {
  3200. DRM_ERROR("execbuf with invalid offset/length\n");
  3201. goto err;
  3202. }
  3203. i915_verify_inactive(dev, __FILE__, __LINE__);
  3204. /* Zero the global flush/invalidate flags. These
  3205. * will be modified as new domains are computed
  3206. * for each object
  3207. */
  3208. dev->invalidate_domains = 0;
  3209. dev->flush_domains = 0;
  3210. dev_priv->mm.flush_rings = 0;
  3211. for (i = 0; i < args->buffer_count; i++) {
  3212. struct drm_gem_object *obj = object_list[i];
  3213. /* Compute new gpu domains and update invalidate/flush */
  3214. i915_gem_object_set_to_gpu_domain(obj);
  3215. }
  3216. i915_verify_inactive(dev, __FILE__, __LINE__);
  3217. if (dev->invalidate_domains | dev->flush_domains) {
  3218. #if WATCH_EXEC
  3219. DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
  3220. __func__,
  3221. dev->invalidate_domains,
  3222. dev->flush_domains);
  3223. #endif
  3224. i915_gem_flush(dev, file_priv,
  3225. dev->invalidate_domains,
  3226. dev->flush_domains,
  3227. dev_priv->mm.flush_rings);
  3228. }
  3229. for (i = 0; i < args->buffer_count; i++) {
  3230. struct drm_gem_object *obj = object_list[i];
  3231. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  3232. uint32_t old_write_domain = obj->write_domain;
  3233. obj->write_domain = obj->pending_write_domain;
  3234. if (obj->write_domain)
  3235. list_move_tail(&obj_priv->gpu_write_list,
  3236. &dev_priv->mm.gpu_write_list);
  3237. else
  3238. list_del_init(&obj_priv->gpu_write_list);
  3239. trace_i915_gem_object_change_domain(obj,
  3240. obj->read_domains,
  3241. old_write_domain);
  3242. }
  3243. i915_verify_inactive(dev, __FILE__, __LINE__);
  3244. #if WATCH_COHERENCY
  3245. for (i = 0; i < args->buffer_count; i++) {
  3246. i915_gem_object_check_coherency(object_list[i],
  3247. exec_list[i].handle);
  3248. }
  3249. #endif
  3250. #if WATCH_EXEC
  3251. i915_gem_dump_object(batch_obj,
  3252. args->batch_len,
  3253. __func__,
  3254. ~0);
  3255. #endif
  3256. /* Exec the batchbuffer */
  3257. ret = ring->dispatch_gem_execbuffer(dev, ring, args,
  3258. cliprects, exec_offset);
  3259. if (ret) {
  3260. DRM_ERROR("dispatch failed %d\n", ret);
  3261. goto err;
  3262. }
  3263. /*
  3264. * Ensure that the commands in the batch buffer are
  3265. * finished before the interrupt fires
  3266. */
  3267. i915_retire_commands(dev, ring);
  3268. i915_verify_inactive(dev, __FILE__, __LINE__);
  3269. for (i = 0; i < args->buffer_count; i++) {
  3270. struct drm_gem_object *obj = object_list[i];
  3271. obj_priv = to_intel_bo(obj);
  3272. i915_gem_object_move_to_active(obj, ring);
  3273. #if WATCH_LRU
  3274. DRM_INFO("%s: move to exec list %p\n", __func__, obj);
  3275. #endif
  3276. }
  3277. i915_add_request(dev, file_priv, request, ring);
  3278. request = NULL;
  3279. #if WATCH_LRU
  3280. i915_dump_lru(dev, __func__);
  3281. #endif
  3282. i915_verify_inactive(dev, __FILE__, __LINE__);
  3283. err:
  3284. for (i = 0; i < pinned; i++)
  3285. i915_gem_object_unpin(object_list[i]);
  3286. for (i = 0; i < args->buffer_count; i++) {
  3287. if (object_list[i]) {
  3288. obj_priv = to_intel_bo(object_list[i]);
  3289. obj_priv->in_execbuffer = false;
  3290. }
  3291. drm_gem_object_unreference(object_list[i]);
  3292. }
  3293. mutex_unlock(&dev->struct_mutex);
  3294. pre_mutex_err:
  3295. /* Copy the updated relocations out regardless of current error
  3296. * state. Failure to update the relocs would mean that the next
  3297. * time userland calls execbuf, it would do so with presumed offset
  3298. * state that didn't match the actual object state.
  3299. */
  3300. ret2 = i915_gem_put_relocs_to_user(exec_list, args->buffer_count,
  3301. relocs);
  3302. if (ret2 != 0) {
  3303. DRM_ERROR("Failed to copy relocations back out: %d\n", ret2);
  3304. if (ret == 0)
  3305. ret = ret2;
  3306. }
  3307. drm_free_large(object_list);
  3308. kfree(cliprects);
  3309. kfree(request);
  3310. return ret;
  3311. }
  3312. /*
  3313. * Legacy execbuffer just creates an exec2 list from the original exec object
  3314. * list array and passes it to the real function.
  3315. */
  3316. int
  3317. i915_gem_execbuffer(struct drm_device *dev, void *data,
  3318. struct drm_file *file_priv)
  3319. {
  3320. struct drm_i915_gem_execbuffer *args = data;
  3321. struct drm_i915_gem_execbuffer2 exec2;
  3322. struct drm_i915_gem_exec_object *exec_list = NULL;
  3323. struct drm_i915_gem_exec_object2 *exec2_list = NULL;
  3324. int ret, i;
  3325. #if WATCH_EXEC
  3326. DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
  3327. (int) args->buffers_ptr, args->buffer_count, args->batch_len);
  3328. #endif
  3329. if (args->buffer_count < 1) {
  3330. DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
  3331. return -EINVAL;
  3332. }
  3333. /* Copy in the exec list from userland */
  3334. exec_list = drm_malloc_ab(sizeof(*exec_list), args->buffer_count);
  3335. exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
  3336. if (exec_list == NULL || exec2_list == NULL) {
  3337. DRM_ERROR("Failed to allocate exec list for %d buffers\n",
  3338. args->buffer_count);
  3339. drm_free_large(exec_list);
  3340. drm_free_large(exec2_list);
  3341. return -ENOMEM;
  3342. }
  3343. ret = copy_from_user(exec_list,
  3344. (struct drm_i915_relocation_entry __user *)
  3345. (uintptr_t) args->buffers_ptr,
  3346. sizeof(*exec_list) * args->buffer_count);
  3347. if (ret != 0) {
  3348. DRM_ERROR("copy %d exec entries failed %d\n",
  3349. args->buffer_count, ret);
  3350. drm_free_large(exec_list);
  3351. drm_free_large(exec2_list);
  3352. return -EFAULT;
  3353. }
  3354. for (i = 0; i < args->buffer_count; i++) {
  3355. exec2_list[i].handle = exec_list[i].handle;
  3356. exec2_list[i].relocation_count = exec_list[i].relocation_count;
  3357. exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
  3358. exec2_list[i].alignment = exec_list[i].alignment;
  3359. exec2_list[i].offset = exec_list[i].offset;
  3360. if (INTEL_INFO(dev)->gen < 4)
  3361. exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
  3362. else
  3363. exec2_list[i].flags = 0;
  3364. }
  3365. exec2.buffers_ptr = args->buffers_ptr;
  3366. exec2.buffer_count = args->buffer_count;
  3367. exec2.batch_start_offset = args->batch_start_offset;
  3368. exec2.batch_len = args->batch_len;
  3369. exec2.DR1 = args->DR1;
  3370. exec2.DR4 = args->DR4;
  3371. exec2.num_cliprects = args->num_cliprects;
  3372. exec2.cliprects_ptr = args->cliprects_ptr;
  3373. exec2.flags = I915_EXEC_RENDER;
  3374. ret = i915_gem_do_execbuffer(dev, data, file_priv, &exec2, exec2_list);
  3375. if (!ret) {
  3376. /* Copy the new buffer offsets back to the user's exec list. */
  3377. for (i = 0; i < args->buffer_count; i++)
  3378. exec_list[i].offset = exec2_list[i].offset;
  3379. /* ... and back out to userspace */
  3380. ret = copy_to_user((struct drm_i915_relocation_entry __user *)
  3381. (uintptr_t) args->buffers_ptr,
  3382. exec_list,
  3383. sizeof(*exec_list) * args->buffer_count);
  3384. if (ret) {
  3385. ret = -EFAULT;
  3386. DRM_ERROR("failed to copy %d exec entries "
  3387. "back to user (%d)\n",
  3388. args->buffer_count, ret);
  3389. }
  3390. }
  3391. drm_free_large(exec_list);
  3392. drm_free_large(exec2_list);
  3393. return ret;
  3394. }
  3395. int
  3396. i915_gem_execbuffer2(struct drm_device *dev, void *data,
  3397. struct drm_file *file_priv)
  3398. {
  3399. struct drm_i915_gem_execbuffer2 *args = data;
  3400. struct drm_i915_gem_exec_object2 *exec2_list = NULL;
  3401. int ret;
  3402. #if WATCH_EXEC
  3403. DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
  3404. (int) args->buffers_ptr, args->buffer_count, args->batch_len);
  3405. #endif
  3406. if (args->buffer_count < 1) {
  3407. DRM_ERROR("execbuf2 with %d buffers\n", args->buffer_count);
  3408. return -EINVAL;
  3409. }
  3410. exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
  3411. if (exec2_list == NULL) {
  3412. DRM_ERROR("Failed to allocate exec list for %d buffers\n",
  3413. args->buffer_count);
  3414. return -ENOMEM;
  3415. }
  3416. ret = copy_from_user(exec2_list,
  3417. (struct drm_i915_relocation_entry __user *)
  3418. (uintptr_t) args->buffers_ptr,
  3419. sizeof(*exec2_list) * args->buffer_count);
  3420. if (ret != 0) {
  3421. DRM_ERROR("copy %d exec entries failed %d\n",
  3422. args->buffer_count, ret);
  3423. drm_free_large(exec2_list);
  3424. return -EFAULT;
  3425. }
  3426. ret = i915_gem_do_execbuffer(dev, data, file_priv, args, exec2_list);
  3427. if (!ret) {
  3428. /* Copy the new buffer offsets back to the user's exec list. */
  3429. ret = copy_to_user((struct drm_i915_relocation_entry __user *)
  3430. (uintptr_t) args->buffers_ptr,
  3431. exec2_list,
  3432. sizeof(*exec2_list) * args->buffer_count);
  3433. if (ret) {
  3434. ret = -EFAULT;
  3435. DRM_ERROR("failed to copy %d exec entries "
  3436. "back to user (%d)\n",
  3437. args->buffer_count, ret);
  3438. }
  3439. }
  3440. drm_free_large(exec2_list);
  3441. return ret;
  3442. }
  3443. int
  3444. i915_gem_object_pin(struct drm_gem_object *obj, uint32_t alignment)
  3445. {
  3446. struct drm_device *dev = obj->dev;
  3447. struct drm_i915_private *dev_priv = dev->dev_private;
  3448. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  3449. int ret;
  3450. BUG_ON(obj_priv->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
  3451. i915_verify_inactive(dev, __FILE__, __LINE__);
  3452. if (obj_priv->gtt_space != NULL) {
  3453. if (alignment == 0)
  3454. alignment = i915_gem_get_gtt_alignment(obj);
  3455. if (obj_priv->gtt_offset & (alignment - 1)) {
  3456. WARN(obj_priv->pin_count,
  3457. "bo is already pinned with incorrect alignment:"
  3458. " offset=%x, req.alignment=%x\n",
  3459. obj_priv->gtt_offset, alignment);
  3460. ret = i915_gem_object_unbind(obj);
  3461. if (ret)
  3462. return ret;
  3463. }
  3464. }
  3465. if (obj_priv->gtt_space == NULL) {
  3466. ret = i915_gem_object_bind_to_gtt(obj, alignment);
  3467. if (ret)
  3468. return ret;
  3469. }
  3470. obj_priv->pin_count++;
  3471. /* If the object is not active and not pending a flush,
  3472. * remove it from the inactive list
  3473. */
  3474. if (obj_priv->pin_count == 1) {
  3475. atomic_inc(&dev->pin_count);
  3476. atomic_add(obj->size, &dev->pin_memory);
  3477. if (!obj_priv->active)
  3478. list_move_tail(&obj_priv->list,
  3479. &dev_priv->mm.pinned_list);
  3480. }
  3481. i915_verify_inactive(dev, __FILE__, __LINE__);
  3482. return 0;
  3483. }
  3484. void
  3485. i915_gem_object_unpin(struct drm_gem_object *obj)
  3486. {
  3487. struct drm_device *dev = obj->dev;
  3488. drm_i915_private_t *dev_priv = dev->dev_private;
  3489. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  3490. i915_verify_inactive(dev, __FILE__, __LINE__);
  3491. obj_priv->pin_count--;
  3492. BUG_ON(obj_priv->pin_count < 0);
  3493. BUG_ON(obj_priv->gtt_space == NULL);
  3494. /* If the object is no longer pinned, and is
  3495. * neither active nor being flushed, then stick it on
  3496. * the inactive list
  3497. */
  3498. if (obj_priv->pin_count == 0) {
  3499. if (!obj_priv->active)
  3500. list_move_tail(&obj_priv->list,
  3501. &dev_priv->mm.inactive_list);
  3502. atomic_dec(&dev->pin_count);
  3503. atomic_sub(obj->size, &dev->pin_memory);
  3504. }
  3505. i915_verify_inactive(dev, __FILE__, __LINE__);
  3506. }
  3507. int
  3508. i915_gem_pin_ioctl(struct drm_device *dev, void *data,
  3509. struct drm_file *file_priv)
  3510. {
  3511. struct drm_i915_gem_pin *args = data;
  3512. struct drm_gem_object *obj;
  3513. struct drm_i915_gem_object *obj_priv;
  3514. int ret;
  3515. mutex_lock(&dev->struct_mutex);
  3516. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  3517. if (obj == NULL) {
  3518. DRM_ERROR("Bad handle in i915_gem_pin_ioctl(): %d\n",
  3519. args->handle);
  3520. mutex_unlock(&dev->struct_mutex);
  3521. return -ENOENT;
  3522. }
  3523. obj_priv = to_intel_bo(obj);
  3524. if (obj_priv->madv != I915_MADV_WILLNEED) {
  3525. DRM_ERROR("Attempting to pin a purgeable buffer\n");
  3526. drm_gem_object_unreference(obj);
  3527. mutex_unlock(&dev->struct_mutex);
  3528. return -EINVAL;
  3529. }
  3530. if (obj_priv->pin_filp != NULL && obj_priv->pin_filp != file_priv) {
  3531. DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
  3532. args->handle);
  3533. drm_gem_object_unreference(obj);
  3534. mutex_unlock(&dev->struct_mutex);
  3535. return -EINVAL;
  3536. }
  3537. obj_priv->user_pin_count++;
  3538. obj_priv->pin_filp = file_priv;
  3539. if (obj_priv->user_pin_count == 1) {
  3540. ret = i915_gem_object_pin(obj, args->alignment);
  3541. if (ret != 0) {
  3542. drm_gem_object_unreference(obj);
  3543. mutex_unlock(&dev->struct_mutex);
  3544. return ret;
  3545. }
  3546. }
  3547. /* XXX - flush the CPU caches for pinned objects
  3548. * as the X server doesn't manage domains yet
  3549. */
  3550. i915_gem_object_flush_cpu_write_domain(obj);
  3551. args->offset = obj_priv->gtt_offset;
  3552. drm_gem_object_unreference(obj);
  3553. mutex_unlock(&dev->struct_mutex);
  3554. return 0;
  3555. }
  3556. int
  3557. i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
  3558. struct drm_file *file_priv)
  3559. {
  3560. struct drm_i915_gem_pin *args = data;
  3561. struct drm_gem_object *obj;
  3562. struct drm_i915_gem_object *obj_priv;
  3563. mutex_lock(&dev->struct_mutex);
  3564. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  3565. if (obj == NULL) {
  3566. DRM_ERROR("Bad handle in i915_gem_unpin_ioctl(): %d\n",
  3567. args->handle);
  3568. mutex_unlock(&dev->struct_mutex);
  3569. return -ENOENT;
  3570. }
  3571. obj_priv = to_intel_bo(obj);
  3572. if (obj_priv->pin_filp != file_priv) {
  3573. DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
  3574. args->handle);
  3575. drm_gem_object_unreference(obj);
  3576. mutex_unlock(&dev->struct_mutex);
  3577. return -EINVAL;
  3578. }
  3579. obj_priv->user_pin_count--;
  3580. if (obj_priv->user_pin_count == 0) {
  3581. obj_priv->pin_filp = NULL;
  3582. i915_gem_object_unpin(obj);
  3583. }
  3584. drm_gem_object_unreference(obj);
  3585. mutex_unlock(&dev->struct_mutex);
  3586. return 0;
  3587. }
  3588. int
  3589. i915_gem_busy_ioctl(struct drm_device *dev, void *data,
  3590. struct drm_file *file_priv)
  3591. {
  3592. struct drm_i915_gem_busy *args = data;
  3593. struct drm_gem_object *obj;
  3594. struct drm_i915_gem_object *obj_priv;
  3595. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  3596. if (obj == NULL) {
  3597. DRM_ERROR("Bad handle in i915_gem_busy_ioctl(): %d\n",
  3598. args->handle);
  3599. return -ENOENT;
  3600. }
  3601. mutex_lock(&dev->struct_mutex);
  3602. /* Count all active objects as busy, even if they are currently not used
  3603. * by the gpu. Users of this interface expect objects to eventually
  3604. * become non-busy without any further actions, therefore emit any
  3605. * necessary flushes here.
  3606. */
  3607. obj_priv = to_intel_bo(obj);
  3608. args->busy = obj_priv->active;
  3609. if (args->busy) {
  3610. /* Unconditionally flush objects, even when the gpu still uses this
  3611. * object. Userspace calling this function indicates that it wants to
  3612. * use this buffer rather sooner than later, so issuing the required
  3613. * flush earlier is beneficial.
  3614. */
  3615. if (obj->write_domain & I915_GEM_GPU_DOMAINS)
  3616. i915_gem_flush_ring(dev, file_priv,
  3617. obj_priv->ring,
  3618. 0, obj->write_domain);
  3619. /* Update the active list for the hardware's current position.
  3620. * Otherwise this only updates on a delayed timer or when irqs
  3621. * are actually unmasked, and our working set ends up being
  3622. * larger than required.
  3623. */
  3624. i915_gem_retire_requests_ring(dev, obj_priv->ring);
  3625. args->busy = obj_priv->active;
  3626. }
  3627. drm_gem_object_unreference(obj);
  3628. mutex_unlock(&dev->struct_mutex);
  3629. return 0;
  3630. }
  3631. int
  3632. i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
  3633. struct drm_file *file_priv)
  3634. {
  3635. return i915_gem_ring_throttle(dev, file_priv);
  3636. }
  3637. int
  3638. i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
  3639. struct drm_file *file_priv)
  3640. {
  3641. struct drm_i915_gem_madvise *args = data;
  3642. struct drm_gem_object *obj;
  3643. struct drm_i915_gem_object *obj_priv;
  3644. switch (args->madv) {
  3645. case I915_MADV_DONTNEED:
  3646. case I915_MADV_WILLNEED:
  3647. break;
  3648. default:
  3649. return -EINVAL;
  3650. }
  3651. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  3652. if (obj == NULL) {
  3653. DRM_ERROR("Bad handle in i915_gem_madvise_ioctl(): %d\n",
  3654. args->handle);
  3655. return -ENOENT;
  3656. }
  3657. mutex_lock(&dev->struct_mutex);
  3658. obj_priv = to_intel_bo(obj);
  3659. if (obj_priv->pin_count) {
  3660. drm_gem_object_unreference(obj);
  3661. mutex_unlock(&dev->struct_mutex);
  3662. DRM_ERROR("Attempted i915_gem_madvise_ioctl() on a pinned object\n");
  3663. return -EINVAL;
  3664. }
  3665. if (obj_priv->madv != __I915_MADV_PURGED)
  3666. obj_priv->madv = args->madv;
  3667. /* if the object is no longer bound, discard its backing storage */
  3668. if (i915_gem_object_is_purgeable(obj_priv) &&
  3669. obj_priv->gtt_space == NULL)
  3670. i915_gem_object_truncate(obj);
  3671. args->retained = obj_priv->madv != __I915_MADV_PURGED;
  3672. drm_gem_object_unreference(obj);
  3673. mutex_unlock(&dev->struct_mutex);
  3674. return 0;
  3675. }
  3676. struct drm_gem_object * i915_gem_alloc_object(struct drm_device *dev,
  3677. size_t size)
  3678. {
  3679. struct drm_i915_gem_object *obj;
  3680. obj = kzalloc(sizeof(*obj), GFP_KERNEL);
  3681. if (obj == NULL)
  3682. return NULL;
  3683. if (drm_gem_object_init(dev, &obj->base, size) != 0) {
  3684. kfree(obj);
  3685. return NULL;
  3686. }
  3687. obj->base.write_domain = I915_GEM_DOMAIN_CPU;
  3688. obj->base.read_domains = I915_GEM_DOMAIN_CPU;
  3689. obj->agp_type = AGP_USER_MEMORY;
  3690. obj->base.driver_private = NULL;
  3691. obj->fence_reg = I915_FENCE_REG_NONE;
  3692. INIT_LIST_HEAD(&obj->list);
  3693. INIT_LIST_HEAD(&obj->gpu_write_list);
  3694. obj->madv = I915_MADV_WILLNEED;
  3695. trace_i915_gem_object_create(&obj->base);
  3696. return &obj->base;
  3697. }
  3698. int i915_gem_init_object(struct drm_gem_object *obj)
  3699. {
  3700. BUG();
  3701. return 0;
  3702. }
  3703. static void i915_gem_free_object_tail(struct drm_gem_object *obj)
  3704. {
  3705. struct drm_device *dev = obj->dev;
  3706. drm_i915_private_t *dev_priv = dev->dev_private;
  3707. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  3708. int ret;
  3709. ret = i915_gem_object_unbind(obj);
  3710. if (ret == -ERESTARTSYS) {
  3711. list_move(&obj_priv->list,
  3712. &dev_priv->mm.deferred_free_list);
  3713. return;
  3714. }
  3715. if (obj_priv->mmap_offset)
  3716. i915_gem_free_mmap_offset(obj);
  3717. drm_gem_object_release(obj);
  3718. kfree(obj_priv->page_cpu_valid);
  3719. kfree(obj_priv->bit_17);
  3720. kfree(obj_priv);
  3721. }
  3722. void i915_gem_free_object(struct drm_gem_object *obj)
  3723. {
  3724. struct drm_device *dev = obj->dev;
  3725. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  3726. trace_i915_gem_object_destroy(obj);
  3727. while (obj_priv->pin_count > 0)
  3728. i915_gem_object_unpin(obj);
  3729. if (obj_priv->phys_obj)
  3730. i915_gem_detach_phys_object(dev, obj);
  3731. i915_gem_free_object_tail(obj);
  3732. }
  3733. int
  3734. i915_gem_idle(struct drm_device *dev)
  3735. {
  3736. drm_i915_private_t *dev_priv = dev->dev_private;
  3737. int ret;
  3738. mutex_lock(&dev->struct_mutex);
  3739. if (dev_priv->mm.suspended ||
  3740. (dev_priv->render_ring.gem_object == NULL) ||
  3741. (HAS_BSD(dev) &&
  3742. dev_priv->bsd_ring.gem_object == NULL)) {
  3743. mutex_unlock(&dev->struct_mutex);
  3744. return 0;
  3745. }
  3746. ret = i915_gpu_idle(dev);
  3747. if (ret) {
  3748. mutex_unlock(&dev->struct_mutex);
  3749. return ret;
  3750. }
  3751. /* Under UMS, be paranoid and evict. */
  3752. if (!drm_core_check_feature(dev, DRIVER_MODESET)) {
  3753. ret = i915_gem_evict_inactive(dev);
  3754. if (ret) {
  3755. mutex_unlock(&dev->struct_mutex);
  3756. return ret;
  3757. }
  3758. }
  3759. /* Hack! Don't let anybody do execbuf while we don't control the chip.
  3760. * We need to replace this with a semaphore, or something.
  3761. * And not confound mm.suspended!
  3762. */
  3763. dev_priv->mm.suspended = 1;
  3764. del_timer_sync(&dev_priv->hangcheck_timer);
  3765. i915_kernel_lost_context(dev);
  3766. i915_gem_cleanup_ringbuffer(dev);
  3767. mutex_unlock(&dev->struct_mutex);
  3768. /* Cancel the retire work handler, which should be idle now. */
  3769. cancel_delayed_work_sync(&dev_priv->mm.retire_work);
  3770. return 0;
  3771. }
  3772. /*
  3773. * 965+ support PIPE_CONTROL commands, which provide finer grained control
  3774. * over cache flushing.
  3775. */
  3776. static int
  3777. i915_gem_init_pipe_control(struct drm_device *dev)
  3778. {
  3779. drm_i915_private_t *dev_priv = dev->dev_private;
  3780. struct drm_gem_object *obj;
  3781. struct drm_i915_gem_object *obj_priv;
  3782. int ret;
  3783. obj = i915_gem_alloc_object(dev, 4096);
  3784. if (obj == NULL) {
  3785. DRM_ERROR("Failed to allocate seqno page\n");
  3786. ret = -ENOMEM;
  3787. goto err;
  3788. }
  3789. obj_priv = to_intel_bo(obj);
  3790. obj_priv->agp_type = AGP_USER_CACHED_MEMORY;
  3791. ret = i915_gem_object_pin(obj, 4096);
  3792. if (ret)
  3793. goto err_unref;
  3794. dev_priv->seqno_gfx_addr = obj_priv->gtt_offset;
  3795. dev_priv->seqno_page = kmap(obj_priv->pages[0]);
  3796. if (dev_priv->seqno_page == NULL)
  3797. goto err_unpin;
  3798. dev_priv->seqno_obj = obj;
  3799. memset(dev_priv->seqno_page, 0, PAGE_SIZE);
  3800. return 0;
  3801. err_unpin:
  3802. i915_gem_object_unpin(obj);
  3803. err_unref:
  3804. drm_gem_object_unreference(obj);
  3805. err:
  3806. return ret;
  3807. }
  3808. static void
  3809. i915_gem_cleanup_pipe_control(struct drm_device *dev)
  3810. {
  3811. drm_i915_private_t *dev_priv = dev->dev_private;
  3812. struct drm_gem_object *obj;
  3813. struct drm_i915_gem_object *obj_priv;
  3814. obj = dev_priv->seqno_obj;
  3815. obj_priv = to_intel_bo(obj);
  3816. kunmap(obj_priv->pages[0]);
  3817. i915_gem_object_unpin(obj);
  3818. drm_gem_object_unreference(obj);
  3819. dev_priv->seqno_obj = NULL;
  3820. dev_priv->seqno_page = NULL;
  3821. }
  3822. int
  3823. i915_gem_init_ringbuffer(struct drm_device *dev)
  3824. {
  3825. drm_i915_private_t *dev_priv = dev->dev_private;
  3826. int ret;
  3827. if (HAS_PIPE_CONTROL(dev)) {
  3828. ret = i915_gem_init_pipe_control(dev);
  3829. if (ret)
  3830. return ret;
  3831. }
  3832. ret = intel_init_render_ring_buffer(dev);
  3833. if (ret)
  3834. goto cleanup_pipe_control;
  3835. if (HAS_BSD(dev)) {
  3836. ret = intel_init_bsd_ring_buffer(dev);
  3837. if (ret)
  3838. goto cleanup_render_ring;
  3839. }
  3840. dev_priv->next_seqno = 1;
  3841. return 0;
  3842. cleanup_render_ring:
  3843. intel_cleanup_ring_buffer(dev, &dev_priv->render_ring);
  3844. cleanup_pipe_control:
  3845. if (HAS_PIPE_CONTROL(dev))
  3846. i915_gem_cleanup_pipe_control(dev);
  3847. return ret;
  3848. }
  3849. void
  3850. i915_gem_cleanup_ringbuffer(struct drm_device *dev)
  3851. {
  3852. drm_i915_private_t *dev_priv = dev->dev_private;
  3853. intel_cleanup_ring_buffer(dev, &dev_priv->render_ring);
  3854. if (HAS_BSD(dev))
  3855. intel_cleanup_ring_buffer(dev, &dev_priv->bsd_ring);
  3856. if (HAS_PIPE_CONTROL(dev))
  3857. i915_gem_cleanup_pipe_control(dev);
  3858. }
  3859. int
  3860. i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
  3861. struct drm_file *file_priv)
  3862. {
  3863. drm_i915_private_t *dev_priv = dev->dev_private;
  3864. int ret;
  3865. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3866. return 0;
  3867. if (atomic_read(&dev_priv->mm.wedged)) {
  3868. DRM_ERROR("Reenabling wedged hardware, good luck\n");
  3869. atomic_set(&dev_priv->mm.wedged, 0);
  3870. }
  3871. mutex_lock(&dev->struct_mutex);
  3872. dev_priv->mm.suspended = 0;
  3873. ret = i915_gem_init_ringbuffer(dev);
  3874. if (ret != 0) {
  3875. mutex_unlock(&dev->struct_mutex);
  3876. return ret;
  3877. }
  3878. BUG_ON(!list_empty(&dev_priv->render_ring.active_list));
  3879. BUG_ON(HAS_BSD(dev) && !list_empty(&dev_priv->bsd_ring.active_list));
  3880. BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
  3881. BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
  3882. BUG_ON(!list_empty(&dev_priv->render_ring.request_list));
  3883. BUG_ON(HAS_BSD(dev) && !list_empty(&dev_priv->bsd_ring.request_list));
  3884. mutex_unlock(&dev->struct_mutex);
  3885. ret = drm_irq_install(dev);
  3886. if (ret)
  3887. goto cleanup_ringbuffer;
  3888. return 0;
  3889. cleanup_ringbuffer:
  3890. mutex_lock(&dev->struct_mutex);
  3891. i915_gem_cleanup_ringbuffer(dev);
  3892. dev_priv->mm.suspended = 1;
  3893. mutex_unlock(&dev->struct_mutex);
  3894. return ret;
  3895. }
  3896. int
  3897. i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
  3898. struct drm_file *file_priv)
  3899. {
  3900. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3901. return 0;
  3902. drm_irq_uninstall(dev);
  3903. return i915_gem_idle(dev);
  3904. }
  3905. void
  3906. i915_gem_lastclose(struct drm_device *dev)
  3907. {
  3908. int ret;
  3909. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3910. return;
  3911. ret = i915_gem_idle(dev);
  3912. if (ret)
  3913. DRM_ERROR("failed to idle hardware: %d\n", ret);
  3914. }
  3915. void
  3916. i915_gem_load(struct drm_device *dev)
  3917. {
  3918. int i;
  3919. drm_i915_private_t *dev_priv = dev->dev_private;
  3920. INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
  3921. INIT_LIST_HEAD(&dev_priv->mm.gpu_write_list);
  3922. INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
  3923. INIT_LIST_HEAD(&dev_priv->mm.pinned_list);
  3924. INIT_LIST_HEAD(&dev_priv->mm.fence_list);
  3925. INIT_LIST_HEAD(&dev_priv->mm.deferred_free_list);
  3926. INIT_LIST_HEAD(&dev_priv->render_ring.active_list);
  3927. INIT_LIST_HEAD(&dev_priv->render_ring.request_list);
  3928. if (HAS_BSD(dev)) {
  3929. INIT_LIST_HEAD(&dev_priv->bsd_ring.active_list);
  3930. INIT_LIST_HEAD(&dev_priv->bsd_ring.request_list);
  3931. }
  3932. for (i = 0; i < 16; i++)
  3933. INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
  3934. INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
  3935. i915_gem_retire_work_handler);
  3936. spin_lock(&shrink_list_lock);
  3937. list_add(&dev_priv->mm.shrink_list, &shrink_list);
  3938. spin_unlock(&shrink_list_lock);
  3939. /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
  3940. if (IS_GEN3(dev)) {
  3941. u32 tmp = I915_READ(MI_ARB_STATE);
  3942. if (!(tmp & MI_ARB_C3_LP_WRITE_ENABLE)) {
  3943. /* arb state is a masked write, so set bit + bit in mask */
  3944. tmp = MI_ARB_C3_LP_WRITE_ENABLE | (MI_ARB_C3_LP_WRITE_ENABLE << MI_ARB_MASK_SHIFT);
  3945. I915_WRITE(MI_ARB_STATE, tmp);
  3946. }
  3947. }
  3948. /* Old X drivers will take 0-2 for front, back, depth buffers */
  3949. if (!drm_core_check_feature(dev, DRIVER_MODESET))
  3950. dev_priv->fence_reg_start = 3;
  3951. if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
  3952. dev_priv->num_fence_regs = 16;
  3953. else
  3954. dev_priv->num_fence_regs = 8;
  3955. /* Initialize fence registers to zero */
  3956. switch (INTEL_INFO(dev)->gen) {
  3957. case 6:
  3958. for (i = 0; i < 16; i++)
  3959. I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (i * 8), 0);
  3960. break;
  3961. case 5:
  3962. case 4:
  3963. for (i = 0; i < 16; i++)
  3964. I915_WRITE64(FENCE_REG_965_0 + (i * 8), 0);
  3965. break;
  3966. case 3:
  3967. if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
  3968. for (i = 0; i < 8; i++)
  3969. I915_WRITE(FENCE_REG_945_8 + (i * 4), 0);
  3970. case 2:
  3971. for (i = 0; i < 8; i++)
  3972. I915_WRITE(FENCE_REG_830_0 + (i * 4), 0);
  3973. break;
  3974. }
  3975. i915_gem_detect_bit_6_swizzle(dev);
  3976. init_waitqueue_head(&dev_priv->pending_flip_queue);
  3977. }
  3978. /*
  3979. * Create a physically contiguous memory object for this object
  3980. * e.g. for cursor + overlay regs
  3981. */
  3982. static int i915_gem_init_phys_object(struct drm_device *dev,
  3983. int id, int size, int align)
  3984. {
  3985. drm_i915_private_t *dev_priv = dev->dev_private;
  3986. struct drm_i915_gem_phys_object *phys_obj;
  3987. int ret;
  3988. if (dev_priv->mm.phys_objs[id - 1] || !size)
  3989. return 0;
  3990. phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
  3991. if (!phys_obj)
  3992. return -ENOMEM;
  3993. phys_obj->id = id;
  3994. phys_obj->handle = drm_pci_alloc(dev, size, align);
  3995. if (!phys_obj->handle) {
  3996. ret = -ENOMEM;
  3997. goto kfree_obj;
  3998. }
  3999. #ifdef CONFIG_X86
  4000. set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
  4001. #endif
  4002. dev_priv->mm.phys_objs[id - 1] = phys_obj;
  4003. return 0;
  4004. kfree_obj:
  4005. kfree(phys_obj);
  4006. return ret;
  4007. }
  4008. static void i915_gem_free_phys_object(struct drm_device *dev, int id)
  4009. {
  4010. drm_i915_private_t *dev_priv = dev->dev_private;
  4011. struct drm_i915_gem_phys_object *phys_obj;
  4012. if (!dev_priv->mm.phys_objs[id - 1])
  4013. return;
  4014. phys_obj = dev_priv->mm.phys_objs[id - 1];
  4015. if (phys_obj->cur_obj) {
  4016. i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
  4017. }
  4018. #ifdef CONFIG_X86
  4019. set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
  4020. #endif
  4021. drm_pci_free(dev, phys_obj->handle);
  4022. kfree(phys_obj);
  4023. dev_priv->mm.phys_objs[id - 1] = NULL;
  4024. }
  4025. void i915_gem_free_all_phys_object(struct drm_device *dev)
  4026. {
  4027. int i;
  4028. for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
  4029. i915_gem_free_phys_object(dev, i);
  4030. }
  4031. void i915_gem_detach_phys_object(struct drm_device *dev,
  4032. struct drm_gem_object *obj)
  4033. {
  4034. struct drm_i915_gem_object *obj_priv;
  4035. int i;
  4036. int ret;
  4037. int page_count;
  4038. obj_priv = to_intel_bo(obj);
  4039. if (!obj_priv->phys_obj)
  4040. return;
  4041. ret = i915_gem_object_get_pages(obj, 0);
  4042. if (ret)
  4043. goto out;
  4044. page_count = obj->size / PAGE_SIZE;
  4045. for (i = 0; i < page_count; i++) {
  4046. char *dst = kmap_atomic(obj_priv->pages[i], KM_USER0);
  4047. char *src = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
  4048. memcpy(dst, src, PAGE_SIZE);
  4049. kunmap_atomic(dst, KM_USER0);
  4050. }
  4051. drm_clflush_pages(obj_priv->pages, page_count);
  4052. drm_agp_chipset_flush(dev);
  4053. i915_gem_object_put_pages(obj);
  4054. out:
  4055. obj_priv->phys_obj->cur_obj = NULL;
  4056. obj_priv->phys_obj = NULL;
  4057. }
  4058. int
  4059. i915_gem_attach_phys_object(struct drm_device *dev,
  4060. struct drm_gem_object *obj,
  4061. int id,
  4062. int align)
  4063. {
  4064. drm_i915_private_t *dev_priv = dev->dev_private;
  4065. struct drm_i915_gem_object *obj_priv;
  4066. int ret = 0;
  4067. int page_count;
  4068. int i;
  4069. if (id > I915_MAX_PHYS_OBJECT)
  4070. return -EINVAL;
  4071. obj_priv = to_intel_bo(obj);
  4072. if (obj_priv->phys_obj) {
  4073. if (obj_priv->phys_obj->id == id)
  4074. return 0;
  4075. i915_gem_detach_phys_object(dev, obj);
  4076. }
  4077. /* create a new object */
  4078. if (!dev_priv->mm.phys_objs[id - 1]) {
  4079. ret = i915_gem_init_phys_object(dev, id,
  4080. obj->size, align);
  4081. if (ret) {
  4082. DRM_ERROR("failed to init phys object %d size: %zu\n", id, obj->size);
  4083. goto out;
  4084. }
  4085. }
  4086. /* bind to the object */
  4087. obj_priv->phys_obj = dev_priv->mm.phys_objs[id - 1];
  4088. obj_priv->phys_obj->cur_obj = obj;
  4089. ret = i915_gem_object_get_pages(obj, 0);
  4090. if (ret) {
  4091. DRM_ERROR("failed to get page list\n");
  4092. goto out;
  4093. }
  4094. page_count = obj->size / PAGE_SIZE;
  4095. for (i = 0; i < page_count; i++) {
  4096. char *src = kmap_atomic(obj_priv->pages[i], KM_USER0);
  4097. char *dst = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
  4098. memcpy(dst, src, PAGE_SIZE);
  4099. kunmap_atomic(src, KM_USER0);
  4100. }
  4101. i915_gem_object_put_pages(obj);
  4102. return 0;
  4103. out:
  4104. return ret;
  4105. }
  4106. static int
  4107. i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
  4108. struct drm_i915_gem_pwrite *args,
  4109. struct drm_file *file_priv)
  4110. {
  4111. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  4112. void *obj_addr;
  4113. int ret;
  4114. char __user *user_data;
  4115. user_data = (char __user *) (uintptr_t) args->data_ptr;
  4116. obj_addr = obj_priv->phys_obj->handle->vaddr + args->offset;
  4117. DRM_DEBUG_DRIVER("obj_addr %p, %lld\n", obj_addr, args->size);
  4118. ret = copy_from_user(obj_addr, user_data, args->size);
  4119. if (ret)
  4120. return -EFAULT;
  4121. drm_agp_chipset_flush(dev);
  4122. return 0;
  4123. }
  4124. void i915_gem_release(struct drm_device *dev, struct drm_file *file)
  4125. {
  4126. struct drm_i915_file_private *file_priv = file->driver_priv;
  4127. /* Clean up our request list when the client is going away, so that
  4128. * later retire_requests won't dereference our soon-to-be-gone
  4129. * file_priv.
  4130. */
  4131. mutex_lock(&dev->struct_mutex);
  4132. mutex_lock(&file_priv->mutex);
  4133. while (!list_empty(&file_priv->mm.request_list)) {
  4134. struct drm_i915_gem_request *request;
  4135. request = list_first_entry(&file_priv->mm.request_list,
  4136. struct drm_i915_gem_request,
  4137. client_list);
  4138. list_del(&request->client_list);
  4139. request->file_priv = NULL;
  4140. }
  4141. mutex_unlock(&file_priv->mutex);
  4142. mutex_unlock(&dev->struct_mutex);
  4143. }
  4144. static int
  4145. i915_gpu_is_active(struct drm_device *dev)
  4146. {
  4147. drm_i915_private_t *dev_priv = dev->dev_private;
  4148. int lists_empty;
  4149. lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
  4150. list_empty(&dev_priv->render_ring.active_list);
  4151. if (HAS_BSD(dev))
  4152. lists_empty &= list_empty(&dev_priv->bsd_ring.active_list);
  4153. return !lists_empty;
  4154. }
  4155. static int
  4156. i915_gem_shrink(struct shrinker *shrink, int nr_to_scan, gfp_t gfp_mask)
  4157. {
  4158. drm_i915_private_t *dev_priv, *next_dev;
  4159. struct drm_i915_gem_object *obj_priv, *next_obj;
  4160. int cnt = 0;
  4161. int would_deadlock = 1;
  4162. /* "fast-path" to count number of available objects */
  4163. if (nr_to_scan == 0) {
  4164. spin_lock(&shrink_list_lock);
  4165. list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) {
  4166. struct drm_device *dev = dev_priv->dev;
  4167. if (mutex_trylock(&dev->struct_mutex)) {
  4168. list_for_each_entry(obj_priv,
  4169. &dev_priv->mm.inactive_list,
  4170. list)
  4171. cnt++;
  4172. mutex_unlock(&dev->struct_mutex);
  4173. }
  4174. }
  4175. spin_unlock(&shrink_list_lock);
  4176. return (cnt / 100) * sysctl_vfs_cache_pressure;
  4177. }
  4178. spin_lock(&shrink_list_lock);
  4179. rescan:
  4180. /* first scan for clean buffers */
  4181. list_for_each_entry_safe(dev_priv, next_dev,
  4182. &shrink_list, mm.shrink_list) {
  4183. struct drm_device *dev = dev_priv->dev;
  4184. if (! mutex_trylock(&dev->struct_mutex))
  4185. continue;
  4186. spin_unlock(&shrink_list_lock);
  4187. i915_gem_retire_requests(dev);
  4188. list_for_each_entry_safe(obj_priv, next_obj,
  4189. &dev_priv->mm.inactive_list,
  4190. list) {
  4191. if (i915_gem_object_is_purgeable(obj_priv)) {
  4192. i915_gem_object_unbind(&obj_priv->base);
  4193. if (--nr_to_scan <= 0)
  4194. break;
  4195. }
  4196. }
  4197. spin_lock(&shrink_list_lock);
  4198. mutex_unlock(&dev->struct_mutex);
  4199. would_deadlock = 0;
  4200. if (nr_to_scan <= 0)
  4201. break;
  4202. }
  4203. /* second pass, evict/count anything still on the inactive list */
  4204. list_for_each_entry_safe(dev_priv, next_dev,
  4205. &shrink_list, mm.shrink_list) {
  4206. struct drm_device *dev = dev_priv->dev;
  4207. if (! mutex_trylock(&dev->struct_mutex))
  4208. continue;
  4209. spin_unlock(&shrink_list_lock);
  4210. list_for_each_entry_safe(obj_priv, next_obj,
  4211. &dev_priv->mm.inactive_list,
  4212. list) {
  4213. if (nr_to_scan > 0) {
  4214. i915_gem_object_unbind(&obj_priv->base);
  4215. nr_to_scan--;
  4216. } else
  4217. cnt++;
  4218. }
  4219. spin_lock(&shrink_list_lock);
  4220. mutex_unlock(&dev->struct_mutex);
  4221. would_deadlock = 0;
  4222. }
  4223. if (nr_to_scan) {
  4224. int active = 0;
  4225. /*
  4226. * We are desperate for pages, so as a last resort, wait
  4227. * for the GPU to finish and discard whatever we can.
  4228. * This has a dramatic impact to reduce the number of
  4229. * OOM-killer events whilst running the GPU aggressively.
  4230. */
  4231. list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) {
  4232. struct drm_device *dev = dev_priv->dev;
  4233. if (!mutex_trylock(&dev->struct_mutex))
  4234. continue;
  4235. spin_unlock(&shrink_list_lock);
  4236. if (i915_gpu_is_active(dev)) {
  4237. i915_gpu_idle(dev);
  4238. active++;
  4239. }
  4240. spin_lock(&shrink_list_lock);
  4241. mutex_unlock(&dev->struct_mutex);
  4242. }
  4243. if (active)
  4244. goto rescan;
  4245. }
  4246. spin_unlock(&shrink_list_lock);
  4247. if (would_deadlock)
  4248. return -1;
  4249. else if (cnt > 0)
  4250. return (cnt / 100) * sysctl_vfs_cache_pressure;
  4251. else
  4252. return 0;
  4253. }
  4254. static struct shrinker shrinker = {
  4255. .shrink = i915_gem_shrink,
  4256. .seeks = DEFAULT_SEEKS,
  4257. };
  4258. __init void
  4259. i915_gem_shrinker_init(void)
  4260. {
  4261. register_shrinker(&shrinker);
  4262. }
  4263. __exit void
  4264. i915_gem_shrinker_exit(void)
  4265. {
  4266. unregister_shrinker(&shrinker);
  4267. }