process.c 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680
  1. #include <linux/errno.h>
  2. #include <linux/kernel.h>
  3. #include <linux/mm.h>
  4. #include <linux/smp.h>
  5. #include <linux/prctl.h>
  6. #include <linux/slab.h>
  7. #include <linux/sched.h>
  8. #include <linux/module.h>
  9. #include <linux/pm.h>
  10. #include <linux/clockchips.h>
  11. #include <linux/random.h>
  12. #include <linux/user-return-notifier.h>
  13. #include <linux/dmi.h>
  14. #include <linux/utsname.h>
  15. #include <trace/events/power.h>
  16. #include <linux/hw_breakpoint.h>
  17. #include <asm/system.h>
  18. #include <asm/apic.h>
  19. #include <asm/syscalls.h>
  20. #include <asm/idle.h>
  21. #include <asm/uaccess.h>
  22. #include <asm/i387.h>
  23. #include <asm/debugreg.h>
  24. unsigned long idle_halt;
  25. EXPORT_SYMBOL(idle_halt);
  26. unsigned long idle_nomwait;
  27. EXPORT_SYMBOL(idle_nomwait);
  28. struct kmem_cache *task_xstate_cachep;
  29. EXPORT_SYMBOL_GPL(task_xstate_cachep);
  30. int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
  31. {
  32. int ret;
  33. *dst = *src;
  34. if (fpu_allocated(&src->thread.fpu)) {
  35. memset(&dst->thread.fpu, 0, sizeof(dst->thread.fpu));
  36. ret = fpu_alloc(&dst->thread.fpu);
  37. if (ret)
  38. return ret;
  39. fpu_copy(&dst->thread.fpu, &src->thread.fpu);
  40. }
  41. return 0;
  42. }
  43. void free_thread_xstate(struct task_struct *tsk)
  44. {
  45. fpu_free(&tsk->thread.fpu);
  46. }
  47. void free_thread_info(struct thread_info *ti)
  48. {
  49. free_thread_xstate(ti->task);
  50. free_pages((unsigned long)ti, get_order(THREAD_SIZE));
  51. }
  52. void arch_task_cache_init(void)
  53. {
  54. task_xstate_cachep =
  55. kmem_cache_create("task_xstate", xstate_size,
  56. __alignof__(union thread_xstate),
  57. SLAB_PANIC | SLAB_NOTRACK, NULL);
  58. }
  59. /*
  60. * Free current thread data structures etc..
  61. */
  62. void exit_thread(void)
  63. {
  64. struct task_struct *me = current;
  65. struct thread_struct *t = &me->thread;
  66. unsigned long *bp = t->io_bitmap_ptr;
  67. if (bp) {
  68. struct tss_struct *tss = &per_cpu(init_tss, get_cpu());
  69. t->io_bitmap_ptr = NULL;
  70. clear_thread_flag(TIF_IO_BITMAP);
  71. /*
  72. * Careful, clear this in the TSS too:
  73. */
  74. memset(tss->io_bitmap, 0xff, t->io_bitmap_max);
  75. t->io_bitmap_max = 0;
  76. put_cpu();
  77. kfree(bp);
  78. }
  79. }
  80. void show_regs(struct pt_regs *regs)
  81. {
  82. show_registers(regs);
  83. show_trace(NULL, regs, (unsigned long *)kernel_stack_pointer(regs));
  84. }
  85. void show_regs_common(void)
  86. {
  87. const char *board, *product;
  88. board = dmi_get_system_info(DMI_BOARD_NAME);
  89. if (!board)
  90. board = "";
  91. product = dmi_get_system_info(DMI_PRODUCT_NAME);
  92. if (!product)
  93. product = "";
  94. printk(KERN_CONT "\n");
  95. printk(KERN_DEFAULT "Pid: %d, comm: %.20s %s %s %.*s %s/%s\n",
  96. current->pid, current->comm, print_tainted(),
  97. init_utsname()->release,
  98. (int)strcspn(init_utsname()->version, " "),
  99. init_utsname()->version, board, product);
  100. }
  101. void flush_thread(void)
  102. {
  103. struct task_struct *tsk = current;
  104. flush_ptrace_hw_breakpoint(tsk);
  105. memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
  106. /*
  107. * Forget coprocessor state..
  108. */
  109. tsk->fpu_counter = 0;
  110. clear_fpu(tsk);
  111. clear_used_math();
  112. }
  113. static void hard_disable_TSC(void)
  114. {
  115. write_cr4(read_cr4() | X86_CR4_TSD);
  116. }
  117. void disable_TSC(void)
  118. {
  119. preempt_disable();
  120. if (!test_and_set_thread_flag(TIF_NOTSC))
  121. /*
  122. * Must flip the CPU state synchronously with
  123. * TIF_NOTSC in the current running context.
  124. */
  125. hard_disable_TSC();
  126. preempt_enable();
  127. }
  128. static void hard_enable_TSC(void)
  129. {
  130. write_cr4(read_cr4() & ~X86_CR4_TSD);
  131. }
  132. static void enable_TSC(void)
  133. {
  134. preempt_disable();
  135. if (test_and_clear_thread_flag(TIF_NOTSC))
  136. /*
  137. * Must flip the CPU state synchronously with
  138. * TIF_NOTSC in the current running context.
  139. */
  140. hard_enable_TSC();
  141. preempt_enable();
  142. }
  143. int get_tsc_mode(unsigned long adr)
  144. {
  145. unsigned int val;
  146. if (test_thread_flag(TIF_NOTSC))
  147. val = PR_TSC_SIGSEGV;
  148. else
  149. val = PR_TSC_ENABLE;
  150. return put_user(val, (unsigned int __user *)adr);
  151. }
  152. int set_tsc_mode(unsigned int val)
  153. {
  154. if (val == PR_TSC_SIGSEGV)
  155. disable_TSC();
  156. else if (val == PR_TSC_ENABLE)
  157. enable_TSC();
  158. else
  159. return -EINVAL;
  160. return 0;
  161. }
  162. void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p,
  163. struct tss_struct *tss)
  164. {
  165. struct thread_struct *prev, *next;
  166. prev = &prev_p->thread;
  167. next = &next_p->thread;
  168. if (test_tsk_thread_flag(prev_p, TIF_BLOCKSTEP) ^
  169. test_tsk_thread_flag(next_p, TIF_BLOCKSTEP)) {
  170. unsigned long debugctl = get_debugctlmsr();
  171. debugctl &= ~DEBUGCTLMSR_BTF;
  172. if (test_tsk_thread_flag(next_p, TIF_BLOCKSTEP))
  173. debugctl |= DEBUGCTLMSR_BTF;
  174. update_debugctlmsr(debugctl);
  175. }
  176. if (test_tsk_thread_flag(prev_p, TIF_NOTSC) ^
  177. test_tsk_thread_flag(next_p, TIF_NOTSC)) {
  178. /* prev and next are different */
  179. if (test_tsk_thread_flag(next_p, TIF_NOTSC))
  180. hard_disable_TSC();
  181. else
  182. hard_enable_TSC();
  183. }
  184. if (test_tsk_thread_flag(next_p, TIF_IO_BITMAP)) {
  185. /*
  186. * Copy the relevant range of the IO bitmap.
  187. * Normally this is 128 bytes or less:
  188. */
  189. memcpy(tss->io_bitmap, next->io_bitmap_ptr,
  190. max(prev->io_bitmap_max, next->io_bitmap_max));
  191. } else if (test_tsk_thread_flag(prev_p, TIF_IO_BITMAP)) {
  192. /*
  193. * Clear any possible leftover bits:
  194. */
  195. memset(tss->io_bitmap, 0xff, prev->io_bitmap_max);
  196. }
  197. propagate_user_return_notify(prev_p, next_p);
  198. }
  199. int sys_fork(struct pt_regs *regs)
  200. {
  201. return do_fork(SIGCHLD, regs->sp, regs, 0, NULL, NULL);
  202. }
  203. /*
  204. * This is trivial, and on the face of it looks like it
  205. * could equally well be done in user mode.
  206. *
  207. * Not so, for quite unobvious reasons - register pressure.
  208. * In user mode vfork() cannot have a stack frame, and if
  209. * done by calling the "clone()" system call directly, you
  210. * do not have enough call-clobbered registers to hold all
  211. * the information you need.
  212. */
  213. int sys_vfork(struct pt_regs *regs)
  214. {
  215. return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs->sp, regs, 0,
  216. NULL, NULL);
  217. }
  218. long
  219. sys_clone(unsigned long clone_flags, unsigned long newsp,
  220. void __user *parent_tid, void __user *child_tid, struct pt_regs *regs)
  221. {
  222. if (!newsp)
  223. newsp = regs->sp;
  224. return do_fork(clone_flags, newsp, regs, 0, parent_tid, child_tid);
  225. }
  226. /*
  227. * This gets run with %si containing the
  228. * function to call, and %di containing
  229. * the "args".
  230. */
  231. extern void kernel_thread_helper(void);
  232. /*
  233. * Create a kernel thread
  234. */
  235. int kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
  236. {
  237. struct pt_regs regs;
  238. memset(&regs, 0, sizeof(regs));
  239. regs.si = (unsigned long) fn;
  240. regs.di = (unsigned long) arg;
  241. #ifdef CONFIG_X86_32
  242. regs.ds = __USER_DS;
  243. regs.es = __USER_DS;
  244. regs.fs = __KERNEL_PERCPU;
  245. regs.gs = __KERNEL_STACK_CANARY;
  246. #else
  247. regs.ss = __KERNEL_DS;
  248. #endif
  249. regs.orig_ax = -1;
  250. regs.ip = (unsigned long) kernel_thread_helper;
  251. regs.cs = __KERNEL_CS | get_kernel_rpl();
  252. regs.flags = X86_EFLAGS_IF | 0x2;
  253. /* Ok, create the new process.. */
  254. return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, &regs, 0, NULL, NULL);
  255. }
  256. EXPORT_SYMBOL(kernel_thread);
  257. /*
  258. * sys_execve() executes a new program.
  259. */
  260. long sys_execve(const char __user *name,
  261. const char __user *const __user *argv,
  262. const char __user *const __user *envp, struct pt_regs *regs)
  263. {
  264. long error;
  265. char *filename;
  266. filename = getname(name);
  267. error = PTR_ERR(filename);
  268. if (IS_ERR(filename))
  269. return error;
  270. error = do_execve(filename, argv, envp, regs);
  271. #ifdef CONFIG_X86_32
  272. if (error == 0) {
  273. /* Make sure we don't return using sysenter.. */
  274. set_thread_flag(TIF_IRET);
  275. }
  276. #endif
  277. putname(filename);
  278. return error;
  279. }
  280. /*
  281. * Idle related variables and functions
  282. */
  283. unsigned long boot_option_idle_override = 0;
  284. EXPORT_SYMBOL(boot_option_idle_override);
  285. /*
  286. * Powermanagement idle function, if any..
  287. */
  288. void (*pm_idle)(void);
  289. EXPORT_SYMBOL(pm_idle);
  290. #ifdef CONFIG_X86_32
  291. /*
  292. * This halt magic was a workaround for ancient floppy DMA
  293. * wreckage. It should be safe to remove.
  294. */
  295. static int hlt_counter;
  296. void disable_hlt(void)
  297. {
  298. hlt_counter++;
  299. }
  300. EXPORT_SYMBOL(disable_hlt);
  301. void enable_hlt(void)
  302. {
  303. hlt_counter--;
  304. }
  305. EXPORT_SYMBOL(enable_hlt);
  306. static inline int hlt_use_halt(void)
  307. {
  308. return (!hlt_counter && boot_cpu_data.hlt_works_ok);
  309. }
  310. #else
  311. static inline int hlt_use_halt(void)
  312. {
  313. return 1;
  314. }
  315. #endif
  316. /*
  317. * We use this if we don't have any better
  318. * idle routine..
  319. */
  320. void default_idle(void)
  321. {
  322. if (hlt_use_halt()) {
  323. trace_power_start(POWER_CSTATE, 1, smp_processor_id());
  324. trace_cpu_idle(1, smp_processor_id());
  325. current_thread_info()->status &= ~TS_POLLING;
  326. /*
  327. * TS_POLLING-cleared state must be visible before we
  328. * test NEED_RESCHED:
  329. */
  330. smp_mb();
  331. if (!need_resched())
  332. safe_halt(); /* enables interrupts racelessly */
  333. else
  334. local_irq_enable();
  335. current_thread_info()->status |= TS_POLLING;
  336. trace_power_end(smp_processor_id());
  337. trace_cpu_idle(PWR_EVENT_EXIT, smp_processor_id());
  338. } else {
  339. local_irq_enable();
  340. /* loop is done by the caller */
  341. cpu_relax();
  342. }
  343. }
  344. #ifdef CONFIG_APM_MODULE
  345. EXPORT_SYMBOL(default_idle);
  346. #endif
  347. void stop_this_cpu(void *dummy)
  348. {
  349. local_irq_disable();
  350. /*
  351. * Remove this CPU:
  352. */
  353. set_cpu_online(smp_processor_id(), false);
  354. disable_local_APIC();
  355. for (;;) {
  356. if (hlt_works(smp_processor_id()))
  357. halt();
  358. }
  359. }
  360. static void do_nothing(void *unused)
  361. {
  362. }
  363. /*
  364. * cpu_idle_wait - Used to ensure that all the CPUs discard old value of
  365. * pm_idle and update to new pm_idle value. Required while changing pm_idle
  366. * handler on SMP systems.
  367. *
  368. * Caller must have changed pm_idle to the new value before the call. Old
  369. * pm_idle value will not be used by any CPU after the return of this function.
  370. */
  371. void cpu_idle_wait(void)
  372. {
  373. smp_mb();
  374. /* kick all the CPUs so that they exit out of pm_idle */
  375. smp_call_function(do_nothing, NULL, 1);
  376. }
  377. EXPORT_SYMBOL_GPL(cpu_idle_wait);
  378. /*
  379. * This uses new MONITOR/MWAIT instructions on P4 processors with PNI,
  380. * which can obviate IPI to trigger checking of need_resched.
  381. * We execute MONITOR against need_resched and enter optimized wait state
  382. * through MWAIT. Whenever someone changes need_resched, we would be woken
  383. * up from MWAIT (without an IPI).
  384. *
  385. * New with Core Duo processors, MWAIT can take some hints based on CPU
  386. * capability.
  387. */
  388. void mwait_idle_with_hints(unsigned long ax, unsigned long cx)
  389. {
  390. if (!need_resched()) {
  391. if (cpu_has(__this_cpu_ptr(&cpu_info), X86_FEATURE_CLFLUSH_MONITOR))
  392. clflush((void *)&current_thread_info()->flags);
  393. __monitor((void *)&current_thread_info()->flags, 0, 0);
  394. smp_mb();
  395. if (!need_resched())
  396. __mwait(ax, cx);
  397. }
  398. }
  399. /* Default MONITOR/MWAIT with no hints, used for default C1 state */
  400. static void mwait_idle(void)
  401. {
  402. if (!need_resched()) {
  403. trace_power_start(POWER_CSTATE, 1, smp_processor_id());
  404. trace_cpu_idle(1, smp_processor_id());
  405. if (cpu_has(__this_cpu_ptr(&cpu_info), X86_FEATURE_CLFLUSH_MONITOR))
  406. clflush((void *)&current_thread_info()->flags);
  407. __monitor((void *)&current_thread_info()->flags, 0, 0);
  408. smp_mb();
  409. if (!need_resched())
  410. __sti_mwait(0, 0);
  411. else
  412. local_irq_enable();
  413. trace_power_end(smp_processor_id());
  414. trace_cpu_idle(PWR_EVENT_EXIT, smp_processor_id());
  415. } else
  416. local_irq_enable();
  417. }
  418. /*
  419. * On SMP it's slightly faster (but much more power-consuming!)
  420. * to poll the ->work.need_resched flag instead of waiting for the
  421. * cross-CPU IPI to arrive. Use this option with caution.
  422. */
  423. static void poll_idle(void)
  424. {
  425. trace_power_start(POWER_CSTATE, 0, smp_processor_id());
  426. trace_cpu_idle(0, smp_processor_id());
  427. local_irq_enable();
  428. while (!need_resched())
  429. cpu_relax();
  430. trace_power_end(smp_processor_id());
  431. trace_cpu_idle(PWR_EVENT_EXIT, smp_processor_id());
  432. }
  433. /*
  434. * mwait selection logic:
  435. *
  436. * It depends on the CPU. For AMD CPUs that support MWAIT this is
  437. * wrong. Family 0x10 and 0x11 CPUs will enter C1 on HLT. Powersavings
  438. * then depend on a clock divisor and current Pstate of the core. If
  439. * all cores of a processor are in halt state (C1) the processor can
  440. * enter the C1E (C1 enhanced) state. If mwait is used this will never
  441. * happen.
  442. *
  443. * idle=mwait overrides this decision and forces the usage of mwait.
  444. */
  445. static int __cpuinitdata force_mwait;
  446. #define MWAIT_INFO 0x05
  447. #define MWAIT_ECX_EXTENDED_INFO 0x01
  448. #define MWAIT_EDX_C1 0xf0
  449. static int __cpuinit mwait_usable(const struct cpuinfo_x86 *c)
  450. {
  451. u32 eax, ebx, ecx, edx;
  452. if (force_mwait)
  453. return 1;
  454. if (c->cpuid_level < MWAIT_INFO)
  455. return 0;
  456. cpuid(MWAIT_INFO, &eax, &ebx, &ecx, &edx);
  457. /* Check, whether EDX has extended info about MWAIT */
  458. if (!(ecx & MWAIT_ECX_EXTENDED_INFO))
  459. return 1;
  460. /*
  461. * edx enumeratios MONITOR/MWAIT extensions. Check, whether
  462. * C1 supports MWAIT
  463. */
  464. return (edx & MWAIT_EDX_C1);
  465. }
  466. bool c1e_detected;
  467. EXPORT_SYMBOL(c1e_detected);
  468. static cpumask_var_t c1e_mask;
  469. void c1e_remove_cpu(int cpu)
  470. {
  471. if (c1e_mask != NULL)
  472. cpumask_clear_cpu(cpu, c1e_mask);
  473. }
  474. /*
  475. * C1E aware idle routine. We check for C1E active in the interrupt
  476. * pending message MSR. If we detect C1E, then we handle it the same
  477. * way as C3 power states (local apic timer and TSC stop)
  478. */
  479. static void c1e_idle(void)
  480. {
  481. if (need_resched())
  482. return;
  483. if (!c1e_detected) {
  484. u32 lo, hi;
  485. rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
  486. if (lo & K8_INTP_C1E_ACTIVE_MASK) {
  487. c1e_detected = true;
  488. if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
  489. mark_tsc_unstable("TSC halt in AMD C1E");
  490. printk(KERN_INFO "System has AMD C1E enabled\n");
  491. }
  492. }
  493. if (c1e_detected) {
  494. int cpu = smp_processor_id();
  495. if (!cpumask_test_cpu(cpu, c1e_mask)) {
  496. cpumask_set_cpu(cpu, c1e_mask);
  497. /*
  498. * Force broadcast so ACPI can not interfere.
  499. */
  500. clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_FORCE,
  501. &cpu);
  502. printk(KERN_INFO "Switch to broadcast mode on CPU%d\n",
  503. cpu);
  504. }
  505. clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_ENTER, &cpu);
  506. default_idle();
  507. /*
  508. * The switch back from broadcast mode needs to be
  509. * called with interrupts disabled.
  510. */
  511. local_irq_disable();
  512. clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_EXIT, &cpu);
  513. local_irq_enable();
  514. } else
  515. default_idle();
  516. }
  517. void __cpuinit select_idle_routine(const struct cpuinfo_x86 *c)
  518. {
  519. #ifdef CONFIG_SMP
  520. if (pm_idle == poll_idle && smp_num_siblings > 1) {
  521. printk_once(KERN_WARNING "WARNING: polling idle and HT enabled,"
  522. " performance may degrade.\n");
  523. }
  524. #endif
  525. if (pm_idle)
  526. return;
  527. if (cpu_has(c, X86_FEATURE_MWAIT) && mwait_usable(c)) {
  528. /*
  529. * One CPU supports mwait => All CPUs supports mwait
  530. */
  531. printk(KERN_INFO "using mwait in idle threads.\n");
  532. pm_idle = mwait_idle;
  533. } else if (cpu_has_amd_erratum(amd_erratum_400)) {
  534. /* E400: APIC timer interrupt does not wake up CPU from C1e */
  535. printk(KERN_INFO "using C1E aware idle routine\n");
  536. pm_idle = c1e_idle;
  537. } else
  538. pm_idle = default_idle;
  539. }
  540. void __init init_c1e_mask(void)
  541. {
  542. /* If we're using c1e_idle, we need to allocate c1e_mask. */
  543. if (pm_idle == c1e_idle)
  544. zalloc_cpumask_var(&c1e_mask, GFP_KERNEL);
  545. }
  546. static int __init idle_setup(char *str)
  547. {
  548. if (!str)
  549. return -EINVAL;
  550. if (!strcmp(str, "poll")) {
  551. printk("using polling idle threads.\n");
  552. pm_idle = poll_idle;
  553. } else if (!strcmp(str, "mwait"))
  554. force_mwait = 1;
  555. else if (!strcmp(str, "halt")) {
  556. /*
  557. * When the boot option of idle=halt is added, halt is
  558. * forced to be used for CPU idle. In such case CPU C2/C3
  559. * won't be used again.
  560. * To continue to load the CPU idle driver, don't touch
  561. * the boot_option_idle_override.
  562. */
  563. pm_idle = default_idle;
  564. idle_halt = 1;
  565. return 0;
  566. } else if (!strcmp(str, "nomwait")) {
  567. /*
  568. * If the boot option of "idle=nomwait" is added,
  569. * it means that mwait will be disabled for CPU C2/C3
  570. * states. In such case it won't touch the variable
  571. * of boot_option_idle_override.
  572. */
  573. idle_nomwait = 1;
  574. return 0;
  575. } else
  576. return -1;
  577. boot_option_idle_override = 1;
  578. return 0;
  579. }
  580. early_param("idle", idle_setup);
  581. unsigned long arch_align_stack(unsigned long sp)
  582. {
  583. if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
  584. sp -= get_random_int() % 8192;
  585. return sp & ~0xf;
  586. }
  587. unsigned long arch_randomize_brk(struct mm_struct *mm)
  588. {
  589. unsigned long range_end = mm->brk + 0x02000000;
  590. return randomize_range(mm->brk, range_end, 0) ? : mm->brk;
  591. }