x86.c 69 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * derived from drivers/kvm/kvm_main.c
  5. *
  6. * Copyright (C) 2006 Qumranet, Inc.
  7. *
  8. * Authors:
  9. * Avi Kivity <avi@qumranet.com>
  10. * Yaniv Kamay <yaniv@qumranet.com>
  11. *
  12. * This work is licensed under the terms of the GNU GPL, version 2. See
  13. * the COPYING file in the top-level directory.
  14. *
  15. */
  16. #include "kvm.h"
  17. #include "x86.h"
  18. #include "x86_emulate.h"
  19. #include "segment_descriptor.h"
  20. #include "irq.h"
  21. #include <linux/kvm.h>
  22. #include <linux/fs.h>
  23. #include <linux/vmalloc.h>
  24. #include <linux/module.h>
  25. #include <linux/mman.h>
  26. #include <asm/uaccess.h>
  27. #include <asm/msr.h>
  28. #define MAX_IO_MSRS 256
  29. #define CR0_RESERVED_BITS \
  30. (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
  31. | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
  32. | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
  33. #define CR4_RESERVED_BITS \
  34. (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
  35. | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \
  36. | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR \
  37. | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
  38. #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
  39. #define EFER_RESERVED_BITS 0xfffffffffffff2fe
  40. #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
  41. #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
  42. struct kvm_x86_ops *kvm_x86_ops;
  43. struct kvm_stats_debugfs_item debugfs_entries[] = {
  44. { "pf_fixed", VCPU_STAT(pf_fixed) },
  45. { "pf_guest", VCPU_STAT(pf_guest) },
  46. { "tlb_flush", VCPU_STAT(tlb_flush) },
  47. { "invlpg", VCPU_STAT(invlpg) },
  48. { "exits", VCPU_STAT(exits) },
  49. { "io_exits", VCPU_STAT(io_exits) },
  50. { "mmio_exits", VCPU_STAT(mmio_exits) },
  51. { "signal_exits", VCPU_STAT(signal_exits) },
  52. { "irq_window", VCPU_STAT(irq_window_exits) },
  53. { "halt_exits", VCPU_STAT(halt_exits) },
  54. { "halt_wakeup", VCPU_STAT(halt_wakeup) },
  55. { "request_irq", VCPU_STAT(request_irq_exits) },
  56. { "irq_exits", VCPU_STAT(irq_exits) },
  57. { "host_state_reload", VCPU_STAT(host_state_reload) },
  58. { "efer_reload", VCPU_STAT(efer_reload) },
  59. { "fpu_reload", VCPU_STAT(fpu_reload) },
  60. { "insn_emulation", VCPU_STAT(insn_emulation) },
  61. { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
  62. { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
  63. { "mmu_pte_write", VM_STAT(mmu_pte_write) },
  64. { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
  65. { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
  66. { "mmu_flooded", VM_STAT(mmu_flooded) },
  67. { "mmu_recycled", VM_STAT(mmu_recycled) },
  68. { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
  69. { NULL }
  70. };
  71. unsigned long segment_base(u16 selector)
  72. {
  73. struct descriptor_table gdt;
  74. struct segment_descriptor *d;
  75. unsigned long table_base;
  76. unsigned long v;
  77. if (selector == 0)
  78. return 0;
  79. asm("sgdt %0" : "=m"(gdt));
  80. table_base = gdt.base;
  81. if (selector & 4) { /* from ldt */
  82. u16 ldt_selector;
  83. asm("sldt %0" : "=g"(ldt_selector));
  84. table_base = segment_base(ldt_selector);
  85. }
  86. d = (struct segment_descriptor *)(table_base + (selector & ~7));
  87. v = d->base_low | ((unsigned long)d->base_mid << 16) |
  88. ((unsigned long)d->base_high << 24);
  89. #ifdef CONFIG_X86_64
  90. if (d->system == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
  91. v |= ((unsigned long) \
  92. ((struct segment_descriptor_64 *)d)->base_higher) << 32;
  93. #endif
  94. return v;
  95. }
  96. EXPORT_SYMBOL_GPL(segment_base);
  97. u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
  98. {
  99. if (irqchip_in_kernel(vcpu->kvm))
  100. return vcpu->apic_base;
  101. else
  102. return vcpu->apic_base;
  103. }
  104. EXPORT_SYMBOL_GPL(kvm_get_apic_base);
  105. void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
  106. {
  107. /* TODO: reserve bits check */
  108. if (irqchip_in_kernel(vcpu->kvm))
  109. kvm_lapic_set_base(vcpu, data);
  110. else
  111. vcpu->apic_base = data;
  112. }
  113. EXPORT_SYMBOL_GPL(kvm_set_apic_base);
  114. static void inject_gp(struct kvm_vcpu *vcpu)
  115. {
  116. kvm_x86_ops->inject_gp(vcpu, 0);
  117. }
  118. /*
  119. * Load the pae pdptrs. Return true is they are all valid.
  120. */
  121. int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
  122. {
  123. gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
  124. unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
  125. int i;
  126. int ret;
  127. u64 pdpte[ARRAY_SIZE(vcpu->pdptrs)];
  128. mutex_lock(&vcpu->kvm->lock);
  129. ret = kvm_read_guest_page(vcpu->kvm, pdpt_gfn, pdpte,
  130. offset * sizeof(u64), sizeof(pdpte));
  131. if (ret < 0) {
  132. ret = 0;
  133. goto out;
  134. }
  135. for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
  136. if ((pdpte[i] & 1) && (pdpte[i] & 0xfffffff0000001e6ull)) {
  137. ret = 0;
  138. goto out;
  139. }
  140. }
  141. ret = 1;
  142. memcpy(vcpu->pdptrs, pdpte, sizeof(vcpu->pdptrs));
  143. out:
  144. mutex_unlock(&vcpu->kvm->lock);
  145. return ret;
  146. }
  147. static bool pdptrs_changed(struct kvm_vcpu *vcpu)
  148. {
  149. u64 pdpte[ARRAY_SIZE(vcpu->pdptrs)];
  150. bool changed = true;
  151. int r;
  152. if (is_long_mode(vcpu) || !is_pae(vcpu))
  153. return false;
  154. mutex_lock(&vcpu->kvm->lock);
  155. r = kvm_read_guest(vcpu->kvm, vcpu->cr3 & ~31u, pdpte, sizeof(pdpte));
  156. if (r < 0)
  157. goto out;
  158. changed = memcmp(pdpte, vcpu->pdptrs, sizeof(pdpte)) != 0;
  159. out:
  160. mutex_unlock(&vcpu->kvm->lock);
  161. return changed;
  162. }
  163. void set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  164. {
  165. if (cr0 & CR0_RESERVED_BITS) {
  166. printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
  167. cr0, vcpu->cr0);
  168. inject_gp(vcpu);
  169. return;
  170. }
  171. if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) {
  172. printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n");
  173. inject_gp(vcpu);
  174. return;
  175. }
  176. if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) {
  177. printk(KERN_DEBUG "set_cr0: #GP, set PG flag "
  178. "and a clear PE flag\n");
  179. inject_gp(vcpu);
  180. return;
  181. }
  182. if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
  183. #ifdef CONFIG_X86_64
  184. if ((vcpu->shadow_efer & EFER_LME)) {
  185. int cs_db, cs_l;
  186. if (!is_pae(vcpu)) {
  187. printk(KERN_DEBUG "set_cr0: #GP, start paging "
  188. "in long mode while PAE is disabled\n");
  189. inject_gp(vcpu);
  190. return;
  191. }
  192. kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  193. if (cs_l) {
  194. printk(KERN_DEBUG "set_cr0: #GP, start paging "
  195. "in long mode while CS.L == 1\n");
  196. inject_gp(vcpu);
  197. return;
  198. }
  199. } else
  200. #endif
  201. if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->cr3)) {
  202. printk(KERN_DEBUG "set_cr0: #GP, pdptrs "
  203. "reserved bits\n");
  204. inject_gp(vcpu);
  205. return;
  206. }
  207. }
  208. kvm_x86_ops->set_cr0(vcpu, cr0);
  209. vcpu->cr0 = cr0;
  210. mutex_lock(&vcpu->kvm->lock);
  211. kvm_mmu_reset_context(vcpu);
  212. mutex_unlock(&vcpu->kvm->lock);
  213. return;
  214. }
  215. EXPORT_SYMBOL_GPL(set_cr0);
  216. void lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
  217. {
  218. set_cr0(vcpu, (vcpu->cr0 & ~0x0ful) | (msw & 0x0f));
  219. }
  220. EXPORT_SYMBOL_GPL(lmsw);
  221. void set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  222. {
  223. if (cr4 & CR4_RESERVED_BITS) {
  224. printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n");
  225. inject_gp(vcpu);
  226. return;
  227. }
  228. if (is_long_mode(vcpu)) {
  229. if (!(cr4 & X86_CR4_PAE)) {
  230. printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while "
  231. "in long mode\n");
  232. inject_gp(vcpu);
  233. return;
  234. }
  235. } else if (is_paging(vcpu) && !is_pae(vcpu) && (cr4 & X86_CR4_PAE)
  236. && !load_pdptrs(vcpu, vcpu->cr3)) {
  237. printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n");
  238. inject_gp(vcpu);
  239. return;
  240. }
  241. if (cr4 & X86_CR4_VMXE) {
  242. printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n");
  243. inject_gp(vcpu);
  244. return;
  245. }
  246. kvm_x86_ops->set_cr4(vcpu, cr4);
  247. vcpu->cr4 = cr4;
  248. mutex_lock(&vcpu->kvm->lock);
  249. kvm_mmu_reset_context(vcpu);
  250. mutex_unlock(&vcpu->kvm->lock);
  251. }
  252. EXPORT_SYMBOL_GPL(set_cr4);
  253. void set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
  254. {
  255. if (cr3 == vcpu->cr3 && !pdptrs_changed(vcpu)) {
  256. kvm_mmu_flush_tlb(vcpu);
  257. return;
  258. }
  259. if (is_long_mode(vcpu)) {
  260. if (cr3 & CR3_L_MODE_RESERVED_BITS) {
  261. printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
  262. inject_gp(vcpu);
  263. return;
  264. }
  265. } else {
  266. if (is_pae(vcpu)) {
  267. if (cr3 & CR3_PAE_RESERVED_BITS) {
  268. printk(KERN_DEBUG
  269. "set_cr3: #GP, reserved bits\n");
  270. inject_gp(vcpu);
  271. return;
  272. }
  273. if (is_paging(vcpu) && !load_pdptrs(vcpu, cr3)) {
  274. printk(KERN_DEBUG "set_cr3: #GP, pdptrs "
  275. "reserved bits\n");
  276. inject_gp(vcpu);
  277. return;
  278. }
  279. }
  280. /*
  281. * We don't check reserved bits in nonpae mode, because
  282. * this isn't enforced, and VMware depends on this.
  283. */
  284. }
  285. mutex_lock(&vcpu->kvm->lock);
  286. /*
  287. * Does the new cr3 value map to physical memory? (Note, we
  288. * catch an invalid cr3 even in real-mode, because it would
  289. * cause trouble later on when we turn on paging anyway.)
  290. *
  291. * A real CPU would silently accept an invalid cr3 and would
  292. * attempt to use it - with largely undefined (and often hard
  293. * to debug) behavior on the guest side.
  294. */
  295. if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
  296. inject_gp(vcpu);
  297. else {
  298. vcpu->cr3 = cr3;
  299. vcpu->mmu.new_cr3(vcpu);
  300. }
  301. mutex_unlock(&vcpu->kvm->lock);
  302. }
  303. EXPORT_SYMBOL_GPL(set_cr3);
  304. void set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
  305. {
  306. if (cr8 & CR8_RESERVED_BITS) {
  307. printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8);
  308. inject_gp(vcpu);
  309. return;
  310. }
  311. if (irqchip_in_kernel(vcpu->kvm))
  312. kvm_lapic_set_tpr(vcpu, cr8);
  313. else
  314. vcpu->cr8 = cr8;
  315. }
  316. EXPORT_SYMBOL_GPL(set_cr8);
  317. unsigned long get_cr8(struct kvm_vcpu *vcpu)
  318. {
  319. if (irqchip_in_kernel(vcpu->kvm))
  320. return kvm_lapic_get_cr8(vcpu);
  321. else
  322. return vcpu->cr8;
  323. }
  324. EXPORT_SYMBOL_GPL(get_cr8);
  325. /*
  326. * List of msr numbers which we expose to userspace through KVM_GET_MSRS
  327. * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
  328. *
  329. * This list is modified at module load time to reflect the
  330. * capabilities of the host cpu.
  331. */
  332. static u32 msrs_to_save[] = {
  333. MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
  334. MSR_K6_STAR,
  335. #ifdef CONFIG_X86_64
  336. MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
  337. #endif
  338. MSR_IA32_TIME_STAMP_COUNTER,
  339. };
  340. static unsigned num_msrs_to_save;
  341. static u32 emulated_msrs[] = {
  342. MSR_IA32_MISC_ENABLE,
  343. };
  344. #ifdef CONFIG_X86_64
  345. static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
  346. {
  347. if (efer & EFER_RESERVED_BITS) {
  348. printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n",
  349. efer);
  350. inject_gp(vcpu);
  351. return;
  352. }
  353. if (is_paging(vcpu)
  354. && (vcpu->shadow_efer & EFER_LME) != (efer & EFER_LME)) {
  355. printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n");
  356. inject_gp(vcpu);
  357. return;
  358. }
  359. kvm_x86_ops->set_efer(vcpu, efer);
  360. efer &= ~EFER_LMA;
  361. efer |= vcpu->shadow_efer & EFER_LMA;
  362. vcpu->shadow_efer = efer;
  363. }
  364. #endif
  365. /*
  366. * Writes msr value into into the appropriate "register".
  367. * Returns 0 on success, non-0 otherwise.
  368. * Assumes vcpu_load() was already called.
  369. */
  370. int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  371. {
  372. return kvm_x86_ops->set_msr(vcpu, msr_index, data);
  373. }
  374. /*
  375. * Adapt set_msr() to msr_io()'s calling convention
  376. */
  377. static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
  378. {
  379. return kvm_set_msr(vcpu, index, *data);
  380. }
  381. int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  382. {
  383. switch (msr) {
  384. #ifdef CONFIG_X86_64
  385. case MSR_EFER:
  386. set_efer(vcpu, data);
  387. break;
  388. #endif
  389. case MSR_IA32_MC0_STATUS:
  390. pr_unimpl(vcpu, "%s: MSR_IA32_MC0_STATUS 0x%llx, nop\n",
  391. __FUNCTION__, data);
  392. break;
  393. case MSR_IA32_MCG_STATUS:
  394. pr_unimpl(vcpu, "%s: MSR_IA32_MCG_STATUS 0x%llx, nop\n",
  395. __FUNCTION__, data);
  396. break;
  397. case MSR_IA32_UCODE_REV:
  398. case MSR_IA32_UCODE_WRITE:
  399. case 0x200 ... 0x2ff: /* MTRRs */
  400. break;
  401. case MSR_IA32_APICBASE:
  402. kvm_set_apic_base(vcpu, data);
  403. break;
  404. case MSR_IA32_MISC_ENABLE:
  405. vcpu->ia32_misc_enable_msr = data;
  406. break;
  407. default:
  408. pr_unimpl(vcpu, "unhandled wrmsr: 0x%x\n", msr);
  409. return 1;
  410. }
  411. return 0;
  412. }
  413. EXPORT_SYMBOL_GPL(kvm_set_msr_common);
  414. /*
  415. * Reads an msr value (of 'msr_index') into 'pdata'.
  416. * Returns 0 on success, non-0 otherwise.
  417. * Assumes vcpu_load() was already called.
  418. */
  419. int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  420. {
  421. return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
  422. }
  423. int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  424. {
  425. u64 data;
  426. switch (msr) {
  427. case 0xc0010010: /* SYSCFG */
  428. case 0xc0010015: /* HWCR */
  429. case MSR_IA32_PLATFORM_ID:
  430. case MSR_IA32_P5_MC_ADDR:
  431. case MSR_IA32_P5_MC_TYPE:
  432. case MSR_IA32_MC0_CTL:
  433. case MSR_IA32_MCG_STATUS:
  434. case MSR_IA32_MCG_CAP:
  435. case MSR_IA32_MC0_MISC:
  436. case MSR_IA32_MC0_MISC+4:
  437. case MSR_IA32_MC0_MISC+8:
  438. case MSR_IA32_MC0_MISC+12:
  439. case MSR_IA32_MC0_MISC+16:
  440. case MSR_IA32_UCODE_REV:
  441. case MSR_IA32_PERF_STATUS:
  442. case MSR_IA32_EBL_CR_POWERON:
  443. /* MTRR registers */
  444. case 0xfe:
  445. case 0x200 ... 0x2ff:
  446. data = 0;
  447. break;
  448. case 0xcd: /* fsb frequency */
  449. data = 3;
  450. break;
  451. case MSR_IA32_APICBASE:
  452. data = kvm_get_apic_base(vcpu);
  453. break;
  454. case MSR_IA32_MISC_ENABLE:
  455. data = vcpu->ia32_misc_enable_msr;
  456. break;
  457. #ifdef CONFIG_X86_64
  458. case MSR_EFER:
  459. data = vcpu->shadow_efer;
  460. break;
  461. #endif
  462. default:
  463. pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
  464. return 1;
  465. }
  466. *pdata = data;
  467. return 0;
  468. }
  469. EXPORT_SYMBOL_GPL(kvm_get_msr_common);
  470. /*
  471. * Read or write a bunch of msrs. All parameters are kernel addresses.
  472. *
  473. * @return number of msrs set successfully.
  474. */
  475. static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
  476. struct kvm_msr_entry *entries,
  477. int (*do_msr)(struct kvm_vcpu *vcpu,
  478. unsigned index, u64 *data))
  479. {
  480. int i;
  481. vcpu_load(vcpu);
  482. for (i = 0; i < msrs->nmsrs; ++i)
  483. if (do_msr(vcpu, entries[i].index, &entries[i].data))
  484. break;
  485. vcpu_put(vcpu);
  486. return i;
  487. }
  488. /*
  489. * Read or write a bunch of msrs. Parameters are user addresses.
  490. *
  491. * @return number of msrs set successfully.
  492. */
  493. static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
  494. int (*do_msr)(struct kvm_vcpu *vcpu,
  495. unsigned index, u64 *data),
  496. int writeback)
  497. {
  498. struct kvm_msrs msrs;
  499. struct kvm_msr_entry *entries;
  500. int r, n;
  501. unsigned size;
  502. r = -EFAULT;
  503. if (copy_from_user(&msrs, user_msrs, sizeof msrs))
  504. goto out;
  505. r = -E2BIG;
  506. if (msrs.nmsrs >= MAX_IO_MSRS)
  507. goto out;
  508. r = -ENOMEM;
  509. size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
  510. entries = vmalloc(size);
  511. if (!entries)
  512. goto out;
  513. r = -EFAULT;
  514. if (copy_from_user(entries, user_msrs->entries, size))
  515. goto out_free;
  516. r = n = __msr_io(vcpu, &msrs, entries, do_msr);
  517. if (r < 0)
  518. goto out_free;
  519. r = -EFAULT;
  520. if (writeback && copy_to_user(user_msrs->entries, entries, size))
  521. goto out_free;
  522. r = n;
  523. out_free:
  524. vfree(entries);
  525. out:
  526. return r;
  527. }
  528. /*
  529. * Make sure that a cpu that is being hot-unplugged does not have any vcpus
  530. * cached on it.
  531. */
  532. void decache_vcpus_on_cpu(int cpu)
  533. {
  534. struct kvm *vm;
  535. struct kvm_vcpu *vcpu;
  536. int i;
  537. spin_lock(&kvm_lock);
  538. list_for_each_entry(vm, &vm_list, vm_list)
  539. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  540. vcpu = vm->vcpus[i];
  541. if (!vcpu)
  542. continue;
  543. /*
  544. * If the vcpu is locked, then it is running on some
  545. * other cpu and therefore it is not cached on the
  546. * cpu in question.
  547. *
  548. * If it's not locked, check the last cpu it executed
  549. * on.
  550. */
  551. if (mutex_trylock(&vcpu->mutex)) {
  552. if (vcpu->cpu == cpu) {
  553. kvm_x86_ops->vcpu_decache(vcpu);
  554. vcpu->cpu = -1;
  555. }
  556. mutex_unlock(&vcpu->mutex);
  557. }
  558. }
  559. spin_unlock(&kvm_lock);
  560. }
  561. int kvm_dev_ioctl_check_extension(long ext)
  562. {
  563. int r;
  564. switch (ext) {
  565. case KVM_CAP_IRQCHIP:
  566. case KVM_CAP_HLT:
  567. case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
  568. case KVM_CAP_USER_MEMORY:
  569. case KVM_CAP_SET_TSS_ADDR:
  570. case KVM_CAP_EXT_CPUID:
  571. r = 1;
  572. break;
  573. default:
  574. r = 0;
  575. break;
  576. }
  577. return r;
  578. }
  579. long kvm_arch_dev_ioctl(struct file *filp,
  580. unsigned int ioctl, unsigned long arg)
  581. {
  582. void __user *argp = (void __user *)arg;
  583. long r;
  584. switch (ioctl) {
  585. case KVM_GET_MSR_INDEX_LIST: {
  586. struct kvm_msr_list __user *user_msr_list = argp;
  587. struct kvm_msr_list msr_list;
  588. unsigned n;
  589. r = -EFAULT;
  590. if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
  591. goto out;
  592. n = msr_list.nmsrs;
  593. msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
  594. if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
  595. goto out;
  596. r = -E2BIG;
  597. if (n < num_msrs_to_save)
  598. goto out;
  599. r = -EFAULT;
  600. if (copy_to_user(user_msr_list->indices, &msrs_to_save,
  601. num_msrs_to_save * sizeof(u32)))
  602. goto out;
  603. if (copy_to_user(user_msr_list->indices
  604. + num_msrs_to_save * sizeof(u32),
  605. &emulated_msrs,
  606. ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
  607. goto out;
  608. r = 0;
  609. break;
  610. }
  611. default:
  612. r = -EINVAL;
  613. }
  614. out:
  615. return r;
  616. }
  617. void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
  618. {
  619. kvm_x86_ops->vcpu_load(vcpu, cpu);
  620. }
  621. void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
  622. {
  623. kvm_x86_ops->vcpu_put(vcpu);
  624. kvm_put_guest_fpu(vcpu);
  625. }
  626. static int is_efer_nx(void)
  627. {
  628. u64 efer;
  629. rdmsrl(MSR_EFER, efer);
  630. return efer & EFER_NX;
  631. }
  632. static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
  633. {
  634. int i;
  635. struct kvm_cpuid_entry2 *e, *entry;
  636. entry = NULL;
  637. for (i = 0; i < vcpu->cpuid_nent; ++i) {
  638. e = &vcpu->cpuid_entries[i];
  639. if (e->function == 0x80000001) {
  640. entry = e;
  641. break;
  642. }
  643. }
  644. if (entry && (entry->edx & (1 << 20)) && !is_efer_nx()) {
  645. entry->edx &= ~(1 << 20);
  646. printk(KERN_INFO "kvm: guest NX capability removed\n");
  647. }
  648. }
  649. /* when an old userspace process fills a new kernel module */
  650. static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
  651. struct kvm_cpuid *cpuid,
  652. struct kvm_cpuid_entry __user *entries)
  653. {
  654. int r, i;
  655. struct kvm_cpuid_entry *cpuid_entries;
  656. r = -E2BIG;
  657. if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
  658. goto out;
  659. r = -ENOMEM;
  660. cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent);
  661. if (!cpuid_entries)
  662. goto out;
  663. r = -EFAULT;
  664. if (copy_from_user(cpuid_entries, entries,
  665. cpuid->nent * sizeof(struct kvm_cpuid_entry)))
  666. goto out_free;
  667. for (i = 0; i < cpuid->nent; i++) {
  668. vcpu->cpuid_entries[i].function = cpuid_entries[i].function;
  669. vcpu->cpuid_entries[i].eax = cpuid_entries[i].eax;
  670. vcpu->cpuid_entries[i].ebx = cpuid_entries[i].ebx;
  671. vcpu->cpuid_entries[i].ecx = cpuid_entries[i].ecx;
  672. vcpu->cpuid_entries[i].edx = cpuid_entries[i].edx;
  673. vcpu->cpuid_entries[i].index = 0;
  674. vcpu->cpuid_entries[i].flags = 0;
  675. vcpu->cpuid_entries[i].padding[0] = 0;
  676. vcpu->cpuid_entries[i].padding[1] = 0;
  677. vcpu->cpuid_entries[i].padding[2] = 0;
  678. }
  679. vcpu->cpuid_nent = cpuid->nent;
  680. cpuid_fix_nx_cap(vcpu);
  681. r = 0;
  682. out_free:
  683. vfree(cpuid_entries);
  684. out:
  685. return r;
  686. }
  687. static int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
  688. struct kvm_cpuid2 *cpuid,
  689. struct kvm_cpuid_entry2 __user *entries)
  690. {
  691. int r;
  692. r = -E2BIG;
  693. if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
  694. goto out;
  695. r = -EFAULT;
  696. if (copy_from_user(&vcpu->cpuid_entries, entries,
  697. cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
  698. goto out;
  699. vcpu->cpuid_nent = cpuid->nent;
  700. return 0;
  701. out:
  702. return r;
  703. }
  704. static int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
  705. struct kvm_cpuid2 *cpuid,
  706. struct kvm_cpuid_entry2 __user *entries)
  707. {
  708. int r;
  709. r = -E2BIG;
  710. if (cpuid->nent < vcpu->cpuid_nent)
  711. goto out;
  712. r = -EFAULT;
  713. if (copy_to_user(entries, &vcpu->cpuid_entries,
  714. vcpu->cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
  715. goto out;
  716. return 0;
  717. out:
  718. cpuid->nent = vcpu->cpuid_nent;
  719. return r;
  720. }
  721. static inline u32 bit(int bitno)
  722. {
  723. return 1 << (bitno & 31);
  724. }
  725. static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
  726. u32 index)
  727. {
  728. entry->function = function;
  729. entry->index = index;
  730. cpuid_count(entry->function, entry->index,
  731. &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
  732. entry->flags = 0;
  733. }
  734. static void do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
  735. u32 index, int *nent, int maxnent)
  736. {
  737. const u32 kvm_supported_word0_x86_features = bit(X86_FEATURE_FPU) |
  738. bit(X86_FEATURE_VME) | bit(X86_FEATURE_DE) |
  739. bit(X86_FEATURE_PSE) | bit(X86_FEATURE_TSC) |
  740. bit(X86_FEATURE_MSR) | bit(X86_FEATURE_PAE) |
  741. bit(X86_FEATURE_CX8) | bit(X86_FEATURE_APIC) |
  742. bit(X86_FEATURE_SEP) | bit(X86_FEATURE_PGE) |
  743. bit(X86_FEATURE_CMOV) | bit(X86_FEATURE_PSE36) |
  744. bit(X86_FEATURE_CLFLSH) | bit(X86_FEATURE_MMX) |
  745. bit(X86_FEATURE_FXSR) | bit(X86_FEATURE_XMM) |
  746. bit(X86_FEATURE_XMM2) | bit(X86_FEATURE_SELFSNOOP);
  747. const u32 kvm_supported_word1_x86_features = bit(X86_FEATURE_FPU) |
  748. bit(X86_FEATURE_VME) | bit(X86_FEATURE_DE) |
  749. bit(X86_FEATURE_PSE) | bit(X86_FEATURE_TSC) |
  750. bit(X86_FEATURE_MSR) | bit(X86_FEATURE_PAE) |
  751. bit(X86_FEATURE_CX8) | bit(X86_FEATURE_APIC) |
  752. bit(X86_FEATURE_PGE) |
  753. bit(X86_FEATURE_CMOV) | bit(X86_FEATURE_PSE36) |
  754. bit(X86_FEATURE_MMX) | bit(X86_FEATURE_FXSR) |
  755. bit(X86_FEATURE_SYSCALL) |
  756. (bit(X86_FEATURE_NX) && is_efer_nx()) |
  757. #ifdef CONFIG_X86_64
  758. bit(X86_FEATURE_LM) |
  759. #endif
  760. bit(X86_FEATURE_MMXEXT) |
  761. bit(X86_FEATURE_3DNOWEXT) |
  762. bit(X86_FEATURE_3DNOW);
  763. const u32 kvm_supported_word3_x86_features =
  764. bit(X86_FEATURE_XMM3) | bit(X86_FEATURE_CX16);
  765. const u32 kvm_supported_word6_x86_features =
  766. bit(X86_FEATURE_LAHF_LM) | bit(X86_FEATURE_CMP_LEGACY);
  767. /* all func 2 cpuid_count() should be called on the same cpu */
  768. get_cpu();
  769. do_cpuid_1_ent(entry, function, index);
  770. ++*nent;
  771. switch (function) {
  772. case 0:
  773. entry->eax = min(entry->eax, (u32)0xb);
  774. break;
  775. case 1:
  776. entry->edx &= kvm_supported_word0_x86_features;
  777. entry->ecx &= kvm_supported_word3_x86_features;
  778. break;
  779. /* function 2 entries are STATEFUL. That is, repeated cpuid commands
  780. * may return different values. This forces us to get_cpu() before
  781. * issuing the first command, and also to emulate this annoying behavior
  782. * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
  783. case 2: {
  784. int t, times = entry->eax & 0xff;
  785. entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
  786. for (t = 1; t < times && *nent < maxnent; ++t) {
  787. do_cpuid_1_ent(&entry[t], function, 0);
  788. entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
  789. ++*nent;
  790. }
  791. break;
  792. }
  793. /* function 4 and 0xb have additional index. */
  794. case 4: {
  795. int index, cache_type;
  796. entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  797. /* read more entries until cache_type is zero */
  798. for (index = 1; *nent < maxnent; ++index) {
  799. cache_type = entry[index - 1].eax & 0x1f;
  800. if (!cache_type)
  801. break;
  802. do_cpuid_1_ent(&entry[index], function, index);
  803. entry[index].flags |=
  804. KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  805. ++*nent;
  806. }
  807. break;
  808. }
  809. case 0xb: {
  810. int index, level_type;
  811. entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  812. /* read more entries until level_type is zero */
  813. for (index = 1; *nent < maxnent; ++index) {
  814. level_type = entry[index - 1].ecx & 0xff;
  815. if (!level_type)
  816. break;
  817. do_cpuid_1_ent(&entry[index], function, index);
  818. entry[index].flags |=
  819. KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  820. ++*nent;
  821. }
  822. break;
  823. }
  824. case 0x80000000:
  825. entry->eax = min(entry->eax, 0x8000001a);
  826. break;
  827. case 0x80000001:
  828. entry->edx &= kvm_supported_word1_x86_features;
  829. entry->ecx &= kvm_supported_word6_x86_features;
  830. break;
  831. }
  832. put_cpu();
  833. }
  834. static int kvm_vm_ioctl_get_supported_cpuid(struct kvm *kvm,
  835. struct kvm_cpuid2 *cpuid,
  836. struct kvm_cpuid_entry2 __user *entries)
  837. {
  838. struct kvm_cpuid_entry2 *cpuid_entries;
  839. int limit, nent = 0, r = -E2BIG;
  840. u32 func;
  841. if (cpuid->nent < 1)
  842. goto out;
  843. r = -ENOMEM;
  844. cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
  845. if (!cpuid_entries)
  846. goto out;
  847. do_cpuid_ent(&cpuid_entries[0], 0, 0, &nent, cpuid->nent);
  848. limit = cpuid_entries[0].eax;
  849. for (func = 1; func <= limit && nent < cpuid->nent; ++func)
  850. do_cpuid_ent(&cpuid_entries[nent], func, 0,
  851. &nent, cpuid->nent);
  852. r = -E2BIG;
  853. if (nent >= cpuid->nent)
  854. goto out_free;
  855. do_cpuid_ent(&cpuid_entries[nent], 0x80000000, 0, &nent, cpuid->nent);
  856. limit = cpuid_entries[nent - 1].eax;
  857. for (func = 0x80000001; func <= limit && nent < cpuid->nent; ++func)
  858. do_cpuid_ent(&cpuid_entries[nent], func, 0,
  859. &nent, cpuid->nent);
  860. r = -EFAULT;
  861. if (copy_to_user(entries, cpuid_entries,
  862. nent * sizeof(struct kvm_cpuid_entry2)))
  863. goto out_free;
  864. cpuid->nent = nent;
  865. r = 0;
  866. out_free:
  867. vfree(cpuid_entries);
  868. out:
  869. return r;
  870. }
  871. static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
  872. struct kvm_lapic_state *s)
  873. {
  874. vcpu_load(vcpu);
  875. memcpy(s->regs, vcpu->apic->regs, sizeof *s);
  876. vcpu_put(vcpu);
  877. return 0;
  878. }
  879. static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
  880. struct kvm_lapic_state *s)
  881. {
  882. vcpu_load(vcpu);
  883. memcpy(vcpu->apic->regs, s->regs, sizeof *s);
  884. kvm_apic_post_state_restore(vcpu);
  885. vcpu_put(vcpu);
  886. return 0;
  887. }
  888. static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
  889. struct kvm_interrupt *irq)
  890. {
  891. if (irq->irq < 0 || irq->irq >= 256)
  892. return -EINVAL;
  893. if (irqchip_in_kernel(vcpu->kvm))
  894. return -ENXIO;
  895. vcpu_load(vcpu);
  896. set_bit(irq->irq, vcpu->irq_pending);
  897. set_bit(irq->irq / BITS_PER_LONG, &vcpu->irq_summary);
  898. vcpu_put(vcpu);
  899. return 0;
  900. }
  901. long kvm_arch_vcpu_ioctl(struct file *filp,
  902. unsigned int ioctl, unsigned long arg)
  903. {
  904. struct kvm_vcpu *vcpu = filp->private_data;
  905. void __user *argp = (void __user *)arg;
  906. int r;
  907. switch (ioctl) {
  908. case KVM_GET_LAPIC: {
  909. struct kvm_lapic_state lapic;
  910. memset(&lapic, 0, sizeof lapic);
  911. r = kvm_vcpu_ioctl_get_lapic(vcpu, &lapic);
  912. if (r)
  913. goto out;
  914. r = -EFAULT;
  915. if (copy_to_user(argp, &lapic, sizeof lapic))
  916. goto out;
  917. r = 0;
  918. break;
  919. }
  920. case KVM_SET_LAPIC: {
  921. struct kvm_lapic_state lapic;
  922. r = -EFAULT;
  923. if (copy_from_user(&lapic, argp, sizeof lapic))
  924. goto out;
  925. r = kvm_vcpu_ioctl_set_lapic(vcpu, &lapic);;
  926. if (r)
  927. goto out;
  928. r = 0;
  929. break;
  930. }
  931. case KVM_INTERRUPT: {
  932. struct kvm_interrupt irq;
  933. r = -EFAULT;
  934. if (copy_from_user(&irq, argp, sizeof irq))
  935. goto out;
  936. r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
  937. if (r)
  938. goto out;
  939. r = 0;
  940. break;
  941. }
  942. case KVM_SET_CPUID: {
  943. struct kvm_cpuid __user *cpuid_arg = argp;
  944. struct kvm_cpuid cpuid;
  945. r = -EFAULT;
  946. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  947. goto out;
  948. r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
  949. if (r)
  950. goto out;
  951. break;
  952. }
  953. case KVM_SET_CPUID2: {
  954. struct kvm_cpuid2 __user *cpuid_arg = argp;
  955. struct kvm_cpuid2 cpuid;
  956. r = -EFAULT;
  957. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  958. goto out;
  959. r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
  960. cpuid_arg->entries);
  961. if (r)
  962. goto out;
  963. break;
  964. }
  965. case KVM_GET_CPUID2: {
  966. struct kvm_cpuid2 __user *cpuid_arg = argp;
  967. struct kvm_cpuid2 cpuid;
  968. r = -EFAULT;
  969. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  970. goto out;
  971. r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
  972. cpuid_arg->entries);
  973. if (r)
  974. goto out;
  975. r = -EFAULT;
  976. if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
  977. goto out;
  978. r = 0;
  979. break;
  980. }
  981. case KVM_GET_MSRS:
  982. r = msr_io(vcpu, argp, kvm_get_msr, 1);
  983. break;
  984. case KVM_SET_MSRS:
  985. r = msr_io(vcpu, argp, do_set_msr, 0);
  986. break;
  987. default:
  988. r = -EINVAL;
  989. }
  990. out:
  991. return r;
  992. }
  993. static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
  994. {
  995. int ret;
  996. if (addr > (unsigned int)(-3 * PAGE_SIZE))
  997. return -1;
  998. ret = kvm_x86_ops->set_tss_addr(kvm, addr);
  999. return ret;
  1000. }
  1001. static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
  1002. u32 kvm_nr_mmu_pages)
  1003. {
  1004. if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
  1005. return -EINVAL;
  1006. mutex_lock(&kvm->lock);
  1007. kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
  1008. kvm->n_requested_mmu_pages = kvm_nr_mmu_pages;
  1009. mutex_unlock(&kvm->lock);
  1010. return 0;
  1011. }
  1012. static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
  1013. {
  1014. return kvm->n_alloc_mmu_pages;
  1015. }
  1016. gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
  1017. {
  1018. int i;
  1019. struct kvm_mem_alias *alias;
  1020. for (i = 0; i < kvm->naliases; ++i) {
  1021. alias = &kvm->aliases[i];
  1022. if (gfn >= alias->base_gfn
  1023. && gfn < alias->base_gfn + alias->npages)
  1024. return alias->target_gfn + gfn - alias->base_gfn;
  1025. }
  1026. return gfn;
  1027. }
  1028. /*
  1029. * Set a new alias region. Aliases map a portion of physical memory into
  1030. * another portion. This is useful for memory windows, for example the PC
  1031. * VGA region.
  1032. */
  1033. static int kvm_vm_ioctl_set_memory_alias(struct kvm *kvm,
  1034. struct kvm_memory_alias *alias)
  1035. {
  1036. int r, n;
  1037. struct kvm_mem_alias *p;
  1038. r = -EINVAL;
  1039. /* General sanity checks */
  1040. if (alias->memory_size & (PAGE_SIZE - 1))
  1041. goto out;
  1042. if (alias->guest_phys_addr & (PAGE_SIZE - 1))
  1043. goto out;
  1044. if (alias->slot >= KVM_ALIAS_SLOTS)
  1045. goto out;
  1046. if (alias->guest_phys_addr + alias->memory_size
  1047. < alias->guest_phys_addr)
  1048. goto out;
  1049. if (alias->target_phys_addr + alias->memory_size
  1050. < alias->target_phys_addr)
  1051. goto out;
  1052. mutex_lock(&kvm->lock);
  1053. p = &kvm->aliases[alias->slot];
  1054. p->base_gfn = alias->guest_phys_addr >> PAGE_SHIFT;
  1055. p->npages = alias->memory_size >> PAGE_SHIFT;
  1056. p->target_gfn = alias->target_phys_addr >> PAGE_SHIFT;
  1057. for (n = KVM_ALIAS_SLOTS; n > 0; --n)
  1058. if (kvm->aliases[n - 1].npages)
  1059. break;
  1060. kvm->naliases = n;
  1061. kvm_mmu_zap_all(kvm);
  1062. mutex_unlock(&kvm->lock);
  1063. return 0;
  1064. out:
  1065. return r;
  1066. }
  1067. static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
  1068. {
  1069. int r;
  1070. r = 0;
  1071. switch (chip->chip_id) {
  1072. case KVM_IRQCHIP_PIC_MASTER:
  1073. memcpy(&chip->chip.pic,
  1074. &pic_irqchip(kvm)->pics[0],
  1075. sizeof(struct kvm_pic_state));
  1076. break;
  1077. case KVM_IRQCHIP_PIC_SLAVE:
  1078. memcpy(&chip->chip.pic,
  1079. &pic_irqchip(kvm)->pics[1],
  1080. sizeof(struct kvm_pic_state));
  1081. break;
  1082. case KVM_IRQCHIP_IOAPIC:
  1083. memcpy(&chip->chip.ioapic,
  1084. ioapic_irqchip(kvm),
  1085. sizeof(struct kvm_ioapic_state));
  1086. break;
  1087. default:
  1088. r = -EINVAL;
  1089. break;
  1090. }
  1091. return r;
  1092. }
  1093. static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
  1094. {
  1095. int r;
  1096. r = 0;
  1097. switch (chip->chip_id) {
  1098. case KVM_IRQCHIP_PIC_MASTER:
  1099. memcpy(&pic_irqchip(kvm)->pics[0],
  1100. &chip->chip.pic,
  1101. sizeof(struct kvm_pic_state));
  1102. break;
  1103. case KVM_IRQCHIP_PIC_SLAVE:
  1104. memcpy(&pic_irqchip(kvm)->pics[1],
  1105. &chip->chip.pic,
  1106. sizeof(struct kvm_pic_state));
  1107. break;
  1108. case KVM_IRQCHIP_IOAPIC:
  1109. memcpy(ioapic_irqchip(kvm),
  1110. &chip->chip.ioapic,
  1111. sizeof(struct kvm_ioapic_state));
  1112. break;
  1113. default:
  1114. r = -EINVAL;
  1115. break;
  1116. }
  1117. kvm_pic_update_irq(pic_irqchip(kvm));
  1118. return r;
  1119. }
  1120. /*
  1121. * Get (and clear) the dirty memory log for a memory slot.
  1122. */
  1123. int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
  1124. struct kvm_dirty_log *log)
  1125. {
  1126. int r;
  1127. int n;
  1128. struct kvm_memory_slot *memslot;
  1129. int is_dirty = 0;
  1130. mutex_lock(&kvm->lock);
  1131. r = kvm_get_dirty_log(kvm, log, &is_dirty);
  1132. if (r)
  1133. goto out;
  1134. /* If nothing is dirty, don't bother messing with page tables. */
  1135. if (is_dirty) {
  1136. kvm_mmu_slot_remove_write_access(kvm, log->slot);
  1137. kvm_flush_remote_tlbs(kvm);
  1138. memslot = &kvm->memslots[log->slot];
  1139. n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
  1140. memset(memslot->dirty_bitmap, 0, n);
  1141. }
  1142. r = 0;
  1143. out:
  1144. mutex_unlock(&kvm->lock);
  1145. return r;
  1146. }
  1147. long kvm_arch_vm_ioctl(struct file *filp,
  1148. unsigned int ioctl, unsigned long arg)
  1149. {
  1150. struct kvm *kvm = filp->private_data;
  1151. void __user *argp = (void __user *)arg;
  1152. int r = -EINVAL;
  1153. switch (ioctl) {
  1154. case KVM_SET_TSS_ADDR:
  1155. r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
  1156. if (r < 0)
  1157. goto out;
  1158. break;
  1159. case KVM_SET_MEMORY_REGION: {
  1160. struct kvm_memory_region kvm_mem;
  1161. struct kvm_userspace_memory_region kvm_userspace_mem;
  1162. r = -EFAULT;
  1163. if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
  1164. goto out;
  1165. kvm_userspace_mem.slot = kvm_mem.slot;
  1166. kvm_userspace_mem.flags = kvm_mem.flags;
  1167. kvm_userspace_mem.guest_phys_addr = kvm_mem.guest_phys_addr;
  1168. kvm_userspace_mem.memory_size = kvm_mem.memory_size;
  1169. r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 0);
  1170. if (r)
  1171. goto out;
  1172. break;
  1173. }
  1174. case KVM_SET_NR_MMU_PAGES:
  1175. r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
  1176. if (r)
  1177. goto out;
  1178. break;
  1179. case KVM_GET_NR_MMU_PAGES:
  1180. r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
  1181. break;
  1182. case KVM_SET_MEMORY_ALIAS: {
  1183. struct kvm_memory_alias alias;
  1184. r = -EFAULT;
  1185. if (copy_from_user(&alias, argp, sizeof alias))
  1186. goto out;
  1187. r = kvm_vm_ioctl_set_memory_alias(kvm, &alias);
  1188. if (r)
  1189. goto out;
  1190. break;
  1191. }
  1192. case KVM_CREATE_IRQCHIP:
  1193. r = -ENOMEM;
  1194. kvm->vpic = kvm_create_pic(kvm);
  1195. if (kvm->vpic) {
  1196. r = kvm_ioapic_init(kvm);
  1197. if (r) {
  1198. kfree(kvm->vpic);
  1199. kvm->vpic = NULL;
  1200. goto out;
  1201. }
  1202. } else
  1203. goto out;
  1204. break;
  1205. case KVM_IRQ_LINE: {
  1206. struct kvm_irq_level irq_event;
  1207. r = -EFAULT;
  1208. if (copy_from_user(&irq_event, argp, sizeof irq_event))
  1209. goto out;
  1210. if (irqchip_in_kernel(kvm)) {
  1211. mutex_lock(&kvm->lock);
  1212. if (irq_event.irq < 16)
  1213. kvm_pic_set_irq(pic_irqchip(kvm),
  1214. irq_event.irq,
  1215. irq_event.level);
  1216. kvm_ioapic_set_irq(kvm->vioapic,
  1217. irq_event.irq,
  1218. irq_event.level);
  1219. mutex_unlock(&kvm->lock);
  1220. r = 0;
  1221. }
  1222. break;
  1223. }
  1224. case KVM_GET_IRQCHIP: {
  1225. /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
  1226. struct kvm_irqchip chip;
  1227. r = -EFAULT;
  1228. if (copy_from_user(&chip, argp, sizeof chip))
  1229. goto out;
  1230. r = -ENXIO;
  1231. if (!irqchip_in_kernel(kvm))
  1232. goto out;
  1233. r = kvm_vm_ioctl_get_irqchip(kvm, &chip);
  1234. if (r)
  1235. goto out;
  1236. r = -EFAULT;
  1237. if (copy_to_user(argp, &chip, sizeof chip))
  1238. goto out;
  1239. r = 0;
  1240. break;
  1241. }
  1242. case KVM_SET_IRQCHIP: {
  1243. /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
  1244. struct kvm_irqchip chip;
  1245. r = -EFAULT;
  1246. if (copy_from_user(&chip, argp, sizeof chip))
  1247. goto out;
  1248. r = -ENXIO;
  1249. if (!irqchip_in_kernel(kvm))
  1250. goto out;
  1251. r = kvm_vm_ioctl_set_irqchip(kvm, &chip);
  1252. if (r)
  1253. goto out;
  1254. r = 0;
  1255. break;
  1256. }
  1257. case KVM_GET_SUPPORTED_CPUID: {
  1258. struct kvm_cpuid2 __user *cpuid_arg = argp;
  1259. struct kvm_cpuid2 cpuid;
  1260. r = -EFAULT;
  1261. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  1262. goto out;
  1263. r = kvm_vm_ioctl_get_supported_cpuid(kvm, &cpuid,
  1264. cpuid_arg->entries);
  1265. if (r)
  1266. goto out;
  1267. r = -EFAULT;
  1268. if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
  1269. goto out;
  1270. r = 0;
  1271. break;
  1272. }
  1273. default:
  1274. ;
  1275. }
  1276. out:
  1277. return r;
  1278. }
  1279. static void kvm_init_msr_list(void)
  1280. {
  1281. u32 dummy[2];
  1282. unsigned i, j;
  1283. for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
  1284. if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
  1285. continue;
  1286. if (j < i)
  1287. msrs_to_save[j] = msrs_to_save[i];
  1288. j++;
  1289. }
  1290. num_msrs_to_save = j;
  1291. }
  1292. /*
  1293. * Only apic need an MMIO device hook, so shortcut now..
  1294. */
  1295. static struct kvm_io_device *vcpu_find_pervcpu_dev(struct kvm_vcpu *vcpu,
  1296. gpa_t addr)
  1297. {
  1298. struct kvm_io_device *dev;
  1299. if (vcpu->apic) {
  1300. dev = &vcpu->apic->dev;
  1301. if (dev->in_range(dev, addr))
  1302. return dev;
  1303. }
  1304. return NULL;
  1305. }
  1306. static struct kvm_io_device *vcpu_find_mmio_dev(struct kvm_vcpu *vcpu,
  1307. gpa_t addr)
  1308. {
  1309. struct kvm_io_device *dev;
  1310. dev = vcpu_find_pervcpu_dev(vcpu, addr);
  1311. if (dev == NULL)
  1312. dev = kvm_io_bus_find_dev(&vcpu->kvm->mmio_bus, addr);
  1313. return dev;
  1314. }
  1315. int emulator_read_std(unsigned long addr,
  1316. void *val,
  1317. unsigned int bytes,
  1318. struct kvm_vcpu *vcpu)
  1319. {
  1320. void *data = val;
  1321. while (bytes) {
  1322. gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
  1323. unsigned offset = addr & (PAGE_SIZE-1);
  1324. unsigned tocopy = min(bytes, (unsigned)PAGE_SIZE - offset);
  1325. int ret;
  1326. if (gpa == UNMAPPED_GVA)
  1327. return X86EMUL_PROPAGATE_FAULT;
  1328. ret = kvm_read_guest(vcpu->kvm, gpa, data, tocopy);
  1329. if (ret < 0)
  1330. return X86EMUL_UNHANDLEABLE;
  1331. bytes -= tocopy;
  1332. data += tocopy;
  1333. addr += tocopy;
  1334. }
  1335. return X86EMUL_CONTINUE;
  1336. }
  1337. EXPORT_SYMBOL_GPL(emulator_read_std);
  1338. static int emulator_read_emulated(unsigned long addr,
  1339. void *val,
  1340. unsigned int bytes,
  1341. struct kvm_vcpu *vcpu)
  1342. {
  1343. struct kvm_io_device *mmio_dev;
  1344. gpa_t gpa;
  1345. if (vcpu->mmio_read_completed) {
  1346. memcpy(val, vcpu->mmio_data, bytes);
  1347. vcpu->mmio_read_completed = 0;
  1348. return X86EMUL_CONTINUE;
  1349. }
  1350. gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
  1351. /* For APIC access vmexit */
  1352. if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
  1353. goto mmio;
  1354. if (emulator_read_std(addr, val, bytes, vcpu)
  1355. == X86EMUL_CONTINUE)
  1356. return X86EMUL_CONTINUE;
  1357. if (gpa == UNMAPPED_GVA)
  1358. return X86EMUL_PROPAGATE_FAULT;
  1359. mmio:
  1360. /*
  1361. * Is this MMIO handled locally?
  1362. */
  1363. mmio_dev = vcpu_find_mmio_dev(vcpu, gpa);
  1364. if (mmio_dev) {
  1365. kvm_iodevice_read(mmio_dev, gpa, bytes, val);
  1366. return X86EMUL_CONTINUE;
  1367. }
  1368. vcpu->mmio_needed = 1;
  1369. vcpu->mmio_phys_addr = gpa;
  1370. vcpu->mmio_size = bytes;
  1371. vcpu->mmio_is_write = 0;
  1372. return X86EMUL_UNHANDLEABLE;
  1373. }
  1374. static int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
  1375. const void *val, int bytes)
  1376. {
  1377. int ret;
  1378. ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
  1379. if (ret < 0)
  1380. return 0;
  1381. kvm_mmu_pte_write(vcpu, gpa, val, bytes);
  1382. return 1;
  1383. }
  1384. static int emulator_write_emulated_onepage(unsigned long addr,
  1385. const void *val,
  1386. unsigned int bytes,
  1387. struct kvm_vcpu *vcpu)
  1388. {
  1389. struct kvm_io_device *mmio_dev;
  1390. gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
  1391. if (gpa == UNMAPPED_GVA) {
  1392. kvm_x86_ops->inject_page_fault(vcpu, addr, 2);
  1393. return X86EMUL_PROPAGATE_FAULT;
  1394. }
  1395. /* For APIC access vmexit */
  1396. if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
  1397. goto mmio;
  1398. if (emulator_write_phys(vcpu, gpa, val, bytes))
  1399. return X86EMUL_CONTINUE;
  1400. mmio:
  1401. /*
  1402. * Is this MMIO handled locally?
  1403. */
  1404. mmio_dev = vcpu_find_mmio_dev(vcpu, gpa);
  1405. if (mmio_dev) {
  1406. kvm_iodevice_write(mmio_dev, gpa, bytes, val);
  1407. return X86EMUL_CONTINUE;
  1408. }
  1409. vcpu->mmio_needed = 1;
  1410. vcpu->mmio_phys_addr = gpa;
  1411. vcpu->mmio_size = bytes;
  1412. vcpu->mmio_is_write = 1;
  1413. memcpy(vcpu->mmio_data, val, bytes);
  1414. return X86EMUL_CONTINUE;
  1415. }
  1416. int emulator_write_emulated(unsigned long addr,
  1417. const void *val,
  1418. unsigned int bytes,
  1419. struct kvm_vcpu *vcpu)
  1420. {
  1421. /* Crossing a page boundary? */
  1422. if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
  1423. int rc, now;
  1424. now = -addr & ~PAGE_MASK;
  1425. rc = emulator_write_emulated_onepage(addr, val, now, vcpu);
  1426. if (rc != X86EMUL_CONTINUE)
  1427. return rc;
  1428. addr += now;
  1429. val += now;
  1430. bytes -= now;
  1431. }
  1432. return emulator_write_emulated_onepage(addr, val, bytes, vcpu);
  1433. }
  1434. EXPORT_SYMBOL_GPL(emulator_write_emulated);
  1435. static int emulator_cmpxchg_emulated(unsigned long addr,
  1436. const void *old,
  1437. const void *new,
  1438. unsigned int bytes,
  1439. struct kvm_vcpu *vcpu)
  1440. {
  1441. static int reported;
  1442. if (!reported) {
  1443. reported = 1;
  1444. printk(KERN_WARNING "kvm: emulating exchange as write\n");
  1445. }
  1446. return emulator_write_emulated(addr, new, bytes, vcpu);
  1447. }
  1448. static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
  1449. {
  1450. return kvm_x86_ops->get_segment_base(vcpu, seg);
  1451. }
  1452. int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
  1453. {
  1454. return X86EMUL_CONTINUE;
  1455. }
  1456. int emulate_clts(struct kvm_vcpu *vcpu)
  1457. {
  1458. kvm_x86_ops->set_cr0(vcpu, vcpu->cr0 & ~X86_CR0_TS);
  1459. return X86EMUL_CONTINUE;
  1460. }
  1461. int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
  1462. {
  1463. struct kvm_vcpu *vcpu = ctxt->vcpu;
  1464. switch (dr) {
  1465. case 0 ... 3:
  1466. *dest = kvm_x86_ops->get_dr(vcpu, dr);
  1467. return X86EMUL_CONTINUE;
  1468. default:
  1469. pr_unimpl(vcpu, "%s: unexpected dr %u\n", __FUNCTION__, dr);
  1470. return X86EMUL_UNHANDLEABLE;
  1471. }
  1472. }
  1473. int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
  1474. {
  1475. unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
  1476. int exception;
  1477. kvm_x86_ops->set_dr(ctxt->vcpu, dr, value & mask, &exception);
  1478. if (exception) {
  1479. /* FIXME: better handling */
  1480. return X86EMUL_UNHANDLEABLE;
  1481. }
  1482. return X86EMUL_CONTINUE;
  1483. }
  1484. void kvm_report_emulation_failure(struct kvm_vcpu *vcpu, const char *context)
  1485. {
  1486. static int reported;
  1487. u8 opcodes[4];
  1488. unsigned long rip = vcpu->rip;
  1489. unsigned long rip_linear;
  1490. rip_linear = rip + get_segment_base(vcpu, VCPU_SREG_CS);
  1491. if (reported)
  1492. return;
  1493. emulator_read_std(rip_linear, (void *)opcodes, 4, vcpu);
  1494. printk(KERN_ERR "emulation failed (%s) rip %lx %02x %02x %02x %02x\n",
  1495. context, rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
  1496. reported = 1;
  1497. }
  1498. EXPORT_SYMBOL_GPL(kvm_report_emulation_failure);
  1499. struct x86_emulate_ops emulate_ops = {
  1500. .read_std = emulator_read_std,
  1501. .read_emulated = emulator_read_emulated,
  1502. .write_emulated = emulator_write_emulated,
  1503. .cmpxchg_emulated = emulator_cmpxchg_emulated,
  1504. };
  1505. int emulate_instruction(struct kvm_vcpu *vcpu,
  1506. struct kvm_run *run,
  1507. unsigned long cr2,
  1508. u16 error_code,
  1509. int no_decode)
  1510. {
  1511. int r;
  1512. vcpu->mmio_fault_cr2 = cr2;
  1513. kvm_x86_ops->cache_regs(vcpu);
  1514. vcpu->mmio_is_write = 0;
  1515. vcpu->pio.string = 0;
  1516. if (!no_decode) {
  1517. int cs_db, cs_l;
  1518. kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  1519. vcpu->emulate_ctxt.vcpu = vcpu;
  1520. vcpu->emulate_ctxt.eflags = kvm_x86_ops->get_rflags(vcpu);
  1521. vcpu->emulate_ctxt.mode =
  1522. (vcpu->emulate_ctxt.eflags & X86_EFLAGS_VM)
  1523. ? X86EMUL_MODE_REAL : cs_l
  1524. ? X86EMUL_MODE_PROT64 : cs_db
  1525. ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
  1526. if (vcpu->emulate_ctxt.mode == X86EMUL_MODE_PROT64) {
  1527. vcpu->emulate_ctxt.cs_base = 0;
  1528. vcpu->emulate_ctxt.ds_base = 0;
  1529. vcpu->emulate_ctxt.es_base = 0;
  1530. vcpu->emulate_ctxt.ss_base = 0;
  1531. } else {
  1532. vcpu->emulate_ctxt.cs_base =
  1533. get_segment_base(vcpu, VCPU_SREG_CS);
  1534. vcpu->emulate_ctxt.ds_base =
  1535. get_segment_base(vcpu, VCPU_SREG_DS);
  1536. vcpu->emulate_ctxt.es_base =
  1537. get_segment_base(vcpu, VCPU_SREG_ES);
  1538. vcpu->emulate_ctxt.ss_base =
  1539. get_segment_base(vcpu, VCPU_SREG_SS);
  1540. }
  1541. vcpu->emulate_ctxt.gs_base =
  1542. get_segment_base(vcpu, VCPU_SREG_GS);
  1543. vcpu->emulate_ctxt.fs_base =
  1544. get_segment_base(vcpu, VCPU_SREG_FS);
  1545. r = x86_decode_insn(&vcpu->emulate_ctxt, &emulate_ops);
  1546. ++vcpu->stat.insn_emulation;
  1547. if (r) {
  1548. ++vcpu->stat.insn_emulation_fail;
  1549. if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
  1550. return EMULATE_DONE;
  1551. return EMULATE_FAIL;
  1552. }
  1553. }
  1554. r = x86_emulate_insn(&vcpu->emulate_ctxt, &emulate_ops);
  1555. if (vcpu->pio.string)
  1556. return EMULATE_DO_MMIO;
  1557. if ((r || vcpu->mmio_is_write) && run) {
  1558. run->exit_reason = KVM_EXIT_MMIO;
  1559. run->mmio.phys_addr = vcpu->mmio_phys_addr;
  1560. memcpy(run->mmio.data, vcpu->mmio_data, 8);
  1561. run->mmio.len = vcpu->mmio_size;
  1562. run->mmio.is_write = vcpu->mmio_is_write;
  1563. }
  1564. if (r) {
  1565. if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
  1566. return EMULATE_DONE;
  1567. if (!vcpu->mmio_needed) {
  1568. kvm_report_emulation_failure(vcpu, "mmio");
  1569. return EMULATE_FAIL;
  1570. }
  1571. return EMULATE_DO_MMIO;
  1572. }
  1573. kvm_x86_ops->decache_regs(vcpu);
  1574. kvm_x86_ops->set_rflags(vcpu, vcpu->emulate_ctxt.eflags);
  1575. if (vcpu->mmio_is_write) {
  1576. vcpu->mmio_needed = 0;
  1577. return EMULATE_DO_MMIO;
  1578. }
  1579. return EMULATE_DONE;
  1580. }
  1581. EXPORT_SYMBOL_GPL(emulate_instruction);
  1582. static void free_pio_guest_pages(struct kvm_vcpu *vcpu)
  1583. {
  1584. int i;
  1585. for (i = 0; i < ARRAY_SIZE(vcpu->pio.guest_pages); ++i)
  1586. if (vcpu->pio.guest_pages[i]) {
  1587. kvm_release_page_dirty(vcpu->pio.guest_pages[i]);
  1588. vcpu->pio.guest_pages[i] = NULL;
  1589. }
  1590. }
  1591. static int pio_copy_data(struct kvm_vcpu *vcpu)
  1592. {
  1593. void *p = vcpu->pio_data;
  1594. void *q;
  1595. unsigned bytes;
  1596. int nr_pages = vcpu->pio.guest_pages[1] ? 2 : 1;
  1597. q = vmap(vcpu->pio.guest_pages, nr_pages, VM_READ|VM_WRITE,
  1598. PAGE_KERNEL);
  1599. if (!q) {
  1600. free_pio_guest_pages(vcpu);
  1601. return -ENOMEM;
  1602. }
  1603. q += vcpu->pio.guest_page_offset;
  1604. bytes = vcpu->pio.size * vcpu->pio.cur_count;
  1605. if (vcpu->pio.in)
  1606. memcpy(q, p, bytes);
  1607. else
  1608. memcpy(p, q, bytes);
  1609. q -= vcpu->pio.guest_page_offset;
  1610. vunmap(q);
  1611. free_pio_guest_pages(vcpu);
  1612. return 0;
  1613. }
  1614. int complete_pio(struct kvm_vcpu *vcpu)
  1615. {
  1616. struct kvm_pio_request *io = &vcpu->pio;
  1617. long delta;
  1618. int r;
  1619. kvm_x86_ops->cache_regs(vcpu);
  1620. if (!io->string) {
  1621. if (io->in)
  1622. memcpy(&vcpu->regs[VCPU_REGS_RAX], vcpu->pio_data,
  1623. io->size);
  1624. } else {
  1625. if (io->in) {
  1626. r = pio_copy_data(vcpu);
  1627. if (r) {
  1628. kvm_x86_ops->cache_regs(vcpu);
  1629. return r;
  1630. }
  1631. }
  1632. delta = 1;
  1633. if (io->rep) {
  1634. delta *= io->cur_count;
  1635. /*
  1636. * The size of the register should really depend on
  1637. * current address size.
  1638. */
  1639. vcpu->regs[VCPU_REGS_RCX] -= delta;
  1640. }
  1641. if (io->down)
  1642. delta = -delta;
  1643. delta *= io->size;
  1644. if (io->in)
  1645. vcpu->regs[VCPU_REGS_RDI] += delta;
  1646. else
  1647. vcpu->regs[VCPU_REGS_RSI] += delta;
  1648. }
  1649. kvm_x86_ops->decache_regs(vcpu);
  1650. io->count -= io->cur_count;
  1651. io->cur_count = 0;
  1652. return 0;
  1653. }
  1654. static void kernel_pio(struct kvm_io_device *pio_dev,
  1655. struct kvm_vcpu *vcpu,
  1656. void *pd)
  1657. {
  1658. /* TODO: String I/O for in kernel device */
  1659. mutex_lock(&vcpu->kvm->lock);
  1660. if (vcpu->pio.in)
  1661. kvm_iodevice_read(pio_dev, vcpu->pio.port,
  1662. vcpu->pio.size,
  1663. pd);
  1664. else
  1665. kvm_iodevice_write(pio_dev, vcpu->pio.port,
  1666. vcpu->pio.size,
  1667. pd);
  1668. mutex_unlock(&vcpu->kvm->lock);
  1669. }
  1670. static void pio_string_write(struct kvm_io_device *pio_dev,
  1671. struct kvm_vcpu *vcpu)
  1672. {
  1673. struct kvm_pio_request *io = &vcpu->pio;
  1674. void *pd = vcpu->pio_data;
  1675. int i;
  1676. mutex_lock(&vcpu->kvm->lock);
  1677. for (i = 0; i < io->cur_count; i++) {
  1678. kvm_iodevice_write(pio_dev, io->port,
  1679. io->size,
  1680. pd);
  1681. pd += io->size;
  1682. }
  1683. mutex_unlock(&vcpu->kvm->lock);
  1684. }
  1685. static struct kvm_io_device *vcpu_find_pio_dev(struct kvm_vcpu *vcpu,
  1686. gpa_t addr)
  1687. {
  1688. return kvm_io_bus_find_dev(&vcpu->kvm->pio_bus, addr);
  1689. }
  1690. int kvm_emulate_pio(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
  1691. int size, unsigned port)
  1692. {
  1693. struct kvm_io_device *pio_dev;
  1694. vcpu->run->exit_reason = KVM_EXIT_IO;
  1695. vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
  1696. vcpu->run->io.size = vcpu->pio.size = size;
  1697. vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
  1698. vcpu->run->io.count = vcpu->pio.count = vcpu->pio.cur_count = 1;
  1699. vcpu->run->io.port = vcpu->pio.port = port;
  1700. vcpu->pio.in = in;
  1701. vcpu->pio.string = 0;
  1702. vcpu->pio.down = 0;
  1703. vcpu->pio.guest_page_offset = 0;
  1704. vcpu->pio.rep = 0;
  1705. kvm_x86_ops->cache_regs(vcpu);
  1706. memcpy(vcpu->pio_data, &vcpu->regs[VCPU_REGS_RAX], 4);
  1707. kvm_x86_ops->decache_regs(vcpu);
  1708. kvm_x86_ops->skip_emulated_instruction(vcpu);
  1709. pio_dev = vcpu_find_pio_dev(vcpu, port);
  1710. if (pio_dev) {
  1711. kernel_pio(pio_dev, vcpu, vcpu->pio_data);
  1712. complete_pio(vcpu);
  1713. return 1;
  1714. }
  1715. return 0;
  1716. }
  1717. EXPORT_SYMBOL_GPL(kvm_emulate_pio);
  1718. int kvm_emulate_pio_string(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
  1719. int size, unsigned long count, int down,
  1720. gva_t address, int rep, unsigned port)
  1721. {
  1722. unsigned now, in_page;
  1723. int i, ret = 0;
  1724. int nr_pages = 1;
  1725. struct page *page;
  1726. struct kvm_io_device *pio_dev;
  1727. vcpu->run->exit_reason = KVM_EXIT_IO;
  1728. vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
  1729. vcpu->run->io.size = vcpu->pio.size = size;
  1730. vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
  1731. vcpu->run->io.count = vcpu->pio.count = vcpu->pio.cur_count = count;
  1732. vcpu->run->io.port = vcpu->pio.port = port;
  1733. vcpu->pio.in = in;
  1734. vcpu->pio.string = 1;
  1735. vcpu->pio.down = down;
  1736. vcpu->pio.guest_page_offset = offset_in_page(address);
  1737. vcpu->pio.rep = rep;
  1738. if (!count) {
  1739. kvm_x86_ops->skip_emulated_instruction(vcpu);
  1740. return 1;
  1741. }
  1742. if (!down)
  1743. in_page = PAGE_SIZE - offset_in_page(address);
  1744. else
  1745. in_page = offset_in_page(address) + size;
  1746. now = min(count, (unsigned long)in_page / size);
  1747. if (!now) {
  1748. /*
  1749. * String I/O straddles page boundary. Pin two guest pages
  1750. * so that we satisfy atomicity constraints. Do just one
  1751. * transaction to avoid complexity.
  1752. */
  1753. nr_pages = 2;
  1754. now = 1;
  1755. }
  1756. if (down) {
  1757. /*
  1758. * String I/O in reverse. Yuck. Kill the guest, fix later.
  1759. */
  1760. pr_unimpl(vcpu, "guest string pio down\n");
  1761. inject_gp(vcpu);
  1762. return 1;
  1763. }
  1764. vcpu->run->io.count = now;
  1765. vcpu->pio.cur_count = now;
  1766. if (vcpu->pio.cur_count == vcpu->pio.count)
  1767. kvm_x86_ops->skip_emulated_instruction(vcpu);
  1768. for (i = 0; i < nr_pages; ++i) {
  1769. mutex_lock(&vcpu->kvm->lock);
  1770. page = gva_to_page(vcpu, address + i * PAGE_SIZE);
  1771. vcpu->pio.guest_pages[i] = page;
  1772. mutex_unlock(&vcpu->kvm->lock);
  1773. if (!page) {
  1774. inject_gp(vcpu);
  1775. free_pio_guest_pages(vcpu);
  1776. return 1;
  1777. }
  1778. }
  1779. pio_dev = vcpu_find_pio_dev(vcpu, port);
  1780. if (!vcpu->pio.in) {
  1781. /* string PIO write */
  1782. ret = pio_copy_data(vcpu);
  1783. if (ret >= 0 && pio_dev) {
  1784. pio_string_write(pio_dev, vcpu);
  1785. complete_pio(vcpu);
  1786. if (vcpu->pio.count == 0)
  1787. ret = 1;
  1788. }
  1789. } else if (pio_dev)
  1790. pr_unimpl(vcpu, "no string pio read support yet, "
  1791. "port %x size %d count %ld\n",
  1792. port, size, count);
  1793. return ret;
  1794. }
  1795. EXPORT_SYMBOL_GPL(kvm_emulate_pio_string);
  1796. int kvm_arch_init(void *opaque)
  1797. {
  1798. int r;
  1799. struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
  1800. r = kvm_mmu_module_init();
  1801. if (r)
  1802. goto out_fail;
  1803. kvm_init_msr_list();
  1804. if (kvm_x86_ops) {
  1805. printk(KERN_ERR "kvm: already loaded the other module\n");
  1806. r = -EEXIST;
  1807. goto out;
  1808. }
  1809. if (!ops->cpu_has_kvm_support()) {
  1810. printk(KERN_ERR "kvm: no hardware support\n");
  1811. r = -EOPNOTSUPP;
  1812. goto out;
  1813. }
  1814. if (ops->disabled_by_bios()) {
  1815. printk(KERN_ERR "kvm: disabled by bios\n");
  1816. r = -EOPNOTSUPP;
  1817. goto out;
  1818. }
  1819. kvm_x86_ops = ops;
  1820. kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
  1821. return 0;
  1822. out:
  1823. kvm_mmu_module_exit();
  1824. out_fail:
  1825. return r;
  1826. }
  1827. void kvm_arch_exit(void)
  1828. {
  1829. kvm_x86_ops = NULL;
  1830. kvm_mmu_module_exit();
  1831. }
  1832. int kvm_emulate_halt(struct kvm_vcpu *vcpu)
  1833. {
  1834. ++vcpu->stat.halt_exits;
  1835. if (irqchip_in_kernel(vcpu->kvm)) {
  1836. vcpu->mp_state = VCPU_MP_STATE_HALTED;
  1837. kvm_vcpu_block(vcpu);
  1838. if (vcpu->mp_state != VCPU_MP_STATE_RUNNABLE)
  1839. return -EINTR;
  1840. return 1;
  1841. } else {
  1842. vcpu->run->exit_reason = KVM_EXIT_HLT;
  1843. return 0;
  1844. }
  1845. }
  1846. EXPORT_SYMBOL_GPL(kvm_emulate_halt);
  1847. int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
  1848. {
  1849. unsigned long nr, a0, a1, a2, a3, ret;
  1850. kvm_x86_ops->cache_regs(vcpu);
  1851. nr = vcpu->regs[VCPU_REGS_RAX];
  1852. a0 = vcpu->regs[VCPU_REGS_RBX];
  1853. a1 = vcpu->regs[VCPU_REGS_RCX];
  1854. a2 = vcpu->regs[VCPU_REGS_RDX];
  1855. a3 = vcpu->regs[VCPU_REGS_RSI];
  1856. if (!is_long_mode(vcpu)) {
  1857. nr &= 0xFFFFFFFF;
  1858. a0 &= 0xFFFFFFFF;
  1859. a1 &= 0xFFFFFFFF;
  1860. a2 &= 0xFFFFFFFF;
  1861. a3 &= 0xFFFFFFFF;
  1862. }
  1863. switch (nr) {
  1864. default:
  1865. ret = -KVM_ENOSYS;
  1866. break;
  1867. }
  1868. vcpu->regs[VCPU_REGS_RAX] = ret;
  1869. kvm_x86_ops->decache_regs(vcpu);
  1870. return 0;
  1871. }
  1872. EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
  1873. int kvm_fix_hypercall(struct kvm_vcpu *vcpu)
  1874. {
  1875. char instruction[3];
  1876. int ret = 0;
  1877. mutex_lock(&vcpu->kvm->lock);
  1878. /*
  1879. * Blow out the MMU to ensure that no other VCPU has an active mapping
  1880. * to ensure that the updated hypercall appears atomically across all
  1881. * VCPUs.
  1882. */
  1883. kvm_mmu_zap_all(vcpu->kvm);
  1884. kvm_x86_ops->cache_regs(vcpu);
  1885. kvm_x86_ops->patch_hypercall(vcpu, instruction);
  1886. if (emulator_write_emulated(vcpu->rip, instruction, 3, vcpu)
  1887. != X86EMUL_CONTINUE)
  1888. ret = -EFAULT;
  1889. mutex_unlock(&vcpu->kvm->lock);
  1890. return ret;
  1891. }
  1892. static u64 mk_cr_64(u64 curr_cr, u32 new_val)
  1893. {
  1894. return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
  1895. }
  1896. void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  1897. {
  1898. struct descriptor_table dt = { limit, base };
  1899. kvm_x86_ops->set_gdt(vcpu, &dt);
  1900. }
  1901. void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  1902. {
  1903. struct descriptor_table dt = { limit, base };
  1904. kvm_x86_ops->set_idt(vcpu, &dt);
  1905. }
  1906. void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
  1907. unsigned long *rflags)
  1908. {
  1909. lmsw(vcpu, msw);
  1910. *rflags = kvm_x86_ops->get_rflags(vcpu);
  1911. }
  1912. unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
  1913. {
  1914. kvm_x86_ops->decache_cr4_guest_bits(vcpu);
  1915. switch (cr) {
  1916. case 0:
  1917. return vcpu->cr0;
  1918. case 2:
  1919. return vcpu->cr2;
  1920. case 3:
  1921. return vcpu->cr3;
  1922. case 4:
  1923. return vcpu->cr4;
  1924. default:
  1925. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
  1926. return 0;
  1927. }
  1928. }
  1929. void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
  1930. unsigned long *rflags)
  1931. {
  1932. switch (cr) {
  1933. case 0:
  1934. set_cr0(vcpu, mk_cr_64(vcpu->cr0, val));
  1935. *rflags = kvm_x86_ops->get_rflags(vcpu);
  1936. break;
  1937. case 2:
  1938. vcpu->cr2 = val;
  1939. break;
  1940. case 3:
  1941. set_cr3(vcpu, val);
  1942. break;
  1943. case 4:
  1944. set_cr4(vcpu, mk_cr_64(vcpu->cr4, val));
  1945. break;
  1946. default:
  1947. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
  1948. }
  1949. }
  1950. static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
  1951. {
  1952. struct kvm_cpuid_entry2 *e = &vcpu->cpuid_entries[i];
  1953. int j, nent = vcpu->cpuid_nent;
  1954. e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
  1955. /* when no next entry is found, the current entry[i] is reselected */
  1956. for (j = i + 1; j == i; j = (j + 1) % nent) {
  1957. struct kvm_cpuid_entry2 *ej = &vcpu->cpuid_entries[j];
  1958. if (ej->function == e->function) {
  1959. ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
  1960. return j;
  1961. }
  1962. }
  1963. return 0; /* silence gcc, even though control never reaches here */
  1964. }
  1965. /* find an entry with matching function, matching index (if needed), and that
  1966. * should be read next (if it's stateful) */
  1967. static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
  1968. u32 function, u32 index)
  1969. {
  1970. if (e->function != function)
  1971. return 0;
  1972. if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
  1973. return 0;
  1974. if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
  1975. !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
  1976. return 0;
  1977. return 1;
  1978. }
  1979. void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
  1980. {
  1981. int i;
  1982. u32 function, index;
  1983. struct kvm_cpuid_entry2 *e, *best;
  1984. kvm_x86_ops->cache_regs(vcpu);
  1985. function = vcpu->regs[VCPU_REGS_RAX];
  1986. index = vcpu->regs[VCPU_REGS_RCX];
  1987. vcpu->regs[VCPU_REGS_RAX] = 0;
  1988. vcpu->regs[VCPU_REGS_RBX] = 0;
  1989. vcpu->regs[VCPU_REGS_RCX] = 0;
  1990. vcpu->regs[VCPU_REGS_RDX] = 0;
  1991. best = NULL;
  1992. for (i = 0; i < vcpu->cpuid_nent; ++i) {
  1993. e = &vcpu->cpuid_entries[i];
  1994. if (is_matching_cpuid_entry(e, function, index)) {
  1995. if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
  1996. move_to_next_stateful_cpuid_entry(vcpu, i);
  1997. best = e;
  1998. break;
  1999. }
  2000. /*
  2001. * Both basic or both extended?
  2002. */
  2003. if (((e->function ^ function) & 0x80000000) == 0)
  2004. if (!best || e->function > best->function)
  2005. best = e;
  2006. }
  2007. if (best) {
  2008. vcpu->regs[VCPU_REGS_RAX] = best->eax;
  2009. vcpu->regs[VCPU_REGS_RBX] = best->ebx;
  2010. vcpu->regs[VCPU_REGS_RCX] = best->ecx;
  2011. vcpu->regs[VCPU_REGS_RDX] = best->edx;
  2012. }
  2013. kvm_x86_ops->decache_regs(vcpu);
  2014. kvm_x86_ops->skip_emulated_instruction(vcpu);
  2015. }
  2016. EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
  2017. /*
  2018. * Check if userspace requested an interrupt window, and that the
  2019. * interrupt window is open.
  2020. *
  2021. * No need to exit to userspace if we already have an interrupt queued.
  2022. */
  2023. static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu,
  2024. struct kvm_run *kvm_run)
  2025. {
  2026. return (!vcpu->irq_summary &&
  2027. kvm_run->request_interrupt_window &&
  2028. vcpu->interrupt_window_open &&
  2029. (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF));
  2030. }
  2031. static void post_kvm_run_save(struct kvm_vcpu *vcpu,
  2032. struct kvm_run *kvm_run)
  2033. {
  2034. kvm_run->if_flag = (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
  2035. kvm_run->cr8 = get_cr8(vcpu);
  2036. kvm_run->apic_base = kvm_get_apic_base(vcpu);
  2037. if (irqchip_in_kernel(vcpu->kvm))
  2038. kvm_run->ready_for_interrupt_injection = 1;
  2039. else
  2040. kvm_run->ready_for_interrupt_injection =
  2041. (vcpu->interrupt_window_open &&
  2042. vcpu->irq_summary == 0);
  2043. }
  2044. static int __vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2045. {
  2046. int r;
  2047. if (unlikely(vcpu->mp_state == VCPU_MP_STATE_SIPI_RECEIVED)) {
  2048. pr_debug("vcpu %d received sipi with vector # %x\n",
  2049. vcpu->vcpu_id, vcpu->sipi_vector);
  2050. kvm_lapic_reset(vcpu);
  2051. r = kvm_x86_ops->vcpu_reset(vcpu);
  2052. if (r)
  2053. return r;
  2054. vcpu->mp_state = VCPU_MP_STATE_RUNNABLE;
  2055. }
  2056. preempted:
  2057. if (vcpu->guest_debug.enabled)
  2058. kvm_x86_ops->guest_debug_pre(vcpu);
  2059. again:
  2060. r = kvm_mmu_reload(vcpu);
  2061. if (unlikely(r))
  2062. goto out;
  2063. kvm_inject_pending_timer_irqs(vcpu);
  2064. preempt_disable();
  2065. kvm_x86_ops->prepare_guest_switch(vcpu);
  2066. kvm_load_guest_fpu(vcpu);
  2067. local_irq_disable();
  2068. if (signal_pending(current)) {
  2069. local_irq_enable();
  2070. preempt_enable();
  2071. r = -EINTR;
  2072. kvm_run->exit_reason = KVM_EXIT_INTR;
  2073. ++vcpu->stat.signal_exits;
  2074. goto out;
  2075. }
  2076. if (irqchip_in_kernel(vcpu->kvm))
  2077. kvm_x86_ops->inject_pending_irq(vcpu);
  2078. else
  2079. kvm_x86_ops->inject_pending_vectors(vcpu, kvm_run);
  2080. vcpu->guest_mode = 1;
  2081. kvm_guest_enter();
  2082. if (vcpu->requests)
  2083. if (test_and_clear_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
  2084. kvm_x86_ops->tlb_flush(vcpu);
  2085. kvm_x86_ops->run(vcpu, kvm_run);
  2086. vcpu->guest_mode = 0;
  2087. local_irq_enable();
  2088. ++vcpu->stat.exits;
  2089. /*
  2090. * We must have an instruction between local_irq_enable() and
  2091. * kvm_guest_exit(), so the timer interrupt isn't delayed by
  2092. * the interrupt shadow. The stat.exits increment will do nicely.
  2093. * But we need to prevent reordering, hence this barrier():
  2094. */
  2095. barrier();
  2096. kvm_guest_exit();
  2097. preempt_enable();
  2098. /*
  2099. * Profile KVM exit RIPs:
  2100. */
  2101. if (unlikely(prof_on == KVM_PROFILING)) {
  2102. kvm_x86_ops->cache_regs(vcpu);
  2103. profile_hit(KVM_PROFILING, (void *)vcpu->rip);
  2104. }
  2105. r = kvm_x86_ops->handle_exit(kvm_run, vcpu);
  2106. if (r > 0) {
  2107. if (dm_request_for_irq_injection(vcpu, kvm_run)) {
  2108. r = -EINTR;
  2109. kvm_run->exit_reason = KVM_EXIT_INTR;
  2110. ++vcpu->stat.request_irq_exits;
  2111. goto out;
  2112. }
  2113. if (!need_resched())
  2114. goto again;
  2115. }
  2116. out:
  2117. if (r > 0) {
  2118. kvm_resched(vcpu);
  2119. goto preempted;
  2120. }
  2121. post_kvm_run_save(vcpu, kvm_run);
  2122. return r;
  2123. }
  2124. int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2125. {
  2126. int r;
  2127. sigset_t sigsaved;
  2128. vcpu_load(vcpu);
  2129. if (unlikely(vcpu->mp_state == VCPU_MP_STATE_UNINITIALIZED)) {
  2130. kvm_vcpu_block(vcpu);
  2131. vcpu_put(vcpu);
  2132. return -EAGAIN;
  2133. }
  2134. if (vcpu->sigset_active)
  2135. sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
  2136. /* re-sync apic's tpr */
  2137. if (!irqchip_in_kernel(vcpu->kvm))
  2138. set_cr8(vcpu, kvm_run->cr8);
  2139. if (vcpu->pio.cur_count) {
  2140. r = complete_pio(vcpu);
  2141. if (r)
  2142. goto out;
  2143. }
  2144. #if CONFIG_HAS_IOMEM
  2145. if (vcpu->mmio_needed) {
  2146. memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
  2147. vcpu->mmio_read_completed = 1;
  2148. vcpu->mmio_needed = 0;
  2149. r = emulate_instruction(vcpu, kvm_run,
  2150. vcpu->mmio_fault_cr2, 0, 1);
  2151. if (r == EMULATE_DO_MMIO) {
  2152. /*
  2153. * Read-modify-write. Back to userspace.
  2154. */
  2155. r = 0;
  2156. goto out;
  2157. }
  2158. }
  2159. #endif
  2160. if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL) {
  2161. kvm_x86_ops->cache_regs(vcpu);
  2162. vcpu->regs[VCPU_REGS_RAX] = kvm_run->hypercall.ret;
  2163. kvm_x86_ops->decache_regs(vcpu);
  2164. }
  2165. r = __vcpu_run(vcpu, kvm_run);
  2166. out:
  2167. if (vcpu->sigset_active)
  2168. sigprocmask(SIG_SETMASK, &sigsaved, NULL);
  2169. vcpu_put(vcpu);
  2170. return r;
  2171. }
  2172. int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
  2173. {
  2174. vcpu_load(vcpu);
  2175. kvm_x86_ops->cache_regs(vcpu);
  2176. regs->rax = vcpu->regs[VCPU_REGS_RAX];
  2177. regs->rbx = vcpu->regs[VCPU_REGS_RBX];
  2178. regs->rcx = vcpu->regs[VCPU_REGS_RCX];
  2179. regs->rdx = vcpu->regs[VCPU_REGS_RDX];
  2180. regs->rsi = vcpu->regs[VCPU_REGS_RSI];
  2181. regs->rdi = vcpu->regs[VCPU_REGS_RDI];
  2182. regs->rsp = vcpu->regs[VCPU_REGS_RSP];
  2183. regs->rbp = vcpu->regs[VCPU_REGS_RBP];
  2184. #ifdef CONFIG_X86_64
  2185. regs->r8 = vcpu->regs[VCPU_REGS_R8];
  2186. regs->r9 = vcpu->regs[VCPU_REGS_R9];
  2187. regs->r10 = vcpu->regs[VCPU_REGS_R10];
  2188. regs->r11 = vcpu->regs[VCPU_REGS_R11];
  2189. regs->r12 = vcpu->regs[VCPU_REGS_R12];
  2190. regs->r13 = vcpu->regs[VCPU_REGS_R13];
  2191. regs->r14 = vcpu->regs[VCPU_REGS_R14];
  2192. regs->r15 = vcpu->regs[VCPU_REGS_R15];
  2193. #endif
  2194. regs->rip = vcpu->rip;
  2195. regs->rflags = kvm_x86_ops->get_rflags(vcpu);
  2196. /*
  2197. * Don't leak debug flags in case they were set for guest debugging
  2198. */
  2199. if (vcpu->guest_debug.enabled && vcpu->guest_debug.singlestep)
  2200. regs->rflags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
  2201. vcpu_put(vcpu);
  2202. return 0;
  2203. }
  2204. int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
  2205. {
  2206. vcpu_load(vcpu);
  2207. vcpu->regs[VCPU_REGS_RAX] = regs->rax;
  2208. vcpu->regs[VCPU_REGS_RBX] = regs->rbx;
  2209. vcpu->regs[VCPU_REGS_RCX] = regs->rcx;
  2210. vcpu->regs[VCPU_REGS_RDX] = regs->rdx;
  2211. vcpu->regs[VCPU_REGS_RSI] = regs->rsi;
  2212. vcpu->regs[VCPU_REGS_RDI] = regs->rdi;
  2213. vcpu->regs[VCPU_REGS_RSP] = regs->rsp;
  2214. vcpu->regs[VCPU_REGS_RBP] = regs->rbp;
  2215. #ifdef CONFIG_X86_64
  2216. vcpu->regs[VCPU_REGS_R8] = regs->r8;
  2217. vcpu->regs[VCPU_REGS_R9] = regs->r9;
  2218. vcpu->regs[VCPU_REGS_R10] = regs->r10;
  2219. vcpu->regs[VCPU_REGS_R11] = regs->r11;
  2220. vcpu->regs[VCPU_REGS_R12] = regs->r12;
  2221. vcpu->regs[VCPU_REGS_R13] = regs->r13;
  2222. vcpu->regs[VCPU_REGS_R14] = regs->r14;
  2223. vcpu->regs[VCPU_REGS_R15] = regs->r15;
  2224. #endif
  2225. vcpu->rip = regs->rip;
  2226. kvm_x86_ops->set_rflags(vcpu, regs->rflags);
  2227. kvm_x86_ops->decache_regs(vcpu);
  2228. vcpu_put(vcpu);
  2229. return 0;
  2230. }
  2231. static void get_segment(struct kvm_vcpu *vcpu,
  2232. struct kvm_segment *var, int seg)
  2233. {
  2234. return kvm_x86_ops->get_segment(vcpu, var, seg);
  2235. }
  2236. void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
  2237. {
  2238. struct kvm_segment cs;
  2239. get_segment(vcpu, &cs, VCPU_SREG_CS);
  2240. *db = cs.db;
  2241. *l = cs.l;
  2242. }
  2243. EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
  2244. int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
  2245. struct kvm_sregs *sregs)
  2246. {
  2247. struct descriptor_table dt;
  2248. int pending_vec;
  2249. vcpu_load(vcpu);
  2250. get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  2251. get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  2252. get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  2253. get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  2254. get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  2255. get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  2256. get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  2257. get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  2258. kvm_x86_ops->get_idt(vcpu, &dt);
  2259. sregs->idt.limit = dt.limit;
  2260. sregs->idt.base = dt.base;
  2261. kvm_x86_ops->get_gdt(vcpu, &dt);
  2262. sregs->gdt.limit = dt.limit;
  2263. sregs->gdt.base = dt.base;
  2264. kvm_x86_ops->decache_cr4_guest_bits(vcpu);
  2265. sregs->cr0 = vcpu->cr0;
  2266. sregs->cr2 = vcpu->cr2;
  2267. sregs->cr3 = vcpu->cr3;
  2268. sregs->cr4 = vcpu->cr4;
  2269. sregs->cr8 = get_cr8(vcpu);
  2270. sregs->efer = vcpu->shadow_efer;
  2271. sregs->apic_base = kvm_get_apic_base(vcpu);
  2272. if (irqchip_in_kernel(vcpu->kvm)) {
  2273. memset(sregs->interrupt_bitmap, 0,
  2274. sizeof sregs->interrupt_bitmap);
  2275. pending_vec = kvm_x86_ops->get_irq(vcpu);
  2276. if (pending_vec >= 0)
  2277. set_bit(pending_vec,
  2278. (unsigned long *)sregs->interrupt_bitmap);
  2279. } else
  2280. memcpy(sregs->interrupt_bitmap, vcpu->irq_pending,
  2281. sizeof sregs->interrupt_bitmap);
  2282. vcpu_put(vcpu);
  2283. return 0;
  2284. }
  2285. static void set_segment(struct kvm_vcpu *vcpu,
  2286. struct kvm_segment *var, int seg)
  2287. {
  2288. return kvm_x86_ops->set_segment(vcpu, var, seg);
  2289. }
  2290. int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
  2291. struct kvm_sregs *sregs)
  2292. {
  2293. int mmu_reset_needed = 0;
  2294. int i, pending_vec, max_bits;
  2295. struct descriptor_table dt;
  2296. vcpu_load(vcpu);
  2297. dt.limit = sregs->idt.limit;
  2298. dt.base = sregs->idt.base;
  2299. kvm_x86_ops->set_idt(vcpu, &dt);
  2300. dt.limit = sregs->gdt.limit;
  2301. dt.base = sregs->gdt.base;
  2302. kvm_x86_ops->set_gdt(vcpu, &dt);
  2303. vcpu->cr2 = sregs->cr2;
  2304. mmu_reset_needed |= vcpu->cr3 != sregs->cr3;
  2305. vcpu->cr3 = sregs->cr3;
  2306. set_cr8(vcpu, sregs->cr8);
  2307. mmu_reset_needed |= vcpu->shadow_efer != sregs->efer;
  2308. #ifdef CONFIG_X86_64
  2309. kvm_x86_ops->set_efer(vcpu, sregs->efer);
  2310. #endif
  2311. kvm_set_apic_base(vcpu, sregs->apic_base);
  2312. kvm_x86_ops->decache_cr4_guest_bits(vcpu);
  2313. mmu_reset_needed |= vcpu->cr0 != sregs->cr0;
  2314. vcpu->cr0 = sregs->cr0;
  2315. kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
  2316. mmu_reset_needed |= vcpu->cr4 != sregs->cr4;
  2317. kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
  2318. if (!is_long_mode(vcpu) && is_pae(vcpu))
  2319. load_pdptrs(vcpu, vcpu->cr3);
  2320. if (mmu_reset_needed)
  2321. kvm_mmu_reset_context(vcpu);
  2322. if (!irqchip_in_kernel(vcpu->kvm)) {
  2323. memcpy(vcpu->irq_pending, sregs->interrupt_bitmap,
  2324. sizeof vcpu->irq_pending);
  2325. vcpu->irq_summary = 0;
  2326. for (i = 0; i < ARRAY_SIZE(vcpu->irq_pending); ++i)
  2327. if (vcpu->irq_pending[i])
  2328. __set_bit(i, &vcpu->irq_summary);
  2329. } else {
  2330. max_bits = (sizeof sregs->interrupt_bitmap) << 3;
  2331. pending_vec = find_first_bit(
  2332. (const unsigned long *)sregs->interrupt_bitmap,
  2333. max_bits);
  2334. /* Only pending external irq is handled here */
  2335. if (pending_vec < max_bits) {
  2336. kvm_x86_ops->set_irq(vcpu, pending_vec);
  2337. pr_debug("Set back pending irq %d\n",
  2338. pending_vec);
  2339. }
  2340. }
  2341. set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  2342. set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  2343. set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  2344. set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  2345. set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  2346. set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  2347. set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  2348. set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  2349. vcpu_put(vcpu);
  2350. return 0;
  2351. }
  2352. int kvm_arch_vcpu_ioctl_debug_guest(struct kvm_vcpu *vcpu,
  2353. struct kvm_debug_guest *dbg)
  2354. {
  2355. int r;
  2356. vcpu_load(vcpu);
  2357. r = kvm_x86_ops->set_guest_debug(vcpu, dbg);
  2358. vcpu_put(vcpu);
  2359. return r;
  2360. }
  2361. /*
  2362. * fxsave fpu state. Taken from x86_64/processor.h. To be killed when
  2363. * we have asm/x86/processor.h
  2364. */
  2365. struct fxsave {
  2366. u16 cwd;
  2367. u16 swd;
  2368. u16 twd;
  2369. u16 fop;
  2370. u64 rip;
  2371. u64 rdp;
  2372. u32 mxcsr;
  2373. u32 mxcsr_mask;
  2374. u32 st_space[32]; /* 8*16 bytes for each FP-reg = 128 bytes */
  2375. #ifdef CONFIG_X86_64
  2376. u32 xmm_space[64]; /* 16*16 bytes for each XMM-reg = 256 bytes */
  2377. #else
  2378. u32 xmm_space[32]; /* 8*16 bytes for each XMM-reg = 128 bytes */
  2379. #endif
  2380. };
  2381. /*
  2382. * Translate a guest virtual address to a guest physical address.
  2383. */
  2384. int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
  2385. struct kvm_translation *tr)
  2386. {
  2387. unsigned long vaddr = tr->linear_address;
  2388. gpa_t gpa;
  2389. vcpu_load(vcpu);
  2390. mutex_lock(&vcpu->kvm->lock);
  2391. gpa = vcpu->mmu.gva_to_gpa(vcpu, vaddr);
  2392. tr->physical_address = gpa;
  2393. tr->valid = gpa != UNMAPPED_GVA;
  2394. tr->writeable = 1;
  2395. tr->usermode = 0;
  2396. mutex_unlock(&vcpu->kvm->lock);
  2397. vcpu_put(vcpu);
  2398. return 0;
  2399. }
  2400. int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  2401. {
  2402. struct fxsave *fxsave = (struct fxsave *)&vcpu->guest_fx_image;
  2403. vcpu_load(vcpu);
  2404. memcpy(fpu->fpr, fxsave->st_space, 128);
  2405. fpu->fcw = fxsave->cwd;
  2406. fpu->fsw = fxsave->swd;
  2407. fpu->ftwx = fxsave->twd;
  2408. fpu->last_opcode = fxsave->fop;
  2409. fpu->last_ip = fxsave->rip;
  2410. fpu->last_dp = fxsave->rdp;
  2411. memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
  2412. vcpu_put(vcpu);
  2413. return 0;
  2414. }
  2415. int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  2416. {
  2417. struct fxsave *fxsave = (struct fxsave *)&vcpu->guest_fx_image;
  2418. vcpu_load(vcpu);
  2419. memcpy(fxsave->st_space, fpu->fpr, 128);
  2420. fxsave->cwd = fpu->fcw;
  2421. fxsave->swd = fpu->fsw;
  2422. fxsave->twd = fpu->ftwx;
  2423. fxsave->fop = fpu->last_opcode;
  2424. fxsave->rip = fpu->last_ip;
  2425. fxsave->rdp = fpu->last_dp;
  2426. memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
  2427. vcpu_put(vcpu);
  2428. return 0;
  2429. }
  2430. void fx_init(struct kvm_vcpu *vcpu)
  2431. {
  2432. unsigned after_mxcsr_mask;
  2433. /* Initialize guest FPU by resetting ours and saving into guest's */
  2434. preempt_disable();
  2435. fx_save(&vcpu->host_fx_image);
  2436. fpu_init();
  2437. fx_save(&vcpu->guest_fx_image);
  2438. fx_restore(&vcpu->host_fx_image);
  2439. preempt_enable();
  2440. vcpu->cr0 |= X86_CR0_ET;
  2441. after_mxcsr_mask = offsetof(struct i387_fxsave_struct, st_space);
  2442. vcpu->guest_fx_image.mxcsr = 0x1f80;
  2443. memset((void *)&vcpu->guest_fx_image + after_mxcsr_mask,
  2444. 0, sizeof(struct i387_fxsave_struct) - after_mxcsr_mask);
  2445. }
  2446. EXPORT_SYMBOL_GPL(fx_init);
  2447. void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
  2448. {
  2449. if (!vcpu->fpu_active || vcpu->guest_fpu_loaded)
  2450. return;
  2451. vcpu->guest_fpu_loaded = 1;
  2452. fx_save(&vcpu->host_fx_image);
  2453. fx_restore(&vcpu->guest_fx_image);
  2454. }
  2455. EXPORT_SYMBOL_GPL(kvm_load_guest_fpu);
  2456. void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
  2457. {
  2458. if (!vcpu->guest_fpu_loaded)
  2459. return;
  2460. vcpu->guest_fpu_loaded = 0;
  2461. fx_save(&vcpu->guest_fx_image);
  2462. fx_restore(&vcpu->host_fx_image);
  2463. ++vcpu->stat.fpu_reload;
  2464. }
  2465. EXPORT_SYMBOL_GPL(kvm_put_guest_fpu);
  2466. void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
  2467. {
  2468. kvm_x86_ops->vcpu_free(vcpu);
  2469. }
  2470. struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
  2471. unsigned int id)
  2472. {
  2473. return kvm_x86_ops->vcpu_create(kvm, id);
  2474. }
  2475. int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
  2476. {
  2477. int r;
  2478. /* We do fxsave: this must be aligned. */
  2479. BUG_ON((unsigned long)&vcpu->host_fx_image & 0xF);
  2480. vcpu_load(vcpu);
  2481. r = kvm_arch_vcpu_reset(vcpu);
  2482. if (r == 0)
  2483. r = kvm_mmu_setup(vcpu);
  2484. vcpu_put(vcpu);
  2485. if (r < 0)
  2486. goto free_vcpu;
  2487. return 0;
  2488. free_vcpu:
  2489. kvm_x86_ops->vcpu_free(vcpu);
  2490. return r;
  2491. }
  2492. void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
  2493. {
  2494. vcpu_load(vcpu);
  2495. kvm_mmu_unload(vcpu);
  2496. vcpu_put(vcpu);
  2497. kvm_x86_ops->vcpu_free(vcpu);
  2498. }
  2499. int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu)
  2500. {
  2501. return kvm_x86_ops->vcpu_reset(vcpu);
  2502. }
  2503. void kvm_arch_hardware_enable(void *garbage)
  2504. {
  2505. kvm_x86_ops->hardware_enable(garbage);
  2506. }
  2507. void kvm_arch_hardware_disable(void *garbage)
  2508. {
  2509. kvm_x86_ops->hardware_disable(garbage);
  2510. }
  2511. int kvm_arch_hardware_setup(void)
  2512. {
  2513. return kvm_x86_ops->hardware_setup();
  2514. }
  2515. void kvm_arch_hardware_unsetup(void)
  2516. {
  2517. kvm_x86_ops->hardware_unsetup();
  2518. }
  2519. void kvm_arch_check_processor_compat(void *rtn)
  2520. {
  2521. kvm_x86_ops->check_processor_compatibility(rtn);
  2522. }
  2523. int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
  2524. {
  2525. struct page *page;
  2526. struct kvm *kvm;
  2527. int r;
  2528. BUG_ON(vcpu->kvm == NULL);
  2529. kvm = vcpu->kvm;
  2530. vcpu->mmu.root_hpa = INVALID_PAGE;
  2531. if (!irqchip_in_kernel(kvm) || vcpu->vcpu_id == 0)
  2532. vcpu->mp_state = VCPU_MP_STATE_RUNNABLE;
  2533. else
  2534. vcpu->mp_state = VCPU_MP_STATE_UNINITIALIZED;
  2535. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  2536. if (!page) {
  2537. r = -ENOMEM;
  2538. goto fail;
  2539. }
  2540. vcpu->pio_data = page_address(page);
  2541. r = kvm_mmu_create(vcpu);
  2542. if (r < 0)
  2543. goto fail_free_pio_data;
  2544. if (irqchip_in_kernel(kvm)) {
  2545. r = kvm_create_lapic(vcpu);
  2546. if (r < 0)
  2547. goto fail_mmu_destroy;
  2548. }
  2549. return 0;
  2550. fail_mmu_destroy:
  2551. kvm_mmu_destroy(vcpu);
  2552. fail_free_pio_data:
  2553. free_page((unsigned long)vcpu->pio_data);
  2554. fail:
  2555. return r;
  2556. }
  2557. void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
  2558. {
  2559. kvm_free_lapic(vcpu);
  2560. kvm_mmu_destroy(vcpu);
  2561. free_page((unsigned long)vcpu->pio_data);
  2562. }
  2563. struct kvm *kvm_arch_create_vm(void)
  2564. {
  2565. struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
  2566. if (!kvm)
  2567. return ERR_PTR(-ENOMEM);
  2568. INIT_LIST_HEAD(&kvm->active_mmu_pages);
  2569. return kvm;
  2570. }
  2571. static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
  2572. {
  2573. vcpu_load(vcpu);
  2574. kvm_mmu_unload(vcpu);
  2575. vcpu_put(vcpu);
  2576. }
  2577. static void kvm_free_vcpus(struct kvm *kvm)
  2578. {
  2579. unsigned int i;
  2580. /*
  2581. * Unpin any mmu pages first.
  2582. */
  2583. for (i = 0; i < KVM_MAX_VCPUS; ++i)
  2584. if (kvm->vcpus[i])
  2585. kvm_unload_vcpu_mmu(kvm->vcpus[i]);
  2586. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  2587. if (kvm->vcpus[i]) {
  2588. kvm_arch_vcpu_free(kvm->vcpus[i]);
  2589. kvm->vcpus[i] = NULL;
  2590. }
  2591. }
  2592. }
  2593. void kvm_arch_destroy_vm(struct kvm *kvm)
  2594. {
  2595. kfree(kvm->vpic);
  2596. kfree(kvm->vioapic);
  2597. kvm_free_vcpus(kvm);
  2598. kvm_free_physmem(kvm);
  2599. kfree(kvm);
  2600. }
  2601. int kvm_arch_set_memory_region(struct kvm *kvm,
  2602. struct kvm_userspace_memory_region *mem,
  2603. struct kvm_memory_slot old,
  2604. int user_alloc)
  2605. {
  2606. int npages = mem->memory_size >> PAGE_SHIFT;
  2607. struct kvm_memory_slot *memslot = &kvm->memslots[mem->slot];
  2608. /*To keep backward compatibility with older userspace,
  2609. *x86 needs to hanlde !user_alloc case.
  2610. */
  2611. if (!user_alloc) {
  2612. if (npages && !old.rmap) {
  2613. down_write(&current->mm->mmap_sem);
  2614. memslot->userspace_addr = do_mmap(NULL, 0,
  2615. npages * PAGE_SIZE,
  2616. PROT_READ | PROT_WRITE,
  2617. MAP_SHARED | MAP_ANONYMOUS,
  2618. 0);
  2619. up_write(&current->mm->mmap_sem);
  2620. if (IS_ERR((void *)memslot->userspace_addr))
  2621. return PTR_ERR((void *)memslot->userspace_addr);
  2622. } else {
  2623. if (!old.user_alloc && old.rmap) {
  2624. int ret;
  2625. down_write(&current->mm->mmap_sem);
  2626. ret = do_munmap(current->mm, old.userspace_addr,
  2627. old.npages * PAGE_SIZE);
  2628. up_write(&current->mm->mmap_sem);
  2629. if (ret < 0)
  2630. printk(KERN_WARNING
  2631. "kvm_vm_ioctl_set_memory_region: "
  2632. "failed to munmap memory\n");
  2633. }
  2634. }
  2635. }
  2636. if (!kvm->n_requested_mmu_pages) {
  2637. unsigned int nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
  2638. kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
  2639. }
  2640. kvm_mmu_slot_remove_write_access(kvm, mem->slot);
  2641. kvm_flush_remote_tlbs(kvm);
  2642. return 0;
  2643. }