kvm_main.c 29 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * Copyright (C) 2006 Qumranet, Inc.
  8. *
  9. * Authors:
  10. * Avi Kivity <avi@qumranet.com>
  11. * Yaniv Kamay <yaniv@qumranet.com>
  12. *
  13. * This work is licensed under the terms of the GNU GPL, version 2. See
  14. * the COPYING file in the top-level directory.
  15. *
  16. */
  17. #include "kvm.h"
  18. #include "x86.h"
  19. #include "irq.h"
  20. #include <linux/kvm.h>
  21. #include <linux/module.h>
  22. #include <linux/errno.h>
  23. #include <linux/percpu.h>
  24. #include <linux/gfp.h>
  25. #include <linux/mm.h>
  26. #include <linux/miscdevice.h>
  27. #include <linux/vmalloc.h>
  28. #include <linux/reboot.h>
  29. #include <linux/debugfs.h>
  30. #include <linux/highmem.h>
  31. #include <linux/file.h>
  32. #include <linux/sysdev.h>
  33. #include <linux/cpu.h>
  34. #include <linux/sched.h>
  35. #include <linux/cpumask.h>
  36. #include <linux/smp.h>
  37. #include <linux/anon_inodes.h>
  38. #include <linux/profile.h>
  39. #include <linux/kvm_para.h>
  40. #include <linux/pagemap.h>
  41. #include <linux/mman.h>
  42. #include <asm/processor.h>
  43. #include <asm/io.h>
  44. #include <asm/uaccess.h>
  45. #include <asm/desc.h>
  46. #include <asm/pgtable.h>
  47. MODULE_AUTHOR("Qumranet");
  48. MODULE_LICENSE("GPL");
  49. DEFINE_SPINLOCK(kvm_lock);
  50. LIST_HEAD(vm_list);
  51. static cpumask_t cpus_hardware_enabled;
  52. struct kmem_cache *kvm_vcpu_cache;
  53. EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
  54. static __read_mostly struct preempt_ops kvm_preempt_ops;
  55. static struct dentry *debugfs_dir;
  56. static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
  57. unsigned long arg);
  58. static inline int valid_vcpu(int n)
  59. {
  60. return likely(n >= 0 && n < KVM_MAX_VCPUS);
  61. }
  62. /*
  63. * Switches to specified vcpu, until a matching vcpu_put()
  64. */
  65. void vcpu_load(struct kvm_vcpu *vcpu)
  66. {
  67. int cpu;
  68. mutex_lock(&vcpu->mutex);
  69. cpu = get_cpu();
  70. preempt_notifier_register(&vcpu->preempt_notifier);
  71. kvm_arch_vcpu_load(vcpu, cpu);
  72. put_cpu();
  73. }
  74. void vcpu_put(struct kvm_vcpu *vcpu)
  75. {
  76. preempt_disable();
  77. kvm_arch_vcpu_put(vcpu);
  78. preempt_notifier_unregister(&vcpu->preempt_notifier);
  79. preempt_enable();
  80. mutex_unlock(&vcpu->mutex);
  81. }
  82. static void ack_flush(void *_completed)
  83. {
  84. }
  85. void kvm_flush_remote_tlbs(struct kvm *kvm)
  86. {
  87. int i, cpu;
  88. cpumask_t cpus;
  89. struct kvm_vcpu *vcpu;
  90. cpus_clear(cpus);
  91. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  92. vcpu = kvm->vcpus[i];
  93. if (!vcpu)
  94. continue;
  95. if (test_and_set_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
  96. continue;
  97. cpu = vcpu->cpu;
  98. if (cpu != -1 && cpu != raw_smp_processor_id())
  99. cpu_set(cpu, cpus);
  100. }
  101. if (cpus_empty(cpus))
  102. return;
  103. ++kvm->stat.remote_tlb_flush;
  104. smp_call_function_mask(cpus, ack_flush, NULL, 1);
  105. }
  106. int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
  107. {
  108. struct page *page;
  109. int r;
  110. mutex_init(&vcpu->mutex);
  111. vcpu->cpu = -1;
  112. vcpu->kvm = kvm;
  113. vcpu->vcpu_id = id;
  114. init_waitqueue_head(&vcpu->wq);
  115. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  116. if (!page) {
  117. r = -ENOMEM;
  118. goto fail;
  119. }
  120. vcpu->run = page_address(page);
  121. r = kvm_arch_vcpu_init(vcpu);
  122. if (r < 0)
  123. goto fail_free_run;
  124. return 0;
  125. fail_free_run:
  126. free_page((unsigned long)vcpu->run);
  127. fail:
  128. return r;
  129. }
  130. EXPORT_SYMBOL_GPL(kvm_vcpu_init);
  131. void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
  132. {
  133. kvm_arch_vcpu_uninit(vcpu);
  134. free_page((unsigned long)vcpu->run);
  135. }
  136. EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
  137. static struct kvm *kvm_create_vm(void)
  138. {
  139. struct kvm *kvm = kvm_arch_create_vm();
  140. if (IS_ERR(kvm))
  141. goto out;
  142. kvm->mm = current->mm;
  143. atomic_inc(&kvm->mm->mm_count);
  144. kvm_io_bus_init(&kvm->pio_bus);
  145. mutex_init(&kvm->lock);
  146. kvm_io_bus_init(&kvm->mmio_bus);
  147. spin_lock(&kvm_lock);
  148. list_add(&kvm->vm_list, &vm_list);
  149. spin_unlock(&kvm_lock);
  150. out:
  151. return kvm;
  152. }
  153. /*
  154. * Free any memory in @free but not in @dont.
  155. */
  156. static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
  157. struct kvm_memory_slot *dont)
  158. {
  159. if (!dont || free->rmap != dont->rmap)
  160. vfree(free->rmap);
  161. if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
  162. vfree(free->dirty_bitmap);
  163. free->npages = 0;
  164. free->dirty_bitmap = NULL;
  165. free->rmap = NULL;
  166. }
  167. void kvm_free_physmem(struct kvm *kvm)
  168. {
  169. int i;
  170. for (i = 0; i < kvm->nmemslots; ++i)
  171. kvm_free_physmem_slot(&kvm->memslots[i], NULL);
  172. }
  173. static void kvm_destroy_vm(struct kvm *kvm)
  174. {
  175. struct mm_struct *mm = kvm->mm;
  176. spin_lock(&kvm_lock);
  177. list_del(&kvm->vm_list);
  178. spin_unlock(&kvm_lock);
  179. kvm_io_bus_destroy(&kvm->pio_bus);
  180. kvm_io_bus_destroy(&kvm->mmio_bus);
  181. kvm_arch_destroy_vm(kvm);
  182. mmdrop(mm);
  183. }
  184. static int kvm_vm_release(struct inode *inode, struct file *filp)
  185. {
  186. struct kvm *kvm = filp->private_data;
  187. kvm_destroy_vm(kvm);
  188. return 0;
  189. }
  190. /*
  191. * Allocate some memory and give it an address in the guest physical address
  192. * space.
  193. *
  194. * Discontiguous memory is allowed, mostly for framebuffers.
  195. *
  196. * Must be called holding kvm->lock.
  197. */
  198. int __kvm_set_memory_region(struct kvm *kvm,
  199. struct kvm_userspace_memory_region *mem,
  200. int user_alloc)
  201. {
  202. int r;
  203. gfn_t base_gfn;
  204. unsigned long npages;
  205. unsigned long i;
  206. struct kvm_memory_slot *memslot;
  207. struct kvm_memory_slot old, new;
  208. r = -EINVAL;
  209. /* General sanity checks */
  210. if (mem->memory_size & (PAGE_SIZE - 1))
  211. goto out;
  212. if (mem->guest_phys_addr & (PAGE_SIZE - 1))
  213. goto out;
  214. if (mem->slot >= KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS)
  215. goto out;
  216. if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
  217. goto out;
  218. memslot = &kvm->memslots[mem->slot];
  219. base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
  220. npages = mem->memory_size >> PAGE_SHIFT;
  221. if (!npages)
  222. mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
  223. new = old = *memslot;
  224. new.base_gfn = base_gfn;
  225. new.npages = npages;
  226. new.flags = mem->flags;
  227. /* Disallow changing a memory slot's size. */
  228. r = -EINVAL;
  229. if (npages && old.npages && npages != old.npages)
  230. goto out_free;
  231. /* Check for overlaps */
  232. r = -EEXIST;
  233. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  234. struct kvm_memory_slot *s = &kvm->memslots[i];
  235. if (s == memslot)
  236. continue;
  237. if (!((base_gfn + npages <= s->base_gfn) ||
  238. (base_gfn >= s->base_gfn + s->npages)))
  239. goto out_free;
  240. }
  241. /* Free page dirty bitmap if unneeded */
  242. if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
  243. new.dirty_bitmap = NULL;
  244. r = -ENOMEM;
  245. /* Allocate if a slot is being created */
  246. if (npages && !new.rmap) {
  247. new.rmap = vmalloc(npages * sizeof(struct page *));
  248. if (!new.rmap)
  249. goto out_free;
  250. memset(new.rmap, 0, npages * sizeof(*new.rmap));
  251. new.user_alloc = user_alloc;
  252. new.userspace_addr = mem->userspace_addr;
  253. }
  254. /* Allocate page dirty bitmap if needed */
  255. if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
  256. unsigned dirty_bytes = ALIGN(npages, BITS_PER_LONG) / 8;
  257. new.dirty_bitmap = vmalloc(dirty_bytes);
  258. if (!new.dirty_bitmap)
  259. goto out_free;
  260. memset(new.dirty_bitmap, 0, dirty_bytes);
  261. }
  262. if (mem->slot >= kvm->nmemslots)
  263. kvm->nmemslots = mem->slot + 1;
  264. *memslot = new;
  265. r = kvm_arch_set_memory_region(kvm, mem, old, user_alloc);
  266. if (r) {
  267. *memslot = old;
  268. goto out_free;
  269. }
  270. kvm_free_physmem_slot(&old, &new);
  271. return 0;
  272. out_free:
  273. kvm_free_physmem_slot(&new, &old);
  274. out:
  275. return r;
  276. }
  277. EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
  278. int kvm_set_memory_region(struct kvm *kvm,
  279. struct kvm_userspace_memory_region *mem,
  280. int user_alloc)
  281. {
  282. int r;
  283. mutex_lock(&kvm->lock);
  284. r = __kvm_set_memory_region(kvm, mem, user_alloc);
  285. mutex_unlock(&kvm->lock);
  286. return r;
  287. }
  288. EXPORT_SYMBOL_GPL(kvm_set_memory_region);
  289. int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
  290. struct
  291. kvm_userspace_memory_region *mem,
  292. int user_alloc)
  293. {
  294. if (mem->slot >= KVM_MEMORY_SLOTS)
  295. return -EINVAL;
  296. return kvm_set_memory_region(kvm, mem, user_alloc);
  297. }
  298. int kvm_get_dirty_log(struct kvm *kvm,
  299. struct kvm_dirty_log *log, int *is_dirty)
  300. {
  301. struct kvm_memory_slot *memslot;
  302. int r, i;
  303. int n;
  304. unsigned long any = 0;
  305. r = -EINVAL;
  306. if (log->slot >= KVM_MEMORY_SLOTS)
  307. goto out;
  308. memslot = &kvm->memslots[log->slot];
  309. r = -ENOENT;
  310. if (!memslot->dirty_bitmap)
  311. goto out;
  312. n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
  313. for (i = 0; !any && i < n/sizeof(long); ++i)
  314. any = memslot->dirty_bitmap[i];
  315. r = -EFAULT;
  316. if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
  317. goto out;
  318. if (any)
  319. *is_dirty = 1;
  320. r = 0;
  321. out:
  322. return r;
  323. }
  324. int is_error_page(struct page *page)
  325. {
  326. return page == bad_page;
  327. }
  328. EXPORT_SYMBOL_GPL(is_error_page);
  329. static inline unsigned long bad_hva(void)
  330. {
  331. return PAGE_OFFSET;
  332. }
  333. int kvm_is_error_hva(unsigned long addr)
  334. {
  335. return addr == bad_hva();
  336. }
  337. EXPORT_SYMBOL_GPL(kvm_is_error_hva);
  338. static struct kvm_memory_slot *__gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
  339. {
  340. int i;
  341. for (i = 0; i < kvm->nmemslots; ++i) {
  342. struct kvm_memory_slot *memslot = &kvm->memslots[i];
  343. if (gfn >= memslot->base_gfn
  344. && gfn < memslot->base_gfn + memslot->npages)
  345. return memslot;
  346. }
  347. return NULL;
  348. }
  349. struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
  350. {
  351. gfn = unalias_gfn(kvm, gfn);
  352. return __gfn_to_memslot(kvm, gfn);
  353. }
  354. int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
  355. {
  356. int i;
  357. gfn = unalias_gfn(kvm, gfn);
  358. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  359. struct kvm_memory_slot *memslot = &kvm->memslots[i];
  360. if (gfn >= memslot->base_gfn
  361. && gfn < memslot->base_gfn + memslot->npages)
  362. return 1;
  363. }
  364. return 0;
  365. }
  366. EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
  367. static unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
  368. {
  369. struct kvm_memory_slot *slot;
  370. gfn = unalias_gfn(kvm, gfn);
  371. slot = __gfn_to_memslot(kvm, gfn);
  372. if (!slot)
  373. return bad_hva();
  374. return (slot->userspace_addr + (gfn - slot->base_gfn) * PAGE_SIZE);
  375. }
  376. /*
  377. * Requires current->mm->mmap_sem to be held
  378. */
  379. static struct page *__gfn_to_page(struct kvm *kvm, gfn_t gfn)
  380. {
  381. struct page *page[1];
  382. unsigned long addr;
  383. int npages;
  384. might_sleep();
  385. addr = gfn_to_hva(kvm, gfn);
  386. if (kvm_is_error_hva(addr)) {
  387. get_page(bad_page);
  388. return bad_page;
  389. }
  390. npages = get_user_pages(current, current->mm, addr, 1, 1, 1, page,
  391. NULL);
  392. if (npages != 1) {
  393. get_page(bad_page);
  394. return bad_page;
  395. }
  396. return page[0];
  397. }
  398. struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
  399. {
  400. struct page *page;
  401. down_read(&current->mm->mmap_sem);
  402. page = __gfn_to_page(kvm, gfn);
  403. up_read(&current->mm->mmap_sem);
  404. return page;
  405. }
  406. EXPORT_SYMBOL_GPL(gfn_to_page);
  407. void kvm_release_page_clean(struct page *page)
  408. {
  409. put_page(page);
  410. }
  411. EXPORT_SYMBOL_GPL(kvm_release_page_clean);
  412. void kvm_release_page_dirty(struct page *page)
  413. {
  414. if (!PageReserved(page))
  415. SetPageDirty(page);
  416. put_page(page);
  417. }
  418. EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
  419. static int next_segment(unsigned long len, int offset)
  420. {
  421. if (len > PAGE_SIZE - offset)
  422. return PAGE_SIZE - offset;
  423. else
  424. return len;
  425. }
  426. int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
  427. int len)
  428. {
  429. int r;
  430. unsigned long addr;
  431. addr = gfn_to_hva(kvm, gfn);
  432. if (kvm_is_error_hva(addr))
  433. return -EFAULT;
  434. r = copy_from_user(data, (void __user *)addr + offset, len);
  435. if (r)
  436. return -EFAULT;
  437. return 0;
  438. }
  439. EXPORT_SYMBOL_GPL(kvm_read_guest_page);
  440. int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
  441. {
  442. gfn_t gfn = gpa >> PAGE_SHIFT;
  443. int seg;
  444. int offset = offset_in_page(gpa);
  445. int ret;
  446. while ((seg = next_segment(len, offset)) != 0) {
  447. ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
  448. if (ret < 0)
  449. return ret;
  450. offset = 0;
  451. len -= seg;
  452. data += seg;
  453. ++gfn;
  454. }
  455. return 0;
  456. }
  457. EXPORT_SYMBOL_GPL(kvm_read_guest);
  458. int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
  459. int offset, int len)
  460. {
  461. int r;
  462. unsigned long addr;
  463. addr = gfn_to_hva(kvm, gfn);
  464. if (kvm_is_error_hva(addr))
  465. return -EFAULT;
  466. r = copy_to_user((void __user *)addr + offset, data, len);
  467. if (r)
  468. return -EFAULT;
  469. mark_page_dirty(kvm, gfn);
  470. return 0;
  471. }
  472. EXPORT_SYMBOL_GPL(kvm_write_guest_page);
  473. int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
  474. unsigned long len)
  475. {
  476. gfn_t gfn = gpa >> PAGE_SHIFT;
  477. int seg;
  478. int offset = offset_in_page(gpa);
  479. int ret;
  480. while ((seg = next_segment(len, offset)) != 0) {
  481. ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
  482. if (ret < 0)
  483. return ret;
  484. offset = 0;
  485. len -= seg;
  486. data += seg;
  487. ++gfn;
  488. }
  489. return 0;
  490. }
  491. int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
  492. {
  493. return kvm_write_guest_page(kvm, gfn, empty_zero_page, offset, len);
  494. }
  495. EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
  496. int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
  497. {
  498. gfn_t gfn = gpa >> PAGE_SHIFT;
  499. int seg;
  500. int offset = offset_in_page(gpa);
  501. int ret;
  502. while ((seg = next_segment(len, offset)) != 0) {
  503. ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
  504. if (ret < 0)
  505. return ret;
  506. offset = 0;
  507. len -= seg;
  508. ++gfn;
  509. }
  510. return 0;
  511. }
  512. EXPORT_SYMBOL_GPL(kvm_clear_guest);
  513. void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
  514. {
  515. struct kvm_memory_slot *memslot;
  516. gfn = unalias_gfn(kvm, gfn);
  517. memslot = __gfn_to_memslot(kvm, gfn);
  518. if (memslot && memslot->dirty_bitmap) {
  519. unsigned long rel_gfn = gfn - memslot->base_gfn;
  520. /* avoid RMW */
  521. if (!test_bit(rel_gfn, memslot->dirty_bitmap))
  522. set_bit(rel_gfn, memslot->dirty_bitmap);
  523. }
  524. }
  525. /*
  526. * The vCPU has executed a HLT instruction with in-kernel mode enabled.
  527. */
  528. void kvm_vcpu_block(struct kvm_vcpu *vcpu)
  529. {
  530. DECLARE_WAITQUEUE(wait, current);
  531. add_wait_queue(&vcpu->wq, &wait);
  532. /*
  533. * We will block until either an interrupt or a signal wakes us up
  534. */
  535. while (!kvm_cpu_has_interrupt(vcpu)
  536. && !signal_pending(current)
  537. && vcpu->mp_state != VCPU_MP_STATE_RUNNABLE
  538. && vcpu->mp_state != VCPU_MP_STATE_SIPI_RECEIVED) {
  539. set_current_state(TASK_INTERRUPTIBLE);
  540. vcpu_put(vcpu);
  541. schedule();
  542. vcpu_load(vcpu);
  543. }
  544. __set_current_state(TASK_RUNNING);
  545. remove_wait_queue(&vcpu->wq, &wait);
  546. }
  547. void kvm_resched(struct kvm_vcpu *vcpu)
  548. {
  549. if (!need_resched())
  550. return;
  551. cond_resched();
  552. }
  553. EXPORT_SYMBOL_GPL(kvm_resched);
  554. static struct page *kvm_vcpu_nopage(struct vm_area_struct *vma,
  555. unsigned long address,
  556. int *type)
  557. {
  558. struct kvm_vcpu *vcpu = vma->vm_file->private_data;
  559. unsigned long pgoff;
  560. struct page *page;
  561. pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
  562. if (pgoff == 0)
  563. page = virt_to_page(vcpu->run);
  564. else if (pgoff == KVM_PIO_PAGE_OFFSET)
  565. page = virt_to_page(vcpu->pio_data);
  566. else
  567. return NOPAGE_SIGBUS;
  568. get_page(page);
  569. if (type != NULL)
  570. *type = VM_FAULT_MINOR;
  571. return page;
  572. }
  573. static struct vm_operations_struct kvm_vcpu_vm_ops = {
  574. .nopage = kvm_vcpu_nopage,
  575. };
  576. static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
  577. {
  578. vma->vm_ops = &kvm_vcpu_vm_ops;
  579. return 0;
  580. }
  581. static int kvm_vcpu_release(struct inode *inode, struct file *filp)
  582. {
  583. struct kvm_vcpu *vcpu = filp->private_data;
  584. fput(vcpu->kvm->filp);
  585. return 0;
  586. }
  587. static struct file_operations kvm_vcpu_fops = {
  588. .release = kvm_vcpu_release,
  589. .unlocked_ioctl = kvm_vcpu_ioctl,
  590. .compat_ioctl = kvm_vcpu_ioctl,
  591. .mmap = kvm_vcpu_mmap,
  592. };
  593. /*
  594. * Allocates an inode for the vcpu.
  595. */
  596. static int create_vcpu_fd(struct kvm_vcpu *vcpu)
  597. {
  598. int fd, r;
  599. struct inode *inode;
  600. struct file *file;
  601. r = anon_inode_getfd(&fd, &inode, &file,
  602. "kvm-vcpu", &kvm_vcpu_fops, vcpu);
  603. if (r)
  604. return r;
  605. atomic_inc(&vcpu->kvm->filp->f_count);
  606. return fd;
  607. }
  608. /*
  609. * Creates some virtual cpus. Good luck creating more than one.
  610. */
  611. static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, int n)
  612. {
  613. int r;
  614. struct kvm_vcpu *vcpu;
  615. if (!valid_vcpu(n))
  616. return -EINVAL;
  617. vcpu = kvm_arch_vcpu_create(kvm, n);
  618. if (IS_ERR(vcpu))
  619. return PTR_ERR(vcpu);
  620. preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
  621. r = kvm_arch_vcpu_setup(vcpu);
  622. if (r)
  623. goto vcpu_destroy;
  624. mutex_lock(&kvm->lock);
  625. if (kvm->vcpus[n]) {
  626. r = -EEXIST;
  627. mutex_unlock(&kvm->lock);
  628. goto vcpu_destroy;
  629. }
  630. kvm->vcpus[n] = vcpu;
  631. mutex_unlock(&kvm->lock);
  632. /* Now it's all set up, let userspace reach it */
  633. r = create_vcpu_fd(vcpu);
  634. if (r < 0)
  635. goto unlink;
  636. return r;
  637. unlink:
  638. mutex_lock(&kvm->lock);
  639. kvm->vcpus[n] = NULL;
  640. mutex_unlock(&kvm->lock);
  641. vcpu_destroy:
  642. kvm_arch_vcpu_destroy(vcpu);
  643. return r;
  644. }
  645. static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
  646. {
  647. if (sigset) {
  648. sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
  649. vcpu->sigset_active = 1;
  650. vcpu->sigset = *sigset;
  651. } else
  652. vcpu->sigset_active = 0;
  653. return 0;
  654. }
  655. static long kvm_vcpu_ioctl(struct file *filp,
  656. unsigned int ioctl, unsigned long arg)
  657. {
  658. struct kvm_vcpu *vcpu = filp->private_data;
  659. void __user *argp = (void __user *)arg;
  660. int r;
  661. if (vcpu->kvm->mm != current->mm)
  662. return -EIO;
  663. switch (ioctl) {
  664. case KVM_RUN:
  665. r = -EINVAL;
  666. if (arg)
  667. goto out;
  668. r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
  669. break;
  670. case KVM_GET_REGS: {
  671. struct kvm_regs kvm_regs;
  672. memset(&kvm_regs, 0, sizeof kvm_regs);
  673. r = kvm_arch_vcpu_ioctl_get_regs(vcpu, &kvm_regs);
  674. if (r)
  675. goto out;
  676. r = -EFAULT;
  677. if (copy_to_user(argp, &kvm_regs, sizeof kvm_regs))
  678. goto out;
  679. r = 0;
  680. break;
  681. }
  682. case KVM_SET_REGS: {
  683. struct kvm_regs kvm_regs;
  684. r = -EFAULT;
  685. if (copy_from_user(&kvm_regs, argp, sizeof kvm_regs))
  686. goto out;
  687. r = kvm_arch_vcpu_ioctl_set_regs(vcpu, &kvm_regs);
  688. if (r)
  689. goto out;
  690. r = 0;
  691. break;
  692. }
  693. case KVM_GET_SREGS: {
  694. struct kvm_sregs kvm_sregs;
  695. memset(&kvm_sregs, 0, sizeof kvm_sregs);
  696. r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, &kvm_sregs);
  697. if (r)
  698. goto out;
  699. r = -EFAULT;
  700. if (copy_to_user(argp, &kvm_sregs, sizeof kvm_sregs))
  701. goto out;
  702. r = 0;
  703. break;
  704. }
  705. case KVM_SET_SREGS: {
  706. struct kvm_sregs kvm_sregs;
  707. r = -EFAULT;
  708. if (copy_from_user(&kvm_sregs, argp, sizeof kvm_sregs))
  709. goto out;
  710. r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, &kvm_sregs);
  711. if (r)
  712. goto out;
  713. r = 0;
  714. break;
  715. }
  716. case KVM_TRANSLATE: {
  717. struct kvm_translation tr;
  718. r = -EFAULT;
  719. if (copy_from_user(&tr, argp, sizeof tr))
  720. goto out;
  721. r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
  722. if (r)
  723. goto out;
  724. r = -EFAULT;
  725. if (copy_to_user(argp, &tr, sizeof tr))
  726. goto out;
  727. r = 0;
  728. break;
  729. }
  730. case KVM_DEBUG_GUEST: {
  731. struct kvm_debug_guest dbg;
  732. r = -EFAULT;
  733. if (copy_from_user(&dbg, argp, sizeof dbg))
  734. goto out;
  735. r = kvm_arch_vcpu_ioctl_debug_guest(vcpu, &dbg);
  736. if (r)
  737. goto out;
  738. r = 0;
  739. break;
  740. }
  741. case KVM_SET_SIGNAL_MASK: {
  742. struct kvm_signal_mask __user *sigmask_arg = argp;
  743. struct kvm_signal_mask kvm_sigmask;
  744. sigset_t sigset, *p;
  745. p = NULL;
  746. if (argp) {
  747. r = -EFAULT;
  748. if (copy_from_user(&kvm_sigmask, argp,
  749. sizeof kvm_sigmask))
  750. goto out;
  751. r = -EINVAL;
  752. if (kvm_sigmask.len != sizeof sigset)
  753. goto out;
  754. r = -EFAULT;
  755. if (copy_from_user(&sigset, sigmask_arg->sigset,
  756. sizeof sigset))
  757. goto out;
  758. p = &sigset;
  759. }
  760. r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
  761. break;
  762. }
  763. case KVM_GET_FPU: {
  764. struct kvm_fpu fpu;
  765. memset(&fpu, 0, sizeof fpu);
  766. r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, &fpu);
  767. if (r)
  768. goto out;
  769. r = -EFAULT;
  770. if (copy_to_user(argp, &fpu, sizeof fpu))
  771. goto out;
  772. r = 0;
  773. break;
  774. }
  775. case KVM_SET_FPU: {
  776. struct kvm_fpu fpu;
  777. r = -EFAULT;
  778. if (copy_from_user(&fpu, argp, sizeof fpu))
  779. goto out;
  780. r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, &fpu);
  781. if (r)
  782. goto out;
  783. r = 0;
  784. break;
  785. }
  786. default:
  787. r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
  788. }
  789. out:
  790. return r;
  791. }
  792. static long kvm_vm_ioctl(struct file *filp,
  793. unsigned int ioctl, unsigned long arg)
  794. {
  795. struct kvm *kvm = filp->private_data;
  796. void __user *argp = (void __user *)arg;
  797. int r;
  798. if (kvm->mm != current->mm)
  799. return -EIO;
  800. switch (ioctl) {
  801. case KVM_CREATE_VCPU:
  802. r = kvm_vm_ioctl_create_vcpu(kvm, arg);
  803. if (r < 0)
  804. goto out;
  805. break;
  806. case KVM_SET_USER_MEMORY_REGION: {
  807. struct kvm_userspace_memory_region kvm_userspace_mem;
  808. r = -EFAULT;
  809. if (copy_from_user(&kvm_userspace_mem, argp,
  810. sizeof kvm_userspace_mem))
  811. goto out;
  812. r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 1);
  813. if (r)
  814. goto out;
  815. break;
  816. }
  817. case KVM_GET_DIRTY_LOG: {
  818. struct kvm_dirty_log log;
  819. r = -EFAULT;
  820. if (copy_from_user(&log, argp, sizeof log))
  821. goto out;
  822. r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
  823. if (r)
  824. goto out;
  825. break;
  826. }
  827. default:
  828. r = kvm_arch_vm_ioctl(filp, ioctl, arg);
  829. }
  830. out:
  831. return r;
  832. }
  833. static struct page *kvm_vm_nopage(struct vm_area_struct *vma,
  834. unsigned long address,
  835. int *type)
  836. {
  837. struct kvm *kvm = vma->vm_file->private_data;
  838. unsigned long pgoff;
  839. struct page *page;
  840. pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
  841. if (!kvm_is_visible_gfn(kvm, pgoff))
  842. return NOPAGE_SIGBUS;
  843. /* current->mm->mmap_sem is already held so call lockless version */
  844. page = __gfn_to_page(kvm, pgoff);
  845. if (is_error_page(page)) {
  846. kvm_release_page_clean(page);
  847. return NOPAGE_SIGBUS;
  848. }
  849. if (type != NULL)
  850. *type = VM_FAULT_MINOR;
  851. return page;
  852. }
  853. static struct vm_operations_struct kvm_vm_vm_ops = {
  854. .nopage = kvm_vm_nopage,
  855. };
  856. static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
  857. {
  858. vma->vm_ops = &kvm_vm_vm_ops;
  859. return 0;
  860. }
  861. static struct file_operations kvm_vm_fops = {
  862. .release = kvm_vm_release,
  863. .unlocked_ioctl = kvm_vm_ioctl,
  864. .compat_ioctl = kvm_vm_ioctl,
  865. .mmap = kvm_vm_mmap,
  866. };
  867. static int kvm_dev_ioctl_create_vm(void)
  868. {
  869. int fd, r;
  870. struct inode *inode;
  871. struct file *file;
  872. struct kvm *kvm;
  873. kvm = kvm_create_vm();
  874. if (IS_ERR(kvm))
  875. return PTR_ERR(kvm);
  876. r = anon_inode_getfd(&fd, &inode, &file, "kvm-vm", &kvm_vm_fops, kvm);
  877. if (r) {
  878. kvm_destroy_vm(kvm);
  879. return r;
  880. }
  881. kvm->filp = file;
  882. return fd;
  883. }
  884. static long kvm_dev_ioctl(struct file *filp,
  885. unsigned int ioctl, unsigned long arg)
  886. {
  887. void __user *argp = (void __user *)arg;
  888. long r = -EINVAL;
  889. switch (ioctl) {
  890. case KVM_GET_API_VERSION:
  891. r = -EINVAL;
  892. if (arg)
  893. goto out;
  894. r = KVM_API_VERSION;
  895. break;
  896. case KVM_CREATE_VM:
  897. r = -EINVAL;
  898. if (arg)
  899. goto out;
  900. r = kvm_dev_ioctl_create_vm();
  901. break;
  902. case KVM_CHECK_EXTENSION:
  903. r = kvm_dev_ioctl_check_extension((long)argp);
  904. break;
  905. case KVM_GET_VCPU_MMAP_SIZE:
  906. r = -EINVAL;
  907. if (arg)
  908. goto out;
  909. r = 2 * PAGE_SIZE;
  910. break;
  911. default:
  912. return kvm_arch_dev_ioctl(filp, ioctl, arg);
  913. }
  914. out:
  915. return r;
  916. }
  917. static struct file_operations kvm_chardev_ops = {
  918. .unlocked_ioctl = kvm_dev_ioctl,
  919. .compat_ioctl = kvm_dev_ioctl,
  920. };
  921. static struct miscdevice kvm_dev = {
  922. KVM_MINOR,
  923. "kvm",
  924. &kvm_chardev_ops,
  925. };
  926. static void hardware_enable(void *junk)
  927. {
  928. int cpu = raw_smp_processor_id();
  929. if (cpu_isset(cpu, cpus_hardware_enabled))
  930. return;
  931. cpu_set(cpu, cpus_hardware_enabled);
  932. kvm_arch_hardware_enable(NULL);
  933. }
  934. static void hardware_disable(void *junk)
  935. {
  936. int cpu = raw_smp_processor_id();
  937. if (!cpu_isset(cpu, cpus_hardware_enabled))
  938. return;
  939. cpu_clear(cpu, cpus_hardware_enabled);
  940. decache_vcpus_on_cpu(cpu);
  941. kvm_arch_hardware_disable(NULL);
  942. }
  943. static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
  944. void *v)
  945. {
  946. int cpu = (long)v;
  947. val &= ~CPU_TASKS_FROZEN;
  948. switch (val) {
  949. case CPU_DYING:
  950. printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
  951. cpu);
  952. hardware_disable(NULL);
  953. break;
  954. case CPU_UP_CANCELED:
  955. printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
  956. cpu);
  957. smp_call_function_single(cpu, hardware_disable, NULL, 0, 1);
  958. break;
  959. case CPU_ONLINE:
  960. printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
  961. cpu);
  962. smp_call_function_single(cpu, hardware_enable, NULL, 0, 1);
  963. break;
  964. }
  965. return NOTIFY_OK;
  966. }
  967. static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
  968. void *v)
  969. {
  970. if (val == SYS_RESTART) {
  971. /*
  972. * Some (well, at least mine) BIOSes hang on reboot if
  973. * in vmx root mode.
  974. */
  975. printk(KERN_INFO "kvm: exiting hardware virtualization\n");
  976. on_each_cpu(hardware_disable, NULL, 0, 1);
  977. }
  978. return NOTIFY_OK;
  979. }
  980. static struct notifier_block kvm_reboot_notifier = {
  981. .notifier_call = kvm_reboot,
  982. .priority = 0,
  983. };
  984. void kvm_io_bus_init(struct kvm_io_bus *bus)
  985. {
  986. memset(bus, 0, sizeof(*bus));
  987. }
  988. void kvm_io_bus_destroy(struct kvm_io_bus *bus)
  989. {
  990. int i;
  991. for (i = 0; i < bus->dev_count; i++) {
  992. struct kvm_io_device *pos = bus->devs[i];
  993. kvm_iodevice_destructor(pos);
  994. }
  995. }
  996. struct kvm_io_device *kvm_io_bus_find_dev(struct kvm_io_bus *bus, gpa_t addr)
  997. {
  998. int i;
  999. for (i = 0; i < bus->dev_count; i++) {
  1000. struct kvm_io_device *pos = bus->devs[i];
  1001. if (pos->in_range(pos, addr))
  1002. return pos;
  1003. }
  1004. return NULL;
  1005. }
  1006. void kvm_io_bus_register_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev)
  1007. {
  1008. BUG_ON(bus->dev_count > (NR_IOBUS_DEVS-1));
  1009. bus->devs[bus->dev_count++] = dev;
  1010. }
  1011. static struct notifier_block kvm_cpu_notifier = {
  1012. .notifier_call = kvm_cpu_hotplug,
  1013. .priority = 20, /* must be > scheduler priority */
  1014. };
  1015. static u64 vm_stat_get(void *_offset)
  1016. {
  1017. unsigned offset = (long)_offset;
  1018. u64 total = 0;
  1019. struct kvm *kvm;
  1020. spin_lock(&kvm_lock);
  1021. list_for_each_entry(kvm, &vm_list, vm_list)
  1022. total += *(u32 *)((void *)kvm + offset);
  1023. spin_unlock(&kvm_lock);
  1024. return total;
  1025. }
  1026. DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
  1027. static u64 vcpu_stat_get(void *_offset)
  1028. {
  1029. unsigned offset = (long)_offset;
  1030. u64 total = 0;
  1031. struct kvm *kvm;
  1032. struct kvm_vcpu *vcpu;
  1033. int i;
  1034. spin_lock(&kvm_lock);
  1035. list_for_each_entry(kvm, &vm_list, vm_list)
  1036. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  1037. vcpu = kvm->vcpus[i];
  1038. if (vcpu)
  1039. total += *(u32 *)((void *)vcpu + offset);
  1040. }
  1041. spin_unlock(&kvm_lock);
  1042. return total;
  1043. }
  1044. DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
  1045. static struct file_operations *stat_fops[] = {
  1046. [KVM_STAT_VCPU] = &vcpu_stat_fops,
  1047. [KVM_STAT_VM] = &vm_stat_fops,
  1048. };
  1049. static void kvm_init_debug(void)
  1050. {
  1051. struct kvm_stats_debugfs_item *p;
  1052. debugfs_dir = debugfs_create_dir("kvm", NULL);
  1053. for (p = debugfs_entries; p->name; ++p)
  1054. p->dentry = debugfs_create_file(p->name, 0444, debugfs_dir,
  1055. (void *)(long)p->offset,
  1056. stat_fops[p->kind]);
  1057. }
  1058. static void kvm_exit_debug(void)
  1059. {
  1060. struct kvm_stats_debugfs_item *p;
  1061. for (p = debugfs_entries; p->name; ++p)
  1062. debugfs_remove(p->dentry);
  1063. debugfs_remove(debugfs_dir);
  1064. }
  1065. static int kvm_suspend(struct sys_device *dev, pm_message_t state)
  1066. {
  1067. hardware_disable(NULL);
  1068. return 0;
  1069. }
  1070. static int kvm_resume(struct sys_device *dev)
  1071. {
  1072. hardware_enable(NULL);
  1073. return 0;
  1074. }
  1075. static struct sysdev_class kvm_sysdev_class = {
  1076. .name = "kvm",
  1077. .suspend = kvm_suspend,
  1078. .resume = kvm_resume,
  1079. };
  1080. static struct sys_device kvm_sysdev = {
  1081. .id = 0,
  1082. .cls = &kvm_sysdev_class,
  1083. };
  1084. struct page *bad_page;
  1085. static inline
  1086. struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
  1087. {
  1088. return container_of(pn, struct kvm_vcpu, preempt_notifier);
  1089. }
  1090. static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
  1091. {
  1092. struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
  1093. kvm_arch_vcpu_load(vcpu, cpu);
  1094. }
  1095. static void kvm_sched_out(struct preempt_notifier *pn,
  1096. struct task_struct *next)
  1097. {
  1098. struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
  1099. kvm_arch_vcpu_put(vcpu);
  1100. }
  1101. int kvm_init(void *opaque, unsigned int vcpu_size,
  1102. struct module *module)
  1103. {
  1104. int r;
  1105. int cpu;
  1106. kvm_init_debug();
  1107. r = kvm_arch_init(opaque);
  1108. if (r)
  1109. goto out4;
  1110. bad_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  1111. if (bad_page == NULL) {
  1112. r = -ENOMEM;
  1113. goto out;
  1114. }
  1115. r = kvm_arch_hardware_setup();
  1116. if (r < 0)
  1117. goto out;
  1118. for_each_online_cpu(cpu) {
  1119. smp_call_function_single(cpu,
  1120. kvm_arch_check_processor_compat,
  1121. &r, 0, 1);
  1122. if (r < 0)
  1123. goto out_free_0;
  1124. }
  1125. on_each_cpu(hardware_enable, NULL, 0, 1);
  1126. r = register_cpu_notifier(&kvm_cpu_notifier);
  1127. if (r)
  1128. goto out_free_1;
  1129. register_reboot_notifier(&kvm_reboot_notifier);
  1130. r = sysdev_class_register(&kvm_sysdev_class);
  1131. if (r)
  1132. goto out_free_2;
  1133. r = sysdev_register(&kvm_sysdev);
  1134. if (r)
  1135. goto out_free_3;
  1136. /* A kmem cache lets us meet the alignment requirements of fx_save. */
  1137. kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size,
  1138. __alignof__(struct kvm_vcpu),
  1139. 0, NULL);
  1140. if (!kvm_vcpu_cache) {
  1141. r = -ENOMEM;
  1142. goto out_free_4;
  1143. }
  1144. kvm_chardev_ops.owner = module;
  1145. r = misc_register(&kvm_dev);
  1146. if (r) {
  1147. printk(KERN_ERR "kvm: misc device register failed\n");
  1148. goto out_free;
  1149. }
  1150. kvm_preempt_ops.sched_in = kvm_sched_in;
  1151. kvm_preempt_ops.sched_out = kvm_sched_out;
  1152. return 0;
  1153. out_free:
  1154. kmem_cache_destroy(kvm_vcpu_cache);
  1155. out_free_4:
  1156. sysdev_unregister(&kvm_sysdev);
  1157. out_free_3:
  1158. sysdev_class_unregister(&kvm_sysdev_class);
  1159. out_free_2:
  1160. unregister_reboot_notifier(&kvm_reboot_notifier);
  1161. unregister_cpu_notifier(&kvm_cpu_notifier);
  1162. out_free_1:
  1163. on_each_cpu(hardware_disable, NULL, 0, 1);
  1164. out_free_0:
  1165. kvm_arch_hardware_unsetup();
  1166. out:
  1167. kvm_arch_exit();
  1168. kvm_exit_debug();
  1169. out4:
  1170. return r;
  1171. }
  1172. EXPORT_SYMBOL_GPL(kvm_init);
  1173. void kvm_exit(void)
  1174. {
  1175. misc_deregister(&kvm_dev);
  1176. kmem_cache_destroy(kvm_vcpu_cache);
  1177. sysdev_unregister(&kvm_sysdev);
  1178. sysdev_class_unregister(&kvm_sysdev_class);
  1179. unregister_reboot_notifier(&kvm_reboot_notifier);
  1180. unregister_cpu_notifier(&kvm_cpu_notifier);
  1181. on_each_cpu(hardware_disable, NULL, 0, 1);
  1182. kvm_arch_hardware_unsetup();
  1183. kvm_arch_exit();
  1184. kvm_exit_debug();
  1185. __free_page(bad_page);
  1186. }
  1187. EXPORT_SYMBOL_GPL(kvm_exit);