evlist.c 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847
  1. /*
  2. * Copyright (C) 2011, Red Hat Inc, Arnaldo Carvalho de Melo <acme@redhat.com>
  3. *
  4. * Parts came from builtin-{top,stat,record}.c, see those files for further
  5. * copyright notes.
  6. *
  7. * Released under the GPL v2. (and only v2, not any later version)
  8. */
  9. #include "util.h"
  10. #include "debugfs.h"
  11. #include <poll.h>
  12. #include "cpumap.h"
  13. #include "thread_map.h"
  14. #include "target.h"
  15. #include "evlist.h"
  16. #include "evsel.h"
  17. #include <unistd.h>
  18. #include "parse-events.h"
  19. #include <sys/mman.h>
  20. #include <linux/bitops.h>
  21. #include <linux/hash.h>
  22. #define FD(e, x, y) (*(int *)xyarray__entry(e->fd, x, y))
  23. #define SID(e, x, y) xyarray__entry(e->sample_id, x, y)
  24. void perf_evlist__init(struct perf_evlist *evlist, struct cpu_map *cpus,
  25. struct thread_map *threads)
  26. {
  27. int i;
  28. for (i = 0; i < PERF_EVLIST__HLIST_SIZE; ++i)
  29. INIT_HLIST_HEAD(&evlist->heads[i]);
  30. INIT_LIST_HEAD(&evlist->entries);
  31. perf_evlist__set_maps(evlist, cpus, threads);
  32. evlist->workload.pid = -1;
  33. }
  34. struct perf_evlist *perf_evlist__new(struct cpu_map *cpus,
  35. struct thread_map *threads)
  36. {
  37. struct perf_evlist *evlist = zalloc(sizeof(*evlist));
  38. if (evlist != NULL)
  39. perf_evlist__init(evlist, cpus, threads);
  40. return evlist;
  41. }
  42. void perf_evlist__config(struct perf_evlist *evlist,
  43. struct perf_record_opts *opts)
  44. {
  45. struct perf_evsel *evsel;
  46. /*
  47. * Set the evsel leader links before we configure attributes,
  48. * since some might depend on this info.
  49. */
  50. if (opts->group)
  51. perf_evlist__set_leader(evlist);
  52. if (evlist->cpus->map[0] < 0)
  53. opts->no_inherit = true;
  54. list_for_each_entry(evsel, &evlist->entries, node) {
  55. perf_evsel__config(evsel, opts);
  56. if (evlist->nr_entries > 1)
  57. perf_evsel__set_sample_id(evsel);
  58. }
  59. }
  60. static void perf_evlist__purge(struct perf_evlist *evlist)
  61. {
  62. struct perf_evsel *pos, *n;
  63. list_for_each_entry_safe(pos, n, &evlist->entries, node) {
  64. list_del_init(&pos->node);
  65. perf_evsel__delete(pos);
  66. }
  67. evlist->nr_entries = 0;
  68. }
  69. void perf_evlist__exit(struct perf_evlist *evlist)
  70. {
  71. free(evlist->mmap);
  72. free(evlist->pollfd);
  73. evlist->mmap = NULL;
  74. evlist->pollfd = NULL;
  75. }
  76. void perf_evlist__delete(struct perf_evlist *evlist)
  77. {
  78. perf_evlist__purge(evlist);
  79. perf_evlist__exit(evlist);
  80. free(evlist);
  81. }
  82. void perf_evlist__add(struct perf_evlist *evlist, struct perf_evsel *entry)
  83. {
  84. list_add_tail(&entry->node, &evlist->entries);
  85. ++evlist->nr_entries;
  86. }
  87. void perf_evlist__splice_list_tail(struct perf_evlist *evlist,
  88. struct list_head *list,
  89. int nr_entries)
  90. {
  91. list_splice_tail(list, &evlist->entries);
  92. evlist->nr_entries += nr_entries;
  93. }
  94. void __perf_evlist__set_leader(struct list_head *list)
  95. {
  96. struct perf_evsel *evsel, *leader;
  97. leader = list_entry(list->next, struct perf_evsel, node);
  98. list_for_each_entry(evsel, list, node) {
  99. if (evsel != leader)
  100. evsel->leader = leader;
  101. }
  102. }
  103. void perf_evlist__set_leader(struct perf_evlist *evlist)
  104. {
  105. if (evlist->nr_entries)
  106. __perf_evlist__set_leader(&evlist->entries);
  107. }
  108. int perf_evlist__add_default(struct perf_evlist *evlist)
  109. {
  110. struct perf_event_attr attr = {
  111. .type = PERF_TYPE_HARDWARE,
  112. .config = PERF_COUNT_HW_CPU_CYCLES,
  113. };
  114. struct perf_evsel *evsel;
  115. event_attr_init(&attr);
  116. evsel = perf_evsel__new(&attr, 0);
  117. if (evsel == NULL)
  118. goto error;
  119. /* use strdup() because free(evsel) assumes name is allocated */
  120. evsel->name = strdup("cycles");
  121. if (!evsel->name)
  122. goto error_free;
  123. perf_evlist__add(evlist, evsel);
  124. return 0;
  125. error_free:
  126. perf_evsel__delete(evsel);
  127. error:
  128. return -ENOMEM;
  129. }
  130. static int perf_evlist__add_attrs(struct perf_evlist *evlist,
  131. struct perf_event_attr *attrs, size_t nr_attrs)
  132. {
  133. struct perf_evsel *evsel, *n;
  134. LIST_HEAD(head);
  135. size_t i;
  136. for (i = 0; i < nr_attrs; i++) {
  137. evsel = perf_evsel__new(attrs + i, evlist->nr_entries + i);
  138. if (evsel == NULL)
  139. goto out_delete_partial_list;
  140. list_add_tail(&evsel->node, &head);
  141. }
  142. perf_evlist__splice_list_tail(evlist, &head, nr_attrs);
  143. return 0;
  144. out_delete_partial_list:
  145. list_for_each_entry_safe(evsel, n, &head, node)
  146. perf_evsel__delete(evsel);
  147. return -1;
  148. }
  149. int __perf_evlist__add_default_attrs(struct perf_evlist *evlist,
  150. struct perf_event_attr *attrs, size_t nr_attrs)
  151. {
  152. size_t i;
  153. for (i = 0; i < nr_attrs; i++)
  154. event_attr_init(attrs + i);
  155. return perf_evlist__add_attrs(evlist, attrs, nr_attrs);
  156. }
  157. struct perf_evsel *
  158. perf_evlist__find_tracepoint_by_id(struct perf_evlist *evlist, int id)
  159. {
  160. struct perf_evsel *evsel;
  161. list_for_each_entry(evsel, &evlist->entries, node) {
  162. if (evsel->attr.type == PERF_TYPE_TRACEPOINT &&
  163. (int)evsel->attr.config == id)
  164. return evsel;
  165. }
  166. return NULL;
  167. }
  168. int perf_evlist__add_newtp(struct perf_evlist *evlist,
  169. const char *sys, const char *name, void *handler)
  170. {
  171. struct perf_evsel *evsel;
  172. evsel = perf_evsel__newtp(sys, name, evlist->nr_entries);
  173. if (evsel == NULL)
  174. return -1;
  175. evsel->handler.func = handler;
  176. perf_evlist__add(evlist, evsel);
  177. return 0;
  178. }
  179. void perf_evlist__disable(struct perf_evlist *evlist)
  180. {
  181. int cpu, thread;
  182. struct perf_evsel *pos;
  183. for (cpu = 0; cpu < evlist->cpus->nr; cpu++) {
  184. list_for_each_entry(pos, &evlist->entries, node) {
  185. if (!perf_evsel__is_group_leader(pos))
  186. continue;
  187. for (thread = 0; thread < evlist->threads->nr; thread++)
  188. ioctl(FD(pos, cpu, thread),
  189. PERF_EVENT_IOC_DISABLE, 0);
  190. }
  191. }
  192. }
  193. void perf_evlist__enable(struct perf_evlist *evlist)
  194. {
  195. int cpu, thread;
  196. struct perf_evsel *pos;
  197. for (cpu = 0; cpu < cpu_map__nr(evlist->cpus); cpu++) {
  198. list_for_each_entry(pos, &evlist->entries, node) {
  199. if (!perf_evsel__is_group_leader(pos))
  200. continue;
  201. for (thread = 0; thread < evlist->threads->nr; thread++)
  202. ioctl(FD(pos, cpu, thread),
  203. PERF_EVENT_IOC_ENABLE, 0);
  204. }
  205. }
  206. }
  207. static int perf_evlist__alloc_pollfd(struct perf_evlist *evlist)
  208. {
  209. int nfds = cpu_map__nr(evlist->cpus) * evlist->threads->nr * evlist->nr_entries;
  210. evlist->pollfd = malloc(sizeof(struct pollfd) * nfds);
  211. return evlist->pollfd != NULL ? 0 : -ENOMEM;
  212. }
  213. void perf_evlist__add_pollfd(struct perf_evlist *evlist, int fd)
  214. {
  215. fcntl(fd, F_SETFL, O_NONBLOCK);
  216. evlist->pollfd[evlist->nr_fds].fd = fd;
  217. evlist->pollfd[evlist->nr_fds].events = POLLIN;
  218. evlist->nr_fds++;
  219. }
  220. static void perf_evlist__id_hash(struct perf_evlist *evlist,
  221. struct perf_evsel *evsel,
  222. int cpu, int thread, u64 id)
  223. {
  224. int hash;
  225. struct perf_sample_id *sid = SID(evsel, cpu, thread);
  226. sid->id = id;
  227. sid->evsel = evsel;
  228. hash = hash_64(sid->id, PERF_EVLIST__HLIST_BITS);
  229. hlist_add_head(&sid->node, &evlist->heads[hash]);
  230. }
  231. void perf_evlist__id_add(struct perf_evlist *evlist, struct perf_evsel *evsel,
  232. int cpu, int thread, u64 id)
  233. {
  234. perf_evlist__id_hash(evlist, evsel, cpu, thread, id);
  235. evsel->id[evsel->ids++] = id;
  236. }
  237. static int perf_evlist__id_add_fd(struct perf_evlist *evlist,
  238. struct perf_evsel *evsel,
  239. int cpu, int thread, int fd)
  240. {
  241. u64 read_data[4] = { 0, };
  242. int id_idx = 1; /* The first entry is the counter value */
  243. if (!(evsel->attr.read_format & PERF_FORMAT_ID) ||
  244. read(fd, &read_data, sizeof(read_data)) == -1)
  245. return -1;
  246. if (evsel->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
  247. ++id_idx;
  248. if (evsel->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
  249. ++id_idx;
  250. perf_evlist__id_add(evlist, evsel, cpu, thread, read_data[id_idx]);
  251. return 0;
  252. }
  253. struct perf_evsel *perf_evlist__id2evsel(struct perf_evlist *evlist, u64 id)
  254. {
  255. struct hlist_head *head;
  256. struct hlist_node *pos;
  257. struct perf_sample_id *sid;
  258. int hash;
  259. if (evlist->nr_entries == 1)
  260. return perf_evlist__first(evlist);
  261. hash = hash_64(id, PERF_EVLIST__HLIST_BITS);
  262. head = &evlist->heads[hash];
  263. hlist_for_each_entry(sid, pos, head, node)
  264. if (sid->id == id)
  265. return sid->evsel;
  266. if (!perf_evlist__sample_id_all(evlist))
  267. return perf_evlist__first(evlist);
  268. return NULL;
  269. }
  270. union perf_event *perf_evlist__mmap_read(struct perf_evlist *evlist, int idx)
  271. {
  272. struct perf_mmap *md = &evlist->mmap[idx];
  273. unsigned int head = perf_mmap__read_head(md);
  274. unsigned int old = md->prev;
  275. unsigned char *data = md->base + page_size;
  276. union perf_event *event = NULL;
  277. if (evlist->overwrite) {
  278. /*
  279. * If we're further behind than half the buffer, there's a chance
  280. * the writer will bite our tail and mess up the samples under us.
  281. *
  282. * If we somehow ended up ahead of the head, we got messed up.
  283. *
  284. * In either case, truncate and restart at head.
  285. */
  286. int diff = head - old;
  287. if (diff > md->mask / 2 || diff < 0) {
  288. fprintf(stderr, "WARNING: failed to keep up with mmap data.\n");
  289. /*
  290. * head points to a known good entry, start there.
  291. */
  292. old = head;
  293. }
  294. }
  295. if (old != head) {
  296. size_t size;
  297. event = (union perf_event *)&data[old & md->mask];
  298. size = event->header.size;
  299. /*
  300. * Event straddles the mmap boundary -- header should always
  301. * be inside due to u64 alignment of output.
  302. */
  303. if ((old & md->mask) + size != ((old + size) & md->mask)) {
  304. unsigned int offset = old;
  305. unsigned int len = min(sizeof(*event), size), cpy;
  306. void *dst = &evlist->event_copy;
  307. do {
  308. cpy = min(md->mask + 1 - (offset & md->mask), len);
  309. memcpy(dst, &data[offset & md->mask], cpy);
  310. offset += cpy;
  311. dst += cpy;
  312. len -= cpy;
  313. } while (len);
  314. event = &evlist->event_copy;
  315. }
  316. old += size;
  317. }
  318. md->prev = old;
  319. if (!evlist->overwrite)
  320. perf_mmap__write_tail(md, old);
  321. return event;
  322. }
  323. void perf_evlist__munmap(struct perf_evlist *evlist)
  324. {
  325. int i;
  326. for (i = 0; i < evlist->nr_mmaps; i++) {
  327. if (evlist->mmap[i].base != NULL) {
  328. munmap(evlist->mmap[i].base, evlist->mmap_len);
  329. evlist->mmap[i].base = NULL;
  330. }
  331. }
  332. free(evlist->mmap);
  333. evlist->mmap = NULL;
  334. }
  335. static int perf_evlist__alloc_mmap(struct perf_evlist *evlist)
  336. {
  337. evlist->nr_mmaps = cpu_map__nr(evlist->cpus);
  338. if (cpu_map__all(evlist->cpus))
  339. evlist->nr_mmaps = evlist->threads->nr;
  340. evlist->mmap = zalloc(evlist->nr_mmaps * sizeof(struct perf_mmap));
  341. return evlist->mmap != NULL ? 0 : -ENOMEM;
  342. }
  343. static int __perf_evlist__mmap(struct perf_evlist *evlist,
  344. int idx, int prot, int mask, int fd)
  345. {
  346. evlist->mmap[idx].prev = 0;
  347. evlist->mmap[idx].mask = mask;
  348. evlist->mmap[idx].base = mmap(NULL, evlist->mmap_len, prot,
  349. MAP_SHARED, fd, 0);
  350. if (evlist->mmap[idx].base == MAP_FAILED) {
  351. evlist->mmap[idx].base = NULL;
  352. return -1;
  353. }
  354. perf_evlist__add_pollfd(evlist, fd);
  355. return 0;
  356. }
  357. static int perf_evlist__mmap_per_cpu(struct perf_evlist *evlist, int prot, int mask)
  358. {
  359. struct perf_evsel *evsel;
  360. int cpu, thread;
  361. for (cpu = 0; cpu < evlist->cpus->nr; cpu++) {
  362. int output = -1;
  363. for (thread = 0; thread < evlist->threads->nr; thread++) {
  364. list_for_each_entry(evsel, &evlist->entries, node) {
  365. int fd = FD(evsel, cpu, thread);
  366. if (output == -1) {
  367. output = fd;
  368. if (__perf_evlist__mmap(evlist, cpu,
  369. prot, mask, output) < 0)
  370. goto out_unmap;
  371. } else {
  372. if (ioctl(fd, PERF_EVENT_IOC_SET_OUTPUT, output) != 0)
  373. goto out_unmap;
  374. }
  375. if ((evsel->attr.read_format & PERF_FORMAT_ID) &&
  376. perf_evlist__id_add_fd(evlist, evsel, cpu, thread, fd) < 0)
  377. goto out_unmap;
  378. }
  379. }
  380. }
  381. return 0;
  382. out_unmap:
  383. for (cpu = 0; cpu < evlist->cpus->nr; cpu++) {
  384. if (evlist->mmap[cpu].base != NULL) {
  385. munmap(evlist->mmap[cpu].base, evlist->mmap_len);
  386. evlist->mmap[cpu].base = NULL;
  387. }
  388. }
  389. return -1;
  390. }
  391. static int perf_evlist__mmap_per_thread(struct perf_evlist *evlist, int prot, int mask)
  392. {
  393. struct perf_evsel *evsel;
  394. int thread;
  395. for (thread = 0; thread < evlist->threads->nr; thread++) {
  396. int output = -1;
  397. list_for_each_entry(evsel, &evlist->entries, node) {
  398. int fd = FD(evsel, 0, thread);
  399. if (output == -1) {
  400. output = fd;
  401. if (__perf_evlist__mmap(evlist, thread,
  402. prot, mask, output) < 0)
  403. goto out_unmap;
  404. } else {
  405. if (ioctl(fd, PERF_EVENT_IOC_SET_OUTPUT, output) != 0)
  406. goto out_unmap;
  407. }
  408. if ((evsel->attr.read_format & PERF_FORMAT_ID) &&
  409. perf_evlist__id_add_fd(evlist, evsel, 0, thread, fd) < 0)
  410. goto out_unmap;
  411. }
  412. }
  413. return 0;
  414. out_unmap:
  415. for (thread = 0; thread < evlist->threads->nr; thread++) {
  416. if (evlist->mmap[thread].base != NULL) {
  417. munmap(evlist->mmap[thread].base, evlist->mmap_len);
  418. evlist->mmap[thread].base = NULL;
  419. }
  420. }
  421. return -1;
  422. }
  423. /** perf_evlist__mmap - Create per cpu maps to receive events
  424. *
  425. * @evlist - list of events
  426. * @pages - map length in pages
  427. * @overwrite - overwrite older events?
  428. *
  429. * If overwrite is false the user needs to signal event consuption using:
  430. *
  431. * struct perf_mmap *m = &evlist->mmap[cpu];
  432. * unsigned int head = perf_mmap__read_head(m);
  433. *
  434. * perf_mmap__write_tail(m, head)
  435. *
  436. * Using perf_evlist__read_on_cpu does this automatically.
  437. */
  438. int perf_evlist__mmap(struct perf_evlist *evlist, unsigned int pages,
  439. bool overwrite)
  440. {
  441. struct perf_evsel *evsel;
  442. const struct cpu_map *cpus = evlist->cpus;
  443. const struct thread_map *threads = evlist->threads;
  444. int prot = PROT_READ | (overwrite ? 0 : PROT_WRITE), mask;
  445. /* 512 kiB: default amount of unprivileged mlocked memory */
  446. if (pages == UINT_MAX)
  447. pages = (512 * 1024) / page_size;
  448. else if (!is_power_of_2(pages))
  449. return -EINVAL;
  450. mask = pages * page_size - 1;
  451. if (evlist->mmap == NULL && perf_evlist__alloc_mmap(evlist) < 0)
  452. return -ENOMEM;
  453. if (evlist->pollfd == NULL && perf_evlist__alloc_pollfd(evlist) < 0)
  454. return -ENOMEM;
  455. evlist->overwrite = overwrite;
  456. evlist->mmap_len = (pages + 1) * page_size;
  457. list_for_each_entry(evsel, &evlist->entries, node) {
  458. if ((evsel->attr.read_format & PERF_FORMAT_ID) &&
  459. evsel->sample_id == NULL &&
  460. perf_evsel__alloc_id(evsel, cpu_map__nr(cpus), threads->nr) < 0)
  461. return -ENOMEM;
  462. }
  463. if (cpu_map__all(cpus))
  464. return perf_evlist__mmap_per_thread(evlist, prot, mask);
  465. return perf_evlist__mmap_per_cpu(evlist, prot, mask);
  466. }
  467. int perf_evlist__create_maps(struct perf_evlist *evlist,
  468. struct perf_target *target)
  469. {
  470. evlist->threads = thread_map__new_str(target->pid, target->tid,
  471. target->uid);
  472. if (evlist->threads == NULL)
  473. return -1;
  474. if (perf_target__has_task(target))
  475. evlist->cpus = cpu_map__dummy_new();
  476. else if (!perf_target__has_cpu(target) && !target->uses_mmap)
  477. evlist->cpus = cpu_map__dummy_new();
  478. else
  479. evlist->cpus = cpu_map__new(target->cpu_list);
  480. if (evlist->cpus == NULL)
  481. goto out_delete_threads;
  482. return 0;
  483. out_delete_threads:
  484. thread_map__delete(evlist->threads);
  485. return -1;
  486. }
  487. void perf_evlist__delete_maps(struct perf_evlist *evlist)
  488. {
  489. cpu_map__delete(evlist->cpus);
  490. thread_map__delete(evlist->threads);
  491. evlist->cpus = NULL;
  492. evlist->threads = NULL;
  493. }
  494. int perf_evlist__apply_filters(struct perf_evlist *evlist)
  495. {
  496. struct perf_evsel *evsel;
  497. int err = 0;
  498. const int ncpus = cpu_map__nr(evlist->cpus),
  499. nthreads = evlist->threads->nr;
  500. list_for_each_entry(evsel, &evlist->entries, node) {
  501. if (evsel->filter == NULL)
  502. continue;
  503. err = perf_evsel__set_filter(evsel, ncpus, nthreads, evsel->filter);
  504. if (err)
  505. break;
  506. }
  507. return err;
  508. }
  509. int perf_evlist__set_filter(struct perf_evlist *evlist, const char *filter)
  510. {
  511. struct perf_evsel *evsel;
  512. int err = 0;
  513. const int ncpus = cpu_map__nr(evlist->cpus),
  514. nthreads = evlist->threads->nr;
  515. list_for_each_entry(evsel, &evlist->entries, node) {
  516. err = perf_evsel__set_filter(evsel, ncpus, nthreads, filter);
  517. if (err)
  518. break;
  519. }
  520. return err;
  521. }
  522. bool perf_evlist__valid_sample_type(struct perf_evlist *evlist)
  523. {
  524. struct perf_evsel *first = perf_evlist__first(evlist), *pos = first;
  525. list_for_each_entry_continue(pos, &evlist->entries, node) {
  526. if (first->attr.sample_type != pos->attr.sample_type)
  527. return false;
  528. }
  529. return true;
  530. }
  531. u64 perf_evlist__sample_type(struct perf_evlist *evlist)
  532. {
  533. struct perf_evsel *first = perf_evlist__first(evlist);
  534. return first->attr.sample_type;
  535. }
  536. u16 perf_evlist__id_hdr_size(struct perf_evlist *evlist)
  537. {
  538. struct perf_evsel *first = perf_evlist__first(evlist);
  539. struct perf_sample *data;
  540. u64 sample_type;
  541. u16 size = 0;
  542. if (!first->attr.sample_id_all)
  543. goto out;
  544. sample_type = first->attr.sample_type;
  545. if (sample_type & PERF_SAMPLE_TID)
  546. size += sizeof(data->tid) * 2;
  547. if (sample_type & PERF_SAMPLE_TIME)
  548. size += sizeof(data->time);
  549. if (sample_type & PERF_SAMPLE_ID)
  550. size += sizeof(data->id);
  551. if (sample_type & PERF_SAMPLE_STREAM_ID)
  552. size += sizeof(data->stream_id);
  553. if (sample_type & PERF_SAMPLE_CPU)
  554. size += sizeof(data->cpu) * 2;
  555. out:
  556. return size;
  557. }
  558. bool perf_evlist__valid_sample_id_all(struct perf_evlist *evlist)
  559. {
  560. struct perf_evsel *first = perf_evlist__first(evlist), *pos = first;
  561. list_for_each_entry_continue(pos, &evlist->entries, node) {
  562. if (first->attr.sample_id_all != pos->attr.sample_id_all)
  563. return false;
  564. }
  565. return true;
  566. }
  567. bool perf_evlist__sample_id_all(struct perf_evlist *evlist)
  568. {
  569. struct perf_evsel *first = perf_evlist__first(evlist);
  570. return first->attr.sample_id_all;
  571. }
  572. void perf_evlist__set_selected(struct perf_evlist *evlist,
  573. struct perf_evsel *evsel)
  574. {
  575. evlist->selected = evsel;
  576. }
  577. int perf_evlist__open(struct perf_evlist *evlist)
  578. {
  579. struct perf_evsel *evsel;
  580. int err, ncpus, nthreads;
  581. list_for_each_entry(evsel, &evlist->entries, node) {
  582. err = perf_evsel__open(evsel, evlist->cpus, evlist->threads);
  583. if (err < 0)
  584. goto out_err;
  585. }
  586. return 0;
  587. out_err:
  588. ncpus = evlist->cpus ? evlist->cpus->nr : 1;
  589. nthreads = evlist->threads ? evlist->threads->nr : 1;
  590. list_for_each_entry_reverse(evsel, &evlist->entries, node)
  591. perf_evsel__close(evsel, ncpus, nthreads);
  592. errno = -err;
  593. return err;
  594. }
  595. int perf_evlist__prepare_workload(struct perf_evlist *evlist,
  596. struct perf_record_opts *opts,
  597. const char *argv[])
  598. {
  599. int child_ready_pipe[2], go_pipe[2];
  600. char bf;
  601. if (pipe(child_ready_pipe) < 0) {
  602. perror("failed to create 'ready' pipe");
  603. return -1;
  604. }
  605. if (pipe(go_pipe) < 0) {
  606. perror("failed to create 'go' pipe");
  607. goto out_close_ready_pipe;
  608. }
  609. evlist->workload.pid = fork();
  610. if (evlist->workload.pid < 0) {
  611. perror("failed to fork");
  612. goto out_close_pipes;
  613. }
  614. if (!evlist->workload.pid) {
  615. if (opts->pipe_output)
  616. dup2(2, 1);
  617. close(child_ready_pipe[0]);
  618. close(go_pipe[1]);
  619. fcntl(go_pipe[0], F_SETFD, FD_CLOEXEC);
  620. /*
  621. * Do a dummy execvp to get the PLT entry resolved,
  622. * so we avoid the resolver overhead on the real
  623. * execvp call.
  624. */
  625. execvp("", (char **)argv);
  626. /*
  627. * Tell the parent we're ready to go
  628. */
  629. close(child_ready_pipe[1]);
  630. /*
  631. * Wait until the parent tells us to go.
  632. */
  633. if (read(go_pipe[0], &bf, 1) == -1)
  634. perror("unable to read pipe");
  635. execvp(argv[0], (char **)argv);
  636. perror(argv[0]);
  637. kill(getppid(), SIGUSR1);
  638. exit(-1);
  639. }
  640. if (perf_target__none(&opts->target))
  641. evlist->threads->map[0] = evlist->workload.pid;
  642. close(child_ready_pipe[1]);
  643. close(go_pipe[0]);
  644. /*
  645. * wait for child to settle
  646. */
  647. if (read(child_ready_pipe[0], &bf, 1) == -1) {
  648. perror("unable to read pipe");
  649. goto out_close_pipes;
  650. }
  651. evlist->workload.cork_fd = go_pipe[1];
  652. close(child_ready_pipe[0]);
  653. return 0;
  654. out_close_pipes:
  655. close(go_pipe[0]);
  656. close(go_pipe[1]);
  657. out_close_ready_pipe:
  658. close(child_ready_pipe[0]);
  659. close(child_ready_pipe[1]);
  660. return -1;
  661. }
  662. int perf_evlist__start_workload(struct perf_evlist *evlist)
  663. {
  664. if (evlist->workload.cork_fd > 0) {
  665. /*
  666. * Remove the cork, let it rip!
  667. */
  668. return close(evlist->workload.cork_fd);
  669. }
  670. return 0;
  671. }
  672. int perf_evlist__parse_sample(struct perf_evlist *evlist, union perf_event *event,
  673. struct perf_sample *sample)
  674. {
  675. struct perf_evsel *evsel = perf_evlist__first(evlist);
  676. return perf_evsel__parse_sample(evsel, event, sample);
  677. }
  678. size_t perf_evlist__fprintf(struct perf_evlist *evlist, FILE *fp)
  679. {
  680. struct perf_evsel *evsel;
  681. size_t printed = 0;
  682. list_for_each_entry(evsel, &evlist->entries, node) {
  683. printed += fprintf(fp, "%s%s", evsel->idx ? ", " : "",
  684. perf_evsel__name(evsel));
  685. }
  686. return printed + fprintf(fp, "\n");;
  687. }