eeh.c 28 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981
  1. /*
  2. * eeh.c
  3. * Copyright (C) 2001 Dave Engebretsen & Todd Inglett IBM Corporation
  4. *
  5. * This program is free software; you can redistribute it and/or modify
  6. * it under the terms of the GNU General Public License as published by
  7. * the Free Software Foundation; either version 2 of the License, or
  8. * (at your option) any later version.
  9. *
  10. * This program is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13. * GNU General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU General Public License
  16. * along with this program; if not, write to the Free Software
  17. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  18. */
  19. #include <linux/delay.h>
  20. #include <linux/init.h>
  21. #include <linux/list.h>
  22. #include <linux/pci.h>
  23. #include <linux/proc_fs.h>
  24. #include <linux/rbtree.h>
  25. #include <linux/seq_file.h>
  26. #include <linux/spinlock.h>
  27. #include <asm/atomic.h>
  28. #include <asm/eeh.h>
  29. #include <asm/eeh_event.h>
  30. #include <asm/io.h>
  31. #include <asm/machdep.h>
  32. #include <asm/ppc-pci.h>
  33. #include <asm/rtas.h>
  34. #undef DEBUG
  35. /** Overview:
  36. * EEH, or "Extended Error Handling" is a PCI bridge technology for
  37. * dealing with PCI bus errors that can't be dealt with within the
  38. * usual PCI framework, except by check-stopping the CPU. Systems
  39. * that are designed for high-availability/reliability cannot afford
  40. * to crash due to a "mere" PCI error, thus the need for EEH.
  41. * An EEH-capable bridge operates by converting a detected error
  42. * into a "slot freeze", taking the PCI adapter off-line, making
  43. * the slot behave, from the OS'es point of view, as if the slot
  44. * were "empty": all reads return 0xff's and all writes are silently
  45. * ignored. EEH slot isolation events can be triggered by parity
  46. * errors on the address or data busses (e.g. during posted writes),
  47. * which in turn might be caused by low voltage on the bus, dust,
  48. * vibration, humidity, radioactivity or plain-old failed hardware.
  49. *
  50. * Note, however, that one of the leading causes of EEH slot
  51. * freeze events are buggy device drivers, buggy device microcode,
  52. * or buggy device hardware. This is because any attempt by the
  53. * device to bus-master data to a memory address that is not
  54. * assigned to the device will trigger a slot freeze. (The idea
  55. * is to prevent devices-gone-wild from corrupting system memory).
  56. * Buggy hardware/drivers will have a miserable time co-existing
  57. * with EEH.
  58. *
  59. * Ideally, a PCI device driver, when suspecting that an isolation
  60. * event has occured (e.g. by reading 0xff's), will then ask EEH
  61. * whether this is the case, and then take appropriate steps to
  62. * reset the PCI slot, the PCI device, and then resume operations.
  63. * However, until that day, the checking is done here, with the
  64. * eeh_check_failure() routine embedded in the MMIO macros. If
  65. * the slot is found to be isolated, an "EEH Event" is synthesized
  66. * and sent out for processing.
  67. */
  68. /* If a device driver keeps reading an MMIO register in an interrupt
  69. * handler after a slot isolation event has occurred, we assume it
  70. * is broken and panic. This sets the threshold for how many read
  71. * attempts we allow before panicking.
  72. */
  73. #define EEH_MAX_FAILS 100000
  74. /* RTAS tokens */
  75. static int ibm_set_eeh_option;
  76. static int ibm_set_slot_reset;
  77. static int ibm_read_slot_reset_state;
  78. static int ibm_read_slot_reset_state2;
  79. static int ibm_slot_error_detail;
  80. static int ibm_get_config_addr_info;
  81. int eeh_subsystem_enabled;
  82. EXPORT_SYMBOL(eeh_subsystem_enabled);
  83. /* Lock to avoid races due to multiple reports of an error */
  84. static DEFINE_SPINLOCK(confirm_error_lock);
  85. /* Buffer for reporting slot-error-detail rtas calls */
  86. static unsigned char slot_errbuf[RTAS_ERROR_LOG_MAX];
  87. static DEFINE_SPINLOCK(slot_errbuf_lock);
  88. static int eeh_error_buf_size;
  89. /* System monitoring statistics */
  90. static DEFINE_PER_CPU(unsigned long, no_device);
  91. static DEFINE_PER_CPU(unsigned long, no_dn);
  92. static DEFINE_PER_CPU(unsigned long, no_cfg_addr);
  93. static DEFINE_PER_CPU(unsigned long, ignored_check);
  94. static DEFINE_PER_CPU(unsigned long, total_mmio_ffs);
  95. static DEFINE_PER_CPU(unsigned long, false_positives);
  96. static DEFINE_PER_CPU(unsigned long, ignored_failures);
  97. static DEFINE_PER_CPU(unsigned long, slot_resets);
  98. /* --------------------------------------------------------------- */
  99. /* Below lies the EEH event infrastructure */
  100. void eeh_slot_error_detail (struct pci_dn *pdn, int severity)
  101. {
  102. unsigned long flags;
  103. int rc;
  104. /* Log the error with the rtas logger */
  105. spin_lock_irqsave(&slot_errbuf_lock, flags);
  106. memset(slot_errbuf, 0, eeh_error_buf_size);
  107. rc = rtas_call(ibm_slot_error_detail,
  108. 8, 1, NULL, pdn->eeh_config_addr,
  109. BUID_HI(pdn->phb->buid),
  110. BUID_LO(pdn->phb->buid), NULL, 0,
  111. virt_to_phys(slot_errbuf),
  112. eeh_error_buf_size,
  113. severity);
  114. if (rc == 0)
  115. log_error(slot_errbuf, ERR_TYPE_RTAS_LOG, 0);
  116. spin_unlock_irqrestore(&slot_errbuf_lock, flags);
  117. }
  118. /**
  119. * read_slot_reset_state - Read the reset state of a device node's slot
  120. * @dn: device node to read
  121. * @rets: array to return results in
  122. */
  123. static int read_slot_reset_state(struct pci_dn *pdn, int rets[])
  124. {
  125. int token, outputs;
  126. if (ibm_read_slot_reset_state2 != RTAS_UNKNOWN_SERVICE) {
  127. token = ibm_read_slot_reset_state2;
  128. outputs = 4;
  129. } else {
  130. token = ibm_read_slot_reset_state;
  131. rets[2] = 0; /* fake PE Unavailable info */
  132. outputs = 3;
  133. }
  134. return rtas_call(token, 3, outputs, rets, pdn->eeh_config_addr,
  135. BUID_HI(pdn->phb->buid), BUID_LO(pdn->phb->buid));
  136. }
  137. /**
  138. * eeh_token_to_phys - convert EEH address token to phys address
  139. * @token i/o token, should be address in the form 0xA....
  140. */
  141. static inline unsigned long eeh_token_to_phys(unsigned long token)
  142. {
  143. pte_t *ptep;
  144. unsigned long pa;
  145. ptep = find_linux_pte(init_mm.pgd, token);
  146. if (!ptep)
  147. return token;
  148. pa = pte_pfn(*ptep) << PAGE_SHIFT;
  149. return pa | (token & (PAGE_SIZE-1));
  150. }
  151. /**
  152. * Return the "partitionable endpoint" (pe) under which this device lies
  153. */
  154. static struct device_node * find_device_pe(struct device_node *dn)
  155. {
  156. while ((dn->parent) && PCI_DN(dn->parent) &&
  157. (PCI_DN(dn->parent)->eeh_mode & EEH_MODE_SUPPORTED)) {
  158. dn = dn->parent;
  159. }
  160. return dn;
  161. }
  162. /** Mark all devices that are peers of this device as failed.
  163. * Mark the device driver too, so that it can see the failure
  164. * immediately; this is critical, since some drivers poll
  165. * status registers in interrupts ... If a driver is polling,
  166. * and the slot is frozen, then the driver can deadlock in
  167. * an interrupt context, which is bad.
  168. */
  169. static void __eeh_mark_slot (struct device_node *dn, int mode_flag)
  170. {
  171. while (dn) {
  172. if (PCI_DN(dn)) {
  173. PCI_DN(dn)->eeh_mode |= mode_flag;
  174. /* Mark the pci device driver too */
  175. struct pci_dev *dev = PCI_DN(dn)->pcidev;
  176. if (dev && dev->driver)
  177. dev->error_state = pci_channel_io_frozen;
  178. if (dn->child)
  179. __eeh_mark_slot (dn->child, mode_flag);
  180. }
  181. dn = dn->sibling;
  182. }
  183. }
  184. void eeh_mark_slot (struct device_node *dn, int mode_flag)
  185. {
  186. dn = find_device_pe (dn);
  187. PCI_DN(dn)->eeh_mode |= mode_flag;
  188. __eeh_mark_slot (dn->child, mode_flag);
  189. }
  190. static void __eeh_clear_slot (struct device_node *dn, int mode_flag)
  191. {
  192. while (dn) {
  193. if (PCI_DN(dn)) {
  194. PCI_DN(dn)->eeh_mode &= ~mode_flag;
  195. PCI_DN(dn)->eeh_check_count = 0;
  196. if (dn->child)
  197. __eeh_clear_slot (dn->child, mode_flag);
  198. }
  199. dn = dn->sibling;
  200. }
  201. }
  202. void eeh_clear_slot (struct device_node *dn, int mode_flag)
  203. {
  204. unsigned long flags;
  205. spin_lock_irqsave(&confirm_error_lock, flags);
  206. dn = find_device_pe (dn);
  207. PCI_DN(dn)->eeh_mode &= ~mode_flag;
  208. PCI_DN(dn)->eeh_check_count = 0;
  209. __eeh_clear_slot (dn->child, mode_flag);
  210. spin_unlock_irqrestore(&confirm_error_lock, flags);
  211. }
  212. /**
  213. * eeh_dn_check_failure - check if all 1's data is due to EEH slot freeze
  214. * @dn device node
  215. * @dev pci device, if known
  216. *
  217. * Check for an EEH failure for the given device node. Call this
  218. * routine if the result of a read was all 0xff's and you want to
  219. * find out if this is due to an EEH slot freeze. This routine
  220. * will query firmware for the EEH status.
  221. *
  222. * Returns 0 if there has not been an EEH error; otherwise returns
  223. * a non-zero value and queues up a slot isolation event notification.
  224. *
  225. * It is safe to call this routine in an interrupt context.
  226. */
  227. int eeh_dn_check_failure(struct device_node *dn, struct pci_dev *dev)
  228. {
  229. int ret;
  230. int rets[3];
  231. unsigned long flags;
  232. struct pci_dn *pdn;
  233. enum pci_channel_state state;
  234. int rc = 0;
  235. __get_cpu_var(total_mmio_ffs)++;
  236. if (!eeh_subsystem_enabled)
  237. return 0;
  238. if (!dn) {
  239. __get_cpu_var(no_dn)++;
  240. return 0;
  241. }
  242. pdn = PCI_DN(dn);
  243. /* Access to IO BARs might get this far and still not want checking. */
  244. if (!(pdn->eeh_mode & EEH_MODE_SUPPORTED) ||
  245. pdn->eeh_mode & EEH_MODE_NOCHECK) {
  246. __get_cpu_var(ignored_check)++;
  247. #ifdef DEBUG
  248. printk ("EEH:ignored check (%x) for %s %s\n",
  249. pdn->eeh_mode, pci_name (dev), dn->full_name);
  250. #endif
  251. return 0;
  252. }
  253. if (!pdn->eeh_config_addr) {
  254. __get_cpu_var(no_cfg_addr)++;
  255. return 0;
  256. }
  257. /* If we already have a pending isolation event for this
  258. * slot, we know it's bad already, we don't need to check.
  259. * Do this checking under a lock; as multiple PCI devices
  260. * in one slot might report errors simultaneously, and we
  261. * only want one error recovery routine running.
  262. */
  263. spin_lock_irqsave(&confirm_error_lock, flags);
  264. rc = 1;
  265. if (pdn->eeh_mode & EEH_MODE_ISOLATED) {
  266. pdn->eeh_check_count ++;
  267. if (pdn->eeh_check_count >= EEH_MAX_FAILS) {
  268. printk (KERN_ERR "EEH: Device driver ignored %d bad reads, panicing\n",
  269. pdn->eeh_check_count);
  270. dump_stack();
  271. /* re-read the slot reset state */
  272. if (read_slot_reset_state(pdn, rets) != 0)
  273. rets[0] = -1; /* reset state unknown */
  274. /* If we are here, then we hit an infinite loop. Stop. */
  275. panic("EEH: MMIO halt (%d) on device:%s\n", rets[0], pci_name(dev));
  276. }
  277. goto dn_unlock;
  278. }
  279. /*
  280. * Now test for an EEH failure. This is VERY expensive.
  281. * Note that the eeh_config_addr may be a parent device
  282. * in the case of a device behind a bridge, or it may be
  283. * function zero of a multi-function device.
  284. * In any case they must share a common PHB.
  285. */
  286. ret = read_slot_reset_state(pdn, rets);
  287. /* If the call to firmware failed, punt */
  288. if (ret != 0) {
  289. printk(KERN_WARNING "EEH: read_slot_reset_state() failed; rc=%d dn=%s\n",
  290. ret, dn->full_name);
  291. __get_cpu_var(false_positives)++;
  292. rc = 0;
  293. goto dn_unlock;
  294. }
  295. /* If EEH is not supported on this device, punt. */
  296. if (rets[1] != 1) {
  297. printk(KERN_WARNING "EEH: event on unsupported device, rc=%d dn=%s\n",
  298. ret, dn->full_name);
  299. __get_cpu_var(false_positives)++;
  300. rc = 0;
  301. goto dn_unlock;
  302. }
  303. /* If not the kind of error we know about, punt. */
  304. if (rets[0] != 2 && rets[0] != 4 && rets[0] != 5) {
  305. __get_cpu_var(false_positives)++;
  306. rc = 0;
  307. goto dn_unlock;
  308. }
  309. /* Note that config-io to empty slots may fail;
  310. * we recognize empty because they don't have children. */
  311. if ((rets[0] == 5) && (dn->child == NULL)) {
  312. __get_cpu_var(false_positives)++;
  313. rc = 0;
  314. goto dn_unlock;
  315. }
  316. __get_cpu_var(slot_resets)++;
  317. /* Avoid repeated reports of this failure, including problems
  318. * with other functions on this device, and functions under
  319. * bridges. */
  320. eeh_mark_slot (dn, EEH_MODE_ISOLATED);
  321. spin_unlock_irqrestore(&confirm_error_lock, flags);
  322. state = pci_channel_io_normal;
  323. if ((rets[0] == 2) || (rets[0] == 4))
  324. state = pci_channel_io_frozen;
  325. if (rets[0] == 5)
  326. state = pci_channel_io_perm_failure;
  327. eeh_send_failure_event (dn, dev, state, rets[2]);
  328. /* Most EEH events are due to device driver bugs. Having
  329. * a stack trace will help the device-driver authors figure
  330. * out what happened. So print that out. */
  331. if (rets[0] != 5) dump_stack();
  332. return 1;
  333. dn_unlock:
  334. spin_unlock_irqrestore(&confirm_error_lock, flags);
  335. return rc;
  336. }
  337. EXPORT_SYMBOL_GPL(eeh_dn_check_failure);
  338. /**
  339. * eeh_check_failure - check if all 1's data is due to EEH slot freeze
  340. * @token i/o token, should be address in the form 0xA....
  341. * @val value, should be all 1's (XXX why do we need this arg??)
  342. *
  343. * Check for an EEH failure at the given token address. Call this
  344. * routine if the result of a read was all 0xff's and you want to
  345. * find out if this is due to an EEH slot freeze event. This routine
  346. * will query firmware for the EEH status.
  347. *
  348. * Note this routine is safe to call in an interrupt context.
  349. */
  350. unsigned long eeh_check_failure(const volatile void __iomem *token, unsigned long val)
  351. {
  352. unsigned long addr;
  353. struct pci_dev *dev;
  354. struct device_node *dn;
  355. /* Finding the phys addr + pci device; this is pretty quick. */
  356. addr = eeh_token_to_phys((unsigned long __force) token);
  357. dev = pci_get_device_by_addr(addr);
  358. if (!dev) {
  359. __get_cpu_var(no_device)++;
  360. return val;
  361. }
  362. dn = pci_device_to_OF_node(dev);
  363. eeh_dn_check_failure (dn, dev);
  364. pci_dev_put(dev);
  365. return val;
  366. }
  367. EXPORT_SYMBOL(eeh_check_failure);
  368. /* ------------------------------------------------------------- */
  369. /* The code below deals with error recovery */
  370. /** Return negative value if a permanent error, else return
  371. * a number of milliseconds to wait until the PCI slot is
  372. * ready to be used.
  373. */
  374. static int
  375. eeh_slot_availability(struct pci_dn *pdn)
  376. {
  377. int rc;
  378. int rets[3];
  379. rc = read_slot_reset_state(pdn, rets);
  380. if (rc) return rc;
  381. if (rets[1] == 0) return -1; /* EEH is not supported */
  382. if (rets[0] == 0) return 0; /* Oll Korrect */
  383. if (rets[0] == 5) {
  384. if (rets[2] == 0) return -1; /* permanently unavailable */
  385. return rets[2]; /* number of millisecs to wait */
  386. }
  387. return -1;
  388. }
  389. /** rtas_pci_slot_reset raises/lowers the pci #RST line
  390. * state: 1/0 to raise/lower the #RST
  391. *
  392. * Clear the EEH-frozen condition on a slot. This routine
  393. * asserts the PCI #RST line if the 'state' argument is '1',
  394. * and drops the #RST line if 'state is '0'. This routine is
  395. * safe to call in an interrupt context.
  396. *
  397. */
  398. static void
  399. rtas_pci_slot_reset(struct pci_dn *pdn, int state)
  400. {
  401. int config_addr;
  402. int rc;
  403. BUG_ON (pdn==NULL);
  404. if (!pdn->phb) {
  405. printk (KERN_WARNING "EEH: in slot reset, device node %s has no phb\n",
  406. pdn->node->full_name);
  407. return;
  408. }
  409. /* Use PE configuration address, if present */
  410. config_addr = pdn->eeh_config_addr;
  411. if (pdn->eeh_pe_config_addr)
  412. config_addr = pdn->eeh_pe_config_addr;
  413. rc = rtas_call(ibm_set_slot_reset,4,1, NULL,
  414. config_addr,
  415. BUID_HI(pdn->phb->buid),
  416. BUID_LO(pdn->phb->buid),
  417. state);
  418. if (rc) {
  419. printk (KERN_WARNING "EEH: Unable to reset the failed slot, (%d) #RST=%d dn=%s\n",
  420. rc, state, pdn->node->full_name);
  421. return;
  422. }
  423. }
  424. /** rtas_set_slot_reset -- assert the pci #RST line for 1/4 second
  425. * dn -- device node to be reset.
  426. */
  427. void
  428. rtas_set_slot_reset(struct pci_dn *pdn)
  429. {
  430. int i, rc;
  431. rtas_pci_slot_reset (pdn, 1);
  432. /* The PCI bus requires that the reset be held high for at least
  433. * a 100 milliseconds. We wait a bit longer 'just in case'. */
  434. #define PCI_BUS_RST_HOLD_TIME_MSEC 250
  435. msleep (PCI_BUS_RST_HOLD_TIME_MSEC);
  436. /* We might get hit with another EEH freeze as soon as the
  437. * pci slot reset line is dropped. Make sure we don't miss
  438. * these, and clear the flag now. */
  439. eeh_clear_slot (pdn->node, EEH_MODE_ISOLATED);
  440. rtas_pci_slot_reset (pdn, 0);
  441. /* After a PCI slot has been reset, the PCI Express spec requires
  442. * a 1.5 second idle time for the bus to stabilize, before starting
  443. * up traffic. */
  444. #define PCI_BUS_SETTLE_TIME_MSEC 1800
  445. msleep (PCI_BUS_SETTLE_TIME_MSEC);
  446. /* Now double check with the firmware to make sure the device is
  447. * ready to be used; if not, wait for recovery. */
  448. for (i=0; i<10; i++) {
  449. rc = eeh_slot_availability (pdn);
  450. if (rc <= 0) break;
  451. msleep (rc+100);
  452. }
  453. }
  454. /* ------------------------------------------------------- */
  455. /** Save and restore of PCI BARs
  456. *
  457. * Although firmware will set up BARs during boot, it doesn't
  458. * set up device BAR's after a device reset, although it will,
  459. * if requested, set up bridge configuration. Thus, we need to
  460. * configure the PCI devices ourselves.
  461. */
  462. /**
  463. * __restore_bars - Restore the Base Address Registers
  464. * Loads the PCI configuration space base address registers,
  465. * the expansion ROM base address, the latency timer, and etc.
  466. * from the saved values in the device node.
  467. */
  468. static inline void __restore_bars (struct pci_dn *pdn)
  469. {
  470. int i;
  471. if (NULL==pdn->phb) return;
  472. for (i=4; i<10; i++) {
  473. rtas_write_config(pdn, i*4, 4, pdn->config_space[i]);
  474. }
  475. /* 12 == Expansion ROM Address */
  476. rtas_write_config(pdn, 12*4, 4, pdn->config_space[12]);
  477. #define BYTE_SWAP(OFF) (8*((OFF)/4)+3-(OFF))
  478. #define SAVED_BYTE(OFF) (((u8 *)(pdn->config_space))[BYTE_SWAP(OFF)])
  479. rtas_write_config (pdn, PCI_CACHE_LINE_SIZE, 1,
  480. SAVED_BYTE(PCI_CACHE_LINE_SIZE));
  481. rtas_write_config (pdn, PCI_LATENCY_TIMER, 1,
  482. SAVED_BYTE(PCI_LATENCY_TIMER));
  483. /* max latency, min grant, interrupt pin and line */
  484. rtas_write_config(pdn, 15*4, 4, pdn->config_space[15]);
  485. }
  486. /**
  487. * eeh_restore_bars - restore the PCI config space info
  488. *
  489. * This routine performs a recursive walk to the children
  490. * of this device as well.
  491. */
  492. void eeh_restore_bars(struct pci_dn *pdn)
  493. {
  494. struct device_node *dn;
  495. if (!pdn)
  496. return;
  497. if (! pdn->eeh_is_bridge)
  498. __restore_bars (pdn);
  499. dn = pdn->node->child;
  500. while (dn) {
  501. eeh_restore_bars (PCI_DN(dn));
  502. dn = dn->sibling;
  503. }
  504. }
  505. /**
  506. * eeh_save_bars - save device bars
  507. *
  508. * Save the values of the device bars. Unlike the restore
  509. * routine, this routine is *not* recursive. This is because
  510. * PCI devices are added individuallly; but, for the restore,
  511. * an entire slot is reset at a time.
  512. */
  513. void eeh_save_bars(struct pci_dev * pdev, struct pci_dn *pdn)
  514. {
  515. int i;
  516. if (!pdev || !pdn )
  517. return;
  518. for (i = 0; i < 16; i++)
  519. pci_read_config_dword(pdev, i * 4, &pdn->config_space[i]);
  520. if (pdev->hdr_type == PCI_HEADER_TYPE_BRIDGE)
  521. pdn->eeh_is_bridge = 1;
  522. }
  523. void
  524. rtas_configure_bridge(struct pci_dn *pdn)
  525. {
  526. int token = rtas_token ("ibm,configure-bridge");
  527. int rc;
  528. if (token == RTAS_UNKNOWN_SERVICE)
  529. return;
  530. rc = rtas_call(token,3,1, NULL,
  531. pdn->eeh_config_addr,
  532. BUID_HI(pdn->phb->buid),
  533. BUID_LO(pdn->phb->buid));
  534. if (rc) {
  535. printk (KERN_WARNING "EEH: Unable to configure device bridge (%d) for %s\n",
  536. rc, pdn->node->full_name);
  537. }
  538. }
  539. /* ------------------------------------------------------------- */
  540. /* The code below deals with enabling EEH for devices during the
  541. * early boot sequence. EEH must be enabled before any PCI probing
  542. * can be done.
  543. */
  544. #define EEH_ENABLE 1
  545. struct eeh_early_enable_info {
  546. unsigned int buid_hi;
  547. unsigned int buid_lo;
  548. };
  549. /* Enable eeh for the given device node. */
  550. static void *early_enable_eeh(struct device_node *dn, void *data)
  551. {
  552. struct eeh_early_enable_info *info = data;
  553. int ret;
  554. char *status = get_property(dn, "status", NULL);
  555. u32 *class_code = (u32 *)get_property(dn, "class-code", NULL);
  556. u32 *vendor_id = (u32 *)get_property(dn, "vendor-id", NULL);
  557. u32 *device_id = (u32 *)get_property(dn, "device-id", NULL);
  558. u32 *regs;
  559. int enable;
  560. struct pci_dn *pdn = PCI_DN(dn);
  561. pdn->eeh_mode = 0;
  562. pdn->eeh_check_count = 0;
  563. pdn->eeh_freeze_count = 0;
  564. if (status && strcmp(status, "ok") != 0)
  565. return NULL; /* ignore devices with bad status */
  566. /* Ignore bad nodes. */
  567. if (!class_code || !vendor_id || !device_id)
  568. return NULL;
  569. /* There is nothing to check on PCI to ISA bridges */
  570. if (dn->type && !strcmp(dn->type, "isa")) {
  571. pdn->eeh_mode |= EEH_MODE_NOCHECK;
  572. return NULL;
  573. }
  574. /*
  575. * Now decide if we are going to "Disable" EEH checking
  576. * for this device. We still run with the EEH hardware active,
  577. * but we won't be checking for ff's. This means a driver
  578. * could return bad data (very bad!), an interrupt handler could
  579. * hang waiting on status bits that won't change, etc.
  580. * But there are a few cases like display devices that make sense.
  581. */
  582. enable = 1; /* i.e. we will do checking */
  583. #if 0
  584. if ((*class_code >> 16) == PCI_BASE_CLASS_DISPLAY)
  585. enable = 0;
  586. #endif
  587. if (!enable)
  588. pdn->eeh_mode |= EEH_MODE_NOCHECK;
  589. /* Ok... see if this device supports EEH. Some do, some don't,
  590. * and the only way to find out is to check each and every one. */
  591. regs = (u32 *)get_property(dn, "reg", NULL);
  592. if (regs) {
  593. /* First register entry is addr (00BBSS00) */
  594. /* Try to enable eeh */
  595. ret = rtas_call(ibm_set_eeh_option, 4, 1, NULL,
  596. regs[0], info->buid_hi, info->buid_lo,
  597. EEH_ENABLE);
  598. if (ret == 0) {
  599. eeh_subsystem_enabled = 1;
  600. pdn->eeh_mode |= EEH_MODE_SUPPORTED;
  601. pdn->eeh_config_addr = regs[0];
  602. /* If the newer, better, ibm,get-config-addr-info is supported,
  603. * then use that instead. */
  604. pdn->eeh_pe_config_addr = 0;
  605. if (ibm_get_config_addr_info != RTAS_UNKNOWN_SERVICE) {
  606. unsigned int rets[2];
  607. ret = rtas_call (ibm_get_config_addr_info, 4, 2, rets,
  608. pdn->eeh_config_addr,
  609. info->buid_hi, info->buid_lo,
  610. 0);
  611. if (ret == 0)
  612. pdn->eeh_pe_config_addr = rets[0];
  613. }
  614. #ifdef DEBUG
  615. printk(KERN_DEBUG "EEH: %s: eeh enabled, config=%x pe_config=%x\n",
  616. dn->full_name, pdn->eeh_config_addr, pdn->eeh_pe_config_addr);
  617. #endif
  618. } else {
  619. /* This device doesn't support EEH, but it may have an
  620. * EEH parent, in which case we mark it as supported. */
  621. if (dn->parent && PCI_DN(dn->parent)
  622. && (PCI_DN(dn->parent)->eeh_mode & EEH_MODE_SUPPORTED)) {
  623. /* Parent supports EEH. */
  624. pdn->eeh_mode |= EEH_MODE_SUPPORTED;
  625. pdn->eeh_config_addr = PCI_DN(dn->parent)->eeh_config_addr;
  626. return NULL;
  627. }
  628. }
  629. } else {
  630. printk(KERN_WARNING "EEH: %s: unable to get reg property.\n",
  631. dn->full_name);
  632. }
  633. return NULL;
  634. }
  635. /*
  636. * Initialize EEH by trying to enable it for all of the adapters in the system.
  637. * As a side effect we can determine here if eeh is supported at all.
  638. * Note that we leave EEH on so failed config cycles won't cause a machine
  639. * check. If a user turns off EEH for a particular adapter they are really
  640. * telling Linux to ignore errors. Some hardware (e.g. POWER5) won't
  641. * grant access to a slot if EEH isn't enabled, and so we always enable
  642. * EEH for all slots/all devices.
  643. *
  644. * The eeh-force-off option disables EEH checking globally, for all slots.
  645. * Even if force-off is set, the EEH hardware is still enabled, so that
  646. * newer systems can boot.
  647. */
  648. void __init eeh_init(void)
  649. {
  650. struct device_node *phb, *np;
  651. struct eeh_early_enable_info info;
  652. spin_lock_init(&confirm_error_lock);
  653. spin_lock_init(&slot_errbuf_lock);
  654. np = of_find_node_by_path("/rtas");
  655. if (np == NULL)
  656. return;
  657. ibm_set_eeh_option = rtas_token("ibm,set-eeh-option");
  658. ibm_set_slot_reset = rtas_token("ibm,set-slot-reset");
  659. ibm_read_slot_reset_state2 = rtas_token("ibm,read-slot-reset-state2");
  660. ibm_read_slot_reset_state = rtas_token("ibm,read-slot-reset-state");
  661. ibm_slot_error_detail = rtas_token("ibm,slot-error-detail");
  662. ibm_get_config_addr_info = rtas_token("ibm,get-config-addr-info");
  663. if (ibm_set_eeh_option == RTAS_UNKNOWN_SERVICE)
  664. return;
  665. eeh_error_buf_size = rtas_token("rtas-error-log-max");
  666. if (eeh_error_buf_size == RTAS_UNKNOWN_SERVICE) {
  667. eeh_error_buf_size = 1024;
  668. }
  669. if (eeh_error_buf_size > RTAS_ERROR_LOG_MAX) {
  670. printk(KERN_WARNING "EEH: rtas-error-log-max is bigger than allocated "
  671. "buffer ! (%d vs %d)", eeh_error_buf_size, RTAS_ERROR_LOG_MAX);
  672. eeh_error_buf_size = RTAS_ERROR_LOG_MAX;
  673. }
  674. /* Enable EEH for all adapters. Note that eeh requires buid's */
  675. for (phb = of_find_node_by_name(NULL, "pci"); phb;
  676. phb = of_find_node_by_name(phb, "pci")) {
  677. unsigned long buid;
  678. buid = get_phb_buid(phb);
  679. if (buid == 0 || PCI_DN(phb) == NULL)
  680. continue;
  681. info.buid_lo = BUID_LO(buid);
  682. info.buid_hi = BUID_HI(buid);
  683. traverse_pci_devices(phb, early_enable_eeh, &info);
  684. }
  685. if (eeh_subsystem_enabled)
  686. printk(KERN_INFO "EEH: PCI Enhanced I/O Error Handling Enabled\n");
  687. else
  688. printk(KERN_WARNING "EEH: No capable adapters found\n");
  689. }
  690. /**
  691. * eeh_add_device_early - enable EEH for the indicated device_node
  692. * @dn: device node for which to set up EEH
  693. *
  694. * This routine must be used to perform EEH initialization for PCI
  695. * devices that were added after system boot (e.g. hotplug, dlpar).
  696. * This routine must be called before any i/o is performed to the
  697. * adapter (inluding any config-space i/o).
  698. * Whether this actually enables EEH or not for this device depends
  699. * on the CEC architecture, type of the device, on earlier boot
  700. * command-line arguments & etc.
  701. */
  702. void eeh_add_device_early(struct device_node *dn)
  703. {
  704. struct pci_controller *phb;
  705. struct eeh_early_enable_info info;
  706. if (!dn || !PCI_DN(dn))
  707. return;
  708. phb = PCI_DN(dn)->phb;
  709. /* USB Bus children of PCI devices will not have BUID's */
  710. if (NULL == phb || 0 == phb->buid)
  711. return;
  712. info.buid_hi = BUID_HI(phb->buid);
  713. info.buid_lo = BUID_LO(phb->buid);
  714. early_enable_eeh(dn, &info);
  715. }
  716. EXPORT_SYMBOL_GPL(eeh_add_device_early);
  717. void eeh_add_device_tree_early(struct device_node *dn)
  718. {
  719. struct device_node *sib;
  720. for (sib = dn->child; sib; sib = sib->sibling)
  721. eeh_add_device_tree_early(sib);
  722. eeh_add_device_early(dn);
  723. }
  724. EXPORT_SYMBOL_GPL(eeh_add_device_tree_early);
  725. /**
  726. * eeh_add_device_late - perform EEH initialization for the indicated pci device
  727. * @dev: pci device for which to set up EEH
  728. *
  729. * This routine must be used to complete EEH initialization for PCI
  730. * devices that were added after system boot (e.g. hotplug, dlpar).
  731. */
  732. void eeh_add_device_late(struct pci_dev *dev)
  733. {
  734. struct device_node *dn;
  735. struct pci_dn *pdn;
  736. if (!dev || !eeh_subsystem_enabled)
  737. return;
  738. #ifdef DEBUG
  739. printk(KERN_DEBUG "EEH: adding device %s\n", pci_name(dev));
  740. #endif
  741. pci_dev_get (dev);
  742. dn = pci_device_to_OF_node(dev);
  743. pdn = PCI_DN(dn);
  744. pdn->pcidev = dev;
  745. pci_addr_cache_insert_device (dev);
  746. eeh_save_bars(dev, pdn);
  747. }
  748. EXPORT_SYMBOL_GPL(eeh_add_device_late);
  749. /**
  750. * eeh_remove_device - undo EEH setup for the indicated pci device
  751. * @dev: pci device to be removed
  752. *
  753. * This routine should be when a device is removed from a running
  754. * system (e.g. by hotplug or dlpar).
  755. */
  756. void eeh_remove_device(struct pci_dev *dev)
  757. {
  758. struct device_node *dn;
  759. if (!dev || !eeh_subsystem_enabled)
  760. return;
  761. /* Unregister the device with the EEH/PCI address search system */
  762. #ifdef DEBUG
  763. printk(KERN_DEBUG "EEH: remove device %s\n", pci_name(dev));
  764. #endif
  765. pci_addr_cache_remove_device(dev);
  766. dn = pci_device_to_OF_node(dev);
  767. PCI_DN(dn)->pcidev = NULL;
  768. pci_dev_put (dev);
  769. }
  770. EXPORT_SYMBOL_GPL(eeh_remove_device);
  771. void eeh_remove_bus_device(struct pci_dev *dev)
  772. {
  773. eeh_remove_device(dev);
  774. if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
  775. struct pci_bus *bus = dev->subordinate;
  776. struct list_head *ln;
  777. if (!bus)
  778. return;
  779. for (ln = bus->devices.next; ln != &bus->devices; ln = ln->next) {
  780. struct pci_dev *pdev = pci_dev_b(ln);
  781. if (pdev)
  782. eeh_remove_bus_device(pdev);
  783. }
  784. }
  785. }
  786. EXPORT_SYMBOL_GPL(eeh_remove_bus_device);
  787. static int proc_eeh_show(struct seq_file *m, void *v)
  788. {
  789. unsigned int cpu;
  790. unsigned long ffs = 0, positives = 0, failures = 0;
  791. unsigned long resets = 0;
  792. unsigned long no_dev = 0, no_dn = 0, no_cfg = 0, no_check = 0;
  793. for_each_cpu(cpu) {
  794. ffs += per_cpu(total_mmio_ffs, cpu);
  795. positives += per_cpu(false_positives, cpu);
  796. failures += per_cpu(ignored_failures, cpu);
  797. resets += per_cpu(slot_resets, cpu);
  798. no_dev += per_cpu(no_device, cpu);
  799. no_dn += per_cpu(no_dn, cpu);
  800. no_cfg += per_cpu(no_cfg_addr, cpu);
  801. no_check += per_cpu(ignored_check, cpu);
  802. }
  803. if (0 == eeh_subsystem_enabled) {
  804. seq_printf(m, "EEH Subsystem is globally disabled\n");
  805. seq_printf(m, "eeh_total_mmio_ffs=%ld\n", ffs);
  806. } else {
  807. seq_printf(m, "EEH Subsystem is enabled\n");
  808. seq_printf(m,
  809. "no device=%ld\n"
  810. "no device node=%ld\n"
  811. "no config address=%ld\n"
  812. "check not wanted=%ld\n"
  813. "eeh_total_mmio_ffs=%ld\n"
  814. "eeh_false_positives=%ld\n"
  815. "eeh_ignored_failures=%ld\n"
  816. "eeh_slot_resets=%ld\n",
  817. no_dev, no_dn, no_cfg, no_check,
  818. ffs, positives, failures, resets);
  819. }
  820. return 0;
  821. }
  822. static int proc_eeh_open(struct inode *inode, struct file *file)
  823. {
  824. return single_open(file, proc_eeh_show, NULL);
  825. }
  826. static struct file_operations proc_eeh_operations = {
  827. .open = proc_eeh_open,
  828. .read = seq_read,
  829. .llseek = seq_lseek,
  830. .release = single_release,
  831. };
  832. static int __init eeh_init_proc(void)
  833. {
  834. struct proc_dir_entry *e;
  835. if (platform_is_pseries()) {
  836. e = create_proc_entry("ppc64/eeh", 0, NULL);
  837. if (e)
  838. e->proc_fops = &proc_eeh_operations;
  839. }
  840. return 0;
  841. }
  842. __initcall(eeh_init_proc);