intel_pm.c 171 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148
  1. /*
  2. * Copyright © 2012 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eugeni Dodonov <eugeni.dodonov@intel.com>
  25. *
  26. */
  27. #include <linux/cpufreq.h>
  28. #include "i915_drv.h"
  29. #include "intel_drv.h"
  30. #include "../../../platform/x86/intel_ips.h"
  31. #include <linux/module.h>
  32. #include <drm/i915_powerwell.h>
  33. /**
  34. * RC6 is a special power stage which allows the GPU to enter an very
  35. * low-voltage mode when idle, using down to 0V while at this stage. This
  36. * stage is entered automatically when the GPU is idle when RC6 support is
  37. * enabled, and as soon as new workload arises GPU wakes up automatically as well.
  38. *
  39. * There are different RC6 modes available in Intel GPU, which differentiate
  40. * among each other with the latency required to enter and leave RC6 and
  41. * voltage consumed by the GPU in different states.
  42. *
  43. * The combination of the following flags define which states GPU is allowed
  44. * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
  45. * RC6pp is deepest RC6. Their support by hardware varies according to the
  46. * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
  47. * which brings the most power savings; deeper states save more power, but
  48. * require higher latency to switch to and wake up.
  49. */
  50. #define INTEL_RC6_ENABLE (1<<0)
  51. #define INTEL_RC6p_ENABLE (1<<1)
  52. #define INTEL_RC6pp_ENABLE (1<<2)
  53. /* FBC, or Frame Buffer Compression, is a technique employed to compress the
  54. * framebuffer contents in-memory, aiming at reducing the required bandwidth
  55. * during in-memory transfers and, therefore, reduce the power packet.
  56. *
  57. * The benefits of FBC are mostly visible with solid backgrounds and
  58. * variation-less patterns.
  59. *
  60. * FBC-related functionality can be enabled by the means of the
  61. * i915.i915_enable_fbc parameter
  62. */
  63. static void i8xx_disable_fbc(struct drm_device *dev)
  64. {
  65. struct drm_i915_private *dev_priv = dev->dev_private;
  66. u32 fbc_ctl;
  67. /* Disable compression */
  68. fbc_ctl = I915_READ(FBC_CONTROL);
  69. if ((fbc_ctl & FBC_CTL_EN) == 0)
  70. return;
  71. fbc_ctl &= ~FBC_CTL_EN;
  72. I915_WRITE(FBC_CONTROL, fbc_ctl);
  73. /* Wait for compressing bit to clear */
  74. if (wait_for((I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) == 0, 10)) {
  75. DRM_DEBUG_KMS("FBC idle timed out\n");
  76. return;
  77. }
  78. DRM_DEBUG_KMS("disabled FBC\n");
  79. }
  80. static void i8xx_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
  81. {
  82. struct drm_device *dev = crtc->dev;
  83. struct drm_i915_private *dev_priv = dev->dev_private;
  84. struct drm_framebuffer *fb = crtc->fb;
  85. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  86. struct drm_i915_gem_object *obj = intel_fb->obj;
  87. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  88. int cfb_pitch;
  89. int plane, i;
  90. u32 fbc_ctl, fbc_ctl2;
  91. cfb_pitch = dev_priv->fbc.size / FBC_LL_SIZE;
  92. if (fb->pitches[0] < cfb_pitch)
  93. cfb_pitch = fb->pitches[0];
  94. /* FBC_CTL wants 64B units */
  95. cfb_pitch = (cfb_pitch / 64) - 1;
  96. plane = intel_crtc->plane == 0 ? FBC_CTL_PLANEA : FBC_CTL_PLANEB;
  97. /* Clear old tags */
  98. for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
  99. I915_WRITE(FBC_TAG + (i * 4), 0);
  100. /* Set it up... */
  101. fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | FBC_CTL_CPU_FENCE;
  102. fbc_ctl2 |= plane;
  103. I915_WRITE(FBC_CONTROL2, fbc_ctl2);
  104. I915_WRITE(FBC_FENCE_OFF, crtc->y);
  105. /* enable it... */
  106. fbc_ctl = FBC_CTL_EN | FBC_CTL_PERIODIC;
  107. if (IS_I945GM(dev))
  108. fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
  109. fbc_ctl |= (cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
  110. fbc_ctl |= (interval & 0x2fff) << FBC_CTL_INTERVAL_SHIFT;
  111. fbc_ctl |= obj->fence_reg;
  112. I915_WRITE(FBC_CONTROL, fbc_ctl);
  113. DRM_DEBUG_KMS("enabled FBC, pitch %d, yoff %d, plane %c, ",
  114. cfb_pitch, crtc->y, plane_name(intel_crtc->plane));
  115. }
  116. static bool i8xx_fbc_enabled(struct drm_device *dev)
  117. {
  118. struct drm_i915_private *dev_priv = dev->dev_private;
  119. return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
  120. }
  121. static void g4x_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
  122. {
  123. struct drm_device *dev = crtc->dev;
  124. struct drm_i915_private *dev_priv = dev->dev_private;
  125. struct drm_framebuffer *fb = crtc->fb;
  126. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  127. struct drm_i915_gem_object *obj = intel_fb->obj;
  128. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  129. int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
  130. unsigned long stall_watermark = 200;
  131. u32 dpfc_ctl;
  132. dpfc_ctl = plane | DPFC_SR_EN | DPFC_CTL_LIMIT_1X;
  133. dpfc_ctl |= DPFC_CTL_FENCE_EN | obj->fence_reg;
  134. I915_WRITE(DPFC_CHICKEN, DPFC_HT_MODIFY);
  135. I915_WRITE(DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
  136. (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
  137. (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
  138. I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
  139. /* enable it... */
  140. I915_WRITE(DPFC_CONTROL, I915_READ(DPFC_CONTROL) | DPFC_CTL_EN);
  141. DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
  142. }
  143. static void g4x_disable_fbc(struct drm_device *dev)
  144. {
  145. struct drm_i915_private *dev_priv = dev->dev_private;
  146. u32 dpfc_ctl;
  147. /* Disable compression */
  148. dpfc_ctl = I915_READ(DPFC_CONTROL);
  149. if (dpfc_ctl & DPFC_CTL_EN) {
  150. dpfc_ctl &= ~DPFC_CTL_EN;
  151. I915_WRITE(DPFC_CONTROL, dpfc_ctl);
  152. DRM_DEBUG_KMS("disabled FBC\n");
  153. }
  154. }
  155. static bool g4x_fbc_enabled(struct drm_device *dev)
  156. {
  157. struct drm_i915_private *dev_priv = dev->dev_private;
  158. return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
  159. }
  160. static void sandybridge_blit_fbc_update(struct drm_device *dev)
  161. {
  162. struct drm_i915_private *dev_priv = dev->dev_private;
  163. u32 blt_ecoskpd;
  164. /* Make sure blitter notifies FBC of writes */
  165. gen6_gt_force_wake_get(dev_priv);
  166. blt_ecoskpd = I915_READ(GEN6_BLITTER_ECOSKPD);
  167. blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY <<
  168. GEN6_BLITTER_LOCK_SHIFT;
  169. I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
  170. blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY;
  171. I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
  172. blt_ecoskpd &= ~(GEN6_BLITTER_FBC_NOTIFY <<
  173. GEN6_BLITTER_LOCK_SHIFT);
  174. I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
  175. POSTING_READ(GEN6_BLITTER_ECOSKPD);
  176. gen6_gt_force_wake_put(dev_priv);
  177. }
  178. static void ironlake_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
  179. {
  180. struct drm_device *dev = crtc->dev;
  181. struct drm_i915_private *dev_priv = dev->dev_private;
  182. struct drm_framebuffer *fb = crtc->fb;
  183. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  184. struct drm_i915_gem_object *obj = intel_fb->obj;
  185. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  186. int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
  187. unsigned long stall_watermark = 200;
  188. u32 dpfc_ctl;
  189. dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
  190. dpfc_ctl &= DPFC_RESERVED;
  191. dpfc_ctl |= (plane | DPFC_CTL_LIMIT_1X);
  192. /* Set persistent mode for front-buffer rendering, ala X. */
  193. dpfc_ctl |= DPFC_CTL_PERSISTENT_MODE;
  194. dpfc_ctl |= (DPFC_CTL_FENCE_EN | obj->fence_reg);
  195. I915_WRITE(ILK_DPFC_CHICKEN, DPFC_HT_MODIFY);
  196. I915_WRITE(ILK_DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
  197. (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
  198. (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
  199. I915_WRITE(ILK_DPFC_FENCE_YOFF, crtc->y);
  200. I915_WRITE(ILK_FBC_RT_BASE, i915_gem_obj_ggtt_offset(obj) | ILK_FBC_RT_VALID);
  201. /* enable it... */
  202. I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
  203. if (IS_GEN6(dev)) {
  204. I915_WRITE(SNB_DPFC_CTL_SA,
  205. SNB_CPU_FENCE_ENABLE | obj->fence_reg);
  206. I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
  207. sandybridge_blit_fbc_update(dev);
  208. }
  209. DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
  210. }
  211. static void ironlake_disable_fbc(struct drm_device *dev)
  212. {
  213. struct drm_i915_private *dev_priv = dev->dev_private;
  214. u32 dpfc_ctl;
  215. /* Disable compression */
  216. dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
  217. if (dpfc_ctl & DPFC_CTL_EN) {
  218. dpfc_ctl &= ~DPFC_CTL_EN;
  219. I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);
  220. DRM_DEBUG_KMS("disabled FBC\n");
  221. }
  222. }
  223. static bool ironlake_fbc_enabled(struct drm_device *dev)
  224. {
  225. struct drm_i915_private *dev_priv = dev->dev_private;
  226. return I915_READ(ILK_DPFC_CONTROL) & DPFC_CTL_EN;
  227. }
  228. static void gen7_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
  229. {
  230. struct drm_device *dev = crtc->dev;
  231. struct drm_i915_private *dev_priv = dev->dev_private;
  232. struct drm_framebuffer *fb = crtc->fb;
  233. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  234. struct drm_i915_gem_object *obj = intel_fb->obj;
  235. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  236. I915_WRITE(IVB_FBC_RT_BASE, i915_gem_obj_ggtt_offset(obj));
  237. I915_WRITE(ILK_DPFC_CONTROL, DPFC_CTL_EN | DPFC_CTL_LIMIT_1X |
  238. IVB_DPFC_CTL_FENCE_EN |
  239. intel_crtc->plane << IVB_DPFC_CTL_PLANE_SHIFT);
  240. if (IS_IVYBRIDGE(dev)) {
  241. /* WaFbcAsynchFlipDisableFbcQueue:ivb */
  242. I915_WRITE(ILK_DISPLAY_CHICKEN1, ILK_FBCQ_DIS);
  243. } else {
  244. /* WaFbcAsynchFlipDisableFbcQueue:hsw */
  245. I915_WRITE(HSW_PIPE_SLICE_CHICKEN_1(intel_crtc->pipe),
  246. HSW_BYPASS_FBC_QUEUE);
  247. }
  248. I915_WRITE(SNB_DPFC_CTL_SA,
  249. SNB_CPU_FENCE_ENABLE | obj->fence_reg);
  250. I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
  251. sandybridge_blit_fbc_update(dev);
  252. DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
  253. }
  254. bool intel_fbc_enabled(struct drm_device *dev)
  255. {
  256. struct drm_i915_private *dev_priv = dev->dev_private;
  257. if (!dev_priv->display.fbc_enabled)
  258. return false;
  259. return dev_priv->display.fbc_enabled(dev);
  260. }
  261. static void intel_fbc_work_fn(struct work_struct *__work)
  262. {
  263. struct intel_fbc_work *work =
  264. container_of(to_delayed_work(__work),
  265. struct intel_fbc_work, work);
  266. struct drm_device *dev = work->crtc->dev;
  267. struct drm_i915_private *dev_priv = dev->dev_private;
  268. mutex_lock(&dev->struct_mutex);
  269. if (work == dev_priv->fbc.fbc_work) {
  270. /* Double check that we haven't switched fb without cancelling
  271. * the prior work.
  272. */
  273. if (work->crtc->fb == work->fb) {
  274. dev_priv->display.enable_fbc(work->crtc,
  275. work->interval);
  276. dev_priv->fbc.plane = to_intel_crtc(work->crtc)->plane;
  277. dev_priv->fbc.fb_id = work->crtc->fb->base.id;
  278. dev_priv->fbc.y = work->crtc->y;
  279. }
  280. dev_priv->fbc.fbc_work = NULL;
  281. }
  282. mutex_unlock(&dev->struct_mutex);
  283. kfree(work);
  284. }
  285. static void intel_cancel_fbc_work(struct drm_i915_private *dev_priv)
  286. {
  287. if (dev_priv->fbc.fbc_work == NULL)
  288. return;
  289. DRM_DEBUG_KMS("cancelling pending FBC enable\n");
  290. /* Synchronisation is provided by struct_mutex and checking of
  291. * dev_priv->fbc.fbc_work, so we can perform the cancellation
  292. * entirely asynchronously.
  293. */
  294. if (cancel_delayed_work(&dev_priv->fbc.fbc_work->work))
  295. /* tasklet was killed before being run, clean up */
  296. kfree(dev_priv->fbc.fbc_work);
  297. /* Mark the work as no longer wanted so that if it does
  298. * wake-up (because the work was already running and waiting
  299. * for our mutex), it will discover that is no longer
  300. * necessary to run.
  301. */
  302. dev_priv->fbc.fbc_work = NULL;
  303. }
  304. static void intel_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
  305. {
  306. struct intel_fbc_work *work;
  307. struct drm_device *dev = crtc->dev;
  308. struct drm_i915_private *dev_priv = dev->dev_private;
  309. if (!dev_priv->display.enable_fbc)
  310. return;
  311. intel_cancel_fbc_work(dev_priv);
  312. work = kzalloc(sizeof(*work), GFP_KERNEL);
  313. if (work == NULL) {
  314. DRM_ERROR("Failed to allocate FBC work structure\n");
  315. dev_priv->display.enable_fbc(crtc, interval);
  316. return;
  317. }
  318. work->crtc = crtc;
  319. work->fb = crtc->fb;
  320. work->interval = interval;
  321. INIT_DELAYED_WORK(&work->work, intel_fbc_work_fn);
  322. dev_priv->fbc.fbc_work = work;
  323. /* Delay the actual enabling to let pageflipping cease and the
  324. * display to settle before starting the compression. Note that
  325. * this delay also serves a second purpose: it allows for a
  326. * vblank to pass after disabling the FBC before we attempt
  327. * to modify the control registers.
  328. *
  329. * A more complicated solution would involve tracking vblanks
  330. * following the termination of the page-flipping sequence
  331. * and indeed performing the enable as a co-routine and not
  332. * waiting synchronously upon the vblank.
  333. *
  334. * WaFbcWaitForVBlankBeforeEnable:ilk,snb
  335. */
  336. schedule_delayed_work(&work->work, msecs_to_jiffies(50));
  337. }
  338. void intel_disable_fbc(struct drm_device *dev)
  339. {
  340. struct drm_i915_private *dev_priv = dev->dev_private;
  341. intel_cancel_fbc_work(dev_priv);
  342. if (!dev_priv->display.disable_fbc)
  343. return;
  344. dev_priv->display.disable_fbc(dev);
  345. dev_priv->fbc.plane = -1;
  346. }
  347. static bool set_no_fbc_reason(struct drm_i915_private *dev_priv,
  348. enum no_fbc_reason reason)
  349. {
  350. if (dev_priv->fbc.no_fbc_reason == reason)
  351. return false;
  352. dev_priv->fbc.no_fbc_reason = reason;
  353. return true;
  354. }
  355. /**
  356. * intel_update_fbc - enable/disable FBC as needed
  357. * @dev: the drm_device
  358. *
  359. * Set up the framebuffer compression hardware at mode set time. We
  360. * enable it if possible:
  361. * - plane A only (on pre-965)
  362. * - no pixel mulitply/line duplication
  363. * - no alpha buffer discard
  364. * - no dual wide
  365. * - framebuffer <= max_hdisplay in width, max_vdisplay in height
  366. *
  367. * We can't assume that any compression will take place (worst case),
  368. * so the compressed buffer has to be the same size as the uncompressed
  369. * one. It also must reside (along with the line length buffer) in
  370. * stolen memory.
  371. *
  372. * We need to enable/disable FBC on a global basis.
  373. */
  374. void intel_update_fbc(struct drm_device *dev)
  375. {
  376. struct drm_i915_private *dev_priv = dev->dev_private;
  377. struct drm_crtc *crtc = NULL, *tmp_crtc;
  378. struct intel_crtc *intel_crtc;
  379. struct drm_framebuffer *fb;
  380. struct intel_framebuffer *intel_fb;
  381. struct drm_i915_gem_object *obj;
  382. const struct drm_display_mode *adjusted_mode;
  383. unsigned int max_width, max_height;
  384. if (!I915_HAS_FBC(dev)) {
  385. set_no_fbc_reason(dev_priv, FBC_UNSUPPORTED);
  386. return;
  387. }
  388. if (!i915_powersave) {
  389. if (set_no_fbc_reason(dev_priv, FBC_MODULE_PARAM))
  390. DRM_DEBUG_KMS("fbc disabled per module param\n");
  391. return;
  392. }
  393. /*
  394. * If FBC is already on, we just have to verify that we can
  395. * keep it that way...
  396. * Need to disable if:
  397. * - more than one pipe is active
  398. * - changing FBC params (stride, fence, mode)
  399. * - new fb is too large to fit in compressed buffer
  400. * - going to an unsupported config (interlace, pixel multiply, etc.)
  401. */
  402. list_for_each_entry(tmp_crtc, &dev->mode_config.crtc_list, head) {
  403. if (intel_crtc_active(tmp_crtc) &&
  404. to_intel_crtc(tmp_crtc)->primary_enabled) {
  405. if (crtc) {
  406. if (set_no_fbc_reason(dev_priv, FBC_MULTIPLE_PIPES))
  407. DRM_DEBUG_KMS("more than one pipe active, disabling compression\n");
  408. goto out_disable;
  409. }
  410. crtc = tmp_crtc;
  411. }
  412. }
  413. if (!crtc || crtc->fb == NULL) {
  414. if (set_no_fbc_reason(dev_priv, FBC_NO_OUTPUT))
  415. DRM_DEBUG_KMS("no output, disabling\n");
  416. goto out_disable;
  417. }
  418. intel_crtc = to_intel_crtc(crtc);
  419. fb = crtc->fb;
  420. intel_fb = to_intel_framebuffer(fb);
  421. obj = intel_fb->obj;
  422. adjusted_mode = &intel_crtc->config.adjusted_mode;
  423. if (i915_enable_fbc < 0 &&
  424. INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev)) {
  425. if (set_no_fbc_reason(dev_priv, FBC_CHIP_DEFAULT))
  426. DRM_DEBUG_KMS("disabled per chip default\n");
  427. goto out_disable;
  428. }
  429. if (!i915_enable_fbc) {
  430. if (set_no_fbc_reason(dev_priv, FBC_MODULE_PARAM))
  431. DRM_DEBUG_KMS("fbc disabled per module param\n");
  432. goto out_disable;
  433. }
  434. if ((adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) ||
  435. (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN)) {
  436. if (set_no_fbc_reason(dev_priv, FBC_UNSUPPORTED_MODE))
  437. DRM_DEBUG_KMS("mode incompatible with compression, "
  438. "disabling\n");
  439. goto out_disable;
  440. }
  441. if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
  442. max_width = 4096;
  443. max_height = 2048;
  444. } else {
  445. max_width = 2048;
  446. max_height = 1536;
  447. }
  448. if (intel_crtc->config.pipe_src_w > max_width ||
  449. intel_crtc->config.pipe_src_h > max_height) {
  450. if (set_no_fbc_reason(dev_priv, FBC_MODE_TOO_LARGE))
  451. DRM_DEBUG_KMS("mode too large for compression, disabling\n");
  452. goto out_disable;
  453. }
  454. if ((IS_I915GM(dev) || IS_I945GM(dev) || IS_HASWELL(dev)) &&
  455. intel_crtc->plane != 0) {
  456. if (set_no_fbc_reason(dev_priv, FBC_BAD_PLANE))
  457. DRM_DEBUG_KMS("plane not 0, disabling compression\n");
  458. goto out_disable;
  459. }
  460. /* The use of a CPU fence is mandatory in order to detect writes
  461. * by the CPU to the scanout and trigger updates to the FBC.
  462. */
  463. if (obj->tiling_mode != I915_TILING_X ||
  464. obj->fence_reg == I915_FENCE_REG_NONE) {
  465. if (set_no_fbc_reason(dev_priv, FBC_NOT_TILED))
  466. DRM_DEBUG_KMS("framebuffer not tiled or fenced, disabling compression\n");
  467. goto out_disable;
  468. }
  469. /* If the kernel debugger is active, always disable compression */
  470. if (in_dbg_master())
  471. goto out_disable;
  472. if (i915_gem_stolen_setup_compression(dev, intel_fb->obj->base.size)) {
  473. if (set_no_fbc_reason(dev_priv, FBC_STOLEN_TOO_SMALL))
  474. DRM_DEBUG_KMS("framebuffer too large, disabling compression\n");
  475. goto out_disable;
  476. }
  477. /* If the scanout has not changed, don't modify the FBC settings.
  478. * Note that we make the fundamental assumption that the fb->obj
  479. * cannot be unpinned (and have its GTT offset and fence revoked)
  480. * without first being decoupled from the scanout and FBC disabled.
  481. */
  482. if (dev_priv->fbc.plane == intel_crtc->plane &&
  483. dev_priv->fbc.fb_id == fb->base.id &&
  484. dev_priv->fbc.y == crtc->y)
  485. return;
  486. if (intel_fbc_enabled(dev)) {
  487. /* We update FBC along two paths, after changing fb/crtc
  488. * configuration (modeswitching) and after page-flipping
  489. * finishes. For the latter, we know that not only did
  490. * we disable the FBC at the start of the page-flip
  491. * sequence, but also more than one vblank has passed.
  492. *
  493. * For the former case of modeswitching, it is possible
  494. * to switch between two FBC valid configurations
  495. * instantaneously so we do need to disable the FBC
  496. * before we can modify its control registers. We also
  497. * have to wait for the next vblank for that to take
  498. * effect. However, since we delay enabling FBC we can
  499. * assume that a vblank has passed since disabling and
  500. * that we can safely alter the registers in the deferred
  501. * callback.
  502. *
  503. * In the scenario that we go from a valid to invalid
  504. * and then back to valid FBC configuration we have
  505. * no strict enforcement that a vblank occurred since
  506. * disabling the FBC. However, along all current pipe
  507. * disabling paths we do need to wait for a vblank at
  508. * some point. And we wait before enabling FBC anyway.
  509. */
  510. DRM_DEBUG_KMS("disabling active FBC for update\n");
  511. intel_disable_fbc(dev);
  512. }
  513. intel_enable_fbc(crtc, 500);
  514. dev_priv->fbc.no_fbc_reason = FBC_OK;
  515. return;
  516. out_disable:
  517. /* Multiple disables should be harmless */
  518. if (intel_fbc_enabled(dev)) {
  519. DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
  520. intel_disable_fbc(dev);
  521. }
  522. i915_gem_stolen_cleanup_compression(dev);
  523. }
  524. static void i915_pineview_get_mem_freq(struct drm_device *dev)
  525. {
  526. drm_i915_private_t *dev_priv = dev->dev_private;
  527. u32 tmp;
  528. tmp = I915_READ(CLKCFG);
  529. switch (tmp & CLKCFG_FSB_MASK) {
  530. case CLKCFG_FSB_533:
  531. dev_priv->fsb_freq = 533; /* 133*4 */
  532. break;
  533. case CLKCFG_FSB_800:
  534. dev_priv->fsb_freq = 800; /* 200*4 */
  535. break;
  536. case CLKCFG_FSB_667:
  537. dev_priv->fsb_freq = 667; /* 167*4 */
  538. break;
  539. case CLKCFG_FSB_400:
  540. dev_priv->fsb_freq = 400; /* 100*4 */
  541. break;
  542. }
  543. switch (tmp & CLKCFG_MEM_MASK) {
  544. case CLKCFG_MEM_533:
  545. dev_priv->mem_freq = 533;
  546. break;
  547. case CLKCFG_MEM_667:
  548. dev_priv->mem_freq = 667;
  549. break;
  550. case CLKCFG_MEM_800:
  551. dev_priv->mem_freq = 800;
  552. break;
  553. }
  554. /* detect pineview DDR3 setting */
  555. tmp = I915_READ(CSHRDDR3CTL);
  556. dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
  557. }
  558. static void i915_ironlake_get_mem_freq(struct drm_device *dev)
  559. {
  560. drm_i915_private_t *dev_priv = dev->dev_private;
  561. u16 ddrpll, csipll;
  562. ddrpll = I915_READ16(DDRMPLL1);
  563. csipll = I915_READ16(CSIPLL0);
  564. switch (ddrpll & 0xff) {
  565. case 0xc:
  566. dev_priv->mem_freq = 800;
  567. break;
  568. case 0x10:
  569. dev_priv->mem_freq = 1066;
  570. break;
  571. case 0x14:
  572. dev_priv->mem_freq = 1333;
  573. break;
  574. case 0x18:
  575. dev_priv->mem_freq = 1600;
  576. break;
  577. default:
  578. DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
  579. ddrpll & 0xff);
  580. dev_priv->mem_freq = 0;
  581. break;
  582. }
  583. dev_priv->ips.r_t = dev_priv->mem_freq;
  584. switch (csipll & 0x3ff) {
  585. case 0x00c:
  586. dev_priv->fsb_freq = 3200;
  587. break;
  588. case 0x00e:
  589. dev_priv->fsb_freq = 3733;
  590. break;
  591. case 0x010:
  592. dev_priv->fsb_freq = 4266;
  593. break;
  594. case 0x012:
  595. dev_priv->fsb_freq = 4800;
  596. break;
  597. case 0x014:
  598. dev_priv->fsb_freq = 5333;
  599. break;
  600. case 0x016:
  601. dev_priv->fsb_freq = 5866;
  602. break;
  603. case 0x018:
  604. dev_priv->fsb_freq = 6400;
  605. break;
  606. default:
  607. DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
  608. csipll & 0x3ff);
  609. dev_priv->fsb_freq = 0;
  610. break;
  611. }
  612. if (dev_priv->fsb_freq == 3200) {
  613. dev_priv->ips.c_m = 0;
  614. } else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
  615. dev_priv->ips.c_m = 1;
  616. } else {
  617. dev_priv->ips.c_m = 2;
  618. }
  619. }
  620. static const struct cxsr_latency cxsr_latency_table[] = {
  621. {1, 0, 800, 400, 3382, 33382, 3983, 33983}, /* DDR2-400 SC */
  622. {1, 0, 800, 667, 3354, 33354, 3807, 33807}, /* DDR2-667 SC */
  623. {1, 0, 800, 800, 3347, 33347, 3763, 33763}, /* DDR2-800 SC */
  624. {1, 1, 800, 667, 6420, 36420, 6873, 36873}, /* DDR3-667 SC */
  625. {1, 1, 800, 800, 5902, 35902, 6318, 36318}, /* DDR3-800 SC */
  626. {1, 0, 667, 400, 3400, 33400, 4021, 34021}, /* DDR2-400 SC */
  627. {1, 0, 667, 667, 3372, 33372, 3845, 33845}, /* DDR2-667 SC */
  628. {1, 0, 667, 800, 3386, 33386, 3822, 33822}, /* DDR2-800 SC */
  629. {1, 1, 667, 667, 6438, 36438, 6911, 36911}, /* DDR3-667 SC */
  630. {1, 1, 667, 800, 5941, 35941, 6377, 36377}, /* DDR3-800 SC */
  631. {1, 0, 400, 400, 3472, 33472, 4173, 34173}, /* DDR2-400 SC */
  632. {1, 0, 400, 667, 3443, 33443, 3996, 33996}, /* DDR2-667 SC */
  633. {1, 0, 400, 800, 3430, 33430, 3946, 33946}, /* DDR2-800 SC */
  634. {1, 1, 400, 667, 6509, 36509, 7062, 37062}, /* DDR3-667 SC */
  635. {1, 1, 400, 800, 5985, 35985, 6501, 36501}, /* DDR3-800 SC */
  636. {0, 0, 800, 400, 3438, 33438, 4065, 34065}, /* DDR2-400 SC */
  637. {0, 0, 800, 667, 3410, 33410, 3889, 33889}, /* DDR2-667 SC */
  638. {0, 0, 800, 800, 3403, 33403, 3845, 33845}, /* DDR2-800 SC */
  639. {0, 1, 800, 667, 6476, 36476, 6955, 36955}, /* DDR3-667 SC */
  640. {0, 1, 800, 800, 5958, 35958, 6400, 36400}, /* DDR3-800 SC */
  641. {0, 0, 667, 400, 3456, 33456, 4103, 34106}, /* DDR2-400 SC */
  642. {0, 0, 667, 667, 3428, 33428, 3927, 33927}, /* DDR2-667 SC */
  643. {0, 0, 667, 800, 3443, 33443, 3905, 33905}, /* DDR2-800 SC */
  644. {0, 1, 667, 667, 6494, 36494, 6993, 36993}, /* DDR3-667 SC */
  645. {0, 1, 667, 800, 5998, 35998, 6460, 36460}, /* DDR3-800 SC */
  646. {0, 0, 400, 400, 3528, 33528, 4255, 34255}, /* DDR2-400 SC */
  647. {0, 0, 400, 667, 3500, 33500, 4079, 34079}, /* DDR2-667 SC */
  648. {0, 0, 400, 800, 3487, 33487, 4029, 34029}, /* DDR2-800 SC */
  649. {0, 1, 400, 667, 6566, 36566, 7145, 37145}, /* DDR3-667 SC */
  650. {0, 1, 400, 800, 6042, 36042, 6584, 36584}, /* DDR3-800 SC */
  651. };
  652. static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
  653. int is_ddr3,
  654. int fsb,
  655. int mem)
  656. {
  657. const struct cxsr_latency *latency;
  658. int i;
  659. if (fsb == 0 || mem == 0)
  660. return NULL;
  661. for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
  662. latency = &cxsr_latency_table[i];
  663. if (is_desktop == latency->is_desktop &&
  664. is_ddr3 == latency->is_ddr3 &&
  665. fsb == latency->fsb_freq && mem == latency->mem_freq)
  666. return latency;
  667. }
  668. DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
  669. return NULL;
  670. }
  671. static void pineview_disable_cxsr(struct drm_device *dev)
  672. {
  673. struct drm_i915_private *dev_priv = dev->dev_private;
  674. /* deactivate cxsr */
  675. I915_WRITE(DSPFW3, I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN);
  676. }
  677. /*
  678. * Latency for FIFO fetches is dependent on several factors:
  679. * - memory configuration (speed, channels)
  680. * - chipset
  681. * - current MCH state
  682. * It can be fairly high in some situations, so here we assume a fairly
  683. * pessimal value. It's a tradeoff between extra memory fetches (if we
  684. * set this value too high, the FIFO will fetch frequently to stay full)
  685. * and power consumption (set it too low to save power and we might see
  686. * FIFO underruns and display "flicker").
  687. *
  688. * A value of 5us seems to be a good balance; safe for very low end
  689. * platforms but not overly aggressive on lower latency configs.
  690. */
  691. static const int latency_ns = 5000;
  692. static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
  693. {
  694. struct drm_i915_private *dev_priv = dev->dev_private;
  695. uint32_t dsparb = I915_READ(DSPARB);
  696. int size;
  697. size = dsparb & 0x7f;
  698. if (plane)
  699. size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
  700. DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
  701. plane ? "B" : "A", size);
  702. return size;
  703. }
  704. static int i85x_get_fifo_size(struct drm_device *dev, int plane)
  705. {
  706. struct drm_i915_private *dev_priv = dev->dev_private;
  707. uint32_t dsparb = I915_READ(DSPARB);
  708. int size;
  709. size = dsparb & 0x1ff;
  710. if (plane)
  711. size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
  712. size >>= 1; /* Convert to cachelines */
  713. DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
  714. plane ? "B" : "A", size);
  715. return size;
  716. }
  717. static int i845_get_fifo_size(struct drm_device *dev, int plane)
  718. {
  719. struct drm_i915_private *dev_priv = dev->dev_private;
  720. uint32_t dsparb = I915_READ(DSPARB);
  721. int size;
  722. size = dsparb & 0x7f;
  723. size >>= 2; /* Convert to cachelines */
  724. DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
  725. plane ? "B" : "A",
  726. size);
  727. return size;
  728. }
  729. static int i830_get_fifo_size(struct drm_device *dev, int plane)
  730. {
  731. struct drm_i915_private *dev_priv = dev->dev_private;
  732. uint32_t dsparb = I915_READ(DSPARB);
  733. int size;
  734. size = dsparb & 0x7f;
  735. size >>= 1; /* Convert to cachelines */
  736. DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
  737. plane ? "B" : "A", size);
  738. return size;
  739. }
  740. /* Pineview has different values for various configs */
  741. static const struct intel_watermark_params pineview_display_wm = {
  742. PINEVIEW_DISPLAY_FIFO,
  743. PINEVIEW_MAX_WM,
  744. PINEVIEW_DFT_WM,
  745. PINEVIEW_GUARD_WM,
  746. PINEVIEW_FIFO_LINE_SIZE
  747. };
  748. static const struct intel_watermark_params pineview_display_hplloff_wm = {
  749. PINEVIEW_DISPLAY_FIFO,
  750. PINEVIEW_MAX_WM,
  751. PINEVIEW_DFT_HPLLOFF_WM,
  752. PINEVIEW_GUARD_WM,
  753. PINEVIEW_FIFO_LINE_SIZE
  754. };
  755. static const struct intel_watermark_params pineview_cursor_wm = {
  756. PINEVIEW_CURSOR_FIFO,
  757. PINEVIEW_CURSOR_MAX_WM,
  758. PINEVIEW_CURSOR_DFT_WM,
  759. PINEVIEW_CURSOR_GUARD_WM,
  760. PINEVIEW_FIFO_LINE_SIZE,
  761. };
  762. static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
  763. PINEVIEW_CURSOR_FIFO,
  764. PINEVIEW_CURSOR_MAX_WM,
  765. PINEVIEW_CURSOR_DFT_WM,
  766. PINEVIEW_CURSOR_GUARD_WM,
  767. PINEVIEW_FIFO_LINE_SIZE
  768. };
  769. static const struct intel_watermark_params g4x_wm_info = {
  770. G4X_FIFO_SIZE,
  771. G4X_MAX_WM,
  772. G4X_MAX_WM,
  773. 2,
  774. G4X_FIFO_LINE_SIZE,
  775. };
  776. static const struct intel_watermark_params g4x_cursor_wm_info = {
  777. I965_CURSOR_FIFO,
  778. I965_CURSOR_MAX_WM,
  779. I965_CURSOR_DFT_WM,
  780. 2,
  781. G4X_FIFO_LINE_SIZE,
  782. };
  783. static const struct intel_watermark_params valleyview_wm_info = {
  784. VALLEYVIEW_FIFO_SIZE,
  785. VALLEYVIEW_MAX_WM,
  786. VALLEYVIEW_MAX_WM,
  787. 2,
  788. G4X_FIFO_LINE_SIZE,
  789. };
  790. static const struct intel_watermark_params valleyview_cursor_wm_info = {
  791. I965_CURSOR_FIFO,
  792. VALLEYVIEW_CURSOR_MAX_WM,
  793. I965_CURSOR_DFT_WM,
  794. 2,
  795. G4X_FIFO_LINE_SIZE,
  796. };
  797. static const struct intel_watermark_params i965_cursor_wm_info = {
  798. I965_CURSOR_FIFO,
  799. I965_CURSOR_MAX_WM,
  800. I965_CURSOR_DFT_WM,
  801. 2,
  802. I915_FIFO_LINE_SIZE,
  803. };
  804. static const struct intel_watermark_params i945_wm_info = {
  805. I945_FIFO_SIZE,
  806. I915_MAX_WM,
  807. 1,
  808. 2,
  809. I915_FIFO_LINE_SIZE
  810. };
  811. static const struct intel_watermark_params i915_wm_info = {
  812. I915_FIFO_SIZE,
  813. I915_MAX_WM,
  814. 1,
  815. 2,
  816. I915_FIFO_LINE_SIZE
  817. };
  818. static const struct intel_watermark_params i855_wm_info = {
  819. I855GM_FIFO_SIZE,
  820. I915_MAX_WM,
  821. 1,
  822. 2,
  823. I830_FIFO_LINE_SIZE
  824. };
  825. static const struct intel_watermark_params i830_wm_info = {
  826. I830_FIFO_SIZE,
  827. I915_MAX_WM,
  828. 1,
  829. 2,
  830. I830_FIFO_LINE_SIZE
  831. };
  832. static const struct intel_watermark_params ironlake_display_wm_info = {
  833. ILK_DISPLAY_FIFO,
  834. ILK_DISPLAY_MAXWM,
  835. ILK_DISPLAY_DFTWM,
  836. 2,
  837. ILK_FIFO_LINE_SIZE
  838. };
  839. static const struct intel_watermark_params ironlake_cursor_wm_info = {
  840. ILK_CURSOR_FIFO,
  841. ILK_CURSOR_MAXWM,
  842. ILK_CURSOR_DFTWM,
  843. 2,
  844. ILK_FIFO_LINE_SIZE
  845. };
  846. static const struct intel_watermark_params ironlake_display_srwm_info = {
  847. ILK_DISPLAY_SR_FIFO,
  848. ILK_DISPLAY_MAX_SRWM,
  849. ILK_DISPLAY_DFT_SRWM,
  850. 2,
  851. ILK_FIFO_LINE_SIZE
  852. };
  853. static const struct intel_watermark_params ironlake_cursor_srwm_info = {
  854. ILK_CURSOR_SR_FIFO,
  855. ILK_CURSOR_MAX_SRWM,
  856. ILK_CURSOR_DFT_SRWM,
  857. 2,
  858. ILK_FIFO_LINE_SIZE
  859. };
  860. static const struct intel_watermark_params sandybridge_display_wm_info = {
  861. SNB_DISPLAY_FIFO,
  862. SNB_DISPLAY_MAXWM,
  863. SNB_DISPLAY_DFTWM,
  864. 2,
  865. SNB_FIFO_LINE_SIZE
  866. };
  867. static const struct intel_watermark_params sandybridge_cursor_wm_info = {
  868. SNB_CURSOR_FIFO,
  869. SNB_CURSOR_MAXWM,
  870. SNB_CURSOR_DFTWM,
  871. 2,
  872. SNB_FIFO_LINE_SIZE
  873. };
  874. static const struct intel_watermark_params sandybridge_display_srwm_info = {
  875. SNB_DISPLAY_SR_FIFO,
  876. SNB_DISPLAY_MAX_SRWM,
  877. SNB_DISPLAY_DFT_SRWM,
  878. 2,
  879. SNB_FIFO_LINE_SIZE
  880. };
  881. static const struct intel_watermark_params sandybridge_cursor_srwm_info = {
  882. SNB_CURSOR_SR_FIFO,
  883. SNB_CURSOR_MAX_SRWM,
  884. SNB_CURSOR_DFT_SRWM,
  885. 2,
  886. SNB_FIFO_LINE_SIZE
  887. };
  888. /**
  889. * intel_calculate_wm - calculate watermark level
  890. * @clock_in_khz: pixel clock
  891. * @wm: chip FIFO params
  892. * @pixel_size: display pixel size
  893. * @latency_ns: memory latency for the platform
  894. *
  895. * Calculate the watermark level (the level at which the display plane will
  896. * start fetching from memory again). Each chip has a different display
  897. * FIFO size and allocation, so the caller needs to figure that out and pass
  898. * in the correct intel_watermark_params structure.
  899. *
  900. * As the pixel clock runs, the FIFO will be drained at a rate that depends
  901. * on the pixel size. When it reaches the watermark level, it'll start
  902. * fetching FIFO line sized based chunks from memory until the FIFO fills
  903. * past the watermark point. If the FIFO drains completely, a FIFO underrun
  904. * will occur, and a display engine hang could result.
  905. */
  906. static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
  907. const struct intel_watermark_params *wm,
  908. int fifo_size,
  909. int pixel_size,
  910. unsigned long latency_ns)
  911. {
  912. long entries_required, wm_size;
  913. /*
  914. * Note: we need to make sure we don't overflow for various clock &
  915. * latency values.
  916. * clocks go from a few thousand to several hundred thousand.
  917. * latency is usually a few thousand
  918. */
  919. entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
  920. 1000;
  921. entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
  922. DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
  923. wm_size = fifo_size - (entries_required + wm->guard_size);
  924. DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
  925. /* Don't promote wm_size to unsigned... */
  926. if (wm_size > (long)wm->max_wm)
  927. wm_size = wm->max_wm;
  928. if (wm_size <= 0)
  929. wm_size = wm->default_wm;
  930. return wm_size;
  931. }
  932. static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
  933. {
  934. struct drm_crtc *crtc, *enabled = NULL;
  935. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  936. if (intel_crtc_active(crtc)) {
  937. if (enabled)
  938. return NULL;
  939. enabled = crtc;
  940. }
  941. }
  942. return enabled;
  943. }
  944. static void pineview_update_wm(struct drm_crtc *unused_crtc)
  945. {
  946. struct drm_device *dev = unused_crtc->dev;
  947. struct drm_i915_private *dev_priv = dev->dev_private;
  948. struct drm_crtc *crtc;
  949. const struct cxsr_latency *latency;
  950. u32 reg;
  951. unsigned long wm;
  952. latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
  953. dev_priv->fsb_freq, dev_priv->mem_freq);
  954. if (!latency) {
  955. DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
  956. pineview_disable_cxsr(dev);
  957. return;
  958. }
  959. crtc = single_enabled_crtc(dev);
  960. if (crtc) {
  961. const struct drm_display_mode *adjusted_mode;
  962. int pixel_size = crtc->fb->bits_per_pixel / 8;
  963. int clock;
  964. adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
  965. clock = adjusted_mode->crtc_clock;
  966. /* Display SR */
  967. wm = intel_calculate_wm(clock, &pineview_display_wm,
  968. pineview_display_wm.fifo_size,
  969. pixel_size, latency->display_sr);
  970. reg = I915_READ(DSPFW1);
  971. reg &= ~DSPFW_SR_MASK;
  972. reg |= wm << DSPFW_SR_SHIFT;
  973. I915_WRITE(DSPFW1, reg);
  974. DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
  975. /* cursor SR */
  976. wm = intel_calculate_wm(clock, &pineview_cursor_wm,
  977. pineview_display_wm.fifo_size,
  978. pixel_size, latency->cursor_sr);
  979. reg = I915_READ(DSPFW3);
  980. reg &= ~DSPFW_CURSOR_SR_MASK;
  981. reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
  982. I915_WRITE(DSPFW3, reg);
  983. /* Display HPLL off SR */
  984. wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
  985. pineview_display_hplloff_wm.fifo_size,
  986. pixel_size, latency->display_hpll_disable);
  987. reg = I915_READ(DSPFW3);
  988. reg &= ~DSPFW_HPLL_SR_MASK;
  989. reg |= wm & DSPFW_HPLL_SR_MASK;
  990. I915_WRITE(DSPFW3, reg);
  991. /* cursor HPLL off SR */
  992. wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
  993. pineview_display_hplloff_wm.fifo_size,
  994. pixel_size, latency->cursor_hpll_disable);
  995. reg = I915_READ(DSPFW3);
  996. reg &= ~DSPFW_HPLL_CURSOR_MASK;
  997. reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
  998. I915_WRITE(DSPFW3, reg);
  999. DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
  1000. /* activate cxsr */
  1001. I915_WRITE(DSPFW3,
  1002. I915_READ(DSPFW3) | PINEVIEW_SELF_REFRESH_EN);
  1003. DRM_DEBUG_KMS("Self-refresh is enabled\n");
  1004. } else {
  1005. pineview_disable_cxsr(dev);
  1006. DRM_DEBUG_KMS("Self-refresh is disabled\n");
  1007. }
  1008. }
  1009. static bool g4x_compute_wm0(struct drm_device *dev,
  1010. int plane,
  1011. const struct intel_watermark_params *display,
  1012. int display_latency_ns,
  1013. const struct intel_watermark_params *cursor,
  1014. int cursor_latency_ns,
  1015. int *plane_wm,
  1016. int *cursor_wm)
  1017. {
  1018. struct drm_crtc *crtc;
  1019. const struct drm_display_mode *adjusted_mode;
  1020. int htotal, hdisplay, clock, pixel_size;
  1021. int line_time_us, line_count;
  1022. int entries, tlb_miss;
  1023. crtc = intel_get_crtc_for_plane(dev, plane);
  1024. if (!intel_crtc_active(crtc)) {
  1025. *cursor_wm = cursor->guard_size;
  1026. *plane_wm = display->guard_size;
  1027. return false;
  1028. }
  1029. adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
  1030. clock = adjusted_mode->crtc_clock;
  1031. htotal = adjusted_mode->crtc_htotal;
  1032. hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
  1033. pixel_size = crtc->fb->bits_per_pixel / 8;
  1034. /* Use the small buffer method to calculate plane watermark */
  1035. entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
  1036. tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
  1037. if (tlb_miss > 0)
  1038. entries += tlb_miss;
  1039. entries = DIV_ROUND_UP(entries, display->cacheline_size);
  1040. *plane_wm = entries + display->guard_size;
  1041. if (*plane_wm > (int)display->max_wm)
  1042. *plane_wm = display->max_wm;
  1043. /* Use the large buffer method to calculate cursor watermark */
  1044. line_time_us = ((htotal * 1000) / clock);
  1045. line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
  1046. entries = line_count * 64 * pixel_size;
  1047. tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
  1048. if (tlb_miss > 0)
  1049. entries += tlb_miss;
  1050. entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
  1051. *cursor_wm = entries + cursor->guard_size;
  1052. if (*cursor_wm > (int)cursor->max_wm)
  1053. *cursor_wm = (int)cursor->max_wm;
  1054. return true;
  1055. }
  1056. /*
  1057. * Check the wm result.
  1058. *
  1059. * If any calculated watermark values is larger than the maximum value that
  1060. * can be programmed into the associated watermark register, that watermark
  1061. * must be disabled.
  1062. */
  1063. static bool g4x_check_srwm(struct drm_device *dev,
  1064. int display_wm, int cursor_wm,
  1065. const struct intel_watermark_params *display,
  1066. const struct intel_watermark_params *cursor)
  1067. {
  1068. DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
  1069. display_wm, cursor_wm);
  1070. if (display_wm > display->max_wm) {
  1071. DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
  1072. display_wm, display->max_wm);
  1073. return false;
  1074. }
  1075. if (cursor_wm > cursor->max_wm) {
  1076. DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
  1077. cursor_wm, cursor->max_wm);
  1078. return false;
  1079. }
  1080. if (!(display_wm || cursor_wm)) {
  1081. DRM_DEBUG_KMS("SR latency is 0, disabling\n");
  1082. return false;
  1083. }
  1084. return true;
  1085. }
  1086. static bool g4x_compute_srwm(struct drm_device *dev,
  1087. int plane,
  1088. int latency_ns,
  1089. const struct intel_watermark_params *display,
  1090. const struct intel_watermark_params *cursor,
  1091. int *display_wm, int *cursor_wm)
  1092. {
  1093. struct drm_crtc *crtc;
  1094. const struct drm_display_mode *adjusted_mode;
  1095. int hdisplay, htotal, pixel_size, clock;
  1096. unsigned long line_time_us;
  1097. int line_count, line_size;
  1098. int small, large;
  1099. int entries;
  1100. if (!latency_ns) {
  1101. *display_wm = *cursor_wm = 0;
  1102. return false;
  1103. }
  1104. crtc = intel_get_crtc_for_plane(dev, plane);
  1105. adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
  1106. clock = adjusted_mode->crtc_clock;
  1107. htotal = adjusted_mode->crtc_htotal;
  1108. hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
  1109. pixel_size = crtc->fb->bits_per_pixel / 8;
  1110. line_time_us = (htotal * 1000) / clock;
  1111. line_count = (latency_ns / line_time_us + 1000) / 1000;
  1112. line_size = hdisplay * pixel_size;
  1113. /* Use the minimum of the small and large buffer method for primary */
  1114. small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
  1115. large = line_count * line_size;
  1116. entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
  1117. *display_wm = entries + display->guard_size;
  1118. /* calculate the self-refresh watermark for display cursor */
  1119. entries = line_count * pixel_size * 64;
  1120. entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
  1121. *cursor_wm = entries + cursor->guard_size;
  1122. return g4x_check_srwm(dev,
  1123. *display_wm, *cursor_wm,
  1124. display, cursor);
  1125. }
  1126. static bool vlv_compute_drain_latency(struct drm_device *dev,
  1127. int plane,
  1128. int *plane_prec_mult,
  1129. int *plane_dl,
  1130. int *cursor_prec_mult,
  1131. int *cursor_dl)
  1132. {
  1133. struct drm_crtc *crtc;
  1134. int clock, pixel_size;
  1135. int entries;
  1136. crtc = intel_get_crtc_for_plane(dev, plane);
  1137. if (!intel_crtc_active(crtc))
  1138. return false;
  1139. clock = to_intel_crtc(crtc)->config.adjusted_mode.crtc_clock;
  1140. pixel_size = crtc->fb->bits_per_pixel / 8; /* BPP */
  1141. entries = (clock / 1000) * pixel_size;
  1142. *plane_prec_mult = (entries > 256) ?
  1143. DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_16;
  1144. *plane_dl = (64 * (*plane_prec_mult) * 4) / ((clock / 1000) *
  1145. pixel_size);
  1146. entries = (clock / 1000) * 4; /* BPP is always 4 for cursor */
  1147. *cursor_prec_mult = (entries > 256) ?
  1148. DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_16;
  1149. *cursor_dl = (64 * (*cursor_prec_mult) * 4) / ((clock / 1000) * 4);
  1150. return true;
  1151. }
  1152. /*
  1153. * Update drain latency registers of memory arbiter
  1154. *
  1155. * Valleyview SoC has a new memory arbiter and needs drain latency registers
  1156. * to be programmed. Each plane has a drain latency multiplier and a drain
  1157. * latency value.
  1158. */
  1159. static void vlv_update_drain_latency(struct drm_device *dev)
  1160. {
  1161. struct drm_i915_private *dev_priv = dev->dev_private;
  1162. int planea_prec, planea_dl, planeb_prec, planeb_dl;
  1163. int cursora_prec, cursora_dl, cursorb_prec, cursorb_dl;
  1164. int plane_prec_mult, cursor_prec_mult; /* Precision multiplier is
  1165. either 16 or 32 */
  1166. /* For plane A, Cursor A */
  1167. if (vlv_compute_drain_latency(dev, 0, &plane_prec_mult, &planea_dl,
  1168. &cursor_prec_mult, &cursora_dl)) {
  1169. cursora_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
  1170. DDL_CURSORA_PRECISION_32 : DDL_CURSORA_PRECISION_16;
  1171. planea_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
  1172. DDL_PLANEA_PRECISION_32 : DDL_PLANEA_PRECISION_16;
  1173. I915_WRITE(VLV_DDL1, cursora_prec |
  1174. (cursora_dl << DDL_CURSORA_SHIFT) |
  1175. planea_prec | planea_dl);
  1176. }
  1177. /* For plane B, Cursor B */
  1178. if (vlv_compute_drain_latency(dev, 1, &plane_prec_mult, &planeb_dl,
  1179. &cursor_prec_mult, &cursorb_dl)) {
  1180. cursorb_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
  1181. DDL_CURSORB_PRECISION_32 : DDL_CURSORB_PRECISION_16;
  1182. planeb_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
  1183. DDL_PLANEB_PRECISION_32 : DDL_PLANEB_PRECISION_16;
  1184. I915_WRITE(VLV_DDL2, cursorb_prec |
  1185. (cursorb_dl << DDL_CURSORB_SHIFT) |
  1186. planeb_prec | planeb_dl);
  1187. }
  1188. }
  1189. #define single_plane_enabled(mask) is_power_of_2(mask)
  1190. static void valleyview_update_wm(struct drm_crtc *crtc)
  1191. {
  1192. struct drm_device *dev = crtc->dev;
  1193. static const int sr_latency_ns = 12000;
  1194. struct drm_i915_private *dev_priv = dev->dev_private;
  1195. int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
  1196. int plane_sr, cursor_sr;
  1197. int ignore_plane_sr, ignore_cursor_sr;
  1198. unsigned int enabled = 0;
  1199. vlv_update_drain_latency(dev);
  1200. if (g4x_compute_wm0(dev, PIPE_A,
  1201. &valleyview_wm_info, latency_ns,
  1202. &valleyview_cursor_wm_info, latency_ns,
  1203. &planea_wm, &cursora_wm))
  1204. enabled |= 1 << PIPE_A;
  1205. if (g4x_compute_wm0(dev, PIPE_B,
  1206. &valleyview_wm_info, latency_ns,
  1207. &valleyview_cursor_wm_info, latency_ns,
  1208. &planeb_wm, &cursorb_wm))
  1209. enabled |= 1 << PIPE_B;
  1210. if (single_plane_enabled(enabled) &&
  1211. g4x_compute_srwm(dev, ffs(enabled) - 1,
  1212. sr_latency_ns,
  1213. &valleyview_wm_info,
  1214. &valleyview_cursor_wm_info,
  1215. &plane_sr, &ignore_cursor_sr) &&
  1216. g4x_compute_srwm(dev, ffs(enabled) - 1,
  1217. 2*sr_latency_ns,
  1218. &valleyview_wm_info,
  1219. &valleyview_cursor_wm_info,
  1220. &ignore_plane_sr, &cursor_sr)) {
  1221. I915_WRITE(FW_BLC_SELF_VLV, FW_CSPWRDWNEN);
  1222. } else {
  1223. I915_WRITE(FW_BLC_SELF_VLV,
  1224. I915_READ(FW_BLC_SELF_VLV) & ~FW_CSPWRDWNEN);
  1225. plane_sr = cursor_sr = 0;
  1226. }
  1227. DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
  1228. planea_wm, cursora_wm,
  1229. planeb_wm, cursorb_wm,
  1230. plane_sr, cursor_sr);
  1231. I915_WRITE(DSPFW1,
  1232. (plane_sr << DSPFW_SR_SHIFT) |
  1233. (cursorb_wm << DSPFW_CURSORB_SHIFT) |
  1234. (planeb_wm << DSPFW_PLANEB_SHIFT) |
  1235. planea_wm);
  1236. I915_WRITE(DSPFW2,
  1237. (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
  1238. (cursora_wm << DSPFW_CURSORA_SHIFT));
  1239. I915_WRITE(DSPFW3,
  1240. (I915_READ(DSPFW3) & ~DSPFW_CURSOR_SR_MASK) |
  1241. (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
  1242. }
  1243. static void g4x_update_wm(struct drm_crtc *crtc)
  1244. {
  1245. struct drm_device *dev = crtc->dev;
  1246. static const int sr_latency_ns = 12000;
  1247. struct drm_i915_private *dev_priv = dev->dev_private;
  1248. int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
  1249. int plane_sr, cursor_sr;
  1250. unsigned int enabled = 0;
  1251. if (g4x_compute_wm0(dev, PIPE_A,
  1252. &g4x_wm_info, latency_ns,
  1253. &g4x_cursor_wm_info, latency_ns,
  1254. &planea_wm, &cursora_wm))
  1255. enabled |= 1 << PIPE_A;
  1256. if (g4x_compute_wm0(dev, PIPE_B,
  1257. &g4x_wm_info, latency_ns,
  1258. &g4x_cursor_wm_info, latency_ns,
  1259. &planeb_wm, &cursorb_wm))
  1260. enabled |= 1 << PIPE_B;
  1261. if (single_plane_enabled(enabled) &&
  1262. g4x_compute_srwm(dev, ffs(enabled) - 1,
  1263. sr_latency_ns,
  1264. &g4x_wm_info,
  1265. &g4x_cursor_wm_info,
  1266. &plane_sr, &cursor_sr)) {
  1267. I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
  1268. } else {
  1269. I915_WRITE(FW_BLC_SELF,
  1270. I915_READ(FW_BLC_SELF) & ~FW_BLC_SELF_EN);
  1271. plane_sr = cursor_sr = 0;
  1272. }
  1273. DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
  1274. planea_wm, cursora_wm,
  1275. planeb_wm, cursorb_wm,
  1276. plane_sr, cursor_sr);
  1277. I915_WRITE(DSPFW1,
  1278. (plane_sr << DSPFW_SR_SHIFT) |
  1279. (cursorb_wm << DSPFW_CURSORB_SHIFT) |
  1280. (planeb_wm << DSPFW_PLANEB_SHIFT) |
  1281. planea_wm);
  1282. I915_WRITE(DSPFW2,
  1283. (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
  1284. (cursora_wm << DSPFW_CURSORA_SHIFT));
  1285. /* HPLL off in SR has some issues on G4x... disable it */
  1286. I915_WRITE(DSPFW3,
  1287. (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
  1288. (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
  1289. }
  1290. static void i965_update_wm(struct drm_crtc *unused_crtc)
  1291. {
  1292. struct drm_device *dev = unused_crtc->dev;
  1293. struct drm_i915_private *dev_priv = dev->dev_private;
  1294. struct drm_crtc *crtc;
  1295. int srwm = 1;
  1296. int cursor_sr = 16;
  1297. /* Calc sr entries for one plane configs */
  1298. crtc = single_enabled_crtc(dev);
  1299. if (crtc) {
  1300. /* self-refresh has much higher latency */
  1301. static const int sr_latency_ns = 12000;
  1302. const struct drm_display_mode *adjusted_mode =
  1303. &to_intel_crtc(crtc)->config.adjusted_mode;
  1304. int clock = adjusted_mode->crtc_clock;
  1305. int htotal = adjusted_mode->crtc_htotal;
  1306. int hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
  1307. int pixel_size = crtc->fb->bits_per_pixel / 8;
  1308. unsigned long line_time_us;
  1309. int entries;
  1310. line_time_us = ((htotal * 1000) / clock);
  1311. /* Use ns/us then divide to preserve precision */
  1312. entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
  1313. pixel_size * hdisplay;
  1314. entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
  1315. srwm = I965_FIFO_SIZE - entries;
  1316. if (srwm < 0)
  1317. srwm = 1;
  1318. srwm &= 0x1ff;
  1319. DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
  1320. entries, srwm);
  1321. entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
  1322. pixel_size * 64;
  1323. entries = DIV_ROUND_UP(entries,
  1324. i965_cursor_wm_info.cacheline_size);
  1325. cursor_sr = i965_cursor_wm_info.fifo_size -
  1326. (entries + i965_cursor_wm_info.guard_size);
  1327. if (cursor_sr > i965_cursor_wm_info.max_wm)
  1328. cursor_sr = i965_cursor_wm_info.max_wm;
  1329. DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
  1330. "cursor %d\n", srwm, cursor_sr);
  1331. if (IS_CRESTLINE(dev))
  1332. I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
  1333. } else {
  1334. /* Turn off self refresh if both pipes are enabled */
  1335. if (IS_CRESTLINE(dev))
  1336. I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
  1337. & ~FW_BLC_SELF_EN);
  1338. }
  1339. DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
  1340. srwm);
  1341. /* 965 has limitations... */
  1342. I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) |
  1343. (8 << 16) | (8 << 8) | (8 << 0));
  1344. I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
  1345. /* update cursor SR watermark */
  1346. I915_WRITE(DSPFW3, (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
  1347. }
  1348. static void i9xx_update_wm(struct drm_crtc *unused_crtc)
  1349. {
  1350. struct drm_device *dev = unused_crtc->dev;
  1351. struct drm_i915_private *dev_priv = dev->dev_private;
  1352. const struct intel_watermark_params *wm_info;
  1353. uint32_t fwater_lo;
  1354. uint32_t fwater_hi;
  1355. int cwm, srwm = 1;
  1356. int fifo_size;
  1357. int planea_wm, planeb_wm;
  1358. struct drm_crtc *crtc, *enabled = NULL;
  1359. if (IS_I945GM(dev))
  1360. wm_info = &i945_wm_info;
  1361. else if (!IS_GEN2(dev))
  1362. wm_info = &i915_wm_info;
  1363. else
  1364. wm_info = &i855_wm_info;
  1365. fifo_size = dev_priv->display.get_fifo_size(dev, 0);
  1366. crtc = intel_get_crtc_for_plane(dev, 0);
  1367. if (intel_crtc_active(crtc)) {
  1368. const struct drm_display_mode *adjusted_mode;
  1369. int cpp = crtc->fb->bits_per_pixel / 8;
  1370. if (IS_GEN2(dev))
  1371. cpp = 4;
  1372. adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
  1373. planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
  1374. wm_info, fifo_size, cpp,
  1375. latency_ns);
  1376. enabled = crtc;
  1377. } else
  1378. planea_wm = fifo_size - wm_info->guard_size;
  1379. fifo_size = dev_priv->display.get_fifo_size(dev, 1);
  1380. crtc = intel_get_crtc_for_plane(dev, 1);
  1381. if (intel_crtc_active(crtc)) {
  1382. const struct drm_display_mode *adjusted_mode;
  1383. int cpp = crtc->fb->bits_per_pixel / 8;
  1384. if (IS_GEN2(dev))
  1385. cpp = 4;
  1386. adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
  1387. planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
  1388. wm_info, fifo_size, cpp,
  1389. latency_ns);
  1390. if (enabled == NULL)
  1391. enabled = crtc;
  1392. else
  1393. enabled = NULL;
  1394. } else
  1395. planeb_wm = fifo_size - wm_info->guard_size;
  1396. DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
  1397. /*
  1398. * Overlay gets an aggressive default since video jitter is bad.
  1399. */
  1400. cwm = 2;
  1401. /* Play safe and disable self-refresh before adjusting watermarks. */
  1402. if (IS_I945G(dev) || IS_I945GM(dev))
  1403. I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN_MASK | 0);
  1404. else if (IS_I915GM(dev))
  1405. I915_WRITE(INSTPM, I915_READ(INSTPM) & ~INSTPM_SELF_EN);
  1406. /* Calc sr entries for one plane configs */
  1407. if (HAS_FW_BLC(dev) && enabled) {
  1408. /* self-refresh has much higher latency */
  1409. static const int sr_latency_ns = 6000;
  1410. const struct drm_display_mode *adjusted_mode =
  1411. &to_intel_crtc(enabled)->config.adjusted_mode;
  1412. int clock = adjusted_mode->crtc_clock;
  1413. int htotal = adjusted_mode->crtc_htotal;
  1414. int hdisplay = to_intel_crtc(enabled)->config.pipe_src_w;
  1415. int pixel_size = enabled->fb->bits_per_pixel / 8;
  1416. unsigned long line_time_us;
  1417. int entries;
  1418. line_time_us = (htotal * 1000) / clock;
  1419. /* Use ns/us then divide to preserve precision */
  1420. entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
  1421. pixel_size * hdisplay;
  1422. entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
  1423. DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
  1424. srwm = wm_info->fifo_size - entries;
  1425. if (srwm < 0)
  1426. srwm = 1;
  1427. if (IS_I945G(dev) || IS_I945GM(dev))
  1428. I915_WRITE(FW_BLC_SELF,
  1429. FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
  1430. else if (IS_I915GM(dev))
  1431. I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
  1432. }
  1433. DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
  1434. planea_wm, planeb_wm, cwm, srwm);
  1435. fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
  1436. fwater_hi = (cwm & 0x1f);
  1437. /* Set request length to 8 cachelines per fetch */
  1438. fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
  1439. fwater_hi = fwater_hi | (1 << 8);
  1440. I915_WRITE(FW_BLC, fwater_lo);
  1441. I915_WRITE(FW_BLC2, fwater_hi);
  1442. if (HAS_FW_BLC(dev)) {
  1443. if (enabled) {
  1444. if (IS_I945G(dev) || IS_I945GM(dev))
  1445. I915_WRITE(FW_BLC_SELF,
  1446. FW_BLC_SELF_EN_MASK | FW_BLC_SELF_EN);
  1447. else if (IS_I915GM(dev))
  1448. I915_WRITE(INSTPM, I915_READ(INSTPM) | INSTPM_SELF_EN);
  1449. DRM_DEBUG_KMS("memory self refresh enabled\n");
  1450. } else
  1451. DRM_DEBUG_KMS("memory self refresh disabled\n");
  1452. }
  1453. }
  1454. static void i830_update_wm(struct drm_crtc *unused_crtc)
  1455. {
  1456. struct drm_device *dev = unused_crtc->dev;
  1457. struct drm_i915_private *dev_priv = dev->dev_private;
  1458. struct drm_crtc *crtc;
  1459. const struct drm_display_mode *adjusted_mode;
  1460. uint32_t fwater_lo;
  1461. int planea_wm;
  1462. crtc = single_enabled_crtc(dev);
  1463. if (crtc == NULL)
  1464. return;
  1465. adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
  1466. planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
  1467. &i830_wm_info,
  1468. dev_priv->display.get_fifo_size(dev, 0),
  1469. 4, latency_ns);
  1470. fwater_lo = I915_READ(FW_BLC) & ~0xfff;
  1471. fwater_lo |= (3<<8) | planea_wm;
  1472. DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
  1473. I915_WRITE(FW_BLC, fwater_lo);
  1474. }
  1475. /*
  1476. * Check the wm result.
  1477. *
  1478. * If any calculated watermark values is larger than the maximum value that
  1479. * can be programmed into the associated watermark register, that watermark
  1480. * must be disabled.
  1481. */
  1482. static bool ironlake_check_srwm(struct drm_device *dev, int level,
  1483. int fbc_wm, int display_wm, int cursor_wm,
  1484. const struct intel_watermark_params *display,
  1485. const struct intel_watermark_params *cursor)
  1486. {
  1487. struct drm_i915_private *dev_priv = dev->dev_private;
  1488. DRM_DEBUG_KMS("watermark %d: display plane %d, fbc lines %d,"
  1489. " cursor %d\n", level, display_wm, fbc_wm, cursor_wm);
  1490. if (fbc_wm > SNB_FBC_MAX_SRWM) {
  1491. DRM_DEBUG_KMS("fbc watermark(%d) is too large(%d), disabling wm%d+\n",
  1492. fbc_wm, SNB_FBC_MAX_SRWM, level);
  1493. /* fbc has it's own way to disable FBC WM */
  1494. I915_WRITE(DISP_ARB_CTL,
  1495. I915_READ(DISP_ARB_CTL) | DISP_FBC_WM_DIS);
  1496. return false;
  1497. } else if (INTEL_INFO(dev)->gen >= 6) {
  1498. /* enable FBC WM (except on ILK, where it must remain off) */
  1499. I915_WRITE(DISP_ARB_CTL,
  1500. I915_READ(DISP_ARB_CTL) & ~DISP_FBC_WM_DIS);
  1501. }
  1502. if (display_wm > display->max_wm) {
  1503. DRM_DEBUG_KMS("display watermark(%d) is too large(%d), disabling wm%d+\n",
  1504. display_wm, SNB_DISPLAY_MAX_SRWM, level);
  1505. return false;
  1506. }
  1507. if (cursor_wm > cursor->max_wm) {
  1508. DRM_DEBUG_KMS("cursor watermark(%d) is too large(%d), disabling wm%d+\n",
  1509. cursor_wm, SNB_CURSOR_MAX_SRWM, level);
  1510. return false;
  1511. }
  1512. if (!(fbc_wm || display_wm || cursor_wm)) {
  1513. DRM_DEBUG_KMS("latency %d is 0, disabling wm%d+\n", level, level);
  1514. return false;
  1515. }
  1516. return true;
  1517. }
  1518. /*
  1519. * Compute watermark values of WM[1-3],
  1520. */
  1521. static bool ironlake_compute_srwm(struct drm_device *dev, int level, int plane,
  1522. int latency_ns,
  1523. const struct intel_watermark_params *display,
  1524. const struct intel_watermark_params *cursor,
  1525. int *fbc_wm, int *display_wm, int *cursor_wm)
  1526. {
  1527. struct drm_crtc *crtc;
  1528. const struct drm_display_mode *adjusted_mode;
  1529. unsigned long line_time_us;
  1530. int hdisplay, htotal, pixel_size, clock;
  1531. int line_count, line_size;
  1532. int small, large;
  1533. int entries;
  1534. if (!latency_ns) {
  1535. *fbc_wm = *display_wm = *cursor_wm = 0;
  1536. return false;
  1537. }
  1538. crtc = intel_get_crtc_for_plane(dev, plane);
  1539. adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
  1540. clock = adjusted_mode->crtc_clock;
  1541. htotal = adjusted_mode->crtc_htotal;
  1542. hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
  1543. pixel_size = crtc->fb->bits_per_pixel / 8;
  1544. line_time_us = (htotal * 1000) / clock;
  1545. line_count = (latency_ns / line_time_us + 1000) / 1000;
  1546. line_size = hdisplay * pixel_size;
  1547. /* Use the minimum of the small and large buffer method for primary */
  1548. small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
  1549. large = line_count * line_size;
  1550. entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
  1551. *display_wm = entries + display->guard_size;
  1552. /*
  1553. * Spec says:
  1554. * FBC WM = ((Final Primary WM * 64) / number of bytes per line) + 2
  1555. */
  1556. *fbc_wm = DIV_ROUND_UP(*display_wm * 64, line_size) + 2;
  1557. /* calculate the self-refresh watermark for display cursor */
  1558. entries = line_count * pixel_size * 64;
  1559. entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
  1560. *cursor_wm = entries + cursor->guard_size;
  1561. return ironlake_check_srwm(dev, level,
  1562. *fbc_wm, *display_wm, *cursor_wm,
  1563. display, cursor);
  1564. }
  1565. static void ironlake_update_wm(struct drm_crtc *crtc)
  1566. {
  1567. struct drm_device *dev = crtc->dev;
  1568. struct drm_i915_private *dev_priv = dev->dev_private;
  1569. int fbc_wm, plane_wm, cursor_wm;
  1570. unsigned int enabled;
  1571. enabled = 0;
  1572. if (g4x_compute_wm0(dev, PIPE_A,
  1573. &ironlake_display_wm_info,
  1574. dev_priv->wm.pri_latency[0] * 100,
  1575. &ironlake_cursor_wm_info,
  1576. dev_priv->wm.cur_latency[0] * 100,
  1577. &plane_wm, &cursor_wm)) {
  1578. I915_WRITE(WM0_PIPEA_ILK,
  1579. (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
  1580. DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
  1581. " plane %d, " "cursor: %d\n",
  1582. plane_wm, cursor_wm);
  1583. enabled |= 1 << PIPE_A;
  1584. }
  1585. if (g4x_compute_wm0(dev, PIPE_B,
  1586. &ironlake_display_wm_info,
  1587. dev_priv->wm.pri_latency[0] * 100,
  1588. &ironlake_cursor_wm_info,
  1589. dev_priv->wm.cur_latency[0] * 100,
  1590. &plane_wm, &cursor_wm)) {
  1591. I915_WRITE(WM0_PIPEB_ILK,
  1592. (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
  1593. DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
  1594. " plane %d, cursor: %d\n",
  1595. plane_wm, cursor_wm);
  1596. enabled |= 1 << PIPE_B;
  1597. }
  1598. /*
  1599. * Calculate and update the self-refresh watermark only when one
  1600. * display plane is used.
  1601. */
  1602. I915_WRITE(WM3_LP_ILK, 0);
  1603. I915_WRITE(WM2_LP_ILK, 0);
  1604. I915_WRITE(WM1_LP_ILK, 0);
  1605. if (!single_plane_enabled(enabled))
  1606. return;
  1607. enabled = ffs(enabled) - 1;
  1608. /* WM1 */
  1609. if (!ironlake_compute_srwm(dev, 1, enabled,
  1610. dev_priv->wm.pri_latency[1] * 500,
  1611. &ironlake_display_srwm_info,
  1612. &ironlake_cursor_srwm_info,
  1613. &fbc_wm, &plane_wm, &cursor_wm))
  1614. return;
  1615. I915_WRITE(WM1_LP_ILK,
  1616. WM1_LP_SR_EN |
  1617. (dev_priv->wm.pri_latency[1] << WM1_LP_LATENCY_SHIFT) |
  1618. (fbc_wm << WM1_LP_FBC_SHIFT) |
  1619. (plane_wm << WM1_LP_SR_SHIFT) |
  1620. cursor_wm);
  1621. /* WM2 */
  1622. if (!ironlake_compute_srwm(dev, 2, enabled,
  1623. dev_priv->wm.pri_latency[2] * 500,
  1624. &ironlake_display_srwm_info,
  1625. &ironlake_cursor_srwm_info,
  1626. &fbc_wm, &plane_wm, &cursor_wm))
  1627. return;
  1628. I915_WRITE(WM2_LP_ILK,
  1629. WM2_LP_EN |
  1630. (dev_priv->wm.pri_latency[2] << WM1_LP_LATENCY_SHIFT) |
  1631. (fbc_wm << WM1_LP_FBC_SHIFT) |
  1632. (plane_wm << WM1_LP_SR_SHIFT) |
  1633. cursor_wm);
  1634. /*
  1635. * WM3 is unsupported on ILK, probably because we don't have latency
  1636. * data for that power state
  1637. */
  1638. }
  1639. static void sandybridge_update_wm(struct drm_crtc *crtc)
  1640. {
  1641. struct drm_device *dev = crtc->dev;
  1642. struct drm_i915_private *dev_priv = dev->dev_private;
  1643. int latency = dev_priv->wm.pri_latency[0] * 100; /* In unit 0.1us */
  1644. u32 val;
  1645. int fbc_wm, plane_wm, cursor_wm;
  1646. unsigned int enabled;
  1647. enabled = 0;
  1648. if (g4x_compute_wm0(dev, PIPE_A,
  1649. &sandybridge_display_wm_info, latency,
  1650. &sandybridge_cursor_wm_info, latency,
  1651. &plane_wm, &cursor_wm)) {
  1652. val = I915_READ(WM0_PIPEA_ILK);
  1653. val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
  1654. I915_WRITE(WM0_PIPEA_ILK, val |
  1655. ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
  1656. DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
  1657. " plane %d, " "cursor: %d\n",
  1658. plane_wm, cursor_wm);
  1659. enabled |= 1 << PIPE_A;
  1660. }
  1661. if (g4x_compute_wm0(dev, PIPE_B,
  1662. &sandybridge_display_wm_info, latency,
  1663. &sandybridge_cursor_wm_info, latency,
  1664. &plane_wm, &cursor_wm)) {
  1665. val = I915_READ(WM0_PIPEB_ILK);
  1666. val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
  1667. I915_WRITE(WM0_PIPEB_ILK, val |
  1668. ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
  1669. DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
  1670. " plane %d, cursor: %d\n",
  1671. plane_wm, cursor_wm);
  1672. enabled |= 1 << PIPE_B;
  1673. }
  1674. /*
  1675. * Calculate and update the self-refresh watermark only when one
  1676. * display plane is used.
  1677. *
  1678. * SNB support 3 levels of watermark.
  1679. *
  1680. * WM1/WM2/WM2 watermarks have to be enabled in the ascending order,
  1681. * and disabled in the descending order
  1682. *
  1683. */
  1684. I915_WRITE(WM3_LP_ILK, 0);
  1685. I915_WRITE(WM2_LP_ILK, 0);
  1686. I915_WRITE(WM1_LP_ILK, 0);
  1687. if (!single_plane_enabled(enabled) ||
  1688. dev_priv->sprite_scaling_enabled)
  1689. return;
  1690. enabled = ffs(enabled) - 1;
  1691. /* WM1 */
  1692. if (!ironlake_compute_srwm(dev, 1, enabled,
  1693. dev_priv->wm.pri_latency[1] * 500,
  1694. &sandybridge_display_srwm_info,
  1695. &sandybridge_cursor_srwm_info,
  1696. &fbc_wm, &plane_wm, &cursor_wm))
  1697. return;
  1698. I915_WRITE(WM1_LP_ILK,
  1699. WM1_LP_SR_EN |
  1700. (dev_priv->wm.pri_latency[1] << WM1_LP_LATENCY_SHIFT) |
  1701. (fbc_wm << WM1_LP_FBC_SHIFT) |
  1702. (plane_wm << WM1_LP_SR_SHIFT) |
  1703. cursor_wm);
  1704. /* WM2 */
  1705. if (!ironlake_compute_srwm(dev, 2, enabled,
  1706. dev_priv->wm.pri_latency[2] * 500,
  1707. &sandybridge_display_srwm_info,
  1708. &sandybridge_cursor_srwm_info,
  1709. &fbc_wm, &plane_wm, &cursor_wm))
  1710. return;
  1711. I915_WRITE(WM2_LP_ILK,
  1712. WM2_LP_EN |
  1713. (dev_priv->wm.pri_latency[2] << WM1_LP_LATENCY_SHIFT) |
  1714. (fbc_wm << WM1_LP_FBC_SHIFT) |
  1715. (plane_wm << WM1_LP_SR_SHIFT) |
  1716. cursor_wm);
  1717. /* WM3 */
  1718. if (!ironlake_compute_srwm(dev, 3, enabled,
  1719. dev_priv->wm.pri_latency[3] * 500,
  1720. &sandybridge_display_srwm_info,
  1721. &sandybridge_cursor_srwm_info,
  1722. &fbc_wm, &plane_wm, &cursor_wm))
  1723. return;
  1724. I915_WRITE(WM3_LP_ILK,
  1725. WM3_LP_EN |
  1726. (dev_priv->wm.pri_latency[3] << WM1_LP_LATENCY_SHIFT) |
  1727. (fbc_wm << WM1_LP_FBC_SHIFT) |
  1728. (plane_wm << WM1_LP_SR_SHIFT) |
  1729. cursor_wm);
  1730. }
  1731. static void ivybridge_update_wm(struct drm_crtc *crtc)
  1732. {
  1733. struct drm_device *dev = crtc->dev;
  1734. struct drm_i915_private *dev_priv = dev->dev_private;
  1735. int latency = dev_priv->wm.pri_latency[0] * 100; /* In unit 0.1us */
  1736. u32 val;
  1737. int fbc_wm, plane_wm, cursor_wm;
  1738. int ignore_fbc_wm, ignore_plane_wm, ignore_cursor_wm;
  1739. unsigned int enabled;
  1740. enabled = 0;
  1741. if (g4x_compute_wm0(dev, PIPE_A,
  1742. &sandybridge_display_wm_info, latency,
  1743. &sandybridge_cursor_wm_info, latency,
  1744. &plane_wm, &cursor_wm)) {
  1745. val = I915_READ(WM0_PIPEA_ILK);
  1746. val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
  1747. I915_WRITE(WM0_PIPEA_ILK, val |
  1748. ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
  1749. DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
  1750. " plane %d, " "cursor: %d\n",
  1751. plane_wm, cursor_wm);
  1752. enabled |= 1 << PIPE_A;
  1753. }
  1754. if (g4x_compute_wm0(dev, PIPE_B,
  1755. &sandybridge_display_wm_info, latency,
  1756. &sandybridge_cursor_wm_info, latency,
  1757. &plane_wm, &cursor_wm)) {
  1758. val = I915_READ(WM0_PIPEB_ILK);
  1759. val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
  1760. I915_WRITE(WM0_PIPEB_ILK, val |
  1761. ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
  1762. DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
  1763. " plane %d, cursor: %d\n",
  1764. plane_wm, cursor_wm);
  1765. enabled |= 1 << PIPE_B;
  1766. }
  1767. if (g4x_compute_wm0(dev, PIPE_C,
  1768. &sandybridge_display_wm_info, latency,
  1769. &sandybridge_cursor_wm_info, latency,
  1770. &plane_wm, &cursor_wm)) {
  1771. val = I915_READ(WM0_PIPEC_IVB);
  1772. val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
  1773. I915_WRITE(WM0_PIPEC_IVB, val |
  1774. ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
  1775. DRM_DEBUG_KMS("FIFO watermarks For pipe C -"
  1776. " plane %d, cursor: %d\n",
  1777. plane_wm, cursor_wm);
  1778. enabled |= 1 << PIPE_C;
  1779. }
  1780. /*
  1781. * Calculate and update the self-refresh watermark only when one
  1782. * display plane is used.
  1783. *
  1784. * SNB support 3 levels of watermark.
  1785. *
  1786. * WM1/WM2/WM2 watermarks have to be enabled in the ascending order,
  1787. * and disabled in the descending order
  1788. *
  1789. */
  1790. I915_WRITE(WM3_LP_ILK, 0);
  1791. I915_WRITE(WM2_LP_ILK, 0);
  1792. I915_WRITE(WM1_LP_ILK, 0);
  1793. if (!single_plane_enabled(enabled) ||
  1794. dev_priv->sprite_scaling_enabled)
  1795. return;
  1796. enabled = ffs(enabled) - 1;
  1797. /* WM1 */
  1798. if (!ironlake_compute_srwm(dev, 1, enabled,
  1799. dev_priv->wm.pri_latency[1] * 500,
  1800. &sandybridge_display_srwm_info,
  1801. &sandybridge_cursor_srwm_info,
  1802. &fbc_wm, &plane_wm, &cursor_wm))
  1803. return;
  1804. I915_WRITE(WM1_LP_ILK,
  1805. WM1_LP_SR_EN |
  1806. (dev_priv->wm.pri_latency[1] << WM1_LP_LATENCY_SHIFT) |
  1807. (fbc_wm << WM1_LP_FBC_SHIFT) |
  1808. (plane_wm << WM1_LP_SR_SHIFT) |
  1809. cursor_wm);
  1810. /* WM2 */
  1811. if (!ironlake_compute_srwm(dev, 2, enabled,
  1812. dev_priv->wm.pri_latency[2] * 500,
  1813. &sandybridge_display_srwm_info,
  1814. &sandybridge_cursor_srwm_info,
  1815. &fbc_wm, &plane_wm, &cursor_wm))
  1816. return;
  1817. I915_WRITE(WM2_LP_ILK,
  1818. WM2_LP_EN |
  1819. (dev_priv->wm.pri_latency[2] << WM1_LP_LATENCY_SHIFT) |
  1820. (fbc_wm << WM1_LP_FBC_SHIFT) |
  1821. (plane_wm << WM1_LP_SR_SHIFT) |
  1822. cursor_wm);
  1823. /* WM3, note we have to correct the cursor latency */
  1824. if (!ironlake_compute_srwm(dev, 3, enabled,
  1825. dev_priv->wm.pri_latency[3] * 500,
  1826. &sandybridge_display_srwm_info,
  1827. &sandybridge_cursor_srwm_info,
  1828. &fbc_wm, &plane_wm, &ignore_cursor_wm) ||
  1829. !ironlake_compute_srwm(dev, 3, enabled,
  1830. dev_priv->wm.cur_latency[3] * 500,
  1831. &sandybridge_display_srwm_info,
  1832. &sandybridge_cursor_srwm_info,
  1833. &ignore_fbc_wm, &ignore_plane_wm, &cursor_wm))
  1834. return;
  1835. I915_WRITE(WM3_LP_ILK,
  1836. WM3_LP_EN |
  1837. (dev_priv->wm.pri_latency[3] << WM1_LP_LATENCY_SHIFT) |
  1838. (fbc_wm << WM1_LP_FBC_SHIFT) |
  1839. (plane_wm << WM1_LP_SR_SHIFT) |
  1840. cursor_wm);
  1841. }
  1842. static uint32_t ilk_pipe_pixel_rate(struct drm_device *dev,
  1843. struct drm_crtc *crtc)
  1844. {
  1845. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1846. uint32_t pixel_rate;
  1847. pixel_rate = intel_crtc->config.adjusted_mode.crtc_clock;
  1848. /* We only use IF-ID interlacing. If we ever use PF-ID we'll need to
  1849. * adjust the pixel_rate here. */
  1850. if (intel_crtc->config.pch_pfit.enabled) {
  1851. uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
  1852. uint32_t pfit_size = intel_crtc->config.pch_pfit.size;
  1853. pipe_w = intel_crtc->config.pipe_src_w;
  1854. pipe_h = intel_crtc->config.pipe_src_h;
  1855. pfit_w = (pfit_size >> 16) & 0xFFFF;
  1856. pfit_h = pfit_size & 0xFFFF;
  1857. if (pipe_w < pfit_w)
  1858. pipe_w = pfit_w;
  1859. if (pipe_h < pfit_h)
  1860. pipe_h = pfit_h;
  1861. pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
  1862. pfit_w * pfit_h);
  1863. }
  1864. return pixel_rate;
  1865. }
  1866. /* latency must be in 0.1us units. */
  1867. static uint32_t ilk_wm_method1(uint32_t pixel_rate, uint8_t bytes_per_pixel,
  1868. uint32_t latency)
  1869. {
  1870. uint64_t ret;
  1871. if (WARN(latency == 0, "Latency value missing\n"))
  1872. return UINT_MAX;
  1873. ret = (uint64_t) pixel_rate * bytes_per_pixel * latency;
  1874. ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;
  1875. return ret;
  1876. }
  1877. /* latency must be in 0.1us units. */
  1878. static uint32_t ilk_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
  1879. uint32_t horiz_pixels, uint8_t bytes_per_pixel,
  1880. uint32_t latency)
  1881. {
  1882. uint32_t ret;
  1883. if (WARN(latency == 0, "Latency value missing\n"))
  1884. return UINT_MAX;
  1885. ret = (latency * pixel_rate) / (pipe_htotal * 10000);
  1886. ret = (ret + 1) * horiz_pixels * bytes_per_pixel;
  1887. ret = DIV_ROUND_UP(ret, 64) + 2;
  1888. return ret;
  1889. }
  1890. static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
  1891. uint8_t bytes_per_pixel)
  1892. {
  1893. return DIV_ROUND_UP(pri_val * 64, horiz_pixels * bytes_per_pixel) + 2;
  1894. }
  1895. struct hsw_pipe_wm_parameters {
  1896. bool active;
  1897. uint32_t pipe_htotal;
  1898. uint32_t pixel_rate;
  1899. struct intel_plane_wm_parameters pri;
  1900. struct intel_plane_wm_parameters spr;
  1901. struct intel_plane_wm_parameters cur;
  1902. };
  1903. struct hsw_wm_maximums {
  1904. uint16_t pri;
  1905. uint16_t spr;
  1906. uint16_t cur;
  1907. uint16_t fbc;
  1908. };
  1909. /* used in computing the new watermarks state */
  1910. struct intel_wm_config {
  1911. unsigned int num_pipes_active;
  1912. bool sprites_enabled;
  1913. bool sprites_scaled;
  1914. };
  1915. /*
  1916. * For both WM_PIPE and WM_LP.
  1917. * mem_value must be in 0.1us units.
  1918. */
  1919. static uint32_t ilk_compute_pri_wm(const struct hsw_pipe_wm_parameters *params,
  1920. uint32_t mem_value,
  1921. bool is_lp)
  1922. {
  1923. uint32_t method1, method2;
  1924. if (!params->active || !params->pri.enabled)
  1925. return 0;
  1926. method1 = ilk_wm_method1(params->pixel_rate,
  1927. params->pri.bytes_per_pixel,
  1928. mem_value);
  1929. if (!is_lp)
  1930. return method1;
  1931. method2 = ilk_wm_method2(params->pixel_rate,
  1932. params->pipe_htotal,
  1933. params->pri.horiz_pixels,
  1934. params->pri.bytes_per_pixel,
  1935. mem_value);
  1936. return min(method1, method2);
  1937. }
  1938. /*
  1939. * For both WM_PIPE and WM_LP.
  1940. * mem_value must be in 0.1us units.
  1941. */
  1942. static uint32_t ilk_compute_spr_wm(const struct hsw_pipe_wm_parameters *params,
  1943. uint32_t mem_value)
  1944. {
  1945. uint32_t method1, method2;
  1946. if (!params->active || !params->spr.enabled)
  1947. return 0;
  1948. method1 = ilk_wm_method1(params->pixel_rate,
  1949. params->spr.bytes_per_pixel,
  1950. mem_value);
  1951. method2 = ilk_wm_method2(params->pixel_rate,
  1952. params->pipe_htotal,
  1953. params->spr.horiz_pixels,
  1954. params->spr.bytes_per_pixel,
  1955. mem_value);
  1956. return min(method1, method2);
  1957. }
  1958. /*
  1959. * For both WM_PIPE and WM_LP.
  1960. * mem_value must be in 0.1us units.
  1961. */
  1962. static uint32_t ilk_compute_cur_wm(const struct hsw_pipe_wm_parameters *params,
  1963. uint32_t mem_value)
  1964. {
  1965. if (!params->active || !params->cur.enabled)
  1966. return 0;
  1967. return ilk_wm_method2(params->pixel_rate,
  1968. params->pipe_htotal,
  1969. params->cur.horiz_pixels,
  1970. params->cur.bytes_per_pixel,
  1971. mem_value);
  1972. }
  1973. /* Only for WM_LP. */
  1974. static uint32_t ilk_compute_fbc_wm(const struct hsw_pipe_wm_parameters *params,
  1975. uint32_t pri_val)
  1976. {
  1977. if (!params->active || !params->pri.enabled)
  1978. return 0;
  1979. return ilk_wm_fbc(pri_val,
  1980. params->pri.horiz_pixels,
  1981. params->pri.bytes_per_pixel);
  1982. }
  1983. static unsigned int ilk_display_fifo_size(const struct drm_device *dev)
  1984. {
  1985. if (INTEL_INFO(dev)->gen >= 8)
  1986. return 3072;
  1987. else if (INTEL_INFO(dev)->gen >= 7)
  1988. return 768;
  1989. else
  1990. return 512;
  1991. }
  1992. /* Calculate the maximum primary/sprite plane watermark */
  1993. static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
  1994. int level,
  1995. const struct intel_wm_config *config,
  1996. enum intel_ddb_partitioning ddb_partitioning,
  1997. bool is_sprite)
  1998. {
  1999. unsigned int fifo_size = ilk_display_fifo_size(dev);
  2000. unsigned int max;
  2001. /* if sprites aren't enabled, sprites get nothing */
  2002. if (is_sprite && !config->sprites_enabled)
  2003. return 0;
  2004. /* HSW allows LP1+ watermarks even with multiple pipes */
  2005. if (level == 0 || config->num_pipes_active > 1) {
  2006. fifo_size /= INTEL_INFO(dev)->num_pipes;
  2007. /*
  2008. * For some reason the non self refresh
  2009. * FIFO size is only half of the self
  2010. * refresh FIFO size on ILK/SNB.
  2011. */
  2012. if (INTEL_INFO(dev)->gen <= 6)
  2013. fifo_size /= 2;
  2014. }
  2015. if (config->sprites_enabled) {
  2016. /* level 0 is always calculated with 1:1 split */
  2017. if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
  2018. if (is_sprite)
  2019. fifo_size *= 5;
  2020. fifo_size /= 6;
  2021. } else {
  2022. fifo_size /= 2;
  2023. }
  2024. }
  2025. /* clamp to max that the registers can hold */
  2026. if (INTEL_INFO(dev)->gen >= 8)
  2027. max = level == 0 ? 255 : 2047;
  2028. else if (INTEL_INFO(dev)->gen >= 7)
  2029. /* IVB/HSW primary/sprite plane watermarks */
  2030. max = level == 0 ? 127 : 1023;
  2031. else if (!is_sprite)
  2032. /* ILK/SNB primary plane watermarks */
  2033. max = level == 0 ? 127 : 511;
  2034. else
  2035. /* ILK/SNB sprite plane watermarks */
  2036. max = level == 0 ? 63 : 255;
  2037. return min(fifo_size, max);
  2038. }
  2039. /* Calculate the maximum cursor plane watermark */
  2040. static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
  2041. int level,
  2042. const struct intel_wm_config *config)
  2043. {
  2044. /* HSW LP1+ watermarks w/ multiple pipes */
  2045. if (level > 0 && config->num_pipes_active > 1)
  2046. return 64;
  2047. /* otherwise just report max that registers can hold */
  2048. if (INTEL_INFO(dev)->gen >= 7)
  2049. return level == 0 ? 63 : 255;
  2050. else
  2051. return level == 0 ? 31 : 63;
  2052. }
  2053. /* Calculate the maximum FBC watermark */
  2054. static unsigned int ilk_fbc_wm_max(struct drm_device *dev)
  2055. {
  2056. /* max that registers can hold */
  2057. if (INTEL_INFO(dev)->gen >= 8)
  2058. return 31;
  2059. else
  2060. return 15;
  2061. }
  2062. static void ilk_compute_wm_maximums(struct drm_device *dev,
  2063. int level,
  2064. const struct intel_wm_config *config,
  2065. enum intel_ddb_partitioning ddb_partitioning,
  2066. struct hsw_wm_maximums *max)
  2067. {
  2068. max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
  2069. max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
  2070. max->cur = ilk_cursor_wm_max(dev, level, config);
  2071. max->fbc = ilk_fbc_wm_max(dev);
  2072. }
  2073. static bool ilk_validate_wm_level(int level,
  2074. const struct hsw_wm_maximums *max,
  2075. struct intel_wm_level *result)
  2076. {
  2077. bool ret;
  2078. /* already determined to be invalid? */
  2079. if (!result->enable)
  2080. return false;
  2081. result->enable = result->pri_val <= max->pri &&
  2082. result->spr_val <= max->spr &&
  2083. result->cur_val <= max->cur;
  2084. ret = result->enable;
  2085. /*
  2086. * HACK until we can pre-compute everything,
  2087. * and thus fail gracefully if LP0 watermarks
  2088. * are exceeded...
  2089. */
  2090. if (level == 0 && !result->enable) {
  2091. if (result->pri_val > max->pri)
  2092. DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
  2093. level, result->pri_val, max->pri);
  2094. if (result->spr_val > max->spr)
  2095. DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
  2096. level, result->spr_val, max->spr);
  2097. if (result->cur_val > max->cur)
  2098. DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
  2099. level, result->cur_val, max->cur);
  2100. result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
  2101. result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
  2102. result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
  2103. result->enable = true;
  2104. }
  2105. return ret;
  2106. }
  2107. static void ilk_compute_wm_level(struct drm_i915_private *dev_priv,
  2108. int level,
  2109. const struct hsw_pipe_wm_parameters *p,
  2110. struct intel_wm_level *result)
  2111. {
  2112. uint16_t pri_latency = dev_priv->wm.pri_latency[level];
  2113. uint16_t spr_latency = dev_priv->wm.spr_latency[level];
  2114. uint16_t cur_latency = dev_priv->wm.cur_latency[level];
  2115. /* WM1+ latency values stored in 0.5us units */
  2116. if (level > 0) {
  2117. pri_latency *= 5;
  2118. spr_latency *= 5;
  2119. cur_latency *= 5;
  2120. }
  2121. result->pri_val = ilk_compute_pri_wm(p, pri_latency, level);
  2122. result->spr_val = ilk_compute_spr_wm(p, spr_latency);
  2123. result->cur_val = ilk_compute_cur_wm(p, cur_latency);
  2124. result->fbc_val = ilk_compute_fbc_wm(p, result->pri_val);
  2125. result->enable = true;
  2126. }
  2127. static uint32_t
  2128. hsw_compute_linetime_wm(struct drm_device *dev, struct drm_crtc *crtc)
  2129. {
  2130. struct drm_i915_private *dev_priv = dev->dev_private;
  2131. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2132. struct drm_display_mode *mode = &intel_crtc->config.adjusted_mode;
  2133. u32 linetime, ips_linetime;
  2134. if (!intel_crtc_active(crtc))
  2135. return 0;
  2136. /* The WM are computed with base on how long it takes to fill a single
  2137. * row at the given clock rate, multiplied by 8.
  2138. * */
  2139. linetime = DIV_ROUND_CLOSEST(mode->crtc_htotal * 1000 * 8,
  2140. mode->crtc_clock);
  2141. ips_linetime = DIV_ROUND_CLOSEST(mode->crtc_htotal * 1000 * 8,
  2142. intel_ddi_get_cdclk_freq(dev_priv));
  2143. return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
  2144. PIPE_WM_LINETIME_TIME(linetime);
  2145. }
  2146. static void intel_read_wm_latency(struct drm_device *dev, uint16_t wm[5])
  2147. {
  2148. struct drm_i915_private *dev_priv = dev->dev_private;
  2149. if (IS_HASWELL(dev)) {
  2150. uint64_t sskpd = I915_READ64(MCH_SSKPD);
  2151. wm[0] = (sskpd >> 56) & 0xFF;
  2152. if (wm[0] == 0)
  2153. wm[0] = sskpd & 0xF;
  2154. wm[1] = (sskpd >> 4) & 0xFF;
  2155. wm[2] = (sskpd >> 12) & 0xFF;
  2156. wm[3] = (sskpd >> 20) & 0x1FF;
  2157. wm[4] = (sskpd >> 32) & 0x1FF;
  2158. } else if (INTEL_INFO(dev)->gen >= 6) {
  2159. uint32_t sskpd = I915_READ(MCH_SSKPD);
  2160. wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
  2161. wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
  2162. wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
  2163. wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
  2164. } else if (INTEL_INFO(dev)->gen >= 5) {
  2165. uint32_t mltr = I915_READ(MLTR_ILK);
  2166. /* ILK primary LP0 latency is 700 ns */
  2167. wm[0] = 7;
  2168. wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
  2169. wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
  2170. }
  2171. }
  2172. static void intel_fixup_spr_wm_latency(struct drm_device *dev, uint16_t wm[5])
  2173. {
  2174. /* ILK sprite LP0 latency is 1300 ns */
  2175. if (INTEL_INFO(dev)->gen == 5)
  2176. wm[0] = 13;
  2177. }
  2178. static void intel_fixup_cur_wm_latency(struct drm_device *dev, uint16_t wm[5])
  2179. {
  2180. /* ILK cursor LP0 latency is 1300 ns */
  2181. if (INTEL_INFO(dev)->gen == 5)
  2182. wm[0] = 13;
  2183. /* WaDoubleCursorLP3Latency:ivb */
  2184. if (IS_IVYBRIDGE(dev))
  2185. wm[3] *= 2;
  2186. }
  2187. static int ilk_wm_max_level(const struct drm_device *dev)
  2188. {
  2189. /* how many WM levels are we expecting */
  2190. if (IS_HASWELL(dev))
  2191. return 4;
  2192. else if (INTEL_INFO(dev)->gen >= 6)
  2193. return 3;
  2194. else
  2195. return 2;
  2196. }
  2197. static void intel_print_wm_latency(struct drm_device *dev,
  2198. const char *name,
  2199. const uint16_t wm[5])
  2200. {
  2201. int level, max_level = ilk_wm_max_level(dev);
  2202. for (level = 0; level <= max_level; level++) {
  2203. unsigned int latency = wm[level];
  2204. if (latency == 0) {
  2205. DRM_ERROR("%s WM%d latency not provided\n",
  2206. name, level);
  2207. continue;
  2208. }
  2209. /* WM1+ latency values in 0.5us units */
  2210. if (level > 0)
  2211. latency *= 5;
  2212. DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
  2213. name, level, wm[level],
  2214. latency / 10, latency % 10);
  2215. }
  2216. }
  2217. static void intel_setup_wm_latency(struct drm_device *dev)
  2218. {
  2219. struct drm_i915_private *dev_priv = dev->dev_private;
  2220. intel_read_wm_latency(dev, dev_priv->wm.pri_latency);
  2221. memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
  2222. sizeof(dev_priv->wm.pri_latency));
  2223. memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
  2224. sizeof(dev_priv->wm.pri_latency));
  2225. intel_fixup_spr_wm_latency(dev, dev_priv->wm.spr_latency);
  2226. intel_fixup_cur_wm_latency(dev, dev_priv->wm.cur_latency);
  2227. intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
  2228. intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
  2229. intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
  2230. }
  2231. static void hsw_compute_wm_parameters(struct drm_crtc *crtc,
  2232. struct hsw_pipe_wm_parameters *p,
  2233. struct intel_wm_config *config)
  2234. {
  2235. struct drm_device *dev = crtc->dev;
  2236. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2237. enum pipe pipe = intel_crtc->pipe;
  2238. struct drm_plane *plane;
  2239. p->active = intel_crtc_active(crtc);
  2240. if (p->active) {
  2241. p->pipe_htotal = intel_crtc->config.adjusted_mode.htotal;
  2242. p->pixel_rate = ilk_pipe_pixel_rate(dev, crtc);
  2243. p->pri.bytes_per_pixel = crtc->fb->bits_per_pixel / 8;
  2244. p->cur.bytes_per_pixel = 4;
  2245. p->pri.horiz_pixels = intel_crtc->config.pipe_src_w;
  2246. p->cur.horiz_pixels = 64;
  2247. /* TODO: for now, assume primary and cursor planes are always enabled. */
  2248. p->pri.enabled = true;
  2249. p->cur.enabled = true;
  2250. }
  2251. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
  2252. config->num_pipes_active += intel_crtc_active(crtc);
  2253. list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
  2254. struct intel_plane *intel_plane = to_intel_plane(plane);
  2255. if (intel_plane->pipe == pipe)
  2256. p->spr = intel_plane->wm;
  2257. config->sprites_enabled |= intel_plane->wm.enabled;
  2258. config->sprites_scaled |= intel_plane->wm.scaled;
  2259. }
  2260. }
  2261. /* Compute new watermarks for the pipe */
  2262. static bool intel_compute_pipe_wm(struct drm_crtc *crtc,
  2263. const struct hsw_pipe_wm_parameters *params,
  2264. struct intel_pipe_wm *pipe_wm)
  2265. {
  2266. struct drm_device *dev = crtc->dev;
  2267. struct drm_i915_private *dev_priv = dev->dev_private;
  2268. int level, max_level = ilk_wm_max_level(dev);
  2269. /* LP0 watermark maximums depend on this pipe alone */
  2270. struct intel_wm_config config = {
  2271. .num_pipes_active = 1,
  2272. .sprites_enabled = params->spr.enabled,
  2273. .sprites_scaled = params->spr.scaled,
  2274. };
  2275. struct hsw_wm_maximums max;
  2276. /* LP0 watermarks always use 1/2 DDB partitioning */
  2277. ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);
  2278. for (level = 0; level <= max_level; level++)
  2279. ilk_compute_wm_level(dev_priv, level, params,
  2280. &pipe_wm->wm[level]);
  2281. pipe_wm->linetime = hsw_compute_linetime_wm(dev, crtc);
  2282. /* At least LP0 must be valid */
  2283. return ilk_validate_wm_level(0, &max, &pipe_wm->wm[0]);
  2284. }
  2285. /*
  2286. * Merge the watermarks from all active pipes for a specific level.
  2287. */
  2288. static void ilk_merge_wm_level(struct drm_device *dev,
  2289. int level,
  2290. struct intel_wm_level *ret_wm)
  2291. {
  2292. const struct intel_crtc *intel_crtc;
  2293. list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list, base.head) {
  2294. const struct intel_wm_level *wm =
  2295. &intel_crtc->wm.active.wm[level];
  2296. if (!wm->enable)
  2297. return;
  2298. ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
  2299. ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
  2300. ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
  2301. ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
  2302. }
  2303. ret_wm->enable = true;
  2304. }
  2305. /*
  2306. * Merge all low power watermarks for all active pipes.
  2307. */
  2308. static void ilk_wm_merge(struct drm_device *dev,
  2309. const struct hsw_wm_maximums *max,
  2310. struct intel_pipe_wm *merged)
  2311. {
  2312. int level, max_level = ilk_wm_max_level(dev);
  2313. merged->fbc_wm_enabled = true;
  2314. /* merge each WM1+ level */
  2315. for (level = 1; level <= max_level; level++) {
  2316. struct intel_wm_level *wm = &merged->wm[level];
  2317. ilk_merge_wm_level(dev, level, wm);
  2318. if (!ilk_validate_wm_level(level, max, wm))
  2319. break;
  2320. /*
  2321. * The spec says it is preferred to disable
  2322. * FBC WMs instead of disabling a WM level.
  2323. */
  2324. if (wm->fbc_val > max->fbc) {
  2325. merged->fbc_wm_enabled = false;
  2326. wm->fbc_val = 0;
  2327. }
  2328. }
  2329. }
  2330. static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
  2331. {
  2332. /* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
  2333. return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
  2334. }
  2335. static void hsw_compute_wm_results(struct drm_device *dev,
  2336. const struct intel_pipe_wm *merged,
  2337. enum intel_ddb_partitioning partitioning,
  2338. struct hsw_wm_values *results)
  2339. {
  2340. struct intel_crtc *intel_crtc;
  2341. int level, wm_lp;
  2342. results->enable_fbc_wm = merged->fbc_wm_enabled;
  2343. results->partitioning = partitioning;
  2344. /* LP1+ register values */
  2345. for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
  2346. const struct intel_wm_level *r;
  2347. level = ilk_wm_lp_to_level(wm_lp, merged);
  2348. r = &merged->wm[level];
  2349. if (!r->enable)
  2350. break;
  2351. results->wm_lp[wm_lp - 1] = WM3_LP_EN |
  2352. ((level * 2) << WM1_LP_LATENCY_SHIFT) |
  2353. (r->pri_val << WM1_LP_SR_SHIFT) |
  2354. r->cur_val;
  2355. if (INTEL_INFO(dev)->gen >= 8)
  2356. results->wm_lp[wm_lp - 1] |=
  2357. r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
  2358. else
  2359. results->wm_lp[wm_lp - 1] |=
  2360. r->fbc_val << WM1_LP_FBC_SHIFT;
  2361. results->wm_lp_spr[wm_lp - 1] = r->spr_val;
  2362. }
  2363. /* LP0 register values */
  2364. list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list, base.head) {
  2365. enum pipe pipe = intel_crtc->pipe;
  2366. const struct intel_wm_level *r =
  2367. &intel_crtc->wm.active.wm[0];
  2368. if (WARN_ON(!r->enable))
  2369. continue;
  2370. results->wm_linetime[pipe] = intel_crtc->wm.active.linetime;
  2371. results->wm_pipe[pipe] =
  2372. (r->pri_val << WM0_PIPE_PLANE_SHIFT) |
  2373. (r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
  2374. r->cur_val;
  2375. }
  2376. }
  2377. /* Find the result with the highest level enabled. Check for enable_fbc_wm in
  2378. * case both are at the same level. Prefer r1 in case they're the same. */
  2379. static struct intel_pipe_wm *hsw_find_best_result(struct drm_device *dev,
  2380. struct intel_pipe_wm *r1,
  2381. struct intel_pipe_wm *r2)
  2382. {
  2383. int level, max_level = ilk_wm_max_level(dev);
  2384. int level1 = 0, level2 = 0;
  2385. for (level = 1; level <= max_level; level++) {
  2386. if (r1->wm[level].enable)
  2387. level1 = level;
  2388. if (r2->wm[level].enable)
  2389. level2 = level;
  2390. }
  2391. if (level1 == level2) {
  2392. if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
  2393. return r2;
  2394. else
  2395. return r1;
  2396. } else if (level1 > level2) {
  2397. return r1;
  2398. } else {
  2399. return r2;
  2400. }
  2401. }
  2402. /* dirty bits used to track which watermarks need changes */
  2403. #define WM_DIRTY_PIPE(pipe) (1 << (pipe))
  2404. #define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
  2405. #define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
  2406. #define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
  2407. #define WM_DIRTY_FBC (1 << 24)
  2408. #define WM_DIRTY_DDB (1 << 25)
  2409. static unsigned int ilk_compute_wm_dirty(struct drm_device *dev,
  2410. const struct hsw_wm_values *old,
  2411. const struct hsw_wm_values *new)
  2412. {
  2413. unsigned int dirty = 0;
  2414. enum pipe pipe;
  2415. int wm_lp;
  2416. for_each_pipe(pipe) {
  2417. if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
  2418. dirty |= WM_DIRTY_LINETIME(pipe);
  2419. /* Must disable LP1+ watermarks too */
  2420. dirty |= WM_DIRTY_LP_ALL;
  2421. }
  2422. if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
  2423. dirty |= WM_DIRTY_PIPE(pipe);
  2424. /* Must disable LP1+ watermarks too */
  2425. dirty |= WM_DIRTY_LP_ALL;
  2426. }
  2427. }
  2428. if (old->enable_fbc_wm != new->enable_fbc_wm) {
  2429. dirty |= WM_DIRTY_FBC;
  2430. /* Must disable LP1+ watermarks too */
  2431. dirty |= WM_DIRTY_LP_ALL;
  2432. }
  2433. if (old->partitioning != new->partitioning) {
  2434. dirty |= WM_DIRTY_DDB;
  2435. /* Must disable LP1+ watermarks too */
  2436. dirty |= WM_DIRTY_LP_ALL;
  2437. }
  2438. /* LP1+ watermarks already deemed dirty, no need to continue */
  2439. if (dirty & WM_DIRTY_LP_ALL)
  2440. return dirty;
  2441. /* Find the lowest numbered LP1+ watermark in need of an update... */
  2442. for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
  2443. if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
  2444. old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
  2445. break;
  2446. }
  2447. /* ...and mark it and all higher numbered LP1+ watermarks as dirty */
  2448. for (; wm_lp <= 3; wm_lp++)
  2449. dirty |= WM_DIRTY_LP(wm_lp);
  2450. return dirty;
  2451. }
  2452. /*
  2453. * The spec says we shouldn't write when we don't need, because every write
  2454. * causes WMs to be re-evaluated, expending some power.
  2455. */
  2456. static void hsw_write_wm_values(struct drm_i915_private *dev_priv,
  2457. struct hsw_wm_values *results)
  2458. {
  2459. struct hsw_wm_values *previous = &dev_priv->wm.hw;
  2460. unsigned int dirty;
  2461. uint32_t val;
  2462. dirty = ilk_compute_wm_dirty(dev_priv->dev, previous, results);
  2463. if (!dirty)
  2464. return;
  2465. if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != 0)
  2466. I915_WRITE(WM3_LP_ILK, 0);
  2467. if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != 0)
  2468. I915_WRITE(WM2_LP_ILK, 0);
  2469. if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != 0)
  2470. I915_WRITE(WM1_LP_ILK, 0);
  2471. if (dirty & WM_DIRTY_PIPE(PIPE_A))
  2472. I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
  2473. if (dirty & WM_DIRTY_PIPE(PIPE_B))
  2474. I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
  2475. if (dirty & WM_DIRTY_PIPE(PIPE_C))
  2476. I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);
  2477. if (dirty & WM_DIRTY_LINETIME(PIPE_A))
  2478. I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
  2479. if (dirty & WM_DIRTY_LINETIME(PIPE_B))
  2480. I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
  2481. if (dirty & WM_DIRTY_LINETIME(PIPE_C))
  2482. I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);
  2483. if (dirty & WM_DIRTY_DDB) {
  2484. val = I915_READ(WM_MISC);
  2485. if (results->partitioning == INTEL_DDB_PART_1_2)
  2486. val &= ~WM_MISC_DATA_PARTITION_5_6;
  2487. else
  2488. val |= WM_MISC_DATA_PARTITION_5_6;
  2489. I915_WRITE(WM_MISC, val);
  2490. }
  2491. if (dirty & WM_DIRTY_FBC) {
  2492. val = I915_READ(DISP_ARB_CTL);
  2493. if (results->enable_fbc_wm)
  2494. val &= ~DISP_FBC_WM_DIS;
  2495. else
  2496. val |= DISP_FBC_WM_DIS;
  2497. I915_WRITE(DISP_ARB_CTL, val);
  2498. }
  2499. if (dirty & WM_DIRTY_LP(1) && previous->wm_lp_spr[0] != results->wm_lp_spr[0])
  2500. I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);
  2501. if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
  2502. I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
  2503. if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
  2504. I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
  2505. if (dirty & WM_DIRTY_LP(1) && results->wm_lp[0] != 0)
  2506. I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
  2507. if (dirty & WM_DIRTY_LP(2) && results->wm_lp[1] != 0)
  2508. I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
  2509. if (dirty & WM_DIRTY_LP(3) && results->wm_lp[2] != 0)
  2510. I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
  2511. dev_priv->wm.hw = *results;
  2512. }
  2513. static void haswell_update_wm(struct drm_crtc *crtc)
  2514. {
  2515. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2516. struct drm_device *dev = crtc->dev;
  2517. struct drm_i915_private *dev_priv = dev->dev_private;
  2518. struct hsw_wm_maximums max;
  2519. struct hsw_pipe_wm_parameters params = {};
  2520. struct hsw_wm_values results = {};
  2521. enum intel_ddb_partitioning partitioning;
  2522. struct intel_pipe_wm pipe_wm = {};
  2523. struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
  2524. struct intel_wm_config config = {};
  2525. hsw_compute_wm_parameters(crtc, &params, &config);
  2526. intel_compute_pipe_wm(crtc, &params, &pipe_wm);
  2527. if (!memcmp(&intel_crtc->wm.active, &pipe_wm, sizeof(pipe_wm)))
  2528. return;
  2529. intel_crtc->wm.active = pipe_wm;
  2530. ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
  2531. ilk_wm_merge(dev, &max, &lp_wm_1_2);
  2532. /* 5/6 split only in single pipe config on IVB+ */
  2533. if (INTEL_INFO(dev)->gen >= 7 &&
  2534. config.num_pipes_active == 1 && config.sprites_enabled) {
  2535. ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
  2536. ilk_wm_merge(dev, &max, &lp_wm_5_6);
  2537. best_lp_wm = hsw_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
  2538. } else {
  2539. best_lp_wm = &lp_wm_1_2;
  2540. }
  2541. partitioning = (best_lp_wm == &lp_wm_1_2) ?
  2542. INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
  2543. hsw_compute_wm_results(dev, best_lp_wm, partitioning, &results);
  2544. hsw_write_wm_values(dev_priv, &results);
  2545. }
  2546. static void haswell_update_sprite_wm(struct drm_plane *plane,
  2547. struct drm_crtc *crtc,
  2548. uint32_t sprite_width, int pixel_size,
  2549. bool enabled, bool scaled)
  2550. {
  2551. struct intel_plane *intel_plane = to_intel_plane(plane);
  2552. intel_plane->wm.enabled = enabled;
  2553. intel_plane->wm.scaled = scaled;
  2554. intel_plane->wm.horiz_pixels = sprite_width;
  2555. intel_plane->wm.bytes_per_pixel = pixel_size;
  2556. haswell_update_wm(crtc);
  2557. }
  2558. static bool
  2559. sandybridge_compute_sprite_wm(struct drm_device *dev, int plane,
  2560. uint32_t sprite_width, int pixel_size,
  2561. const struct intel_watermark_params *display,
  2562. int display_latency_ns, int *sprite_wm)
  2563. {
  2564. struct drm_crtc *crtc;
  2565. int clock;
  2566. int entries, tlb_miss;
  2567. crtc = intel_get_crtc_for_plane(dev, plane);
  2568. if (!intel_crtc_active(crtc)) {
  2569. *sprite_wm = display->guard_size;
  2570. return false;
  2571. }
  2572. clock = to_intel_crtc(crtc)->config.adjusted_mode.crtc_clock;
  2573. /* Use the small buffer method to calculate the sprite watermark */
  2574. entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
  2575. tlb_miss = display->fifo_size*display->cacheline_size -
  2576. sprite_width * 8;
  2577. if (tlb_miss > 0)
  2578. entries += tlb_miss;
  2579. entries = DIV_ROUND_UP(entries, display->cacheline_size);
  2580. *sprite_wm = entries + display->guard_size;
  2581. if (*sprite_wm > (int)display->max_wm)
  2582. *sprite_wm = display->max_wm;
  2583. return true;
  2584. }
  2585. static bool
  2586. sandybridge_compute_sprite_srwm(struct drm_device *dev, int plane,
  2587. uint32_t sprite_width, int pixel_size,
  2588. const struct intel_watermark_params *display,
  2589. int latency_ns, int *sprite_wm)
  2590. {
  2591. struct drm_crtc *crtc;
  2592. unsigned long line_time_us;
  2593. int clock;
  2594. int line_count, line_size;
  2595. int small, large;
  2596. int entries;
  2597. if (!latency_ns) {
  2598. *sprite_wm = 0;
  2599. return false;
  2600. }
  2601. crtc = intel_get_crtc_for_plane(dev, plane);
  2602. clock = to_intel_crtc(crtc)->config.adjusted_mode.crtc_clock;
  2603. if (!clock) {
  2604. *sprite_wm = 0;
  2605. return false;
  2606. }
  2607. line_time_us = (sprite_width * 1000) / clock;
  2608. if (!line_time_us) {
  2609. *sprite_wm = 0;
  2610. return false;
  2611. }
  2612. line_count = (latency_ns / line_time_us + 1000) / 1000;
  2613. line_size = sprite_width * pixel_size;
  2614. /* Use the minimum of the small and large buffer method for primary */
  2615. small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
  2616. large = line_count * line_size;
  2617. entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
  2618. *sprite_wm = entries + display->guard_size;
  2619. return *sprite_wm > 0x3ff ? false : true;
  2620. }
  2621. static void sandybridge_update_sprite_wm(struct drm_plane *plane,
  2622. struct drm_crtc *crtc,
  2623. uint32_t sprite_width, int pixel_size,
  2624. bool enabled, bool scaled)
  2625. {
  2626. struct drm_device *dev = plane->dev;
  2627. struct drm_i915_private *dev_priv = dev->dev_private;
  2628. int pipe = to_intel_plane(plane)->pipe;
  2629. int latency = dev_priv->wm.spr_latency[0] * 100; /* In unit 0.1us */
  2630. u32 val;
  2631. int sprite_wm, reg;
  2632. int ret;
  2633. if (!enabled)
  2634. return;
  2635. switch (pipe) {
  2636. case 0:
  2637. reg = WM0_PIPEA_ILK;
  2638. break;
  2639. case 1:
  2640. reg = WM0_PIPEB_ILK;
  2641. break;
  2642. case 2:
  2643. reg = WM0_PIPEC_IVB;
  2644. break;
  2645. default:
  2646. return; /* bad pipe */
  2647. }
  2648. ret = sandybridge_compute_sprite_wm(dev, pipe, sprite_width, pixel_size,
  2649. &sandybridge_display_wm_info,
  2650. latency, &sprite_wm);
  2651. if (!ret) {
  2652. DRM_DEBUG_KMS("failed to compute sprite wm for pipe %c\n",
  2653. pipe_name(pipe));
  2654. return;
  2655. }
  2656. val = I915_READ(reg);
  2657. val &= ~WM0_PIPE_SPRITE_MASK;
  2658. I915_WRITE(reg, val | (sprite_wm << WM0_PIPE_SPRITE_SHIFT));
  2659. DRM_DEBUG_KMS("sprite watermarks For pipe %c - %d\n", pipe_name(pipe), sprite_wm);
  2660. ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
  2661. pixel_size,
  2662. &sandybridge_display_srwm_info,
  2663. dev_priv->wm.spr_latency[1] * 500,
  2664. &sprite_wm);
  2665. if (!ret) {
  2666. DRM_DEBUG_KMS("failed to compute sprite lp1 wm on pipe %c\n",
  2667. pipe_name(pipe));
  2668. return;
  2669. }
  2670. I915_WRITE(WM1S_LP_ILK, sprite_wm);
  2671. /* Only IVB has two more LP watermarks for sprite */
  2672. if (!IS_IVYBRIDGE(dev))
  2673. return;
  2674. ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
  2675. pixel_size,
  2676. &sandybridge_display_srwm_info,
  2677. dev_priv->wm.spr_latency[2] * 500,
  2678. &sprite_wm);
  2679. if (!ret) {
  2680. DRM_DEBUG_KMS("failed to compute sprite lp2 wm on pipe %c\n",
  2681. pipe_name(pipe));
  2682. return;
  2683. }
  2684. I915_WRITE(WM2S_LP_IVB, sprite_wm);
  2685. ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
  2686. pixel_size,
  2687. &sandybridge_display_srwm_info,
  2688. dev_priv->wm.spr_latency[3] * 500,
  2689. &sprite_wm);
  2690. if (!ret) {
  2691. DRM_DEBUG_KMS("failed to compute sprite lp3 wm on pipe %c\n",
  2692. pipe_name(pipe));
  2693. return;
  2694. }
  2695. I915_WRITE(WM3S_LP_IVB, sprite_wm);
  2696. }
  2697. static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
  2698. {
  2699. struct drm_device *dev = crtc->dev;
  2700. struct drm_i915_private *dev_priv = dev->dev_private;
  2701. struct hsw_wm_values *hw = &dev_priv->wm.hw;
  2702. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2703. struct intel_pipe_wm *active = &intel_crtc->wm.active;
  2704. enum pipe pipe = intel_crtc->pipe;
  2705. static const unsigned int wm0_pipe_reg[] = {
  2706. [PIPE_A] = WM0_PIPEA_ILK,
  2707. [PIPE_B] = WM0_PIPEB_ILK,
  2708. [PIPE_C] = WM0_PIPEC_IVB,
  2709. };
  2710. hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
  2711. hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
  2712. if (intel_crtc_active(crtc)) {
  2713. u32 tmp = hw->wm_pipe[pipe];
  2714. /*
  2715. * For active pipes LP0 watermark is marked as
  2716. * enabled, and LP1+ watermaks as disabled since
  2717. * we can't really reverse compute them in case
  2718. * multiple pipes are active.
  2719. */
  2720. active->wm[0].enable = true;
  2721. active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
  2722. active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
  2723. active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
  2724. active->linetime = hw->wm_linetime[pipe];
  2725. } else {
  2726. int level, max_level = ilk_wm_max_level(dev);
  2727. /*
  2728. * For inactive pipes, all watermark levels
  2729. * should be marked as enabled but zeroed,
  2730. * which is what we'd compute them to.
  2731. */
  2732. for (level = 0; level <= max_level; level++)
  2733. active->wm[level].enable = true;
  2734. }
  2735. }
  2736. void ilk_wm_get_hw_state(struct drm_device *dev)
  2737. {
  2738. struct drm_i915_private *dev_priv = dev->dev_private;
  2739. struct hsw_wm_values *hw = &dev_priv->wm.hw;
  2740. struct drm_crtc *crtc;
  2741. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
  2742. ilk_pipe_wm_get_hw_state(crtc);
  2743. hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
  2744. hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
  2745. hw->wm_lp[2] = I915_READ(WM3_LP_ILK);
  2746. hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
  2747. hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
  2748. hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
  2749. hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
  2750. INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
  2751. hw->enable_fbc_wm =
  2752. !(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
  2753. }
  2754. /**
  2755. * intel_update_watermarks - update FIFO watermark values based on current modes
  2756. *
  2757. * Calculate watermark values for the various WM regs based on current mode
  2758. * and plane configuration.
  2759. *
  2760. * There are several cases to deal with here:
  2761. * - normal (i.e. non-self-refresh)
  2762. * - self-refresh (SR) mode
  2763. * - lines are large relative to FIFO size (buffer can hold up to 2)
  2764. * - lines are small relative to FIFO size (buffer can hold more than 2
  2765. * lines), so need to account for TLB latency
  2766. *
  2767. * The normal calculation is:
  2768. * watermark = dotclock * bytes per pixel * latency
  2769. * where latency is platform & configuration dependent (we assume pessimal
  2770. * values here).
  2771. *
  2772. * The SR calculation is:
  2773. * watermark = (trunc(latency/line time)+1) * surface width *
  2774. * bytes per pixel
  2775. * where
  2776. * line time = htotal / dotclock
  2777. * surface width = hdisplay for normal plane and 64 for cursor
  2778. * and latency is assumed to be high, as above.
  2779. *
  2780. * The final value programmed to the register should always be rounded up,
  2781. * and include an extra 2 entries to account for clock crossings.
  2782. *
  2783. * We don't use the sprite, so we can ignore that. And on Crestline we have
  2784. * to set the non-SR watermarks to 8.
  2785. */
  2786. void intel_update_watermarks(struct drm_crtc *crtc)
  2787. {
  2788. struct drm_i915_private *dev_priv = crtc->dev->dev_private;
  2789. if (dev_priv->display.update_wm)
  2790. dev_priv->display.update_wm(crtc);
  2791. }
  2792. void intel_update_sprite_watermarks(struct drm_plane *plane,
  2793. struct drm_crtc *crtc,
  2794. uint32_t sprite_width, int pixel_size,
  2795. bool enabled, bool scaled)
  2796. {
  2797. struct drm_i915_private *dev_priv = plane->dev->dev_private;
  2798. if (dev_priv->display.update_sprite_wm)
  2799. dev_priv->display.update_sprite_wm(plane, crtc, sprite_width,
  2800. pixel_size, enabled, scaled);
  2801. }
  2802. static struct drm_i915_gem_object *
  2803. intel_alloc_context_page(struct drm_device *dev)
  2804. {
  2805. struct drm_i915_gem_object *ctx;
  2806. int ret;
  2807. WARN_ON(!mutex_is_locked(&dev->struct_mutex));
  2808. ctx = i915_gem_alloc_object(dev, 4096);
  2809. if (!ctx) {
  2810. DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
  2811. return NULL;
  2812. }
  2813. ret = i915_gem_obj_ggtt_pin(ctx, 4096, true, false);
  2814. if (ret) {
  2815. DRM_ERROR("failed to pin power context: %d\n", ret);
  2816. goto err_unref;
  2817. }
  2818. ret = i915_gem_object_set_to_gtt_domain(ctx, 1);
  2819. if (ret) {
  2820. DRM_ERROR("failed to set-domain on power context: %d\n", ret);
  2821. goto err_unpin;
  2822. }
  2823. return ctx;
  2824. err_unpin:
  2825. i915_gem_object_unpin(ctx);
  2826. err_unref:
  2827. drm_gem_object_unreference(&ctx->base);
  2828. return NULL;
  2829. }
  2830. /**
  2831. * Lock protecting IPS related data structures
  2832. */
  2833. DEFINE_SPINLOCK(mchdev_lock);
  2834. /* Global for IPS driver to get at the current i915 device. Protected by
  2835. * mchdev_lock. */
  2836. static struct drm_i915_private *i915_mch_dev;
  2837. bool ironlake_set_drps(struct drm_device *dev, u8 val)
  2838. {
  2839. struct drm_i915_private *dev_priv = dev->dev_private;
  2840. u16 rgvswctl;
  2841. assert_spin_locked(&mchdev_lock);
  2842. rgvswctl = I915_READ16(MEMSWCTL);
  2843. if (rgvswctl & MEMCTL_CMD_STS) {
  2844. DRM_DEBUG("gpu busy, RCS change rejected\n");
  2845. return false; /* still busy with another command */
  2846. }
  2847. rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
  2848. (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
  2849. I915_WRITE16(MEMSWCTL, rgvswctl);
  2850. POSTING_READ16(MEMSWCTL);
  2851. rgvswctl |= MEMCTL_CMD_STS;
  2852. I915_WRITE16(MEMSWCTL, rgvswctl);
  2853. return true;
  2854. }
  2855. static void ironlake_enable_drps(struct drm_device *dev)
  2856. {
  2857. struct drm_i915_private *dev_priv = dev->dev_private;
  2858. u32 rgvmodectl = I915_READ(MEMMODECTL);
  2859. u8 fmax, fmin, fstart, vstart;
  2860. spin_lock_irq(&mchdev_lock);
  2861. /* Enable temp reporting */
  2862. I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
  2863. I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
  2864. /* 100ms RC evaluation intervals */
  2865. I915_WRITE(RCUPEI, 100000);
  2866. I915_WRITE(RCDNEI, 100000);
  2867. /* Set max/min thresholds to 90ms and 80ms respectively */
  2868. I915_WRITE(RCBMAXAVG, 90000);
  2869. I915_WRITE(RCBMINAVG, 80000);
  2870. I915_WRITE(MEMIHYST, 1);
  2871. /* Set up min, max, and cur for interrupt handling */
  2872. fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
  2873. fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
  2874. fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
  2875. MEMMODE_FSTART_SHIFT;
  2876. vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
  2877. PXVFREQ_PX_SHIFT;
  2878. dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
  2879. dev_priv->ips.fstart = fstart;
  2880. dev_priv->ips.max_delay = fstart;
  2881. dev_priv->ips.min_delay = fmin;
  2882. dev_priv->ips.cur_delay = fstart;
  2883. DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
  2884. fmax, fmin, fstart);
  2885. I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
  2886. /*
  2887. * Interrupts will be enabled in ironlake_irq_postinstall
  2888. */
  2889. I915_WRITE(VIDSTART, vstart);
  2890. POSTING_READ(VIDSTART);
  2891. rgvmodectl |= MEMMODE_SWMODE_EN;
  2892. I915_WRITE(MEMMODECTL, rgvmodectl);
  2893. if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
  2894. DRM_ERROR("stuck trying to change perf mode\n");
  2895. mdelay(1);
  2896. ironlake_set_drps(dev, fstart);
  2897. dev_priv->ips.last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
  2898. I915_READ(0x112e0);
  2899. dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
  2900. dev_priv->ips.last_count2 = I915_READ(0x112f4);
  2901. getrawmonotonic(&dev_priv->ips.last_time2);
  2902. spin_unlock_irq(&mchdev_lock);
  2903. }
  2904. static void ironlake_disable_drps(struct drm_device *dev)
  2905. {
  2906. struct drm_i915_private *dev_priv = dev->dev_private;
  2907. u16 rgvswctl;
  2908. spin_lock_irq(&mchdev_lock);
  2909. rgvswctl = I915_READ16(MEMSWCTL);
  2910. /* Ack interrupts, disable EFC interrupt */
  2911. I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
  2912. I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
  2913. I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
  2914. I915_WRITE(DEIIR, DE_PCU_EVENT);
  2915. I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
  2916. /* Go back to the starting frequency */
  2917. ironlake_set_drps(dev, dev_priv->ips.fstart);
  2918. mdelay(1);
  2919. rgvswctl |= MEMCTL_CMD_STS;
  2920. I915_WRITE(MEMSWCTL, rgvswctl);
  2921. mdelay(1);
  2922. spin_unlock_irq(&mchdev_lock);
  2923. }
  2924. /* There's a funny hw issue where the hw returns all 0 when reading from
  2925. * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
  2926. * ourselves, instead of doing a rmw cycle (which might result in us clearing
  2927. * all limits and the gpu stuck at whatever frequency it is at atm).
  2928. */
  2929. static u32 gen6_rps_limits(struct drm_i915_private *dev_priv, u8 *val)
  2930. {
  2931. u32 limits;
  2932. limits = 0;
  2933. if (*val >= dev_priv->rps.max_delay)
  2934. *val = dev_priv->rps.max_delay;
  2935. limits |= dev_priv->rps.max_delay << 24;
  2936. /* Only set the down limit when we've reached the lowest level to avoid
  2937. * getting more interrupts, otherwise leave this clear. This prevents a
  2938. * race in the hw when coming out of rc6: There's a tiny window where
  2939. * the hw runs at the minimal clock before selecting the desired
  2940. * frequency, if the down threshold expires in that window we will not
  2941. * receive a down interrupt. */
  2942. if (*val <= dev_priv->rps.min_delay) {
  2943. *val = dev_priv->rps.min_delay;
  2944. limits |= dev_priv->rps.min_delay << 16;
  2945. }
  2946. return limits;
  2947. }
  2948. static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
  2949. {
  2950. int new_power;
  2951. new_power = dev_priv->rps.power;
  2952. switch (dev_priv->rps.power) {
  2953. case LOW_POWER:
  2954. if (val > dev_priv->rps.rpe_delay + 1 && val > dev_priv->rps.cur_delay)
  2955. new_power = BETWEEN;
  2956. break;
  2957. case BETWEEN:
  2958. if (val <= dev_priv->rps.rpe_delay && val < dev_priv->rps.cur_delay)
  2959. new_power = LOW_POWER;
  2960. else if (val >= dev_priv->rps.rp0_delay && val > dev_priv->rps.cur_delay)
  2961. new_power = HIGH_POWER;
  2962. break;
  2963. case HIGH_POWER:
  2964. if (val < (dev_priv->rps.rp1_delay + dev_priv->rps.rp0_delay) >> 1 && val < dev_priv->rps.cur_delay)
  2965. new_power = BETWEEN;
  2966. break;
  2967. }
  2968. /* Max/min bins are special */
  2969. if (val == dev_priv->rps.min_delay)
  2970. new_power = LOW_POWER;
  2971. if (val == dev_priv->rps.max_delay)
  2972. new_power = HIGH_POWER;
  2973. if (new_power == dev_priv->rps.power)
  2974. return;
  2975. /* Note the units here are not exactly 1us, but 1280ns. */
  2976. switch (new_power) {
  2977. case LOW_POWER:
  2978. /* Upclock if more than 95% busy over 16ms */
  2979. I915_WRITE(GEN6_RP_UP_EI, 12500);
  2980. I915_WRITE(GEN6_RP_UP_THRESHOLD, 11800);
  2981. /* Downclock if less than 85% busy over 32ms */
  2982. I915_WRITE(GEN6_RP_DOWN_EI, 25000);
  2983. I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 21250);
  2984. I915_WRITE(GEN6_RP_CONTROL,
  2985. GEN6_RP_MEDIA_TURBO |
  2986. GEN6_RP_MEDIA_HW_NORMAL_MODE |
  2987. GEN6_RP_MEDIA_IS_GFX |
  2988. GEN6_RP_ENABLE |
  2989. GEN6_RP_UP_BUSY_AVG |
  2990. GEN6_RP_DOWN_IDLE_AVG);
  2991. break;
  2992. case BETWEEN:
  2993. /* Upclock if more than 90% busy over 13ms */
  2994. I915_WRITE(GEN6_RP_UP_EI, 10250);
  2995. I915_WRITE(GEN6_RP_UP_THRESHOLD, 9225);
  2996. /* Downclock if less than 75% busy over 32ms */
  2997. I915_WRITE(GEN6_RP_DOWN_EI, 25000);
  2998. I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 18750);
  2999. I915_WRITE(GEN6_RP_CONTROL,
  3000. GEN6_RP_MEDIA_TURBO |
  3001. GEN6_RP_MEDIA_HW_NORMAL_MODE |
  3002. GEN6_RP_MEDIA_IS_GFX |
  3003. GEN6_RP_ENABLE |
  3004. GEN6_RP_UP_BUSY_AVG |
  3005. GEN6_RP_DOWN_IDLE_AVG);
  3006. break;
  3007. case HIGH_POWER:
  3008. /* Upclock if more than 85% busy over 10ms */
  3009. I915_WRITE(GEN6_RP_UP_EI, 8000);
  3010. I915_WRITE(GEN6_RP_UP_THRESHOLD, 6800);
  3011. /* Downclock if less than 60% busy over 32ms */
  3012. I915_WRITE(GEN6_RP_DOWN_EI, 25000);
  3013. I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 15000);
  3014. I915_WRITE(GEN6_RP_CONTROL,
  3015. GEN6_RP_MEDIA_TURBO |
  3016. GEN6_RP_MEDIA_HW_NORMAL_MODE |
  3017. GEN6_RP_MEDIA_IS_GFX |
  3018. GEN6_RP_ENABLE |
  3019. GEN6_RP_UP_BUSY_AVG |
  3020. GEN6_RP_DOWN_IDLE_AVG);
  3021. break;
  3022. }
  3023. dev_priv->rps.power = new_power;
  3024. dev_priv->rps.last_adj = 0;
  3025. }
  3026. void gen6_set_rps(struct drm_device *dev, u8 val)
  3027. {
  3028. struct drm_i915_private *dev_priv = dev->dev_private;
  3029. u32 limits = gen6_rps_limits(dev_priv, &val);
  3030. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  3031. WARN_ON(val > dev_priv->rps.max_delay);
  3032. WARN_ON(val < dev_priv->rps.min_delay);
  3033. if (val == dev_priv->rps.cur_delay)
  3034. return;
  3035. gen6_set_rps_thresholds(dev_priv, val);
  3036. if (IS_HASWELL(dev))
  3037. I915_WRITE(GEN6_RPNSWREQ,
  3038. HSW_FREQUENCY(val));
  3039. else
  3040. I915_WRITE(GEN6_RPNSWREQ,
  3041. GEN6_FREQUENCY(val) |
  3042. GEN6_OFFSET(0) |
  3043. GEN6_AGGRESSIVE_TURBO);
  3044. /* Make sure we continue to get interrupts
  3045. * until we hit the minimum or maximum frequencies.
  3046. */
  3047. I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, limits);
  3048. POSTING_READ(GEN6_RPNSWREQ);
  3049. dev_priv->rps.cur_delay = val;
  3050. trace_intel_gpu_freq_change(val * 50);
  3051. }
  3052. void gen6_rps_idle(struct drm_i915_private *dev_priv)
  3053. {
  3054. mutex_lock(&dev_priv->rps.hw_lock);
  3055. if (dev_priv->rps.enabled) {
  3056. if (dev_priv->info->is_valleyview)
  3057. valleyview_set_rps(dev_priv->dev, dev_priv->rps.min_delay);
  3058. else
  3059. gen6_set_rps(dev_priv->dev, dev_priv->rps.min_delay);
  3060. dev_priv->rps.last_adj = 0;
  3061. }
  3062. mutex_unlock(&dev_priv->rps.hw_lock);
  3063. }
  3064. void gen6_rps_boost(struct drm_i915_private *dev_priv)
  3065. {
  3066. mutex_lock(&dev_priv->rps.hw_lock);
  3067. if (dev_priv->rps.enabled) {
  3068. if (dev_priv->info->is_valleyview)
  3069. valleyview_set_rps(dev_priv->dev, dev_priv->rps.max_delay);
  3070. else
  3071. gen6_set_rps(dev_priv->dev, dev_priv->rps.max_delay);
  3072. dev_priv->rps.last_adj = 0;
  3073. }
  3074. mutex_unlock(&dev_priv->rps.hw_lock);
  3075. }
  3076. /*
  3077. * Wait until the previous freq change has completed,
  3078. * or the timeout elapsed, and then update our notion
  3079. * of the current GPU frequency.
  3080. */
  3081. static void vlv_update_rps_cur_delay(struct drm_i915_private *dev_priv)
  3082. {
  3083. u32 pval;
  3084. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  3085. if (wait_for(((pval = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS)) & GENFREQSTATUS) == 0, 10))
  3086. DRM_DEBUG_DRIVER("timed out waiting for Punit\n");
  3087. pval >>= 8;
  3088. if (pval != dev_priv->rps.cur_delay)
  3089. DRM_DEBUG_DRIVER("Punit overrode GPU freq: %d MHz (%u) requested, but got %d Mhz (%u)\n",
  3090. vlv_gpu_freq(dev_priv->mem_freq, dev_priv->rps.cur_delay),
  3091. dev_priv->rps.cur_delay,
  3092. vlv_gpu_freq(dev_priv->mem_freq, pval), pval);
  3093. dev_priv->rps.cur_delay = pval;
  3094. }
  3095. void valleyview_set_rps(struct drm_device *dev, u8 val)
  3096. {
  3097. struct drm_i915_private *dev_priv = dev->dev_private;
  3098. gen6_rps_limits(dev_priv, &val);
  3099. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  3100. WARN_ON(val > dev_priv->rps.max_delay);
  3101. WARN_ON(val < dev_priv->rps.min_delay);
  3102. vlv_update_rps_cur_delay(dev_priv);
  3103. DRM_DEBUG_DRIVER("GPU freq request from %d MHz (%u) to %d MHz (%u)\n",
  3104. vlv_gpu_freq(dev_priv->mem_freq,
  3105. dev_priv->rps.cur_delay),
  3106. dev_priv->rps.cur_delay,
  3107. vlv_gpu_freq(dev_priv->mem_freq, val), val);
  3108. if (val == dev_priv->rps.cur_delay)
  3109. return;
  3110. vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
  3111. dev_priv->rps.cur_delay = val;
  3112. trace_intel_gpu_freq_change(vlv_gpu_freq(dev_priv->mem_freq, val));
  3113. }
  3114. static void gen6_disable_rps_interrupts(struct drm_device *dev)
  3115. {
  3116. struct drm_i915_private *dev_priv = dev->dev_private;
  3117. I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
  3118. I915_WRITE(GEN6_PMIER, I915_READ(GEN6_PMIER) & ~GEN6_PM_RPS_EVENTS);
  3119. /* Complete PM interrupt masking here doesn't race with the rps work
  3120. * item again unmasking PM interrupts because that is using a different
  3121. * register (PMIMR) to mask PM interrupts. The only risk is in leaving
  3122. * stale bits in PMIIR and PMIMR which gen6_enable_rps will clean up. */
  3123. spin_lock_irq(&dev_priv->irq_lock);
  3124. dev_priv->rps.pm_iir = 0;
  3125. spin_unlock_irq(&dev_priv->irq_lock);
  3126. I915_WRITE(GEN6_PMIIR, GEN6_PM_RPS_EVENTS);
  3127. }
  3128. static void gen6_disable_rps(struct drm_device *dev)
  3129. {
  3130. struct drm_i915_private *dev_priv = dev->dev_private;
  3131. I915_WRITE(GEN6_RC_CONTROL, 0);
  3132. I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
  3133. gen6_disable_rps_interrupts(dev);
  3134. }
  3135. static void valleyview_disable_rps(struct drm_device *dev)
  3136. {
  3137. struct drm_i915_private *dev_priv = dev->dev_private;
  3138. I915_WRITE(GEN6_RC_CONTROL, 0);
  3139. gen6_disable_rps_interrupts(dev);
  3140. if (dev_priv->vlv_pctx) {
  3141. drm_gem_object_unreference(&dev_priv->vlv_pctx->base);
  3142. dev_priv->vlv_pctx = NULL;
  3143. }
  3144. }
  3145. static void intel_print_rc6_info(struct drm_device *dev, u32 mode)
  3146. {
  3147. if (IS_GEN6(dev))
  3148. DRM_DEBUG_DRIVER("Sandybridge: deep RC6 disabled\n");
  3149. if (IS_HASWELL(dev))
  3150. DRM_DEBUG_DRIVER("Haswell: only RC6 available\n");
  3151. DRM_INFO("Enabling RC6 states: RC6 %s, RC6p %s, RC6pp %s\n",
  3152. (mode & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off",
  3153. (mode & GEN6_RC_CTL_RC6p_ENABLE) ? "on" : "off",
  3154. (mode & GEN6_RC_CTL_RC6pp_ENABLE) ? "on" : "off");
  3155. }
  3156. int intel_enable_rc6(const struct drm_device *dev)
  3157. {
  3158. /* No RC6 before Ironlake */
  3159. if (INTEL_INFO(dev)->gen < 5)
  3160. return 0;
  3161. /* Respect the kernel parameter if it is set */
  3162. if (i915_enable_rc6 >= 0)
  3163. return i915_enable_rc6;
  3164. /* Disable RC6 on Ironlake */
  3165. if (INTEL_INFO(dev)->gen == 5)
  3166. return 0;
  3167. if (IS_HASWELL(dev))
  3168. return INTEL_RC6_ENABLE;
  3169. /* snb/ivb have more than one rc6 state. */
  3170. if (INTEL_INFO(dev)->gen == 6)
  3171. return INTEL_RC6_ENABLE;
  3172. return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
  3173. }
  3174. static void gen6_enable_rps_interrupts(struct drm_device *dev)
  3175. {
  3176. struct drm_i915_private *dev_priv = dev->dev_private;
  3177. u32 enabled_intrs;
  3178. spin_lock_irq(&dev_priv->irq_lock);
  3179. WARN_ON(dev_priv->rps.pm_iir);
  3180. snb_enable_pm_irq(dev_priv, GEN6_PM_RPS_EVENTS);
  3181. I915_WRITE(GEN6_PMIIR, GEN6_PM_RPS_EVENTS);
  3182. spin_unlock_irq(&dev_priv->irq_lock);
  3183. /* only unmask PM interrupts we need. Mask all others. */
  3184. enabled_intrs = GEN6_PM_RPS_EVENTS;
  3185. /* IVB and SNB hard hangs on looping batchbuffer
  3186. * if GEN6_PM_UP_EI_EXPIRED is masked.
  3187. */
  3188. if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
  3189. enabled_intrs |= GEN6_PM_RP_UP_EI_EXPIRED;
  3190. I915_WRITE(GEN6_PMINTRMSK, ~enabled_intrs);
  3191. }
  3192. static void gen8_enable_rps(struct drm_device *dev)
  3193. {
  3194. struct drm_i915_private *dev_priv = dev->dev_private;
  3195. struct intel_ring_buffer *ring;
  3196. uint32_t rc6_mask = 0, rp_state_cap;
  3197. int unused;
  3198. /* 1a: Software RC state - RC0 */
  3199. I915_WRITE(GEN6_RC_STATE, 0);
  3200. /* 1c & 1d: Get forcewake during program sequence. Although the driver
  3201. * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
  3202. gen6_gt_force_wake_get(dev_priv);
  3203. /* 2a: Disable RC states. */
  3204. I915_WRITE(GEN6_RC_CONTROL, 0);
  3205. rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
  3206. /* 2b: Program RC6 thresholds.*/
  3207. I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
  3208. I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
  3209. I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
  3210. for_each_ring(ring, dev_priv, unused)
  3211. I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
  3212. I915_WRITE(GEN6_RC_SLEEP, 0);
  3213. I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
  3214. /* 3: Enable RC6 */
  3215. if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
  3216. rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
  3217. DRM_INFO("RC6 %s\n", (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off");
  3218. I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
  3219. GEN6_RC_CTL_EI_MODE(1) |
  3220. rc6_mask);
  3221. /* 4 Program defaults and thresholds for RPS*/
  3222. I915_WRITE(GEN6_RPNSWREQ, HSW_FREQUENCY(10)); /* Request 500 MHz */
  3223. I915_WRITE(GEN6_RC_VIDEO_FREQ, HSW_FREQUENCY(12)); /* Request 600 MHz */
  3224. /* NB: Docs say 1s, and 1000000 - which aren't equivalent */
  3225. I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */
  3226. /* Docs recommend 900MHz, and 300 MHz respectively */
  3227. I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
  3228. dev_priv->rps.max_delay << 24 |
  3229. dev_priv->rps.min_delay << 16);
  3230. I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
  3231. I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
  3232. I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
  3233. I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */
  3234. I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
  3235. /* 5: Enable RPS */
  3236. I915_WRITE(GEN6_RP_CONTROL,
  3237. GEN6_RP_MEDIA_TURBO |
  3238. GEN6_RP_MEDIA_HW_NORMAL_MODE |
  3239. GEN6_RP_MEDIA_IS_GFX |
  3240. GEN6_RP_ENABLE |
  3241. GEN6_RP_UP_BUSY_AVG |
  3242. GEN6_RP_DOWN_IDLE_AVG);
  3243. /* 6: Ring frequency + overclocking (our driver does this later */
  3244. gen6_set_rps(dev, (I915_READ(GEN6_GT_PERF_STATUS) & 0xff00) >> 8);
  3245. gen6_enable_rps_interrupts(dev);
  3246. gen6_gt_force_wake_put(dev_priv);
  3247. }
  3248. static void gen6_enable_rps(struct drm_device *dev)
  3249. {
  3250. struct drm_i915_private *dev_priv = dev->dev_private;
  3251. struct intel_ring_buffer *ring;
  3252. u32 rp_state_cap;
  3253. u32 gt_perf_status;
  3254. u32 rc6vids, pcu_mbox, rc6_mask = 0;
  3255. u32 gtfifodbg;
  3256. int rc6_mode;
  3257. int i, ret;
  3258. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  3259. /* Here begins a magic sequence of register writes to enable
  3260. * auto-downclocking.
  3261. *
  3262. * Perhaps there might be some value in exposing these to
  3263. * userspace...
  3264. */
  3265. I915_WRITE(GEN6_RC_STATE, 0);
  3266. /* Clear the DBG now so we don't confuse earlier errors */
  3267. if ((gtfifodbg = I915_READ(GTFIFODBG))) {
  3268. DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
  3269. I915_WRITE(GTFIFODBG, gtfifodbg);
  3270. }
  3271. gen6_gt_force_wake_get(dev_priv);
  3272. rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
  3273. gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
  3274. /* In units of 50MHz */
  3275. dev_priv->rps.hw_max = dev_priv->rps.max_delay = rp_state_cap & 0xff;
  3276. dev_priv->rps.min_delay = (rp_state_cap >> 16) & 0xff;
  3277. dev_priv->rps.rp1_delay = (rp_state_cap >> 8) & 0xff;
  3278. dev_priv->rps.rp0_delay = (rp_state_cap >> 0) & 0xff;
  3279. dev_priv->rps.rpe_delay = dev_priv->rps.rp1_delay;
  3280. dev_priv->rps.cur_delay = 0;
  3281. /* disable the counters and set deterministic thresholds */
  3282. I915_WRITE(GEN6_RC_CONTROL, 0);
  3283. I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
  3284. I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
  3285. I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
  3286. I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
  3287. I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
  3288. for_each_ring(ring, dev_priv, i)
  3289. I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
  3290. I915_WRITE(GEN6_RC_SLEEP, 0);
  3291. I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
  3292. if (IS_IVYBRIDGE(dev))
  3293. I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
  3294. else
  3295. I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
  3296. I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
  3297. I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
  3298. /* Check if we are enabling RC6 */
  3299. rc6_mode = intel_enable_rc6(dev_priv->dev);
  3300. if (rc6_mode & INTEL_RC6_ENABLE)
  3301. rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;
  3302. /* We don't use those on Haswell */
  3303. if (!IS_HASWELL(dev)) {
  3304. if (rc6_mode & INTEL_RC6p_ENABLE)
  3305. rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
  3306. if (rc6_mode & INTEL_RC6pp_ENABLE)
  3307. rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
  3308. }
  3309. intel_print_rc6_info(dev, rc6_mask);
  3310. I915_WRITE(GEN6_RC_CONTROL,
  3311. rc6_mask |
  3312. GEN6_RC_CTL_EI_MODE(1) |
  3313. GEN6_RC_CTL_HW_ENABLE);
  3314. /* Power down if completely idle for over 50ms */
  3315. I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
  3316. I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
  3317. ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_MIN_FREQ_TABLE, 0);
  3318. if (!ret) {
  3319. pcu_mbox = 0;
  3320. ret = sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &pcu_mbox);
  3321. if (!ret && (pcu_mbox & (1<<31))) { /* OC supported */
  3322. DRM_DEBUG_DRIVER("Overclocking supported. Max: %dMHz, Overclock max: %dMHz\n",
  3323. (dev_priv->rps.max_delay & 0xff) * 50,
  3324. (pcu_mbox & 0xff) * 50);
  3325. dev_priv->rps.hw_max = pcu_mbox & 0xff;
  3326. }
  3327. } else {
  3328. DRM_DEBUG_DRIVER("Failed to set the min frequency\n");
  3329. }
  3330. dev_priv->rps.power = HIGH_POWER; /* force a reset */
  3331. gen6_set_rps(dev_priv->dev, dev_priv->rps.min_delay);
  3332. gen6_enable_rps_interrupts(dev);
  3333. rc6vids = 0;
  3334. ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
  3335. if (IS_GEN6(dev) && ret) {
  3336. DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
  3337. } else if (IS_GEN6(dev) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
  3338. DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
  3339. GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
  3340. rc6vids &= 0xffff00;
  3341. rc6vids |= GEN6_ENCODE_RC6_VID(450);
  3342. ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
  3343. if (ret)
  3344. DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
  3345. }
  3346. gen6_gt_force_wake_put(dev_priv);
  3347. }
  3348. void gen6_update_ring_freq(struct drm_device *dev)
  3349. {
  3350. struct drm_i915_private *dev_priv = dev->dev_private;
  3351. int min_freq = 15;
  3352. unsigned int gpu_freq;
  3353. unsigned int max_ia_freq, min_ring_freq;
  3354. int scaling_factor = 180;
  3355. struct cpufreq_policy *policy;
  3356. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  3357. policy = cpufreq_cpu_get(0);
  3358. if (policy) {
  3359. max_ia_freq = policy->cpuinfo.max_freq;
  3360. cpufreq_cpu_put(policy);
  3361. } else {
  3362. /*
  3363. * Default to measured freq if none found, PCU will ensure we
  3364. * don't go over
  3365. */
  3366. max_ia_freq = tsc_khz;
  3367. }
  3368. /* Convert from kHz to MHz */
  3369. max_ia_freq /= 1000;
  3370. min_ring_freq = I915_READ(DCLK) & 0xf;
  3371. /* convert DDR frequency from units of 266.6MHz to bandwidth */
  3372. min_ring_freq = mult_frac(min_ring_freq, 8, 3);
  3373. /*
  3374. * For each potential GPU frequency, load a ring frequency we'd like
  3375. * to use for memory access. We do this by specifying the IA frequency
  3376. * the PCU should use as a reference to determine the ring frequency.
  3377. */
  3378. for (gpu_freq = dev_priv->rps.max_delay; gpu_freq >= dev_priv->rps.min_delay;
  3379. gpu_freq--) {
  3380. int diff = dev_priv->rps.max_delay - gpu_freq;
  3381. unsigned int ia_freq = 0, ring_freq = 0;
  3382. if (INTEL_INFO(dev)->gen >= 8) {
  3383. /* max(2 * GT, DDR). NB: GT is 50MHz units */
  3384. ring_freq = max(min_ring_freq, gpu_freq);
  3385. } else if (IS_HASWELL(dev)) {
  3386. ring_freq = mult_frac(gpu_freq, 5, 4);
  3387. ring_freq = max(min_ring_freq, ring_freq);
  3388. /* leave ia_freq as the default, chosen by cpufreq */
  3389. } else {
  3390. /* On older processors, there is no separate ring
  3391. * clock domain, so in order to boost the bandwidth
  3392. * of the ring, we need to upclock the CPU (ia_freq).
  3393. *
  3394. * For GPU frequencies less than 750MHz,
  3395. * just use the lowest ring freq.
  3396. */
  3397. if (gpu_freq < min_freq)
  3398. ia_freq = 800;
  3399. else
  3400. ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
  3401. ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
  3402. }
  3403. sandybridge_pcode_write(dev_priv,
  3404. GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
  3405. ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
  3406. ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
  3407. gpu_freq);
  3408. }
  3409. }
  3410. int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
  3411. {
  3412. u32 val, rp0;
  3413. val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
  3414. rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
  3415. /* Clamp to max */
  3416. rp0 = min_t(u32, rp0, 0xea);
  3417. return rp0;
  3418. }
  3419. static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
  3420. {
  3421. u32 val, rpe;
  3422. val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
  3423. rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
  3424. val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
  3425. rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;
  3426. return rpe;
  3427. }
  3428. int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
  3429. {
  3430. return vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
  3431. }
  3432. static void valleyview_setup_pctx(struct drm_device *dev)
  3433. {
  3434. struct drm_i915_private *dev_priv = dev->dev_private;
  3435. struct drm_i915_gem_object *pctx;
  3436. unsigned long pctx_paddr;
  3437. u32 pcbr;
  3438. int pctx_size = 24*1024;
  3439. pcbr = I915_READ(VLV_PCBR);
  3440. if (pcbr) {
  3441. /* BIOS set it up already, grab the pre-alloc'd space */
  3442. int pcbr_offset;
  3443. pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
  3444. pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv->dev,
  3445. pcbr_offset,
  3446. I915_GTT_OFFSET_NONE,
  3447. pctx_size);
  3448. goto out;
  3449. }
  3450. /*
  3451. * From the Gunit register HAS:
  3452. * The Gfx driver is expected to program this register and ensure
  3453. * proper allocation within Gfx stolen memory. For example, this
  3454. * register should be programmed such than the PCBR range does not
  3455. * overlap with other ranges, such as the frame buffer, protected
  3456. * memory, or any other relevant ranges.
  3457. */
  3458. pctx = i915_gem_object_create_stolen(dev, pctx_size);
  3459. if (!pctx) {
  3460. DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
  3461. return;
  3462. }
  3463. pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
  3464. I915_WRITE(VLV_PCBR, pctx_paddr);
  3465. out:
  3466. dev_priv->vlv_pctx = pctx;
  3467. }
  3468. static void valleyview_enable_rps(struct drm_device *dev)
  3469. {
  3470. struct drm_i915_private *dev_priv = dev->dev_private;
  3471. struct intel_ring_buffer *ring;
  3472. u32 gtfifodbg, val, rc6_mode = 0;
  3473. int i;
  3474. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  3475. if ((gtfifodbg = I915_READ(GTFIFODBG))) {
  3476. DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
  3477. gtfifodbg);
  3478. I915_WRITE(GTFIFODBG, gtfifodbg);
  3479. }
  3480. valleyview_setup_pctx(dev);
  3481. gen6_gt_force_wake_get(dev_priv);
  3482. I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
  3483. I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
  3484. I915_WRITE(GEN6_RP_UP_EI, 66000);
  3485. I915_WRITE(GEN6_RP_DOWN_EI, 350000);
  3486. I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
  3487. I915_WRITE(GEN6_RP_CONTROL,
  3488. GEN6_RP_MEDIA_TURBO |
  3489. GEN6_RP_MEDIA_HW_NORMAL_MODE |
  3490. GEN6_RP_MEDIA_IS_GFX |
  3491. GEN6_RP_ENABLE |
  3492. GEN6_RP_UP_BUSY_AVG |
  3493. GEN6_RP_DOWN_IDLE_CONT);
  3494. I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
  3495. I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
  3496. I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
  3497. for_each_ring(ring, dev_priv, i)
  3498. I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
  3499. I915_WRITE(GEN6_RC6_THRESHOLD, 0xc350);
  3500. /* allows RC6 residency counter to work */
  3501. I915_WRITE(VLV_COUNTER_CONTROL,
  3502. _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
  3503. VLV_MEDIA_RC6_COUNT_EN |
  3504. VLV_RENDER_RC6_COUNT_EN));
  3505. if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
  3506. rc6_mode = GEN7_RC_CTL_TO_MODE;
  3507. intel_print_rc6_info(dev, rc6_mode);
  3508. I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
  3509. val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
  3510. switch ((val >> 6) & 3) {
  3511. case 0:
  3512. case 1:
  3513. dev_priv->mem_freq = 800;
  3514. break;
  3515. case 2:
  3516. dev_priv->mem_freq = 1066;
  3517. break;
  3518. case 3:
  3519. dev_priv->mem_freq = 1333;
  3520. break;
  3521. }
  3522. DRM_DEBUG_DRIVER("DDR speed: %d MHz", dev_priv->mem_freq);
  3523. DRM_DEBUG_DRIVER("GPLL enabled? %s\n", val & 0x10 ? "yes" : "no");
  3524. DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
  3525. dev_priv->rps.cur_delay = (val >> 8) & 0xff;
  3526. DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
  3527. vlv_gpu_freq(dev_priv->mem_freq,
  3528. dev_priv->rps.cur_delay),
  3529. dev_priv->rps.cur_delay);
  3530. dev_priv->rps.max_delay = valleyview_rps_max_freq(dev_priv);
  3531. dev_priv->rps.hw_max = dev_priv->rps.max_delay;
  3532. DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
  3533. vlv_gpu_freq(dev_priv->mem_freq,
  3534. dev_priv->rps.max_delay),
  3535. dev_priv->rps.max_delay);
  3536. dev_priv->rps.rpe_delay = valleyview_rps_rpe_freq(dev_priv);
  3537. DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
  3538. vlv_gpu_freq(dev_priv->mem_freq,
  3539. dev_priv->rps.rpe_delay),
  3540. dev_priv->rps.rpe_delay);
  3541. dev_priv->rps.min_delay = valleyview_rps_min_freq(dev_priv);
  3542. DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
  3543. vlv_gpu_freq(dev_priv->mem_freq,
  3544. dev_priv->rps.min_delay),
  3545. dev_priv->rps.min_delay);
  3546. DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
  3547. vlv_gpu_freq(dev_priv->mem_freq,
  3548. dev_priv->rps.rpe_delay),
  3549. dev_priv->rps.rpe_delay);
  3550. valleyview_set_rps(dev_priv->dev, dev_priv->rps.rpe_delay);
  3551. gen6_enable_rps_interrupts(dev);
  3552. gen6_gt_force_wake_put(dev_priv);
  3553. }
  3554. void ironlake_teardown_rc6(struct drm_device *dev)
  3555. {
  3556. struct drm_i915_private *dev_priv = dev->dev_private;
  3557. if (dev_priv->ips.renderctx) {
  3558. i915_gem_object_unpin(dev_priv->ips.renderctx);
  3559. drm_gem_object_unreference(&dev_priv->ips.renderctx->base);
  3560. dev_priv->ips.renderctx = NULL;
  3561. }
  3562. if (dev_priv->ips.pwrctx) {
  3563. i915_gem_object_unpin(dev_priv->ips.pwrctx);
  3564. drm_gem_object_unreference(&dev_priv->ips.pwrctx->base);
  3565. dev_priv->ips.pwrctx = NULL;
  3566. }
  3567. }
  3568. static void ironlake_disable_rc6(struct drm_device *dev)
  3569. {
  3570. struct drm_i915_private *dev_priv = dev->dev_private;
  3571. if (I915_READ(PWRCTXA)) {
  3572. /* Wake the GPU, prevent RC6, then restore RSTDBYCTL */
  3573. I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) | RCX_SW_EXIT);
  3574. wait_for(((I915_READ(RSTDBYCTL) & RSX_STATUS_MASK) == RSX_STATUS_ON),
  3575. 50);
  3576. I915_WRITE(PWRCTXA, 0);
  3577. POSTING_READ(PWRCTXA);
  3578. I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
  3579. POSTING_READ(RSTDBYCTL);
  3580. }
  3581. }
  3582. static int ironlake_setup_rc6(struct drm_device *dev)
  3583. {
  3584. struct drm_i915_private *dev_priv = dev->dev_private;
  3585. if (dev_priv->ips.renderctx == NULL)
  3586. dev_priv->ips.renderctx = intel_alloc_context_page(dev);
  3587. if (!dev_priv->ips.renderctx)
  3588. return -ENOMEM;
  3589. if (dev_priv->ips.pwrctx == NULL)
  3590. dev_priv->ips.pwrctx = intel_alloc_context_page(dev);
  3591. if (!dev_priv->ips.pwrctx) {
  3592. ironlake_teardown_rc6(dev);
  3593. return -ENOMEM;
  3594. }
  3595. return 0;
  3596. }
  3597. static void ironlake_enable_rc6(struct drm_device *dev)
  3598. {
  3599. struct drm_i915_private *dev_priv = dev->dev_private;
  3600. struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
  3601. bool was_interruptible;
  3602. int ret;
  3603. /* rc6 disabled by default due to repeated reports of hanging during
  3604. * boot and resume.
  3605. */
  3606. if (!intel_enable_rc6(dev))
  3607. return;
  3608. WARN_ON(!mutex_is_locked(&dev->struct_mutex));
  3609. ret = ironlake_setup_rc6(dev);
  3610. if (ret)
  3611. return;
  3612. was_interruptible = dev_priv->mm.interruptible;
  3613. dev_priv->mm.interruptible = false;
  3614. /*
  3615. * GPU can automatically power down the render unit if given a page
  3616. * to save state.
  3617. */
  3618. ret = intel_ring_begin(ring, 6);
  3619. if (ret) {
  3620. ironlake_teardown_rc6(dev);
  3621. dev_priv->mm.interruptible = was_interruptible;
  3622. return;
  3623. }
  3624. intel_ring_emit(ring, MI_SUSPEND_FLUSH | MI_SUSPEND_FLUSH_EN);
  3625. intel_ring_emit(ring, MI_SET_CONTEXT);
  3626. intel_ring_emit(ring, i915_gem_obj_ggtt_offset(dev_priv->ips.renderctx) |
  3627. MI_MM_SPACE_GTT |
  3628. MI_SAVE_EXT_STATE_EN |
  3629. MI_RESTORE_EXT_STATE_EN |
  3630. MI_RESTORE_INHIBIT);
  3631. intel_ring_emit(ring, MI_SUSPEND_FLUSH);
  3632. intel_ring_emit(ring, MI_NOOP);
  3633. intel_ring_emit(ring, MI_FLUSH);
  3634. intel_ring_advance(ring);
  3635. /*
  3636. * Wait for the command parser to advance past MI_SET_CONTEXT. The HW
  3637. * does an implicit flush, combined with MI_FLUSH above, it should be
  3638. * safe to assume that renderctx is valid
  3639. */
  3640. ret = intel_ring_idle(ring);
  3641. dev_priv->mm.interruptible = was_interruptible;
  3642. if (ret) {
  3643. DRM_ERROR("failed to enable ironlake power savings\n");
  3644. ironlake_teardown_rc6(dev);
  3645. return;
  3646. }
  3647. I915_WRITE(PWRCTXA, i915_gem_obj_ggtt_offset(dev_priv->ips.pwrctx) | PWRCTX_EN);
  3648. I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
  3649. intel_print_rc6_info(dev, INTEL_RC6_ENABLE);
  3650. }
  3651. static unsigned long intel_pxfreq(u32 vidfreq)
  3652. {
  3653. unsigned long freq;
  3654. int div = (vidfreq & 0x3f0000) >> 16;
  3655. int post = (vidfreq & 0x3000) >> 12;
  3656. int pre = (vidfreq & 0x7);
  3657. if (!pre)
  3658. return 0;
  3659. freq = ((div * 133333) / ((1<<post) * pre));
  3660. return freq;
  3661. }
  3662. static const struct cparams {
  3663. u16 i;
  3664. u16 t;
  3665. u16 m;
  3666. u16 c;
  3667. } cparams[] = {
  3668. { 1, 1333, 301, 28664 },
  3669. { 1, 1066, 294, 24460 },
  3670. { 1, 800, 294, 25192 },
  3671. { 0, 1333, 276, 27605 },
  3672. { 0, 1066, 276, 27605 },
  3673. { 0, 800, 231, 23784 },
  3674. };
  3675. static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
  3676. {
  3677. u64 total_count, diff, ret;
  3678. u32 count1, count2, count3, m = 0, c = 0;
  3679. unsigned long now = jiffies_to_msecs(jiffies), diff1;
  3680. int i;
  3681. assert_spin_locked(&mchdev_lock);
  3682. diff1 = now - dev_priv->ips.last_time1;
  3683. /* Prevent division-by-zero if we are asking too fast.
  3684. * Also, we don't get interesting results if we are polling
  3685. * faster than once in 10ms, so just return the saved value
  3686. * in such cases.
  3687. */
  3688. if (diff1 <= 10)
  3689. return dev_priv->ips.chipset_power;
  3690. count1 = I915_READ(DMIEC);
  3691. count2 = I915_READ(DDREC);
  3692. count3 = I915_READ(CSIEC);
  3693. total_count = count1 + count2 + count3;
  3694. /* FIXME: handle per-counter overflow */
  3695. if (total_count < dev_priv->ips.last_count1) {
  3696. diff = ~0UL - dev_priv->ips.last_count1;
  3697. diff += total_count;
  3698. } else {
  3699. diff = total_count - dev_priv->ips.last_count1;
  3700. }
  3701. for (i = 0; i < ARRAY_SIZE(cparams); i++) {
  3702. if (cparams[i].i == dev_priv->ips.c_m &&
  3703. cparams[i].t == dev_priv->ips.r_t) {
  3704. m = cparams[i].m;
  3705. c = cparams[i].c;
  3706. break;
  3707. }
  3708. }
  3709. diff = div_u64(diff, diff1);
  3710. ret = ((m * diff) + c);
  3711. ret = div_u64(ret, 10);
  3712. dev_priv->ips.last_count1 = total_count;
  3713. dev_priv->ips.last_time1 = now;
  3714. dev_priv->ips.chipset_power = ret;
  3715. return ret;
  3716. }
  3717. unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
  3718. {
  3719. unsigned long val;
  3720. if (dev_priv->info->gen != 5)
  3721. return 0;
  3722. spin_lock_irq(&mchdev_lock);
  3723. val = __i915_chipset_val(dev_priv);
  3724. spin_unlock_irq(&mchdev_lock);
  3725. return val;
  3726. }
  3727. unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
  3728. {
  3729. unsigned long m, x, b;
  3730. u32 tsfs;
  3731. tsfs = I915_READ(TSFS);
  3732. m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
  3733. x = I915_READ8(TR1);
  3734. b = tsfs & TSFS_INTR_MASK;
  3735. return ((m * x) / 127) - b;
  3736. }
  3737. static u16 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
  3738. {
  3739. static const struct v_table {
  3740. u16 vd; /* in .1 mil */
  3741. u16 vm; /* in .1 mil */
  3742. } v_table[] = {
  3743. { 0, 0, },
  3744. { 375, 0, },
  3745. { 500, 0, },
  3746. { 625, 0, },
  3747. { 750, 0, },
  3748. { 875, 0, },
  3749. { 1000, 0, },
  3750. { 1125, 0, },
  3751. { 4125, 3000, },
  3752. { 4125, 3000, },
  3753. { 4125, 3000, },
  3754. { 4125, 3000, },
  3755. { 4125, 3000, },
  3756. { 4125, 3000, },
  3757. { 4125, 3000, },
  3758. { 4125, 3000, },
  3759. { 4125, 3000, },
  3760. { 4125, 3000, },
  3761. { 4125, 3000, },
  3762. { 4125, 3000, },
  3763. { 4125, 3000, },
  3764. { 4125, 3000, },
  3765. { 4125, 3000, },
  3766. { 4125, 3000, },
  3767. { 4125, 3000, },
  3768. { 4125, 3000, },
  3769. { 4125, 3000, },
  3770. { 4125, 3000, },
  3771. { 4125, 3000, },
  3772. { 4125, 3000, },
  3773. { 4125, 3000, },
  3774. { 4125, 3000, },
  3775. { 4250, 3125, },
  3776. { 4375, 3250, },
  3777. { 4500, 3375, },
  3778. { 4625, 3500, },
  3779. { 4750, 3625, },
  3780. { 4875, 3750, },
  3781. { 5000, 3875, },
  3782. { 5125, 4000, },
  3783. { 5250, 4125, },
  3784. { 5375, 4250, },
  3785. { 5500, 4375, },
  3786. { 5625, 4500, },
  3787. { 5750, 4625, },
  3788. { 5875, 4750, },
  3789. { 6000, 4875, },
  3790. { 6125, 5000, },
  3791. { 6250, 5125, },
  3792. { 6375, 5250, },
  3793. { 6500, 5375, },
  3794. { 6625, 5500, },
  3795. { 6750, 5625, },
  3796. { 6875, 5750, },
  3797. { 7000, 5875, },
  3798. { 7125, 6000, },
  3799. { 7250, 6125, },
  3800. { 7375, 6250, },
  3801. { 7500, 6375, },
  3802. { 7625, 6500, },
  3803. { 7750, 6625, },
  3804. { 7875, 6750, },
  3805. { 8000, 6875, },
  3806. { 8125, 7000, },
  3807. { 8250, 7125, },
  3808. { 8375, 7250, },
  3809. { 8500, 7375, },
  3810. { 8625, 7500, },
  3811. { 8750, 7625, },
  3812. { 8875, 7750, },
  3813. { 9000, 7875, },
  3814. { 9125, 8000, },
  3815. { 9250, 8125, },
  3816. { 9375, 8250, },
  3817. { 9500, 8375, },
  3818. { 9625, 8500, },
  3819. { 9750, 8625, },
  3820. { 9875, 8750, },
  3821. { 10000, 8875, },
  3822. { 10125, 9000, },
  3823. { 10250, 9125, },
  3824. { 10375, 9250, },
  3825. { 10500, 9375, },
  3826. { 10625, 9500, },
  3827. { 10750, 9625, },
  3828. { 10875, 9750, },
  3829. { 11000, 9875, },
  3830. { 11125, 10000, },
  3831. { 11250, 10125, },
  3832. { 11375, 10250, },
  3833. { 11500, 10375, },
  3834. { 11625, 10500, },
  3835. { 11750, 10625, },
  3836. { 11875, 10750, },
  3837. { 12000, 10875, },
  3838. { 12125, 11000, },
  3839. { 12250, 11125, },
  3840. { 12375, 11250, },
  3841. { 12500, 11375, },
  3842. { 12625, 11500, },
  3843. { 12750, 11625, },
  3844. { 12875, 11750, },
  3845. { 13000, 11875, },
  3846. { 13125, 12000, },
  3847. { 13250, 12125, },
  3848. { 13375, 12250, },
  3849. { 13500, 12375, },
  3850. { 13625, 12500, },
  3851. { 13750, 12625, },
  3852. { 13875, 12750, },
  3853. { 14000, 12875, },
  3854. { 14125, 13000, },
  3855. { 14250, 13125, },
  3856. { 14375, 13250, },
  3857. { 14500, 13375, },
  3858. { 14625, 13500, },
  3859. { 14750, 13625, },
  3860. { 14875, 13750, },
  3861. { 15000, 13875, },
  3862. { 15125, 14000, },
  3863. { 15250, 14125, },
  3864. { 15375, 14250, },
  3865. { 15500, 14375, },
  3866. { 15625, 14500, },
  3867. { 15750, 14625, },
  3868. { 15875, 14750, },
  3869. { 16000, 14875, },
  3870. { 16125, 15000, },
  3871. };
  3872. if (dev_priv->info->is_mobile)
  3873. return v_table[pxvid].vm;
  3874. else
  3875. return v_table[pxvid].vd;
  3876. }
  3877. static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
  3878. {
  3879. struct timespec now, diff1;
  3880. u64 diff;
  3881. unsigned long diffms;
  3882. u32 count;
  3883. assert_spin_locked(&mchdev_lock);
  3884. getrawmonotonic(&now);
  3885. diff1 = timespec_sub(now, dev_priv->ips.last_time2);
  3886. /* Don't divide by 0 */
  3887. diffms = diff1.tv_sec * 1000 + diff1.tv_nsec / 1000000;
  3888. if (!diffms)
  3889. return;
  3890. count = I915_READ(GFXEC);
  3891. if (count < dev_priv->ips.last_count2) {
  3892. diff = ~0UL - dev_priv->ips.last_count2;
  3893. diff += count;
  3894. } else {
  3895. diff = count - dev_priv->ips.last_count2;
  3896. }
  3897. dev_priv->ips.last_count2 = count;
  3898. dev_priv->ips.last_time2 = now;
  3899. /* More magic constants... */
  3900. diff = diff * 1181;
  3901. diff = div_u64(diff, diffms * 10);
  3902. dev_priv->ips.gfx_power = diff;
  3903. }
  3904. void i915_update_gfx_val(struct drm_i915_private *dev_priv)
  3905. {
  3906. if (dev_priv->info->gen != 5)
  3907. return;
  3908. spin_lock_irq(&mchdev_lock);
  3909. __i915_update_gfx_val(dev_priv);
  3910. spin_unlock_irq(&mchdev_lock);
  3911. }
  3912. static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
  3913. {
  3914. unsigned long t, corr, state1, corr2, state2;
  3915. u32 pxvid, ext_v;
  3916. assert_spin_locked(&mchdev_lock);
  3917. pxvid = I915_READ(PXVFREQ_BASE + (dev_priv->rps.cur_delay * 4));
  3918. pxvid = (pxvid >> 24) & 0x7f;
  3919. ext_v = pvid_to_extvid(dev_priv, pxvid);
  3920. state1 = ext_v;
  3921. t = i915_mch_val(dev_priv);
  3922. /* Revel in the empirically derived constants */
  3923. /* Correction factor in 1/100000 units */
  3924. if (t > 80)
  3925. corr = ((t * 2349) + 135940);
  3926. else if (t >= 50)
  3927. corr = ((t * 964) + 29317);
  3928. else /* < 50 */
  3929. corr = ((t * 301) + 1004);
  3930. corr = corr * ((150142 * state1) / 10000 - 78642);
  3931. corr /= 100000;
  3932. corr2 = (corr * dev_priv->ips.corr);
  3933. state2 = (corr2 * state1) / 10000;
  3934. state2 /= 100; /* convert to mW */
  3935. __i915_update_gfx_val(dev_priv);
  3936. return dev_priv->ips.gfx_power + state2;
  3937. }
  3938. unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
  3939. {
  3940. unsigned long val;
  3941. if (dev_priv->info->gen != 5)
  3942. return 0;
  3943. spin_lock_irq(&mchdev_lock);
  3944. val = __i915_gfx_val(dev_priv);
  3945. spin_unlock_irq(&mchdev_lock);
  3946. return val;
  3947. }
  3948. /**
  3949. * i915_read_mch_val - return value for IPS use
  3950. *
  3951. * Calculate and return a value for the IPS driver to use when deciding whether
  3952. * we have thermal and power headroom to increase CPU or GPU power budget.
  3953. */
  3954. unsigned long i915_read_mch_val(void)
  3955. {
  3956. struct drm_i915_private *dev_priv;
  3957. unsigned long chipset_val, graphics_val, ret = 0;
  3958. spin_lock_irq(&mchdev_lock);
  3959. if (!i915_mch_dev)
  3960. goto out_unlock;
  3961. dev_priv = i915_mch_dev;
  3962. chipset_val = __i915_chipset_val(dev_priv);
  3963. graphics_val = __i915_gfx_val(dev_priv);
  3964. ret = chipset_val + graphics_val;
  3965. out_unlock:
  3966. spin_unlock_irq(&mchdev_lock);
  3967. return ret;
  3968. }
  3969. EXPORT_SYMBOL_GPL(i915_read_mch_val);
  3970. /**
  3971. * i915_gpu_raise - raise GPU frequency limit
  3972. *
  3973. * Raise the limit; IPS indicates we have thermal headroom.
  3974. */
  3975. bool i915_gpu_raise(void)
  3976. {
  3977. struct drm_i915_private *dev_priv;
  3978. bool ret = true;
  3979. spin_lock_irq(&mchdev_lock);
  3980. if (!i915_mch_dev) {
  3981. ret = false;
  3982. goto out_unlock;
  3983. }
  3984. dev_priv = i915_mch_dev;
  3985. if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
  3986. dev_priv->ips.max_delay--;
  3987. out_unlock:
  3988. spin_unlock_irq(&mchdev_lock);
  3989. return ret;
  3990. }
  3991. EXPORT_SYMBOL_GPL(i915_gpu_raise);
  3992. /**
  3993. * i915_gpu_lower - lower GPU frequency limit
  3994. *
  3995. * IPS indicates we're close to a thermal limit, so throttle back the GPU
  3996. * frequency maximum.
  3997. */
  3998. bool i915_gpu_lower(void)
  3999. {
  4000. struct drm_i915_private *dev_priv;
  4001. bool ret = true;
  4002. spin_lock_irq(&mchdev_lock);
  4003. if (!i915_mch_dev) {
  4004. ret = false;
  4005. goto out_unlock;
  4006. }
  4007. dev_priv = i915_mch_dev;
  4008. if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
  4009. dev_priv->ips.max_delay++;
  4010. out_unlock:
  4011. spin_unlock_irq(&mchdev_lock);
  4012. return ret;
  4013. }
  4014. EXPORT_SYMBOL_GPL(i915_gpu_lower);
  4015. /**
  4016. * i915_gpu_busy - indicate GPU business to IPS
  4017. *
  4018. * Tell the IPS driver whether or not the GPU is busy.
  4019. */
  4020. bool i915_gpu_busy(void)
  4021. {
  4022. struct drm_i915_private *dev_priv;
  4023. struct intel_ring_buffer *ring;
  4024. bool ret = false;
  4025. int i;
  4026. spin_lock_irq(&mchdev_lock);
  4027. if (!i915_mch_dev)
  4028. goto out_unlock;
  4029. dev_priv = i915_mch_dev;
  4030. for_each_ring(ring, dev_priv, i)
  4031. ret |= !list_empty(&ring->request_list);
  4032. out_unlock:
  4033. spin_unlock_irq(&mchdev_lock);
  4034. return ret;
  4035. }
  4036. EXPORT_SYMBOL_GPL(i915_gpu_busy);
  4037. /**
  4038. * i915_gpu_turbo_disable - disable graphics turbo
  4039. *
  4040. * Disable graphics turbo by resetting the max frequency and setting the
  4041. * current frequency to the default.
  4042. */
  4043. bool i915_gpu_turbo_disable(void)
  4044. {
  4045. struct drm_i915_private *dev_priv;
  4046. bool ret = true;
  4047. spin_lock_irq(&mchdev_lock);
  4048. if (!i915_mch_dev) {
  4049. ret = false;
  4050. goto out_unlock;
  4051. }
  4052. dev_priv = i915_mch_dev;
  4053. dev_priv->ips.max_delay = dev_priv->ips.fstart;
  4054. if (!ironlake_set_drps(dev_priv->dev, dev_priv->ips.fstart))
  4055. ret = false;
  4056. out_unlock:
  4057. spin_unlock_irq(&mchdev_lock);
  4058. return ret;
  4059. }
  4060. EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
  4061. /**
  4062. * Tells the intel_ips driver that the i915 driver is now loaded, if
  4063. * IPS got loaded first.
  4064. *
  4065. * This awkward dance is so that neither module has to depend on the
  4066. * other in order for IPS to do the appropriate communication of
  4067. * GPU turbo limits to i915.
  4068. */
  4069. static void
  4070. ips_ping_for_i915_load(void)
  4071. {
  4072. void (*link)(void);
  4073. link = symbol_get(ips_link_to_i915_driver);
  4074. if (link) {
  4075. link();
  4076. symbol_put(ips_link_to_i915_driver);
  4077. }
  4078. }
  4079. void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
  4080. {
  4081. /* We only register the i915 ips part with intel-ips once everything is
  4082. * set up, to avoid intel-ips sneaking in and reading bogus values. */
  4083. spin_lock_irq(&mchdev_lock);
  4084. i915_mch_dev = dev_priv;
  4085. spin_unlock_irq(&mchdev_lock);
  4086. ips_ping_for_i915_load();
  4087. }
  4088. void intel_gpu_ips_teardown(void)
  4089. {
  4090. spin_lock_irq(&mchdev_lock);
  4091. i915_mch_dev = NULL;
  4092. spin_unlock_irq(&mchdev_lock);
  4093. }
  4094. static void intel_init_emon(struct drm_device *dev)
  4095. {
  4096. struct drm_i915_private *dev_priv = dev->dev_private;
  4097. u32 lcfuse;
  4098. u8 pxw[16];
  4099. int i;
  4100. /* Disable to program */
  4101. I915_WRITE(ECR, 0);
  4102. POSTING_READ(ECR);
  4103. /* Program energy weights for various events */
  4104. I915_WRITE(SDEW, 0x15040d00);
  4105. I915_WRITE(CSIEW0, 0x007f0000);
  4106. I915_WRITE(CSIEW1, 0x1e220004);
  4107. I915_WRITE(CSIEW2, 0x04000004);
  4108. for (i = 0; i < 5; i++)
  4109. I915_WRITE(PEW + (i * 4), 0);
  4110. for (i = 0; i < 3; i++)
  4111. I915_WRITE(DEW + (i * 4), 0);
  4112. /* Program P-state weights to account for frequency power adjustment */
  4113. for (i = 0; i < 16; i++) {
  4114. u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
  4115. unsigned long freq = intel_pxfreq(pxvidfreq);
  4116. unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
  4117. PXVFREQ_PX_SHIFT;
  4118. unsigned long val;
  4119. val = vid * vid;
  4120. val *= (freq / 1000);
  4121. val *= 255;
  4122. val /= (127*127*900);
  4123. if (val > 0xff)
  4124. DRM_ERROR("bad pxval: %ld\n", val);
  4125. pxw[i] = val;
  4126. }
  4127. /* Render standby states get 0 weight */
  4128. pxw[14] = 0;
  4129. pxw[15] = 0;
  4130. for (i = 0; i < 4; i++) {
  4131. u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
  4132. (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
  4133. I915_WRITE(PXW + (i * 4), val);
  4134. }
  4135. /* Adjust magic regs to magic values (more experimental results) */
  4136. I915_WRITE(OGW0, 0);
  4137. I915_WRITE(OGW1, 0);
  4138. I915_WRITE(EG0, 0x00007f00);
  4139. I915_WRITE(EG1, 0x0000000e);
  4140. I915_WRITE(EG2, 0x000e0000);
  4141. I915_WRITE(EG3, 0x68000300);
  4142. I915_WRITE(EG4, 0x42000000);
  4143. I915_WRITE(EG5, 0x00140031);
  4144. I915_WRITE(EG6, 0);
  4145. I915_WRITE(EG7, 0);
  4146. for (i = 0; i < 8; i++)
  4147. I915_WRITE(PXWL + (i * 4), 0);
  4148. /* Enable PMON + select events */
  4149. I915_WRITE(ECR, 0x80000019);
  4150. lcfuse = I915_READ(LCFUSE02);
  4151. dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
  4152. }
  4153. void intel_disable_gt_powersave(struct drm_device *dev)
  4154. {
  4155. struct drm_i915_private *dev_priv = dev->dev_private;
  4156. /* Interrupts should be disabled already to avoid re-arming. */
  4157. WARN_ON(dev->irq_enabled);
  4158. if (IS_IRONLAKE_M(dev)) {
  4159. ironlake_disable_drps(dev);
  4160. ironlake_disable_rc6(dev);
  4161. } else if (INTEL_INFO(dev)->gen >= 6) {
  4162. cancel_delayed_work_sync(&dev_priv->rps.delayed_resume_work);
  4163. cancel_work_sync(&dev_priv->rps.work);
  4164. mutex_lock(&dev_priv->rps.hw_lock);
  4165. if (IS_VALLEYVIEW(dev))
  4166. valleyview_disable_rps(dev);
  4167. else
  4168. gen6_disable_rps(dev);
  4169. dev_priv->rps.enabled = false;
  4170. mutex_unlock(&dev_priv->rps.hw_lock);
  4171. }
  4172. }
  4173. static void intel_gen6_powersave_work(struct work_struct *work)
  4174. {
  4175. struct drm_i915_private *dev_priv =
  4176. container_of(work, struct drm_i915_private,
  4177. rps.delayed_resume_work.work);
  4178. struct drm_device *dev = dev_priv->dev;
  4179. mutex_lock(&dev_priv->rps.hw_lock);
  4180. if (IS_VALLEYVIEW(dev)) {
  4181. valleyview_enable_rps(dev);
  4182. } else if (IS_BROADWELL(dev)) {
  4183. gen8_enable_rps(dev);
  4184. gen6_update_ring_freq(dev);
  4185. } else {
  4186. gen6_enable_rps(dev);
  4187. gen6_update_ring_freq(dev);
  4188. }
  4189. dev_priv->rps.enabled = true;
  4190. mutex_unlock(&dev_priv->rps.hw_lock);
  4191. }
  4192. void intel_enable_gt_powersave(struct drm_device *dev)
  4193. {
  4194. struct drm_i915_private *dev_priv = dev->dev_private;
  4195. if (IS_IRONLAKE_M(dev)) {
  4196. ironlake_enable_drps(dev);
  4197. ironlake_enable_rc6(dev);
  4198. intel_init_emon(dev);
  4199. } else if (IS_GEN6(dev) || IS_GEN7(dev)) {
  4200. /*
  4201. * PCU communication is slow and this doesn't need to be
  4202. * done at any specific time, so do this out of our fast path
  4203. * to make resume and init faster.
  4204. */
  4205. schedule_delayed_work(&dev_priv->rps.delayed_resume_work,
  4206. round_jiffies_up_relative(HZ));
  4207. }
  4208. }
  4209. static void ibx_init_clock_gating(struct drm_device *dev)
  4210. {
  4211. struct drm_i915_private *dev_priv = dev->dev_private;
  4212. /*
  4213. * On Ibex Peak and Cougar Point, we need to disable clock
  4214. * gating for the panel power sequencer or it will fail to
  4215. * start up when no ports are active.
  4216. */
  4217. I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
  4218. }
  4219. static void g4x_disable_trickle_feed(struct drm_device *dev)
  4220. {
  4221. struct drm_i915_private *dev_priv = dev->dev_private;
  4222. int pipe;
  4223. for_each_pipe(pipe) {
  4224. I915_WRITE(DSPCNTR(pipe),
  4225. I915_READ(DSPCNTR(pipe)) |
  4226. DISPPLANE_TRICKLE_FEED_DISABLE);
  4227. intel_flush_primary_plane(dev_priv, pipe);
  4228. }
  4229. }
  4230. static void ironlake_init_clock_gating(struct drm_device *dev)
  4231. {
  4232. struct drm_i915_private *dev_priv = dev->dev_private;
  4233. uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
  4234. /*
  4235. * Required for FBC
  4236. * WaFbcDisableDpfcClockGating:ilk
  4237. */
  4238. dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
  4239. ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
  4240. ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
  4241. I915_WRITE(PCH_3DCGDIS0,
  4242. MARIUNIT_CLOCK_GATE_DISABLE |
  4243. SVSMUNIT_CLOCK_GATE_DISABLE);
  4244. I915_WRITE(PCH_3DCGDIS1,
  4245. VFMUNIT_CLOCK_GATE_DISABLE);
  4246. /*
  4247. * According to the spec the following bits should be set in
  4248. * order to enable memory self-refresh
  4249. * The bit 22/21 of 0x42004
  4250. * The bit 5 of 0x42020
  4251. * The bit 15 of 0x45000
  4252. */
  4253. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  4254. (I915_READ(ILK_DISPLAY_CHICKEN2) |
  4255. ILK_DPARB_GATE | ILK_VSDPFD_FULL));
  4256. dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
  4257. I915_WRITE(DISP_ARB_CTL,
  4258. (I915_READ(DISP_ARB_CTL) |
  4259. DISP_FBC_WM_DIS));
  4260. I915_WRITE(WM3_LP_ILK, 0);
  4261. I915_WRITE(WM2_LP_ILK, 0);
  4262. I915_WRITE(WM1_LP_ILK, 0);
  4263. /*
  4264. * Based on the document from hardware guys the following bits
  4265. * should be set unconditionally in order to enable FBC.
  4266. * The bit 22 of 0x42000
  4267. * The bit 22 of 0x42004
  4268. * The bit 7,8,9 of 0x42020.
  4269. */
  4270. if (IS_IRONLAKE_M(dev)) {
  4271. /* WaFbcAsynchFlipDisableFbcQueue:ilk */
  4272. I915_WRITE(ILK_DISPLAY_CHICKEN1,
  4273. I915_READ(ILK_DISPLAY_CHICKEN1) |
  4274. ILK_FBCQ_DIS);
  4275. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  4276. I915_READ(ILK_DISPLAY_CHICKEN2) |
  4277. ILK_DPARB_GATE);
  4278. }
  4279. I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
  4280. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  4281. I915_READ(ILK_DISPLAY_CHICKEN2) |
  4282. ILK_ELPIN_409_SELECT);
  4283. I915_WRITE(_3D_CHICKEN2,
  4284. _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
  4285. _3D_CHICKEN2_WM_READ_PIPELINED);
  4286. /* WaDisableRenderCachePipelinedFlush:ilk */
  4287. I915_WRITE(CACHE_MODE_0,
  4288. _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
  4289. g4x_disable_trickle_feed(dev);
  4290. ibx_init_clock_gating(dev);
  4291. }
  4292. static void cpt_init_clock_gating(struct drm_device *dev)
  4293. {
  4294. struct drm_i915_private *dev_priv = dev->dev_private;
  4295. int pipe;
  4296. uint32_t val;
  4297. /*
  4298. * On Ibex Peak and Cougar Point, we need to disable clock
  4299. * gating for the panel power sequencer or it will fail to
  4300. * start up when no ports are active.
  4301. */
  4302. I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
  4303. PCH_DPLUNIT_CLOCK_GATE_DISABLE |
  4304. PCH_CPUNIT_CLOCK_GATE_DISABLE);
  4305. I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
  4306. DPLS_EDP_PPS_FIX_DIS);
  4307. /* The below fixes the weird display corruption, a few pixels shifted
  4308. * downward, on (only) LVDS of some HP laptops with IVY.
  4309. */
  4310. for_each_pipe(pipe) {
  4311. val = I915_READ(TRANS_CHICKEN2(pipe));
  4312. val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
  4313. val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
  4314. if (dev_priv->vbt.fdi_rx_polarity_inverted)
  4315. val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
  4316. val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
  4317. val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
  4318. val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
  4319. I915_WRITE(TRANS_CHICKEN2(pipe), val);
  4320. }
  4321. /* WADP0ClockGatingDisable */
  4322. for_each_pipe(pipe) {
  4323. I915_WRITE(TRANS_CHICKEN1(pipe),
  4324. TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
  4325. }
  4326. }
  4327. static void gen6_check_mch_setup(struct drm_device *dev)
  4328. {
  4329. struct drm_i915_private *dev_priv = dev->dev_private;
  4330. uint32_t tmp;
  4331. tmp = I915_READ(MCH_SSKPD);
  4332. if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL) {
  4333. DRM_INFO("Wrong MCH_SSKPD value: 0x%08x\n", tmp);
  4334. DRM_INFO("This can cause pipe underruns and display issues.\n");
  4335. DRM_INFO("Please upgrade your BIOS to fix this.\n");
  4336. }
  4337. }
  4338. static void gen6_init_clock_gating(struct drm_device *dev)
  4339. {
  4340. struct drm_i915_private *dev_priv = dev->dev_private;
  4341. uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
  4342. I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
  4343. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  4344. I915_READ(ILK_DISPLAY_CHICKEN2) |
  4345. ILK_ELPIN_409_SELECT);
  4346. /* WaDisableHiZPlanesWhenMSAAEnabled:snb */
  4347. I915_WRITE(_3D_CHICKEN,
  4348. _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
  4349. /* WaSetupGtModeTdRowDispatch:snb */
  4350. if (IS_SNB_GT1(dev))
  4351. I915_WRITE(GEN6_GT_MODE,
  4352. _MASKED_BIT_ENABLE(GEN6_TD_FOUR_ROW_DISPATCH_DISABLE));
  4353. I915_WRITE(WM3_LP_ILK, 0);
  4354. I915_WRITE(WM2_LP_ILK, 0);
  4355. I915_WRITE(WM1_LP_ILK, 0);
  4356. I915_WRITE(CACHE_MODE_0,
  4357. _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
  4358. I915_WRITE(GEN6_UCGCTL1,
  4359. I915_READ(GEN6_UCGCTL1) |
  4360. GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
  4361. GEN6_CSUNIT_CLOCK_GATE_DISABLE);
  4362. /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
  4363. * gating disable must be set. Failure to set it results in
  4364. * flickering pixels due to Z write ordering failures after
  4365. * some amount of runtime in the Mesa "fire" demo, and Unigine
  4366. * Sanctuary and Tropics, and apparently anything else with
  4367. * alpha test or pixel discard.
  4368. *
  4369. * According to the spec, bit 11 (RCCUNIT) must also be set,
  4370. * but we didn't debug actual testcases to find it out.
  4371. *
  4372. * Also apply WaDisableVDSUnitClockGating:snb and
  4373. * WaDisableRCPBUnitClockGating:snb.
  4374. */
  4375. I915_WRITE(GEN6_UCGCTL2,
  4376. GEN7_VDSUNIT_CLOCK_GATE_DISABLE |
  4377. GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
  4378. GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
  4379. /* Bspec says we need to always set all mask bits. */
  4380. I915_WRITE(_3D_CHICKEN3, (0xFFFF << 16) |
  4381. _3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL);
  4382. /*
  4383. * According to the spec the following bits should be
  4384. * set in order to enable memory self-refresh and fbc:
  4385. * The bit21 and bit22 of 0x42000
  4386. * The bit21 and bit22 of 0x42004
  4387. * The bit5 and bit7 of 0x42020
  4388. * The bit14 of 0x70180
  4389. * The bit14 of 0x71180
  4390. *
  4391. * WaFbcAsynchFlipDisableFbcQueue:snb
  4392. */
  4393. I915_WRITE(ILK_DISPLAY_CHICKEN1,
  4394. I915_READ(ILK_DISPLAY_CHICKEN1) |
  4395. ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
  4396. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  4397. I915_READ(ILK_DISPLAY_CHICKEN2) |
  4398. ILK_DPARB_GATE | ILK_VSDPFD_FULL);
  4399. I915_WRITE(ILK_DSPCLK_GATE_D,
  4400. I915_READ(ILK_DSPCLK_GATE_D) |
  4401. ILK_DPARBUNIT_CLOCK_GATE_ENABLE |
  4402. ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
  4403. g4x_disable_trickle_feed(dev);
  4404. /* The default value should be 0x200 according to docs, but the two
  4405. * platforms I checked have a 0 for this. (Maybe BIOS overrides?) */
  4406. I915_WRITE(GEN6_GT_MODE, _MASKED_BIT_DISABLE(0xffff));
  4407. I915_WRITE(GEN6_GT_MODE, _MASKED_BIT_ENABLE(GEN6_GT_MODE_HI));
  4408. cpt_init_clock_gating(dev);
  4409. gen6_check_mch_setup(dev);
  4410. }
  4411. static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
  4412. {
  4413. uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);
  4414. reg &= ~GEN7_FF_SCHED_MASK;
  4415. reg |= GEN7_FF_TS_SCHED_HW;
  4416. reg |= GEN7_FF_VS_SCHED_HW;
  4417. reg |= GEN7_FF_DS_SCHED_HW;
  4418. if (IS_HASWELL(dev_priv->dev))
  4419. reg &= ~GEN7_FF_VS_REF_CNT_FFME;
  4420. I915_WRITE(GEN7_FF_THREAD_MODE, reg);
  4421. }
  4422. static void lpt_init_clock_gating(struct drm_device *dev)
  4423. {
  4424. struct drm_i915_private *dev_priv = dev->dev_private;
  4425. /*
  4426. * TODO: this bit should only be enabled when really needed, then
  4427. * disabled when not needed anymore in order to save power.
  4428. */
  4429. if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE)
  4430. I915_WRITE(SOUTH_DSPCLK_GATE_D,
  4431. I915_READ(SOUTH_DSPCLK_GATE_D) |
  4432. PCH_LP_PARTITION_LEVEL_DISABLE);
  4433. /* WADPOClockGatingDisable:hsw */
  4434. I915_WRITE(_TRANSA_CHICKEN1,
  4435. I915_READ(_TRANSA_CHICKEN1) |
  4436. TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
  4437. }
  4438. static void lpt_suspend_hw(struct drm_device *dev)
  4439. {
  4440. struct drm_i915_private *dev_priv = dev->dev_private;
  4441. if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
  4442. uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);
  4443. val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
  4444. I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
  4445. }
  4446. }
  4447. static void gen8_init_clock_gating(struct drm_device *dev)
  4448. {
  4449. struct drm_i915_private *dev_priv = dev->dev_private;
  4450. enum pipe i;
  4451. I915_WRITE(WM3_LP_ILK, 0);
  4452. I915_WRITE(WM2_LP_ILK, 0);
  4453. I915_WRITE(WM1_LP_ILK, 0);
  4454. /* FIXME(BDW): Check all the w/a, some might only apply to
  4455. * pre-production hw. */
  4456. WARN(!i915_preliminary_hw_support,
  4457. "GEN8_CENTROID_PIXEL_OPT_DIS not be needed for production\n");
  4458. I915_WRITE(HALF_SLICE_CHICKEN3,
  4459. _MASKED_BIT_ENABLE(GEN8_CENTROID_PIXEL_OPT_DIS));
  4460. I915_WRITE(HALF_SLICE_CHICKEN3,
  4461. _MASKED_BIT_ENABLE(GEN8_SAMPLER_POWER_BYPASS_DIS));
  4462. I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_BWGTLB_DISABLE));
  4463. I915_WRITE(_3D_CHICKEN3,
  4464. _3D_CHICKEN_SDE_LIMIT_FIFO_POLY_DEPTH(2));
  4465. I915_WRITE(COMMON_SLICE_CHICKEN2,
  4466. _MASKED_BIT_ENABLE(GEN8_CSC2_SBE_VUE_CACHE_CONSERVATIVE));
  4467. I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
  4468. _MASKED_BIT_ENABLE(GEN7_SINGLE_SUBSCAN_DISPATCH_ENABLE));
  4469. /* WaSwitchSolVfFArbitrationPriority */
  4470. I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
  4471. /* WaPsrDPAMaskVBlankInSRD */
  4472. I915_WRITE(CHICKEN_PAR1_1,
  4473. I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);
  4474. /* WaPsrDPRSUnmaskVBlankInSRD */
  4475. for_each_pipe(i) {
  4476. I915_WRITE(CHICKEN_PIPESL_1(i),
  4477. I915_READ(CHICKEN_PIPESL_1(i) |
  4478. DPRS_MASK_VBLANK_SRD));
  4479. }
  4480. }
  4481. static void haswell_init_clock_gating(struct drm_device *dev)
  4482. {
  4483. struct drm_i915_private *dev_priv = dev->dev_private;
  4484. I915_WRITE(WM3_LP_ILK, 0);
  4485. I915_WRITE(WM2_LP_ILK, 0);
  4486. I915_WRITE(WM1_LP_ILK, 0);
  4487. /* According to the spec, bit 13 (RCZUNIT) must be set on IVB.
  4488. * This implements the WaDisableRCZUnitClockGating:hsw workaround.
  4489. */
  4490. I915_WRITE(GEN6_UCGCTL2, GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
  4491. /* Apply the WaDisableRHWOOptimizationForRenderHang:hsw workaround. */
  4492. I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
  4493. GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
  4494. /* WaApplyL3ControlAndL3ChickenMode:hsw */
  4495. I915_WRITE(GEN7_L3CNTLREG1,
  4496. GEN7_WA_FOR_GEN7_L3_CONTROL);
  4497. I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
  4498. GEN7_WA_L3_CHICKEN_MODE);
  4499. /* L3 caching of data atomics doesn't work -- disable it. */
  4500. I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
  4501. I915_WRITE(HSW_ROW_CHICKEN3,
  4502. _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));
  4503. /* This is required by WaCatErrorRejectionIssue:hsw */
  4504. I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
  4505. I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
  4506. GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
  4507. /* WaVSRefCountFullforceMissDisable:hsw */
  4508. gen7_setup_fixed_func_scheduler(dev_priv);
  4509. /* WaDisable4x2SubspanOptimization:hsw */
  4510. I915_WRITE(CACHE_MODE_1,
  4511. _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
  4512. /* WaSwitchSolVfFArbitrationPriority:hsw */
  4513. I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
  4514. /* WaRsPkgCStateDisplayPMReq:hsw */
  4515. I915_WRITE(CHICKEN_PAR1_1,
  4516. I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
  4517. lpt_init_clock_gating(dev);
  4518. }
  4519. static void ivybridge_init_clock_gating(struct drm_device *dev)
  4520. {
  4521. struct drm_i915_private *dev_priv = dev->dev_private;
  4522. uint32_t snpcr;
  4523. I915_WRITE(WM3_LP_ILK, 0);
  4524. I915_WRITE(WM2_LP_ILK, 0);
  4525. I915_WRITE(WM1_LP_ILK, 0);
  4526. I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
  4527. /* WaDisableEarlyCull:ivb */
  4528. I915_WRITE(_3D_CHICKEN3,
  4529. _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
  4530. /* WaDisableBackToBackFlipFix:ivb */
  4531. I915_WRITE(IVB_CHICKEN3,
  4532. CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
  4533. CHICKEN3_DGMG_DONE_FIX_DISABLE);
  4534. /* WaDisablePSDDualDispatchEnable:ivb */
  4535. if (IS_IVB_GT1(dev))
  4536. I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
  4537. _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
  4538. else
  4539. I915_WRITE(GEN7_HALF_SLICE_CHICKEN1_GT2,
  4540. _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
  4541. /* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
  4542. I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
  4543. GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
  4544. /* WaApplyL3ControlAndL3ChickenMode:ivb */
  4545. I915_WRITE(GEN7_L3CNTLREG1,
  4546. GEN7_WA_FOR_GEN7_L3_CONTROL);
  4547. I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
  4548. GEN7_WA_L3_CHICKEN_MODE);
  4549. if (IS_IVB_GT1(dev))
  4550. I915_WRITE(GEN7_ROW_CHICKEN2,
  4551. _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
  4552. else
  4553. I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
  4554. _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
  4555. /* WaForceL3Serialization:ivb */
  4556. I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
  4557. ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
  4558. /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
  4559. * gating disable must be set. Failure to set it results in
  4560. * flickering pixels due to Z write ordering failures after
  4561. * some amount of runtime in the Mesa "fire" demo, and Unigine
  4562. * Sanctuary and Tropics, and apparently anything else with
  4563. * alpha test or pixel discard.
  4564. *
  4565. * According to the spec, bit 11 (RCCUNIT) must also be set,
  4566. * but we didn't debug actual testcases to find it out.
  4567. *
  4568. * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
  4569. * This implements the WaDisableRCZUnitClockGating:ivb workaround.
  4570. */
  4571. I915_WRITE(GEN6_UCGCTL2,
  4572. GEN6_RCZUNIT_CLOCK_GATE_DISABLE |
  4573. GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
  4574. /* This is required by WaCatErrorRejectionIssue:ivb */
  4575. I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
  4576. I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
  4577. GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
  4578. g4x_disable_trickle_feed(dev);
  4579. /* WaVSRefCountFullforceMissDisable:ivb */
  4580. gen7_setup_fixed_func_scheduler(dev_priv);
  4581. /* WaDisable4x2SubspanOptimization:ivb */
  4582. I915_WRITE(CACHE_MODE_1,
  4583. _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
  4584. snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
  4585. snpcr &= ~GEN6_MBC_SNPCR_MASK;
  4586. snpcr |= GEN6_MBC_SNPCR_MED;
  4587. I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
  4588. if (!HAS_PCH_NOP(dev))
  4589. cpt_init_clock_gating(dev);
  4590. gen6_check_mch_setup(dev);
  4591. }
  4592. static void valleyview_init_clock_gating(struct drm_device *dev)
  4593. {
  4594. struct drm_i915_private *dev_priv = dev->dev_private;
  4595. I915_WRITE(DSPCLK_GATE_D, VRHUNIT_CLOCK_GATE_DISABLE);
  4596. /* WaDisableEarlyCull:vlv */
  4597. I915_WRITE(_3D_CHICKEN3,
  4598. _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
  4599. /* WaDisableBackToBackFlipFix:vlv */
  4600. I915_WRITE(IVB_CHICKEN3,
  4601. CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
  4602. CHICKEN3_DGMG_DONE_FIX_DISABLE);
  4603. /* WaDisablePSDDualDispatchEnable:vlv */
  4604. I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
  4605. _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
  4606. GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
  4607. /* Apply the WaDisableRHWOOptimizationForRenderHang:vlv workaround. */
  4608. I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
  4609. GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
  4610. /* WaApplyL3ControlAndL3ChickenMode:vlv */
  4611. I915_WRITE(GEN7_L3CNTLREG1, I915_READ(GEN7_L3CNTLREG1) | GEN7_L3AGDIS);
  4612. I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER, GEN7_WA_L3_CHICKEN_MODE);
  4613. /* WaForceL3Serialization:vlv */
  4614. I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
  4615. ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
  4616. /* WaDisableDopClockGating:vlv */
  4617. I915_WRITE(GEN7_ROW_CHICKEN2,
  4618. _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
  4619. /* This is required by WaCatErrorRejectionIssue:vlv */
  4620. I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
  4621. I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
  4622. GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
  4623. /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
  4624. * gating disable must be set. Failure to set it results in
  4625. * flickering pixels due to Z write ordering failures after
  4626. * some amount of runtime in the Mesa "fire" demo, and Unigine
  4627. * Sanctuary and Tropics, and apparently anything else with
  4628. * alpha test or pixel discard.
  4629. *
  4630. * According to the spec, bit 11 (RCCUNIT) must also be set,
  4631. * but we didn't debug actual testcases to find it out.
  4632. *
  4633. * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
  4634. * This implements the WaDisableRCZUnitClockGating:vlv workaround.
  4635. *
  4636. * Also apply WaDisableVDSUnitClockGating:vlv and
  4637. * WaDisableRCPBUnitClockGating:vlv.
  4638. */
  4639. I915_WRITE(GEN6_UCGCTL2,
  4640. GEN7_VDSUNIT_CLOCK_GATE_DISABLE |
  4641. GEN7_TDLUNIT_CLOCK_GATE_DISABLE |
  4642. GEN6_RCZUNIT_CLOCK_GATE_DISABLE |
  4643. GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
  4644. GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
  4645. I915_WRITE(GEN7_UCGCTL4, GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
  4646. I915_WRITE(MI_ARB_VLV, MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE);
  4647. I915_WRITE(CACHE_MODE_1,
  4648. _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
  4649. /*
  4650. * WaDisableVLVClockGating_VBIIssue:vlv
  4651. * Disable clock gating on th GCFG unit to prevent a delay
  4652. * in the reporting of vblank events.
  4653. */
  4654. I915_WRITE(VLV_GUNIT_CLOCK_GATE, 0xffffffff);
  4655. /* Conservative clock gating settings for now */
  4656. I915_WRITE(0x9400, 0xffffffff);
  4657. I915_WRITE(0x9404, 0xffffffff);
  4658. I915_WRITE(0x9408, 0xffffffff);
  4659. I915_WRITE(0x940c, 0xffffffff);
  4660. I915_WRITE(0x9410, 0xffffffff);
  4661. I915_WRITE(0x9414, 0xffffffff);
  4662. I915_WRITE(0x9418, 0xffffffff);
  4663. }
  4664. static void g4x_init_clock_gating(struct drm_device *dev)
  4665. {
  4666. struct drm_i915_private *dev_priv = dev->dev_private;
  4667. uint32_t dspclk_gate;
  4668. I915_WRITE(RENCLK_GATE_D1, 0);
  4669. I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
  4670. GS_UNIT_CLOCK_GATE_DISABLE |
  4671. CL_UNIT_CLOCK_GATE_DISABLE);
  4672. I915_WRITE(RAMCLK_GATE_D, 0);
  4673. dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
  4674. OVRUNIT_CLOCK_GATE_DISABLE |
  4675. OVCUNIT_CLOCK_GATE_DISABLE;
  4676. if (IS_GM45(dev))
  4677. dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
  4678. I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
  4679. /* WaDisableRenderCachePipelinedFlush */
  4680. I915_WRITE(CACHE_MODE_0,
  4681. _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
  4682. g4x_disable_trickle_feed(dev);
  4683. }
  4684. static void crestline_init_clock_gating(struct drm_device *dev)
  4685. {
  4686. struct drm_i915_private *dev_priv = dev->dev_private;
  4687. I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
  4688. I915_WRITE(RENCLK_GATE_D2, 0);
  4689. I915_WRITE(DSPCLK_GATE_D, 0);
  4690. I915_WRITE(RAMCLK_GATE_D, 0);
  4691. I915_WRITE16(DEUC, 0);
  4692. I915_WRITE(MI_ARB_STATE,
  4693. _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
  4694. }
  4695. static void broadwater_init_clock_gating(struct drm_device *dev)
  4696. {
  4697. struct drm_i915_private *dev_priv = dev->dev_private;
  4698. I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
  4699. I965_RCC_CLOCK_GATE_DISABLE |
  4700. I965_RCPB_CLOCK_GATE_DISABLE |
  4701. I965_ISC_CLOCK_GATE_DISABLE |
  4702. I965_FBC_CLOCK_GATE_DISABLE);
  4703. I915_WRITE(RENCLK_GATE_D2, 0);
  4704. I915_WRITE(MI_ARB_STATE,
  4705. _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
  4706. }
  4707. static void gen3_init_clock_gating(struct drm_device *dev)
  4708. {
  4709. struct drm_i915_private *dev_priv = dev->dev_private;
  4710. u32 dstate = I915_READ(D_STATE);
  4711. dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
  4712. DSTATE_DOT_CLOCK_GATING;
  4713. I915_WRITE(D_STATE, dstate);
  4714. if (IS_PINEVIEW(dev))
  4715. I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
  4716. /* IIR "flip pending" means done if this bit is set */
  4717. I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
  4718. }
  4719. static void i85x_init_clock_gating(struct drm_device *dev)
  4720. {
  4721. struct drm_i915_private *dev_priv = dev->dev_private;
  4722. I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
  4723. }
  4724. static void i830_init_clock_gating(struct drm_device *dev)
  4725. {
  4726. struct drm_i915_private *dev_priv = dev->dev_private;
  4727. I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
  4728. }
  4729. void intel_init_clock_gating(struct drm_device *dev)
  4730. {
  4731. struct drm_i915_private *dev_priv = dev->dev_private;
  4732. dev_priv->display.init_clock_gating(dev);
  4733. }
  4734. void intel_suspend_hw(struct drm_device *dev)
  4735. {
  4736. if (HAS_PCH_LPT(dev))
  4737. lpt_suspend_hw(dev);
  4738. }
  4739. static bool is_always_on_power_domain(struct drm_device *dev,
  4740. enum intel_display_power_domain domain)
  4741. {
  4742. unsigned long always_on_domains;
  4743. BUG_ON(BIT(domain) & ~POWER_DOMAIN_MASK);
  4744. if (IS_BROADWELL(dev)) {
  4745. always_on_domains = BDW_ALWAYS_ON_POWER_DOMAINS;
  4746. } else if (IS_HASWELL(dev)) {
  4747. always_on_domains = HSW_ALWAYS_ON_POWER_DOMAINS;
  4748. } else {
  4749. WARN_ON(1);
  4750. return true;
  4751. }
  4752. return BIT(domain) & always_on_domains;
  4753. }
  4754. /**
  4755. * We should only use the power well if we explicitly asked the hardware to
  4756. * enable it, so check if it's enabled and also check if we've requested it to
  4757. * be enabled.
  4758. */
  4759. bool intel_display_power_enabled(struct drm_device *dev,
  4760. enum intel_display_power_domain domain)
  4761. {
  4762. struct drm_i915_private *dev_priv = dev->dev_private;
  4763. if (!HAS_POWER_WELL(dev))
  4764. return true;
  4765. if (is_always_on_power_domain(dev, domain))
  4766. return true;
  4767. return I915_READ(HSW_PWR_WELL_DRIVER) ==
  4768. (HSW_PWR_WELL_ENABLE_REQUEST | HSW_PWR_WELL_STATE_ENABLED);
  4769. }
  4770. static void __intel_set_power_well(struct drm_device *dev, bool enable)
  4771. {
  4772. struct drm_i915_private *dev_priv = dev->dev_private;
  4773. bool is_enabled, enable_requested;
  4774. uint32_t tmp;
  4775. tmp = I915_READ(HSW_PWR_WELL_DRIVER);
  4776. is_enabled = tmp & HSW_PWR_WELL_STATE_ENABLED;
  4777. enable_requested = tmp & HSW_PWR_WELL_ENABLE_REQUEST;
  4778. if (enable) {
  4779. if (!enable_requested)
  4780. I915_WRITE(HSW_PWR_WELL_DRIVER,
  4781. HSW_PWR_WELL_ENABLE_REQUEST);
  4782. if (!is_enabled) {
  4783. DRM_DEBUG_KMS("Enabling power well\n");
  4784. if (wait_for((I915_READ(HSW_PWR_WELL_DRIVER) &
  4785. HSW_PWR_WELL_STATE_ENABLED), 20))
  4786. DRM_ERROR("Timeout enabling power well\n");
  4787. }
  4788. } else {
  4789. if (enable_requested) {
  4790. unsigned long irqflags;
  4791. enum pipe p;
  4792. I915_WRITE(HSW_PWR_WELL_DRIVER, 0);
  4793. POSTING_READ(HSW_PWR_WELL_DRIVER);
  4794. DRM_DEBUG_KMS("Requesting to disable the power well\n");
  4795. /*
  4796. * After this, the registers on the pipes that are part
  4797. * of the power well will become zero, so we have to
  4798. * adjust our counters according to that.
  4799. *
  4800. * FIXME: Should we do this in general in
  4801. * drm_vblank_post_modeset?
  4802. */
  4803. spin_lock_irqsave(&dev->vbl_lock, irqflags);
  4804. for_each_pipe(p)
  4805. if (p != PIPE_A)
  4806. dev->vblank[p].last = 0;
  4807. spin_unlock_irqrestore(&dev->vbl_lock, irqflags);
  4808. }
  4809. }
  4810. }
  4811. static void __intel_power_well_get(struct drm_device *dev,
  4812. struct i915_power_well *power_well)
  4813. {
  4814. if (!power_well->count++)
  4815. __intel_set_power_well(dev, true);
  4816. }
  4817. static void __intel_power_well_put(struct drm_device *dev,
  4818. struct i915_power_well *power_well)
  4819. {
  4820. WARN_ON(!power_well->count);
  4821. if (!--power_well->count && i915_disable_power_well)
  4822. __intel_set_power_well(dev, false);
  4823. }
  4824. void intel_display_power_get(struct drm_device *dev,
  4825. enum intel_display_power_domain domain)
  4826. {
  4827. struct drm_i915_private *dev_priv = dev->dev_private;
  4828. struct i915_power_domains *power_domains;
  4829. if (!HAS_POWER_WELL(dev))
  4830. return;
  4831. if (is_always_on_power_domain(dev, domain))
  4832. return;
  4833. power_domains = &dev_priv->power_domains;
  4834. mutex_lock(&power_domains->lock);
  4835. __intel_power_well_get(dev, &power_domains->power_wells[0]);
  4836. mutex_unlock(&power_domains->lock);
  4837. }
  4838. void intel_display_power_put(struct drm_device *dev,
  4839. enum intel_display_power_domain domain)
  4840. {
  4841. struct drm_i915_private *dev_priv = dev->dev_private;
  4842. struct i915_power_domains *power_domains;
  4843. if (!HAS_POWER_WELL(dev))
  4844. return;
  4845. if (is_always_on_power_domain(dev, domain))
  4846. return;
  4847. power_domains = &dev_priv->power_domains;
  4848. mutex_lock(&power_domains->lock);
  4849. __intel_power_well_put(dev, &power_domains->power_wells[0]);
  4850. mutex_unlock(&power_domains->lock);
  4851. }
  4852. static struct i915_power_domains *hsw_pwr;
  4853. /* Display audio driver power well request */
  4854. void i915_request_power_well(void)
  4855. {
  4856. struct drm_i915_private *dev_priv;
  4857. if (WARN_ON(!hsw_pwr))
  4858. return;
  4859. dev_priv = container_of(hsw_pwr, struct drm_i915_private,
  4860. power_domains);
  4861. mutex_lock(&hsw_pwr->lock);
  4862. __intel_power_well_get(dev_priv->dev, &hsw_pwr->power_wells[0]);
  4863. mutex_unlock(&hsw_pwr->lock);
  4864. }
  4865. EXPORT_SYMBOL_GPL(i915_request_power_well);
  4866. /* Display audio driver power well release */
  4867. void i915_release_power_well(void)
  4868. {
  4869. struct drm_i915_private *dev_priv;
  4870. if (WARN_ON(!hsw_pwr))
  4871. return;
  4872. dev_priv = container_of(hsw_pwr, struct drm_i915_private,
  4873. power_domains);
  4874. mutex_lock(&hsw_pwr->lock);
  4875. __intel_power_well_put(dev_priv->dev, &hsw_pwr->power_wells[0]);
  4876. mutex_unlock(&hsw_pwr->lock);
  4877. }
  4878. EXPORT_SYMBOL_GPL(i915_release_power_well);
  4879. int intel_power_domains_init(struct drm_device *dev)
  4880. {
  4881. struct drm_i915_private *dev_priv = dev->dev_private;
  4882. struct i915_power_domains *power_domains = &dev_priv->power_domains;
  4883. struct i915_power_well *power_well;
  4884. mutex_init(&power_domains->lock);
  4885. hsw_pwr = power_domains;
  4886. power_well = &power_domains->power_wells[0];
  4887. power_well->count = 0;
  4888. return 0;
  4889. }
  4890. void intel_power_domains_remove(struct drm_device *dev)
  4891. {
  4892. hsw_pwr = NULL;
  4893. }
  4894. static void intel_power_domains_resume(struct drm_device *dev)
  4895. {
  4896. struct drm_i915_private *dev_priv = dev->dev_private;
  4897. struct i915_power_domains *power_domains = &dev_priv->power_domains;
  4898. struct i915_power_well *power_well;
  4899. if (!HAS_POWER_WELL(dev))
  4900. return;
  4901. mutex_lock(&power_domains->lock);
  4902. power_well = &power_domains->power_wells[0];
  4903. __intel_set_power_well(dev, power_well->count > 0);
  4904. mutex_unlock(&power_domains->lock);
  4905. }
  4906. /*
  4907. * Starting with Haswell, we have a "Power Down Well" that can be turned off
  4908. * when not needed anymore. We have 4 registers that can request the power well
  4909. * to be enabled, and it will only be disabled if none of the registers is
  4910. * requesting it to be enabled.
  4911. */
  4912. void intel_power_domains_init_hw(struct drm_device *dev)
  4913. {
  4914. struct drm_i915_private *dev_priv = dev->dev_private;
  4915. if (!HAS_POWER_WELL(dev))
  4916. return;
  4917. /* For now, we need the power well to be always enabled. */
  4918. intel_display_set_init_power(dev, true);
  4919. intel_power_domains_resume(dev);
  4920. /* We're taking over the BIOS, so clear any requests made by it since
  4921. * the driver is in charge now. */
  4922. if (I915_READ(HSW_PWR_WELL_BIOS) & HSW_PWR_WELL_ENABLE_REQUEST)
  4923. I915_WRITE(HSW_PWR_WELL_BIOS, 0);
  4924. }
  4925. /* Disables PC8 so we can use the GMBUS and DP AUX interrupts. */
  4926. void intel_aux_display_runtime_get(struct drm_i915_private *dev_priv)
  4927. {
  4928. hsw_disable_package_c8(dev_priv);
  4929. }
  4930. void intel_aux_display_runtime_put(struct drm_i915_private *dev_priv)
  4931. {
  4932. hsw_enable_package_c8(dev_priv);
  4933. }
  4934. /* Set up chip specific power management-related functions */
  4935. void intel_init_pm(struct drm_device *dev)
  4936. {
  4937. struct drm_i915_private *dev_priv = dev->dev_private;
  4938. if (I915_HAS_FBC(dev)) {
  4939. if (HAS_PCH_SPLIT(dev)) {
  4940. dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
  4941. if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
  4942. dev_priv->display.enable_fbc =
  4943. gen7_enable_fbc;
  4944. else
  4945. dev_priv->display.enable_fbc =
  4946. ironlake_enable_fbc;
  4947. dev_priv->display.disable_fbc = ironlake_disable_fbc;
  4948. } else if (IS_GM45(dev)) {
  4949. dev_priv->display.fbc_enabled = g4x_fbc_enabled;
  4950. dev_priv->display.enable_fbc = g4x_enable_fbc;
  4951. dev_priv->display.disable_fbc = g4x_disable_fbc;
  4952. } else if (IS_CRESTLINE(dev)) {
  4953. dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
  4954. dev_priv->display.enable_fbc = i8xx_enable_fbc;
  4955. dev_priv->display.disable_fbc = i8xx_disable_fbc;
  4956. }
  4957. /* 855GM needs testing */
  4958. }
  4959. /* For cxsr */
  4960. if (IS_PINEVIEW(dev))
  4961. i915_pineview_get_mem_freq(dev);
  4962. else if (IS_GEN5(dev))
  4963. i915_ironlake_get_mem_freq(dev);
  4964. /* For FIFO watermark updates */
  4965. if (HAS_PCH_SPLIT(dev)) {
  4966. intel_setup_wm_latency(dev);
  4967. if (IS_GEN5(dev)) {
  4968. if (dev_priv->wm.pri_latency[1] &&
  4969. dev_priv->wm.spr_latency[1] &&
  4970. dev_priv->wm.cur_latency[1])
  4971. dev_priv->display.update_wm = ironlake_update_wm;
  4972. else {
  4973. DRM_DEBUG_KMS("Failed to get proper latency. "
  4974. "Disable CxSR\n");
  4975. dev_priv->display.update_wm = NULL;
  4976. }
  4977. dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
  4978. } else if (IS_GEN6(dev)) {
  4979. if (dev_priv->wm.pri_latency[0] &&
  4980. dev_priv->wm.spr_latency[0] &&
  4981. dev_priv->wm.cur_latency[0]) {
  4982. dev_priv->display.update_wm = sandybridge_update_wm;
  4983. dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
  4984. } else {
  4985. DRM_DEBUG_KMS("Failed to read display plane latency. "
  4986. "Disable CxSR\n");
  4987. dev_priv->display.update_wm = NULL;
  4988. }
  4989. dev_priv->display.init_clock_gating = gen6_init_clock_gating;
  4990. } else if (IS_IVYBRIDGE(dev)) {
  4991. if (dev_priv->wm.pri_latency[0] &&
  4992. dev_priv->wm.spr_latency[0] &&
  4993. dev_priv->wm.cur_latency[0]) {
  4994. dev_priv->display.update_wm = ivybridge_update_wm;
  4995. dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
  4996. } else {
  4997. DRM_DEBUG_KMS("Failed to read display plane latency. "
  4998. "Disable CxSR\n");
  4999. dev_priv->display.update_wm = NULL;
  5000. }
  5001. dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
  5002. } else if (IS_HASWELL(dev)) {
  5003. if (dev_priv->wm.pri_latency[0] &&
  5004. dev_priv->wm.spr_latency[0] &&
  5005. dev_priv->wm.cur_latency[0]) {
  5006. dev_priv->display.update_wm = haswell_update_wm;
  5007. dev_priv->display.update_sprite_wm =
  5008. haswell_update_sprite_wm;
  5009. } else {
  5010. DRM_DEBUG_KMS("Failed to read display plane latency. "
  5011. "Disable CxSR\n");
  5012. dev_priv->display.update_wm = NULL;
  5013. }
  5014. dev_priv->display.init_clock_gating = haswell_init_clock_gating;
  5015. } else if (INTEL_INFO(dev)->gen == 8) {
  5016. dev_priv->display.init_clock_gating = gen8_init_clock_gating;
  5017. } else
  5018. dev_priv->display.update_wm = NULL;
  5019. } else if (IS_VALLEYVIEW(dev)) {
  5020. dev_priv->display.update_wm = valleyview_update_wm;
  5021. dev_priv->display.init_clock_gating =
  5022. valleyview_init_clock_gating;
  5023. } else if (IS_PINEVIEW(dev)) {
  5024. if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
  5025. dev_priv->is_ddr3,
  5026. dev_priv->fsb_freq,
  5027. dev_priv->mem_freq)) {
  5028. DRM_INFO("failed to find known CxSR latency "
  5029. "(found ddr%s fsb freq %d, mem freq %d), "
  5030. "disabling CxSR\n",
  5031. (dev_priv->is_ddr3 == 1) ? "3" : "2",
  5032. dev_priv->fsb_freq, dev_priv->mem_freq);
  5033. /* Disable CxSR and never update its watermark again */
  5034. pineview_disable_cxsr(dev);
  5035. dev_priv->display.update_wm = NULL;
  5036. } else
  5037. dev_priv->display.update_wm = pineview_update_wm;
  5038. dev_priv->display.init_clock_gating = gen3_init_clock_gating;
  5039. } else if (IS_G4X(dev)) {
  5040. dev_priv->display.update_wm = g4x_update_wm;
  5041. dev_priv->display.init_clock_gating = g4x_init_clock_gating;
  5042. } else if (IS_GEN4(dev)) {
  5043. dev_priv->display.update_wm = i965_update_wm;
  5044. if (IS_CRESTLINE(dev))
  5045. dev_priv->display.init_clock_gating = crestline_init_clock_gating;
  5046. else if (IS_BROADWATER(dev))
  5047. dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
  5048. } else if (IS_GEN3(dev)) {
  5049. dev_priv->display.update_wm = i9xx_update_wm;
  5050. dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
  5051. dev_priv->display.init_clock_gating = gen3_init_clock_gating;
  5052. } else if (IS_I865G(dev)) {
  5053. dev_priv->display.update_wm = i830_update_wm;
  5054. dev_priv->display.init_clock_gating = i85x_init_clock_gating;
  5055. dev_priv->display.get_fifo_size = i830_get_fifo_size;
  5056. } else if (IS_I85X(dev)) {
  5057. dev_priv->display.update_wm = i9xx_update_wm;
  5058. dev_priv->display.get_fifo_size = i85x_get_fifo_size;
  5059. dev_priv->display.init_clock_gating = i85x_init_clock_gating;
  5060. } else {
  5061. dev_priv->display.update_wm = i830_update_wm;
  5062. dev_priv->display.init_clock_gating = i830_init_clock_gating;
  5063. if (IS_845G(dev))
  5064. dev_priv->display.get_fifo_size = i845_get_fifo_size;
  5065. else
  5066. dev_priv->display.get_fifo_size = i830_get_fifo_size;
  5067. }
  5068. }
  5069. int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u8 mbox, u32 *val)
  5070. {
  5071. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  5072. if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
  5073. DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
  5074. return -EAGAIN;
  5075. }
  5076. I915_WRITE(GEN6_PCODE_DATA, *val);
  5077. I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
  5078. if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
  5079. 500)) {
  5080. DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
  5081. return -ETIMEDOUT;
  5082. }
  5083. *val = I915_READ(GEN6_PCODE_DATA);
  5084. I915_WRITE(GEN6_PCODE_DATA, 0);
  5085. return 0;
  5086. }
  5087. int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u8 mbox, u32 val)
  5088. {
  5089. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  5090. if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
  5091. DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
  5092. return -EAGAIN;
  5093. }
  5094. I915_WRITE(GEN6_PCODE_DATA, val);
  5095. I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
  5096. if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
  5097. 500)) {
  5098. DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
  5099. return -ETIMEDOUT;
  5100. }
  5101. I915_WRITE(GEN6_PCODE_DATA, 0);
  5102. return 0;
  5103. }
  5104. int vlv_gpu_freq(int ddr_freq, int val)
  5105. {
  5106. int mult, base;
  5107. switch (ddr_freq) {
  5108. case 800:
  5109. mult = 20;
  5110. base = 120;
  5111. break;
  5112. case 1066:
  5113. mult = 22;
  5114. base = 133;
  5115. break;
  5116. case 1333:
  5117. mult = 21;
  5118. base = 125;
  5119. break;
  5120. default:
  5121. return -1;
  5122. }
  5123. return ((val - 0xbd) * mult) + base;
  5124. }
  5125. int vlv_freq_opcode(int ddr_freq, int val)
  5126. {
  5127. int mult, base;
  5128. switch (ddr_freq) {
  5129. case 800:
  5130. mult = 20;
  5131. base = 120;
  5132. break;
  5133. case 1066:
  5134. mult = 22;
  5135. base = 133;
  5136. break;
  5137. case 1333:
  5138. mult = 21;
  5139. base = 125;
  5140. break;
  5141. default:
  5142. return -1;
  5143. }
  5144. val /= mult;
  5145. val -= base / mult;
  5146. val += 0xbd;
  5147. if (val > 0xea)
  5148. val = 0xea;
  5149. return val;
  5150. }
  5151. void intel_pm_setup(struct drm_device *dev)
  5152. {
  5153. struct drm_i915_private *dev_priv = dev->dev_private;
  5154. mutex_init(&dev_priv->rps.hw_lock);
  5155. mutex_init(&dev_priv->pc8.lock);
  5156. dev_priv->pc8.requirements_met = false;
  5157. dev_priv->pc8.gpu_idle = false;
  5158. dev_priv->pc8.irqs_disabled = false;
  5159. dev_priv->pc8.enabled = false;
  5160. dev_priv->pc8.disable_count = 2; /* requirements_met + gpu_idle */
  5161. INIT_DELAYED_WORK(&dev_priv->pc8.enable_work, hsw_enable_pc8_work);
  5162. INIT_DELAYED_WORK(&dev_priv->rps.delayed_resume_work,
  5163. intel_gen6_powersave_work);
  5164. }