forcedeth.c 183 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052
  1. /*
  2. * forcedeth: Ethernet driver for NVIDIA nForce media access controllers.
  3. *
  4. * Note: This driver is a cleanroom reimplementation based on reverse
  5. * engineered documentation written by Carl-Daniel Hailfinger
  6. * and Andrew de Quincey.
  7. *
  8. * NVIDIA, nForce and other NVIDIA marks are trademarks or registered
  9. * trademarks of NVIDIA Corporation in the United States and other
  10. * countries.
  11. *
  12. * Copyright (C) 2003,4,5 Manfred Spraul
  13. * Copyright (C) 2004 Andrew de Quincey (wol support)
  14. * Copyright (C) 2004 Carl-Daniel Hailfinger (invalid MAC handling, insane
  15. * IRQ rate fixes, bigendian fixes, cleanups, verification)
  16. * Copyright (c) 2004,2005,2006,2007,2008 NVIDIA Corporation
  17. *
  18. * This program is free software; you can redistribute it and/or modify
  19. * it under the terms of the GNU General Public License as published by
  20. * the Free Software Foundation; either version 2 of the License, or
  21. * (at your option) any later version.
  22. *
  23. * This program is distributed in the hope that it will be useful,
  24. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  25. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  26. * GNU General Public License for more details.
  27. *
  28. * You should have received a copy of the GNU General Public License
  29. * along with this program; if not, write to the Free Software
  30. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  31. *
  32. * Known bugs:
  33. * We suspect that on some hardware no TX done interrupts are generated.
  34. * This means recovery from netif_stop_queue only happens if the hw timer
  35. * interrupt fires (100 times/second, configurable with NVREG_POLL_DEFAULT)
  36. * and the timer is active in the IRQMask, or if a rx packet arrives by chance.
  37. * If your hardware reliably generates tx done interrupts, then you can remove
  38. * DEV_NEED_TIMERIRQ from the driver_data flags.
  39. * DEV_NEED_TIMERIRQ will not harm you on sane hardware, only generating a few
  40. * superfluous timer interrupts from the nic.
  41. */
  42. #define FORCEDETH_VERSION "0.61"
  43. #define DRV_NAME "forcedeth"
  44. #include <linux/module.h>
  45. #include <linux/types.h>
  46. #include <linux/pci.h>
  47. #include <linux/interrupt.h>
  48. #include <linux/netdevice.h>
  49. #include <linux/etherdevice.h>
  50. #include <linux/delay.h>
  51. #include <linux/spinlock.h>
  52. #include <linux/ethtool.h>
  53. #include <linux/timer.h>
  54. #include <linux/skbuff.h>
  55. #include <linux/mii.h>
  56. #include <linux/random.h>
  57. #include <linux/init.h>
  58. #include <linux/if_vlan.h>
  59. #include <linux/dma-mapping.h>
  60. #include <asm/irq.h>
  61. #include <asm/io.h>
  62. #include <asm/uaccess.h>
  63. #include <asm/system.h>
  64. #if 0
  65. #define dprintk printk
  66. #else
  67. #define dprintk(x...) do { } while (0)
  68. #endif
  69. #define TX_WORK_PER_LOOP 64
  70. #define RX_WORK_PER_LOOP 64
  71. /*
  72. * Hardware access:
  73. */
  74. #define DEV_NEED_TIMERIRQ 0x00001 /* set the timer irq flag in the irq mask */
  75. #define DEV_NEED_LINKTIMER 0x00002 /* poll link settings. Relies on the timer irq */
  76. #define DEV_HAS_LARGEDESC 0x00004 /* device supports jumbo frames and needs packet format 2 */
  77. #define DEV_HAS_HIGH_DMA 0x00008 /* device supports 64bit dma */
  78. #define DEV_HAS_CHECKSUM 0x00010 /* device supports tx and rx checksum offloads */
  79. #define DEV_HAS_VLAN 0x00020 /* device supports vlan tagging and striping */
  80. #define DEV_HAS_MSI 0x00040 /* device supports MSI */
  81. #define DEV_HAS_MSI_X 0x00080 /* device supports MSI-X */
  82. #define DEV_HAS_POWER_CNTRL 0x00100 /* device supports power savings */
  83. #define DEV_HAS_STATISTICS_V1 0x00200 /* device supports hw statistics version 1 */
  84. #define DEV_HAS_STATISTICS_V2 0x00400 /* device supports hw statistics version 2 */
  85. #define DEV_HAS_TEST_EXTENDED 0x00800 /* device supports extended diagnostic test */
  86. #define DEV_HAS_MGMT_UNIT 0x01000 /* device supports management unit */
  87. #define DEV_HAS_CORRECT_MACADDR 0x02000 /* device supports correct mac address order */
  88. #define DEV_HAS_COLLISION_FIX 0x04000 /* device supports tx collision fix */
  89. #define DEV_HAS_PAUSEFRAME_TX_V1 0x08000 /* device supports tx pause frames version 1 */
  90. #define DEV_HAS_PAUSEFRAME_TX_V2 0x10000 /* device supports tx pause frames version 2 */
  91. #define DEV_HAS_PAUSEFRAME_TX_V3 0x20000 /* device supports tx pause frames version 3 */
  92. #define DEV_NEED_TX_LIMIT 0x40000 /* device needs to limit tx */
  93. #define DEV_HAS_GEAR_MODE 0x80000 /* device supports gear mode */
  94. enum {
  95. NvRegIrqStatus = 0x000,
  96. #define NVREG_IRQSTAT_MIIEVENT 0x040
  97. #define NVREG_IRQSTAT_MASK 0x81ff
  98. NvRegIrqMask = 0x004,
  99. #define NVREG_IRQ_RX_ERROR 0x0001
  100. #define NVREG_IRQ_RX 0x0002
  101. #define NVREG_IRQ_RX_NOBUF 0x0004
  102. #define NVREG_IRQ_TX_ERR 0x0008
  103. #define NVREG_IRQ_TX_OK 0x0010
  104. #define NVREG_IRQ_TIMER 0x0020
  105. #define NVREG_IRQ_LINK 0x0040
  106. #define NVREG_IRQ_RX_FORCED 0x0080
  107. #define NVREG_IRQ_TX_FORCED 0x0100
  108. #define NVREG_IRQ_RECOVER_ERROR 0x8000
  109. #define NVREG_IRQMASK_THROUGHPUT 0x00df
  110. #define NVREG_IRQMASK_CPU 0x0060
  111. #define NVREG_IRQ_TX_ALL (NVREG_IRQ_TX_ERR|NVREG_IRQ_TX_OK|NVREG_IRQ_TX_FORCED)
  112. #define NVREG_IRQ_RX_ALL (NVREG_IRQ_RX_ERROR|NVREG_IRQ_RX|NVREG_IRQ_RX_NOBUF|NVREG_IRQ_RX_FORCED)
  113. #define NVREG_IRQ_OTHER (NVREG_IRQ_TIMER|NVREG_IRQ_LINK|NVREG_IRQ_RECOVER_ERROR)
  114. #define NVREG_IRQ_UNKNOWN (~(NVREG_IRQ_RX_ERROR|NVREG_IRQ_RX|NVREG_IRQ_RX_NOBUF|NVREG_IRQ_TX_ERR| \
  115. NVREG_IRQ_TX_OK|NVREG_IRQ_TIMER|NVREG_IRQ_LINK|NVREG_IRQ_RX_FORCED| \
  116. NVREG_IRQ_TX_FORCED|NVREG_IRQ_RECOVER_ERROR))
  117. NvRegUnknownSetupReg6 = 0x008,
  118. #define NVREG_UNKSETUP6_VAL 3
  119. /*
  120. * NVREG_POLL_DEFAULT is the interval length of the timer source on the nic
  121. * NVREG_POLL_DEFAULT=97 would result in an interval length of 1 ms
  122. */
  123. NvRegPollingInterval = 0x00c,
  124. #define NVREG_POLL_DEFAULT_THROUGHPUT 970 /* backup tx cleanup if loop max reached */
  125. #define NVREG_POLL_DEFAULT_CPU 13
  126. NvRegMSIMap0 = 0x020,
  127. NvRegMSIMap1 = 0x024,
  128. NvRegMSIIrqMask = 0x030,
  129. #define NVREG_MSI_VECTOR_0_ENABLED 0x01
  130. NvRegMisc1 = 0x080,
  131. #define NVREG_MISC1_PAUSE_TX 0x01
  132. #define NVREG_MISC1_HD 0x02
  133. #define NVREG_MISC1_FORCE 0x3b0f3c
  134. NvRegMacReset = 0x34,
  135. #define NVREG_MAC_RESET_ASSERT 0x0F3
  136. NvRegTransmitterControl = 0x084,
  137. #define NVREG_XMITCTL_START 0x01
  138. #define NVREG_XMITCTL_MGMT_ST 0x40000000
  139. #define NVREG_XMITCTL_SYNC_MASK 0x000f0000
  140. #define NVREG_XMITCTL_SYNC_NOT_READY 0x0
  141. #define NVREG_XMITCTL_SYNC_PHY_INIT 0x00040000
  142. #define NVREG_XMITCTL_MGMT_SEMA_MASK 0x00000f00
  143. #define NVREG_XMITCTL_MGMT_SEMA_FREE 0x0
  144. #define NVREG_XMITCTL_HOST_SEMA_MASK 0x0000f000
  145. #define NVREG_XMITCTL_HOST_SEMA_ACQ 0x0000f000
  146. #define NVREG_XMITCTL_HOST_LOADED 0x00004000
  147. #define NVREG_XMITCTL_TX_PATH_EN 0x01000000
  148. NvRegTransmitterStatus = 0x088,
  149. #define NVREG_XMITSTAT_BUSY 0x01
  150. NvRegPacketFilterFlags = 0x8c,
  151. #define NVREG_PFF_PAUSE_RX 0x08
  152. #define NVREG_PFF_ALWAYS 0x7F0000
  153. #define NVREG_PFF_PROMISC 0x80
  154. #define NVREG_PFF_MYADDR 0x20
  155. #define NVREG_PFF_LOOPBACK 0x10
  156. NvRegOffloadConfig = 0x90,
  157. #define NVREG_OFFLOAD_HOMEPHY 0x601
  158. #define NVREG_OFFLOAD_NORMAL RX_NIC_BUFSIZE
  159. NvRegReceiverControl = 0x094,
  160. #define NVREG_RCVCTL_START 0x01
  161. #define NVREG_RCVCTL_RX_PATH_EN 0x01000000
  162. NvRegReceiverStatus = 0x98,
  163. #define NVREG_RCVSTAT_BUSY 0x01
  164. NvRegSlotTime = 0x9c,
  165. #define NVREG_SLOTTIME_LEGBF_ENABLED 0x80000000
  166. #define NVREG_SLOTTIME_10_100_FULL 0x00007f00
  167. #define NVREG_SLOTTIME_1000_FULL 0x0003ff00
  168. #define NVREG_SLOTTIME_HALF 0x0000ff00
  169. #define NVREG_SLOTTIME_DEFAULT 0x00007f00
  170. #define NVREG_SLOTTIME_MASK 0x000000ff
  171. NvRegTxDeferral = 0xA0,
  172. #define NVREG_TX_DEFERRAL_DEFAULT 0x15050f
  173. #define NVREG_TX_DEFERRAL_RGMII_10_100 0x16070f
  174. #define NVREG_TX_DEFERRAL_RGMII_1000 0x14050f
  175. #define NVREG_TX_DEFERRAL_RGMII_STRETCH_10 0x16190f
  176. #define NVREG_TX_DEFERRAL_RGMII_STRETCH_100 0x16300f
  177. #define NVREG_TX_DEFERRAL_MII_STRETCH 0x152000
  178. NvRegRxDeferral = 0xA4,
  179. #define NVREG_RX_DEFERRAL_DEFAULT 0x16
  180. NvRegMacAddrA = 0xA8,
  181. NvRegMacAddrB = 0xAC,
  182. NvRegMulticastAddrA = 0xB0,
  183. #define NVREG_MCASTADDRA_FORCE 0x01
  184. NvRegMulticastAddrB = 0xB4,
  185. NvRegMulticastMaskA = 0xB8,
  186. #define NVREG_MCASTMASKA_NONE 0xffffffff
  187. NvRegMulticastMaskB = 0xBC,
  188. #define NVREG_MCASTMASKB_NONE 0xffff
  189. NvRegPhyInterface = 0xC0,
  190. #define PHY_RGMII 0x10000000
  191. NvRegBackOffControl = 0xC4,
  192. #define NVREG_BKOFFCTRL_DEFAULT 0x70000000
  193. #define NVREG_BKOFFCTRL_SEED_MASK 0x000003ff
  194. #define NVREG_BKOFFCTRL_SELECT 24
  195. #define NVREG_BKOFFCTRL_GEAR 12
  196. NvRegTxRingPhysAddr = 0x100,
  197. NvRegRxRingPhysAddr = 0x104,
  198. NvRegRingSizes = 0x108,
  199. #define NVREG_RINGSZ_TXSHIFT 0
  200. #define NVREG_RINGSZ_RXSHIFT 16
  201. NvRegTransmitPoll = 0x10c,
  202. #define NVREG_TRANSMITPOLL_MAC_ADDR_REV 0x00008000
  203. NvRegLinkSpeed = 0x110,
  204. #define NVREG_LINKSPEED_FORCE 0x10000
  205. #define NVREG_LINKSPEED_10 1000
  206. #define NVREG_LINKSPEED_100 100
  207. #define NVREG_LINKSPEED_1000 50
  208. #define NVREG_LINKSPEED_MASK (0xFFF)
  209. NvRegUnknownSetupReg5 = 0x130,
  210. #define NVREG_UNKSETUP5_BIT31 (1<<31)
  211. NvRegTxWatermark = 0x13c,
  212. #define NVREG_TX_WM_DESC1_DEFAULT 0x0200010
  213. #define NVREG_TX_WM_DESC2_3_DEFAULT 0x1e08000
  214. #define NVREG_TX_WM_DESC2_3_1000 0xfe08000
  215. NvRegTxRxControl = 0x144,
  216. #define NVREG_TXRXCTL_KICK 0x0001
  217. #define NVREG_TXRXCTL_BIT1 0x0002
  218. #define NVREG_TXRXCTL_BIT2 0x0004
  219. #define NVREG_TXRXCTL_IDLE 0x0008
  220. #define NVREG_TXRXCTL_RESET 0x0010
  221. #define NVREG_TXRXCTL_RXCHECK 0x0400
  222. #define NVREG_TXRXCTL_DESC_1 0
  223. #define NVREG_TXRXCTL_DESC_2 0x002100
  224. #define NVREG_TXRXCTL_DESC_3 0xc02200
  225. #define NVREG_TXRXCTL_VLANSTRIP 0x00040
  226. #define NVREG_TXRXCTL_VLANINS 0x00080
  227. NvRegTxRingPhysAddrHigh = 0x148,
  228. NvRegRxRingPhysAddrHigh = 0x14C,
  229. NvRegTxPauseFrame = 0x170,
  230. #define NVREG_TX_PAUSEFRAME_DISABLE 0x0fff0080
  231. #define NVREG_TX_PAUSEFRAME_ENABLE_V1 0x01800010
  232. #define NVREG_TX_PAUSEFRAME_ENABLE_V2 0x056003f0
  233. #define NVREG_TX_PAUSEFRAME_ENABLE_V3 0x09f00880
  234. NvRegMIIStatus = 0x180,
  235. #define NVREG_MIISTAT_ERROR 0x0001
  236. #define NVREG_MIISTAT_LINKCHANGE 0x0008
  237. #define NVREG_MIISTAT_MASK_RW 0x0007
  238. #define NVREG_MIISTAT_MASK_ALL 0x000f
  239. NvRegMIIMask = 0x184,
  240. #define NVREG_MII_LINKCHANGE 0x0008
  241. NvRegAdapterControl = 0x188,
  242. #define NVREG_ADAPTCTL_START 0x02
  243. #define NVREG_ADAPTCTL_LINKUP 0x04
  244. #define NVREG_ADAPTCTL_PHYVALID 0x40000
  245. #define NVREG_ADAPTCTL_RUNNING 0x100000
  246. #define NVREG_ADAPTCTL_PHYSHIFT 24
  247. NvRegMIISpeed = 0x18c,
  248. #define NVREG_MIISPEED_BIT8 (1<<8)
  249. #define NVREG_MIIDELAY 5
  250. NvRegMIIControl = 0x190,
  251. #define NVREG_MIICTL_INUSE 0x08000
  252. #define NVREG_MIICTL_WRITE 0x00400
  253. #define NVREG_MIICTL_ADDRSHIFT 5
  254. NvRegMIIData = 0x194,
  255. NvRegWakeUpFlags = 0x200,
  256. #define NVREG_WAKEUPFLAGS_VAL 0x7770
  257. #define NVREG_WAKEUPFLAGS_BUSYSHIFT 24
  258. #define NVREG_WAKEUPFLAGS_ENABLESHIFT 16
  259. #define NVREG_WAKEUPFLAGS_D3SHIFT 12
  260. #define NVREG_WAKEUPFLAGS_D2SHIFT 8
  261. #define NVREG_WAKEUPFLAGS_D1SHIFT 4
  262. #define NVREG_WAKEUPFLAGS_D0SHIFT 0
  263. #define NVREG_WAKEUPFLAGS_ACCEPT_MAGPAT 0x01
  264. #define NVREG_WAKEUPFLAGS_ACCEPT_WAKEUPPAT 0x02
  265. #define NVREG_WAKEUPFLAGS_ACCEPT_LINKCHANGE 0x04
  266. #define NVREG_WAKEUPFLAGS_ENABLE 0x1111
  267. NvRegPatternCRC = 0x204,
  268. NvRegPatternMask = 0x208,
  269. NvRegPowerCap = 0x268,
  270. #define NVREG_POWERCAP_D3SUPP (1<<30)
  271. #define NVREG_POWERCAP_D2SUPP (1<<26)
  272. #define NVREG_POWERCAP_D1SUPP (1<<25)
  273. NvRegPowerState = 0x26c,
  274. #define NVREG_POWERSTATE_POWEREDUP 0x8000
  275. #define NVREG_POWERSTATE_VALID 0x0100
  276. #define NVREG_POWERSTATE_MASK 0x0003
  277. #define NVREG_POWERSTATE_D0 0x0000
  278. #define NVREG_POWERSTATE_D1 0x0001
  279. #define NVREG_POWERSTATE_D2 0x0002
  280. #define NVREG_POWERSTATE_D3 0x0003
  281. NvRegTxCnt = 0x280,
  282. NvRegTxZeroReXmt = 0x284,
  283. NvRegTxOneReXmt = 0x288,
  284. NvRegTxManyReXmt = 0x28c,
  285. NvRegTxLateCol = 0x290,
  286. NvRegTxUnderflow = 0x294,
  287. NvRegTxLossCarrier = 0x298,
  288. NvRegTxExcessDef = 0x29c,
  289. NvRegTxRetryErr = 0x2a0,
  290. NvRegRxFrameErr = 0x2a4,
  291. NvRegRxExtraByte = 0x2a8,
  292. NvRegRxLateCol = 0x2ac,
  293. NvRegRxRunt = 0x2b0,
  294. NvRegRxFrameTooLong = 0x2b4,
  295. NvRegRxOverflow = 0x2b8,
  296. NvRegRxFCSErr = 0x2bc,
  297. NvRegRxFrameAlignErr = 0x2c0,
  298. NvRegRxLenErr = 0x2c4,
  299. NvRegRxUnicast = 0x2c8,
  300. NvRegRxMulticast = 0x2cc,
  301. NvRegRxBroadcast = 0x2d0,
  302. NvRegTxDef = 0x2d4,
  303. NvRegTxFrame = 0x2d8,
  304. NvRegRxCnt = 0x2dc,
  305. NvRegTxPause = 0x2e0,
  306. NvRegRxPause = 0x2e4,
  307. NvRegRxDropFrame = 0x2e8,
  308. NvRegVlanControl = 0x300,
  309. #define NVREG_VLANCONTROL_ENABLE 0x2000
  310. NvRegMSIXMap0 = 0x3e0,
  311. NvRegMSIXMap1 = 0x3e4,
  312. NvRegMSIXIrqStatus = 0x3f0,
  313. NvRegPowerState2 = 0x600,
  314. #define NVREG_POWERSTATE2_POWERUP_MASK 0x0F11
  315. #define NVREG_POWERSTATE2_POWERUP_REV_A3 0x0001
  316. };
  317. /* Big endian: should work, but is untested */
  318. struct ring_desc {
  319. __le32 buf;
  320. __le32 flaglen;
  321. };
  322. struct ring_desc_ex {
  323. __le32 bufhigh;
  324. __le32 buflow;
  325. __le32 txvlan;
  326. __le32 flaglen;
  327. };
  328. union ring_type {
  329. struct ring_desc* orig;
  330. struct ring_desc_ex* ex;
  331. };
  332. #define FLAG_MASK_V1 0xffff0000
  333. #define FLAG_MASK_V2 0xffffc000
  334. #define LEN_MASK_V1 (0xffffffff ^ FLAG_MASK_V1)
  335. #define LEN_MASK_V2 (0xffffffff ^ FLAG_MASK_V2)
  336. #define NV_TX_LASTPACKET (1<<16)
  337. #define NV_TX_RETRYERROR (1<<19)
  338. #define NV_TX_RETRYCOUNT_MASK (0xF<<20)
  339. #define NV_TX_FORCED_INTERRUPT (1<<24)
  340. #define NV_TX_DEFERRED (1<<26)
  341. #define NV_TX_CARRIERLOST (1<<27)
  342. #define NV_TX_LATECOLLISION (1<<28)
  343. #define NV_TX_UNDERFLOW (1<<29)
  344. #define NV_TX_ERROR (1<<30)
  345. #define NV_TX_VALID (1<<31)
  346. #define NV_TX2_LASTPACKET (1<<29)
  347. #define NV_TX2_RETRYERROR (1<<18)
  348. #define NV_TX2_RETRYCOUNT_MASK (0xF<<19)
  349. #define NV_TX2_FORCED_INTERRUPT (1<<30)
  350. #define NV_TX2_DEFERRED (1<<25)
  351. #define NV_TX2_CARRIERLOST (1<<26)
  352. #define NV_TX2_LATECOLLISION (1<<27)
  353. #define NV_TX2_UNDERFLOW (1<<28)
  354. /* error and valid are the same for both */
  355. #define NV_TX2_ERROR (1<<30)
  356. #define NV_TX2_VALID (1<<31)
  357. #define NV_TX2_TSO (1<<28)
  358. #define NV_TX2_TSO_SHIFT 14
  359. #define NV_TX2_TSO_MAX_SHIFT 14
  360. #define NV_TX2_TSO_MAX_SIZE (1<<NV_TX2_TSO_MAX_SHIFT)
  361. #define NV_TX2_CHECKSUM_L3 (1<<27)
  362. #define NV_TX2_CHECKSUM_L4 (1<<26)
  363. #define NV_TX3_VLAN_TAG_PRESENT (1<<18)
  364. #define NV_RX_DESCRIPTORVALID (1<<16)
  365. #define NV_RX_MISSEDFRAME (1<<17)
  366. #define NV_RX_SUBSTRACT1 (1<<18)
  367. #define NV_RX_ERROR1 (1<<23)
  368. #define NV_RX_ERROR2 (1<<24)
  369. #define NV_RX_ERROR3 (1<<25)
  370. #define NV_RX_ERROR4 (1<<26)
  371. #define NV_RX_CRCERR (1<<27)
  372. #define NV_RX_OVERFLOW (1<<28)
  373. #define NV_RX_FRAMINGERR (1<<29)
  374. #define NV_RX_ERROR (1<<30)
  375. #define NV_RX_AVAIL (1<<31)
  376. #define NV_RX2_CHECKSUMMASK (0x1C000000)
  377. #define NV_RX2_CHECKSUM_IP (0x10000000)
  378. #define NV_RX2_CHECKSUM_IP_TCP (0x14000000)
  379. #define NV_RX2_CHECKSUM_IP_UDP (0x18000000)
  380. #define NV_RX2_DESCRIPTORVALID (1<<29)
  381. #define NV_RX2_SUBSTRACT1 (1<<25)
  382. #define NV_RX2_ERROR1 (1<<18)
  383. #define NV_RX2_ERROR2 (1<<19)
  384. #define NV_RX2_ERROR3 (1<<20)
  385. #define NV_RX2_ERROR4 (1<<21)
  386. #define NV_RX2_CRCERR (1<<22)
  387. #define NV_RX2_OVERFLOW (1<<23)
  388. #define NV_RX2_FRAMINGERR (1<<24)
  389. /* error and avail are the same for both */
  390. #define NV_RX2_ERROR (1<<30)
  391. #define NV_RX2_AVAIL (1<<31)
  392. #define NV_RX3_VLAN_TAG_PRESENT (1<<16)
  393. #define NV_RX3_VLAN_TAG_MASK (0x0000FFFF)
  394. /* Miscelaneous hardware related defines: */
  395. #define NV_PCI_REGSZ_VER1 0x270
  396. #define NV_PCI_REGSZ_VER2 0x2d4
  397. #define NV_PCI_REGSZ_VER3 0x604
  398. /* various timeout delays: all in usec */
  399. #define NV_TXRX_RESET_DELAY 4
  400. #define NV_TXSTOP_DELAY1 10
  401. #define NV_TXSTOP_DELAY1MAX 500000
  402. #define NV_TXSTOP_DELAY2 100
  403. #define NV_RXSTOP_DELAY1 10
  404. #define NV_RXSTOP_DELAY1MAX 500000
  405. #define NV_RXSTOP_DELAY2 100
  406. #define NV_SETUP5_DELAY 5
  407. #define NV_SETUP5_DELAYMAX 50000
  408. #define NV_POWERUP_DELAY 5
  409. #define NV_POWERUP_DELAYMAX 5000
  410. #define NV_MIIBUSY_DELAY 50
  411. #define NV_MIIPHY_DELAY 10
  412. #define NV_MIIPHY_DELAYMAX 10000
  413. #define NV_MAC_RESET_DELAY 64
  414. #define NV_WAKEUPPATTERNS 5
  415. #define NV_WAKEUPMASKENTRIES 4
  416. /* General driver defaults */
  417. #define NV_WATCHDOG_TIMEO (5*HZ)
  418. #define RX_RING_DEFAULT 128
  419. #define TX_RING_DEFAULT 256
  420. #define RX_RING_MIN 128
  421. #define TX_RING_MIN 64
  422. #define RING_MAX_DESC_VER_1 1024
  423. #define RING_MAX_DESC_VER_2_3 16384
  424. /* rx/tx mac addr + type + vlan + align + slack*/
  425. #define NV_RX_HEADERS (64)
  426. /* even more slack. */
  427. #define NV_RX_ALLOC_PAD (64)
  428. /* maximum mtu size */
  429. #define NV_PKTLIMIT_1 ETH_DATA_LEN /* hard limit not known */
  430. #define NV_PKTLIMIT_2 9100 /* Actual limit according to NVidia: 9202 */
  431. #define OOM_REFILL (1+HZ/20)
  432. #define POLL_WAIT (1+HZ/100)
  433. #define LINK_TIMEOUT (3*HZ)
  434. #define STATS_INTERVAL (10*HZ)
  435. /*
  436. * desc_ver values:
  437. * The nic supports three different descriptor types:
  438. * - DESC_VER_1: Original
  439. * - DESC_VER_2: support for jumbo frames.
  440. * - DESC_VER_3: 64-bit format.
  441. */
  442. #define DESC_VER_1 1
  443. #define DESC_VER_2 2
  444. #define DESC_VER_3 3
  445. /* PHY defines */
  446. #define PHY_OUI_MARVELL 0x5043
  447. #define PHY_OUI_CICADA 0x03f1
  448. #define PHY_OUI_VITESSE 0x01c1
  449. #define PHY_OUI_REALTEK 0x0732
  450. #define PHY_OUI_REALTEK2 0x0020
  451. #define PHYID1_OUI_MASK 0x03ff
  452. #define PHYID1_OUI_SHFT 6
  453. #define PHYID2_OUI_MASK 0xfc00
  454. #define PHYID2_OUI_SHFT 10
  455. #define PHYID2_MODEL_MASK 0x03f0
  456. #define PHY_MODEL_REALTEK_8211 0x0110
  457. #define PHY_REV_MASK 0x0001
  458. #define PHY_REV_REALTEK_8211B 0x0000
  459. #define PHY_REV_REALTEK_8211C 0x0001
  460. #define PHY_MODEL_REALTEK_8201 0x0200
  461. #define PHY_MODEL_MARVELL_E3016 0x0220
  462. #define PHY_MARVELL_E3016_INITMASK 0x0300
  463. #define PHY_CICADA_INIT1 0x0f000
  464. #define PHY_CICADA_INIT2 0x0e00
  465. #define PHY_CICADA_INIT3 0x01000
  466. #define PHY_CICADA_INIT4 0x0200
  467. #define PHY_CICADA_INIT5 0x0004
  468. #define PHY_CICADA_INIT6 0x02000
  469. #define PHY_VITESSE_INIT_REG1 0x1f
  470. #define PHY_VITESSE_INIT_REG2 0x10
  471. #define PHY_VITESSE_INIT_REG3 0x11
  472. #define PHY_VITESSE_INIT_REG4 0x12
  473. #define PHY_VITESSE_INIT_MSK1 0xc
  474. #define PHY_VITESSE_INIT_MSK2 0x0180
  475. #define PHY_VITESSE_INIT1 0x52b5
  476. #define PHY_VITESSE_INIT2 0xaf8a
  477. #define PHY_VITESSE_INIT3 0x8
  478. #define PHY_VITESSE_INIT4 0x8f8a
  479. #define PHY_VITESSE_INIT5 0xaf86
  480. #define PHY_VITESSE_INIT6 0x8f86
  481. #define PHY_VITESSE_INIT7 0xaf82
  482. #define PHY_VITESSE_INIT8 0x0100
  483. #define PHY_VITESSE_INIT9 0x8f82
  484. #define PHY_VITESSE_INIT10 0x0
  485. #define PHY_REALTEK_INIT_REG1 0x1f
  486. #define PHY_REALTEK_INIT_REG2 0x19
  487. #define PHY_REALTEK_INIT_REG3 0x13
  488. #define PHY_REALTEK_INIT_REG4 0x14
  489. #define PHY_REALTEK_INIT_REG5 0x18
  490. #define PHY_REALTEK_INIT_REG6 0x11
  491. #define PHY_REALTEK_INIT1 0x0000
  492. #define PHY_REALTEK_INIT2 0x8e00
  493. #define PHY_REALTEK_INIT3 0x0001
  494. #define PHY_REALTEK_INIT4 0xad17
  495. #define PHY_REALTEK_INIT5 0xfb54
  496. #define PHY_REALTEK_INIT6 0xf5c7
  497. #define PHY_REALTEK_INIT7 0x1000
  498. #define PHY_REALTEK_INIT8 0x0003
  499. #define PHY_REALTEK_INIT_MSK1 0x0003
  500. #define PHY_GIGABIT 0x0100
  501. #define PHY_TIMEOUT 0x1
  502. #define PHY_ERROR 0x2
  503. #define PHY_100 0x1
  504. #define PHY_1000 0x2
  505. #define PHY_HALF 0x100
  506. #define NV_PAUSEFRAME_RX_CAPABLE 0x0001
  507. #define NV_PAUSEFRAME_TX_CAPABLE 0x0002
  508. #define NV_PAUSEFRAME_RX_ENABLE 0x0004
  509. #define NV_PAUSEFRAME_TX_ENABLE 0x0008
  510. #define NV_PAUSEFRAME_RX_REQ 0x0010
  511. #define NV_PAUSEFRAME_TX_REQ 0x0020
  512. #define NV_PAUSEFRAME_AUTONEG 0x0040
  513. /* MSI/MSI-X defines */
  514. #define NV_MSI_X_MAX_VECTORS 8
  515. #define NV_MSI_X_VECTORS_MASK 0x000f
  516. #define NV_MSI_CAPABLE 0x0010
  517. #define NV_MSI_X_CAPABLE 0x0020
  518. #define NV_MSI_ENABLED 0x0040
  519. #define NV_MSI_X_ENABLED 0x0080
  520. #define NV_MSI_X_VECTOR_ALL 0x0
  521. #define NV_MSI_X_VECTOR_RX 0x0
  522. #define NV_MSI_X_VECTOR_TX 0x1
  523. #define NV_MSI_X_VECTOR_OTHER 0x2
  524. #define NV_RESTART_TX 0x1
  525. #define NV_RESTART_RX 0x2
  526. #define NV_TX_LIMIT_COUNT 16
  527. /* statistics */
  528. struct nv_ethtool_str {
  529. char name[ETH_GSTRING_LEN];
  530. };
  531. static const struct nv_ethtool_str nv_estats_str[] = {
  532. { "tx_bytes" },
  533. { "tx_zero_rexmt" },
  534. { "tx_one_rexmt" },
  535. { "tx_many_rexmt" },
  536. { "tx_late_collision" },
  537. { "tx_fifo_errors" },
  538. { "tx_carrier_errors" },
  539. { "tx_excess_deferral" },
  540. { "tx_retry_error" },
  541. { "rx_frame_error" },
  542. { "rx_extra_byte" },
  543. { "rx_late_collision" },
  544. { "rx_runt" },
  545. { "rx_frame_too_long" },
  546. { "rx_over_errors" },
  547. { "rx_crc_errors" },
  548. { "rx_frame_align_error" },
  549. { "rx_length_error" },
  550. { "rx_unicast" },
  551. { "rx_multicast" },
  552. { "rx_broadcast" },
  553. { "rx_packets" },
  554. { "rx_errors_total" },
  555. { "tx_errors_total" },
  556. /* version 2 stats */
  557. { "tx_deferral" },
  558. { "tx_packets" },
  559. { "rx_bytes" },
  560. { "tx_pause" },
  561. { "rx_pause" },
  562. { "rx_drop_frame" }
  563. };
  564. struct nv_ethtool_stats {
  565. u64 tx_bytes;
  566. u64 tx_zero_rexmt;
  567. u64 tx_one_rexmt;
  568. u64 tx_many_rexmt;
  569. u64 tx_late_collision;
  570. u64 tx_fifo_errors;
  571. u64 tx_carrier_errors;
  572. u64 tx_excess_deferral;
  573. u64 tx_retry_error;
  574. u64 rx_frame_error;
  575. u64 rx_extra_byte;
  576. u64 rx_late_collision;
  577. u64 rx_runt;
  578. u64 rx_frame_too_long;
  579. u64 rx_over_errors;
  580. u64 rx_crc_errors;
  581. u64 rx_frame_align_error;
  582. u64 rx_length_error;
  583. u64 rx_unicast;
  584. u64 rx_multicast;
  585. u64 rx_broadcast;
  586. u64 rx_packets;
  587. u64 rx_errors_total;
  588. u64 tx_errors_total;
  589. /* version 2 stats */
  590. u64 tx_deferral;
  591. u64 tx_packets;
  592. u64 rx_bytes;
  593. u64 tx_pause;
  594. u64 rx_pause;
  595. u64 rx_drop_frame;
  596. };
  597. #define NV_DEV_STATISTICS_V2_COUNT (sizeof(struct nv_ethtool_stats)/sizeof(u64))
  598. #define NV_DEV_STATISTICS_V1_COUNT (NV_DEV_STATISTICS_V2_COUNT - 6)
  599. /* diagnostics */
  600. #define NV_TEST_COUNT_BASE 3
  601. #define NV_TEST_COUNT_EXTENDED 4
  602. static const struct nv_ethtool_str nv_etests_str[] = {
  603. { "link (online/offline)" },
  604. { "register (offline) " },
  605. { "interrupt (offline) " },
  606. { "loopback (offline) " }
  607. };
  608. struct register_test {
  609. __u32 reg;
  610. __u32 mask;
  611. };
  612. static const struct register_test nv_registers_test[] = {
  613. { NvRegUnknownSetupReg6, 0x01 },
  614. { NvRegMisc1, 0x03c },
  615. { NvRegOffloadConfig, 0x03ff },
  616. { NvRegMulticastAddrA, 0xffffffff },
  617. { NvRegTxWatermark, 0x0ff },
  618. { NvRegWakeUpFlags, 0x07777 },
  619. { 0,0 }
  620. };
  621. struct nv_skb_map {
  622. struct sk_buff *skb;
  623. dma_addr_t dma;
  624. unsigned int dma_len;
  625. struct ring_desc_ex *first_tx_desc;
  626. struct nv_skb_map *next_tx_ctx;
  627. };
  628. /*
  629. * SMP locking:
  630. * All hardware access under dev->priv->lock, except the performance
  631. * critical parts:
  632. * - rx is (pseudo-) lockless: it relies on the single-threading provided
  633. * by the arch code for interrupts.
  634. * - tx setup is lockless: it relies on netif_tx_lock. Actual submission
  635. * needs dev->priv->lock :-(
  636. * - set_multicast_list: preparation lockless, relies on netif_tx_lock.
  637. */
  638. /* in dev: base, irq */
  639. struct fe_priv {
  640. spinlock_t lock;
  641. struct net_device *dev;
  642. struct napi_struct napi;
  643. /* General data:
  644. * Locking: spin_lock(&np->lock); */
  645. struct nv_ethtool_stats estats;
  646. int in_shutdown;
  647. u32 linkspeed;
  648. int duplex;
  649. int autoneg;
  650. int fixed_mode;
  651. int phyaddr;
  652. int wolenabled;
  653. unsigned int phy_oui;
  654. unsigned int phy_model;
  655. unsigned int phy_rev;
  656. u16 gigabit;
  657. int intr_test;
  658. int recover_error;
  659. /* General data: RO fields */
  660. dma_addr_t ring_addr;
  661. struct pci_dev *pci_dev;
  662. u32 orig_mac[2];
  663. u32 irqmask;
  664. u32 desc_ver;
  665. u32 txrxctl_bits;
  666. u32 vlanctl_bits;
  667. u32 driver_data;
  668. u32 device_id;
  669. u32 register_size;
  670. int rx_csum;
  671. u32 mac_in_use;
  672. void __iomem *base;
  673. /* rx specific fields.
  674. * Locking: Within irq hander or disable_irq+spin_lock(&np->lock);
  675. */
  676. union ring_type get_rx, put_rx, first_rx, last_rx;
  677. struct nv_skb_map *get_rx_ctx, *put_rx_ctx;
  678. struct nv_skb_map *first_rx_ctx, *last_rx_ctx;
  679. struct nv_skb_map *rx_skb;
  680. union ring_type rx_ring;
  681. unsigned int rx_buf_sz;
  682. unsigned int pkt_limit;
  683. struct timer_list oom_kick;
  684. struct timer_list nic_poll;
  685. struct timer_list stats_poll;
  686. u32 nic_poll_irq;
  687. int rx_ring_size;
  688. /* media detection workaround.
  689. * Locking: Within irq hander or disable_irq+spin_lock(&np->lock);
  690. */
  691. int need_linktimer;
  692. unsigned long link_timeout;
  693. /*
  694. * tx specific fields.
  695. */
  696. union ring_type get_tx, put_tx, first_tx, last_tx;
  697. struct nv_skb_map *get_tx_ctx, *put_tx_ctx;
  698. struct nv_skb_map *first_tx_ctx, *last_tx_ctx;
  699. struct nv_skb_map *tx_skb;
  700. union ring_type tx_ring;
  701. u32 tx_flags;
  702. int tx_ring_size;
  703. int tx_limit;
  704. u32 tx_pkts_in_progress;
  705. struct nv_skb_map *tx_change_owner;
  706. struct nv_skb_map *tx_end_flip;
  707. int tx_stop;
  708. /* vlan fields */
  709. struct vlan_group *vlangrp;
  710. /* msi/msi-x fields */
  711. u32 msi_flags;
  712. struct msix_entry msi_x_entry[NV_MSI_X_MAX_VECTORS];
  713. /* flow control */
  714. u32 pause_flags;
  715. };
  716. /*
  717. * Maximum number of loops until we assume that a bit in the irq mask
  718. * is stuck. Overridable with module param.
  719. */
  720. static int max_interrupt_work = 5;
  721. /*
  722. * Optimization can be either throuput mode or cpu mode
  723. *
  724. * Throughput Mode: Every tx and rx packet will generate an interrupt.
  725. * CPU Mode: Interrupts are controlled by a timer.
  726. */
  727. enum {
  728. NV_OPTIMIZATION_MODE_THROUGHPUT,
  729. NV_OPTIMIZATION_MODE_CPU
  730. };
  731. static int optimization_mode = NV_OPTIMIZATION_MODE_THROUGHPUT;
  732. /*
  733. * Poll interval for timer irq
  734. *
  735. * This interval determines how frequent an interrupt is generated.
  736. * The is value is determined by [(time_in_micro_secs * 100) / (2^10)]
  737. * Min = 0, and Max = 65535
  738. */
  739. static int poll_interval = -1;
  740. /*
  741. * MSI interrupts
  742. */
  743. enum {
  744. NV_MSI_INT_DISABLED,
  745. NV_MSI_INT_ENABLED
  746. };
  747. static int msi = NV_MSI_INT_ENABLED;
  748. /*
  749. * MSIX interrupts
  750. */
  751. enum {
  752. NV_MSIX_INT_DISABLED,
  753. NV_MSIX_INT_ENABLED
  754. };
  755. static int msix = NV_MSIX_INT_DISABLED;
  756. /*
  757. * DMA 64bit
  758. */
  759. enum {
  760. NV_DMA_64BIT_DISABLED,
  761. NV_DMA_64BIT_ENABLED
  762. };
  763. static int dma_64bit = NV_DMA_64BIT_ENABLED;
  764. /*
  765. * Crossover Detection
  766. * Realtek 8201 phy + some OEM boards do not work properly.
  767. */
  768. enum {
  769. NV_CROSSOVER_DETECTION_DISABLED,
  770. NV_CROSSOVER_DETECTION_ENABLED
  771. };
  772. static int phy_cross = NV_CROSSOVER_DETECTION_DISABLED;
  773. static inline struct fe_priv *get_nvpriv(struct net_device *dev)
  774. {
  775. return netdev_priv(dev);
  776. }
  777. static inline u8 __iomem *get_hwbase(struct net_device *dev)
  778. {
  779. return ((struct fe_priv *)netdev_priv(dev))->base;
  780. }
  781. static inline void pci_push(u8 __iomem *base)
  782. {
  783. /* force out pending posted writes */
  784. readl(base);
  785. }
  786. static inline u32 nv_descr_getlength(struct ring_desc *prd, u32 v)
  787. {
  788. return le32_to_cpu(prd->flaglen)
  789. & ((v == DESC_VER_1) ? LEN_MASK_V1 : LEN_MASK_V2);
  790. }
  791. static inline u32 nv_descr_getlength_ex(struct ring_desc_ex *prd, u32 v)
  792. {
  793. return le32_to_cpu(prd->flaglen) & LEN_MASK_V2;
  794. }
  795. static bool nv_optimized(struct fe_priv *np)
  796. {
  797. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
  798. return false;
  799. return true;
  800. }
  801. static int reg_delay(struct net_device *dev, int offset, u32 mask, u32 target,
  802. int delay, int delaymax, const char *msg)
  803. {
  804. u8 __iomem *base = get_hwbase(dev);
  805. pci_push(base);
  806. do {
  807. udelay(delay);
  808. delaymax -= delay;
  809. if (delaymax < 0) {
  810. if (msg)
  811. printk(msg);
  812. return 1;
  813. }
  814. } while ((readl(base + offset) & mask) != target);
  815. return 0;
  816. }
  817. #define NV_SETUP_RX_RING 0x01
  818. #define NV_SETUP_TX_RING 0x02
  819. static inline u32 dma_low(dma_addr_t addr)
  820. {
  821. return addr;
  822. }
  823. static inline u32 dma_high(dma_addr_t addr)
  824. {
  825. return addr>>31>>1; /* 0 if 32bit, shift down by 32 if 64bit */
  826. }
  827. static void setup_hw_rings(struct net_device *dev, int rxtx_flags)
  828. {
  829. struct fe_priv *np = get_nvpriv(dev);
  830. u8 __iomem *base = get_hwbase(dev);
  831. if (!nv_optimized(np)) {
  832. if (rxtx_flags & NV_SETUP_RX_RING) {
  833. writel(dma_low(np->ring_addr), base + NvRegRxRingPhysAddr);
  834. }
  835. if (rxtx_flags & NV_SETUP_TX_RING) {
  836. writel(dma_low(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc)), base + NvRegTxRingPhysAddr);
  837. }
  838. } else {
  839. if (rxtx_flags & NV_SETUP_RX_RING) {
  840. writel(dma_low(np->ring_addr), base + NvRegRxRingPhysAddr);
  841. writel(dma_high(np->ring_addr), base + NvRegRxRingPhysAddrHigh);
  842. }
  843. if (rxtx_flags & NV_SETUP_TX_RING) {
  844. writel(dma_low(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc_ex)), base + NvRegTxRingPhysAddr);
  845. writel(dma_high(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc_ex)), base + NvRegTxRingPhysAddrHigh);
  846. }
  847. }
  848. }
  849. static void free_rings(struct net_device *dev)
  850. {
  851. struct fe_priv *np = get_nvpriv(dev);
  852. if (!nv_optimized(np)) {
  853. if (np->rx_ring.orig)
  854. pci_free_consistent(np->pci_dev, sizeof(struct ring_desc) * (np->rx_ring_size + np->tx_ring_size),
  855. np->rx_ring.orig, np->ring_addr);
  856. } else {
  857. if (np->rx_ring.ex)
  858. pci_free_consistent(np->pci_dev, sizeof(struct ring_desc_ex) * (np->rx_ring_size + np->tx_ring_size),
  859. np->rx_ring.ex, np->ring_addr);
  860. }
  861. if (np->rx_skb)
  862. kfree(np->rx_skb);
  863. if (np->tx_skb)
  864. kfree(np->tx_skb);
  865. }
  866. static int using_multi_irqs(struct net_device *dev)
  867. {
  868. struct fe_priv *np = get_nvpriv(dev);
  869. if (!(np->msi_flags & NV_MSI_X_ENABLED) ||
  870. ((np->msi_flags & NV_MSI_X_ENABLED) &&
  871. ((np->msi_flags & NV_MSI_X_VECTORS_MASK) == 0x1)))
  872. return 0;
  873. else
  874. return 1;
  875. }
  876. static void nv_enable_irq(struct net_device *dev)
  877. {
  878. struct fe_priv *np = get_nvpriv(dev);
  879. if (!using_multi_irqs(dev)) {
  880. if (np->msi_flags & NV_MSI_X_ENABLED)
  881. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
  882. else
  883. enable_irq(np->pci_dev->irq);
  884. } else {
  885. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  886. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
  887. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
  888. }
  889. }
  890. static void nv_disable_irq(struct net_device *dev)
  891. {
  892. struct fe_priv *np = get_nvpriv(dev);
  893. if (!using_multi_irqs(dev)) {
  894. if (np->msi_flags & NV_MSI_X_ENABLED)
  895. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
  896. else
  897. disable_irq(np->pci_dev->irq);
  898. } else {
  899. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  900. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
  901. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
  902. }
  903. }
  904. /* In MSIX mode, a write to irqmask behaves as XOR */
  905. static void nv_enable_hw_interrupts(struct net_device *dev, u32 mask)
  906. {
  907. u8 __iomem *base = get_hwbase(dev);
  908. writel(mask, base + NvRegIrqMask);
  909. }
  910. static void nv_disable_hw_interrupts(struct net_device *dev, u32 mask)
  911. {
  912. struct fe_priv *np = get_nvpriv(dev);
  913. u8 __iomem *base = get_hwbase(dev);
  914. if (np->msi_flags & NV_MSI_X_ENABLED) {
  915. writel(mask, base + NvRegIrqMask);
  916. } else {
  917. if (np->msi_flags & NV_MSI_ENABLED)
  918. writel(0, base + NvRegMSIIrqMask);
  919. writel(0, base + NvRegIrqMask);
  920. }
  921. }
  922. #define MII_READ (-1)
  923. /* mii_rw: read/write a register on the PHY.
  924. *
  925. * Caller must guarantee serialization
  926. */
  927. static int mii_rw(struct net_device *dev, int addr, int miireg, int value)
  928. {
  929. u8 __iomem *base = get_hwbase(dev);
  930. u32 reg;
  931. int retval;
  932. writel(NVREG_MIISTAT_MASK_RW, base + NvRegMIIStatus);
  933. reg = readl(base + NvRegMIIControl);
  934. if (reg & NVREG_MIICTL_INUSE) {
  935. writel(NVREG_MIICTL_INUSE, base + NvRegMIIControl);
  936. udelay(NV_MIIBUSY_DELAY);
  937. }
  938. reg = (addr << NVREG_MIICTL_ADDRSHIFT) | miireg;
  939. if (value != MII_READ) {
  940. writel(value, base + NvRegMIIData);
  941. reg |= NVREG_MIICTL_WRITE;
  942. }
  943. writel(reg, base + NvRegMIIControl);
  944. if (reg_delay(dev, NvRegMIIControl, NVREG_MIICTL_INUSE, 0,
  945. NV_MIIPHY_DELAY, NV_MIIPHY_DELAYMAX, NULL)) {
  946. dprintk(KERN_DEBUG "%s: mii_rw of reg %d at PHY %d timed out.\n",
  947. dev->name, miireg, addr);
  948. retval = -1;
  949. } else if (value != MII_READ) {
  950. /* it was a write operation - fewer failures are detectable */
  951. dprintk(KERN_DEBUG "%s: mii_rw wrote 0x%x to reg %d at PHY %d\n",
  952. dev->name, value, miireg, addr);
  953. retval = 0;
  954. } else if (readl(base + NvRegMIIStatus) & NVREG_MIISTAT_ERROR) {
  955. dprintk(KERN_DEBUG "%s: mii_rw of reg %d at PHY %d failed.\n",
  956. dev->name, miireg, addr);
  957. retval = -1;
  958. } else {
  959. retval = readl(base + NvRegMIIData);
  960. dprintk(KERN_DEBUG "%s: mii_rw read from reg %d at PHY %d: 0x%x.\n",
  961. dev->name, miireg, addr, retval);
  962. }
  963. return retval;
  964. }
  965. static int phy_reset(struct net_device *dev, u32 bmcr_setup)
  966. {
  967. struct fe_priv *np = netdev_priv(dev);
  968. u32 miicontrol;
  969. unsigned int tries = 0;
  970. miicontrol = BMCR_RESET | bmcr_setup;
  971. if (mii_rw(dev, np->phyaddr, MII_BMCR, miicontrol)) {
  972. return -1;
  973. }
  974. /* wait for 500ms */
  975. msleep(500);
  976. /* must wait till reset is deasserted */
  977. while (miicontrol & BMCR_RESET) {
  978. msleep(10);
  979. miicontrol = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  980. /* FIXME: 100 tries seem excessive */
  981. if (tries++ > 100)
  982. return -1;
  983. }
  984. return 0;
  985. }
  986. static int phy_init(struct net_device *dev)
  987. {
  988. struct fe_priv *np = get_nvpriv(dev);
  989. u8 __iomem *base = get_hwbase(dev);
  990. u32 phyinterface, phy_reserved, mii_status, mii_control, mii_control_1000,reg;
  991. /* phy errata for E3016 phy */
  992. if (np->phy_model == PHY_MODEL_MARVELL_E3016) {
  993. reg = mii_rw(dev, np->phyaddr, MII_NCONFIG, MII_READ);
  994. reg &= ~PHY_MARVELL_E3016_INITMASK;
  995. if (mii_rw(dev, np->phyaddr, MII_NCONFIG, reg)) {
  996. printk(KERN_INFO "%s: phy write to errata reg failed.\n", pci_name(np->pci_dev));
  997. return PHY_ERROR;
  998. }
  999. }
  1000. if (np->phy_oui == PHY_OUI_REALTEK) {
  1001. if (np->phy_model == PHY_MODEL_REALTEK_8211 &&
  1002. np->phy_rev == PHY_REV_REALTEK_8211B) {
  1003. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1)) {
  1004. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1005. return PHY_ERROR;
  1006. }
  1007. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG2, PHY_REALTEK_INIT2)) {
  1008. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1009. return PHY_ERROR;
  1010. }
  1011. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT3)) {
  1012. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1013. return PHY_ERROR;
  1014. }
  1015. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG3, PHY_REALTEK_INIT4)) {
  1016. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1017. return PHY_ERROR;
  1018. }
  1019. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG4, PHY_REALTEK_INIT5)) {
  1020. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1021. return PHY_ERROR;
  1022. }
  1023. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG5, PHY_REALTEK_INIT6)) {
  1024. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1025. return PHY_ERROR;
  1026. }
  1027. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1)) {
  1028. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1029. return PHY_ERROR;
  1030. }
  1031. }
  1032. if (np->phy_model == PHY_MODEL_REALTEK_8201) {
  1033. if (np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_32 ||
  1034. np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_33 ||
  1035. np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_34 ||
  1036. np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_35 ||
  1037. np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_36 ||
  1038. np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_37 ||
  1039. np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_38 ||
  1040. np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_39) {
  1041. phy_reserved = mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG6, MII_READ);
  1042. phy_reserved |= PHY_REALTEK_INIT7;
  1043. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG6, phy_reserved)) {
  1044. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1045. return PHY_ERROR;
  1046. }
  1047. }
  1048. }
  1049. }
  1050. /* set advertise register */
  1051. reg = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  1052. reg |= (ADVERTISE_10HALF|ADVERTISE_10FULL|ADVERTISE_100HALF|ADVERTISE_100FULL|ADVERTISE_PAUSE_ASYM|ADVERTISE_PAUSE_CAP);
  1053. if (mii_rw(dev, np->phyaddr, MII_ADVERTISE, reg)) {
  1054. printk(KERN_INFO "%s: phy write to advertise failed.\n", pci_name(np->pci_dev));
  1055. return PHY_ERROR;
  1056. }
  1057. /* get phy interface type */
  1058. phyinterface = readl(base + NvRegPhyInterface);
  1059. /* see if gigabit phy */
  1060. mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  1061. if (mii_status & PHY_GIGABIT) {
  1062. np->gigabit = PHY_GIGABIT;
  1063. mii_control_1000 = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
  1064. mii_control_1000 &= ~ADVERTISE_1000HALF;
  1065. if (phyinterface & PHY_RGMII)
  1066. mii_control_1000 |= ADVERTISE_1000FULL;
  1067. else
  1068. mii_control_1000 &= ~ADVERTISE_1000FULL;
  1069. if (mii_rw(dev, np->phyaddr, MII_CTRL1000, mii_control_1000)) {
  1070. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1071. return PHY_ERROR;
  1072. }
  1073. }
  1074. else
  1075. np->gigabit = 0;
  1076. mii_control = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  1077. mii_control |= BMCR_ANENABLE;
  1078. /* reset the phy
  1079. * (certain phys need bmcr to be setup with reset)
  1080. */
  1081. if (phy_reset(dev, mii_control)) {
  1082. printk(KERN_INFO "%s: phy reset failed\n", pci_name(np->pci_dev));
  1083. return PHY_ERROR;
  1084. }
  1085. /* phy vendor specific configuration */
  1086. if ((np->phy_oui == PHY_OUI_CICADA) && (phyinterface & PHY_RGMII) ) {
  1087. phy_reserved = mii_rw(dev, np->phyaddr, MII_RESV1, MII_READ);
  1088. phy_reserved &= ~(PHY_CICADA_INIT1 | PHY_CICADA_INIT2);
  1089. phy_reserved |= (PHY_CICADA_INIT3 | PHY_CICADA_INIT4);
  1090. if (mii_rw(dev, np->phyaddr, MII_RESV1, phy_reserved)) {
  1091. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1092. return PHY_ERROR;
  1093. }
  1094. phy_reserved = mii_rw(dev, np->phyaddr, MII_NCONFIG, MII_READ);
  1095. phy_reserved |= PHY_CICADA_INIT5;
  1096. if (mii_rw(dev, np->phyaddr, MII_NCONFIG, phy_reserved)) {
  1097. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1098. return PHY_ERROR;
  1099. }
  1100. }
  1101. if (np->phy_oui == PHY_OUI_CICADA) {
  1102. phy_reserved = mii_rw(dev, np->phyaddr, MII_SREVISION, MII_READ);
  1103. phy_reserved |= PHY_CICADA_INIT6;
  1104. if (mii_rw(dev, np->phyaddr, MII_SREVISION, phy_reserved)) {
  1105. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1106. return PHY_ERROR;
  1107. }
  1108. }
  1109. if (np->phy_oui == PHY_OUI_VITESSE) {
  1110. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG1, PHY_VITESSE_INIT1)) {
  1111. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1112. return PHY_ERROR;
  1113. }
  1114. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT2)) {
  1115. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1116. return PHY_ERROR;
  1117. }
  1118. phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, MII_READ);
  1119. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, phy_reserved)) {
  1120. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1121. return PHY_ERROR;
  1122. }
  1123. phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, MII_READ);
  1124. phy_reserved &= ~PHY_VITESSE_INIT_MSK1;
  1125. phy_reserved |= PHY_VITESSE_INIT3;
  1126. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, phy_reserved)) {
  1127. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1128. return PHY_ERROR;
  1129. }
  1130. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT4)) {
  1131. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1132. return PHY_ERROR;
  1133. }
  1134. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT5)) {
  1135. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1136. return PHY_ERROR;
  1137. }
  1138. phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, MII_READ);
  1139. phy_reserved &= ~PHY_VITESSE_INIT_MSK1;
  1140. phy_reserved |= PHY_VITESSE_INIT3;
  1141. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, phy_reserved)) {
  1142. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1143. return PHY_ERROR;
  1144. }
  1145. phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, MII_READ);
  1146. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, phy_reserved)) {
  1147. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1148. return PHY_ERROR;
  1149. }
  1150. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT6)) {
  1151. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1152. return PHY_ERROR;
  1153. }
  1154. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT7)) {
  1155. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1156. return PHY_ERROR;
  1157. }
  1158. phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, MII_READ);
  1159. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, phy_reserved)) {
  1160. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1161. return PHY_ERROR;
  1162. }
  1163. phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, MII_READ);
  1164. phy_reserved &= ~PHY_VITESSE_INIT_MSK2;
  1165. phy_reserved |= PHY_VITESSE_INIT8;
  1166. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, phy_reserved)) {
  1167. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1168. return PHY_ERROR;
  1169. }
  1170. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT9)) {
  1171. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1172. return PHY_ERROR;
  1173. }
  1174. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG1, PHY_VITESSE_INIT10)) {
  1175. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1176. return PHY_ERROR;
  1177. }
  1178. }
  1179. if (np->phy_oui == PHY_OUI_REALTEK) {
  1180. if (np->phy_model == PHY_MODEL_REALTEK_8211 &&
  1181. np->phy_rev == PHY_REV_REALTEK_8211B) {
  1182. /* reset could have cleared these out, set them back */
  1183. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1)) {
  1184. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1185. return PHY_ERROR;
  1186. }
  1187. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG2, PHY_REALTEK_INIT2)) {
  1188. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1189. return PHY_ERROR;
  1190. }
  1191. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT3)) {
  1192. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1193. return PHY_ERROR;
  1194. }
  1195. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG3, PHY_REALTEK_INIT4)) {
  1196. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1197. return PHY_ERROR;
  1198. }
  1199. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG4, PHY_REALTEK_INIT5)) {
  1200. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1201. return PHY_ERROR;
  1202. }
  1203. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG5, PHY_REALTEK_INIT6)) {
  1204. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1205. return PHY_ERROR;
  1206. }
  1207. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1)) {
  1208. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1209. return PHY_ERROR;
  1210. }
  1211. }
  1212. if (np->phy_model == PHY_MODEL_REALTEK_8201) {
  1213. if (np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_32 ||
  1214. np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_33 ||
  1215. np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_34 ||
  1216. np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_35 ||
  1217. np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_36 ||
  1218. np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_37 ||
  1219. np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_38 ||
  1220. np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_39) {
  1221. phy_reserved = mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG6, MII_READ);
  1222. phy_reserved |= PHY_REALTEK_INIT7;
  1223. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG6, phy_reserved)) {
  1224. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1225. return PHY_ERROR;
  1226. }
  1227. }
  1228. if (phy_cross == NV_CROSSOVER_DETECTION_DISABLED) {
  1229. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT3)) {
  1230. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1231. return PHY_ERROR;
  1232. }
  1233. phy_reserved = mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG2, MII_READ);
  1234. phy_reserved &= ~PHY_REALTEK_INIT_MSK1;
  1235. phy_reserved |= PHY_REALTEK_INIT3;
  1236. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG2, phy_reserved)) {
  1237. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1238. return PHY_ERROR;
  1239. }
  1240. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1)) {
  1241. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1242. return PHY_ERROR;
  1243. }
  1244. }
  1245. }
  1246. }
  1247. /* some phys clear out pause advertisment on reset, set it back */
  1248. mii_rw(dev, np->phyaddr, MII_ADVERTISE, reg);
  1249. /* restart auto negotiation */
  1250. mii_control = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  1251. mii_control |= (BMCR_ANRESTART | BMCR_ANENABLE);
  1252. if (mii_rw(dev, np->phyaddr, MII_BMCR, mii_control)) {
  1253. return PHY_ERROR;
  1254. }
  1255. return 0;
  1256. }
  1257. static void nv_start_rx(struct net_device *dev)
  1258. {
  1259. struct fe_priv *np = netdev_priv(dev);
  1260. u8 __iomem *base = get_hwbase(dev);
  1261. u32 rx_ctrl = readl(base + NvRegReceiverControl);
  1262. dprintk(KERN_DEBUG "%s: nv_start_rx\n", dev->name);
  1263. /* Already running? Stop it. */
  1264. if ((readl(base + NvRegReceiverControl) & NVREG_RCVCTL_START) && !np->mac_in_use) {
  1265. rx_ctrl &= ~NVREG_RCVCTL_START;
  1266. writel(rx_ctrl, base + NvRegReceiverControl);
  1267. pci_push(base);
  1268. }
  1269. writel(np->linkspeed, base + NvRegLinkSpeed);
  1270. pci_push(base);
  1271. rx_ctrl |= NVREG_RCVCTL_START;
  1272. if (np->mac_in_use)
  1273. rx_ctrl &= ~NVREG_RCVCTL_RX_PATH_EN;
  1274. writel(rx_ctrl, base + NvRegReceiverControl);
  1275. dprintk(KERN_DEBUG "%s: nv_start_rx to duplex %d, speed 0x%08x.\n",
  1276. dev->name, np->duplex, np->linkspeed);
  1277. pci_push(base);
  1278. }
  1279. static void nv_stop_rx(struct net_device *dev)
  1280. {
  1281. struct fe_priv *np = netdev_priv(dev);
  1282. u8 __iomem *base = get_hwbase(dev);
  1283. u32 rx_ctrl = readl(base + NvRegReceiverControl);
  1284. dprintk(KERN_DEBUG "%s: nv_stop_rx\n", dev->name);
  1285. if (!np->mac_in_use)
  1286. rx_ctrl &= ~NVREG_RCVCTL_START;
  1287. else
  1288. rx_ctrl |= NVREG_RCVCTL_RX_PATH_EN;
  1289. writel(rx_ctrl, base + NvRegReceiverControl);
  1290. reg_delay(dev, NvRegReceiverStatus, NVREG_RCVSTAT_BUSY, 0,
  1291. NV_RXSTOP_DELAY1, NV_RXSTOP_DELAY1MAX,
  1292. KERN_INFO "nv_stop_rx: ReceiverStatus remained busy");
  1293. udelay(NV_RXSTOP_DELAY2);
  1294. if (!np->mac_in_use)
  1295. writel(0, base + NvRegLinkSpeed);
  1296. }
  1297. static void nv_start_tx(struct net_device *dev)
  1298. {
  1299. struct fe_priv *np = netdev_priv(dev);
  1300. u8 __iomem *base = get_hwbase(dev);
  1301. u32 tx_ctrl = readl(base + NvRegTransmitterControl);
  1302. dprintk(KERN_DEBUG "%s: nv_start_tx\n", dev->name);
  1303. tx_ctrl |= NVREG_XMITCTL_START;
  1304. if (np->mac_in_use)
  1305. tx_ctrl &= ~NVREG_XMITCTL_TX_PATH_EN;
  1306. writel(tx_ctrl, base + NvRegTransmitterControl);
  1307. pci_push(base);
  1308. }
  1309. static void nv_stop_tx(struct net_device *dev)
  1310. {
  1311. struct fe_priv *np = netdev_priv(dev);
  1312. u8 __iomem *base = get_hwbase(dev);
  1313. u32 tx_ctrl = readl(base + NvRegTransmitterControl);
  1314. dprintk(KERN_DEBUG "%s: nv_stop_tx\n", dev->name);
  1315. if (!np->mac_in_use)
  1316. tx_ctrl &= ~NVREG_XMITCTL_START;
  1317. else
  1318. tx_ctrl |= NVREG_XMITCTL_TX_PATH_EN;
  1319. writel(tx_ctrl, base + NvRegTransmitterControl);
  1320. reg_delay(dev, NvRegTransmitterStatus, NVREG_XMITSTAT_BUSY, 0,
  1321. NV_TXSTOP_DELAY1, NV_TXSTOP_DELAY1MAX,
  1322. KERN_INFO "nv_stop_tx: TransmitterStatus remained busy");
  1323. udelay(NV_TXSTOP_DELAY2);
  1324. if (!np->mac_in_use)
  1325. writel(readl(base + NvRegTransmitPoll) & NVREG_TRANSMITPOLL_MAC_ADDR_REV,
  1326. base + NvRegTransmitPoll);
  1327. }
  1328. static void nv_start_rxtx(struct net_device *dev)
  1329. {
  1330. nv_start_rx(dev);
  1331. nv_start_tx(dev);
  1332. }
  1333. static void nv_stop_rxtx(struct net_device *dev)
  1334. {
  1335. nv_stop_rx(dev);
  1336. nv_stop_tx(dev);
  1337. }
  1338. static void nv_txrx_reset(struct net_device *dev)
  1339. {
  1340. struct fe_priv *np = netdev_priv(dev);
  1341. u8 __iomem *base = get_hwbase(dev);
  1342. dprintk(KERN_DEBUG "%s: nv_txrx_reset\n", dev->name);
  1343. writel(NVREG_TXRXCTL_BIT2 | NVREG_TXRXCTL_RESET | np->txrxctl_bits, base + NvRegTxRxControl);
  1344. pci_push(base);
  1345. udelay(NV_TXRX_RESET_DELAY);
  1346. writel(NVREG_TXRXCTL_BIT2 | np->txrxctl_bits, base + NvRegTxRxControl);
  1347. pci_push(base);
  1348. }
  1349. static void nv_mac_reset(struct net_device *dev)
  1350. {
  1351. struct fe_priv *np = netdev_priv(dev);
  1352. u8 __iomem *base = get_hwbase(dev);
  1353. u32 temp1, temp2, temp3;
  1354. dprintk(KERN_DEBUG "%s: nv_mac_reset\n", dev->name);
  1355. writel(NVREG_TXRXCTL_BIT2 | NVREG_TXRXCTL_RESET | np->txrxctl_bits, base + NvRegTxRxControl);
  1356. pci_push(base);
  1357. /* save registers since they will be cleared on reset */
  1358. temp1 = readl(base + NvRegMacAddrA);
  1359. temp2 = readl(base + NvRegMacAddrB);
  1360. temp3 = readl(base + NvRegTransmitPoll);
  1361. writel(NVREG_MAC_RESET_ASSERT, base + NvRegMacReset);
  1362. pci_push(base);
  1363. udelay(NV_MAC_RESET_DELAY);
  1364. writel(0, base + NvRegMacReset);
  1365. pci_push(base);
  1366. udelay(NV_MAC_RESET_DELAY);
  1367. /* restore saved registers */
  1368. writel(temp1, base + NvRegMacAddrA);
  1369. writel(temp2, base + NvRegMacAddrB);
  1370. writel(temp3, base + NvRegTransmitPoll);
  1371. writel(NVREG_TXRXCTL_BIT2 | np->txrxctl_bits, base + NvRegTxRxControl);
  1372. pci_push(base);
  1373. }
  1374. static void nv_get_hw_stats(struct net_device *dev)
  1375. {
  1376. struct fe_priv *np = netdev_priv(dev);
  1377. u8 __iomem *base = get_hwbase(dev);
  1378. np->estats.tx_bytes += readl(base + NvRegTxCnt);
  1379. np->estats.tx_zero_rexmt += readl(base + NvRegTxZeroReXmt);
  1380. np->estats.tx_one_rexmt += readl(base + NvRegTxOneReXmt);
  1381. np->estats.tx_many_rexmt += readl(base + NvRegTxManyReXmt);
  1382. np->estats.tx_late_collision += readl(base + NvRegTxLateCol);
  1383. np->estats.tx_fifo_errors += readl(base + NvRegTxUnderflow);
  1384. np->estats.tx_carrier_errors += readl(base + NvRegTxLossCarrier);
  1385. np->estats.tx_excess_deferral += readl(base + NvRegTxExcessDef);
  1386. np->estats.tx_retry_error += readl(base + NvRegTxRetryErr);
  1387. np->estats.rx_frame_error += readl(base + NvRegRxFrameErr);
  1388. np->estats.rx_extra_byte += readl(base + NvRegRxExtraByte);
  1389. np->estats.rx_late_collision += readl(base + NvRegRxLateCol);
  1390. np->estats.rx_runt += readl(base + NvRegRxRunt);
  1391. np->estats.rx_frame_too_long += readl(base + NvRegRxFrameTooLong);
  1392. np->estats.rx_over_errors += readl(base + NvRegRxOverflow);
  1393. np->estats.rx_crc_errors += readl(base + NvRegRxFCSErr);
  1394. np->estats.rx_frame_align_error += readl(base + NvRegRxFrameAlignErr);
  1395. np->estats.rx_length_error += readl(base + NvRegRxLenErr);
  1396. np->estats.rx_unicast += readl(base + NvRegRxUnicast);
  1397. np->estats.rx_multicast += readl(base + NvRegRxMulticast);
  1398. np->estats.rx_broadcast += readl(base + NvRegRxBroadcast);
  1399. np->estats.rx_packets =
  1400. np->estats.rx_unicast +
  1401. np->estats.rx_multicast +
  1402. np->estats.rx_broadcast;
  1403. np->estats.rx_errors_total =
  1404. np->estats.rx_crc_errors +
  1405. np->estats.rx_over_errors +
  1406. np->estats.rx_frame_error +
  1407. (np->estats.rx_frame_align_error - np->estats.rx_extra_byte) +
  1408. np->estats.rx_late_collision +
  1409. np->estats.rx_runt +
  1410. np->estats.rx_frame_too_long;
  1411. np->estats.tx_errors_total =
  1412. np->estats.tx_late_collision +
  1413. np->estats.tx_fifo_errors +
  1414. np->estats.tx_carrier_errors +
  1415. np->estats.tx_excess_deferral +
  1416. np->estats.tx_retry_error;
  1417. if (np->driver_data & DEV_HAS_STATISTICS_V2) {
  1418. np->estats.tx_deferral += readl(base + NvRegTxDef);
  1419. np->estats.tx_packets += readl(base + NvRegTxFrame);
  1420. np->estats.rx_bytes += readl(base + NvRegRxCnt);
  1421. np->estats.tx_pause += readl(base + NvRegTxPause);
  1422. np->estats.rx_pause += readl(base + NvRegRxPause);
  1423. np->estats.rx_drop_frame += readl(base + NvRegRxDropFrame);
  1424. }
  1425. }
  1426. /*
  1427. * nv_get_stats: dev->get_stats function
  1428. * Get latest stats value from the nic.
  1429. * Called with read_lock(&dev_base_lock) held for read -
  1430. * only synchronized against unregister_netdevice.
  1431. */
  1432. static struct net_device_stats *nv_get_stats(struct net_device *dev)
  1433. {
  1434. struct fe_priv *np = netdev_priv(dev);
  1435. /* If the nic supports hw counters then retrieve latest values */
  1436. if (np->driver_data & (DEV_HAS_STATISTICS_V1|DEV_HAS_STATISTICS_V2)) {
  1437. nv_get_hw_stats(dev);
  1438. /* copy to net_device stats */
  1439. dev->stats.tx_bytes = np->estats.tx_bytes;
  1440. dev->stats.tx_fifo_errors = np->estats.tx_fifo_errors;
  1441. dev->stats.tx_carrier_errors = np->estats.tx_carrier_errors;
  1442. dev->stats.rx_crc_errors = np->estats.rx_crc_errors;
  1443. dev->stats.rx_over_errors = np->estats.rx_over_errors;
  1444. dev->stats.rx_errors = np->estats.rx_errors_total;
  1445. dev->stats.tx_errors = np->estats.tx_errors_total;
  1446. }
  1447. return &dev->stats;
  1448. }
  1449. /*
  1450. * nv_alloc_rx: fill rx ring entries.
  1451. * Return 1 if the allocations for the skbs failed and the
  1452. * rx engine is without Available descriptors
  1453. */
  1454. static int nv_alloc_rx(struct net_device *dev)
  1455. {
  1456. struct fe_priv *np = netdev_priv(dev);
  1457. struct ring_desc* less_rx;
  1458. less_rx = np->get_rx.orig;
  1459. if (less_rx-- == np->first_rx.orig)
  1460. less_rx = np->last_rx.orig;
  1461. while (np->put_rx.orig != less_rx) {
  1462. struct sk_buff *skb = dev_alloc_skb(np->rx_buf_sz + NV_RX_ALLOC_PAD);
  1463. if (skb) {
  1464. np->put_rx_ctx->skb = skb;
  1465. np->put_rx_ctx->dma = pci_map_single(np->pci_dev,
  1466. skb->data,
  1467. skb_tailroom(skb),
  1468. PCI_DMA_FROMDEVICE);
  1469. np->put_rx_ctx->dma_len = skb_tailroom(skb);
  1470. np->put_rx.orig->buf = cpu_to_le32(np->put_rx_ctx->dma);
  1471. wmb();
  1472. np->put_rx.orig->flaglen = cpu_to_le32(np->rx_buf_sz | NV_RX_AVAIL);
  1473. if (unlikely(np->put_rx.orig++ == np->last_rx.orig))
  1474. np->put_rx.orig = np->first_rx.orig;
  1475. if (unlikely(np->put_rx_ctx++ == np->last_rx_ctx))
  1476. np->put_rx_ctx = np->first_rx_ctx;
  1477. } else {
  1478. return 1;
  1479. }
  1480. }
  1481. return 0;
  1482. }
  1483. static int nv_alloc_rx_optimized(struct net_device *dev)
  1484. {
  1485. struct fe_priv *np = netdev_priv(dev);
  1486. struct ring_desc_ex* less_rx;
  1487. less_rx = np->get_rx.ex;
  1488. if (less_rx-- == np->first_rx.ex)
  1489. less_rx = np->last_rx.ex;
  1490. while (np->put_rx.ex != less_rx) {
  1491. struct sk_buff *skb = dev_alloc_skb(np->rx_buf_sz + NV_RX_ALLOC_PAD);
  1492. if (skb) {
  1493. np->put_rx_ctx->skb = skb;
  1494. np->put_rx_ctx->dma = pci_map_single(np->pci_dev,
  1495. skb->data,
  1496. skb_tailroom(skb),
  1497. PCI_DMA_FROMDEVICE);
  1498. np->put_rx_ctx->dma_len = skb_tailroom(skb);
  1499. np->put_rx.ex->bufhigh = cpu_to_le32(dma_high(np->put_rx_ctx->dma));
  1500. np->put_rx.ex->buflow = cpu_to_le32(dma_low(np->put_rx_ctx->dma));
  1501. wmb();
  1502. np->put_rx.ex->flaglen = cpu_to_le32(np->rx_buf_sz | NV_RX2_AVAIL);
  1503. if (unlikely(np->put_rx.ex++ == np->last_rx.ex))
  1504. np->put_rx.ex = np->first_rx.ex;
  1505. if (unlikely(np->put_rx_ctx++ == np->last_rx_ctx))
  1506. np->put_rx_ctx = np->first_rx_ctx;
  1507. } else {
  1508. return 1;
  1509. }
  1510. }
  1511. return 0;
  1512. }
  1513. /* If rx bufs are exhausted called after 50ms to attempt to refresh */
  1514. #ifdef CONFIG_FORCEDETH_NAPI
  1515. static void nv_do_rx_refill(unsigned long data)
  1516. {
  1517. struct net_device *dev = (struct net_device *) data;
  1518. struct fe_priv *np = netdev_priv(dev);
  1519. /* Just reschedule NAPI rx processing */
  1520. netif_rx_schedule(dev, &np->napi);
  1521. }
  1522. #else
  1523. static void nv_do_rx_refill(unsigned long data)
  1524. {
  1525. struct net_device *dev = (struct net_device *) data;
  1526. struct fe_priv *np = netdev_priv(dev);
  1527. int retcode;
  1528. if (!using_multi_irqs(dev)) {
  1529. if (np->msi_flags & NV_MSI_X_ENABLED)
  1530. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
  1531. else
  1532. disable_irq(np->pci_dev->irq);
  1533. } else {
  1534. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  1535. }
  1536. if (!nv_optimized(np))
  1537. retcode = nv_alloc_rx(dev);
  1538. else
  1539. retcode = nv_alloc_rx_optimized(dev);
  1540. if (retcode) {
  1541. spin_lock_irq(&np->lock);
  1542. if (!np->in_shutdown)
  1543. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  1544. spin_unlock_irq(&np->lock);
  1545. }
  1546. if (!using_multi_irqs(dev)) {
  1547. if (np->msi_flags & NV_MSI_X_ENABLED)
  1548. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
  1549. else
  1550. enable_irq(np->pci_dev->irq);
  1551. } else {
  1552. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  1553. }
  1554. }
  1555. #endif
  1556. static void nv_init_rx(struct net_device *dev)
  1557. {
  1558. struct fe_priv *np = netdev_priv(dev);
  1559. int i;
  1560. np->get_rx = np->put_rx = np->first_rx = np->rx_ring;
  1561. if (!nv_optimized(np))
  1562. np->last_rx.orig = &np->rx_ring.orig[np->rx_ring_size-1];
  1563. else
  1564. np->last_rx.ex = &np->rx_ring.ex[np->rx_ring_size-1];
  1565. np->get_rx_ctx = np->put_rx_ctx = np->first_rx_ctx = np->rx_skb;
  1566. np->last_rx_ctx = &np->rx_skb[np->rx_ring_size-1];
  1567. for (i = 0; i < np->rx_ring_size; i++) {
  1568. if (!nv_optimized(np)) {
  1569. np->rx_ring.orig[i].flaglen = 0;
  1570. np->rx_ring.orig[i].buf = 0;
  1571. } else {
  1572. np->rx_ring.ex[i].flaglen = 0;
  1573. np->rx_ring.ex[i].txvlan = 0;
  1574. np->rx_ring.ex[i].bufhigh = 0;
  1575. np->rx_ring.ex[i].buflow = 0;
  1576. }
  1577. np->rx_skb[i].skb = NULL;
  1578. np->rx_skb[i].dma = 0;
  1579. }
  1580. }
  1581. static void nv_init_tx(struct net_device *dev)
  1582. {
  1583. struct fe_priv *np = netdev_priv(dev);
  1584. int i;
  1585. np->get_tx = np->put_tx = np->first_tx = np->tx_ring;
  1586. if (!nv_optimized(np))
  1587. np->last_tx.orig = &np->tx_ring.orig[np->tx_ring_size-1];
  1588. else
  1589. np->last_tx.ex = &np->tx_ring.ex[np->tx_ring_size-1];
  1590. np->get_tx_ctx = np->put_tx_ctx = np->first_tx_ctx = np->tx_skb;
  1591. np->last_tx_ctx = &np->tx_skb[np->tx_ring_size-1];
  1592. np->tx_pkts_in_progress = 0;
  1593. np->tx_change_owner = NULL;
  1594. np->tx_end_flip = NULL;
  1595. for (i = 0; i < np->tx_ring_size; i++) {
  1596. if (!nv_optimized(np)) {
  1597. np->tx_ring.orig[i].flaglen = 0;
  1598. np->tx_ring.orig[i].buf = 0;
  1599. } else {
  1600. np->tx_ring.ex[i].flaglen = 0;
  1601. np->tx_ring.ex[i].txvlan = 0;
  1602. np->tx_ring.ex[i].bufhigh = 0;
  1603. np->tx_ring.ex[i].buflow = 0;
  1604. }
  1605. np->tx_skb[i].skb = NULL;
  1606. np->tx_skb[i].dma = 0;
  1607. np->tx_skb[i].dma_len = 0;
  1608. np->tx_skb[i].first_tx_desc = NULL;
  1609. np->tx_skb[i].next_tx_ctx = NULL;
  1610. }
  1611. }
  1612. static int nv_init_ring(struct net_device *dev)
  1613. {
  1614. struct fe_priv *np = netdev_priv(dev);
  1615. nv_init_tx(dev);
  1616. nv_init_rx(dev);
  1617. if (!nv_optimized(np))
  1618. return nv_alloc_rx(dev);
  1619. else
  1620. return nv_alloc_rx_optimized(dev);
  1621. }
  1622. static int nv_release_txskb(struct net_device *dev, struct nv_skb_map* tx_skb)
  1623. {
  1624. struct fe_priv *np = netdev_priv(dev);
  1625. if (tx_skb->dma) {
  1626. pci_unmap_page(np->pci_dev, tx_skb->dma,
  1627. tx_skb->dma_len,
  1628. PCI_DMA_TODEVICE);
  1629. tx_skb->dma = 0;
  1630. }
  1631. if (tx_skb->skb) {
  1632. dev_kfree_skb_any(tx_skb->skb);
  1633. tx_skb->skb = NULL;
  1634. return 1;
  1635. } else {
  1636. return 0;
  1637. }
  1638. }
  1639. static void nv_drain_tx(struct net_device *dev)
  1640. {
  1641. struct fe_priv *np = netdev_priv(dev);
  1642. unsigned int i;
  1643. for (i = 0; i < np->tx_ring_size; i++) {
  1644. if (!nv_optimized(np)) {
  1645. np->tx_ring.orig[i].flaglen = 0;
  1646. np->tx_ring.orig[i].buf = 0;
  1647. } else {
  1648. np->tx_ring.ex[i].flaglen = 0;
  1649. np->tx_ring.ex[i].txvlan = 0;
  1650. np->tx_ring.ex[i].bufhigh = 0;
  1651. np->tx_ring.ex[i].buflow = 0;
  1652. }
  1653. if (nv_release_txskb(dev, &np->tx_skb[i]))
  1654. dev->stats.tx_dropped++;
  1655. np->tx_skb[i].dma = 0;
  1656. np->tx_skb[i].dma_len = 0;
  1657. np->tx_skb[i].first_tx_desc = NULL;
  1658. np->tx_skb[i].next_tx_ctx = NULL;
  1659. }
  1660. np->tx_pkts_in_progress = 0;
  1661. np->tx_change_owner = NULL;
  1662. np->tx_end_flip = NULL;
  1663. }
  1664. static void nv_drain_rx(struct net_device *dev)
  1665. {
  1666. struct fe_priv *np = netdev_priv(dev);
  1667. int i;
  1668. for (i = 0; i < np->rx_ring_size; i++) {
  1669. if (!nv_optimized(np)) {
  1670. np->rx_ring.orig[i].flaglen = 0;
  1671. np->rx_ring.orig[i].buf = 0;
  1672. } else {
  1673. np->rx_ring.ex[i].flaglen = 0;
  1674. np->rx_ring.ex[i].txvlan = 0;
  1675. np->rx_ring.ex[i].bufhigh = 0;
  1676. np->rx_ring.ex[i].buflow = 0;
  1677. }
  1678. wmb();
  1679. if (np->rx_skb[i].skb) {
  1680. pci_unmap_single(np->pci_dev, np->rx_skb[i].dma,
  1681. (skb_end_pointer(np->rx_skb[i].skb) -
  1682. np->rx_skb[i].skb->data),
  1683. PCI_DMA_FROMDEVICE);
  1684. dev_kfree_skb(np->rx_skb[i].skb);
  1685. np->rx_skb[i].skb = NULL;
  1686. }
  1687. }
  1688. }
  1689. static void nv_drain_rxtx(struct net_device *dev)
  1690. {
  1691. nv_drain_tx(dev);
  1692. nv_drain_rx(dev);
  1693. }
  1694. static inline u32 nv_get_empty_tx_slots(struct fe_priv *np)
  1695. {
  1696. return (u32)(np->tx_ring_size - ((np->tx_ring_size + (np->put_tx_ctx - np->get_tx_ctx)) % np->tx_ring_size));
  1697. }
  1698. static void nv_legacybackoff_reseed(struct net_device *dev)
  1699. {
  1700. u8 __iomem *base = get_hwbase(dev);
  1701. u32 reg;
  1702. u32 low;
  1703. int tx_status = 0;
  1704. reg = readl(base + NvRegSlotTime) & ~NVREG_SLOTTIME_MASK;
  1705. get_random_bytes(&low, sizeof(low));
  1706. reg |= low & NVREG_SLOTTIME_MASK;
  1707. /* Need to stop tx before change takes effect.
  1708. * Caller has already gained np->lock.
  1709. */
  1710. tx_status = readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_START;
  1711. if (tx_status)
  1712. nv_stop_tx(dev);
  1713. nv_stop_rx(dev);
  1714. writel(reg, base + NvRegSlotTime);
  1715. if (tx_status)
  1716. nv_start_tx(dev);
  1717. nv_start_rx(dev);
  1718. }
  1719. /* Gear Backoff Seeds */
  1720. #define BACKOFF_SEEDSET_ROWS 8
  1721. #define BACKOFF_SEEDSET_LFSRS 15
  1722. /* Known Good seed sets */
  1723. static const u32 main_seedset[BACKOFF_SEEDSET_ROWS][BACKOFF_SEEDSET_LFSRS] = {
  1724. {145, 155, 165, 175, 185, 196, 235, 245, 255, 265, 275, 285, 660, 690, 874},
  1725. {245, 255, 265, 575, 385, 298, 335, 345, 355, 366, 375, 385, 761, 790, 974},
  1726. {145, 155, 165, 175, 185, 196, 235, 245, 255, 265, 275, 285, 660, 690, 874},
  1727. {245, 255, 265, 575, 385, 298, 335, 345, 355, 366, 375, 386, 761, 790, 974},
  1728. {266, 265, 276, 585, 397, 208, 345, 355, 365, 376, 385, 396, 771, 700, 984},
  1729. {266, 265, 276, 586, 397, 208, 346, 355, 365, 376, 285, 396, 771, 700, 984},
  1730. {366, 365, 376, 686, 497, 308, 447, 455, 466, 476, 485, 496, 871, 800, 84},
  1731. {466, 465, 476, 786, 597, 408, 547, 555, 566, 576, 585, 597, 971, 900, 184}};
  1732. static const u32 gear_seedset[BACKOFF_SEEDSET_ROWS][BACKOFF_SEEDSET_LFSRS] = {
  1733. {251, 262, 273, 324, 319, 508, 375, 364, 341, 371, 398, 193, 375, 30, 295},
  1734. {351, 375, 373, 469, 551, 639, 477, 464, 441, 472, 498, 293, 476, 130, 395},
  1735. {351, 375, 373, 469, 551, 639, 477, 464, 441, 472, 498, 293, 476, 130, 397},
  1736. {251, 262, 273, 324, 319, 508, 375, 364, 341, 371, 398, 193, 375, 30, 295},
  1737. {251, 262, 273, 324, 319, 508, 375, 364, 341, 371, 398, 193, 375, 30, 295},
  1738. {351, 375, 373, 469, 551, 639, 477, 464, 441, 472, 498, 293, 476, 130, 395},
  1739. {351, 375, 373, 469, 551, 639, 477, 464, 441, 472, 498, 293, 476, 130, 395},
  1740. {351, 375, 373, 469, 551, 639, 477, 464, 441, 472, 498, 293, 476, 130, 395}};
  1741. static void nv_gear_backoff_reseed(struct net_device *dev)
  1742. {
  1743. u8 __iomem *base = get_hwbase(dev);
  1744. u32 miniseed1, miniseed2, miniseed2_reversed, miniseed3, miniseed3_reversed;
  1745. u32 temp, seedset, combinedSeed;
  1746. int i;
  1747. /* Setup seed for free running LFSR */
  1748. /* We are going to read the time stamp counter 3 times
  1749. and swizzle bits around to increase randomness */
  1750. get_random_bytes(&miniseed1, sizeof(miniseed1));
  1751. miniseed1 &= 0x0fff;
  1752. if (miniseed1 == 0)
  1753. miniseed1 = 0xabc;
  1754. get_random_bytes(&miniseed2, sizeof(miniseed2));
  1755. miniseed2 &= 0x0fff;
  1756. if (miniseed2 == 0)
  1757. miniseed2 = 0xabc;
  1758. miniseed2_reversed =
  1759. ((miniseed2 & 0xF00) >> 8) |
  1760. (miniseed2 & 0x0F0) |
  1761. ((miniseed2 & 0x00F) << 8);
  1762. get_random_bytes(&miniseed3, sizeof(miniseed3));
  1763. miniseed3 &= 0x0fff;
  1764. if (miniseed3 == 0)
  1765. miniseed3 = 0xabc;
  1766. miniseed3_reversed =
  1767. ((miniseed3 & 0xF00) >> 8) |
  1768. (miniseed3 & 0x0F0) |
  1769. ((miniseed3 & 0x00F) << 8);
  1770. combinedSeed = ((miniseed1 ^ miniseed2_reversed) << 12) |
  1771. (miniseed2 ^ miniseed3_reversed);
  1772. /* Seeds can not be zero */
  1773. if ((combinedSeed & NVREG_BKOFFCTRL_SEED_MASK) == 0)
  1774. combinedSeed |= 0x08;
  1775. if ((combinedSeed & (NVREG_BKOFFCTRL_SEED_MASK << NVREG_BKOFFCTRL_GEAR)) == 0)
  1776. combinedSeed |= 0x8000;
  1777. /* No need to disable tx here */
  1778. temp = NVREG_BKOFFCTRL_DEFAULT | (0 << NVREG_BKOFFCTRL_SELECT);
  1779. temp |= combinedSeed & NVREG_BKOFFCTRL_SEED_MASK;
  1780. temp |= combinedSeed >> NVREG_BKOFFCTRL_GEAR;
  1781. writel(temp,base + NvRegBackOffControl);
  1782. /* Setup seeds for all gear LFSRs. */
  1783. get_random_bytes(&seedset, sizeof(seedset));
  1784. seedset = seedset % BACKOFF_SEEDSET_ROWS;
  1785. for (i = 1; i <= BACKOFF_SEEDSET_LFSRS; i++)
  1786. {
  1787. temp = NVREG_BKOFFCTRL_DEFAULT | (i << NVREG_BKOFFCTRL_SELECT);
  1788. temp |= main_seedset[seedset][i-1] & 0x3ff;
  1789. temp |= ((gear_seedset[seedset][i-1] & 0x3ff) << NVREG_BKOFFCTRL_GEAR);
  1790. writel(temp, base + NvRegBackOffControl);
  1791. }
  1792. }
  1793. /*
  1794. * nv_start_xmit: dev->hard_start_xmit function
  1795. * Called with netif_tx_lock held.
  1796. */
  1797. static int nv_start_xmit(struct sk_buff *skb, struct net_device *dev)
  1798. {
  1799. struct fe_priv *np = netdev_priv(dev);
  1800. u32 tx_flags = 0;
  1801. u32 tx_flags_extra = (np->desc_ver == DESC_VER_1 ? NV_TX_LASTPACKET : NV_TX2_LASTPACKET);
  1802. unsigned int fragments = skb_shinfo(skb)->nr_frags;
  1803. unsigned int i;
  1804. u32 offset = 0;
  1805. u32 bcnt;
  1806. u32 size = skb->len-skb->data_len;
  1807. u32 entries = (size >> NV_TX2_TSO_MAX_SHIFT) + ((size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
  1808. u32 empty_slots;
  1809. struct ring_desc* put_tx;
  1810. struct ring_desc* start_tx;
  1811. struct ring_desc* prev_tx;
  1812. struct nv_skb_map* prev_tx_ctx;
  1813. unsigned long flags;
  1814. /* add fragments to entries count */
  1815. for (i = 0; i < fragments; i++) {
  1816. entries += (skb_shinfo(skb)->frags[i].size >> NV_TX2_TSO_MAX_SHIFT) +
  1817. ((skb_shinfo(skb)->frags[i].size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
  1818. }
  1819. empty_slots = nv_get_empty_tx_slots(np);
  1820. if (unlikely(empty_slots <= entries)) {
  1821. spin_lock_irqsave(&np->lock, flags);
  1822. netif_stop_queue(dev);
  1823. np->tx_stop = 1;
  1824. spin_unlock_irqrestore(&np->lock, flags);
  1825. return NETDEV_TX_BUSY;
  1826. }
  1827. start_tx = put_tx = np->put_tx.orig;
  1828. /* setup the header buffer */
  1829. do {
  1830. prev_tx = put_tx;
  1831. prev_tx_ctx = np->put_tx_ctx;
  1832. bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
  1833. np->put_tx_ctx->dma = pci_map_single(np->pci_dev, skb->data + offset, bcnt,
  1834. PCI_DMA_TODEVICE);
  1835. np->put_tx_ctx->dma_len = bcnt;
  1836. put_tx->buf = cpu_to_le32(np->put_tx_ctx->dma);
  1837. put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags);
  1838. tx_flags = np->tx_flags;
  1839. offset += bcnt;
  1840. size -= bcnt;
  1841. if (unlikely(put_tx++ == np->last_tx.orig))
  1842. put_tx = np->first_tx.orig;
  1843. if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx))
  1844. np->put_tx_ctx = np->first_tx_ctx;
  1845. } while (size);
  1846. /* setup the fragments */
  1847. for (i = 0; i < fragments; i++) {
  1848. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  1849. u32 size = frag->size;
  1850. offset = 0;
  1851. do {
  1852. prev_tx = put_tx;
  1853. prev_tx_ctx = np->put_tx_ctx;
  1854. bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
  1855. np->put_tx_ctx->dma = pci_map_page(np->pci_dev, frag->page, frag->page_offset+offset, bcnt,
  1856. PCI_DMA_TODEVICE);
  1857. np->put_tx_ctx->dma_len = bcnt;
  1858. put_tx->buf = cpu_to_le32(np->put_tx_ctx->dma);
  1859. put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags);
  1860. offset += bcnt;
  1861. size -= bcnt;
  1862. if (unlikely(put_tx++ == np->last_tx.orig))
  1863. put_tx = np->first_tx.orig;
  1864. if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx))
  1865. np->put_tx_ctx = np->first_tx_ctx;
  1866. } while (size);
  1867. }
  1868. /* set last fragment flag */
  1869. prev_tx->flaglen |= cpu_to_le32(tx_flags_extra);
  1870. /* save skb in this slot's context area */
  1871. prev_tx_ctx->skb = skb;
  1872. if (skb_is_gso(skb))
  1873. tx_flags_extra = NV_TX2_TSO | (skb_shinfo(skb)->gso_size << NV_TX2_TSO_SHIFT);
  1874. else
  1875. tx_flags_extra = skb->ip_summed == CHECKSUM_PARTIAL ?
  1876. NV_TX2_CHECKSUM_L3 | NV_TX2_CHECKSUM_L4 : 0;
  1877. spin_lock_irqsave(&np->lock, flags);
  1878. /* set tx flags */
  1879. start_tx->flaglen |= cpu_to_le32(tx_flags | tx_flags_extra);
  1880. np->put_tx.orig = put_tx;
  1881. spin_unlock_irqrestore(&np->lock, flags);
  1882. dprintk(KERN_DEBUG "%s: nv_start_xmit: entries %d queued for transmission. tx_flags_extra: %x\n",
  1883. dev->name, entries, tx_flags_extra);
  1884. {
  1885. int j;
  1886. for (j=0; j<64; j++) {
  1887. if ((j%16) == 0)
  1888. dprintk("\n%03x:", j);
  1889. dprintk(" %02x", ((unsigned char*)skb->data)[j]);
  1890. }
  1891. dprintk("\n");
  1892. }
  1893. dev->trans_start = jiffies;
  1894. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  1895. return NETDEV_TX_OK;
  1896. }
  1897. static int nv_start_xmit_optimized(struct sk_buff *skb, struct net_device *dev)
  1898. {
  1899. struct fe_priv *np = netdev_priv(dev);
  1900. u32 tx_flags = 0;
  1901. u32 tx_flags_extra;
  1902. unsigned int fragments = skb_shinfo(skb)->nr_frags;
  1903. unsigned int i;
  1904. u32 offset = 0;
  1905. u32 bcnt;
  1906. u32 size = skb->len-skb->data_len;
  1907. u32 entries = (size >> NV_TX2_TSO_MAX_SHIFT) + ((size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
  1908. u32 empty_slots;
  1909. struct ring_desc_ex* put_tx;
  1910. struct ring_desc_ex* start_tx;
  1911. struct ring_desc_ex* prev_tx;
  1912. struct nv_skb_map* prev_tx_ctx;
  1913. struct nv_skb_map* start_tx_ctx;
  1914. unsigned long flags;
  1915. /* add fragments to entries count */
  1916. for (i = 0; i < fragments; i++) {
  1917. entries += (skb_shinfo(skb)->frags[i].size >> NV_TX2_TSO_MAX_SHIFT) +
  1918. ((skb_shinfo(skb)->frags[i].size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
  1919. }
  1920. empty_slots = nv_get_empty_tx_slots(np);
  1921. if (unlikely(empty_slots <= entries)) {
  1922. spin_lock_irqsave(&np->lock, flags);
  1923. netif_stop_queue(dev);
  1924. np->tx_stop = 1;
  1925. spin_unlock_irqrestore(&np->lock, flags);
  1926. return NETDEV_TX_BUSY;
  1927. }
  1928. start_tx = put_tx = np->put_tx.ex;
  1929. start_tx_ctx = np->put_tx_ctx;
  1930. /* setup the header buffer */
  1931. do {
  1932. prev_tx = put_tx;
  1933. prev_tx_ctx = np->put_tx_ctx;
  1934. bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
  1935. np->put_tx_ctx->dma = pci_map_single(np->pci_dev, skb->data + offset, bcnt,
  1936. PCI_DMA_TODEVICE);
  1937. np->put_tx_ctx->dma_len = bcnt;
  1938. put_tx->bufhigh = cpu_to_le32(dma_high(np->put_tx_ctx->dma));
  1939. put_tx->buflow = cpu_to_le32(dma_low(np->put_tx_ctx->dma));
  1940. put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags);
  1941. tx_flags = NV_TX2_VALID;
  1942. offset += bcnt;
  1943. size -= bcnt;
  1944. if (unlikely(put_tx++ == np->last_tx.ex))
  1945. put_tx = np->first_tx.ex;
  1946. if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx))
  1947. np->put_tx_ctx = np->first_tx_ctx;
  1948. } while (size);
  1949. /* setup the fragments */
  1950. for (i = 0; i < fragments; i++) {
  1951. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  1952. u32 size = frag->size;
  1953. offset = 0;
  1954. do {
  1955. prev_tx = put_tx;
  1956. prev_tx_ctx = np->put_tx_ctx;
  1957. bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
  1958. np->put_tx_ctx->dma = pci_map_page(np->pci_dev, frag->page, frag->page_offset+offset, bcnt,
  1959. PCI_DMA_TODEVICE);
  1960. np->put_tx_ctx->dma_len = bcnt;
  1961. put_tx->bufhigh = cpu_to_le32(dma_high(np->put_tx_ctx->dma));
  1962. put_tx->buflow = cpu_to_le32(dma_low(np->put_tx_ctx->dma));
  1963. put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags);
  1964. offset += bcnt;
  1965. size -= bcnt;
  1966. if (unlikely(put_tx++ == np->last_tx.ex))
  1967. put_tx = np->first_tx.ex;
  1968. if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx))
  1969. np->put_tx_ctx = np->first_tx_ctx;
  1970. } while (size);
  1971. }
  1972. /* set last fragment flag */
  1973. prev_tx->flaglen |= cpu_to_le32(NV_TX2_LASTPACKET);
  1974. /* save skb in this slot's context area */
  1975. prev_tx_ctx->skb = skb;
  1976. if (skb_is_gso(skb))
  1977. tx_flags_extra = NV_TX2_TSO | (skb_shinfo(skb)->gso_size << NV_TX2_TSO_SHIFT);
  1978. else
  1979. tx_flags_extra = skb->ip_summed == CHECKSUM_PARTIAL ?
  1980. NV_TX2_CHECKSUM_L3 | NV_TX2_CHECKSUM_L4 : 0;
  1981. /* vlan tag */
  1982. if (likely(!np->vlangrp)) {
  1983. start_tx->txvlan = 0;
  1984. } else {
  1985. if (vlan_tx_tag_present(skb))
  1986. start_tx->txvlan = cpu_to_le32(NV_TX3_VLAN_TAG_PRESENT | vlan_tx_tag_get(skb));
  1987. else
  1988. start_tx->txvlan = 0;
  1989. }
  1990. spin_lock_irqsave(&np->lock, flags);
  1991. if (np->tx_limit) {
  1992. /* Limit the number of outstanding tx. Setup all fragments, but
  1993. * do not set the VALID bit on the first descriptor. Save a pointer
  1994. * to that descriptor and also for next skb_map element.
  1995. */
  1996. if (np->tx_pkts_in_progress == NV_TX_LIMIT_COUNT) {
  1997. if (!np->tx_change_owner)
  1998. np->tx_change_owner = start_tx_ctx;
  1999. /* remove VALID bit */
  2000. tx_flags &= ~NV_TX2_VALID;
  2001. start_tx_ctx->first_tx_desc = start_tx;
  2002. start_tx_ctx->next_tx_ctx = np->put_tx_ctx;
  2003. np->tx_end_flip = np->put_tx_ctx;
  2004. } else {
  2005. np->tx_pkts_in_progress++;
  2006. }
  2007. }
  2008. /* set tx flags */
  2009. start_tx->flaglen |= cpu_to_le32(tx_flags | tx_flags_extra);
  2010. np->put_tx.ex = put_tx;
  2011. spin_unlock_irqrestore(&np->lock, flags);
  2012. dprintk(KERN_DEBUG "%s: nv_start_xmit_optimized: entries %d queued for transmission. tx_flags_extra: %x\n",
  2013. dev->name, entries, tx_flags_extra);
  2014. {
  2015. int j;
  2016. for (j=0; j<64; j++) {
  2017. if ((j%16) == 0)
  2018. dprintk("\n%03x:", j);
  2019. dprintk(" %02x", ((unsigned char*)skb->data)[j]);
  2020. }
  2021. dprintk("\n");
  2022. }
  2023. dev->trans_start = jiffies;
  2024. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  2025. return NETDEV_TX_OK;
  2026. }
  2027. static inline void nv_tx_flip_ownership(struct net_device *dev)
  2028. {
  2029. struct fe_priv *np = netdev_priv(dev);
  2030. np->tx_pkts_in_progress--;
  2031. if (np->tx_change_owner) {
  2032. np->tx_change_owner->first_tx_desc->flaglen |=
  2033. cpu_to_le32(NV_TX2_VALID);
  2034. np->tx_pkts_in_progress++;
  2035. np->tx_change_owner = np->tx_change_owner->next_tx_ctx;
  2036. if (np->tx_change_owner == np->tx_end_flip)
  2037. np->tx_change_owner = NULL;
  2038. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  2039. }
  2040. }
  2041. /*
  2042. * nv_tx_done: check for completed packets, release the skbs.
  2043. *
  2044. * Caller must own np->lock.
  2045. */
  2046. static void nv_tx_done(struct net_device *dev)
  2047. {
  2048. struct fe_priv *np = netdev_priv(dev);
  2049. u32 flags;
  2050. struct ring_desc* orig_get_tx = np->get_tx.orig;
  2051. while ((np->get_tx.orig != np->put_tx.orig) &&
  2052. !((flags = le32_to_cpu(np->get_tx.orig->flaglen)) & NV_TX_VALID)) {
  2053. dprintk(KERN_DEBUG "%s: nv_tx_done: flags 0x%x.\n",
  2054. dev->name, flags);
  2055. pci_unmap_page(np->pci_dev, np->get_tx_ctx->dma,
  2056. np->get_tx_ctx->dma_len,
  2057. PCI_DMA_TODEVICE);
  2058. np->get_tx_ctx->dma = 0;
  2059. if (np->desc_ver == DESC_VER_1) {
  2060. if (flags & NV_TX_LASTPACKET) {
  2061. if (flags & NV_TX_ERROR) {
  2062. if (flags & NV_TX_UNDERFLOW)
  2063. dev->stats.tx_fifo_errors++;
  2064. if (flags & NV_TX_CARRIERLOST)
  2065. dev->stats.tx_carrier_errors++;
  2066. if ((flags & NV_TX_RETRYERROR) && !(flags & NV_TX_RETRYCOUNT_MASK))
  2067. nv_legacybackoff_reseed(dev);
  2068. dev->stats.tx_errors++;
  2069. } else {
  2070. dev->stats.tx_packets++;
  2071. dev->stats.tx_bytes += np->get_tx_ctx->skb->len;
  2072. }
  2073. dev_kfree_skb_any(np->get_tx_ctx->skb);
  2074. np->get_tx_ctx->skb = NULL;
  2075. }
  2076. } else {
  2077. if (flags & NV_TX2_LASTPACKET) {
  2078. if (flags & NV_TX2_ERROR) {
  2079. if (flags & NV_TX2_UNDERFLOW)
  2080. dev->stats.tx_fifo_errors++;
  2081. if (flags & NV_TX2_CARRIERLOST)
  2082. dev->stats.tx_carrier_errors++;
  2083. if ((flags & NV_TX2_RETRYERROR) && !(flags & NV_TX2_RETRYCOUNT_MASK))
  2084. nv_legacybackoff_reseed(dev);
  2085. dev->stats.tx_errors++;
  2086. } else {
  2087. dev->stats.tx_packets++;
  2088. dev->stats.tx_bytes += np->get_tx_ctx->skb->len;
  2089. }
  2090. dev_kfree_skb_any(np->get_tx_ctx->skb);
  2091. np->get_tx_ctx->skb = NULL;
  2092. }
  2093. }
  2094. if (unlikely(np->get_tx.orig++ == np->last_tx.orig))
  2095. np->get_tx.orig = np->first_tx.orig;
  2096. if (unlikely(np->get_tx_ctx++ == np->last_tx_ctx))
  2097. np->get_tx_ctx = np->first_tx_ctx;
  2098. }
  2099. if (unlikely((np->tx_stop == 1) && (np->get_tx.orig != orig_get_tx))) {
  2100. np->tx_stop = 0;
  2101. netif_wake_queue(dev);
  2102. }
  2103. }
  2104. static void nv_tx_done_optimized(struct net_device *dev, int limit)
  2105. {
  2106. struct fe_priv *np = netdev_priv(dev);
  2107. u32 flags;
  2108. struct ring_desc_ex* orig_get_tx = np->get_tx.ex;
  2109. while ((np->get_tx.ex != np->put_tx.ex) &&
  2110. !((flags = le32_to_cpu(np->get_tx.ex->flaglen)) & NV_TX_VALID) &&
  2111. (limit-- > 0)) {
  2112. dprintk(KERN_DEBUG "%s: nv_tx_done_optimized: flags 0x%x.\n",
  2113. dev->name, flags);
  2114. pci_unmap_page(np->pci_dev, np->get_tx_ctx->dma,
  2115. np->get_tx_ctx->dma_len,
  2116. PCI_DMA_TODEVICE);
  2117. np->get_tx_ctx->dma = 0;
  2118. if (flags & NV_TX2_LASTPACKET) {
  2119. if (!(flags & NV_TX2_ERROR))
  2120. dev->stats.tx_packets++;
  2121. else {
  2122. if ((flags & NV_TX2_RETRYERROR) && !(flags & NV_TX2_RETRYCOUNT_MASK)) {
  2123. if (np->driver_data & DEV_HAS_GEAR_MODE)
  2124. nv_gear_backoff_reseed(dev);
  2125. else
  2126. nv_legacybackoff_reseed(dev);
  2127. }
  2128. }
  2129. dev_kfree_skb_any(np->get_tx_ctx->skb);
  2130. np->get_tx_ctx->skb = NULL;
  2131. if (np->tx_limit) {
  2132. nv_tx_flip_ownership(dev);
  2133. }
  2134. }
  2135. if (unlikely(np->get_tx.ex++ == np->last_tx.ex))
  2136. np->get_tx.ex = np->first_tx.ex;
  2137. if (unlikely(np->get_tx_ctx++ == np->last_tx_ctx))
  2138. np->get_tx_ctx = np->first_tx_ctx;
  2139. }
  2140. if (unlikely((np->tx_stop == 1) && (np->get_tx.ex != orig_get_tx))) {
  2141. np->tx_stop = 0;
  2142. netif_wake_queue(dev);
  2143. }
  2144. }
  2145. /*
  2146. * nv_tx_timeout: dev->tx_timeout function
  2147. * Called with netif_tx_lock held.
  2148. */
  2149. static void nv_tx_timeout(struct net_device *dev)
  2150. {
  2151. struct fe_priv *np = netdev_priv(dev);
  2152. u8 __iomem *base = get_hwbase(dev);
  2153. u32 status;
  2154. if (np->msi_flags & NV_MSI_X_ENABLED)
  2155. status = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK;
  2156. else
  2157. status = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
  2158. printk(KERN_INFO "%s: Got tx_timeout. irq: %08x\n", dev->name, status);
  2159. {
  2160. int i;
  2161. printk(KERN_INFO "%s: Ring at %lx\n",
  2162. dev->name, (unsigned long)np->ring_addr);
  2163. printk(KERN_INFO "%s: Dumping tx registers\n", dev->name);
  2164. for (i=0;i<=np->register_size;i+= 32) {
  2165. printk(KERN_INFO "%3x: %08x %08x %08x %08x %08x %08x %08x %08x\n",
  2166. i,
  2167. readl(base + i + 0), readl(base + i + 4),
  2168. readl(base + i + 8), readl(base + i + 12),
  2169. readl(base + i + 16), readl(base + i + 20),
  2170. readl(base + i + 24), readl(base + i + 28));
  2171. }
  2172. printk(KERN_INFO "%s: Dumping tx ring\n", dev->name);
  2173. for (i=0;i<np->tx_ring_size;i+= 4) {
  2174. if (!nv_optimized(np)) {
  2175. printk(KERN_INFO "%03x: %08x %08x // %08x %08x // %08x %08x // %08x %08x\n",
  2176. i,
  2177. le32_to_cpu(np->tx_ring.orig[i].buf),
  2178. le32_to_cpu(np->tx_ring.orig[i].flaglen),
  2179. le32_to_cpu(np->tx_ring.orig[i+1].buf),
  2180. le32_to_cpu(np->tx_ring.orig[i+1].flaglen),
  2181. le32_to_cpu(np->tx_ring.orig[i+2].buf),
  2182. le32_to_cpu(np->tx_ring.orig[i+2].flaglen),
  2183. le32_to_cpu(np->tx_ring.orig[i+3].buf),
  2184. le32_to_cpu(np->tx_ring.orig[i+3].flaglen));
  2185. } else {
  2186. printk(KERN_INFO "%03x: %08x %08x %08x // %08x %08x %08x // %08x %08x %08x // %08x %08x %08x\n",
  2187. i,
  2188. le32_to_cpu(np->tx_ring.ex[i].bufhigh),
  2189. le32_to_cpu(np->tx_ring.ex[i].buflow),
  2190. le32_to_cpu(np->tx_ring.ex[i].flaglen),
  2191. le32_to_cpu(np->tx_ring.ex[i+1].bufhigh),
  2192. le32_to_cpu(np->tx_ring.ex[i+1].buflow),
  2193. le32_to_cpu(np->tx_ring.ex[i+1].flaglen),
  2194. le32_to_cpu(np->tx_ring.ex[i+2].bufhigh),
  2195. le32_to_cpu(np->tx_ring.ex[i+2].buflow),
  2196. le32_to_cpu(np->tx_ring.ex[i+2].flaglen),
  2197. le32_to_cpu(np->tx_ring.ex[i+3].bufhigh),
  2198. le32_to_cpu(np->tx_ring.ex[i+3].buflow),
  2199. le32_to_cpu(np->tx_ring.ex[i+3].flaglen));
  2200. }
  2201. }
  2202. }
  2203. spin_lock_irq(&np->lock);
  2204. /* 1) stop tx engine */
  2205. nv_stop_tx(dev);
  2206. /* 2) check that the packets were not sent already: */
  2207. if (!nv_optimized(np))
  2208. nv_tx_done(dev);
  2209. else
  2210. nv_tx_done_optimized(dev, np->tx_ring_size);
  2211. /* 3) if there are dead entries: clear everything */
  2212. if (np->get_tx_ctx != np->put_tx_ctx) {
  2213. printk(KERN_DEBUG "%s: tx_timeout: dead entries!\n", dev->name);
  2214. nv_drain_tx(dev);
  2215. nv_init_tx(dev);
  2216. setup_hw_rings(dev, NV_SETUP_TX_RING);
  2217. }
  2218. netif_wake_queue(dev);
  2219. /* 4) restart tx engine */
  2220. nv_start_tx(dev);
  2221. spin_unlock_irq(&np->lock);
  2222. }
  2223. /*
  2224. * Called when the nic notices a mismatch between the actual data len on the
  2225. * wire and the len indicated in the 802 header
  2226. */
  2227. static int nv_getlen(struct net_device *dev, void *packet, int datalen)
  2228. {
  2229. int hdrlen; /* length of the 802 header */
  2230. int protolen; /* length as stored in the proto field */
  2231. /* 1) calculate len according to header */
  2232. if ( ((struct vlan_ethhdr *)packet)->h_vlan_proto == htons(ETH_P_8021Q)) {
  2233. protolen = ntohs( ((struct vlan_ethhdr *)packet)->h_vlan_encapsulated_proto );
  2234. hdrlen = VLAN_HLEN;
  2235. } else {
  2236. protolen = ntohs( ((struct ethhdr *)packet)->h_proto);
  2237. hdrlen = ETH_HLEN;
  2238. }
  2239. dprintk(KERN_DEBUG "%s: nv_getlen: datalen %d, protolen %d, hdrlen %d\n",
  2240. dev->name, datalen, protolen, hdrlen);
  2241. if (protolen > ETH_DATA_LEN)
  2242. return datalen; /* Value in proto field not a len, no checks possible */
  2243. protolen += hdrlen;
  2244. /* consistency checks: */
  2245. if (datalen > ETH_ZLEN) {
  2246. if (datalen >= protolen) {
  2247. /* more data on wire than in 802 header, trim of
  2248. * additional data.
  2249. */
  2250. dprintk(KERN_DEBUG "%s: nv_getlen: accepting %d bytes.\n",
  2251. dev->name, protolen);
  2252. return protolen;
  2253. } else {
  2254. /* less data on wire than mentioned in header.
  2255. * Discard the packet.
  2256. */
  2257. dprintk(KERN_DEBUG "%s: nv_getlen: discarding long packet.\n",
  2258. dev->name);
  2259. return -1;
  2260. }
  2261. } else {
  2262. /* short packet. Accept only if 802 values are also short */
  2263. if (protolen > ETH_ZLEN) {
  2264. dprintk(KERN_DEBUG "%s: nv_getlen: discarding short packet.\n",
  2265. dev->name);
  2266. return -1;
  2267. }
  2268. dprintk(KERN_DEBUG "%s: nv_getlen: accepting %d bytes.\n",
  2269. dev->name, datalen);
  2270. return datalen;
  2271. }
  2272. }
  2273. static int nv_rx_process(struct net_device *dev, int limit)
  2274. {
  2275. struct fe_priv *np = netdev_priv(dev);
  2276. u32 flags;
  2277. int rx_work = 0;
  2278. struct sk_buff *skb;
  2279. int len;
  2280. while((np->get_rx.orig != np->put_rx.orig) &&
  2281. !((flags = le32_to_cpu(np->get_rx.orig->flaglen)) & NV_RX_AVAIL) &&
  2282. (rx_work < limit)) {
  2283. dprintk(KERN_DEBUG "%s: nv_rx_process: flags 0x%x.\n",
  2284. dev->name, flags);
  2285. /*
  2286. * the packet is for us - immediately tear down the pci mapping.
  2287. * TODO: check if a prefetch of the first cacheline improves
  2288. * the performance.
  2289. */
  2290. pci_unmap_single(np->pci_dev, np->get_rx_ctx->dma,
  2291. np->get_rx_ctx->dma_len,
  2292. PCI_DMA_FROMDEVICE);
  2293. skb = np->get_rx_ctx->skb;
  2294. np->get_rx_ctx->skb = NULL;
  2295. {
  2296. int j;
  2297. dprintk(KERN_DEBUG "Dumping packet (flags 0x%x).",flags);
  2298. for (j=0; j<64; j++) {
  2299. if ((j%16) == 0)
  2300. dprintk("\n%03x:", j);
  2301. dprintk(" %02x", ((unsigned char*)skb->data)[j]);
  2302. }
  2303. dprintk("\n");
  2304. }
  2305. /* look at what we actually got: */
  2306. if (np->desc_ver == DESC_VER_1) {
  2307. if (likely(flags & NV_RX_DESCRIPTORVALID)) {
  2308. len = flags & LEN_MASK_V1;
  2309. if (unlikely(flags & NV_RX_ERROR)) {
  2310. if (flags & NV_RX_ERROR4) {
  2311. len = nv_getlen(dev, skb->data, len);
  2312. if (len < 0) {
  2313. dev->stats.rx_errors++;
  2314. dev_kfree_skb(skb);
  2315. goto next_pkt;
  2316. }
  2317. }
  2318. /* framing errors are soft errors */
  2319. else if (flags & NV_RX_FRAMINGERR) {
  2320. if (flags & NV_RX_SUBSTRACT1) {
  2321. len--;
  2322. }
  2323. }
  2324. /* the rest are hard errors */
  2325. else {
  2326. if (flags & NV_RX_MISSEDFRAME)
  2327. dev->stats.rx_missed_errors++;
  2328. if (flags & NV_RX_CRCERR)
  2329. dev->stats.rx_crc_errors++;
  2330. if (flags & NV_RX_OVERFLOW)
  2331. dev->stats.rx_over_errors++;
  2332. dev->stats.rx_errors++;
  2333. dev_kfree_skb(skb);
  2334. goto next_pkt;
  2335. }
  2336. }
  2337. } else {
  2338. dev_kfree_skb(skb);
  2339. goto next_pkt;
  2340. }
  2341. } else {
  2342. if (likely(flags & NV_RX2_DESCRIPTORVALID)) {
  2343. len = flags & LEN_MASK_V2;
  2344. if (unlikely(flags & NV_RX2_ERROR)) {
  2345. if (flags & NV_RX2_ERROR4) {
  2346. len = nv_getlen(dev, skb->data, len);
  2347. if (len < 0) {
  2348. dev->stats.rx_errors++;
  2349. dev_kfree_skb(skb);
  2350. goto next_pkt;
  2351. }
  2352. }
  2353. /* framing errors are soft errors */
  2354. else if (flags & NV_RX2_FRAMINGERR) {
  2355. if (flags & NV_RX2_SUBSTRACT1) {
  2356. len--;
  2357. }
  2358. }
  2359. /* the rest are hard errors */
  2360. else {
  2361. if (flags & NV_RX2_CRCERR)
  2362. dev->stats.rx_crc_errors++;
  2363. if (flags & NV_RX2_OVERFLOW)
  2364. dev->stats.rx_over_errors++;
  2365. dev->stats.rx_errors++;
  2366. dev_kfree_skb(skb);
  2367. goto next_pkt;
  2368. }
  2369. }
  2370. if (((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUM_IP_TCP) || /*ip and tcp */
  2371. ((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUM_IP_UDP)) /*ip and udp */
  2372. skb->ip_summed = CHECKSUM_UNNECESSARY;
  2373. } else {
  2374. dev_kfree_skb(skb);
  2375. goto next_pkt;
  2376. }
  2377. }
  2378. /* got a valid packet - forward it to the network core */
  2379. skb_put(skb, len);
  2380. skb->protocol = eth_type_trans(skb, dev);
  2381. dprintk(KERN_DEBUG "%s: nv_rx_process: %d bytes, proto %d accepted.\n",
  2382. dev->name, len, skb->protocol);
  2383. #ifdef CONFIG_FORCEDETH_NAPI
  2384. netif_receive_skb(skb);
  2385. #else
  2386. netif_rx(skb);
  2387. #endif
  2388. dev->last_rx = jiffies;
  2389. dev->stats.rx_packets++;
  2390. dev->stats.rx_bytes += len;
  2391. next_pkt:
  2392. if (unlikely(np->get_rx.orig++ == np->last_rx.orig))
  2393. np->get_rx.orig = np->first_rx.orig;
  2394. if (unlikely(np->get_rx_ctx++ == np->last_rx_ctx))
  2395. np->get_rx_ctx = np->first_rx_ctx;
  2396. rx_work++;
  2397. }
  2398. return rx_work;
  2399. }
  2400. static int nv_rx_process_optimized(struct net_device *dev, int limit)
  2401. {
  2402. struct fe_priv *np = netdev_priv(dev);
  2403. u32 flags;
  2404. u32 vlanflags = 0;
  2405. int rx_work = 0;
  2406. struct sk_buff *skb;
  2407. int len;
  2408. while((np->get_rx.ex != np->put_rx.ex) &&
  2409. !((flags = le32_to_cpu(np->get_rx.ex->flaglen)) & NV_RX2_AVAIL) &&
  2410. (rx_work < limit)) {
  2411. dprintk(KERN_DEBUG "%s: nv_rx_process_optimized: flags 0x%x.\n",
  2412. dev->name, flags);
  2413. /*
  2414. * the packet is for us - immediately tear down the pci mapping.
  2415. * TODO: check if a prefetch of the first cacheline improves
  2416. * the performance.
  2417. */
  2418. pci_unmap_single(np->pci_dev, np->get_rx_ctx->dma,
  2419. np->get_rx_ctx->dma_len,
  2420. PCI_DMA_FROMDEVICE);
  2421. skb = np->get_rx_ctx->skb;
  2422. np->get_rx_ctx->skb = NULL;
  2423. {
  2424. int j;
  2425. dprintk(KERN_DEBUG "Dumping packet (flags 0x%x).",flags);
  2426. for (j=0; j<64; j++) {
  2427. if ((j%16) == 0)
  2428. dprintk("\n%03x:", j);
  2429. dprintk(" %02x", ((unsigned char*)skb->data)[j]);
  2430. }
  2431. dprintk("\n");
  2432. }
  2433. /* look at what we actually got: */
  2434. if (likely(flags & NV_RX2_DESCRIPTORVALID)) {
  2435. len = flags & LEN_MASK_V2;
  2436. if (unlikely(flags & NV_RX2_ERROR)) {
  2437. if (flags & NV_RX2_ERROR4) {
  2438. len = nv_getlen(dev, skb->data, len);
  2439. if (len < 0) {
  2440. dev_kfree_skb(skb);
  2441. goto next_pkt;
  2442. }
  2443. }
  2444. /* framing errors are soft errors */
  2445. else if (flags & NV_RX2_FRAMINGERR) {
  2446. if (flags & NV_RX2_SUBSTRACT1) {
  2447. len--;
  2448. }
  2449. }
  2450. /* the rest are hard errors */
  2451. else {
  2452. dev_kfree_skb(skb);
  2453. goto next_pkt;
  2454. }
  2455. }
  2456. if (((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUM_IP_TCP) || /*ip and tcp */
  2457. ((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUM_IP_UDP)) /*ip and udp */
  2458. skb->ip_summed = CHECKSUM_UNNECESSARY;
  2459. /* got a valid packet - forward it to the network core */
  2460. skb_put(skb, len);
  2461. skb->protocol = eth_type_trans(skb, dev);
  2462. prefetch(skb->data);
  2463. dprintk(KERN_DEBUG "%s: nv_rx_process_optimized: %d bytes, proto %d accepted.\n",
  2464. dev->name, len, skb->protocol);
  2465. if (likely(!np->vlangrp)) {
  2466. #ifdef CONFIG_FORCEDETH_NAPI
  2467. netif_receive_skb(skb);
  2468. #else
  2469. netif_rx(skb);
  2470. #endif
  2471. } else {
  2472. vlanflags = le32_to_cpu(np->get_rx.ex->buflow);
  2473. if (vlanflags & NV_RX3_VLAN_TAG_PRESENT) {
  2474. #ifdef CONFIG_FORCEDETH_NAPI
  2475. vlan_hwaccel_receive_skb(skb, np->vlangrp,
  2476. vlanflags & NV_RX3_VLAN_TAG_MASK);
  2477. #else
  2478. vlan_hwaccel_rx(skb, np->vlangrp,
  2479. vlanflags & NV_RX3_VLAN_TAG_MASK);
  2480. #endif
  2481. } else {
  2482. #ifdef CONFIG_FORCEDETH_NAPI
  2483. netif_receive_skb(skb);
  2484. #else
  2485. netif_rx(skb);
  2486. #endif
  2487. }
  2488. }
  2489. dev->last_rx = jiffies;
  2490. dev->stats.rx_packets++;
  2491. dev->stats.rx_bytes += len;
  2492. } else {
  2493. dev_kfree_skb(skb);
  2494. }
  2495. next_pkt:
  2496. if (unlikely(np->get_rx.ex++ == np->last_rx.ex))
  2497. np->get_rx.ex = np->first_rx.ex;
  2498. if (unlikely(np->get_rx_ctx++ == np->last_rx_ctx))
  2499. np->get_rx_ctx = np->first_rx_ctx;
  2500. rx_work++;
  2501. }
  2502. return rx_work;
  2503. }
  2504. static void set_bufsize(struct net_device *dev)
  2505. {
  2506. struct fe_priv *np = netdev_priv(dev);
  2507. if (dev->mtu <= ETH_DATA_LEN)
  2508. np->rx_buf_sz = ETH_DATA_LEN + NV_RX_HEADERS;
  2509. else
  2510. np->rx_buf_sz = dev->mtu + NV_RX_HEADERS;
  2511. }
  2512. /*
  2513. * nv_change_mtu: dev->change_mtu function
  2514. * Called with dev_base_lock held for read.
  2515. */
  2516. static int nv_change_mtu(struct net_device *dev, int new_mtu)
  2517. {
  2518. struct fe_priv *np = netdev_priv(dev);
  2519. int old_mtu;
  2520. if (new_mtu < 64 || new_mtu > np->pkt_limit)
  2521. return -EINVAL;
  2522. old_mtu = dev->mtu;
  2523. dev->mtu = new_mtu;
  2524. /* return early if the buffer sizes will not change */
  2525. if (old_mtu <= ETH_DATA_LEN && new_mtu <= ETH_DATA_LEN)
  2526. return 0;
  2527. if (old_mtu == new_mtu)
  2528. return 0;
  2529. /* synchronized against open : rtnl_lock() held by caller */
  2530. if (netif_running(dev)) {
  2531. u8 __iomem *base = get_hwbase(dev);
  2532. /*
  2533. * It seems that the nic preloads valid ring entries into an
  2534. * internal buffer. The procedure for flushing everything is
  2535. * guessed, there is probably a simpler approach.
  2536. * Changing the MTU is a rare event, it shouldn't matter.
  2537. */
  2538. nv_disable_irq(dev);
  2539. netif_tx_lock_bh(dev);
  2540. spin_lock(&np->lock);
  2541. /* stop engines */
  2542. nv_stop_rxtx(dev);
  2543. nv_txrx_reset(dev);
  2544. /* drain rx queue */
  2545. nv_drain_rxtx(dev);
  2546. /* reinit driver view of the rx queue */
  2547. set_bufsize(dev);
  2548. if (nv_init_ring(dev)) {
  2549. if (!np->in_shutdown)
  2550. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  2551. }
  2552. /* reinit nic view of the rx queue */
  2553. writel(np->rx_buf_sz, base + NvRegOffloadConfig);
  2554. setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
  2555. writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
  2556. base + NvRegRingSizes);
  2557. pci_push(base);
  2558. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  2559. pci_push(base);
  2560. /* restart rx engine */
  2561. nv_start_rxtx(dev);
  2562. spin_unlock(&np->lock);
  2563. netif_tx_unlock_bh(dev);
  2564. nv_enable_irq(dev);
  2565. }
  2566. return 0;
  2567. }
  2568. static void nv_copy_mac_to_hw(struct net_device *dev)
  2569. {
  2570. u8 __iomem *base = get_hwbase(dev);
  2571. u32 mac[2];
  2572. mac[0] = (dev->dev_addr[0] << 0) + (dev->dev_addr[1] << 8) +
  2573. (dev->dev_addr[2] << 16) + (dev->dev_addr[3] << 24);
  2574. mac[1] = (dev->dev_addr[4] << 0) + (dev->dev_addr[5] << 8);
  2575. writel(mac[0], base + NvRegMacAddrA);
  2576. writel(mac[1], base + NvRegMacAddrB);
  2577. }
  2578. /*
  2579. * nv_set_mac_address: dev->set_mac_address function
  2580. * Called with rtnl_lock() held.
  2581. */
  2582. static int nv_set_mac_address(struct net_device *dev, void *addr)
  2583. {
  2584. struct fe_priv *np = netdev_priv(dev);
  2585. struct sockaddr *macaddr = (struct sockaddr*)addr;
  2586. if (!is_valid_ether_addr(macaddr->sa_data))
  2587. return -EADDRNOTAVAIL;
  2588. /* synchronized against open : rtnl_lock() held by caller */
  2589. memcpy(dev->dev_addr, macaddr->sa_data, ETH_ALEN);
  2590. if (netif_running(dev)) {
  2591. netif_tx_lock_bh(dev);
  2592. spin_lock_irq(&np->lock);
  2593. /* stop rx engine */
  2594. nv_stop_rx(dev);
  2595. /* set mac address */
  2596. nv_copy_mac_to_hw(dev);
  2597. /* restart rx engine */
  2598. nv_start_rx(dev);
  2599. spin_unlock_irq(&np->lock);
  2600. netif_tx_unlock_bh(dev);
  2601. } else {
  2602. nv_copy_mac_to_hw(dev);
  2603. }
  2604. return 0;
  2605. }
  2606. /*
  2607. * nv_set_multicast: dev->set_multicast function
  2608. * Called with netif_tx_lock held.
  2609. */
  2610. static void nv_set_multicast(struct net_device *dev)
  2611. {
  2612. struct fe_priv *np = netdev_priv(dev);
  2613. u8 __iomem *base = get_hwbase(dev);
  2614. u32 addr[2];
  2615. u32 mask[2];
  2616. u32 pff = readl(base + NvRegPacketFilterFlags) & NVREG_PFF_PAUSE_RX;
  2617. memset(addr, 0, sizeof(addr));
  2618. memset(mask, 0, sizeof(mask));
  2619. if (dev->flags & IFF_PROMISC) {
  2620. pff |= NVREG_PFF_PROMISC;
  2621. } else {
  2622. pff |= NVREG_PFF_MYADDR;
  2623. if (dev->flags & IFF_ALLMULTI || dev->mc_list) {
  2624. u32 alwaysOff[2];
  2625. u32 alwaysOn[2];
  2626. alwaysOn[0] = alwaysOn[1] = alwaysOff[0] = alwaysOff[1] = 0xffffffff;
  2627. if (dev->flags & IFF_ALLMULTI) {
  2628. alwaysOn[0] = alwaysOn[1] = alwaysOff[0] = alwaysOff[1] = 0;
  2629. } else {
  2630. struct dev_mc_list *walk;
  2631. walk = dev->mc_list;
  2632. while (walk != NULL) {
  2633. u32 a, b;
  2634. a = le32_to_cpu(*(__le32 *) walk->dmi_addr);
  2635. b = le16_to_cpu(*(__le16 *) (&walk->dmi_addr[4]));
  2636. alwaysOn[0] &= a;
  2637. alwaysOff[0] &= ~a;
  2638. alwaysOn[1] &= b;
  2639. alwaysOff[1] &= ~b;
  2640. walk = walk->next;
  2641. }
  2642. }
  2643. addr[0] = alwaysOn[0];
  2644. addr[1] = alwaysOn[1];
  2645. mask[0] = alwaysOn[0] | alwaysOff[0];
  2646. mask[1] = alwaysOn[1] | alwaysOff[1];
  2647. } else {
  2648. mask[0] = NVREG_MCASTMASKA_NONE;
  2649. mask[1] = NVREG_MCASTMASKB_NONE;
  2650. }
  2651. }
  2652. addr[0] |= NVREG_MCASTADDRA_FORCE;
  2653. pff |= NVREG_PFF_ALWAYS;
  2654. spin_lock_irq(&np->lock);
  2655. nv_stop_rx(dev);
  2656. writel(addr[0], base + NvRegMulticastAddrA);
  2657. writel(addr[1], base + NvRegMulticastAddrB);
  2658. writel(mask[0], base + NvRegMulticastMaskA);
  2659. writel(mask[1], base + NvRegMulticastMaskB);
  2660. writel(pff, base + NvRegPacketFilterFlags);
  2661. dprintk(KERN_INFO "%s: reconfiguration for multicast lists.\n",
  2662. dev->name);
  2663. nv_start_rx(dev);
  2664. spin_unlock_irq(&np->lock);
  2665. }
  2666. static void nv_update_pause(struct net_device *dev, u32 pause_flags)
  2667. {
  2668. struct fe_priv *np = netdev_priv(dev);
  2669. u8 __iomem *base = get_hwbase(dev);
  2670. np->pause_flags &= ~(NV_PAUSEFRAME_TX_ENABLE | NV_PAUSEFRAME_RX_ENABLE);
  2671. if (np->pause_flags & NV_PAUSEFRAME_RX_CAPABLE) {
  2672. u32 pff = readl(base + NvRegPacketFilterFlags) & ~NVREG_PFF_PAUSE_RX;
  2673. if (pause_flags & NV_PAUSEFRAME_RX_ENABLE) {
  2674. writel(pff|NVREG_PFF_PAUSE_RX, base + NvRegPacketFilterFlags);
  2675. np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
  2676. } else {
  2677. writel(pff, base + NvRegPacketFilterFlags);
  2678. }
  2679. }
  2680. if (np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE) {
  2681. u32 regmisc = readl(base + NvRegMisc1) & ~NVREG_MISC1_PAUSE_TX;
  2682. if (pause_flags & NV_PAUSEFRAME_TX_ENABLE) {
  2683. u32 pause_enable = NVREG_TX_PAUSEFRAME_ENABLE_V1;
  2684. if (np->driver_data & DEV_HAS_PAUSEFRAME_TX_V2)
  2685. pause_enable = NVREG_TX_PAUSEFRAME_ENABLE_V2;
  2686. if (np->driver_data & DEV_HAS_PAUSEFRAME_TX_V3)
  2687. pause_enable = NVREG_TX_PAUSEFRAME_ENABLE_V3;
  2688. writel(pause_enable, base + NvRegTxPauseFrame);
  2689. writel(regmisc|NVREG_MISC1_PAUSE_TX, base + NvRegMisc1);
  2690. np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
  2691. } else {
  2692. writel(NVREG_TX_PAUSEFRAME_DISABLE, base + NvRegTxPauseFrame);
  2693. writel(regmisc, base + NvRegMisc1);
  2694. }
  2695. }
  2696. }
  2697. /**
  2698. * nv_update_linkspeed: Setup the MAC according to the link partner
  2699. * @dev: Network device to be configured
  2700. *
  2701. * The function queries the PHY and checks if there is a link partner.
  2702. * If yes, then it sets up the MAC accordingly. Otherwise, the MAC is
  2703. * set to 10 MBit HD.
  2704. *
  2705. * The function returns 0 if there is no link partner and 1 if there is
  2706. * a good link partner.
  2707. */
  2708. static int nv_update_linkspeed(struct net_device *dev)
  2709. {
  2710. struct fe_priv *np = netdev_priv(dev);
  2711. u8 __iomem *base = get_hwbase(dev);
  2712. int adv = 0;
  2713. int lpa = 0;
  2714. int adv_lpa, adv_pause, lpa_pause;
  2715. int newls = np->linkspeed;
  2716. int newdup = np->duplex;
  2717. int mii_status;
  2718. int retval = 0;
  2719. u32 control_1000, status_1000, phyreg, pause_flags, txreg;
  2720. u32 txrxFlags = 0;
  2721. u32 phy_exp;
  2722. /* BMSR_LSTATUS is latched, read it twice:
  2723. * we want the current value.
  2724. */
  2725. mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  2726. mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  2727. if (!(mii_status & BMSR_LSTATUS)) {
  2728. dprintk(KERN_DEBUG "%s: no link detected by phy - falling back to 10HD.\n",
  2729. dev->name);
  2730. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  2731. newdup = 0;
  2732. retval = 0;
  2733. goto set_speed;
  2734. }
  2735. if (np->autoneg == 0) {
  2736. dprintk(KERN_DEBUG "%s: nv_update_linkspeed: autoneg off, PHY set to 0x%04x.\n",
  2737. dev->name, np->fixed_mode);
  2738. if (np->fixed_mode & LPA_100FULL) {
  2739. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
  2740. newdup = 1;
  2741. } else if (np->fixed_mode & LPA_100HALF) {
  2742. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
  2743. newdup = 0;
  2744. } else if (np->fixed_mode & LPA_10FULL) {
  2745. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  2746. newdup = 1;
  2747. } else {
  2748. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  2749. newdup = 0;
  2750. }
  2751. retval = 1;
  2752. goto set_speed;
  2753. }
  2754. /* check auto negotiation is complete */
  2755. if (!(mii_status & BMSR_ANEGCOMPLETE)) {
  2756. /* still in autonegotiation - configure nic for 10 MBit HD and wait. */
  2757. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  2758. newdup = 0;
  2759. retval = 0;
  2760. dprintk(KERN_DEBUG "%s: autoneg not completed - falling back to 10HD.\n", dev->name);
  2761. goto set_speed;
  2762. }
  2763. adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  2764. lpa = mii_rw(dev, np->phyaddr, MII_LPA, MII_READ);
  2765. dprintk(KERN_DEBUG "%s: nv_update_linkspeed: PHY advertises 0x%04x, lpa 0x%04x.\n",
  2766. dev->name, adv, lpa);
  2767. retval = 1;
  2768. if (np->gigabit == PHY_GIGABIT) {
  2769. control_1000 = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
  2770. status_1000 = mii_rw(dev, np->phyaddr, MII_STAT1000, MII_READ);
  2771. if ((control_1000 & ADVERTISE_1000FULL) &&
  2772. (status_1000 & LPA_1000FULL)) {
  2773. dprintk(KERN_DEBUG "%s: nv_update_linkspeed: GBit ethernet detected.\n",
  2774. dev->name);
  2775. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_1000;
  2776. newdup = 1;
  2777. goto set_speed;
  2778. }
  2779. }
  2780. /* FIXME: handle parallel detection properly */
  2781. adv_lpa = lpa & adv;
  2782. if (adv_lpa & LPA_100FULL) {
  2783. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
  2784. newdup = 1;
  2785. } else if (adv_lpa & LPA_100HALF) {
  2786. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
  2787. newdup = 0;
  2788. } else if (adv_lpa & LPA_10FULL) {
  2789. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  2790. newdup = 1;
  2791. } else if (adv_lpa & LPA_10HALF) {
  2792. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  2793. newdup = 0;
  2794. } else {
  2795. dprintk(KERN_DEBUG "%s: bad ability %04x - falling back to 10HD.\n", dev->name, adv_lpa);
  2796. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  2797. newdup = 0;
  2798. }
  2799. set_speed:
  2800. if (np->duplex == newdup && np->linkspeed == newls)
  2801. return retval;
  2802. dprintk(KERN_INFO "%s: changing link setting from %d/%d to %d/%d.\n",
  2803. dev->name, np->linkspeed, np->duplex, newls, newdup);
  2804. np->duplex = newdup;
  2805. np->linkspeed = newls;
  2806. /* The transmitter and receiver must be restarted for safe update */
  2807. if (readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_START) {
  2808. txrxFlags |= NV_RESTART_TX;
  2809. nv_stop_tx(dev);
  2810. }
  2811. if (readl(base + NvRegReceiverControl) & NVREG_RCVCTL_START) {
  2812. txrxFlags |= NV_RESTART_RX;
  2813. nv_stop_rx(dev);
  2814. }
  2815. if (np->gigabit == PHY_GIGABIT) {
  2816. phyreg = readl(base + NvRegSlotTime);
  2817. phyreg &= ~(0x3FF00);
  2818. if (((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_10) ||
  2819. ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_100))
  2820. phyreg |= NVREG_SLOTTIME_10_100_FULL;
  2821. else if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_1000)
  2822. phyreg |= NVREG_SLOTTIME_1000_FULL;
  2823. writel(phyreg, base + NvRegSlotTime);
  2824. }
  2825. phyreg = readl(base + NvRegPhyInterface);
  2826. phyreg &= ~(PHY_HALF|PHY_100|PHY_1000);
  2827. if (np->duplex == 0)
  2828. phyreg |= PHY_HALF;
  2829. if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_100)
  2830. phyreg |= PHY_100;
  2831. else if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000)
  2832. phyreg |= PHY_1000;
  2833. writel(phyreg, base + NvRegPhyInterface);
  2834. phy_exp = mii_rw(dev, np->phyaddr, MII_EXPANSION, MII_READ) & EXPANSION_NWAY; /* autoneg capable */
  2835. if (phyreg & PHY_RGMII) {
  2836. if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000) {
  2837. txreg = NVREG_TX_DEFERRAL_RGMII_1000;
  2838. } else {
  2839. if (!phy_exp && !np->duplex && (np->driver_data & DEV_HAS_COLLISION_FIX)) {
  2840. if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_10)
  2841. txreg = NVREG_TX_DEFERRAL_RGMII_STRETCH_10;
  2842. else
  2843. txreg = NVREG_TX_DEFERRAL_RGMII_STRETCH_100;
  2844. } else {
  2845. txreg = NVREG_TX_DEFERRAL_RGMII_10_100;
  2846. }
  2847. }
  2848. } else {
  2849. if (!phy_exp && !np->duplex && (np->driver_data & DEV_HAS_COLLISION_FIX))
  2850. txreg = NVREG_TX_DEFERRAL_MII_STRETCH;
  2851. else
  2852. txreg = NVREG_TX_DEFERRAL_DEFAULT;
  2853. }
  2854. writel(txreg, base + NvRegTxDeferral);
  2855. if (np->desc_ver == DESC_VER_1) {
  2856. txreg = NVREG_TX_WM_DESC1_DEFAULT;
  2857. } else {
  2858. if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000)
  2859. txreg = NVREG_TX_WM_DESC2_3_1000;
  2860. else
  2861. txreg = NVREG_TX_WM_DESC2_3_DEFAULT;
  2862. }
  2863. writel(txreg, base + NvRegTxWatermark);
  2864. writel(NVREG_MISC1_FORCE | ( np->duplex ? 0 : NVREG_MISC1_HD),
  2865. base + NvRegMisc1);
  2866. pci_push(base);
  2867. writel(np->linkspeed, base + NvRegLinkSpeed);
  2868. pci_push(base);
  2869. pause_flags = 0;
  2870. /* setup pause frame */
  2871. if (np->duplex != 0) {
  2872. if (np->autoneg && np->pause_flags & NV_PAUSEFRAME_AUTONEG) {
  2873. adv_pause = adv & (ADVERTISE_PAUSE_CAP| ADVERTISE_PAUSE_ASYM);
  2874. lpa_pause = lpa & (LPA_PAUSE_CAP| LPA_PAUSE_ASYM);
  2875. switch (adv_pause) {
  2876. case ADVERTISE_PAUSE_CAP:
  2877. if (lpa_pause & LPA_PAUSE_CAP) {
  2878. pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
  2879. if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
  2880. pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
  2881. }
  2882. break;
  2883. case ADVERTISE_PAUSE_ASYM:
  2884. if (lpa_pause == (LPA_PAUSE_CAP| LPA_PAUSE_ASYM))
  2885. {
  2886. pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
  2887. }
  2888. break;
  2889. case ADVERTISE_PAUSE_CAP| ADVERTISE_PAUSE_ASYM:
  2890. if (lpa_pause & LPA_PAUSE_CAP)
  2891. {
  2892. pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
  2893. if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
  2894. pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
  2895. }
  2896. if (lpa_pause == LPA_PAUSE_ASYM)
  2897. {
  2898. pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
  2899. }
  2900. break;
  2901. }
  2902. } else {
  2903. pause_flags = np->pause_flags;
  2904. }
  2905. }
  2906. nv_update_pause(dev, pause_flags);
  2907. if (txrxFlags & NV_RESTART_TX)
  2908. nv_start_tx(dev);
  2909. if (txrxFlags & NV_RESTART_RX)
  2910. nv_start_rx(dev);
  2911. return retval;
  2912. }
  2913. static void nv_linkchange(struct net_device *dev)
  2914. {
  2915. if (nv_update_linkspeed(dev)) {
  2916. if (!netif_carrier_ok(dev)) {
  2917. netif_carrier_on(dev);
  2918. printk(KERN_INFO "%s: link up.\n", dev->name);
  2919. nv_start_rx(dev);
  2920. }
  2921. } else {
  2922. if (netif_carrier_ok(dev)) {
  2923. netif_carrier_off(dev);
  2924. printk(KERN_INFO "%s: link down.\n", dev->name);
  2925. nv_stop_rx(dev);
  2926. }
  2927. }
  2928. }
  2929. static void nv_link_irq(struct net_device *dev)
  2930. {
  2931. u8 __iomem *base = get_hwbase(dev);
  2932. u32 miistat;
  2933. miistat = readl(base + NvRegMIIStatus);
  2934. writel(NVREG_MIISTAT_LINKCHANGE, base + NvRegMIIStatus);
  2935. dprintk(KERN_INFO "%s: link change irq, status 0x%x.\n", dev->name, miistat);
  2936. if (miistat & (NVREG_MIISTAT_LINKCHANGE))
  2937. nv_linkchange(dev);
  2938. dprintk(KERN_DEBUG "%s: link change notification done.\n", dev->name);
  2939. }
  2940. static irqreturn_t nv_nic_irq(int foo, void *data)
  2941. {
  2942. struct net_device *dev = (struct net_device *) data;
  2943. struct fe_priv *np = netdev_priv(dev);
  2944. u8 __iomem *base = get_hwbase(dev);
  2945. u32 events;
  2946. int i;
  2947. dprintk(KERN_DEBUG "%s: nv_nic_irq\n", dev->name);
  2948. for (i=0; ; i++) {
  2949. if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
  2950. events = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
  2951. writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
  2952. } else {
  2953. events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK;
  2954. writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
  2955. }
  2956. dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, events);
  2957. if (!(events & np->irqmask))
  2958. break;
  2959. spin_lock(&np->lock);
  2960. nv_tx_done(dev);
  2961. spin_unlock(&np->lock);
  2962. #ifdef CONFIG_FORCEDETH_NAPI
  2963. if (events & NVREG_IRQ_RX_ALL) {
  2964. netif_rx_schedule(dev, &np->napi);
  2965. /* Disable furthur receive irq's */
  2966. spin_lock(&np->lock);
  2967. np->irqmask &= ~NVREG_IRQ_RX_ALL;
  2968. if (np->msi_flags & NV_MSI_X_ENABLED)
  2969. writel(NVREG_IRQ_RX_ALL, base + NvRegIrqMask);
  2970. else
  2971. writel(np->irqmask, base + NvRegIrqMask);
  2972. spin_unlock(&np->lock);
  2973. }
  2974. #else
  2975. if (nv_rx_process(dev, RX_WORK_PER_LOOP)) {
  2976. if (unlikely(nv_alloc_rx(dev))) {
  2977. spin_lock(&np->lock);
  2978. if (!np->in_shutdown)
  2979. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  2980. spin_unlock(&np->lock);
  2981. }
  2982. }
  2983. #endif
  2984. if (unlikely(events & NVREG_IRQ_LINK)) {
  2985. spin_lock(&np->lock);
  2986. nv_link_irq(dev);
  2987. spin_unlock(&np->lock);
  2988. }
  2989. if (unlikely(np->need_linktimer && time_after(jiffies, np->link_timeout))) {
  2990. spin_lock(&np->lock);
  2991. nv_linkchange(dev);
  2992. spin_unlock(&np->lock);
  2993. np->link_timeout = jiffies + LINK_TIMEOUT;
  2994. }
  2995. if (unlikely(events & (NVREG_IRQ_TX_ERR))) {
  2996. dprintk(KERN_DEBUG "%s: received irq with events 0x%x. Probably TX fail.\n",
  2997. dev->name, events);
  2998. }
  2999. if (unlikely(events & (NVREG_IRQ_UNKNOWN))) {
  3000. printk(KERN_DEBUG "%s: received irq with unknown events 0x%x. Please report\n",
  3001. dev->name, events);
  3002. }
  3003. if (unlikely(events & NVREG_IRQ_RECOVER_ERROR)) {
  3004. spin_lock(&np->lock);
  3005. /* disable interrupts on the nic */
  3006. if (!(np->msi_flags & NV_MSI_X_ENABLED))
  3007. writel(0, base + NvRegIrqMask);
  3008. else
  3009. writel(np->irqmask, base + NvRegIrqMask);
  3010. pci_push(base);
  3011. if (!np->in_shutdown) {
  3012. np->nic_poll_irq = np->irqmask;
  3013. np->recover_error = 1;
  3014. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  3015. }
  3016. spin_unlock(&np->lock);
  3017. break;
  3018. }
  3019. if (unlikely(i > max_interrupt_work)) {
  3020. spin_lock(&np->lock);
  3021. /* disable interrupts on the nic */
  3022. if (!(np->msi_flags & NV_MSI_X_ENABLED))
  3023. writel(0, base + NvRegIrqMask);
  3024. else
  3025. writel(np->irqmask, base + NvRegIrqMask);
  3026. pci_push(base);
  3027. if (!np->in_shutdown) {
  3028. np->nic_poll_irq = np->irqmask;
  3029. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  3030. }
  3031. spin_unlock(&np->lock);
  3032. printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq.\n", dev->name, i);
  3033. break;
  3034. }
  3035. }
  3036. dprintk(KERN_DEBUG "%s: nv_nic_irq completed\n", dev->name);
  3037. return IRQ_RETVAL(i);
  3038. }
  3039. /**
  3040. * All _optimized functions are used to help increase performance
  3041. * (reduce CPU and increase throughput). They use descripter version 3,
  3042. * compiler directives, and reduce memory accesses.
  3043. */
  3044. static irqreturn_t nv_nic_irq_optimized(int foo, void *data)
  3045. {
  3046. struct net_device *dev = (struct net_device *) data;
  3047. struct fe_priv *np = netdev_priv(dev);
  3048. u8 __iomem *base = get_hwbase(dev);
  3049. u32 events;
  3050. int i;
  3051. dprintk(KERN_DEBUG "%s: nv_nic_irq_optimized\n", dev->name);
  3052. for (i=0; ; i++) {
  3053. if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
  3054. events = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
  3055. writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
  3056. } else {
  3057. events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK;
  3058. writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
  3059. }
  3060. dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, events);
  3061. if (!(events & np->irqmask))
  3062. break;
  3063. spin_lock(&np->lock);
  3064. nv_tx_done_optimized(dev, TX_WORK_PER_LOOP);
  3065. spin_unlock(&np->lock);
  3066. #ifdef CONFIG_FORCEDETH_NAPI
  3067. if (events & NVREG_IRQ_RX_ALL) {
  3068. netif_rx_schedule(dev, &np->napi);
  3069. /* Disable furthur receive irq's */
  3070. spin_lock(&np->lock);
  3071. np->irqmask &= ~NVREG_IRQ_RX_ALL;
  3072. if (np->msi_flags & NV_MSI_X_ENABLED)
  3073. writel(NVREG_IRQ_RX_ALL, base + NvRegIrqMask);
  3074. else
  3075. writel(np->irqmask, base + NvRegIrqMask);
  3076. spin_unlock(&np->lock);
  3077. }
  3078. #else
  3079. if (nv_rx_process_optimized(dev, RX_WORK_PER_LOOP)) {
  3080. if (unlikely(nv_alloc_rx_optimized(dev))) {
  3081. spin_lock(&np->lock);
  3082. if (!np->in_shutdown)
  3083. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  3084. spin_unlock(&np->lock);
  3085. }
  3086. }
  3087. #endif
  3088. if (unlikely(events & NVREG_IRQ_LINK)) {
  3089. spin_lock(&np->lock);
  3090. nv_link_irq(dev);
  3091. spin_unlock(&np->lock);
  3092. }
  3093. if (unlikely(np->need_linktimer && time_after(jiffies, np->link_timeout))) {
  3094. spin_lock(&np->lock);
  3095. nv_linkchange(dev);
  3096. spin_unlock(&np->lock);
  3097. np->link_timeout = jiffies + LINK_TIMEOUT;
  3098. }
  3099. if (unlikely(events & (NVREG_IRQ_TX_ERR))) {
  3100. dprintk(KERN_DEBUG "%s: received irq with events 0x%x. Probably TX fail.\n",
  3101. dev->name, events);
  3102. }
  3103. if (unlikely(events & (NVREG_IRQ_UNKNOWN))) {
  3104. printk(KERN_DEBUG "%s: received irq with unknown events 0x%x. Please report\n",
  3105. dev->name, events);
  3106. }
  3107. if (unlikely(events & NVREG_IRQ_RECOVER_ERROR)) {
  3108. spin_lock(&np->lock);
  3109. /* disable interrupts on the nic */
  3110. if (!(np->msi_flags & NV_MSI_X_ENABLED))
  3111. writel(0, base + NvRegIrqMask);
  3112. else
  3113. writel(np->irqmask, base + NvRegIrqMask);
  3114. pci_push(base);
  3115. if (!np->in_shutdown) {
  3116. np->nic_poll_irq = np->irqmask;
  3117. np->recover_error = 1;
  3118. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  3119. }
  3120. spin_unlock(&np->lock);
  3121. break;
  3122. }
  3123. if (unlikely(i > max_interrupt_work)) {
  3124. spin_lock(&np->lock);
  3125. /* disable interrupts on the nic */
  3126. if (!(np->msi_flags & NV_MSI_X_ENABLED))
  3127. writel(0, base + NvRegIrqMask);
  3128. else
  3129. writel(np->irqmask, base + NvRegIrqMask);
  3130. pci_push(base);
  3131. if (!np->in_shutdown) {
  3132. np->nic_poll_irq = np->irqmask;
  3133. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  3134. }
  3135. spin_unlock(&np->lock);
  3136. printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq.\n", dev->name, i);
  3137. break;
  3138. }
  3139. }
  3140. dprintk(KERN_DEBUG "%s: nv_nic_irq_optimized completed\n", dev->name);
  3141. return IRQ_RETVAL(i);
  3142. }
  3143. static irqreturn_t nv_nic_irq_tx(int foo, void *data)
  3144. {
  3145. struct net_device *dev = (struct net_device *) data;
  3146. struct fe_priv *np = netdev_priv(dev);
  3147. u8 __iomem *base = get_hwbase(dev);
  3148. u32 events;
  3149. int i;
  3150. unsigned long flags;
  3151. dprintk(KERN_DEBUG "%s: nv_nic_irq_tx\n", dev->name);
  3152. for (i=0; ; i++) {
  3153. events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_TX_ALL;
  3154. writel(NVREG_IRQ_TX_ALL, base + NvRegMSIXIrqStatus);
  3155. dprintk(KERN_DEBUG "%s: tx irq: %08x\n", dev->name, events);
  3156. if (!(events & np->irqmask))
  3157. break;
  3158. spin_lock_irqsave(&np->lock, flags);
  3159. nv_tx_done_optimized(dev, TX_WORK_PER_LOOP);
  3160. spin_unlock_irqrestore(&np->lock, flags);
  3161. if (unlikely(events & (NVREG_IRQ_TX_ERR))) {
  3162. dprintk(KERN_DEBUG "%s: received irq with events 0x%x. Probably TX fail.\n",
  3163. dev->name, events);
  3164. }
  3165. if (unlikely(i > max_interrupt_work)) {
  3166. spin_lock_irqsave(&np->lock, flags);
  3167. /* disable interrupts on the nic */
  3168. writel(NVREG_IRQ_TX_ALL, base + NvRegIrqMask);
  3169. pci_push(base);
  3170. if (!np->in_shutdown) {
  3171. np->nic_poll_irq |= NVREG_IRQ_TX_ALL;
  3172. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  3173. }
  3174. spin_unlock_irqrestore(&np->lock, flags);
  3175. printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq_tx.\n", dev->name, i);
  3176. break;
  3177. }
  3178. }
  3179. dprintk(KERN_DEBUG "%s: nv_nic_irq_tx completed\n", dev->name);
  3180. return IRQ_RETVAL(i);
  3181. }
  3182. #ifdef CONFIG_FORCEDETH_NAPI
  3183. static int nv_napi_poll(struct napi_struct *napi, int budget)
  3184. {
  3185. struct fe_priv *np = container_of(napi, struct fe_priv, napi);
  3186. struct net_device *dev = np->dev;
  3187. u8 __iomem *base = get_hwbase(dev);
  3188. unsigned long flags;
  3189. int pkts, retcode;
  3190. if (!nv_optimized(np)) {
  3191. pkts = nv_rx_process(dev, budget);
  3192. retcode = nv_alloc_rx(dev);
  3193. } else {
  3194. pkts = nv_rx_process_optimized(dev, budget);
  3195. retcode = nv_alloc_rx_optimized(dev);
  3196. }
  3197. if (retcode) {
  3198. spin_lock_irqsave(&np->lock, flags);
  3199. if (!np->in_shutdown)
  3200. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  3201. spin_unlock_irqrestore(&np->lock, flags);
  3202. }
  3203. if (pkts < budget) {
  3204. /* re-enable receive interrupts */
  3205. spin_lock_irqsave(&np->lock, flags);
  3206. __netif_rx_complete(dev, napi);
  3207. np->irqmask |= NVREG_IRQ_RX_ALL;
  3208. if (np->msi_flags & NV_MSI_X_ENABLED)
  3209. writel(NVREG_IRQ_RX_ALL, base + NvRegIrqMask);
  3210. else
  3211. writel(np->irqmask, base + NvRegIrqMask);
  3212. spin_unlock_irqrestore(&np->lock, flags);
  3213. }
  3214. return pkts;
  3215. }
  3216. #endif
  3217. #ifdef CONFIG_FORCEDETH_NAPI
  3218. static irqreturn_t nv_nic_irq_rx(int foo, void *data)
  3219. {
  3220. struct net_device *dev = (struct net_device *) data;
  3221. struct fe_priv *np = netdev_priv(dev);
  3222. u8 __iomem *base = get_hwbase(dev);
  3223. u32 events;
  3224. events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_RX_ALL;
  3225. writel(NVREG_IRQ_RX_ALL, base + NvRegMSIXIrqStatus);
  3226. if (events) {
  3227. netif_rx_schedule(dev, &np->napi);
  3228. /* disable receive interrupts on the nic */
  3229. writel(NVREG_IRQ_RX_ALL, base + NvRegIrqMask);
  3230. pci_push(base);
  3231. }
  3232. return IRQ_HANDLED;
  3233. }
  3234. #else
  3235. static irqreturn_t nv_nic_irq_rx(int foo, void *data)
  3236. {
  3237. struct net_device *dev = (struct net_device *) data;
  3238. struct fe_priv *np = netdev_priv(dev);
  3239. u8 __iomem *base = get_hwbase(dev);
  3240. u32 events;
  3241. int i;
  3242. unsigned long flags;
  3243. dprintk(KERN_DEBUG "%s: nv_nic_irq_rx\n", dev->name);
  3244. for (i=0; ; i++) {
  3245. events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_RX_ALL;
  3246. writel(NVREG_IRQ_RX_ALL, base + NvRegMSIXIrqStatus);
  3247. dprintk(KERN_DEBUG "%s: rx irq: %08x\n", dev->name, events);
  3248. if (!(events & np->irqmask))
  3249. break;
  3250. if (nv_rx_process_optimized(dev, RX_WORK_PER_LOOP)) {
  3251. if (unlikely(nv_alloc_rx_optimized(dev))) {
  3252. spin_lock_irqsave(&np->lock, flags);
  3253. if (!np->in_shutdown)
  3254. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  3255. spin_unlock_irqrestore(&np->lock, flags);
  3256. }
  3257. }
  3258. if (unlikely(i > max_interrupt_work)) {
  3259. spin_lock_irqsave(&np->lock, flags);
  3260. /* disable interrupts on the nic */
  3261. writel(NVREG_IRQ_RX_ALL, base + NvRegIrqMask);
  3262. pci_push(base);
  3263. if (!np->in_shutdown) {
  3264. np->nic_poll_irq |= NVREG_IRQ_RX_ALL;
  3265. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  3266. }
  3267. spin_unlock_irqrestore(&np->lock, flags);
  3268. printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq_rx.\n", dev->name, i);
  3269. break;
  3270. }
  3271. }
  3272. dprintk(KERN_DEBUG "%s: nv_nic_irq_rx completed\n", dev->name);
  3273. return IRQ_RETVAL(i);
  3274. }
  3275. #endif
  3276. static irqreturn_t nv_nic_irq_other(int foo, void *data)
  3277. {
  3278. struct net_device *dev = (struct net_device *) data;
  3279. struct fe_priv *np = netdev_priv(dev);
  3280. u8 __iomem *base = get_hwbase(dev);
  3281. u32 events;
  3282. int i;
  3283. unsigned long flags;
  3284. dprintk(KERN_DEBUG "%s: nv_nic_irq_other\n", dev->name);
  3285. for (i=0; ; i++) {
  3286. events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_OTHER;
  3287. writel(NVREG_IRQ_OTHER, base + NvRegMSIXIrqStatus);
  3288. dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, events);
  3289. if (!(events & np->irqmask))
  3290. break;
  3291. /* check tx in case we reached max loop limit in tx isr */
  3292. spin_lock_irqsave(&np->lock, flags);
  3293. nv_tx_done_optimized(dev, TX_WORK_PER_LOOP);
  3294. spin_unlock_irqrestore(&np->lock, flags);
  3295. if (events & NVREG_IRQ_LINK) {
  3296. spin_lock_irqsave(&np->lock, flags);
  3297. nv_link_irq(dev);
  3298. spin_unlock_irqrestore(&np->lock, flags);
  3299. }
  3300. if (np->need_linktimer && time_after(jiffies, np->link_timeout)) {
  3301. spin_lock_irqsave(&np->lock, flags);
  3302. nv_linkchange(dev);
  3303. spin_unlock_irqrestore(&np->lock, flags);
  3304. np->link_timeout = jiffies + LINK_TIMEOUT;
  3305. }
  3306. if (events & NVREG_IRQ_RECOVER_ERROR) {
  3307. spin_lock_irq(&np->lock);
  3308. /* disable interrupts on the nic */
  3309. writel(NVREG_IRQ_OTHER, base + NvRegIrqMask);
  3310. pci_push(base);
  3311. if (!np->in_shutdown) {
  3312. np->nic_poll_irq |= NVREG_IRQ_OTHER;
  3313. np->recover_error = 1;
  3314. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  3315. }
  3316. spin_unlock_irq(&np->lock);
  3317. break;
  3318. }
  3319. if (events & (NVREG_IRQ_UNKNOWN)) {
  3320. printk(KERN_DEBUG "%s: received irq with unknown events 0x%x. Please report\n",
  3321. dev->name, events);
  3322. }
  3323. if (unlikely(i > max_interrupt_work)) {
  3324. spin_lock_irqsave(&np->lock, flags);
  3325. /* disable interrupts on the nic */
  3326. writel(NVREG_IRQ_OTHER, base + NvRegIrqMask);
  3327. pci_push(base);
  3328. if (!np->in_shutdown) {
  3329. np->nic_poll_irq |= NVREG_IRQ_OTHER;
  3330. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  3331. }
  3332. spin_unlock_irqrestore(&np->lock, flags);
  3333. printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq_other.\n", dev->name, i);
  3334. break;
  3335. }
  3336. }
  3337. dprintk(KERN_DEBUG "%s: nv_nic_irq_other completed\n", dev->name);
  3338. return IRQ_RETVAL(i);
  3339. }
  3340. static irqreturn_t nv_nic_irq_test(int foo, void *data)
  3341. {
  3342. struct net_device *dev = (struct net_device *) data;
  3343. struct fe_priv *np = netdev_priv(dev);
  3344. u8 __iomem *base = get_hwbase(dev);
  3345. u32 events;
  3346. dprintk(KERN_DEBUG "%s: nv_nic_irq_test\n", dev->name);
  3347. if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
  3348. events = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
  3349. writel(NVREG_IRQ_TIMER, base + NvRegIrqStatus);
  3350. } else {
  3351. events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK;
  3352. writel(NVREG_IRQ_TIMER, base + NvRegMSIXIrqStatus);
  3353. }
  3354. pci_push(base);
  3355. dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, events);
  3356. if (!(events & NVREG_IRQ_TIMER))
  3357. return IRQ_RETVAL(0);
  3358. spin_lock(&np->lock);
  3359. np->intr_test = 1;
  3360. spin_unlock(&np->lock);
  3361. dprintk(KERN_DEBUG "%s: nv_nic_irq_test completed\n", dev->name);
  3362. return IRQ_RETVAL(1);
  3363. }
  3364. static void set_msix_vector_map(struct net_device *dev, u32 vector, u32 irqmask)
  3365. {
  3366. u8 __iomem *base = get_hwbase(dev);
  3367. int i;
  3368. u32 msixmap = 0;
  3369. /* Each interrupt bit can be mapped to a MSIX vector (4 bits).
  3370. * MSIXMap0 represents the first 8 interrupts and MSIXMap1 represents
  3371. * the remaining 8 interrupts.
  3372. */
  3373. for (i = 0; i < 8; i++) {
  3374. if ((irqmask >> i) & 0x1) {
  3375. msixmap |= vector << (i << 2);
  3376. }
  3377. }
  3378. writel(readl(base + NvRegMSIXMap0) | msixmap, base + NvRegMSIXMap0);
  3379. msixmap = 0;
  3380. for (i = 0; i < 8; i++) {
  3381. if ((irqmask >> (i + 8)) & 0x1) {
  3382. msixmap |= vector << (i << 2);
  3383. }
  3384. }
  3385. writel(readl(base + NvRegMSIXMap1) | msixmap, base + NvRegMSIXMap1);
  3386. }
  3387. static int nv_request_irq(struct net_device *dev, int intr_test)
  3388. {
  3389. struct fe_priv *np = get_nvpriv(dev);
  3390. u8 __iomem *base = get_hwbase(dev);
  3391. int ret = 1;
  3392. int i;
  3393. irqreturn_t (*handler)(int foo, void *data);
  3394. if (intr_test) {
  3395. handler = nv_nic_irq_test;
  3396. } else {
  3397. if (nv_optimized(np))
  3398. handler = nv_nic_irq_optimized;
  3399. else
  3400. handler = nv_nic_irq;
  3401. }
  3402. if (np->msi_flags & NV_MSI_X_CAPABLE) {
  3403. for (i = 0; i < (np->msi_flags & NV_MSI_X_VECTORS_MASK); i++) {
  3404. np->msi_x_entry[i].entry = i;
  3405. }
  3406. if ((ret = pci_enable_msix(np->pci_dev, np->msi_x_entry, (np->msi_flags & NV_MSI_X_VECTORS_MASK))) == 0) {
  3407. np->msi_flags |= NV_MSI_X_ENABLED;
  3408. if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT && !intr_test) {
  3409. /* Request irq for rx handling */
  3410. if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector, &nv_nic_irq_rx, IRQF_SHARED, dev->name, dev) != 0) {
  3411. printk(KERN_INFO "forcedeth: request_irq failed for rx %d\n", ret);
  3412. pci_disable_msix(np->pci_dev);
  3413. np->msi_flags &= ~NV_MSI_X_ENABLED;
  3414. goto out_err;
  3415. }
  3416. /* Request irq for tx handling */
  3417. if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector, &nv_nic_irq_tx, IRQF_SHARED, dev->name, dev) != 0) {
  3418. printk(KERN_INFO "forcedeth: request_irq failed for tx %d\n", ret);
  3419. pci_disable_msix(np->pci_dev);
  3420. np->msi_flags &= ~NV_MSI_X_ENABLED;
  3421. goto out_free_rx;
  3422. }
  3423. /* Request irq for link and timer handling */
  3424. if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector, &nv_nic_irq_other, IRQF_SHARED, dev->name, dev) != 0) {
  3425. printk(KERN_INFO "forcedeth: request_irq failed for link %d\n", ret);
  3426. pci_disable_msix(np->pci_dev);
  3427. np->msi_flags &= ~NV_MSI_X_ENABLED;
  3428. goto out_free_tx;
  3429. }
  3430. /* map interrupts to their respective vector */
  3431. writel(0, base + NvRegMSIXMap0);
  3432. writel(0, base + NvRegMSIXMap1);
  3433. set_msix_vector_map(dev, NV_MSI_X_VECTOR_RX, NVREG_IRQ_RX_ALL);
  3434. set_msix_vector_map(dev, NV_MSI_X_VECTOR_TX, NVREG_IRQ_TX_ALL);
  3435. set_msix_vector_map(dev, NV_MSI_X_VECTOR_OTHER, NVREG_IRQ_OTHER);
  3436. } else {
  3437. /* Request irq for all interrupts */
  3438. if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector, handler, IRQF_SHARED, dev->name, dev) != 0) {
  3439. printk(KERN_INFO "forcedeth: request_irq failed %d\n", ret);
  3440. pci_disable_msix(np->pci_dev);
  3441. np->msi_flags &= ~NV_MSI_X_ENABLED;
  3442. goto out_err;
  3443. }
  3444. /* map interrupts to vector 0 */
  3445. writel(0, base + NvRegMSIXMap0);
  3446. writel(0, base + NvRegMSIXMap1);
  3447. }
  3448. }
  3449. }
  3450. if (ret != 0 && np->msi_flags & NV_MSI_CAPABLE) {
  3451. if ((ret = pci_enable_msi(np->pci_dev)) == 0) {
  3452. np->msi_flags |= NV_MSI_ENABLED;
  3453. dev->irq = np->pci_dev->irq;
  3454. if (request_irq(np->pci_dev->irq, handler, IRQF_SHARED, dev->name, dev) != 0) {
  3455. printk(KERN_INFO "forcedeth: request_irq failed %d\n", ret);
  3456. pci_disable_msi(np->pci_dev);
  3457. np->msi_flags &= ~NV_MSI_ENABLED;
  3458. dev->irq = np->pci_dev->irq;
  3459. goto out_err;
  3460. }
  3461. /* map interrupts to vector 0 */
  3462. writel(0, base + NvRegMSIMap0);
  3463. writel(0, base + NvRegMSIMap1);
  3464. /* enable msi vector 0 */
  3465. writel(NVREG_MSI_VECTOR_0_ENABLED, base + NvRegMSIIrqMask);
  3466. }
  3467. }
  3468. if (ret != 0) {
  3469. if (request_irq(np->pci_dev->irq, handler, IRQF_SHARED, dev->name, dev) != 0)
  3470. goto out_err;
  3471. }
  3472. return 0;
  3473. out_free_tx:
  3474. free_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector, dev);
  3475. out_free_rx:
  3476. free_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector, dev);
  3477. out_err:
  3478. return 1;
  3479. }
  3480. static void nv_free_irq(struct net_device *dev)
  3481. {
  3482. struct fe_priv *np = get_nvpriv(dev);
  3483. int i;
  3484. if (np->msi_flags & NV_MSI_X_ENABLED) {
  3485. for (i = 0; i < (np->msi_flags & NV_MSI_X_VECTORS_MASK); i++) {
  3486. free_irq(np->msi_x_entry[i].vector, dev);
  3487. }
  3488. pci_disable_msix(np->pci_dev);
  3489. np->msi_flags &= ~NV_MSI_X_ENABLED;
  3490. } else {
  3491. free_irq(np->pci_dev->irq, dev);
  3492. if (np->msi_flags & NV_MSI_ENABLED) {
  3493. pci_disable_msi(np->pci_dev);
  3494. np->msi_flags &= ~NV_MSI_ENABLED;
  3495. }
  3496. }
  3497. }
  3498. static void nv_do_nic_poll(unsigned long data)
  3499. {
  3500. struct net_device *dev = (struct net_device *) data;
  3501. struct fe_priv *np = netdev_priv(dev);
  3502. u8 __iomem *base = get_hwbase(dev);
  3503. u32 mask = 0;
  3504. /*
  3505. * First disable irq(s) and then
  3506. * reenable interrupts on the nic, we have to do this before calling
  3507. * nv_nic_irq because that may decide to do otherwise
  3508. */
  3509. if (!using_multi_irqs(dev)) {
  3510. if (np->msi_flags & NV_MSI_X_ENABLED)
  3511. disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
  3512. else
  3513. disable_irq_lockdep(np->pci_dev->irq);
  3514. mask = np->irqmask;
  3515. } else {
  3516. if (np->nic_poll_irq & NVREG_IRQ_RX_ALL) {
  3517. disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  3518. mask |= NVREG_IRQ_RX_ALL;
  3519. }
  3520. if (np->nic_poll_irq & NVREG_IRQ_TX_ALL) {
  3521. disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
  3522. mask |= NVREG_IRQ_TX_ALL;
  3523. }
  3524. if (np->nic_poll_irq & NVREG_IRQ_OTHER) {
  3525. disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
  3526. mask |= NVREG_IRQ_OTHER;
  3527. }
  3528. }
  3529. np->nic_poll_irq = 0;
  3530. /* disable_irq() contains synchronize_irq, thus no irq handler can run now */
  3531. if (np->recover_error) {
  3532. np->recover_error = 0;
  3533. printk(KERN_INFO "forcedeth: MAC in recoverable error state\n");
  3534. if (netif_running(dev)) {
  3535. netif_tx_lock_bh(dev);
  3536. spin_lock(&np->lock);
  3537. /* stop engines */
  3538. nv_stop_rxtx(dev);
  3539. nv_txrx_reset(dev);
  3540. /* drain rx queue */
  3541. nv_drain_rxtx(dev);
  3542. /* reinit driver view of the rx queue */
  3543. set_bufsize(dev);
  3544. if (nv_init_ring(dev)) {
  3545. if (!np->in_shutdown)
  3546. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  3547. }
  3548. /* reinit nic view of the rx queue */
  3549. writel(np->rx_buf_sz, base + NvRegOffloadConfig);
  3550. setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
  3551. writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
  3552. base + NvRegRingSizes);
  3553. pci_push(base);
  3554. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  3555. pci_push(base);
  3556. /* restart rx engine */
  3557. nv_start_rxtx(dev);
  3558. spin_unlock(&np->lock);
  3559. netif_tx_unlock_bh(dev);
  3560. }
  3561. }
  3562. writel(mask, base + NvRegIrqMask);
  3563. pci_push(base);
  3564. if (!using_multi_irqs(dev)) {
  3565. if (nv_optimized(np))
  3566. nv_nic_irq_optimized(0, dev);
  3567. else
  3568. nv_nic_irq(0, dev);
  3569. if (np->msi_flags & NV_MSI_X_ENABLED)
  3570. enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
  3571. else
  3572. enable_irq_lockdep(np->pci_dev->irq);
  3573. } else {
  3574. if (np->nic_poll_irq & NVREG_IRQ_RX_ALL) {
  3575. nv_nic_irq_rx(0, dev);
  3576. enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  3577. }
  3578. if (np->nic_poll_irq & NVREG_IRQ_TX_ALL) {
  3579. nv_nic_irq_tx(0, dev);
  3580. enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
  3581. }
  3582. if (np->nic_poll_irq & NVREG_IRQ_OTHER) {
  3583. nv_nic_irq_other(0, dev);
  3584. enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
  3585. }
  3586. }
  3587. }
  3588. #ifdef CONFIG_NET_POLL_CONTROLLER
  3589. static void nv_poll_controller(struct net_device *dev)
  3590. {
  3591. nv_do_nic_poll((unsigned long) dev);
  3592. }
  3593. #endif
  3594. static void nv_do_stats_poll(unsigned long data)
  3595. {
  3596. struct net_device *dev = (struct net_device *) data;
  3597. struct fe_priv *np = netdev_priv(dev);
  3598. nv_get_hw_stats(dev);
  3599. if (!np->in_shutdown)
  3600. mod_timer(&np->stats_poll,
  3601. round_jiffies(jiffies + STATS_INTERVAL));
  3602. }
  3603. static void nv_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
  3604. {
  3605. struct fe_priv *np = netdev_priv(dev);
  3606. strcpy(info->driver, DRV_NAME);
  3607. strcpy(info->version, FORCEDETH_VERSION);
  3608. strcpy(info->bus_info, pci_name(np->pci_dev));
  3609. }
  3610. static void nv_get_wol(struct net_device *dev, struct ethtool_wolinfo *wolinfo)
  3611. {
  3612. struct fe_priv *np = netdev_priv(dev);
  3613. wolinfo->supported = WAKE_MAGIC;
  3614. spin_lock_irq(&np->lock);
  3615. if (np->wolenabled)
  3616. wolinfo->wolopts = WAKE_MAGIC;
  3617. spin_unlock_irq(&np->lock);
  3618. }
  3619. static int nv_set_wol(struct net_device *dev, struct ethtool_wolinfo *wolinfo)
  3620. {
  3621. struct fe_priv *np = netdev_priv(dev);
  3622. u8 __iomem *base = get_hwbase(dev);
  3623. u32 flags = 0;
  3624. if (wolinfo->wolopts == 0) {
  3625. np->wolenabled = 0;
  3626. } else if (wolinfo->wolopts & WAKE_MAGIC) {
  3627. np->wolenabled = 1;
  3628. flags = NVREG_WAKEUPFLAGS_ENABLE;
  3629. }
  3630. if (netif_running(dev)) {
  3631. spin_lock_irq(&np->lock);
  3632. writel(flags, base + NvRegWakeUpFlags);
  3633. spin_unlock_irq(&np->lock);
  3634. }
  3635. return 0;
  3636. }
  3637. static int nv_get_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
  3638. {
  3639. struct fe_priv *np = netdev_priv(dev);
  3640. int adv;
  3641. spin_lock_irq(&np->lock);
  3642. ecmd->port = PORT_MII;
  3643. if (!netif_running(dev)) {
  3644. /* We do not track link speed / duplex setting if the
  3645. * interface is disabled. Force a link check */
  3646. if (nv_update_linkspeed(dev)) {
  3647. if (!netif_carrier_ok(dev))
  3648. netif_carrier_on(dev);
  3649. } else {
  3650. if (netif_carrier_ok(dev))
  3651. netif_carrier_off(dev);
  3652. }
  3653. }
  3654. if (netif_carrier_ok(dev)) {
  3655. switch(np->linkspeed & (NVREG_LINKSPEED_MASK)) {
  3656. case NVREG_LINKSPEED_10:
  3657. ecmd->speed = SPEED_10;
  3658. break;
  3659. case NVREG_LINKSPEED_100:
  3660. ecmd->speed = SPEED_100;
  3661. break;
  3662. case NVREG_LINKSPEED_1000:
  3663. ecmd->speed = SPEED_1000;
  3664. break;
  3665. }
  3666. ecmd->duplex = DUPLEX_HALF;
  3667. if (np->duplex)
  3668. ecmd->duplex = DUPLEX_FULL;
  3669. } else {
  3670. ecmd->speed = -1;
  3671. ecmd->duplex = -1;
  3672. }
  3673. ecmd->autoneg = np->autoneg;
  3674. ecmd->advertising = ADVERTISED_MII;
  3675. if (np->autoneg) {
  3676. ecmd->advertising |= ADVERTISED_Autoneg;
  3677. adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  3678. if (adv & ADVERTISE_10HALF)
  3679. ecmd->advertising |= ADVERTISED_10baseT_Half;
  3680. if (adv & ADVERTISE_10FULL)
  3681. ecmd->advertising |= ADVERTISED_10baseT_Full;
  3682. if (adv & ADVERTISE_100HALF)
  3683. ecmd->advertising |= ADVERTISED_100baseT_Half;
  3684. if (adv & ADVERTISE_100FULL)
  3685. ecmd->advertising |= ADVERTISED_100baseT_Full;
  3686. if (np->gigabit == PHY_GIGABIT) {
  3687. adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
  3688. if (adv & ADVERTISE_1000FULL)
  3689. ecmd->advertising |= ADVERTISED_1000baseT_Full;
  3690. }
  3691. }
  3692. ecmd->supported = (SUPPORTED_Autoneg |
  3693. SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full |
  3694. SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
  3695. SUPPORTED_MII);
  3696. if (np->gigabit == PHY_GIGABIT)
  3697. ecmd->supported |= SUPPORTED_1000baseT_Full;
  3698. ecmd->phy_address = np->phyaddr;
  3699. ecmd->transceiver = XCVR_EXTERNAL;
  3700. /* ignore maxtxpkt, maxrxpkt for now */
  3701. spin_unlock_irq(&np->lock);
  3702. return 0;
  3703. }
  3704. static int nv_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
  3705. {
  3706. struct fe_priv *np = netdev_priv(dev);
  3707. if (ecmd->port != PORT_MII)
  3708. return -EINVAL;
  3709. if (ecmd->transceiver != XCVR_EXTERNAL)
  3710. return -EINVAL;
  3711. if (ecmd->phy_address != np->phyaddr) {
  3712. /* TODO: support switching between multiple phys. Should be
  3713. * trivial, but not enabled due to lack of test hardware. */
  3714. return -EINVAL;
  3715. }
  3716. if (ecmd->autoneg == AUTONEG_ENABLE) {
  3717. u32 mask;
  3718. mask = ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full |
  3719. ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full;
  3720. if (np->gigabit == PHY_GIGABIT)
  3721. mask |= ADVERTISED_1000baseT_Full;
  3722. if ((ecmd->advertising & mask) == 0)
  3723. return -EINVAL;
  3724. } else if (ecmd->autoneg == AUTONEG_DISABLE) {
  3725. /* Note: autonegotiation disable, speed 1000 intentionally
  3726. * forbidden - noone should need that. */
  3727. if (ecmd->speed != SPEED_10 && ecmd->speed != SPEED_100)
  3728. return -EINVAL;
  3729. if (ecmd->duplex != DUPLEX_HALF && ecmd->duplex != DUPLEX_FULL)
  3730. return -EINVAL;
  3731. } else {
  3732. return -EINVAL;
  3733. }
  3734. netif_carrier_off(dev);
  3735. if (netif_running(dev)) {
  3736. nv_disable_irq(dev);
  3737. netif_tx_lock_bh(dev);
  3738. spin_lock(&np->lock);
  3739. /* stop engines */
  3740. nv_stop_rxtx(dev);
  3741. spin_unlock(&np->lock);
  3742. netif_tx_unlock_bh(dev);
  3743. }
  3744. if (ecmd->autoneg == AUTONEG_ENABLE) {
  3745. int adv, bmcr;
  3746. np->autoneg = 1;
  3747. /* advertise only what has been requested */
  3748. adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  3749. adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4 | ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
  3750. if (ecmd->advertising & ADVERTISED_10baseT_Half)
  3751. adv |= ADVERTISE_10HALF;
  3752. if (ecmd->advertising & ADVERTISED_10baseT_Full)
  3753. adv |= ADVERTISE_10FULL;
  3754. if (ecmd->advertising & ADVERTISED_100baseT_Half)
  3755. adv |= ADVERTISE_100HALF;
  3756. if (ecmd->advertising & ADVERTISED_100baseT_Full)
  3757. adv |= ADVERTISE_100FULL;
  3758. if (np->pause_flags & NV_PAUSEFRAME_RX_REQ) /* for rx we set both advertisments but disable tx pause */
  3759. adv |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
  3760. if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
  3761. adv |= ADVERTISE_PAUSE_ASYM;
  3762. mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
  3763. if (np->gigabit == PHY_GIGABIT) {
  3764. adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
  3765. adv &= ~ADVERTISE_1000FULL;
  3766. if (ecmd->advertising & ADVERTISED_1000baseT_Full)
  3767. adv |= ADVERTISE_1000FULL;
  3768. mii_rw(dev, np->phyaddr, MII_CTRL1000, adv);
  3769. }
  3770. if (netif_running(dev))
  3771. printk(KERN_INFO "%s: link down.\n", dev->name);
  3772. bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  3773. if (np->phy_model == PHY_MODEL_MARVELL_E3016) {
  3774. bmcr |= BMCR_ANENABLE;
  3775. /* reset the phy in order for settings to stick,
  3776. * and cause autoneg to start */
  3777. if (phy_reset(dev, bmcr)) {
  3778. printk(KERN_INFO "%s: phy reset failed\n", dev->name);
  3779. return -EINVAL;
  3780. }
  3781. } else {
  3782. bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
  3783. mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
  3784. }
  3785. } else {
  3786. int adv, bmcr;
  3787. np->autoneg = 0;
  3788. adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  3789. adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4 | ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
  3790. if (ecmd->speed == SPEED_10 && ecmd->duplex == DUPLEX_HALF)
  3791. adv |= ADVERTISE_10HALF;
  3792. if (ecmd->speed == SPEED_10 && ecmd->duplex == DUPLEX_FULL)
  3793. adv |= ADVERTISE_10FULL;
  3794. if (ecmd->speed == SPEED_100 && ecmd->duplex == DUPLEX_HALF)
  3795. adv |= ADVERTISE_100HALF;
  3796. if (ecmd->speed == SPEED_100 && ecmd->duplex == DUPLEX_FULL)
  3797. adv |= ADVERTISE_100FULL;
  3798. np->pause_flags &= ~(NV_PAUSEFRAME_AUTONEG|NV_PAUSEFRAME_RX_ENABLE|NV_PAUSEFRAME_TX_ENABLE);
  3799. if (np->pause_flags & NV_PAUSEFRAME_RX_REQ) {/* for rx we set both advertisments but disable tx pause */
  3800. adv |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
  3801. np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
  3802. }
  3803. if (np->pause_flags & NV_PAUSEFRAME_TX_REQ) {
  3804. adv |= ADVERTISE_PAUSE_ASYM;
  3805. np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
  3806. }
  3807. mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
  3808. np->fixed_mode = adv;
  3809. if (np->gigabit == PHY_GIGABIT) {
  3810. adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
  3811. adv &= ~ADVERTISE_1000FULL;
  3812. mii_rw(dev, np->phyaddr, MII_CTRL1000, adv);
  3813. }
  3814. bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  3815. bmcr &= ~(BMCR_ANENABLE|BMCR_SPEED100|BMCR_SPEED1000|BMCR_FULLDPLX);
  3816. if (np->fixed_mode & (ADVERTISE_10FULL|ADVERTISE_100FULL))
  3817. bmcr |= BMCR_FULLDPLX;
  3818. if (np->fixed_mode & (ADVERTISE_100HALF|ADVERTISE_100FULL))
  3819. bmcr |= BMCR_SPEED100;
  3820. if (np->phy_oui == PHY_OUI_MARVELL) {
  3821. /* reset the phy in order for forced mode settings to stick */
  3822. if (phy_reset(dev, bmcr)) {
  3823. printk(KERN_INFO "%s: phy reset failed\n", dev->name);
  3824. return -EINVAL;
  3825. }
  3826. } else {
  3827. mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
  3828. if (netif_running(dev)) {
  3829. /* Wait a bit and then reconfigure the nic. */
  3830. udelay(10);
  3831. nv_linkchange(dev);
  3832. }
  3833. }
  3834. }
  3835. if (netif_running(dev)) {
  3836. nv_start_rxtx(dev);
  3837. nv_enable_irq(dev);
  3838. }
  3839. return 0;
  3840. }
  3841. #define FORCEDETH_REGS_VER 1
  3842. static int nv_get_regs_len(struct net_device *dev)
  3843. {
  3844. struct fe_priv *np = netdev_priv(dev);
  3845. return np->register_size;
  3846. }
  3847. static void nv_get_regs(struct net_device *dev, struct ethtool_regs *regs, void *buf)
  3848. {
  3849. struct fe_priv *np = netdev_priv(dev);
  3850. u8 __iomem *base = get_hwbase(dev);
  3851. u32 *rbuf = buf;
  3852. int i;
  3853. regs->version = FORCEDETH_REGS_VER;
  3854. spin_lock_irq(&np->lock);
  3855. for (i = 0;i <= np->register_size/sizeof(u32); i++)
  3856. rbuf[i] = readl(base + i*sizeof(u32));
  3857. spin_unlock_irq(&np->lock);
  3858. }
  3859. static int nv_nway_reset(struct net_device *dev)
  3860. {
  3861. struct fe_priv *np = netdev_priv(dev);
  3862. int ret;
  3863. if (np->autoneg) {
  3864. int bmcr;
  3865. netif_carrier_off(dev);
  3866. if (netif_running(dev)) {
  3867. nv_disable_irq(dev);
  3868. netif_tx_lock_bh(dev);
  3869. spin_lock(&np->lock);
  3870. /* stop engines */
  3871. nv_stop_rxtx(dev);
  3872. spin_unlock(&np->lock);
  3873. netif_tx_unlock_bh(dev);
  3874. printk(KERN_INFO "%s: link down.\n", dev->name);
  3875. }
  3876. bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  3877. if (np->phy_model == PHY_MODEL_MARVELL_E3016) {
  3878. bmcr |= BMCR_ANENABLE;
  3879. /* reset the phy in order for settings to stick*/
  3880. if (phy_reset(dev, bmcr)) {
  3881. printk(KERN_INFO "%s: phy reset failed\n", dev->name);
  3882. return -EINVAL;
  3883. }
  3884. } else {
  3885. bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
  3886. mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
  3887. }
  3888. if (netif_running(dev)) {
  3889. nv_start_rxtx(dev);
  3890. nv_enable_irq(dev);
  3891. }
  3892. ret = 0;
  3893. } else {
  3894. ret = -EINVAL;
  3895. }
  3896. return ret;
  3897. }
  3898. static int nv_set_tso(struct net_device *dev, u32 value)
  3899. {
  3900. struct fe_priv *np = netdev_priv(dev);
  3901. if ((np->driver_data & DEV_HAS_CHECKSUM))
  3902. return ethtool_op_set_tso(dev, value);
  3903. else
  3904. return -EOPNOTSUPP;
  3905. }
  3906. static void nv_get_ringparam(struct net_device *dev, struct ethtool_ringparam* ring)
  3907. {
  3908. struct fe_priv *np = netdev_priv(dev);
  3909. ring->rx_max_pending = (np->desc_ver == DESC_VER_1) ? RING_MAX_DESC_VER_1 : RING_MAX_DESC_VER_2_3;
  3910. ring->rx_mini_max_pending = 0;
  3911. ring->rx_jumbo_max_pending = 0;
  3912. ring->tx_max_pending = (np->desc_ver == DESC_VER_1) ? RING_MAX_DESC_VER_1 : RING_MAX_DESC_VER_2_3;
  3913. ring->rx_pending = np->rx_ring_size;
  3914. ring->rx_mini_pending = 0;
  3915. ring->rx_jumbo_pending = 0;
  3916. ring->tx_pending = np->tx_ring_size;
  3917. }
  3918. static int nv_set_ringparam(struct net_device *dev, struct ethtool_ringparam* ring)
  3919. {
  3920. struct fe_priv *np = netdev_priv(dev);
  3921. u8 __iomem *base = get_hwbase(dev);
  3922. u8 *rxtx_ring, *rx_skbuff, *tx_skbuff;
  3923. dma_addr_t ring_addr;
  3924. if (ring->rx_pending < RX_RING_MIN ||
  3925. ring->tx_pending < TX_RING_MIN ||
  3926. ring->rx_mini_pending != 0 ||
  3927. ring->rx_jumbo_pending != 0 ||
  3928. (np->desc_ver == DESC_VER_1 &&
  3929. (ring->rx_pending > RING_MAX_DESC_VER_1 ||
  3930. ring->tx_pending > RING_MAX_DESC_VER_1)) ||
  3931. (np->desc_ver != DESC_VER_1 &&
  3932. (ring->rx_pending > RING_MAX_DESC_VER_2_3 ||
  3933. ring->tx_pending > RING_MAX_DESC_VER_2_3))) {
  3934. return -EINVAL;
  3935. }
  3936. /* allocate new rings */
  3937. if (!nv_optimized(np)) {
  3938. rxtx_ring = pci_alloc_consistent(np->pci_dev,
  3939. sizeof(struct ring_desc) * (ring->rx_pending + ring->tx_pending),
  3940. &ring_addr);
  3941. } else {
  3942. rxtx_ring = pci_alloc_consistent(np->pci_dev,
  3943. sizeof(struct ring_desc_ex) * (ring->rx_pending + ring->tx_pending),
  3944. &ring_addr);
  3945. }
  3946. rx_skbuff = kmalloc(sizeof(struct nv_skb_map) * ring->rx_pending, GFP_KERNEL);
  3947. tx_skbuff = kmalloc(sizeof(struct nv_skb_map) * ring->tx_pending, GFP_KERNEL);
  3948. if (!rxtx_ring || !rx_skbuff || !tx_skbuff) {
  3949. /* fall back to old rings */
  3950. if (!nv_optimized(np)) {
  3951. if (rxtx_ring)
  3952. pci_free_consistent(np->pci_dev, sizeof(struct ring_desc) * (ring->rx_pending + ring->tx_pending),
  3953. rxtx_ring, ring_addr);
  3954. } else {
  3955. if (rxtx_ring)
  3956. pci_free_consistent(np->pci_dev, sizeof(struct ring_desc_ex) * (ring->rx_pending + ring->tx_pending),
  3957. rxtx_ring, ring_addr);
  3958. }
  3959. if (rx_skbuff)
  3960. kfree(rx_skbuff);
  3961. if (tx_skbuff)
  3962. kfree(tx_skbuff);
  3963. goto exit;
  3964. }
  3965. if (netif_running(dev)) {
  3966. nv_disable_irq(dev);
  3967. netif_tx_lock_bh(dev);
  3968. spin_lock(&np->lock);
  3969. /* stop engines */
  3970. nv_stop_rxtx(dev);
  3971. nv_txrx_reset(dev);
  3972. /* drain queues */
  3973. nv_drain_rxtx(dev);
  3974. /* delete queues */
  3975. free_rings(dev);
  3976. }
  3977. /* set new values */
  3978. np->rx_ring_size = ring->rx_pending;
  3979. np->tx_ring_size = ring->tx_pending;
  3980. if (!nv_optimized(np)) {
  3981. np->rx_ring.orig = (struct ring_desc*)rxtx_ring;
  3982. np->tx_ring.orig = &np->rx_ring.orig[np->rx_ring_size];
  3983. } else {
  3984. np->rx_ring.ex = (struct ring_desc_ex*)rxtx_ring;
  3985. np->tx_ring.ex = &np->rx_ring.ex[np->rx_ring_size];
  3986. }
  3987. np->rx_skb = (struct nv_skb_map*)rx_skbuff;
  3988. np->tx_skb = (struct nv_skb_map*)tx_skbuff;
  3989. np->ring_addr = ring_addr;
  3990. memset(np->rx_skb, 0, sizeof(struct nv_skb_map) * np->rx_ring_size);
  3991. memset(np->tx_skb, 0, sizeof(struct nv_skb_map) * np->tx_ring_size);
  3992. if (netif_running(dev)) {
  3993. /* reinit driver view of the queues */
  3994. set_bufsize(dev);
  3995. if (nv_init_ring(dev)) {
  3996. if (!np->in_shutdown)
  3997. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  3998. }
  3999. /* reinit nic view of the queues */
  4000. writel(np->rx_buf_sz, base + NvRegOffloadConfig);
  4001. setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
  4002. writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
  4003. base + NvRegRingSizes);
  4004. pci_push(base);
  4005. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  4006. pci_push(base);
  4007. /* restart engines */
  4008. nv_start_rxtx(dev);
  4009. spin_unlock(&np->lock);
  4010. netif_tx_unlock_bh(dev);
  4011. nv_enable_irq(dev);
  4012. }
  4013. return 0;
  4014. exit:
  4015. return -ENOMEM;
  4016. }
  4017. static void nv_get_pauseparam(struct net_device *dev, struct ethtool_pauseparam* pause)
  4018. {
  4019. struct fe_priv *np = netdev_priv(dev);
  4020. pause->autoneg = (np->pause_flags & NV_PAUSEFRAME_AUTONEG) != 0;
  4021. pause->rx_pause = (np->pause_flags & NV_PAUSEFRAME_RX_ENABLE) != 0;
  4022. pause->tx_pause = (np->pause_flags & NV_PAUSEFRAME_TX_ENABLE) != 0;
  4023. }
  4024. static int nv_set_pauseparam(struct net_device *dev, struct ethtool_pauseparam* pause)
  4025. {
  4026. struct fe_priv *np = netdev_priv(dev);
  4027. int adv, bmcr;
  4028. if ((!np->autoneg && np->duplex == 0) ||
  4029. (np->autoneg && !pause->autoneg && np->duplex == 0)) {
  4030. printk(KERN_INFO "%s: can not set pause settings when forced link is in half duplex.\n",
  4031. dev->name);
  4032. return -EINVAL;
  4033. }
  4034. if (pause->tx_pause && !(np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE)) {
  4035. printk(KERN_INFO "%s: hardware does not support tx pause frames.\n", dev->name);
  4036. return -EINVAL;
  4037. }
  4038. netif_carrier_off(dev);
  4039. if (netif_running(dev)) {
  4040. nv_disable_irq(dev);
  4041. netif_tx_lock_bh(dev);
  4042. spin_lock(&np->lock);
  4043. /* stop engines */
  4044. nv_stop_rxtx(dev);
  4045. spin_unlock(&np->lock);
  4046. netif_tx_unlock_bh(dev);
  4047. }
  4048. np->pause_flags &= ~(NV_PAUSEFRAME_RX_REQ|NV_PAUSEFRAME_TX_REQ);
  4049. if (pause->rx_pause)
  4050. np->pause_flags |= NV_PAUSEFRAME_RX_REQ;
  4051. if (pause->tx_pause)
  4052. np->pause_flags |= NV_PAUSEFRAME_TX_REQ;
  4053. if (np->autoneg && pause->autoneg) {
  4054. np->pause_flags |= NV_PAUSEFRAME_AUTONEG;
  4055. adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  4056. adv &= ~(ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
  4057. if (np->pause_flags & NV_PAUSEFRAME_RX_REQ) /* for rx we set both advertisments but disable tx pause */
  4058. adv |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
  4059. if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
  4060. adv |= ADVERTISE_PAUSE_ASYM;
  4061. mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
  4062. if (netif_running(dev))
  4063. printk(KERN_INFO "%s: link down.\n", dev->name);
  4064. bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  4065. bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
  4066. mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
  4067. } else {
  4068. np->pause_flags &= ~(NV_PAUSEFRAME_AUTONEG|NV_PAUSEFRAME_RX_ENABLE|NV_PAUSEFRAME_TX_ENABLE);
  4069. if (pause->rx_pause)
  4070. np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
  4071. if (pause->tx_pause)
  4072. np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
  4073. if (!netif_running(dev))
  4074. nv_update_linkspeed(dev);
  4075. else
  4076. nv_update_pause(dev, np->pause_flags);
  4077. }
  4078. if (netif_running(dev)) {
  4079. nv_start_rxtx(dev);
  4080. nv_enable_irq(dev);
  4081. }
  4082. return 0;
  4083. }
  4084. static u32 nv_get_rx_csum(struct net_device *dev)
  4085. {
  4086. struct fe_priv *np = netdev_priv(dev);
  4087. return (np->rx_csum) != 0;
  4088. }
  4089. static int nv_set_rx_csum(struct net_device *dev, u32 data)
  4090. {
  4091. struct fe_priv *np = netdev_priv(dev);
  4092. u8 __iomem *base = get_hwbase(dev);
  4093. int retcode = 0;
  4094. if (np->driver_data & DEV_HAS_CHECKSUM) {
  4095. if (data) {
  4096. np->rx_csum = 1;
  4097. np->txrxctl_bits |= NVREG_TXRXCTL_RXCHECK;
  4098. } else {
  4099. np->rx_csum = 0;
  4100. /* vlan is dependent on rx checksum offload */
  4101. if (!(np->vlanctl_bits & NVREG_VLANCONTROL_ENABLE))
  4102. np->txrxctl_bits &= ~NVREG_TXRXCTL_RXCHECK;
  4103. }
  4104. if (netif_running(dev)) {
  4105. spin_lock_irq(&np->lock);
  4106. writel(np->txrxctl_bits, base + NvRegTxRxControl);
  4107. spin_unlock_irq(&np->lock);
  4108. }
  4109. } else {
  4110. return -EINVAL;
  4111. }
  4112. return retcode;
  4113. }
  4114. static int nv_set_tx_csum(struct net_device *dev, u32 data)
  4115. {
  4116. struct fe_priv *np = netdev_priv(dev);
  4117. if (np->driver_data & DEV_HAS_CHECKSUM)
  4118. return ethtool_op_set_tx_hw_csum(dev, data);
  4119. else
  4120. return -EOPNOTSUPP;
  4121. }
  4122. static int nv_set_sg(struct net_device *dev, u32 data)
  4123. {
  4124. struct fe_priv *np = netdev_priv(dev);
  4125. if (np->driver_data & DEV_HAS_CHECKSUM)
  4126. return ethtool_op_set_sg(dev, data);
  4127. else
  4128. return -EOPNOTSUPP;
  4129. }
  4130. static int nv_get_sset_count(struct net_device *dev, int sset)
  4131. {
  4132. struct fe_priv *np = netdev_priv(dev);
  4133. switch (sset) {
  4134. case ETH_SS_TEST:
  4135. if (np->driver_data & DEV_HAS_TEST_EXTENDED)
  4136. return NV_TEST_COUNT_EXTENDED;
  4137. else
  4138. return NV_TEST_COUNT_BASE;
  4139. case ETH_SS_STATS:
  4140. if (np->driver_data & DEV_HAS_STATISTICS_V1)
  4141. return NV_DEV_STATISTICS_V1_COUNT;
  4142. else if (np->driver_data & DEV_HAS_STATISTICS_V2)
  4143. return NV_DEV_STATISTICS_V2_COUNT;
  4144. else
  4145. return 0;
  4146. default:
  4147. return -EOPNOTSUPP;
  4148. }
  4149. }
  4150. static void nv_get_ethtool_stats(struct net_device *dev, struct ethtool_stats *estats, u64 *buffer)
  4151. {
  4152. struct fe_priv *np = netdev_priv(dev);
  4153. /* update stats */
  4154. nv_do_stats_poll((unsigned long)dev);
  4155. memcpy(buffer, &np->estats, nv_get_sset_count(dev, ETH_SS_STATS)*sizeof(u64));
  4156. }
  4157. static int nv_link_test(struct net_device *dev)
  4158. {
  4159. struct fe_priv *np = netdev_priv(dev);
  4160. int mii_status;
  4161. mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  4162. mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  4163. /* check phy link status */
  4164. if (!(mii_status & BMSR_LSTATUS))
  4165. return 0;
  4166. else
  4167. return 1;
  4168. }
  4169. static int nv_register_test(struct net_device *dev)
  4170. {
  4171. u8 __iomem *base = get_hwbase(dev);
  4172. int i = 0;
  4173. u32 orig_read, new_read;
  4174. do {
  4175. orig_read = readl(base + nv_registers_test[i].reg);
  4176. /* xor with mask to toggle bits */
  4177. orig_read ^= nv_registers_test[i].mask;
  4178. writel(orig_read, base + nv_registers_test[i].reg);
  4179. new_read = readl(base + nv_registers_test[i].reg);
  4180. if ((new_read & nv_registers_test[i].mask) != (orig_read & nv_registers_test[i].mask))
  4181. return 0;
  4182. /* restore original value */
  4183. orig_read ^= nv_registers_test[i].mask;
  4184. writel(orig_read, base + nv_registers_test[i].reg);
  4185. } while (nv_registers_test[++i].reg != 0);
  4186. return 1;
  4187. }
  4188. static int nv_interrupt_test(struct net_device *dev)
  4189. {
  4190. struct fe_priv *np = netdev_priv(dev);
  4191. u8 __iomem *base = get_hwbase(dev);
  4192. int ret = 1;
  4193. int testcnt;
  4194. u32 save_msi_flags, save_poll_interval = 0;
  4195. if (netif_running(dev)) {
  4196. /* free current irq */
  4197. nv_free_irq(dev);
  4198. save_poll_interval = readl(base+NvRegPollingInterval);
  4199. }
  4200. /* flag to test interrupt handler */
  4201. np->intr_test = 0;
  4202. /* setup test irq */
  4203. save_msi_flags = np->msi_flags;
  4204. np->msi_flags &= ~NV_MSI_X_VECTORS_MASK;
  4205. np->msi_flags |= 0x001; /* setup 1 vector */
  4206. if (nv_request_irq(dev, 1))
  4207. return 0;
  4208. /* setup timer interrupt */
  4209. writel(NVREG_POLL_DEFAULT_CPU, base + NvRegPollingInterval);
  4210. writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6);
  4211. nv_enable_hw_interrupts(dev, NVREG_IRQ_TIMER);
  4212. /* wait for at least one interrupt */
  4213. msleep(100);
  4214. spin_lock_irq(&np->lock);
  4215. /* flag should be set within ISR */
  4216. testcnt = np->intr_test;
  4217. if (!testcnt)
  4218. ret = 2;
  4219. nv_disable_hw_interrupts(dev, NVREG_IRQ_TIMER);
  4220. if (!(np->msi_flags & NV_MSI_X_ENABLED))
  4221. writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
  4222. else
  4223. writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
  4224. spin_unlock_irq(&np->lock);
  4225. nv_free_irq(dev);
  4226. np->msi_flags = save_msi_flags;
  4227. if (netif_running(dev)) {
  4228. writel(save_poll_interval, base + NvRegPollingInterval);
  4229. writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6);
  4230. /* restore original irq */
  4231. if (nv_request_irq(dev, 0))
  4232. return 0;
  4233. }
  4234. return ret;
  4235. }
  4236. static int nv_loopback_test(struct net_device *dev)
  4237. {
  4238. struct fe_priv *np = netdev_priv(dev);
  4239. u8 __iomem *base = get_hwbase(dev);
  4240. struct sk_buff *tx_skb, *rx_skb;
  4241. dma_addr_t test_dma_addr;
  4242. u32 tx_flags_extra = (np->desc_ver == DESC_VER_1 ? NV_TX_LASTPACKET : NV_TX2_LASTPACKET);
  4243. u32 flags;
  4244. int len, i, pkt_len;
  4245. u8 *pkt_data;
  4246. u32 filter_flags = 0;
  4247. u32 misc1_flags = 0;
  4248. int ret = 1;
  4249. if (netif_running(dev)) {
  4250. nv_disable_irq(dev);
  4251. filter_flags = readl(base + NvRegPacketFilterFlags);
  4252. misc1_flags = readl(base + NvRegMisc1);
  4253. } else {
  4254. nv_txrx_reset(dev);
  4255. }
  4256. /* reinit driver view of the rx queue */
  4257. set_bufsize(dev);
  4258. nv_init_ring(dev);
  4259. /* setup hardware for loopback */
  4260. writel(NVREG_MISC1_FORCE, base + NvRegMisc1);
  4261. writel(NVREG_PFF_ALWAYS | NVREG_PFF_LOOPBACK, base + NvRegPacketFilterFlags);
  4262. /* reinit nic view of the rx queue */
  4263. writel(np->rx_buf_sz, base + NvRegOffloadConfig);
  4264. setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
  4265. writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
  4266. base + NvRegRingSizes);
  4267. pci_push(base);
  4268. /* restart rx engine */
  4269. nv_start_rxtx(dev);
  4270. /* setup packet for tx */
  4271. pkt_len = ETH_DATA_LEN;
  4272. tx_skb = dev_alloc_skb(pkt_len);
  4273. if (!tx_skb) {
  4274. printk(KERN_ERR "dev_alloc_skb() failed during loopback test"
  4275. " of %s\n", dev->name);
  4276. ret = 0;
  4277. goto out;
  4278. }
  4279. test_dma_addr = pci_map_single(np->pci_dev, tx_skb->data,
  4280. skb_tailroom(tx_skb),
  4281. PCI_DMA_FROMDEVICE);
  4282. pkt_data = skb_put(tx_skb, pkt_len);
  4283. for (i = 0; i < pkt_len; i++)
  4284. pkt_data[i] = (u8)(i & 0xff);
  4285. if (!nv_optimized(np)) {
  4286. np->tx_ring.orig[0].buf = cpu_to_le32(test_dma_addr);
  4287. np->tx_ring.orig[0].flaglen = cpu_to_le32((pkt_len-1) | np->tx_flags | tx_flags_extra);
  4288. } else {
  4289. np->tx_ring.ex[0].bufhigh = cpu_to_le32(dma_high(test_dma_addr));
  4290. np->tx_ring.ex[0].buflow = cpu_to_le32(dma_low(test_dma_addr));
  4291. np->tx_ring.ex[0].flaglen = cpu_to_le32((pkt_len-1) | np->tx_flags | tx_flags_extra);
  4292. }
  4293. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  4294. pci_push(get_hwbase(dev));
  4295. msleep(500);
  4296. /* check for rx of the packet */
  4297. if (!nv_optimized(np)) {
  4298. flags = le32_to_cpu(np->rx_ring.orig[0].flaglen);
  4299. len = nv_descr_getlength(&np->rx_ring.orig[0], np->desc_ver);
  4300. } else {
  4301. flags = le32_to_cpu(np->rx_ring.ex[0].flaglen);
  4302. len = nv_descr_getlength_ex(&np->rx_ring.ex[0], np->desc_ver);
  4303. }
  4304. if (flags & NV_RX_AVAIL) {
  4305. ret = 0;
  4306. } else if (np->desc_ver == DESC_VER_1) {
  4307. if (flags & NV_RX_ERROR)
  4308. ret = 0;
  4309. } else {
  4310. if (flags & NV_RX2_ERROR) {
  4311. ret = 0;
  4312. }
  4313. }
  4314. if (ret) {
  4315. if (len != pkt_len) {
  4316. ret = 0;
  4317. dprintk(KERN_DEBUG "%s: loopback len mismatch %d vs %d\n",
  4318. dev->name, len, pkt_len);
  4319. } else {
  4320. rx_skb = np->rx_skb[0].skb;
  4321. for (i = 0; i < pkt_len; i++) {
  4322. if (rx_skb->data[i] != (u8)(i & 0xff)) {
  4323. ret = 0;
  4324. dprintk(KERN_DEBUG "%s: loopback pattern check failed on byte %d\n",
  4325. dev->name, i);
  4326. break;
  4327. }
  4328. }
  4329. }
  4330. } else {
  4331. dprintk(KERN_DEBUG "%s: loopback - did not receive test packet\n", dev->name);
  4332. }
  4333. pci_unmap_page(np->pci_dev, test_dma_addr,
  4334. (skb_end_pointer(tx_skb) - tx_skb->data),
  4335. PCI_DMA_TODEVICE);
  4336. dev_kfree_skb_any(tx_skb);
  4337. out:
  4338. /* stop engines */
  4339. nv_stop_rxtx(dev);
  4340. nv_txrx_reset(dev);
  4341. /* drain rx queue */
  4342. nv_drain_rxtx(dev);
  4343. if (netif_running(dev)) {
  4344. writel(misc1_flags, base + NvRegMisc1);
  4345. writel(filter_flags, base + NvRegPacketFilterFlags);
  4346. nv_enable_irq(dev);
  4347. }
  4348. return ret;
  4349. }
  4350. static void nv_self_test(struct net_device *dev, struct ethtool_test *test, u64 *buffer)
  4351. {
  4352. struct fe_priv *np = netdev_priv(dev);
  4353. u8 __iomem *base = get_hwbase(dev);
  4354. int result;
  4355. memset(buffer, 0, nv_get_sset_count(dev, ETH_SS_TEST)*sizeof(u64));
  4356. if (!nv_link_test(dev)) {
  4357. test->flags |= ETH_TEST_FL_FAILED;
  4358. buffer[0] = 1;
  4359. }
  4360. if (test->flags & ETH_TEST_FL_OFFLINE) {
  4361. if (netif_running(dev)) {
  4362. netif_stop_queue(dev);
  4363. #ifdef CONFIG_FORCEDETH_NAPI
  4364. napi_disable(&np->napi);
  4365. #endif
  4366. netif_tx_lock_bh(dev);
  4367. spin_lock_irq(&np->lock);
  4368. nv_disable_hw_interrupts(dev, np->irqmask);
  4369. if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
  4370. writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
  4371. } else {
  4372. writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
  4373. }
  4374. /* stop engines */
  4375. nv_stop_rxtx(dev);
  4376. nv_txrx_reset(dev);
  4377. /* drain rx queue */
  4378. nv_drain_rxtx(dev);
  4379. spin_unlock_irq(&np->lock);
  4380. netif_tx_unlock_bh(dev);
  4381. }
  4382. if (!nv_register_test(dev)) {
  4383. test->flags |= ETH_TEST_FL_FAILED;
  4384. buffer[1] = 1;
  4385. }
  4386. result = nv_interrupt_test(dev);
  4387. if (result != 1) {
  4388. test->flags |= ETH_TEST_FL_FAILED;
  4389. buffer[2] = 1;
  4390. }
  4391. if (result == 0) {
  4392. /* bail out */
  4393. return;
  4394. }
  4395. if (!nv_loopback_test(dev)) {
  4396. test->flags |= ETH_TEST_FL_FAILED;
  4397. buffer[3] = 1;
  4398. }
  4399. if (netif_running(dev)) {
  4400. /* reinit driver view of the rx queue */
  4401. set_bufsize(dev);
  4402. if (nv_init_ring(dev)) {
  4403. if (!np->in_shutdown)
  4404. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  4405. }
  4406. /* reinit nic view of the rx queue */
  4407. writel(np->rx_buf_sz, base + NvRegOffloadConfig);
  4408. setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
  4409. writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
  4410. base + NvRegRingSizes);
  4411. pci_push(base);
  4412. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  4413. pci_push(base);
  4414. /* restart rx engine */
  4415. nv_start_rxtx(dev);
  4416. netif_start_queue(dev);
  4417. #ifdef CONFIG_FORCEDETH_NAPI
  4418. napi_enable(&np->napi);
  4419. #endif
  4420. nv_enable_hw_interrupts(dev, np->irqmask);
  4421. }
  4422. }
  4423. }
  4424. static void nv_get_strings(struct net_device *dev, u32 stringset, u8 *buffer)
  4425. {
  4426. switch (stringset) {
  4427. case ETH_SS_STATS:
  4428. memcpy(buffer, &nv_estats_str, nv_get_sset_count(dev, ETH_SS_STATS)*sizeof(struct nv_ethtool_str));
  4429. break;
  4430. case ETH_SS_TEST:
  4431. memcpy(buffer, &nv_etests_str, nv_get_sset_count(dev, ETH_SS_TEST)*sizeof(struct nv_ethtool_str));
  4432. break;
  4433. }
  4434. }
  4435. static const struct ethtool_ops ops = {
  4436. .get_drvinfo = nv_get_drvinfo,
  4437. .get_link = ethtool_op_get_link,
  4438. .get_wol = nv_get_wol,
  4439. .set_wol = nv_set_wol,
  4440. .get_settings = nv_get_settings,
  4441. .set_settings = nv_set_settings,
  4442. .get_regs_len = nv_get_regs_len,
  4443. .get_regs = nv_get_regs,
  4444. .nway_reset = nv_nway_reset,
  4445. .set_tso = nv_set_tso,
  4446. .get_ringparam = nv_get_ringparam,
  4447. .set_ringparam = nv_set_ringparam,
  4448. .get_pauseparam = nv_get_pauseparam,
  4449. .set_pauseparam = nv_set_pauseparam,
  4450. .get_rx_csum = nv_get_rx_csum,
  4451. .set_rx_csum = nv_set_rx_csum,
  4452. .set_tx_csum = nv_set_tx_csum,
  4453. .set_sg = nv_set_sg,
  4454. .get_strings = nv_get_strings,
  4455. .get_ethtool_stats = nv_get_ethtool_stats,
  4456. .get_sset_count = nv_get_sset_count,
  4457. .self_test = nv_self_test,
  4458. };
  4459. static void nv_vlan_rx_register(struct net_device *dev, struct vlan_group *grp)
  4460. {
  4461. struct fe_priv *np = get_nvpriv(dev);
  4462. spin_lock_irq(&np->lock);
  4463. /* save vlan group */
  4464. np->vlangrp = grp;
  4465. if (grp) {
  4466. /* enable vlan on MAC */
  4467. np->txrxctl_bits |= NVREG_TXRXCTL_VLANSTRIP | NVREG_TXRXCTL_VLANINS;
  4468. } else {
  4469. /* disable vlan on MAC */
  4470. np->txrxctl_bits &= ~NVREG_TXRXCTL_VLANSTRIP;
  4471. np->txrxctl_bits &= ~NVREG_TXRXCTL_VLANINS;
  4472. }
  4473. writel(np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  4474. spin_unlock_irq(&np->lock);
  4475. }
  4476. /* The mgmt unit and driver use a semaphore to access the phy during init */
  4477. static int nv_mgmt_acquire_sema(struct net_device *dev)
  4478. {
  4479. u8 __iomem *base = get_hwbase(dev);
  4480. int i;
  4481. u32 tx_ctrl, mgmt_sema;
  4482. for (i = 0; i < 10; i++) {
  4483. mgmt_sema = readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_MGMT_SEMA_MASK;
  4484. if (mgmt_sema == NVREG_XMITCTL_MGMT_SEMA_FREE)
  4485. break;
  4486. msleep(500);
  4487. }
  4488. if (mgmt_sema != NVREG_XMITCTL_MGMT_SEMA_FREE)
  4489. return 0;
  4490. for (i = 0; i < 2; i++) {
  4491. tx_ctrl = readl(base + NvRegTransmitterControl);
  4492. tx_ctrl |= NVREG_XMITCTL_HOST_SEMA_ACQ;
  4493. writel(tx_ctrl, base + NvRegTransmitterControl);
  4494. /* verify that semaphore was acquired */
  4495. tx_ctrl = readl(base + NvRegTransmitterControl);
  4496. if (((tx_ctrl & NVREG_XMITCTL_HOST_SEMA_MASK) == NVREG_XMITCTL_HOST_SEMA_ACQ) &&
  4497. ((tx_ctrl & NVREG_XMITCTL_MGMT_SEMA_MASK) == NVREG_XMITCTL_MGMT_SEMA_FREE))
  4498. return 1;
  4499. else
  4500. udelay(50);
  4501. }
  4502. return 0;
  4503. }
  4504. static int nv_open(struct net_device *dev)
  4505. {
  4506. struct fe_priv *np = netdev_priv(dev);
  4507. u8 __iomem *base = get_hwbase(dev);
  4508. int ret = 1;
  4509. int oom, i;
  4510. u32 low;
  4511. dprintk(KERN_DEBUG "nv_open: begin\n");
  4512. /* erase previous misconfiguration */
  4513. if (np->driver_data & DEV_HAS_POWER_CNTRL)
  4514. nv_mac_reset(dev);
  4515. writel(NVREG_MCASTADDRA_FORCE, base + NvRegMulticastAddrA);
  4516. writel(0, base + NvRegMulticastAddrB);
  4517. writel(NVREG_MCASTMASKA_NONE, base + NvRegMulticastMaskA);
  4518. writel(NVREG_MCASTMASKB_NONE, base + NvRegMulticastMaskB);
  4519. writel(0, base + NvRegPacketFilterFlags);
  4520. writel(0, base + NvRegTransmitterControl);
  4521. writel(0, base + NvRegReceiverControl);
  4522. writel(0, base + NvRegAdapterControl);
  4523. if (np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE)
  4524. writel(NVREG_TX_PAUSEFRAME_DISABLE, base + NvRegTxPauseFrame);
  4525. /* initialize descriptor rings */
  4526. set_bufsize(dev);
  4527. oom = nv_init_ring(dev);
  4528. writel(0, base + NvRegLinkSpeed);
  4529. writel(readl(base + NvRegTransmitPoll) & NVREG_TRANSMITPOLL_MAC_ADDR_REV, base + NvRegTransmitPoll);
  4530. nv_txrx_reset(dev);
  4531. writel(0, base + NvRegUnknownSetupReg6);
  4532. np->in_shutdown = 0;
  4533. /* give hw rings */
  4534. setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
  4535. writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
  4536. base + NvRegRingSizes);
  4537. writel(np->linkspeed, base + NvRegLinkSpeed);
  4538. if (np->desc_ver == DESC_VER_1)
  4539. writel(NVREG_TX_WM_DESC1_DEFAULT, base + NvRegTxWatermark);
  4540. else
  4541. writel(NVREG_TX_WM_DESC2_3_DEFAULT, base + NvRegTxWatermark);
  4542. writel(np->txrxctl_bits, base + NvRegTxRxControl);
  4543. writel(np->vlanctl_bits, base + NvRegVlanControl);
  4544. pci_push(base);
  4545. writel(NVREG_TXRXCTL_BIT1|np->txrxctl_bits, base + NvRegTxRxControl);
  4546. reg_delay(dev, NvRegUnknownSetupReg5, NVREG_UNKSETUP5_BIT31, NVREG_UNKSETUP5_BIT31,
  4547. NV_SETUP5_DELAY, NV_SETUP5_DELAYMAX,
  4548. KERN_INFO "open: SetupReg5, Bit 31 remained off\n");
  4549. writel(0, base + NvRegMIIMask);
  4550. writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
  4551. writel(NVREG_MIISTAT_MASK_ALL, base + NvRegMIIStatus);
  4552. writel(NVREG_MISC1_FORCE | NVREG_MISC1_HD, base + NvRegMisc1);
  4553. writel(readl(base + NvRegTransmitterStatus), base + NvRegTransmitterStatus);
  4554. writel(NVREG_PFF_ALWAYS, base + NvRegPacketFilterFlags);
  4555. writel(np->rx_buf_sz, base + NvRegOffloadConfig);
  4556. writel(readl(base + NvRegReceiverStatus), base + NvRegReceiverStatus);
  4557. get_random_bytes(&low, sizeof(low));
  4558. low &= NVREG_SLOTTIME_MASK;
  4559. if (np->desc_ver == DESC_VER_1) {
  4560. writel(low|NVREG_SLOTTIME_DEFAULT, base + NvRegSlotTime);
  4561. } else {
  4562. if (!(np->driver_data & DEV_HAS_GEAR_MODE)) {
  4563. /* setup legacy backoff */
  4564. writel(NVREG_SLOTTIME_LEGBF_ENABLED|NVREG_SLOTTIME_10_100_FULL|low, base + NvRegSlotTime);
  4565. } else {
  4566. writel(NVREG_SLOTTIME_10_100_FULL, base + NvRegSlotTime);
  4567. nv_gear_backoff_reseed(dev);
  4568. }
  4569. }
  4570. writel(NVREG_TX_DEFERRAL_DEFAULT, base + NvRegTxDeferral);
  4571. writel(NVREG_RX_DEFERRAL_DEFAULT, base + NvRegRxDeferral);
  4572. if (poll_interval == -1) {
  4573. if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT)
  4574. writel(NVREG_POLL_DEFAULT_THROUGHPUT, base + NvRegPollingInterval);
  4575. else
  4576. writel(NVREG_POLL_DEFAULT_CPU, base + NvRegPollingInterval);
  4577. }
  4578. else
  4579. writel(poll_interval & 0xFFFF, base + NvRegPollingInterval);
  4580. writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6);
  4581. writel((np->phyaddr << NVREG_ADAPTCTL_PHYSHIFT)|NVREG_ADAPTCTL_PHYVALID|NVREG_ADAPTCTL_RUNNING,
  4582. base + NvRegAdapterControl);
  4583. writel(NVREG_MIISPEED_BIT8|NVREG_MIIDELAY, base + NvRegMIISpeed);
  4584. writel(NVREG_MII_LINKCHANGE, base + NvRegMIIMask);
  4585. if (np->wolenabled)
  4586. writel(NVREG_WAKEUPFLAGS_ENABLE , base + NvRegWakeUpFlags);
  4587. i = readl(base + NvRegPowerState);
  4588. if ( (i & NVREG_POWERSTATE_POWEREDUP) == 0)
  4589. writel(NVREG_POWERSTATE_POWEREDUP|i, base + NvRegPowerState);
  4590. pci_push(base);
  4591. udelay(10);
  4592. writel(readl(base + NvRegPowerState) | NVREG_POWERSTATE_VALID, base + NvRegPowerState);
  4593. nv_disable_hw_interrupts(dev, np->irqmask);
  4594. pci_push(base);
  4595. writel(NVREG_MIISTAT_MASK_ALL, base + NvRegMIIStatus);
  4596. writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
  4597. pci_push(base);
  4598. if (nv_request_irq(dev, 0)) {
  4599. goto out_drain;
  4600. }
  4601. /* ask for interrupts */
  4602. nv_enable_hw_interrupts(dev, np->irqmask);
  4603. spin_lock_irq(&np->lock);
  4604. writel(NVREG_MCASTADDRA_FORCE, base + NvRegMulticastAddrA);
  4605. writel(0, base + NvRegMulticastAddrB);
  4606. writel(NVREG_MCASTMASKA_NONE, base + NvRegMulticastMaskA);
  4607. writel(NVREG_MCASTMASKB_NONE, base + NvRegMulticastMaskB);
  4608. writel(NVREG_PFF_ALWAYS|NVREG_PFF_MYADDR, base + NvRegPacketFilterFlags);
  4609. /* One manual link speed update: Interrupts are enabled, future link
  4610. * speed changes cause interrupts and are handled by nv_link_irq().
  4611. */
  4612. {
  4613. u32 miistat;
  4614. miistat = readl(base + NvRegMIIStatus);
  4615. writel(NVREG_MIISTAT_MASK_ALL, base + NvRegMIIStatus);
  4616. dprintk(KERN_INFO "startup: got 0x%08x.\n", miistat);
  4617. }
  4618. /* set linkspeed to invalid value, thus force nv_update_linkspeed
  4619. * to init hw */
  4620. np->linkspeed = 0;
  4621. ret = nv_update_linkspeed(dev);
  4622. nv_start_rxtx(dev);
  4623. netif_start_queue(dev);
  4624. #ifdef CONFIG_FORCEDETH_NAPI
  4625. napi_enable(&np->napi);
  4626. #endif
  4627. if (ret) {
  4628. netif_carrier_on(dev);
  4629. } else {
  4630. printk(KERN_INFO "%s: no link during initialization.\n", dev->name);
  4631. netif_carrier_off(dev);
  4632. }
  4633. if (oom)
  4634. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  4635. /* start statistics timer */
  4636. if (np->driver_data & (DEV_HAS_STATISTICS_V1|DEV_HAS_STATISTICS_V2))
  4637. mod_timer(&np->stats_poll,
  4638. round_jiffies(jiffies + STATS_INTERVAL));
  4639. spin_unlock_irq(&np->lock);
  4640. return 0;
  4641. out_drain:
  4642. nv_drain_rxtx(dev);
  4643. return ret;
  4644. }
  4645. static int nv_close(struct net_device *dev)
  4646. {
  4647. struct fe_priv *np = netdev_priv(dev);
  4648. u8 __iomem *base;
  4649. spin_lock_irq(&np->lock);
  4650. np->in_shutdown = 1;
  4651. spin_unlock_irq(&np->lock);
  4652. #ifdef CONFIG_FORCEDETH_NAPI
  4653. napi_disable(&np->napi);
  4654. #endif
  4655. synchronize_irq(np->pci_dev->irq);
  4656. del_timer_sync(&np->oom_kick);
  4657. del_timer_sync(&np->nic_poll);
  4658. del_timer_sync(&np->stats_poll);
  4659. netif_stop_queue(dev);
  4660. spin_lock_irq(&np->lock);
  4661. nv_stop_rxtx(dev);
  4662. nv_txrx_reset(dev);
  4663. /* disable interrupts on the nic or we will lock up */
  4664. base = get_hwbase(dev);
  4665. nv_disable_hw_interrupts(dev, np->irqmask);
  4666. pci_push(base);
  4667. dprintk(KERN_INFO "%s: Irqmask is zero again\n", dev->name);
  4668. spin_unlock_irq(&np->lock);
  4669. nv_free_irq(dev);
  4670. nv_drain_rxtx(dev);
  4671. if (np->wolenabled) {
  4672. writel(NVREG_PFF_ALWAYS|NVREG_PFF_MYADDR, base + NvRegPacketFilterFlags);
  4673. nv_start_rx(dev);
  4674. }
  4675. /* FIXME: power down nic */
  4676. return 0;
  4677. }
  4678. static int __devinit nv_probe(struct pci_dev *pci_dev, const struct pci_device_id *id)
  4679. {
  4680. struct net_device *dev;
  4681. struct fe_priv *np;
  4682. unsigned long addr;
  4683. u8 __iomem *base;
  4684. int err, i;
  4685. u32 powerstate, txreg;
  4686. u32 phystate_orig = 0, phystate;
  4687. int phyinitialized = 0;
  4688. DECLARE_MAC_BUF(mac);
  4689. static int printed_version;
  4690. if (!printed_version++)
  4691. printk(KERN_INFO "%s: Reverse Engineered nForce ethernet"
  4692. " driver. Version %s.\n", DRV_NAME, FORCEDETH_VERSION);
  4693. dev = alloc_etherdev(sizeof(struct fe_priv));
  4694. err = -ENOMEM;
  4695. if (!dev)
  4696. goto out;
  4697. np = netdev_priv(dev);
  4698. np->dev = dev;
  4699. np->pci_dev = pci_dev;
  4700. spin_lock_init(&np->lock);
  4701. SET_NETDEV_DEV(dev, &pci_dev->dev);
  4702. init_timer(&np->oom_kick);
  4703. np->oom_kick.data = (unsigned long) dev;
  4704. np->oom_kick.function = &nv_do_rx_refill; /* timer handler */
  4705. init_timer(&np->nic_poll);
  4706. np->nic_poll.data = (unsigned long) dev;
  4707. np->nic_poll.function = &nv_do_nic_poll; /* timer handler */
  4708. init_timer(&np->stats_poll);
  4709. np->stats_poll.data = (unsigned long) dev;
  4710. np->stats_poll.function = &nv_do_stats_poll; /* timer handler */
  4711. err = pci_enable_device(pci_dev);
  4712. if (err)
  4713. goto out_free;
  4714. pci_set_master(pci_dev);
  4715. err = pci_request_regions(pci_dev, DRV_NAME);
  4716. if (err < 0)
  4717. goto out_disable;
  4718. if (id->driver_data & (DEV_HAS_VLAN|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL|DEV_HAS_STATISTICS_V2))
  4719. np->register_size = NV_PCI_REGSZ_VER3;
  4720. else if (id->driver_data & DEV_HAS_STATISTICS_V1)
  4721. np->register_size = NV_PCI_REGSZ_VER2;
  4722. else
  4723. np->register_size = NV_PCI_REGSZ_VER1;
  4724. err = -EINVAL;
  4725. addr = 0;
  4726. for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
  4727. dprintk(KERN_DEBUG "%s: resource %d start %p len %ld flags 0x%08lx.\n",
  4728. pci_name(pci_dev), i, (void*)pci_resource_start(pci_dev, i),
  4729. pci_resource_len(pci_dev, i),
  4730. pci_resource_flags(pci_dev, i));
  4731. if (pci_resource_flags(pci_dev, i) & IORESOURCE_MEM &&
  4732. pci_resource_len(pci_dev, i) >= np->register_size) {
  4733. addr = pci_resource_start(pci_dev, i);
  4734. break;
  4735. }
  4736. }
  4737. if (i == DEVICE_COUNT_RESOURCE) {
  4738. dev_printk(KERN_INFO, &pci_dev->dev,
  4739. "Couldn't find register window\n");
  4740. goto out_relreg;
  4741. }
  4742. /* copy of driver data */
  4743. np->driver_data = id->driver_data;
  4744. /* copy of device id */
  4745. np->device_id = id->device;
  4746. /* handle different descriptor versions */
  4747. if (id->driver_data & DEV_HAS_HIGH_DMA) {
  4748. /* packet format 3: supports 40-bit addressing */
  4749. np->desc_ver = DESC_VER_3;
  4750. np->txrxctl_bits = NVREG_TXRXCTL_DESC_3;
  4751. if (dma_64bit) {
  4752. if (pci_set_dma_mask(pci_dev, DMA_39BIT_MASK))
  4753. dev_printk(KERN_INFO, &pci_dev->dev,
  4754. "64-bit DMA failed, using 32-bit addressing\n");
  4755. else
  4756. dev->features |= NETIF_F_HIGHDMA;
  4757. if (pci_set_consistent_dma_mask(pci_dev, DMA_39BIT_MASK)) {
  4758. dev_printk(KERN_INFO, &pci_dev->dev,
  4759. "64-bit DMA (consistent) failed, using 32-bit ring buffers\n");
  4760. }
  4761. }
  4762. } else if (id->driver_data & DEV_HAS_LARGEDESC) {
  4763. /* packet format 2: supports jumbo frames */
  4764. np->desc_ver = DESC_VER_2;
  4765. np->txrxctl_bits = NVREG_TXRXCTL_DESC_2;
  4766. } else {
  4767. /* original packet format */
  4768. np->desc_ver = DESC_VER_1;
  4769. np->txrxctl_bits = NVREG_TXRXCTL_DESC_1;
  4770. }
  4771. np->pkt_limit = NV_PKTLIMIT_1;
  4772. if (id->driver_data & DEV_HAS_LARGEDESC)
  4773. np->pkt_limit = NV_PKTLIMIT_2;
  4774. if (id->driver_data & DEV_HAS_CHECKSUM) {
  4775. np->rx_csum = 1;
  4776. np->txrxctl_bits |= NVREG_TXRXCTL_RXCHECK;
  4777. dev->features |= NETIF_F_HW_CSUM | NETIF_F_SG;
  4778. dev->features |= NETIF_F_TSO;
  4779. }
  4780. np->vlanctl_bits = 0;
  4781. if (id->driver_data & DEV_HAS_VLAN) {
  4782. np->vlanctl_bits = NVREG_VLANCONTROL_ENABLE;
  4783. dev->features |= NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_TX;
  4784. dev->vlan_rx_register = nv_vlan_rx_register;
  4785. }
  4786. np->msi_flags = 0;
  4787. if ((id->driver_data & DEV_HAS_MSI) && msi) {
  4788. np->msi_flags |= NV_MSI_CAPABLE;
  4789. }
  4790. if ((id->driver_data & DEV_HAS_MSI_X) && msix) {
  4791. np->msi_flags |= NV_MSI_X_CAPABLE;
  4792. }
  4793. np->pause_flags = NV_PAUSEFRAME_RX_CAPABLE | NV_PAUSEFRAME_RX_REQ | NV_PAUSEFRAME_AUTONEG;
  4794. if ((id->driver_data & DEV_HAS_PAUSEFRAME_TX_V1) ||
  4795. (id->driver_data & DEV_HAS_PAUSEFRAME_TX_V2) ||
  4796. (id->driver_data & DEV_HAS_PAUSEFRAME_TX_V3)) {
  4797. np->pause_flags |= NV_PAUSEFRAME_TX_CAPABLE | NV_PAUSEFRAME_TX_REQ;
  4798. }
  4799. err = -ENOMEM;
  4800. np->base = ioremap(addr, np->register_size);
  4801. if (!np->base)
  4802. goto out_relreg;
  4803. dev->base_addr = (unsigned long)np->base;
  4804. dev->irq = pci_dev->irq;
  4805. np->rx_ring_size = RX_RING_DEFAULT;
  4806. np->tx_ring_size = TX_RING_DEFAULT;
  4807. if (!nv_optimized(np)) {
  4808. np->rx_ring.orig = pci_alloc_consistent(pci_dev,
  4809. sizeof(struct ring_desc) * (np->rx_ring_size + np->tx_ring_size),
  4810. &np->ring_addr);
  4811. if (!np->rx_ring.orig)
  4812. goto out_unmap;
  4813. np->tx_ring.orig = &np->rx_ring.orig[np->rx_ring_size];
  4814. } else {
  4815. np->rx_ring.ex = pci_alloc_consistent(pci_dev,
  4816. sizeof(struct ring_desc_ex) * (np->rx_ring_size + np->tx_ring_size),
  4817. &np->ring_addr);
  4818. if (!np->rx_ring.ex)
  4819. goto out_unmap;
  4820. np->tx_ring.ex = &np->rx_ring.ex[np->rx_ring_size];
  4821. }
  4822. np->rx_skb = kcalloc(np->rx_ring_size, sizeof(struct nv_skb_map), GFP_KERNEL);
  4823. np->tx_skb = kcalloc(np->tx_ring_size, sizeof(struct nv_skb_map), GFP_KERNEL);
  4824. if (!np->rx_skb || !np->tx_skb)
  4825. goto out_freering;
  4826. dev->open = nv_open;
  4827. dev->stop = nv_close;
  4828. if (!nv_optimized(np))
  4829. dev->hard_start_xmit = nv_start_xmit;
  4830. else
  4831. dev->hard_start_xmit = nv_start_xmit_optimized;
  4832. dev->get_stats = nv_get_stats;
  4833. dev->change_mtu = nv_change_mtu;
  4834. dev->set_mac_address = nv_set_mac_address;
  4835. dev->set_multicast_list = nv_set_multicast;
  4836. #ifdef CONFIG_NET_POLL_CONTROLLER
  4837. dev->poll_controller = nv_poll_controller;
  4838. #endif
  4839. #ifdef CONFIG_FORCEDETH_NAPI
  4840. netif_napi_add(dev, &np->napi, nv_napi_poll, RX_WORK_PER_LOOP);
  4841. #endif
  4842. SET_ETHTOOL_OPS(dev, &ops);
  4843. dev->tx_timeout = nv_tx_timeout;
  4844. dev->watchdog_timeo = NV_WATCHDOG_TIMEO;
  4845. pci_set_drvdata(pci_dev, dev);
  4846. /* read the mac address */
  4847. base = get_hwbase(dev);
  4848. np->orig_mac[0] = readl(base + NvRegMacAddrA);
  4849. np->orig_mac[1] = readl(base + NvRegMacAddrB);
  4850. /* check the workaround bit for correct mac address order */
  4851. txreg = readl(base + NvRegTransmitPoll);
  4852. if (id->driver_data & DEV_HAS_CORRECT_MACADDR) {
  4853. /* mac address is already in correct order */
  4854. dev->dev_addr[0] = (np->orig_mac[0] >> 0) & 0xff;
  4855. dev->dev_addr[1] = (np->orig_mac[0] >> 8) & 0xff;
  4856. dev->dev_addr[2] = (np->orig_mac[0] >> 16) & 0xff;
  4857. dev->dev_addr[3] = (np->orig_mac[0] >> 24) & 0xff;
  4858. dev->dev_addr[4] = (np->orig_mac[1] >> 0) & 0xff;
  4859. dev->dev_addr[5] = (np->orig_mac[1] >> 8) & 0xff;
  4860. } else if (txreg & NVREG_TRANSMITPOLL_MAC_ADDR_REV) {
  4861. /* mac address is already in correct order */
  4862. dev->dev_addr[0] = (np->orig_mac[0] >> 0) & 0xff;
  4863. dev->dev_addr[1] = (np->orig_mac[0] >> 8) & 0xff;
  4864. dev->dev_addr[2] = (np->orig_mac[0] >> 16) & 0xff;
  4865. dev->dev_addr[3] = (np->orig_mac[0] >> 24) & 0xff;
  4866. dev->dev_addr[4] = (np->orig_mac[1] >> 0) & 0xff;
  4867. dev->dev_addr[5] = (np->orig_mac[1] >> 8) & 0xff;
  4868. /*
  4869. * Set orig mac address back to the reversed version.
  4870. * This flag will be cleared during low power transition.
  4871. * Therefore, we should always put back the reversed address.
  4872. */
  4873. np->orig_mac[0] = (dev->dev_addr[5] << 0) + (dev->dev_addr[4] << 8) +
  4874. (dev->dev_addr[3] << 16) + (dev->dev_addr[2] << 24);
  4875. np->orig_mac[1] = (dev->dev_addr[1] << 0) + (dev->dev_addr[0] << 8);
  4876. } else {
  4877. /* need to reverse mac address to correct order */
  4878. dev->dev_addr[0] = (np->orig_mac[1] >> 8) & 0xff;
  4879. dev->dev_addr[1] = (np->orig_mac[1] >> 0) & 0xff;
  4880. dev->dev_addr[2] = (np->orig_mac[0] >> 24) & 0xff;
  4881. dev->dev_addr[3] = (np->orig_mac[0] >> 16) & 0xff;
  4882. dev->dev_addr[4] = (np->orig_mac[0] >> 8) & 0xff;
  4883. dev->dev_addr[5] = (np->orig_mac[0] >> 0) & 0xff;
  4884. writel(txreg|NVREG_TRANSMITPOLL_MAC_ADDR_REV, base + NvRegTransmitPoll);
  4885. }
  4886. memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
  4887. if (!is_valid_ether_addr(dev->perm_addr)) {
  4888. /*
  4889. * Bad mac address. At least one bios sets the mac address
  4890. * to 01:23:45:67:89:ab
  4891. */
  4892. dev_printk(KERN_ERR, &pci_dev->dev,
  4893. "Invalid Mac address detected: %s\n",
  4894. print_mac(mac, dev->dev_addr));
  4895. dev_printk(KERN_ERR, &pci_dev->dev,
  4896. "Please complain to your hardware vendor. Switching to a random MAC.\n");
  4897. dev->dev_addr[0] = 0x00;
  4898. dev->dev_addr[1] = 0x00;
  4899. dev->dev_addr[2] = 0x6c;
  4900. get_random_bytes(&dev->dev_addr[3], 3);
  4901. }
  4902. dprintk(KERN_DEBUG "%s: MAC Address %s\n",
  4903. pci_name(pci_dev), print_mac(mac, dev->dev_addr));
  4904. /* set mac address */
  4905. nv_copy_mac_to_hw(dev);
  4906. /* disable WOL */
  4907. writel(0, base + NvRegWakeUpFlags);
  4908. np->wolenabled = 0;
  4909. if (id->driver_data & DEV_HAS_POWER_CNTRL) {
  4910. /* take phy and nic out of low power mode */
  4911. powerstate = readl(base + NvRegPowerState2);
  4912. powerstate &= ~NVREG_POWERSTATE2_POWERUP_MASK;
  4913. if ((id->device == PCI_DEVICE_ID_NVIDIA_NVENET_12 ||
  4914. id->device == PCI_DEVICE_ID_NVIDIA_NVENET_13) &&
  4915. pci_dev->revision >= 0xA3)
  4916. powerstate |= NVREG_POWERSTATE2_POWERUP_REV_A3;
  4917. writel(powerstate, base + NvRegPowerState2);
  4918. }
  4919. if (np->desc_ver == DESC_VER_1) {
  4920. np->tx_flags = NV_TX_VALID;
  4921. } else {
  4922. np->tx_flags = NV_TX2_VALID;
  4923. }
  4924. if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT) {
  4925. np->irqmask = NVREG_IRQMASK_THROUGHPUT;
  4926. if (np->msi_flags & NV_MSI_X_CAPABLE) /* set number of vectors */
  4927. np->msi_flags |= 0x0003;
  4928. } else {
  4929. np->irqmask = NVREG_IRQMASK_CPU;
  4930. if (np->msi_flags & NV_MSI_X_CAPABLE) /* set number of vectors */
  4931. np->msi_flags |= 0x0001;
  4932. }
  4933. if (id->driver_data & DEV_NEED_TIMERIRQ)
  4934. np->irqmask |= NVREG_IRQ_TIMER;
  4935. if (id->driver_data & DEV_NEED_LINKTIMER) {
  4936. dprintk(KERN_INFO "%s: link timer on.\n", pci_name(pci_dev));
  4937. np->need_linktimer = 1;
  4938. np->link_timeout = jiffies + LINK_TIMEOUT;
  4939. } else {
  4940. dprintk(KERN_INFO "%s: link timer off.\n", pci_name(pci_dev));
  4941. np->need_linktimer = 0;
  4942. }
  4943. /* Limit the number of tx's outstanding for hw bug */
  4944. if (id->driver_data & DEV_NEED_TX_LIMIT) {
  4945. np->tx_limit = 1;
  4946. if ((id->device == PCI_DEVICE_ID_NVIDIA_NVENET_32 ||
  4947. id->device == PCI_DEVICE_ID_NVIDIA_NVENET_33 ||
  4948. id->device == PCI_DEVICE_ID_NVIDIA_NVENET_34 ||
  4949. id->device == PCI_DEVICE_ID_NVIDIA_NVENET_35 ||
  4950. id->device == PCI_DEVICE_ID_NVIDIA_NVENET_36 ||
  4951. id->device == PCI_DEVICE_ID_NVIDIA_NVENET_37 ||
  4952. id->device == PCI_DEVICE_ID_NVIDIA_NVENET_38 ||
  4953. id->device == PCI_DEVICE_ID_NVIDIA_NVENET_39) &&
  4954. pci_dev->revision >= 0xA2)
  4955. np->tx_limit = 0;
  4956. }
  4957. /* clear phy state and temporarily halt phy interrupts */
  4958. writel(0, base + NvRegMIIMask);
  4959. phystate = readl(base + NvRegAdapterControl);
  4960. if (phystate & NVREG_ADAPTCTL_RUNNING) {
  4961. phystate_orig = 1;
  4962. phystate &= ~NVREG_ADAPTCTL_RUNNING;
  4963. writel(phystate, base + NvRegAdapterControl);
  4964. }
  4965. writel(NVREG_MIISTAT_MASK_ALL, base + NvRegMIIStatus);
  4966. if (id->driver_data & DEV_HAS_MGMT_UNIT) {
  4967. /* management unit running on the mac? */
  4968. if (readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_SYNC_PHY_INIT) {
  4969. np->mac_in_use = readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_MGMT_ST;
  4970. dprintk(KERN_INFO "%s: mgmt unit is running. mac in use %x.\n", pci_name(pci_dev), np->mac_in_use);
  4971. if (nv_mgmt_acquire_sema(dev)) {
  4972. /* management unit setup the phy already? */
  4973. if ((readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_SYNC_MASK) ==
  4974. NVREG_XMITCTL_SYNC_PHY_INIT) {
  4975. /* phy is inited by mgmt unit */
  4976. phyinitialized = 1;
  4977. dprintk(KERN_INFO "%s: Phy already initialized by mgmt unit.\n", pci_name(pci_dev));
  4978. } else {
  4979. /* we need to init the phy */
  4980. }
  4981. }
  4982. }
  4983. }
  4984. /* find a suitable phy */
  4985. for (i = 1; i <= 32; i++) {
  4986. int id1, id2;
  4987. int phyaddr = i & 0x1F;
  4988. spin_lock_irq(&np->lock);
  4989. id1 = mii_rw(dev, phyaddr, MII_PHYSID1, MII_READ);
  4990. spin_unlock_irq(&np->lock);
  4991. if (id1 < 0 || id1 == 0xffff)
  4992. continue;
  4993. spin_lock_irq(&np->lock);
  4994. id2 = mii_rw(dev, phyaddr, MII_PHYSID2, MII_READ);
  4995. spin_unlock_irq(&np->lock);
  4996. if (id2 < 0 || id2 == 0xffff)
  4997. continue;
  4998. np->phy_model = id2 & PHYID2_MODEL_MASK;
  4999. id1 = (id1 & PHYID1_OUI_MASK) << PHYID1_OUI_SHFT;
  5000. id2 = (id2 & PHYID2_OUI_MASK) >> PHYID2_OUI_SHFT;
  5001. dprintk(KERN_DEBUG "%s: open: Found PHY %04x:%04x at address %d.\n",
  5002. pci_name(pci_dev), id1, id2, phyaddr);
  5003. np->phyaddr = phyaddr;
  5004. np->phy_oui = id1 | id2;
  5005. /* Realtek hardcoded phy id1 to all zero's on certain phys */
  5006. if (np->phy_oui == PHY_OUI_REALTEK2)
  5007. np->phy_oui = PHY_OUI_REALTEK;
  5008. /* Setup phy revision for Realtek */
  5009. if (np->phy_oui == PHY_OUI_REALTEK && np->phy_model == PHY_MODEL_REALTEK_8211)
  5010. np->phy_rev = mii_rw(dev, phyaddr, MII_RESV1, MII_READ) & PHY_REV_MASK;
  5011. break;
  5012. }
  5013. if (i == 33) {
  5014. dev_printk(KERN_INFO, &pci_dev->dev,
  5015. "open: Could not find a valid PHY.\n");
  5016. goto out_error;
  5017. }
  5018. if (!phyinitialized) {
  5019. /* reset it */
  5020. phy_init(dev);
  5021. } else {
  5022. /* see if it is a gigabit phy */
  5023. u32 mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  5024. if (mii_status & PHY_GIGABIT) {
  5025. np->gigabit = PHY_GIGABIT;
  5026. }
  5027. }
  5028. /* set default link speed settings */
  5029. np->linkspeed = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  5030. np->duplex = 0;
  5031. np->autoneg = 1;
  5032. err = register_netdev(dev);
  5033. if (err) {
  5034. dev_printk(KERN_INFO, &pci_dev->dev,
  5035. "unable to register netdev: %d\n", err);
  5036. goto out_error;
  5037. }
  5038. dev_printk(KERN_INFO, &pci_dev->dev, "ifname %s, PHY OUI 0x%x @ %d, "
  5039. "addr %2.2x:%2.2x:%2.2x:%2.2x:%2.2x:%2.2x\n",
  5040. dev->name,
  5041. np->phy_oui,
  5042. np->phyaddr,
  5043. dev->dev_addr[0],
  5044. dev->dev_addr[1],
  5045. dev->dev_addr[2],
  5046. dev->dev_addr[3],
  5047. dev->dev_addr[4],
  5048. dev->dev_addr[5]);
  5049. dev_printk(KERN_INFO, &pci_dev->dev, "%s%s%s%s%s%s%s%s%s%sdesc-v%u\n",
  5050. dev->features & NETIF_F_HIGHDMA ? "highdma " : "",
  5051. dev->features & (NETIF_F_HW_CSUM | NETIF_F_SG) ?
  5052. "csum " : "",
  5053. dev->features & (NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_TX) ?
  5054. "vlan " : "",
  5055. id->driver_data & DEV_HAS_POWER_CNTRL ? "pwrctl " : "",
  5056. id->driver_data & DEV_HAS_MGMT_UNIT ? "mgmt " : "",
  5057. id->driver_data & DEV_NEED_TIMERIRQ ? "timirq " : "",
  5058. np->gigabit == PHY_GIGABIT ? "gbit " : "",
  5059. np->need_linktimer ? "lnktim " : "",
  5060. np->msi_flags & NV_MSI_CAPABLE ? "msi " : "",
  5061. np->msi_flags & NV_MSI_X_CAPABLE ? "msi-x " : "",
  5062. np->desc_ver);
  5063. return 0;
  5064. out_error:
  5065. if (phystate_orig)
  5066. writel(phystate|NVREG_ADAPTCTL_RUNNING, base + NvRegAdapterControl);
  5067. pci_set_drvdata(pci_dev, NULL);
  5068. out_freering:
  5069. free_rings(dev);
  5070. out_unmap:
  5071. iounmap(get_hwbase(dev));
  5072. out_relreg:
  5073. pci_release_regions(pci_dev);
  5074. out_disable:
  5075. pci_disable_device(pci_dev);
  5076. out_free:
  5077. free_netdev(dev);
  5078. out:
  5079. return err;
  5080. }
  5081. static void nv_restore_phy(struct net_device *dev)
  5082. {
  5083. struct fe_priv *np = netdev_priv(dev);
  5084. u16 phy_reserved, mii_control;
  5085. if (np->phy_oui == PHY_OUI_REALTEK &&
  5086. np->phy_model == PHY_MODEL_REALTEK_8201 &&
  5087. phy_cross == NV_CROSSOVER_DETECTION_DISABLED) {
  5088. mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT3);
  5089. phy_reserved = mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG2, MII_READ);
  5090. phy_reserved &= ~PHY_REALTEK_INIT_MSK1;
  5091. phy_reserved |= PHY_REALTEK_INIT8;
  5092. mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG2, phy_reserved);
  5093. mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1);
  5094. /* restart auto negotiation */
  5095. mii_control = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  5096. mii_control |= (BMCR_ANRESTART | BMCR_ANENABLE);
  5097. mii_rw(dev, np->phyaddr, MII_BMCR, mii_control);
  5098. }
  5099. }
  5100. static void __devexit nv_remove(struct pci_dev *pci_dev)
  5101. {
  5102. struct net_device *dev = pci_get_drvdata(pci_dev);
  5103. struct fe_priv *np = netdev_priv(dev);
  5104. u8 __iomem *base = get_hwbase(dev);
  5105. unregister_netdev(dev);
  5106. /* special op: write back the misordered MAC address - otherwise
  5107. * the next nv_probe would see a wrong address.
  5108. */
  5109. writel(np->orig_mac[0], base + NvRegMacAddrA);
  5110. writel(np->orig_mac[1], base + NvRegMacAddrB);
  5111. writel(readl(base + NvRegTransmitPoll) & ~NVREG_TRANSMITPOLL_MAC_ADDR_REV,
  5112. base + NvRegTransmitPoll);
  5113. /* restore any phy related changes */
  5114. nv_restore_phy(dev);
  5115. /* free all structures */
  5116. free_rings(dev);
  5117. iounmap(get_hwbase(dev));
  5118. pci_release_regions(pci_dev);
  5119. pci_disable_device(pci_dev);
  5120. free_netdev(dev);
  5121. pci_set_drvdata(pci_dev, NULL);
  5122. }
  5123. #ifdef CONFIG_PM
  5124. static int nv_suspend(struct pci_dev *pdev, pm_message_t state)
  5125. {
  5126. struct net_device *dev = pci_get_drvdata(pdev);
  5127. struct fe_priv *np = netdev_priv(dev);
  5128. if (!netif_running(dev))
  5129. goto out;
  5130. netif_device_detach(dev);
  5131. // Gross.
  5132. nv_close(dev);
  5133. pci_save_state(pdev);
  5134. pci_enable_wake(pdev, pci_choose_state(pdev, state), np->wolenabled);
  5135. pci_set_power_state(pdev, pci_choose_state(pdev, state));
  5136. out:
  5137. return 0;
  5138. }
  5139. static int nv_resume(struct pci_dev *pdev)
  5140. {
  5141. struct net_device *dev = pci_get_drvdata(pdev);
  5142. u8 __iomem *base = get_hwbase(dev);
  5143. int rc = 0;
  5144. u32 txreg;
  5145. if (!netif_running(dev))
  5146. goto out;
  5147. netif_device_attach(dev);
  5148. pci_set_power_state(pdev, PCI_D0);
  5149. pci_restore_state(pdev);
  5150. pci_enable_wake(pdev, PCI_D0, 0);
  5151. /* restore mac address reverse flag */
  5152. txreg = readl(base + NvRegTransmitPoll);
  5153. txreg |= NVREG_TRANSMITPOLL_MAC_ADDR_REV;
  5154. writel(txreg, base + NvRegTransmitPoll);
  5155. rc = nv_open(dev);
  5156. nv_set_multicast(dev);
  5157. out:
  5158. return rc;
  5159. }
  5160. static void nv_shutdown(struct pci_dev *pdev)
  5161. {
  5162. struct net_device *dev = pci_get_drvdata(pdev);
  5163. struct fe_priv *np = netdev_priv(dev);
  5164. if (netif_running(dev))
  5165. nv_close(dev);
  5166. pci_enable_wake(pdev, PCI_D3hot, np->wolenabled);
  5167. pci_enable_wake(pdev, PCI_D3cold, np->wolenabled);
  5168. pci_disable_device(pdev);
  5169. pci_set_power_state(pdev, PCI_D3hot);
  5170. }
  5171. #else
  5172. #define nv_suspend NULL
  5173. #define nv_shutdown NULL
  5174. #define nv_resume NULL
  5175. #endif /* CONFIG_PM */
  5176. static struct pci_device_id pci_tbl[] = {
  5177. { /* nForce Ethernet Controller */
  5178. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_1),
  5179. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
  5180. },
  5181. { /* nForce2 Ethernet Controller */
  5182. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_2),
  5183. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
  5184. },
  5185. { /* nForce3 Ethernet Controller */
  5186. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_3),
  5187. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
  5188. },
  5189. { /* nForce3 Ethernet Controller */
  5190. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_4),
  5191. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
  5192. },
  5193. { /* nForce3 Ethernet Controller */
  5194. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_5),
  5195. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
  5196. },
  5197. { /* nForce3 Ethernet Controller */
  5198. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_6),
  5199. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
  5200. },
  5201. { /* nForce3 Ethernet Controller */
  5202. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_7),
  5203. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
  5204. },
  5205. { /* CK804 Ethernet Controller */
  5206. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_8),
  5207. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_STATISTICS_V1|DEV_NEED_TX_LIMIT,
  5208. },
  5209. { /* CK804 Ethernet Controller */
  5210. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_9),
  5211. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_STATISTICS_V1|DEV_NEED_TX_LIMIT,
  5212. },
  5213. { /* MCP04 Ethernet Controller */
  5214. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_10),
  5215. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_STATISTICS_V1|DEV_NEED_TX_LIMIT,
  5216. },
  5217. { /* MCP04 Ethernet Controller */
  5218. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_11),
  5219. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_STATISTICS_V1|DEV_NEED_TX_LIMIT,
  5220. },
  5221. { /* MCP51 Ethernet Controller */
  5222. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_12),
  5223. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_STATISTICS_V1,
  5224. },
  5225. { /* MCP51 Ethernet Controller */
  5226. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_13),
  5227. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_STATISTICS_V1,
  5228. },
  5229. { /* MCP55 Ethernet Controller */
  5230. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_14),
  5231. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_VLAN|DEV_HAS_MSI|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_NEED_TX_LIMIT,
  5232. },
  5233. { /* MCP55 Ethernet Controller */
  5234. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_15),
  5235. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_VLAN|DEV_HAS_MSI|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_NEED_TX_LIMIT,
  5236. },
  5237. { /* MCP61 Ethernet Controller */
  5238. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_16),
  5239. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR,
  5240. },
  5241. { /* MCP61 Ethernet Controller */
  5242. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_17),
  5243. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR,
  5244. },
  5245. { /* MCP61 Ethernet Controller */
  5246. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_18),
  5247. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR,
  5248. },
  5249. { /* MCP61 Ethernet Controller */
  5250. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_19),
  5251. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR,
  5252. },
  5253. { /* MCP65 Ethernet Controller */
  5254. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_20),
  5255. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_TX_LIMIT|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE,
  5256. },
  5257. { /* MCP65 Ethernet Controller */
  5258. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_21),
  5259. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE,
  5260. },
  5261. { /* MCP65 Ethernet Controller */
  5262. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_22),
  5263. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE,
  5264. },
  5265. { /* MCP65 Ethernet Controller */
  5266. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_23),
  5267. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE,
  5268. },
  5269. { /* MCP67 Ethernet Controller */
  5270. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_24),
  5271. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_GEAR_MODE,
  5272. },
  5273. { /* MCP67 Ethernet Controller */
  5274. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_25),
  5275. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_GEAR_MODE,
  5276. },
  5277. { /* MCP67 Ethernet Controller */
  5278. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_26),
  5279. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_GEAR_MODE,
  5280. },
  5281. { /* MCP67 Ethernet Controller */
  5282. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_27),
  5283. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_GEAR_MODE,
  5284. },
  5285. { /* MCP73 Ethernet Controller */
  5286. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_28),
  5287. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_HAS_GEAR_MODE,
  5288. },
  5289. { /* MCP73 Ethernet Controller */
  5290. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_29),
  5291. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_HAS_GEAR_MODE,
  5292. },
  5293. { /* MCP73 Ethernet Controller */
  5294. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_30),
  5295. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_HAS_GEAR_MODE,
  5296. },
  5297. { /* MCP73 Ethernet Controller */
  5298. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_31),
  5299. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_HAS_GEAR_MODE,
  5300. },
  5301. { /* MCP77 Ethernet Controller */
  5302. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_32),
  5303. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V2|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE,
  5304. },
  5305. { /* MCP77 Ethernet Controller */
  5306. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_33),
  5307. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V2|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE,
  5308. },
  5309. { /* MCP77 Ethernet Controller */
  5310. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_34),
  5311. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V2|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE,
  5312. },
  5313. { /* MCP77 Ethernet Controller */
  5314. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_35),
  5315. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V2|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE,
  5316. },
  5317. { /* MCP79 Ethernet Controller */
  5318. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_36),
  5319. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V3|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE,
  5320. },
  5321. { /* MCP79 Ethernet Controller */
  5322. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_37),
  5323. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V3|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE,
  5324. },
  5325. { /* MCP79 Ethernet Controller */
  5326. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_38),
  5327. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V3|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE,
  5328. },
  5329. { /* MCP79 Ethernet Controller */
  5330. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_39),
  5331. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V3|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE,
  5332. },
  5333. {0,},
  5334. };
  5335. static struct pci_driver driver = {
  5336. .name = DRV_NAME,
  5337. .id_table = pci_tbl,
  5338. .probe = nv_probe,
  5339. .remove = __devexit_p(nv_remove),
  5340. .suspend = nv_suspend,
  5341. .resume = nv_resume,
  5342. .shutdown = nv_shutdown,
  5343. };
  5344. static int __init init_nic(void)
  5345. {
  5346. return pci_register_driver(&driver);
  5347. }
  5348. static void __exit exit_nic(void)
  5349. {
  5350. pci_unregister_driver(&driver);
  5351. }
  5352. module_param(max_interrupt_work, int, 0);
  5353. MODULE_PARM_DESC(max_interrupt_work, "forcedeth maximum events handled per interrupt");
  5354. module_param(optimization_mode, int, 0);
  5355. MODULE_PARM_DESC(optimization_mode, "In throughput mode (0), every tx & rx packet will generate an interrupt. In CPU mode (1), interrupts are controlled by a timer.");
  5356. module_param(poll_interval, int, 0);
  5357. MODULE_PARM_DESC(poll_interval, "Interval determines how frequent timer interrupt is generated by [(time_in_micro_secs * 100) / (2^10)]. Min is 0 and Max is 65535.");
  5358. module_param(msi, int, 0);
  5359. MODULE_PARM_DESC(msi, "MSI interrupts are enabled by setting to 1 and disabled by setting to 0.");
  5360. module_param(msix, int, 0);
  5361. MODULE_PARM_DESC(msix, "MSIX interrupts are enabled by setting to 1 and disabled by setting to 0.");
  5362. module_param(dma_64bit, int, 0);
  5363. MODULE_PARM_DESC(dma_64bit, "High DMA is enabled by setting to 1 and disabled by setting to 0.");
  5364. module_param(phy_cross, int, 0);
  5365. MODULE_PARM_DESC(phy_cross, "Phy crossover detection for Realtek 8201 phy is enabled by setting to 1 and disabled by setting to 0.");
  5366. MODULE_AUTHOR("Manfred Spraul <manfred@colorfullife.com>");
  5367. MODULE_DESCRIPTION("Reverse Engineered nForce ethernet driver");
  5368. MODULE_LICENSE("GPL");
  5369. MODULE_DEVICE_TABLE(pci, pci_tbl);
  5370. module_init(init_nic);
  5371. module_exit(exit_nic);