intel_ddi.c 37 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366
  1. /*
  2. * Copyright © 2012 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eugeni Dodonov <eugeni.dodonov@intel.com>
  25. *
  26. */
  27. #include "i915_drv.h"
  28. #include "intel_drv.h"
  29. /* HDMI/DVI modes ignore everything but the last 2 items. So we share
  30. * them for both DP and FDI transports, allowing those ports to
  31. * automatically adapt to HDMI connections as well
  32. */
  33. static const u32 hsw_ddi_translations_dp[] = {
  34. 0x00FFFFFF, 0x0006000E, /* DP parameters */
  35. 0x00D75FFF, 0x0005000A,
  36. 0x00C30FFF, 0x00040006,
  37. 0x80AAAFFF, 0x000B0000,
  38. 0x00FFFFFF, 0x0005000A,
  39. 0x00D75FFF, 0x000C0004,
  40. 0x80C30FFF, 0x000B0000,
  41. 0x00FFFFFF, 0x00040006,
  42. 0x80D75FFF, 0x000B0000,
  43. 0x00FFFFFF, 0x00040006 /* HDMI parameters */
  44. };
  45. static const u32 hsw_ddi_translations_fdi[] = {
  46. 0x00FFFFFF, 0x0007000E, /* FDI parameters */
  47. 0x00D75FFF, 0x000F000A,
  48. 0x00C30FFF, 0x00060006,
  49. 0x00AAAFFF, 0x001E0000,
  50. 0x00FFFFFF, 0x000F000A,
  51. 0x00D75FFF, 0x00160004,
  52. 0x00C30FFF, 0x001E0000,
  53. 0x00FFFFFF, 0x00060006,
  54. 0x00D75FFF, 0x001E0000,
  55. 0x00FFFFFF, 0x00040006 /* HDMI parameters */
  56. };
  57. static enum port intel_ddi_get_encoder_port(struct intel_encoder *intel_encoder)
  58. {
  59. struct drm_encoder *encoder = &intel_encoder->base;
  60. int type = intel_encoder->type;
  61. if (type == INTEL_OUTPUT_DISPLAYPORT || type == INTEL_OUTPUT_EDP ||
  62. type == INTEL_OUTPUT_HDMI || type == INTEL_OUTPUT_UNKNOWN) {
  63. struct intel_digital_port *intel_dig_port =
  64. enc_to_dig_port(encoder);
  65. return intel_dig_port->port;
  66. } else if (type == INTEL_OUTPUT_ANALOG) {
  67. return PORT_E;
  68. } else {
  69. DRM_ERROR("Invalid DDI encoder type %d\n", type);
  70. BUG();
  71. }
  72. }
  73. /* On Haswell, DDI port buffers must be programmed with correct values
  74. * in advance. The buffer values are different for FDI and DP modes,
  75. * but the HDMI/DVI fields are shared among those. So we program the DDI
  76. * in either FDI or DP modes only, as HDMI connections will work with both
  77. * of those
  78. */
  79. static void intel_prepare_ddi_buffers(struct drm_device *dev, enum port port,
  80. bool use_fdi_mode)
  81. {
  82. struct drm_i915_private *dev_priv = dev->dev_private;
  83. u32 reg;
  84. int i;
  85. const u32 *ddi_translations = ((use_fdi_mode) ?
  86. hsw_ddi_translations_fdi :
  87. hsw_ddi_translations_dp);
  88. for (i = 0, reg = DDI_BUF_TRANS(port);
  89. i < ARRAY_SIZE(hsw_ddi_translations_fdi); i++) {
  90. I915_WRITE(reg, ddi_translations[i]);
  91. reg += 4;
  92. }
  93. }
  94. /* Program DDI buffers translations for DP. By default, program ports A-D in DP
  95. * mode and port E for FDI.
  96. */
  97. void intel_prepare_ddi(struct drm_device *dev)
  98. {
  99. int port;
  100. if (!HAS_DDI(dev))
  101. return;
  102. for (port = PORT_A; port < PORT_E; port++)
  103. intel_prepare_ddi_buffers(dev, port, false);
  104. /* DDI E is the suggested one to work in FDI mode, so program is as such
  105. * by default. It will have to be re-programmed in case a digital DP
  106. * output will be detected on it
  107. */
  108. intel_prepare_ddi_buffers(dev, PORT_E, true);
  109. }
  110. static const long hsw_ddi_buf_ctl_values[] = {
  111. DDI_BUF_EMP_400MV_0DB_HSW,
  112. DDI_BUF_EMP_400MV_3_5DB_HSW,
  113. DDI_BUF_EMP_400MV_6DB_HSW,
  114. DDI_BUF_EMP_400MV_9_5DB_HSW,
  115. DDI_BUF_EMP_600MV_0DB_HSW,
  116. DDI_BUF_EMP_600MV_3_5DB_HSW,
  117. DDI_BUF_EMP_600MV_6DB_HSW,
  118. DDI_BUF_EMP_800MV_0DB_HSW,
  119. DDI_BUF_EMP_800MV_3_5DB_HSW
  120. };
  121. static void intel_wait_ddi_buf_idle(struct drm_i915_private *dev_priv,
  122. enum port port)
  123. {
  124. uint32_t reg = DDI_BUF_CTL(port);
  125. int i;
  126. for (i = 0; i < 8; i++) {
  127. udelay(1);
  128. if (I915_READ(reg) & DDI_BUF_IS_IDLE)
  129. return;
  130. }
  131. DRM_ERROR("Timeout waiting for DDI BUF %c idle bit\n", port_name(port));
  132. }
  133. /* Starting with Haswell, different DDI ports can work in FDI mode for
  134. * connection to the PCH-located connectors. For this, it is necessary to train
  135. * both the DDI port and PCH receiver for the desired DDI buffer settings.
  136. *
  137. * The recommended port to work in FDI mode is DDI E, which we use here. Also,
  138. * please note that when FDI mode is active on DDI E, it shares 2 lines with
  139. * DDI A (which is used for eDP)
  140. */
  141. void hsw_fdi_link_train(struct drm_crtc *crtc)
  142. {
  143. struct drm_device *dev = crtc->dev;
  144. struct drm_i915_private *dev_priv = dev->dev_private;
  145. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  146. u32 temp, i, rx_ctl_val;
  147. /* Set the FDI_RX_MISC pwrdn lanes and the 2 workarounds listed at the
  148. * mode set "sequence for CRT port" document:
  149. * - TP1 to TP2 time with the default value
  150. * - FDI delay to 90h
  151. *
  152. * WaFDIAutoLinkSetTimingOverrride:hsw
  153. */
  154. I915_WRITE(_FDI_RXA_MISC, FDI_RX_PWRDN_LANE1_VAL(2) |
  155. FDI_RX_PWRDN_LANE0_VAL(2) |
  156. FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
  157. /* Enable the PCH Receiver FDI PLL */
  158. rx_ctl_val = dev_priv->fdi_rx_config | FDI_RX_ENHANCE_FRAME_ENABLE |
  159. FDI_RX_PLL_ENABLE |
  160. FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
  161. I915_WRITE(_FDI_RXA_CTL, rx_ctl_val);
  162. POSTING_READ(_FDI_RXA_CTL);
  163. udelay(220);
  164. /* Switch from Rawclk to PCDclk */
  165. rx_ctl_val |= FDI_PCDCLK;
  166. I915_WRITE(_FDI_RXA_CTL, rx_ctl_val);
  167. /* Configure Port Clock Select */
  168. I915_WRITE(PORT_CLK_SEL(PORT_E), intel_crtc->ddi_pll_sel);
  169. /* Start the training iterating through available voltages and emphasis,
  170. * testing each value twice. */
  171. for (i = 0; i < ARRAY_SIZE(hsw_ddi_buf_ctl_values) * 2; i++) {
  172. /* Configure DP_TP_CTL with auto-training */
  173. I915_WRITE(DP_TP_CTL(PORT_E),
  174. DP_TP_CTL_FDI_AUTOTRAIN |
  175. DP_TP_CTL_ENHANCED_FRAME_ENABLE |
  176. DP_TP_CTL_LINK_TRAIN_PAT1 |
  177. DP_TP_CTL_ENABLE);
  178. /* Configure and enable DDI_BUF_CTL for DDI E with next voltage.
  179. * DDI E does not support port reversal, the functionality is
  180. * achieved on the PCH side in FDI_RX_CTL, so no need to set the
  181. * port reversal bit */
  182. I915_WRITE(DDI_BUF_CTL(PORT_E),
  183. DDI_BUF_CTL_ENABLE |
  184. ((intel_crtc->config.fdi_lanes - 1) << 1) |
  185. hsw_ddi_buf_ctl_values[i / 2]);
  186. POSTING_READ(DDI_BUF_CTL(PORT_E));
  187. udelay(600);
  188. /* Program PCH FDI Receiver TU */
  189. I915_WRITE(_FDI_RXA_TUSIZE1, TU_SIZE(64));
  190. /* Enable PCH FDI Receiver with auto-training */
  191. rx_ctl_val |= FDI_RX_ENABLE | FDI_LINK_TRAIN_AUTO;
  192. I915_WRITE(_FDI_RXA_CTL, rx_ctl_val);
  193. POSTING_READ(_FDI_RXA_CTL);
  194. /* Wait for FDI receiver lane calibration */
  195. udelay(30);
  196. /* Unset FDI_RX_MISC pwrdn lanes */
  197. temp = I915_READ(_FDI_RXA_MISC);
  198. temp &= ~(FDI_RX_PWRDN_LANE1_MASK | FDI_RX_PWRDN_LANE0_MASK);
  199. I915_WRITE(_FDI_RXA_MISC, temp);
  200. POSTING_READ(_FDI_RXA_MISC);
  201. /* Wait for FDI auto training time */
  202. udelay(5);
  203. temp = I915_READ(DP_TP_STATUS(PORT_E));
  204. if (temp & DP_TP_STATUS_AUTOTRAIN_DONE) {
  205. DRM_DEBUG_KMS("FDI link training done on step %d\n", i);
  206. /* Enable normal pixel sending for FDI */
  207. I915_WRITE(DP_TP_CTL(PORT_E),
  208. DP_TP_CTL_FDI_AUTOTRAIN |
  209. DP_TP_CTL_LINK_TRAIN_NORMAL |
  210. DP_TP_CTL_ENHANCED_FRAME_ENABLE |
  211. DP_TP_CTL_ENABLE);
  212. return;
  213. }
  214. temp = I915_READ(DDI_BUF_CTL(PORT_E));
  215. temp &= ~DDI_BUF_CTL_ENABLE;
  216. I915_WRITE(DDI_BUF_CTL(PORT_E), temp);
  217. POSTING_READ(DDI_BUF_CTL(PORT_E));
  218. /* Disable DP_TP_CTL and FDI_RX_CTL and retry */
  219. temp = I915_READ(DP_TP_CTL(PORT_E));
  220. temp &= ~(DP_TP_CTL_ENABLE | DP_TP_CTL_LINK_TRAIN_MASK);
  221. temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
  222. I915_WRITE(DP_TP_CTL(PORT_E), temp);
  223. POSTING_READ(DP_TP_CTL(PORT_E));
  224. intel_wait_ddi_buf_idle(dev_priv, PORT_E);
  225. rx_ctl_val &= ~FDI_RX_ENABLE;
  226. I915_WRITE(_FDI_RXA_CTL, rx_ctl_val);
  227. POSTING_READ(_FDI_RXA_CTL);
  228. /* Reset FDI_RX_MISC pwrdn lanes */
  229. temp = I915_READ(_FDI_RXA_MISC);
  230. temp &= ~(FDI_RX_PWRDN_LANE1_MASK | FDI_RX_PWRDN_LANE0_MASK);
  231. temp |= FDI_RX_PWRDN_LANE1_VAL(2) | FDI_RX_PWRDN_LANE0_VAL(2);
  232. I915_WRITE(_FDI_RXA_MISC, temp);
  233. POSTING_READ(_FDI_RXA_MISC);
  234. }
  235. DRM_ERROR("FDI link training failed!\n");
  236. }
  237. static void intel_ddi_mode_set(struct intel_encoder *encoder)
  238. {
  239. struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
  240. int port = intel_ddi_get_encoder_port(encoder);
  241. int pipe = crtc->pipe;
  242. int type = encoder->type;
  243. struct drm_display_mode *adjusted_mode = &crtc->config.adjusted_mode;
  244. DRM_DEBUG_KMS("Preparing DDI mode on port %c, pipe %c\n",
  245. port_name(port), pipe_name(pipe));
  246. crtc->eld_vld = false;
  247. if (type == INTEL_OUTPUT_DISPLAYPORT || type == INTEL_OUTPUT_EDP) {
  248. struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
  249. struct intel_digital_port *intel_dig_port =
  250. enc_to_dig_port(&encoder->base);
  251. intel_dp->DP = intel_dig_port->saved_port_bits |
  252. DDI_BUF_CTL_ENABLE | DDI_BUF_EMP_400MV_0DB_HSW;
  253. intel_dp->DP |= DDI_PORT_WIDTH(intel_dp->lane_count);
  254. if (intel_dp->has_audio) {
  255. DRM_DEBUG_DRIVER("DP audio on pipe %c on DDI\n",
  256. pipe_name(crtc->pipe));
  257. /* write eld */
  258. DRM_DEBUG_DRIVER("DP audio: write eld information\n");
  259. intel_write_eld(&encoder->base, adjusted_mode);
  260. }
  261. intel_dp_init_link_config(intel_dp);
  262. } else if (type == INTEL_OUTPUT_HDMI) {
  263. struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base);
  264. if (intel_hdmi->has_audio) {
  265. /* Proper support for digital audio needs a new logic
  266. * and a new set of registers, so we leave it for future
  267. * patch bombing.
  268. */
  269. DRM_DEBUG_DRIVER("HDMI audio on pipe %c on DDI\n",
  270. pipe_name(crtc->pipe));
  271. /* write eld */
  272. DRM_DEBUG_DRIVER("HDMI audio: write eld information\n");
  273. intel_write_eld(&encoder->base, adjusted_mode);
  274. }
  275. intel_hdmi->set_infoframes(&encoder->base, adjusted_mode);
  276. }
  277. }
  278. static struct intel_encoder *
  279. intel_ddi_get_crtc_encoder(struct drm_crtc *crtc)
  280. {
  281. struct drm_device *dev = crtc->dev;
  282. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  283. struct intel_encoder *intel_encoder, *ret = NULL;
  284. int num_encoders = 0;
  285. for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
  286. ret = intel_encoder;
  287. num_encoders++;
  288. }
  289. if (num_encoders != 1)
  290. WARN(1, "%d encoders on crtc for pipe %c\n", num_encoders,
  291. pipe_name(intel_crtc->pipe));
  292. BUG_ON(ret == NULL);
  293. return ret;
  294. }
  295. void intel_ddi_put_crtc_pll(struct drm_crtc *crtc)
  296. {
  297. struct drm_i915_private *dev_priv = crtc->dev->dev_private;
  298. struct intel_ddi_plls *plls = &dev_priv->ddi_plls;
  299. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  300. uint32_t val;
  301. switch (intel_crtc->ddi_pll_sel) {
  302. case PORT_CLK_SEL_SPLL:
  303. plls->spll_refcount--;
  304. if (plls->spll_refcount == 0) {
  305. DRM_DEBUG_KMS("Disabling SPLL\n");
  306. val = I915_READ(SPLL_CTL);
  307. WARN_ON(!(val & SPLL_PLL_ENABLE));
  308. I915_WRITE(SPLL_CTL, val & ~SPLL_PLL_ENABLE);
  309. POSTING_READ(SPLL_CTL);
  310. }
  311. break;
  312. case PORT_CLK_SEL_WRPLL1:
  313. plls->wrpll1_refcount--;
  314. if (plls->wrpll1_refcount == 0) {
  315. DRM_DEBUG_KMS("Disabling WRPLL 1\n");
  316. val = I915_READ(WRPLL_CTL1);
  317. WARN_ON(!(val & WRPLL_PLL_ENABLE));
  318. I915_WRITE(WRPLL_CTL1, val & ~WRPLL_PLL_ENABLE);
  319. POSTING_READ(WRPLL_CTL1);
  320. }
  321. break;
  322. case PORT_CLK_SEL_WRPLL2:
  323. plls->wrpll2_refcount--;
  324. if (plls->wrpll2_refcount == 0) {
  325. DRM_DEBUG_KMS("Disabling WRPLL 2\n");
  326. val = I915_READ(WRPLL_CTL2);
  327. WARN_ON(!(val & WRPLL_PLL_ENABLE));
  328. I915_WRITE(WRPLL_CTL2, val & ~WRPLL_PLL_ENABLE);
  329. POSTING_READ(WRPLL_CTL2);
  330. }
  331. break;
  332. }
  333. WARN(plls->spll_refcount < 0, "Invalid SPLL refcount\n");
  334. WARN(plls->wrpll1_refcount < 0, "Invalid WRPLL1 refcount\n");
  335. WARN(plls->wrpll2_refcount < 0, "Invalid WRPLL2 refcount\n");
  336. intel_crtc->ddi_pll_sel = PORT_CLK_SEL_NONE;
  337. }
  338. #define LC_FREQ 2700
  339. #define LC_FREQ_2K (LC_FREQ * 2000)
  340. #define P_MIN 2
  341. #define P_MAX 64
  342. #define P_INC 2
  343. /* Constraints for PLL good behavior */
  344. #define REF_MIN 48
  345. #define REF_MAX 400
  346. #define VCO_MIN 2400
  347. #define VCO_MAX 4800
  348. #define ABS_DIFF(a, b) ((a > b) ? (a - b) : (b - a))
  349. struct wrpll_rnp {
  350. unsigned p, n2, r2;
  351. };
  352. static unsigned wrpll_get_budget_for_freq(int clock)
  353. {
  354. unsigned budget;
  355. switch (clock) {
  356. case 25175000:
  357. case 25200000:
  358. case 27000000:
  359. case 27027000:
  360. case 37762500:
  361. case 37800000:
  362. case 40500000:
  363. case 40541000:
  364. case 54000000:
  365. case 54054000:
  366. case 59341000:
  367. case 59400000:
  368. case 72000000:
  369. case 74176000:
  370. case 74250000:
  371. case 81000000:
  372. case 81081000:
  373. case 89012000:
  374. case 89100000:
  375. case 108000000:
  376. case 108108000:
  377. case 111264000:
  378. case 111375000:
  379. case 148352000:
  380. case 148500000:
  381. case 162000000:
  382. case 162162000:
  383. case 222525000:
  384. case 222750000:
  385. case 296703000:
  386. case 297000000:
  387. budget = 0;
  388. break;
  389. case 233500000:
  390. case 245250000:
  391. case 247750000:
  392. case 253250000:
  393. case 298000000:
  394. budget = 1500;
  395. break;
  396. case 169128000:
  397. case 169500000:
  398. case 179500000:
  399. case 202000000:
  400. budget = 2000;
  401. break;
  402. case 256250000:
  403. case 262500000:
  404. case 270000000:
  405. case 272500000:
  406. case 273750000:
  407. case 280750000:
  408. case 281250000:
  409. case 286000000:
  410. case 291750000:
  411. budget = 4000;
  412. break;
  413. case 267250000:
  414. case 268500000:
  415. budget = 5000;
  416. break;
  417. default:
  418. budget = 1000;
  419. break;
  420. }
  421. return budget;
  422. }
  423. static void wrpll_update_rnp(uint64_t freq2k, unsigned budget,
  424. unsigned r2, unsigned n2, unsigned p,
  425. struct wrpll_rnp *best)
  426. {
  427. uint64_t a, b, c, d, diff, diff_best;
  428. /* No best (r,n,p) yet */
  429. if (best->p == 0) {
  430. best->p = p;
  431. best->n2 = n2;
  432. best->r2 = r2;
  433. return;
  434. }
  435. /*
  436. * Output clock is (LC_FREQ_2K / 2000) * N / (P * R), which compares to
  437. * freq2k.
  438. *
  439. * delta = 1e6 *
  440. * abs(freq2k - (LC_FREQ_2K * n2/(p * r2))) /
  441. * freq2k;
  442. *
  443. * and we would like delta <= budget.
  444. *
  445. * If the discrepancy is above the PPM-based budget, always prefer to
  446. * improve upon the previous solution. However, if you're within the
  447. * budget, try to maximize Ref * VCO, that is N / (P * R^2).
  448. */
  449. a = freq2k * budget * p * r2;
  450. b = freq2k * budget * best->p * best->r2;
  451. diff = ABS_DIFF((freq2k * p * r2), (LC_FREQ_2K * n2));
  452. diff_best = ABS_DIFF((freq2k * best->p * best->r2),
  453. (LC_FREQ_2K * best->n2));
  454. c = 1000000 * diff;
  455. d = 1000000 * diff_best;
  456. if (a < c && b < d) {
  457. /* If both are above the budget, pick the closer */
  458. if (best->p * best->r2 * diff < p * r2 * diff_best) {
  459. best->p = p;
  460. best->n2 = n2;
  461. best->r2 = r2;
  462. }
  463. } else if (a >= c && b < d) {
  464. /* If A is below the threshold but B is above it? Update. */
  465. best->p = p;
  466. best->n2 = n2;
  467. best->r2 = r2;
  468. } else if (a >= c && b >= d) {
  469. /* Both are below the limit, so pick the higher n2/(r2*r2) */
  470. if (n2 * best->r2 * best->r2 > best->n2 * r2 * r2) {
  471. best->p = p;
  472. best->n2 = n2;
  473. best->r2 = r2;
  474. }
  475. }
  476. /* Otherwise a < c && b >= d, do nothing */
  477. }
  478. static void
  479. intel_ddi_calculate_wrpll(int clock /* in Hz */,
  480. unsigned *r2_out, unsigned *n2_out, unsigned *p_out)
  481. {
  482. uint64_t freq2k;
  483. unsigned p, n2, r2;
  484. struct wrpll_rnp best = { 0, 0, 0 };
  485. unsigned budget;
  486. freq2k = clock / 100;
  487. budget = wrpll_get_budget_for_freq(clock);
  488. /* Special case handling for 540 pixel clock: bypass WR PLL entirely
  489. * and directly pass the LC PLL to it. */
  490. if (freq2k == 5400000) {
  491. *n2_out = 2;
  492. *p_out = 1;
  493. *r2_out = 2;
  494. return;
  495. }
  496. /*
  497. * Ref = LC_FREQ / R, where Ref is the actual reference input seen by
  498. * the WR PLL.
  499. *
  500. * We want R so that REF_MIN <= Ref <= REF_MAX.
  501. * Injecting R2 = 2 * R gives:
  502. * REF_MAX * r2 > LC_FREQ * 2 and
  503. * REF_MIN * r2 < LC_FREQ * 2
  504. *
  505. * Which means the desired boundaries for r2 are:
  506. * LC_FREQ * 2 / REF_MAX < r2 < LC_FREQ * 2 / REF_MIN
  507. *
  508. */
  509. for (r2 = LC_FREQ * 2 / REF_MAX + 1;
  510. r2 <= LC_FREQ * 2 / REF_MIN;
  511. r2++) {
  512. /*
  513. * VCO = N * Ref, that is: VCO = N * LC_FREQ / R
  514. *
  515. * Once again we want VCO_MIN <= VCO <= VCO_MAX.
  516. * Injecting R2 = 2 * R and N2 = 2 * N, we get:
  517. * VCO_MAX * r2 > n2 * LC_FREQ and
  518. * VCO_MIN * r2 < n2 * LC_FREQ)
  519. *
  520. * Which means the desired boundaries for n2 are:
  521. * VCO_MIN * r2 / LC_FREQ < n2 < VCO_MAX * r2 / LC_FREQ
  522. */
  523. for (n2 = VCO_MIN * r2 / LC_FREQ + 1;
  524. n2 <= VCO_MAX * r2 / LC_FREQ;
  525. n2++) {
  526. for (p = P_MIN; p <= P_MAX; p += P_INC)
  527. wrpll_update_rnp(freq2k, budget,
  528. r2, n2, p, &best);
  529. }
  530. }
  531. *n2_out = best.n2;
  532. *p_out = best.p;
  533. *r2_out = best.r2;
  534. DRM_DEBUG_KMS("WRPLL: %dHz refresh rate with p=%d, n2=%d r2=%d\n",
  535. clock, *p_out, *n2_out, *r2_out);
  536. }
  537. bool intel_ddi_pll_mode_set(struct drm_crtc *crtc)
  538. {
  539. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  540. struct intel_encoder *intel_encoder = intel_ddi_get_crtc_encoder(crtc);
  541. struct drm_encoder *encoder = &intel_encoder->base;
  542. struct drm_i915_private *dev_priv = crtc->dev->dev_private;
  543. struct intel_ddi_plls *plls = &dev_priv->ddi_plls;
  544. int type = intel_encoder->type;
  545. enum pipe pipe = intel_crtc->pipe;
  546. uint32_t reg, val;
  547. int clock = intel_crtc->config.port_clock;
  548. /* TODO: reuse PLLs when possible (compare values) */
  549. intel_ddi_put_crtc_pll(crtc);
  550. if (type == INTEL_OUTPUT_DISPLAYPORT || type == INTEL_OUTPUT_EDP) {
  551. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  552. switch (intel_dp->link_bw) {
  553. case DP_LINK_BW_1_62:
  554. intel_crtc->ddi_pll_sel = PORT_CLK_SEL_LCPLL_810;
  555. break;
  556. case DP_LINK_BW_2_7:
  557. intel_crtc->ddi_pll_sel = PORT_CLK_SEL_LCPLL_1350;
  558. break;
  559. case DP_LINK_BW_5_4:
  560. intel_crtc->ddi_pll_sel = PORT_CLK_SEL_LCPLL_2700;
  561. break;
  562. default:
  563. DRM_ERROR("Link bandwidth %d unsupported\n",
  564. intel_dp->link_bw);
  565. return false;
  566. }
  567. /* We don't need to turn any PLL on because we'll use LCPLL. */
  568. return true;
  569. } else if (type == INTEL_OUTPUT_HDMI) {
  570. unsigned p, n2, r2;
  571. if (plls->wrpll1_refcount == 0) {
  572. DRM_DEBUG_KMS("Using WRPLL 1 on pipe %c\n",
  573. pipe_name(pipe));
  574. plls->wrpll1_refcount++;
  575. reg = WRPLL_CTL1;
  576. intel_crtc->ddi_pll_sel = PORT_CLK_SEL_WRPLL1;
  577. } else if (plls->wrpll2_refcount == 0) {
  578. DRM_DEBUG_KMS("Using WRPLL 2 on pipe %c\n",
  579. pipe_name(pipe));
  580. plls->wrpll2_refcount++;
  581. reg = WRPLL_CTL2;
  582. intel_crtc->ddi_pll_sel = PORT_CLK_SEL_WRPLL2;
  583. } else {
  584. DRM_ERROR("No WRPLLs available!\n");
  585. return false;
  586. }
  587. WARN(I915_READ(reg) & WRPLL_PLL_ENABLE,
  588. "WRPLL already enabled\n");
  589. intel_ddi_calculate_wrpll(clock * 1000, &r2, &n2, &p);
  590. val = WRPLL_PLL_ENABLE | WRPLL_PLL_SELECT_LCPLL_2700 |
  591. WRPLL_DIVIDER_REFERENCE(r2) | WRPLL_DIVIDER_FEEDBACK(n2) |
  592. WRPLL_DIVIDER_POST(p);
  593. } else if (type == INTEL_OUTPUT_ANALOG) {
  594. if (plls->spll_refcount == 0) {
  595. DRM_DEBUG_KMS("Using SPLL on pipe %c\n",
  596. pipe_name(pipe));
  597. plls->spll_refcount++;
  598. reg = SPLL_CTL;
  599. intel_crtc->ddi_pll_sel = PORT_CLK_SEL_SPLL;
  600. } else {
  601. DRM_ERROR("SPLL already in use\n");
  602. return false;
  603. }
  604. WARN(I915_READ(reg) & SPLL_PLL_ENABLE,
  605. "SPLL already enabled\n");
  606. val = SPLL_PLL_ENABLE | SPLL_PLL_FREQ_1350MHz | SPLL_PLL_SSC;
  607. } else {
  608. WARN(1, "Invalid DDI encoder type %d\n", type);
  609. return false;
  610. }
  611. I915_WRITE(reg, val);
  612. udelay(20);
  613. return true;
  614. }
  615. void intel_ddi_set_pipe_settings(struct drm_crtc *crtc)
  616. {
  617. struct drm_i915_private *dev_priv = crtc->dev->dev_private;
  618. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  619. struct intel_encoder *intel_encoder = intel_ddi_get_crtc_encoder(crtc);
  620. enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
  621. int type = intel_encoder->type;
  622. uint32_t temp;
  623. if (type == INTEL_OUTPUT_DISPLAYPORT || type == INTEL_OUTPUT_EDP) {
  624. temp = TRANS_MSA_SYNC_CLK;
  625. switch (intel_crtc->config.pipe_bpp) {
  626. case 18:
  627. temp |= TRANS_MSA_6_BPC;
  628. break;
  629. case 24:
  630. temp |= TRANS_MSA_8_BPC;
  631. break;
  632. case 30:
  633. temp |= TRANS_MSA_10_BPC;
  634. break;
  635. case 36:
  636. temp |= TRANS_MSA_12_BPC;
  637. break;
  638. default:
  639. BUG();
  640. }
  641. I915_WRITE(TRANS_MSA_MISC(cpu_transcoder), temp);
  642. }
  643. }
  644. void intel_ddi_enable_transcoder_func(struct drm_crtc *crtc)
  645. {
  646. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  647. struct intel_encoder *intel_encoder = intel_ddi_get_crtc_encoder(crtc);
  648. struct drm_encoder *encoder = &intel_encoder->base;
  649. struct drm_i915_private *dev_priv = crtc->dev->dev_private;
  650. enum pipe pipe = intel_crtc->pipe;
  651. enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
  652. enum port port = intel_ddi_get_encoder_port(intel_encoder);
  653. int type = intel_encoder->type;
  654. uint32_t temp;
  655. /* Enable TRANS_DDI_FUNC_CTL for the pipe to work in HDMI mode */
  656. temp = TRANS_DDI_FUNC_ENABLE;
  657. temp |= TRANS_DDI_SELECT_PORT(port);
  658. switch (intel_crtc->config.pipe_bpp) {
  659. case 18:
  660. temp |= TRANS_DDI_BPC_6;
  661. break;
  662. case 24:
  663. temp |= TRANS_DDI_BPC_8;
  664. break;
  665. case 30:
  666. temp |= TRANS_DDI_BPC_10;
  667. break;
  668. case 36:
  669. temp |= TRANS_DDI_BPC_12;
  670. break;
  671. default:
  672. BUG();
  673. }
  674. if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
  675. temp |= TRANS_DDI_PVSYNC;
  676. if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
  677. temp |= TRANS_DDI_PHSYNC;
  678. if (cpu_transcoder == TRANSCODER_EDP) {
  679. switch (pipe) {
  680. case PIPE_A:
  681. /* Can only use the always-on power well for eDP when
  682. * not using the panel fitter, and when not using motion
  683. * blur mitigation (which we don't support). */
  684. if (intel_crtc->config.pch_pfit.size)
  685. temp |= TRANS_DDI_EDP_INPUT_A_ONOFF;
  686. else
  687. temp |= TRANS_DDI_EDP_INPUT_A_ON;
  688. break;
  689. case PIPE_B:
  690. temp |= TRANS_DDI_EDP_INPUT_B_ONOFF;
  691. break;
  692. case PIPE_C:
  693. temp |= TRANS_DDI_EDP_INPUT_C_ONOFF;
  694. break;
  695. default:
  696. BUG();
  697. break;
  698. }
  699. }
  700. if (type == INTEL_OUTPUT_HDMI) {
  701. struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
  702. if (intel_hdmi->has_hdmi_sink)
  703. temp |= TRANS_DDI_MODE_SELECT_HDMI;
  704. else
  705. temp |= TRANS_DDI_MODE_SELECT_DVI;
  706. } else if (type == INTEL_OUTPUT_ANALOG) {
  707. temp |= TRANS_DDI_MODE_SELECT_FDI;
  708. temp |= (intel_crtc->config.fdi_lanes - 1) << 1;
  709. } else if (type == INTEL_OUTPUT_DISPLAYPORT ||
  710. type == INTEL_OUTPUT_EDP) {
  711. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  712. temp |= TRANS_DDI_MODE_SELECT_DP_SST;
  713. temp |= DDI_PORT_WIDTH(intel_dp->lane_count);
  714. } else {
  715. WARN(1, "Invalid encoder type %d for pipe %c\n",
  716. intel_encoder->type, pipe_name(pipe));
  717. }
  718. I915_WRITE(TRANS_DDI_FUNC_CTL(cpu_transcoder), temp);
  719. }
  720. void intel_ddi_disable_transcoder_func(struct drm_i915_private *dev_priv,
  721. enum transcoder cpu_transcoder)
  722. {
  723. uint32_t reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
  724. uint32_t val = I915_READ(reg);
  725. val &= ~(TRANS_DDI_FUNC_ENABLE | TRANS_DDI_PORT_MASK);
  726. val |= TRANS_DDI_PORT_NONE;
  727. I915_WRITE(reg, val);
  728. }
  729. bool intel_ddi_connector_get_hw_state(struct intel_connector *intel_connector)
  730. {
  731. struct drm_device *dev = intel_connector->base.dev;
  732. struct drm_i915_private *dev_priv = dev->dev_private;
  733. struct intel_encoder *intel_encoder = intel_connector->encoder;
  734. int type = intel_connector->base.connector_type;
  735. enum port port = intel_ddi_get_encoder_port(intel_encoder);
  736. enum pipe pipe = 0;
  737. enum transcoder cpu_transcoder;
  738. uint32_t tmp;
  739. if (!intel_encoder->get_hw_state(intel_encoder, &pipe))
  740. return false;
  741. if (port == PORT_A)
  742. cpu_transcoder = TRANSCODER_EDP;
  743. else
  744. cpu_transcoder = (enum transcoder) pipe;
  745. tmp = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
  746. switch (tmp & TRANS_DDI_MODE_SELECT_MASK) {
  747. case TRANS_DDI_MODE_SELECT_HDMI:
  748. case TRANS_DDI_MODE_SELECT_DVI:
  749. return (type == DRM_MODE_CONNECTOR_HDMIA);
  750. case TRANS_DDI_MODE_SELECT_DP_SST:
  751. if (type == DRM_MODE_CONNECTOR_eDP)
  752. return true;
  753. case TRANS_DDI_MODE_SELECT_DP_MST:
  754. return (type == DRM_MODE_CONNECTOR_DisplayPort);
  755. case TRANS_DDI_MODE_SELECT_FDI:
  756. return (type == DRM_MODE_CONNECTOR_VGA);
  757. default:
  758. return false;
  759. }
  760. }
  761. bool intel_ddi_get_hw_state(struct intel_encoder *encoder,
  762. enum pipe *pipe)
  763. {
  764. struct drm_device *dev = encoder->base.dev;
  765. struct drm_i915_private *dev_priv = dev->dev_private;
  766. enum port port = intel_ddi_get_encoder_port(encoder);
  767. u32 tmp;
  768. int i;
  769. tmp = I915_READ(DDI_BUF_CTL(port));
  770. if (!(tmp & DDI_BUF_CTL_ENABLE))
  771. return false;
  772. if (port == PORT_A) {
  773. tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
  774. switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
  775. case TRANS_DDI_EDP_INPUT_A_ON:
  776. case TRANS_DDI_EDP_INPUT_A_ONOFF:
  777. *pipe = PIPE_A;
  778. break;
  779. case TRANS_DDI_EDP_INPUT_B_ONOFF:
  780. *pipe = PIPE_B;
  781. break;
  782. case TRANS_DDI_EDP_INPUT_C_ONOFF:
  783. *pipe = PIPE_C;
  784. break;
  785. }
  786. return true;
  787. } else {
  788. for (i = TRANSCODER_A; i <= TRANSCODER_C; i++) {
  789. tmp = I915_READ(TRANS_DDI_FUNC_CTL(i));
  790. if ((tmp & TRANS_DDI_PORT_MASK)
  791. == TRANS_DDI_SELECT_PORT(port)) {
  792. *pipe = i;
  793. return true;
  794. }
  795. }
  796. }
  797. DRM_DEBUG_KMS("No pipe for ddi port %c found\n", port_name(port));
  798. return false;
  799. }
  800. static uint32_t intel_ddi_get_crtc_pll(struct drm_i915_private *dev_priv,
  801. enum pipe pipe)
  802. {
  803. uint32_t temp, ret;
  804. enum port port = I915_MAX_PORTS;
  805. enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
  806. pipe);
  807. int i;
  808. if (cpu_transcoder == TRANSCODER_EDP) {
  809. port = PORT_A;
  810. } else {
  811. temp = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
  812. temp &= TRANS_DDI_PORT_MASK;
  813. for (i = PORT_B; i <= PORT_E; i++)
  814. if (temp == TRANS_DDI_SELECT_PORT(i))
  815. port = i;
  816. }
  817. if (port == I915_MAX_PORTS) {
  818. WARN(1, "Pipe %c enabled on an unknown port\n",
  819. pipe_name(pipe));
  820. ret = PORT_CLK_SEL_NONE;
  821. } else {
  822. ret = I915_READ(PORT_CLK_SEL(port));
  823. DRM_DEBUG_KMS("Pipe %c connected to port %c using clock "
  824. "0x%08x\n", pipe_name(pipe), port_name(port),
  825. ret);
  826. }
  827. return ret;
  828. }
  829. void intel_ddi_setup_hw_pll_state(struct drm_device *dev)
  830. {
  831. struct drm_i915_private *dev_priv = dev->dev_private;
  832. enum pipe pipe;
  833. struct intel_crtc *intel_crtc;
  834. for_each_pipe(pipe) {
  835. intel_crtc =
  836. to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
  837. if (!intel_crtc->active)
  838. continue;
  839. intel_crtc->ddi_pll_sel = intel_ddi_get_crtc_pll(dev_priv,
  840. pipe);
  841. switch (intel_crtc->ddi_pll_sel) {
  842. case PORT_CLK_SEL_SPLL:
  843. dev_priv->ddi_plls.spll_refcount++;
  844. break;
  845. case PORT_CLK_SEL_WRPLL1:
  846. dev_priv->ddi_plls.wrpll1_refcount++;
  847. break;
  848. case PORT_CLK_SEL_WRPLL2:
  849. dev_priv->ddi_plls.wrpll2_refcount++;
  850. break;
  851. }
  852. }
  853. }
  854. void intel_ddi_enable_pipe_clock(struct intel_crtc *intel_crtc)
  855. {
  856. struct drm_crtc *crtc = &intel_crtc->base;
  857. struct drm_i915_private *dev_priv = crtc->dev->dev_private;
  858. struct intel_encoder *intel_encoder = intel_ddi_get_crtc_encoder(crtc);
  859. enum port port = intel_ddi_get_encoder_port(intel_encoder);
  860. enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
  861. if (cpu_transcoder != TRANSCODER_EDP)
  862. I915_WRITE(TRANS_CLK_SEL(cpu_transcoder),
  863. TRANS_CLK_SEL_PORT(port));
  864. }
  865. void intel_ddi_disable_pipe_clock(struct intel_crtc *intel_crtc)
  866. {
  867. struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
  868. enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
  869. if (cpu_transcoder != TRANSCODER_EDP)
  870. I915_WRITE(TRANS_CLK_SEL(cpu_transcoder),
  871. TRANS_CLK_SEL_DISABLED);
  872. }
  873. static void intel_ddi_pre_enable(struct intel_encoder *intel_encoder)
  874. {
  875. struct drm_encoder *encoder = &intel_encoder->base;
  876. struct drm_crtc *crtc = encoder->crtc;
  877. struct drm_i915_private *dev_priv = encoder->dev->dev_private;
  878. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  879. enum port port = intel_ddi_get_encoder_port(intel_encoder);
  880. int type = intel_encoder->type;
  881. if (type == INTEL_OUTPUT_EDP) {
  882. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  883. ironlake_edp_panel_vdd_on(intel_dp);
  884. ironlake_edp_panel_on(intel_dp);
  885. ironlake_edp_panel_vdd_off(intel_dp, true);
  886. }
  887. WARN_ON(intel_crtc->ddi_pll_sel == PORT_CLK_SEL_NONE);
  888. I915_WRITE(PORT_CLK_SEL(port), intel_crtc->ddi_pll_sel);
  889. if (type == INTEL_OUTPUT_DISPLAYPORT || type == INTEL_OUTPUT_EDP) {
  890. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  891. intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
  892. intel_dp_start_link_train(intel_dp);
  893. intel_dp_complete_link_train(intel_dp);
  894. if (port != PORT_A)
  895. intel_dp_stop_link_train(intel_dp);
  896. }
  897. }
  898. static void intel_ddi_post_disable(struct intel_encoder *intel_encoder)
  899. {
  900. struct drm_encoder *encoder = &intel_encoder->base;
  901. struct drm_i915_private *dev_priv = encoder->dev->dev_private;
  902. enum port port = intel_ddi_get_encoder_port(intel_encoder);
  903. int type = intel_encoder->type;
  904. uint32_t val;
  905. bool wait = false;
  906. val = I915_READ(DDI_BUF_CTL(port));
  907. if (val & DDI_BUF_CTL_ENABLE) {
  908. val &= ~DDI_BUF_CTL_ENABLE;
  909. I915_WRITE(DDI_BUF_CTL(port), val);
  910. wait = true;
  911. }
  912. val = I915_READ(DP_TP_CTL(port));
  913. val &= ~(DP_TP_CTL_ENABLE | DP_TP_CTL_LINK_TRAIN_MASK);
  914. val |= DP_TP_CTL_LINK_TRAIN_PAT1;
  915. I915_WRITE(DP_TP_CTL(port), val);
  916. if (wait)
  917. intel_wait_ddi_buf_idle(dev_priv, port);
  918. if (type == INTEL_OUTPUT_EDP) {
  919. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  920. ironlake_edp_panel_vdd_on(intel_dp);
  921. ironlake_edp_panel_off(intel_dp);
  922. }
  923. I915_WRITE(PORT_CLK_SEL(port), PORT_CLK_SEL_NONE);
  924. }
  925. static void intel_enable_ddi(struct intel_encoder *intel_encoder)
  926. {
  927. struct drm_encoder *encoder = &intel_encoder->base;
  928. struct drm_crtc *crtc = encoder->crtc;
  929. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  930. int pipe = intel_crtc->pipe;
  931. struct drm_device *dev = encoder->dev;
  932. struct drm_i915_private *dev_priv = dev->dev_private;
  933. enum port port = intel_ddi_get_encoder_port(intel_encoder);
  934. int type = intel_encoder->type;
  935. uint32_t tmp;
  936. if (type == INTEL_OUTPUT_HDMI) {
  937. struct intel_digital_port *intel_dig_port =
  938. enc_to_dig_port(encoder);
  939. /* In HDMI/DVI mode, the port width, and swing/emphasis values
  940. * are ignored so nothing special needs to be done besides
  941. * enabling the port.
  942. */
  943. I915_WRITE(DDI_BUF_CTL(port),
  944. intel_dig_port->saved_port_bits |
  945. DDI_BUF_CTL_ENABLE);
  946. } else if (type == INTEL_OUTPUT_EDP) {
  947. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  948. if (port == PORT_A)
  949. intel_dp_stop_link_train(intel_dp);
  950. ironlake_edp_backlight_on(intel_dp);
  951. intel_edp_psr_enable(intel_dp);
  952. }
  953. if (intel_crtc->eld_vld && type != INTEL_OUTPUT_EDP) {
  954. tmp = I915_READ(HSW_AUD_PIN_ELD_CP_VLD);
  955. tmp |= ((AUDIO_OUTPUT_ENABLE_A | AUDIO_ELD_VALID_A) << (pipe * 4));
  956. I915_WRITE(HSW_AUD_PIN_ELD_CP_VLD, tmp);
  957. }
  958. }
  959. static void intel_disable_ddi(struct intel_encoder *intel_encoder)
  960. {
  961. struct drm_encoder *encoder = &intel_encoder->base;
  962. struct drm_crtc *crtc = encoder->crtc;
  963. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  964. int pipe = intel_crtc->pipe;
  965. int type = intel_encoder->type;
  966. struct drm_device *dev = encoder->dev;
  967. struct drm_i915_private *dev_priv = dev->dev_private;
  968. uint32_t tmp;
  969. if (intel_crtc->eld_vld && type != INTEL_OUTPUT_EDP) {
  970. tmp = I915_READ(HSW_AUD_PIN_ELD_CP_VLD);
  971. tmp &= ~((AUDIO_OUTPUT_ENABLE_A | AUDIO_ELD_VALID_A) <<
  972. (pipe * 4));
  973. I915_WRITE(HSW_AUD_PIN_ELD_CP_VLD, tmp);
  974. }
  975. if (type == INTEL_OUTPUT_EDP) {
  976. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  977. intel_edp_psr_disable(intel_dp);
  978. ironlake_edp_backlight_off(intel_dp);
  979. }
  980. }
  981. int intel_ddi_get_cdclk_freq(struct drm_i915_private *dev_priv)
  982. {
  983. if (I915_READ(HSW_FUSE_STRAP) & HSW_CDCLK_LIMIT)
  984. return 450000;
  985. else if ((I915_READ(LCPLL_CTL) & LCPLL_CLK_FREQ_MASK) ==
  986. LCPLL_CLK_FREQ_450)
  987. return 450000;
  988. else if (IS_ULT(dev_priv->dev))
  989. return 337500;
  990. else
  991. return 540000;
  992. }
  993. void intel_ddi_pll_init(struct drm_device *dev)
  994. {
  995. struct drm_i915_private *dev_priv = dev->dev_private;
  996. uint32_t val = I915_READ(LCPLL_CTL);
  997. /* The LCPLL register should be turned on by the BIOS. For now let's
  998. * just check its state and print errors in case something is wrong.
  999. * Don't even try to turn it on.
  1000. */
  1001. DRM_DEBUG_KMS("CDCLK running at %dKHz\n",
  1002. intel_ddi_get_cdclk_freq(dev_priv));
  1003. if (val & LCPLL_CD_SOURCE_FCLK)
  1004. DRM_ERROR("CDCLK source is not LCPLL\n");
  1005. if (val & LCPLL_PLL_DISABLE)
  1006. DRM_ERROR("LCPLL is disabled\n");
  1007. }
  1008. void intel_ddi_prepare_link_retrain(struct drm_encoder *encoder)
  1009. {
  1010. struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
  1011. struct intel_dp *intel_dp = &intel_dig_port->dp;
  1012. struct drm_i915_private *dev_priv = encoder->dev->dev_private;
  1013. enum port port = intel_dig_port->port;
  1014. uint32_t val;
  1015. bool wait = false;
  1016. if (I915_READ(DP_TP_CTL(port)) & DP_TP_CTL_ENABLE) {
  1017. val = I915_READ(DDI_BUF_CTL(port));
  1018. if (val & DDI_BUF_CTL_ENABLE) {
  1019. val &= ~DDI_BUF_CTL_ENABLE;
  1020. I915_WRITE(DDI_BUF_CTL(port), val);
  1021. wait = true;
  1022. }
  1023. val = I915_READ(DP_TP_CTL(port));
  1024. val &= ~(DP_TP_CTL_ENABLE | DP_TP_CTL_LINK_TRAIN_MASK);
  1025. val |= DP_TP_CTL_LINK_TRAIN_PAT1;
  1026. I915_WRITE(DP_TP_CTL(port), val);
  1027. POSTING_READ(DP_TP_CTL(port));
  1028. if (wait)
  1029. intel_wait_ddi_buf_idle(dev_priv, port);
  1030. }
  1031. val = DP_TP_CTL_ENABLE | DP_TP_CTL_MODE_SST |
  1032. DP_TP_CTL_LINK_TRAIN_PAT1 | DP_TP_CTL_SCRAMBLE_DISABLE;
  1033. if (intel_dp->link_configuration[1] & DP_LANE_COUNT_ENHANCED_FRAME_EN)
  1034. val |= DP_TP_CTL_ENHANCED_FRAME_ENABLE;
  1035. I915_WRITE(DP_TP_CTL(port), val);
  1036. POSTING_READ(DP_TP_CTL(port));
  1037. intel_dp->DP |= DDI_BUF_CTL_ENABLE;
  1038. I915_WRITE(DDI_BUF_CTL(port), intel_dp->DP);
  1039. POSTING_READ(DDI_BUF_CTL(port));
  1040. udelay(600);
  1041. }
  1042. void intel_ddi_fdi_disable(struct drm_crtc *crtc)
  1043. {
  1044. struct drm_i915_private *dev_priv = crtc->dev->dev_private;
  1045. struct intel_encoder *intel_encoder = intel_ddi_get_crtc_encoder(crtc);
  1046. uint32_t val;
  1047. intel_ddi_post_disable(intel_encoder);
  1048. val = I915_READ(_FDI_RXA_CTL);
  1049. val &= ~FDI_RX_ENABLE;
  1050. I915_WRITE(_FDI_RXA_CTL, val);
  1051. val = I915_READ(_FDI_RXA_MISC);
  1052. val &= ~(FDI_RX_PWRDN_LANE1_MASK | FDI_RX_PWRDN_LANE0_MASK);
  1053. val |= FDI_RX_PWRDN_LANE1_VAL(2) | FDI_RX_PWRDN_LANE0_VAL(2);
  1054. I915_WRITE(_FDI_RXA_MISC, val);
  1055. val = I915_READ(_FDI_RXA_CTL);
  1056. val &= ~FDI_PCDCLK;
  1057. I915_WRITE(_FDI_RXA_CTL, val);
  1058. val = I915_READ(_FDI_RXA_CTL);
  1059. val &= ~FDI_RX_PLL_ENABLE;
  1060. I915_WRITE(_FDI_RXA_CTL, val);
  1061. }
  1062. static void intel_ddi_hot_plug(struct intel_encoder *intel_encoder)
  1063. {
  1064. struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
  1065. int type = intel_encoder->type;
  1066. if (type == INTEL_OUTPUT_DISPLAYPORT || type == INTEL_OUTPUT_EDP)
  1067. intel_dp_check_link_status(intel_dp);
  1068. }
  1069. static void intel_ddi_get_config(struct intel_encoder *encoder,
  1070. struct intel_crtc_config *pipe_config)
  1071. {
  1072. struct drm_i915_private *dev_priv = encoder->base.dev->dev_private;
  1073. struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc);
  1074. enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
  1075. u32 temp, flags = 0;
  1076. temp = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
  1077. if (temp & TRANS_DDI_PHSYNC)
  1078. flags |= DRM_MODE_FLAG_PHSYNC;
  1079. else
  1080. flags |= DRM_MODE_FLAG_NHSYNC;
  1081. if (temp & TRANS_DDI_PVSYNC)
  1082. flags |= DRM_MODE_FLAG_PVSYNC;
  1083. else
  1084. flags |= DRM_MODE_FLAG_NVSYNC;
  1085. pipe_config->adjusted_mode.flags |= flags;
  1086. }
  1087. static void intel_ddi_destroy(struct drm_encoder *encoder)
  1088. {
  1089. /* HDMI has nothing special to destroy, so we can go with this. */
  1090. intel_dp_encoder_destroy(encoder);
  1091. }
  1092. static bool intel_ddi_compute_config(struct intel_encoder *encoder,
  1093. struct intel_crtc_config *pipe_config)
  1094. {
  1095. int type = encoder->type;
  1096. int port = intel_ddi_get_encoder_port(encoder);
  1097. WARN(type == INTEL_OUTPUT_UNKNOWN, "compute_config() on unknown output!\n");
  1098. if (port == PORT_A)
  1099. pipe_config->cpu_transcoder = TRANSCODER_EDP;
  1100. if (type == INTEL_OUTPUT_HDMI)
  1101. return intel_hdmi_compute_config(encoder, pipe_config);
  1102. else
  1103. return intel_dp_compute_config(encoder, pipe_config);
  1104. }
  1105. static const struct drm_encoder_funcs intel_ddi_funcs = {
  1106. .destroy = intel_ddi_destroy,
  1107. };
  1108. void intel_ddi_init(struct drm_device *dev, enum port port)
  1109. {
  1110. struct drm_i915_private *dev_priv = dev->dev_private;
  1111. struct intel_digital_port *intel_dig_port;
  1112. struct intel_encoder *intel_encoder;
  1113. struct drm_encoder *encoder;
  1114. struct intel_connector *hdmi_connector = NULL;
  1115. struct intel_connector *dp_connector = NULL;
  1116. intel_dig_port = kzalloc(sizeof(struct intel_digital_port), GFP_KERNEL);
  1117. if (!intel_dig_port)
  1118. return;
  1119. dp_connector = kzalloc(sizeof(struct intel_connector), GFP_KERNEL);
  1120. if (!dp_connector) {
  1121. kfree(intel_dig_port);
  1122. return;
  1123. }
  1124. intel_encoder = &intel_dig_port->base;
  1125. encoder = &intel_encoder->base;
  1126. drm_encoder_init(dev, encoder, &intel_ddi_funcs,
  1127. DRM_MODE_ENCODER_TMDS);
  1128. intel_encoder->compute_config = intel_ddi_compute_config;
  1129. intel_encoder->mode_set = intel_ddi_mode_set;
  1130. intel_encoder->enable = intel_enable_ddi;
  1131. intel_encoder->pre_enable = intel_ddi_pre_enable;
  1132. intel_encoder->disable = intel_disable_ddi;
  1133. intel_encoder->post_disable = intel_ddi_post_disable;
  1134. intel_encoder->get_hw_state = intel_ddi_get_hw_state;
  1135. intel_encoder->get_config = intel_ddi_get_config;
  1136. intel_dig_port->port = port;
  1137. intel_dig_port->saved_port_bits = I915_READ(DDI_BUF_CTL(port)) &
  1138. (DDI_BUF_PORT_REVERSAL |
  1139. DDI_A_4_LANES);
  1140. intel_dig_port->dp.output_reg = DDI_BUF_CTL(port);
  1141. intel_encoder->type = INTEL_OUTPUT_UNKNOWN;
  1142. intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
  1143. intel_encoder->cloneable = false;
  1144. intel_encoder->hot_plug = intel_ddi_hot_plug;
  1145. if (!intel_dp_init_connector(intel_dig_port, dp_connector)) {
  1146. drm_encoder_cleanup(encoder);
  1147. kfree(intel_dig_port);
  1148. kfree(dp_connector);
  1149. return;
  1150. }
  1151. if (intel_encoder->type != INTEL_OUTPUT_EDP) {
  1152. hdmi_connector = kzalloc(sizeof(struct intel_connector),
  1153. GFP_KERNEL);
  1154. if (!hdmi_connector) {
  1155. return;
  1156. }
  1157. intel_dig_port->hdmi.hdmi_reg = DDI_BUF_CTL(port);
  1158. intel_hdmi_init_connector(intel_dig_port, hdmi_connector);
  1159. }
  1160. }