intel_pm.c 170 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138
  1. /*
  2. * Copyright © 2012 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eugeni Dodonov <eugeni.dodonov@intel.com>
  25. *
  26. */
  27. #include <linux/cpufreq.h>
  28. #include "i915_drv.h"
  29. #include "intel_drv.h"
  30. #include "../../../platform/x86/intel_ips.h"
  31. #include <linux/module.h>
  32. #include <drm/i915_powerwell.h>
  33. /**
  34. * RC6 is a special power stage which allows the GPU to enter an very
  35. * low-voltage mode when idle, using down to 0V while at this stage. This
  36. * stage is entered automatically when the GPU is idle when RC6 support is
  37. * enabled, and as soon as new workload arises GPU wakes up automatically as well.
  38. *
  39. * There are different RC6 modes available in Intel GPU, which differentiate
  40. * among each other with the latency required to enter and leave RC6 and
  41. * voltage consumed by the GPU in different states.
  42. *
  43. * The combination of the following flags define which states GPU is allowed
  44. * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
  45. * RC6pp is deepest RC6. Their support by hardware varies according to the
  46. * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
  47. * which brings the most power savings; deeper states save more power, but
  48. * require higher latency to switch to and wake up.
  49. */
  50. #define INTEL_RC6_ENABLE (1<<0)
  51. #define INTEL_RC6p_ENABLE (1<<1)
  52. #define INTEL_RC6pp_ENABLE (1<<2)
  53. /* FBC, or Frame Buffer Compression, is a technique employed to compress the
  54. * framebuffer contents in-memory, aiming at reducing the required bandwidth
  55. * during in-memory transfers and, therefore, reduce the power packet.
  56. *
  57. * The benefits of FBC are mostly visible with solid backgrounds and
  58. * variation-less patterns.
  59. *
  60. * FBC-related functionality can be enabled by the means of the
  61. * i915.i915_enable_fbc parameter
  62. */
  63. static void i8xx_disable_fbc(struct drm_device *dev)
  64. {
  65. struct drm_i915_private *dev_priv = dev->dev_private;
  66. u32 fbc_ctl;
  67. /* Disable compression */
  68. fbc_ctl = I915_READ(FBC_CONTROL);
  69. if ((fbc_ctl & FBC_CTL_EN) == 0)
  70. return;
  71. fbc_ctl &= ~FBC_CTL_EN;
  72. I915_WRITE(FBC_CONTROL, fbc_ctl);
  73. /* Wait for compressing bit to clear */
  74. if (wait_for((I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) == 0, 10)) {
  75. DRM_DEBUG_KMS("FBC idle timed out\n");
  76. return;
  77. }
  78. DRM_DEBUG_KMS("disabled FBC\n");
  79. }
  80. static void i8xx_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
  81. {
  82. struct drm_device *dev = crtc->dev;
  83. struct drm_i915_private *dev_priv = dev->dev_private;
  84. struct drm_framebuffer *fb = crtc->fb;
  85. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  86. struct drm_i915_gem_object *obj = intel_fb->obj;
  87. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  88. int cfb_pitch;
  89. int plane, i;
  90. u32 fbc_ctl, fbc_ctl2;
  91. cfb_pitch = dev_priv->fbc.size / FBC_LL_SIZE;
  92. if (fb->pitches[0] < cfb_pitch)
  93. cfb_pitch = fb->pitches[0];
  94. /* FBC_CTL wants 64B units */
  95. cfb_pitch = (cfb_pitch / 64) - 1;
  96. plane = intel_crtc->plane == 0 ? FBC_CTL_PLANEA : FBC_CTL_PLANEB;
  97. /* Clear old tags */
  98. for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
  99. I915_WRITE(FBC_TAG + (i * 4), 0);
  100. /* Set it up... */
  101. fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | FBC_CTL_CPU_FENCE;
  102. fbc_ctl2 |= plane;
  103. I915_WRITE(FBC_CONTROL2, fbc_ctl2);
  104. I915_WRITE(FBC_FENCE_OFF, crtc->y);
  105. /* enable it... */
  106. fbc_ctl = FBC_CTL_EN | FBC_CTL_PERIODIC;
  107. if (IS_I945GM(dev))
  108. fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
  109. fbc_ctl |= (cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
  110. fbc_ctl |= (interval & 0x2fff) << FBC_CTL_INTERVAL_SHIFT;
  111. fbc_ctl |= obj->fence_reg;
  112. I915_WRITE(FBC_CONTROL, fbc_ctl);
  113. DRM_DEBUG_KMS("enabled FBC, pitch %d, yoff %d, plane %c, ",
  114. cfb_pitch, crtc->y, plane_name(intel_crtc->plane));
  115. }
  116. static bool i8xx_fbc_enabled(struct drm_device *dev)
  117. {
  118. struct drm_i915_private *dev_priv = dev->dev_private;
  119. return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
  120. }
  121. static void g4x_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
  122. {
  123. struct drm_device *dev = crtc->dev;
  124. struct drm_i915_private *dev_priv = dev->dev_private;
  125. struct drm_framebuffer *fb = crtc->fb;
  126. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  127. struct drm_i915_gem_object *obj = intel_fb->obj;
  128. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  129. int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
  130. unsigned long stall_watermark = 200;
  131. u32 dpfc_ctl;
  132. dpfc_ctl = plane | DPFC_SR_EN | DPFC_CTL_LIMIT_1X;
  133. dpfc_ctl |= DPFC_CTL_FENCE_EN | obj->fence_reg;
  134. I915_WRITE(DPFC_CHICKEN, DPFC_HT_MODIFY);
  135. I915_WRITE(DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
  136. (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
  137. (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
  138. I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
  139. /* enable it... */
  140. I915_WRITE(DPFC_CONTROL, I915_READ(DPFC_CONTROL) | DPFC_CTL_EN);
  141. DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
  142. }
  143. static void g4x_disable_fbc(struct drm_device *dev)
  144. {
  145. struct drm_i915_private *dev_priv = dev->dev_private;
  146. u32 dpfc_ctl;
  147. /* Disable compression */
  148. dpfc_ctl = I915_READ(DPFC_CONTROL);
  149. if (dpfc_ctl & DPFC_CTL_EN) {
  150. dpfc_ctl &= ~DPFC_CTL_EN;
  151. I915_WRITE(DPFC_CONTROL, dpfc_ctl);
  152. DRM_DEBUG_KMS("disabled FBC\n");
  153. }
  154. }
  155. static bool g4x_fbc_enabled(struct drm_device *dev)
  156. {
  157. struct drm_i915_private *dev_priv = dev->dev_private;
  158. return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
  159. }
  160. static void sandybridge_blit_fbc_update(struct drm_device *dev)
  161. {
  162. struct drm_i915_private *dev_priv = dev->dev_private;
  163. u32 blt_ecoskpd;
  164. /* Make sure blitter notifies FBC of writes */
  165. gen6_gt_force_wake_get(dev_priv);
  166. blt_ecoskpd = I915_READ(GEN6_BLITTER_ECOSKPD);
  167. blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY <<
  168. GEN6_BLITTER_LOCK_SHIFT;
  169. I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
  170. blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY;
  171. I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
  172. blt_ecoskpd &= ~(GEN6_BLITTER_FBC_NOTIFY <<
  173. GEN6_BLITTER_LOCK_SHIFT);
  174. I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
  175. POSTING_READ(GEN6_BLITTER_ECOSKPD);
  176. gen6_gt_force_wake_put(dev_priv);
  177. }
  178. static void ironlake_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
  179. {
  180. struct drm_device *dev = crtc->dev;
  181. struct drm_i915_private *dev_priv = dev->dev_private;
  182. struct drm_framebuffer *fb = crtc->fb;
  183. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  184. struct drm_i915_gem_object *obj = intel_fb->obj;
  185. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  186. int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
  187. unsigned long stall_watermark = 200;
  188. u32 dpfc_ctl;
  189. dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
  190. dpfc_ctl &= DPFC_RESERVED;
  191. dpfc_ctl |= (plane | DPFC_CTL_LIMIT_1X);
  192. /* Set persistent mode for front-buffer rendering, ala X. */
  193. dpfc_ctl |= DPFC_CTL_PERSISTENT_MODE;
  194. dpfc_ctl |= (DPFC_CTL_FENCE_EN | obj->fence_reg);
  195. I915_WRITE(ILK_DPFC_CHICKEN, DPFC_HT_MODIFY);
  196. I915_WRITE(ILK_DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
  197. (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
  198. (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
  199. I915_WRITE(ILK_DPFC_FENCE_YOFF, crtc->y);
  200. I915_WRITE(ILK_FBC_RT_BASE, i915_gem_obj_ggtt_offset(obj) | ILK_FBC_RT_VALID);
  201. /* enable it... */
  202. I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
  203. if (IS_GEN6(dev)) {
  204. I915_WRITE(SNB_DPFC_CTL_SA,
  205. SNB_CPU_FENCE_ENABLE | obj->fence_reg);
  206. I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
  207. sandybridge_blit_fbc_update(dev);
  208. }
  209. DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
  210. }
  211. static void ironlake_disable_fbc(struct drm_device *dev)
  212. {
  213. struct drm_i915_private *dev_priv = dev->dev_private;
  214. u32 dpfc_ctl;
  215. /* Disable compression */
  216. dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
  217. if (dpfc_ctl & DPFC_CTL_EN) {
  218. dpfc_ctl &= ~DPFC_CTL_EN;
  219. I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);
  220. DRM_DEBUG_KMS("disabled FBC\n");
  221. }
  222. }
  223. static bool ironlake_fbc_enabled(struct drm_device *dev)
  224. {
  225. struct drm_i915_private *dev_priv = dev->dev_private;
  226. return I915_READ(ILK_DPFC_CONTROL) & DPFC_CTL_EN;
  227. }
  228. static void gen7_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
  229. {
  230. struct drm_device *dev = crtc->dev;
  231. struct drm_i915_private *dev_priv = dev->dev_private;
  232. struct drm_framebuffer *fb = crtc->fb;
  233. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  234. struct drm_i915_gem_object *obj = intel_fb->obj;
  235. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  236. I915_WRITE(IVB_FBC_RT_BASE, i915_gem_obj_ggtt_offset(obj));
  237. I915_WRITE(ILK_DPFC_CONTROL, DPFC_CTL_EN | DPFC_CTL_LIMIT_1X |
  238. IVB_DPFC_CTL_FENCE_EN |
  239. intel_crtc->plane << IVB_DPFC_CTL_PLANE_SHIFT);
  240. if (IS_IVYBRIDGE(dev)) {
  241. /* WaFbcAsynchFlipDisableFbcQueue:ivb */
  242. I915_WRITE(ILK_DISPLAY_CHICKEN1, ILK_FBCQ_DIS);
  243. } else {
  244. /* WaFbcAsynchFlipDisableFbcQueue:hsw */
  245. I915_WRITE(HSW_PIPE_SLICE_CHICKEN_1(intel_crtc->pipe),
  246. HSW_BYPASS_FBC_QUEUE);
  247. }
  248. I915_WRITE(SNB_DPFC_CTL_SA,
  249. SNB_CPU_FENCE_ENABLE | obj->fence_reg);
  250. I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
  251. sandybridge_blit_fbc_update(dev);
  252. DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
  253. }
  254. bool intel_fbc_enabled(struct drm_device *dev)
  255. {
  256. struct drm_i915_private *dev_priv = dev->dev_private;
  257. if (!dev_priv->display.fbc_enabled)
  258. return false;
  259. return dev_priv->display.fbc_enabled(dev);
  260. }
  261. static void intel_fbc_work_fn(struct work_struct *__work)
  262. {
  263. struct intel_fbc_work *work =
  264. container_of(to_delayed_work(__work),
  265. struct intel_fbc_work, work);
  266. struct drm_device *dev = work->crtc->dev;
  267. struct drm_i915_private *dev_priv = dev->dev_private;
  268. mutex_lock(&dev->struct_mutex);
  269. if (work == dev_priv->fbc.fbc_work) {
  270. /* Double check that we haven't switched fb without cancelling
  271. * the prior work.
  272. */
  273. if (work->crtc->fb == work->fb) {
  274. dev_priv->display.enable_fbc(work->crtc,
  275. work->interval);
  276. dev_priv->fbc.plane = to_intel_crtc(work->crtc)->plane;
  277. dev_priv->fbc.fb_id = work->crtc->fb->base.id;
  278. dev_priv->fbc.y = work->crtc->y;
  279. }
  280. dev_priv->fbc.fbc_work = NULL;
  281. }
  282. mutex_unlock(&dev->struct_mutex);
  283. kfree(work);
  284. }
  285. static void intel_cancel_fbc_work(struct drm_i915_private *dev_priv)
  286. {
  287. if (dev_priv->fbc.fbc_work == NULL)
  288. return;
  289. DRM_DEBUG_KMS("cancelling pending FBC enable\n");
  290. /* Synchronisation is provided by struct_mutex and checking of
  291. * dev_priv->fbc.fbc_work, so we can perform the cancellation
  292. * entirely asynchronously.
  293. */
  294. if (cancel_delayed_work(&dev_priv->fbc.fbc_work->work))
  295. /* tasklet was killed before being run, clean up */
  296. kfree(dev_priv->fbc.fbc_work);
  297. /* Mark the work as no longer wanted so that if it does
  298. * wake-up (because the work was already running and waiting
  299. * for our mutex), it will discover that is no longer
  300. * necessary to run.
  301. */
  302. dev_priv->fbc.fbc_work = NULL;
  303. }
  304. static void intel_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
  305. {
  306. struct intel_fbc_work *work;
  307. struct drm_device *dev = crtc->dev;
  308. struct drm_i915_private *dev_priv = dev->dev_private;
  309. if (!dev_priv->display.enable_fbc)
  310. return;
  311. intel_cancel_fbc_work(dev_priv);
  312. work = kzalloc(sizeof(*work), GFP_KERNEL);
  313. if (work == NULL) {
  314. DRM_ERROR("Failed to allocate FBC work structure\n");
  315. dev_priv->display.enable_fbc(crtc, interval);
  316. return;
  317. }
  318. work->crtc = crtc;
  319. work->fb = crtc->fb;
  320. work->interval = interval;
  321. INIT_DELAYED_WORK(&work->work, intel_fbc_work_fn);
  322. dev_priv->fbc.fbc_work = work;
  323. /* Delay the actual enabling to let pageflipping cease and the
  324. * display to settle before starting the compression. Note that
  325. * this delay also serves a second purpose: it allows for a
  326. * vblank to pass after disabling the FBC before we attempt
  327. * to modify the control registers.
  328. *
  329. * A more complicated solution would involve tracking vblanks
  330. * following the termination of the page-flipping sequence
  331. * and indeed performing the enable as a co-routine and not
  332. * waiting synchronously upon the vblank.
  333. *
  334. * WaFbcWaitForVBlankBeforeEnable:ilk,snb
  335. */
  336. schedule_delayed_work(&work->work, msecs_to_jiffies(50));
  337. }
  338. void intel_disable_fbc(struct drm_device *dev)
  339. {
  340. struct drm_i915_private *dev_priv = dev->dev_private;
  341. intel_cancel_fbc_work(dev_priv);
  342. if (!dev_priv->display.disable_fbc)
  343. return;
  344. dev_priv->display.disable_fbc(dev);
  345. dev_priv->fbc.plane = -1;
  346. }
  347. static bool set_no_fbc_reason(struct drm_i915_private *dev_priv,
  348. enum no_fbc_reason reason)
  349. {
  350. if (dev_priv->fbc.no_fbc_reason == reason)
  351. return false;
  352. dev_priv->fbc.no_fbc_reason = reason;
  353. return true;
  354. }
  355. /**
  356. * intel_update_fbc - enable/disable FBC as needed
  357. * @dev: the drm_device
  358. *
  359. * Set up the framebuffer compression hardware at mode set time. We
  360. * enable it if possible:
  361. * - plane A only (on pre-965)
  362. * - no pixel mulitply/line duplication
  363. * - no alpha buffer discard
  364. * - no dual wide
  365. * - framebuffer <= max_hdisplay in width, max_vdisplay in height
  366. *
  367. * We can't assume that any compression will take place (worst case),
  368. * so the compressed buffer has to be the same size as the uncompressed
  369. * one. It also must reside (along with the line length buffer) in
  370. * stolen memory.
  371. *
  372. * We need to enable/disable FBC on a global basis.
  373. */
  374. void intel_update_fbc(struct drm_device *dev)
  375. {
  376. struct drm_i915_private *dev_priv = dev->dev_private;
  377. struct drm_crtc *crtc = NULL, *tmp_crtc;
  378. struct intel_crtc *intel_crtc;
  379. struct drm_framebuffer *fb;
  380. struct intel_framebuffer *intel_fb;
  381. struct drm_i915_gem_object *obj;
  382. const struct drm_display_mode *adjusted_mode;
  383. unsigned int max_width, max_height;
  384. if (!I915_HAS_FBC(dev)) {
  385. set_no_fbc_reason(dev_priv, FBC_UNSUPPORTED);
  386. return;
  387. }
  388. if (!i915_powersave) {
  389. if (set_no_fbc_reason(dev_priv, FBC_MODULE_PARAM))
  390. DRM_DEBUG_KMS("fbc disabled per module param\n");
  391. return;
  392. }
  393. /*
  394. * If FBC is already on, we just have to verify that we can
  395. * keep it that way...
  396. * Need to disable if:
  397. * - more than one pipe is active
  398. * - changing FBC params (stride, fence, mode)
  399. * - new fb is too large to fit in compressed buffer
  400. * - going to an unsupported config (interlace, pixel multiply, etc.)
  401. */
  402. list_for_each_entry(tmp_crtc, &dev->mode_config.crtc_list, head) {
  403. if (intel_crtc_active(tmp_crtc) &&
  404. to_intel_crtc(tmp_crtc)->primary_enabled) {
  405. if (crtc) {
  406. if (set_no_fbc_reason(dev_priv, FBC_MULTIPLE_PIPES))
  407. DRM_DEBUG_KMS("more than one pipe active, disabling compression\n");
  408. goto out_disable;
  409. }
  410. crtc = tmp_crtc;
  411. }
  412. }
  413. if (!crtc || crtc->fb == NULL) {
  414. if (set_no_fbc_reason(dev_priv, FBC_NO_OUTPUT))
  415. DRM_DEBUG_KMS("no output, disabling\n");
  416. goto out_disable;
  417. }
  418. intel_crtc = to_intel_crtc(crtc);
  419. fb = crtc->fb;
  420. intel_fb = to_intel_framebuffer(fb);
  421. obj = intel_fb->obj;
  422. adjusted_mode = &intel_crtc->config.adjusted_mode;
  423. if (i915_enable_fbc < 0 &&
  424. INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev)) {
  425. if (set_no_fbc_reason(dev_priv, FBC_CHIP_DEFAULT))
  426. DRM_DEBUG_KMS("disabled per chip default\n");
  427. goto out_disable;
  428. }
  429. if (!i915_enable_fbc) {
  430. if (set_no_fbc_reason(dev_priv, FBC_MODULE_PARAM))
  431. DRM_DEBUG_KMS("fbc disabled per module param\n");
  432. goto out_disable;
  433. }
  434. if ((adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) ||
  435. (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN)) {
  436. if (set_no_fbc_reason(dev_priv, FBC_UNSUPPORTED_MODE))
  437. DRM_DEBUG_KMS("mode incompatible with compression, "
  438. "disabling\n");
  439. goto out_disable;
  440. }
  441. if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
  442. max_width = 4096;
  443. max_height = 2048;
  444. } else {
  445. max_width = 2048;
  446. max_height = 1536;
  447. }
  448. if (intel_crtc->config.pipe_src_w > max_width ||
  449. intel_crtc->config.pipe_src_h > max_height) {
  450. if (set_no_fbc_reason(dev_priv, FBC_MODE_TOO_LARGE))
  451. DRM_DEBUG_KMS("mode too large for compression, disabling\n");
  452. goto out_disable;
  453. }
  454. if ((IS_I915GM(dev) || IS_I945GM(dev) || IS_HASWELL(dev)) &&
  455. intel_crtc->plane != 0) {
  456. if (set_no_fbc_reason(dev_priv, FBC_BAD_PLANE))
  457. DRM_DEBUG_KMS("plane not 0, disabling compression\n");
  458. goto out_disable;
  459. }
  460. /* The use of a CPU fence is mandatory in order to detect writes
  461. * by the CPU to the scanout and trigger updates to the FBC.
  462. */
  463. if (obj->tiling_mode != I915_TILING_X ||
  464. obj->fence_reg == I915_FENCE_REG_NONE) {
  465. if (set_no_fbc_reason(dev_priv, FBC_NOT_TILED))
  466. DRM_DEBUG_KMS("framebuffer not tiled or fenced, disabling compression\n");
  467. goto out_disable;
  468. }
  469. /* If the kernel debugger is active, always disable compression */
  470. if (in_dbg_master())
  471. goto out_disable;
  472. if (i915_gem_stolen_setup_compression(dev, intel_fb->obj->base.size)) {
  473. if (set_no_fbc_reason(dev_priv, FBC_STOLEN_TOO_SMALL))
  474. DRM_DEBUG_KMS("framebuffer too large, disabling compression\n");
  475. goto out_disable;
  476. }
  477. /* If the scanout has not changed, don't modify the FBC settings.
  478. * Note that we make the fundamental assumption that the fb->obj
  479. * cannot be unpinned (and have its GTT offset and fence revoked)
  480. * without first being decoupled from the scanout and FBC disabled.
  481. */
  482. if (dev_priv->fbc.plane == intel_crtc->plane &&
  483. dev_priv->fbc.fb_id == fb->base.id &&
  484. dev_priv->fbc.y == crtc->y)
  485. return;
  486. if (intel_fbc_enabled(dev)) {
  487. /* We update FBC along two paths, after changing fb/crtc
  488. * configuration (modeswitching) and after page-flipping
  489. * finishes. For the latter, we know that not only did
  490. * we disable the FBC at the start of the page-flip
  491. * sequence, but also more than one vblank has passed.
  492. *
  493. * For the former case of modeswitching, it is possible
  494. * to switch between two FBC valid configurations
  495. * instantaneously so we do need to disable the FBC
  496. * before we can modify its control registers. We also
  497. * have to wait for the next vblank for that to take
  498. * effect. However, since we delay enabling FBC we can
  499. * assume that a vblank has passed since disabling and
  500. * that we can safely alter the registers in the deferred
  501. * callback.
  502. *
  503. * In the scenario that we go from a valid to invalid
  504. * and then back to valid FBC configuration we have
  505. * no strict enforcement that a vblank occurred since
  506. * disabling the FBC. However, along all current pipe
  507. * disabling paths we do need to wait for a vblank at
  508. * some point. And we wait before enabling FBC anyway.
  509. */
  510. DRM_DEBUG_KMS("disabling active FBC for update\n");
  511. intel_disable_fbc(dev);
  512. }
  513. intel_enable_fbc(crtc, 500);
  514. dev_priv->fbc.no_fbc_reason = FBC_OK;
  515. return;
  516. out_disable:
  517. /* Multiple disables should be harmless */
  518. if (intel_fbc_enabled(dev)) {
  519. DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
  520. intel_disable_fbc(dev);
  521. }
  522. i915_gem_stolen_cleanup_compression(dev);
  523. }
  524. static void i915_pineview_get_mem_freq(struct drm_device *dev)
  525. {
  526. drm_i915_private_t *dev_priv = dev->dev_private;
  527. u32 tmp;
  528. tmp = I915_READ(CLKCFG);
  529. switch (tmp & CLKCFG_FSB_MASK) {
  530. case CLKCFG_FSB_533:
  531. dev_priv->fsb_freq = 533; /* 133*4 */
  532. break;
  533. case CLKCFG_FSB_800:
  534. dev_priv->fsb_freq = 800; /* 200*4 */
  535. break;
  536. case CLKCFG_FSB_667:
  537. dev_priv->fsb_freq = 667; /* 167*4 */
  538. break;
  539. case CLKCFG_FSB_400:
  540. dev_priv->fsb_freq = 400; /* 100*4 */
  541. break;
  542. }
  543. switch (tmp & CLKCFG_MEM_MASK) {
  544. case CLKCFG_MEM_533:
  545. dev_priv->mem_freq = 533;
  546. break;
  547. case CLKCFG_MEM_667:
  548. dev_priv->mem_freq = 667;
  549. break;
  550. case CLKCFG_MEM_800:
  551. dev_priv->mem_freq = 800;
  552. break;
  553. }
  554. /* detect pineview DDR3 setting */
  555. tmp = I915_READ(CSHRDDR3CTL);
  556. dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
  557. }
  558. static void i915_ironlake_get_mem_freq(struct drm_device *dev)
  559. {
  560. drm_i915_private_t *dev_priv = dev->dev_private;
  561. u16 ddrpll, csipll;
  562. ddrpll = I915_READ16(DDRMPLL1);
  563. csipll = I915_READ16(CSIPLL0);
  564. switch (ddrpll & 0xff) {
  565. case 0xc:
  566. dev_priv->mem_freq = 800;
  567. break;
  568. case 0x10:
  569. dev_priv->mem_freq = 1066;
  570. break;
  571. case 0x14:
  572. dev_priv->mem_freq = 1333;
  573. break;
  574. case 0x18:
  575. dev_priv->mem_freq = 1600;
  576. break;
  577. default:
  578. DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
  579. ddrpll & 0xff);
  580. dev_priv->mem_freq = 0;
  581. break;
  582. }
  583. dev_priv->ips.r_t = dev_priv->mem_freq;
  584. switch (csipll & 0x3ff) {
  585. case 0x00c:
  586. dev_priv->fsb_freq = 3200;
  587. break;
  588. case 0x00e:
  589. dev_priv->fsb_freq = 3733;
  590. break;
  591. case 0x010:
  592. dev_priv->fsb_freq = 4266;
  593. break;
  594. case 0x012:
  595. dev_priv->fsb_freq = 4800;
  596. break;
  597. case 0x014:
  598. dev_priv->fsb_freq = 5333;
  599. break;
  600. case 0x016:
  601. dev_priv->fsb_freq = 5866;
  602. break;
  603. case 0x018:
  604. dev_priv->fsb_freq = 6400;
  605. break;
  606. default:
  607. DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
  608. csipll & 0x3ff);
  609. dev_priv->fsb_freq = 0;
  610. break;
  611. }
  612. if (dev_priv->fsb_freq == 3200) {
  613. dev_priv->ips.c_m = 0;
  614. } else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
  615. dev_priv->ips.c_m = 1;
  616. } else {
  617. dev_priv->ips.c_m = 2;
  618. }
  619. }
  620. static const struct cxsr_latency cxsr_latency_table[] = {
  621. {1, 0, 800, 400, 3382, 33382, 3983, 33983}, /* DDR2-400 SC */
  622. {1, 0, 800, 667, 3354, 33354, 3807, 33807}, /* DDR2-667 SC */
  623. {1, 0, 800, 800, 3347, 33347, 3763, 33763}, /* DDR2-800 SC */
  624. {1, 1, 800, 667, 6420, 36420, 6873, 36873}, /* DDR3-667 SC */
  625. {1, 1, 800, 800, 5902, 35902, 6318, 36318}, /* DDR3-800 SC */
  626. {1, 0, 667, 400, 3400, 33400, 4021, 34021}, /* DDR2-400 SC */
  627. {1, 0, 667, 667, 3372, 33372, 3845, 33845}, /* DDR2-667 SC */
  628. {1, 0, 667, 800, 3386, 33386, 3822, 33822}, /* DDR2-800 SC */
  629. {1, 1, 667, 667, 6438, 36438, 6911, 36911}, /* DDR3-667 SC */
  630. {1, 1, 667, 800, 5941, 35941, 6377, 36377}, /* DDR3-800 SC */
  631. {1, 0, 400, 400, 3472, 33472, 4173, 34173}, /* DDR2-400 SC */
  632. {1, 0, 400, 667, 3443, 33443, 3996, 33996}, /* DDR2-667 SC */
  633. {1, 0, 400, 800, 3430, 33430, 3946, 33946}, /* DDR2-800 SC */
  634. {1, 1, 400, 667, 6509, 36509, 7062, 37062}, /* DDR3-667 SC */
  635. {1, 1, 400, 800, 5985, 35985, 6501, 36501}, /* DDR3-800 SC */
  636. {0, 0, 800, 400, 3438, 33438, 4065, 34065}, /* DDR2-400 SC */
  637. {0, 0, 800, 667, 3410, 33410, 3889, 33889}, /* DDR2-667 SC */
  638. {0, 0, 800, 800, 3403, 33403, 3845, 33845}, /* DDR2-800 SC */
  639. {0, 1, 800, 667, 6476, 36476, 6955, 36955}, /* DDR3-667 SC */
  640. {0, 1, 800, 800, 5958, 35958, 6400, 36400}, /* DDR3-800 SC */
  641. {0, 0, 667, 400, 3456, 33456, 4103, 34106}, /* DDR2-400 SC */
  642. {0, 0, 667, 667, 3428, 33428, 3927, 33927}, /* DDR2-667 SC */
  643. {0, 0, 667, 800, 3443, 33443, 3905, 33905}, /* DDR2-800 SC */
  644. {0, 1, 667, 667, 6494, 36494, 6993, 36993}, /* DDR3-667 SC */
  645. {0, 1, 667, 800, 5998, 35998, 6460, 36460}, /* DDR3-800 SC */
  646. {0, 0, 400, 400, 3528, 33528, 4255, 34255}, /* DDR2-400 SC */
  647. {0, 0, 400, 667, 3500, 33500, 4079, 34079}, /* DDR2-667 SC */
  648. {0, 0, 400, 800, 3487, 33487, 4029, 34029}, /* DDR2-800 SC */
  649. {0, 1, 400, 667, 6566, 36566, 7145, 37145}, /* DDR3-667 SC */
  650. {0, 1, 400, 800, 6042, 36042, 6584, 36584}, /* DDR3-800 SC */
  651. };
  652. static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
  653. int is_ddr3,
  654. int fsb,
  655. int mem)
  656. {
  657. const struct cxsr_latency *latency;
  658. int i;
  659. if (fsb == 0 || mem == 0)
  660. return NULL;
  661. for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
  662. latency = &cxsr_latency_table[i];
  663. if (is_desktop == latency->is_desktop &&
  664. is_ddr3 == latency->is_ddr3 &&
  665. fsb == latency->fsb_freq && mem == latency->mem_freq)
  666. return latency;
  667. }
  668. DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
  669. return NULL;
  670. }
  671. static void pineview_disable_cxsr(struct drm_device *dev)
  672. {
  673. struct drm_i915_private *dev_priv = dev->dev_private;
  674. /* deactivate cxsr */
  675. I915_WRITE(DSPFW3, I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN);
  676. }
  677. /*
  678. * Latency for FIFO fetches is dependent on several factors:
  679. * - memory configuration (speed, channels)
  680. * - chipset
  681. * - current MCH state
  682. * It can be fairly high in some situations, so here we assume a fairly
  683. * pessimal value. It's a tradeoff between extra memory fetches (if we
  684. * set this value too high, the FIFO will fetch frequently to stay full)
  685. * and power consumption (set it too low to save power and we might see
  686. * FIFO underruns and display "flicker").
  687. *
  688. * A value of 5us seems to be a good balance; safe for very low end
  689. * platforms but not overly aggressive on lower latency configs.
  690. */
  691. static const int latency_ns = 5000;
  692. static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
  693. {
  694. struct drm_i915_private *dev_priv = dev->dev_private;
  695. uint32_t dsparb = I915_READ(DSPARB);
  696. int size;
  697. size = dsparb & 0x7f;
  698. if (plane)
  699. size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
  700. DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
  701. plane ? "B" : "A", size);
  702. return size;
  703. }
  704. static int i85x_get_fifo_size(struct drm_device *dev, int plane)
  705. {
  706. struct drm_i915_private *dev_priv = dev->dev_private;
  707. uint32_t dsparb = I915_READ(DSPARB);
  708. int size;
  709. size = dsparb & 0x1ff;
  710. if (plane)
  711. size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
  712. size >>= 1; /* Convert to cachelines */
  713. DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
  714. plane ? "B" : "A", size);
  715. return size;
  716. }
  717. static int i845_get_fifo_size(struct drm_device *dev, int plane)
  718. {
  719. struct drm_i915_private *dev_priv = dev->dev_private;
  720. uint32_t dsparb = I915_READ(DSPARB);
  721. int size;
  722. size = dsparb & 0x7f;
  723. size >>= 2; /* Convert to cachelines */
  724. DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
  725. plane ? "B" : "A",
  726. size);
  727. return size;
  728. }
  729. static int i830_get_fifo_size(struct drm_device *dev, int plane)
  730. {
  731. struct drm_i915_private *dev_priv = dev->dev_private;
  732. uint32_t dsparb = I915_READ(DSPARB);
  733. int size;
  734. size = dsparb & 0x7f;
  735. size >>= 1; /* Convert to cachelines */
  736. DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
  737. plane ? "B" : "A", size);
  738. return size;
  739. }
  740. /* Pineview has different values for various configs */
  741. static const struct intel_watermark_params pineview_display_wm = {
  742. PINEVIEW_DISPLAY_FIFO,
  743. PINEVIEW_MAX_WM,
  744. PINEVIEW_DFT_WM,
  745. PINEVIEW_GUARD_WM,
  746. PINEVIEW_FIFO_LINE_SIZE
  747. };
  748. static const struct intel_watermark_params pineview_display_hplloff_wm = {
  749. PINEVIEW_DISPLAY_FIFO,
  750. PINEVIEW_MAX_WM,
  751. PINEVIEW_DFT_HPLLOFF_WM,
  752. PINEVIEW_GUARD_WM,
  753. PINEVIEW_FIFO_LINE_SIZE
  754. };
  755. static const struct intel_watermark_params pineview_cursor_wm = {
  756. PINEVIEW_CURSOR_FIFO,
  757. PINEVIEW_CURSOR_MAX_WM,
  758. PINEVIEW_CURSOR_DFT_WM,
  759. PINEVIEW_CURSOR_GUARD_WM,
  760. PINEVIEW_FIFO_LINE_SIZE,
  761. };
  762. static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
  763. PINEVIEW_CURSOR_FIFO,
  764. PINEVIEW_CURSOR_MAX_WM,
  765. PINEVIEW_CURSOR_DFT_WM,
  766. PINEVIEW_CURSOR_GUARD_WM,
  767. PINEVIEW_FIFO_LINE_SIZE
  768. };
  769. static const struct intel_watermark_params g4x_wm_info = {
  770. G4X_FIFO_SIZE,
  771. G4X_MAX_WM,
  772. G4X_MAX_WM,
  773. 2,
  774. G4X_FIFO_LINE_SIZE,
  775. };
  776. static const struct intel_watermark_params g4x_cursor_wm_info = {
  777. I965_CURSOR_FIFO,
  778. I965_CURSOR_MAX_WM,
  779. I965_CURSOR_DFT_WM,
  780. 2,
  781. G4X_FIFO_LINE_SIZE,
  782. };
  783. static const struct intel_watermark_params valleyview_wm_info = {
  784. VALLEYVIEW_FIFO_SIZE,
  785. VALLEYVIEW_MAX_WM,
  786. VALLEYVIEW_MAX_WM,
  787. 2,
  788. G4X_FIFO_LINE_SIZE,
  789. };
  790. static const struct intel_watermark_params valleyview_cursor_wm_info = {
  791. I965_CURSOR_FIFO,
  792. VALLEYVIEW_CURSOR_MAX_WM,
  793. I965_CURSOR_DFT_WM,
  794. 2,
  795. G4X_FIFO_LINE_SIZE,
  796. };
  797. static const struct intel_watermark_params i965_cursor_wm_info = {
  798. I965_CURSOR_FIFO,
  799. I965_CURSOR_MAX_WM,
  800. I965_CURSOR_DFT_WM,
  801. 2,
  802. I915_FIFO_LINE_SIZE,
  803. };
  804. static const struct intel_watermark_params i945_wm_info = {
  805. I945_FIFO_SIZE,
  806. I915_MAX_WM,
  807. 1,
  808. 2,
  809. I915_FIFO_LINE_SIZE
  810. };
  811. static const struct intel_watermark_params i915_wm_info = {
  812. I915_FIFO_SIZE,
  813. I915_MAX_WM,
  814. 1,
  815. 2,
  816. I915_FIFO_LINE_SIZE
  817. };
  818. static const struct intel_watermark_params i855_wm_info = {
  819. I855GM_FIFO_SIZE,
  820. I915_MAX_WM,
  821. 1,
  822. 2,
  823. I830_FIFO_LINE_SIZE
  824. };
  825. static const struct intel_watermark_params i830_wm_info = {
  826. I830_FIFO_SIZE,
  827. I915_MAX_WM,
  828. 1,
  829. 2,
  830. I830_FIFO_LINE_SIZE
  831. };
  832. static const struct intel_watermark_params ironlake_display_wm_info = {
  833. ILK_DISPLAY_FIFO,
  834. ILK_DISPLAY_MAXWM,
  835. ILK_DISPLAY_DFTWM,
  836. 2,
  837. ILK_FIFO_LINE_SIZE
  838. };
  839. static const struct intel_watermark_params ironlake_cursor_wm_info = {
  840. ILK_CURSOR_FIFO,
  841. ILK_CURSOR_MAXWM,
  842. ILK_CURSOR_DFTWM,
  843. 2,
  844. ILK_FIFO_LINE_SIZE
  845. };
  846. static const struct intel_watermark_params ironlake_display_srwm_info = {
  847. ILK_DISPLAY_SR_FIFO,
  848. ILK_DISPLAY_MAX_SRWM,
  849. ILK_DISPLAY_DFT_SRWM,
  850. 2,
  851. ILK_FIFO_LINE_SIZE
  852. };
  853. static const struct intel_watermark_params ironlake_cursor_srwm_info = {
  854. ILK_CURSOR_SR_FIFO,
  855. ILK_CURSOR_MAX_SRWM,
  856. ILK_CURSOR_DFT_SRWM,
  857. 2,
  858. ILK_FIFO_LINE_SIZE
  859. };
  860. static const struct intel_watermark_params sandybridge_display_wm_info = {
  861. SNB_DISPLAY_FIFO,
  862. SNB_DISPLAY_MAXWM,
  863. SNB_DISPLAY_DFTWM,
  864. 2,
  865. SNB_FIFO_LINE_SIZE
  866. };
  867. static const struct intel_watermark_params sandybridge_cursor_wm_info = {
  868. SNB_CURSOR_FIFO,
  869. SNB_CURSOR_MAXWM,
  870. SNB_CURSOR_DFTWM,
  871. 2,
  872. SNB_FIFO_LINE_SIZE
  873. };
  874. static const struct intel_watermark_params sandybridge_display_srwm_info = {
  875. SNB_DISPLAY_SR_FIFO,
  876. SNB_DISPLAY_MAX_SRWM,
  877. SNB_DISPLAY_DFT_SRWM,
  878. 2,
  879. SNB_FIFO_LINE_SIZE
  880. };
  881. static const struct intel_watermark_params sandybridge_cursor_srwm_info = {
  882. SNB_CURSOR_SR_FIFO,
  883. SNB_CURSOR_MAX_SRWM,
  884. SNB_CURSOR_DFT_SRWM,
  885. 2,
  886. SNB_FIFO_LINE_SIZE
  887. };
  888. /**
  889. * intel_calculate_wm - calculate watermark level
  890. * @clock_in_khz: pixel clock
  891. * @wm: chip FIFO params
  892. * @pixel_size: display pixel size
  893. * @latency_ns: memory latency for the platform
  894. *
  895. * Calculate the watermark level (the level at which the display plane will
  896. * start fetching from memory again). Each chip has a different display
  897. * FIFO size and allocation, so the caller needs to figure that out and pass
  898. * in the correct intel_watermark_params structure.
  899. *
  900. * As the pixel clock runs, the FIFO will be drained at a rate that depends
  901. * on the pixel size. When it reaches the watermark level, it'll start
  902. * fetching FIFO line sized based chunks from memory until the FIFO fills
  903. * past the watermark point. If the FIFO drains completely, a FIFO underrun
  904. * will occur, and a display engine hang could result.
  905. */
  906. static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
  907. const struct intel_watermark_params *wm,
  908. int fifo_size,
  909. int pixel_size,
  910. unsigned long latency_ns)
  911. {
  912. long entries_required, wm_size;
  913. /*
  914. * Note: we need to make sure we don't overflow for various clock &
  915. * latency values.
  916. * clocks go from a few thousand to several hundred thousand.
  917. * latency is usually a few thousand
  918. */
  919. entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
  920. 1000;
  921. entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
  922. DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
  923. wm_size = fifo_size - (entries_required + wm->guard_size);
  924. DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
  925. /* Don't promote wm_size to unsigned... */
  926. if (wm_size > (long)wm->max_wm)
  927. wm_size = wm->max_wm;
  928. if (wm_size <= 0)
  929. wm_size = wm->default_wm;
  930. return wm_size;
  931. }
  932. static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
  933. {
  934. struct drm_crtc *crtc, *enabled = NULL;
  935. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  936. if (intel_crtc_active(crtc)) {
  937. if (enabled)
  938. return NULL;
  939. enabled = crtc;
  940. }
  941. }
  942. return enabled;
  943. }
  944. static void pineview_update_wm(struct drm_crtc *unused_crtc)
  945. {
  946. struct drm_device *dev = unused_crtc->dev;
  947. struct drm_i915_private *dev_priv = dev->dev_private;
  948. struct drm_crtc *crtc;
  949. const struct cxsr_latency *latency;
  950. u32 reg;
  951. unsigned long wm;
  952. latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
  953. dev_priv->fsb_freq, dev_priv->mem_freq);
  954. if (!latency) {
  955. DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
  956. pineview_disable_cxsr(dev);
  957. return;
  958. }
  959. crtc = single_enabled_crtc(dev);
  960. if (crtc) {
  961. const struct drm_display_mode *adjusted_mode;
  962. int pixel_size = crtc->fb->bits_per_pixel / 8;
  963. int clock;
  964. adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
  965. clock = adjusted_mode->crtc_clock;
  966. /* Display SR */
  967. wm = intel_calculate_wm(clock, &pineview_display_wm,
  968. pineview_display_wm.fifo_size,
  969. pixel_size, latency->display_sr);
  970. reg = I915_READ(DSPFW1);
  971. reg &= ~DSPFW_SR_MASK;
  972. reg |= wm << DSPFW_SR_SHIFT;
  973. I915_WRITE(DSPFW1, reg);
  974. DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
  975. /* cursor SR */
  976. wm = intel_calculate_wm(clock, &pineview_cursor_wm,
  977. pineview_display_wm.fifo_size,
  978. pixel_size, latency->cursor_sr);
  979. reg = I915_READ(DSPFW3);
  980. reg &= ~DSPFW_CURSOR_SR_MASK;
  981. reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
  982. I915_WRITE(DSPFW3, reg);
  983. /* Display HPLL off SR */
  984. wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
  985. pineview_display_hplloff_wm.fifo_size,
  986. pixel_size, latency->display_hpll_disable);
  987. reg = I915_READ(DSPFW3);
  988. reg &= ~DSPFW_HPLL_SR_MASK;
  989. reg |= wm & DSPFW_HPLL_SR_MASK;
  990. I915_WRITE(DSPFW3, reg);
  991. /* cursor HPLL off SR */
  992. wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
  993. pineview_display_hplloff_wm.fifo_size,
  994. pixel_size, latency->cursor_hpll_disable);
  995. reg = I915_READ(DSPFW3);
  996. reg &= ~DSPFW_HPLL_CURSOR_MASK;
  997. reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
  998. I915_WRITE(DSPFW3, reg);
  999. DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
  1000. /* activate cxsr */
  1001. I915_WRITE(DSPFW3,
  1002. I915_READ(DSPFW3) | PINEVIEW_SELF_REFRESH_EN);
  1003. DRM_DEBUG_KMS("Self-refresh is enabled\n");
  1004. } else {
  1005. pineview_disable_cxsr(dev);
  1006. DRM_DEBUG_KMS("Self-refresh is disabled\n");
  1007. }
  1008. }
  1009. static bool g4x_compute_wm0(struct drm_device *dev,
  1010. int plane,
  1011. const struct intel_watermark_params *display,
  1012. int display_latency_ns,
  1013. const struct intel_watermark_params *cursor,
  1014. int cursor_latency_ns,
  1015. int *plane_wm,
  1016. int *cursor_wm)
  1017. {
  1018. struct drm_crtc *crtc;
  1019. const struct drm_display_mode *adjusted_mode;
  1020. int htotal, hdisplay, clock, pixel_size;
  1021. int line_time_us, line_count;
  1022. int entries, tlb_miss;
  1023. crtc = intel_get_crtc_for_plane(dev, plane);
  1024. if (!intel_crtc_active(crtc)) {
  1025. *cursor_wm = cursor->guard_size;
  1026. *plane_wm = display->guard_size;
  1027. return false;
  1028. }
  1029. adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
  1030. clock = adjusted_mode->crtc_clock;
  1031. htotal = adjusted_mode->htotal;
  1032. hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
  1033. pixel_size = crtc->fb->bits_per_pixel / 8;
  1034. /* Use the small buffer method to calculate plane watermark */
  1035. entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
  1036. tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
  1037. if (tlb_miss > 0)
  1038. entries += tlb_miss;
  1039. entries = DIV_ROUND_UP(entries, display->cacheline_size);
  1040. *plane_wm = entries + display->guard_size;
  1041. if (*plane_wm > (int)display->max_wm)
  1042. *plane_wm = display->max_wm;
  1043. /* Use the large buffer method to calculate cursor watermark */
  1044. line_time_us = ((htotal * 1000) / clock);
  1045. line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
  1046. entries = line_count * 64 * pixel_size;
  1047. tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
  1048. if (tlb_miss > 0)
  1049. entries += tlb_miss;
  1050. entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
  1051. *cursor_wm = entries + cursor->guard_size;
  1052. if (*cursor_wm > (int)cursor->max_wm)
  1053. *cursor_wm = (int)cursor->max_wm;
  1054. return true;
  1055. }
  1056. /*
  1057. * Check the wm result.
  1058. *
  1059. * If any calculated watermark values is larger than the maximum value that
  1060. * can be programmed into the associated watermark register, that watermark
  1061. * must be disabled.
  1062. */
  1063. static bool g4x_check_srwm(struct drm_device *dev,
  1064. int display_wm, int cursor_wm,
  1065. const struct intel_watermark_params *display,
  1066. const struct intel_watermark_params *cursor)
  1067. {
  1068. DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
  1069. display_wm, cursor_wm);
  1070. if (display_wm > display->max_wm) {
  1071. DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
  1072. display_wm, display->max_wm);
  1073. return false;
  1074. }
  1075. if (cursor_wm > cursor->max_wm) {
  1076. DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
  1077. cursor_wm, cursor->max_wm);
  1078. return false;
  1079. }
  1080. if (!(display_wm || cursor_wm)) {
  1081. DRM_DEBUG_KMS("SR latency is 0, disabling\n");
  1082. return false;
  1083. }
  1084. return true;
  1085. }
  1086. static bool g4x_compute_srwm(struct drm_device *dev,
  1087. int plane,
  1088. int latency_ns,
  1089. const struct intel_watermark_params *display,
  1090. const struct intel_watermark_params *cursor,
  1091. int *display_wm, int *cursor_wm)
  1092. {
  1093. struct drm_crtc *crtc;
  1094. const struct drm_display_mode *adjusted_mode;
  1095. int hdisplay, htotal, pixel_size, clock;
  1096. unsigned long line_time_us;
  1097. int line_count, line_size;
  1098. int small, large;
  1099. int entries;
  1100. if (!latency_ns) {
  1101. *display_wm = *cursor_wm = 0;
  1102. return false;
  1103. }
  1104. crtc = intel_get_crtc_for_plane(dev, plane);
  1105. adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
  1106. clock = adjusted_mode->crtc_clock;
  1107. htotal = adjusted_mode->htotal;
  1108. hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
  1109. pixel_size = crtc->fb->bits_per_pixel / 8;
  1110. line_time_us = (htotal * 1000) / clock;
  1111. line_count = (latency_ns / line_time_us + 1000) / 1000;
  1112. line_size = hdisplay * pixel_size;
  1113. /* Use the minimum of the small and large buffer method for primary */
  1114. small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
  1115. large = line_count * line_size;
  1116. entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
  1117. *display_wm = entries + display->guard_size;
  1118. /* calculate the self-refresh watermark for display cursor */
  1119. entries = line_count * pixel_size * 64;
  1120. entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
  1121. *cursor_wm = entries + cursor->guard_size;
  1122. return g4x_check_srwm(dev,
  1123. *display_wm, *cursor_wm,
  1124. display, cursor);
  1125. }
  1126. static bool vlv_compute_drain_latency(struct drm_device *dev,
  1127. int plane,
  1128. int *plane_prec_mult,
  1129. int *plane_dl,
  1130. int *cursor_prec_mult,
  1131. int *cursor_dl)
  1132. {
  1133. struct drm_crtc *crtc;
  1134. int clock, pixel_size;
  1135. int entries;
  1136. crtc = intel_get_crtc_for_plane(dev, plane);
  1137. if (!intel_crtc_active(crtc))
  1138. return false;
  1139. clock = to_intel_crtc(crtc)->config.adjusted_mode.crtc_clock;
  1140. pixel_size = crtc->fb->bits_per_pixel / 8; /* BPP */
  1141. entries = (clock / 1000) * pixel_size;
  1142. *plane_prec_mult = (entries > 256) ?
  1143. DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_16;
  1144. *plane_dl = (64 * (*plane_prec_mult) * 4) / ((clock / 1000) *
  1145. pixel_size);
  1146. entries = (clock / 1000) * 4; /* BPP is always 4 for cursor */
  1147. *cursor_prec_mult = (entries > 256) ?
  1148. DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_16;
  1149. *cursor_dl = (64 * (*cursor_prec_mult) * 4) / ((clock / 1000) * 4);
  1150. return true;
  1151. }
  1152. /*
  1153. * Update drain latency registers of memory arbiter
  1154. *
  1155. * Valleyview SoC has a new memory arbiter and needs drain latency registers
  1156. * to be programmed. Each plane has a drain latency multiplier and a drain
  1157. * latency value.
  1158. */
  1159. static void vlv_update_drain_latency(struct drm_device *dev)
  1160. {
  1161. struct drm_i915_private *dev_priv = dev->dev_private;
  1162. int planea_prec, planea_dl, planeb_prec, planeb_dl;
  1163. int cursora_prec, cursora_dl, cursorb_prec, cursorb_dl;
  1164. int plane_prec_mult, cursor_prec_mult; /* Precision multiplier is
  1165. either 16 or 32 */
  1166. /* For plane A, Cursor A */
  1167. if (vlv_compute_drain_latency(dev, 0, &plane_prec_mult, &planea_dl,
  1168. &cursor_prec_mult, &cursora_dl)) {
  1169. cursora_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
  1170. DDL_CURSORA_PRECISION_32 : DDL_CURSORA_PRECISION_16;
  1171. planea_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
  1172. DDL_PLANEA_PRECISION_32 : DDL_PLANEA_PRECISION_16;
  1173. I915_WRITE(VLV_DDL1, cursora_prec |
  1174. (cursora_dl << DDL_CURSORA_SHIFT) |
  1175. planea_prec | planea_dl);
  1176. }
  1177. /* For plane B, Cursor B */
  1178. if (vlv_compute_drain_latency(dev, 1, &plane_prec_mult, &planeb_dl,
  1179. &cursor_prec_mult, &cursorb_dl)) {
  1180. cursorb_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
  1181. DDL_CURSORB_PRECISION_32 : DDL_CURSORB_PRECISION_16;
  1182. planeb_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
  1183. DDL_PLANEB_PRECISION_32 : DDL_PLANEB_PRECISION_16;
  1184. I915_WRITE(VLV_DDL2, cursorb_prec |
  1185. (cursorb_dl << DDL_CURSORB_SHIFT) |
  1186. planeb_prec | planeb_dl);
  1187. }
  1188. }
  1189. #define single_plane_enabled(mask) is_power_of_2(mask)
  1190. static void valleyview_update_wm(struct drm_crtc *crtc)
  1191. {
  1192. struct drm_device *dev = crtc->dev;
  1193. static const int sr_latency_ns = 12000;
  1194. struct drm_i915_private *dev_priv = dev->dev_private;
  1195. int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
  1196. int plane_sr, cursor_sr;
  1197. int ignore_plane_sr, ignore_cursor_sr;
  1198. unsigned int enabled = 0;
  1199. vlv_update_drain_latency(dev);
  1200. if (g4x_compute_wm0(dev, PIPE_A,
  1201. &valleyview_wm_info, latency_ns,
  1202. &valleyview_cursor_wm_info, latency_ns,
  1203. &planea_wm, &cursora_wm))
  1204. enabled |= 1 << PIPE_A;
  1205. if (g4x_compute_wm0(dev, PIPE_B,
  1206. &valleyview_wm_info, latency_ns,
  1207. &valleyview_cursor_wm_info, latency_ns,
  1208. &planeb_wm, &cursorb_wm))
  1209. enabled |= 1 << PIPE_B;
  1210. if (single_plane_enabled(enabled) &&
  1211. g4x_compute_srwm(dev, ffs(enabled) - 1,
  1212. sr_latency_ns,
  1213. &valleyview_wm_info,
  1214. &valleyview_cursor_wm_info,
  1215. &plane_sr, &ignore_cursor_sr) &&
  1216. g4x_compute_srwm(dev, ffs(enabled) - 1,
  1217. 2*sr_latency_ns,
  1218. &valleyview_wm_info,
  1219. &valleyview_cursor_wm_info,
  1220. &ignore_plane_sr, &cursor_sr)) {
  1221. I915_WRITE(FW_BLC_SELF_VLV, FW_CSPWRDWNEN);
  1222. } else {
  1223. I915_WRITE(FW_BLC_SELF_VLV,
  1224. I915_READ(FW_BLC_SELF_VLV) & ~FW_CSPWRDWNEN);
  1225. plane_sr = cursor_sr = 0;
  1226. }
  1227. DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
  1228. planea_wm, cursora_wm,
  1229. planeb_wm, cursorb_wm,
  1230. plane_sr, cursor_sr);
  1231. I915_WRITE(DSPFW1,
  1232. (plane_sr << DSPFW_SR_SHIFT) |
  1233. (cursorb_wm << DSPFW_CURSORB_SHIFT) |
  1234. (planeb_wm << DSPFW_PLANEB_SHIFT) |
  1235. planea_wm);
  1236. I915_WRITE(DSPFW2,
  1237. (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
  1238. (cursora_wm << DSPFW_CURSORA_SHIFT));
  1239. I915_WRITE(DSPFW3,
  1240. (I915_READ(DSPFW3) & ~DSPFW_CURSOR_SR_MASK) |
  1241. (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
  1242. }
  1243. static void g4x_update_wm(struct drm_crtc *crtc)
  1244. {
  1245. struct drm_device *dev = crtc->dev;
  1246. static const int sr_latency_ns = 12000;
  1247. struct drm_i915_private *dev_priv = dev->dev_private;
  1248. int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
  1249. int plane_sr, cursor_sr;
  1250. unsigned int enabled = 0;
  1251. if (g4x_compute_wm0(dev, PIPE_A,
  1252. &g4x_wm_info, latency_ns,
  1253. &g4x_cursor_wm_info, latency_ns,
  1254. &planea_wm, &cursora_wm))
  1255. enabled |= 1 << PIPE_A;
  1256. if (g4x_compute_wm0(dev, PIPE_B,
  1257. &g4x_wm_info, latency_ns,
  1258. &g4x_cursor_wm_info, latency_ns,
  1259. &planeb_wm, &cursorb_wm))
  1260. enabled |= 1 << PIPE_B;
  1261. if (single_plane_enabled(enabled) &&
  1262. g4x_compute_srwm(dev, ffs(enabled) - 1,
  1263. sr_latency_ns,
  1264. &g4x_wm_info,
  1265. &g4x_cursor_wm_info,
  1266. &plane_sr, &cursor_sr)) {
  1267. I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
  1268. } else {
  1269. I915_WRITE(FW_BLC_SELF,
  1270. I915_READ(FW_BLC_SELF) & ~FW_BLC_SELF_EN);
  1271. plane_sr = cursor_sr = 0;
  1272. }
  1273. DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
  1274. planea_wm, cursora_wm,
  1275. planeb_wm, cursorb_wm,
  1276. plane_sr, cursor_sr);
  1277. I915_WRITE(DSPFW1,
  1278. (plane_sr << DSPFW_SR_SHIFT) |
  1279. (cursorb_wm << DSPFW_CURSORB_SHIFT) |
  1280. (planeb_wm << DSPFW_PLANEB_SHIFT) |
  1281. planea_wm);
  1282. I915_WRITE(DSPFW2,
  1283. (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
  1284. (cursora_wm << DSPFW_CURSORA_SHIFT));
  1285. /* HPLL off in SR has some issues on G4x... disable it */
  1286. I915_WRITE(DSPFW3,
  1287. (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
  1288. (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
  1289. }
  1290. static void i965_update_wm(struct drm_crtc *unused_crtc)
  1291. {
  1292. struct drm_device *dev = unused_crtc->dev;
  1293. struct drm_i915_private *dev_priv = dev->dev_private;
  1294. struct drm_crtc *crtc;
  1295. int srwm = 1;
  1296. int cursor_sr = 16;
  1297. /* Calc sr entries for one plane configs */
  1298. crtc = single_enabled_crtc(dev);
  1299. if (crtc) {
  1300. /* self-refresh has much higher latency */
  1301. static const int sr_latency_ns = 12000;
  1302. const struct drm_display_mode *adjusted_mode =
  1303. &to_intel_crtc(crtc)->config.adjusted_mode;
  1304. int clock = adjusted_mode->crtc_clock;
  1305. int htotal = adjusted_mode->htotal;
  1306. int hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
  1307. int pixel_size = crtc->fb->bits_per_pixel / 8;
  1308. unsigned long line_time_us;
  1309. int entries;
  1310. line_time_us = ((htotal * 1000) / clock);
  1311. /* Use ns/us then divide to preserve precision */
  1312. entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
  1313. pixel_size * hdisplay;
  1314. entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
  1315. srwm = I965_FIFO_SIZE - entries;
  1316. if (srwm < 0)
  1317. srwm = 1;
  1318. srwm &= 0x1ff;
  1319. DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
  1320. entries, srwm);
  1321. entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
  1322. pixel_size * 64;
  1323. entries = DIV_ROUND_UP(entries,
  1324. i965_cursor_wm_info.cacheline_size);
  1325. cursor_sr = i965_cursor_wm_info.fifo_size -
  1326. (entries + i965_cursor_wm_info.guard_size);
  1327. if (cursor_sr > i965_cursor_wm_info.max_wm)
  1328. cursor_sr = i965_cursor_wm_info.max_wm;
  1329. DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
  1330. "cursor %d\n", srwm, cursor_sr);
  1331. if (IS_CRESTLINE(dev))
  1332. I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
  1333. } else {
  1334. /* Turn off self refresh if both pipes are enabled */
  1335. if (IS_CRESTLINE(dev))
  1336. I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
  1337. & ~FW_BLC_SELF_EN);
  1338. }
  1339. DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
  1340. srwm);
  1341. /* 965 has limitations... */
  1342. I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) |
  1343. (8 << 16) | (8 << 8) | (8 << 0));
  1344. I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
  1345. /* update cursor SR watermark */
  1346. I915_WRITE(DSPFW3, (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
  1347. }
  1348. static void i9xx_update_wm(struct drm_crtc *unused_crtc)
  1349. {
  1350. struct drm_device *dev = unused_crtc->dev;
  1351. struct drm_i915_private *dev_priv = dev->dev_private;
  1352. const struct intel_watermark_params *wm_info;
  1353. uint32_t fwater_lo;
  1354. uint32_t fwater_hi;
  1355. int cwm, srwm = 1;
  1356. int fifo_size;
  1357. int planea_wm, planeb_wm;
  1358. struct drm_crtc *crtc, *enabled = NULL;
  1359. if (IS_I945GM(dev))
  1360. wm_info = &i945_wm_info;
  1361. else if (!IS_GEN2(dev))
  1362. wm_info = &i915_wm_info;
  1363. else
  1364. wm_info = &i855_wm_info;
  1365. fifo_size = dev_priv->display.get_fifo_size(dev, 0);
  1366. crtc = intel_get_crtc_for_plane(dev, 0);
  1367. if (intel_crtc_active(crtc)) {
  1368. const struct drm_display_mode *adjusted_mode;
  1369. int cpp = crtc->fb->bits_per_pixel / 8;
  1370. if (IS_GEN2(dev))
  1371. cpp = 4;
  1372. adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
  1373. planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
  1374. wm_info, fifo_size, cpp,
  1375. latency_ns);
  1376. enabled = crtc;
  1377. } else
  1378. planea_wm = fifo_size - wm_info->guard_size;
  1379. fifo_size = dev_priv->display.get_fifo_size(dev, 1);
  1380. crtc = intel_get_crtc_for_plane(dev, 1);
  1381. if (intel_crtc_active(crtc)) {
  1382. const struct drm_display_mode *adjusted_mode;
  1383. int cpp = crtc->fb->bits_per_pixel / 8;
  1384. if (IS_GEN2(dev))
  1385. cpp = 4;
  1386. adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
  1387. planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
  1388. wm_info, fifo_size, cpp,
  1389. latency_ns);
  1390. if (enabled == NULL)
  1391. enabled = crtc;
  1392. else
  1393. enabled = NULL;
  1394. } else
  1395. planeb_wm = fifo_size - wm_info->guard_size;
  1396. DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
  1397. /*
  1398. * Overlay gets an aggressive default since video jitter is bad.
  1399. */
  1400. cwm = 2;
  1401. /* Play safe and disable self-refresh before adjusting watermarks. */
  1402. if (IS_I945G(dev) || IS_I945GM(dev))
  1403. I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN_MASK | 0);
  1404. else if (IS_I915GM(dev))
  1405. I915_WRITE(INSTPM, I915_READ(INSTPM) & ~INSTPM_SELF_EN);
  1406. /* Calc sr entries for one plane configs */
  1407. if (HAS_FW_BLC(dev) && enabled) {
  1408. /* self-refresh has much higher latency */
  1409. static const int sr_latency_ns = 6000;
  1410. const struct drm_display_mode *adjusted_mode =
  1411. &to_intel_crtc(enabled)->config.adjusted_mode;
  1412. int clock = adjusted_mode->crtc_clock;
  1413. int htotal = adjusted_mode->htotal;
  1414. int hdisplay = to_intel_crtc(enabled)->config.pipe_src_w;
  1415. int pixel_size = enabled->fb->bits_per_pixel / 8;
  1416. unsigned long line_time_us;
  1417. int entries;
  1418. line_time_us = (htotal * 1000) / clock;
  1419. /* Use ns/us then divide to preserve precision */
  1420. entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
  1421. pixel_size * hdisplay;
  1422. entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
  1423. DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
  1424. srwm = wm_info->fifo_size - entries;
  1425. if (srwm < 0)
  1426. srwm = 1;
  1427. if (IS_I945G(dev) || IS_I945GM(dev))
  1428. I915_WRITE(FW_BLC_SELF,
  1429. FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
  1430. else if (IS_I915GM(dev))
  1431. I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
  1432. }
  1433. DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
  1434. planea_wm, planeb_wm, cwm, srwm);
  1435. fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
  1436. fwater_hi = (cwm & 0x1f);
  1437. /* Set request length to 8 cachelines per fetch */
  1438. fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
  1439. fwater_hi = fwater_hi | (1 << 8);
  1440. I915_WRITE(FW_BLC, fwater_lo);
  1441. I915_WRITE(FW_BLC2, fwater_hi);
  1442. if (HAS_FW_BLC(dev)) {
  1443. if (enabled) {
  1444. if (IS_I945G(dev) || IS_I945GM(dev))
  1445. I915_WRITE(FW_BLC_SELF,
  1446. FW_BLC_SELF_EN_MASK | FW_BLC_SELF_EN);
  1447. else if (IS_I915GM(dev))
  1448. I915_WRITE(INSTPM, I915_READ(INSTPM) | INSTPM_SELF_EN);
  1449. DRM_DEBUG_KMS("memory self refresh enabled\n");
  1450. } else
  1451. DRM_DEBUG_KMS("memory self refresh disabled\n");
  1452. }
  1453. }
  1454. static void i830_update_wm(struct drm_crtc *unused_crtc)
  1455. {
  1456. struct drm_device *dev = unused_crtc->dev;
  1457. struct drm_i915_private *dev_priv = dev->dev_private;
  1458. struct drm_crtc *crtc;
  1459. const struct drm_display_mode *adjusted_mode;
  1460. uint32_t fwater_lo;
  1461. int planea_wm;
  1462. crtc = single_enabled_crtc(dev);
  1463. if (crtc == NULL)
  1464. return;
  1465. adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
  1466. planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
  1467. &i830_wm_info,
  1468. dev_priv->display.get_fifo_size(dev, 0),
  1469. 4, latency_ns);
  1470. fwater_lo = I915_READ(FW_BLC) & ~0xfff;
  1471. fwater_lo |= (3<<8) | planea_wm;
  1472. DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
  1473. I915_WRITE(FW_BLC, fwater_lo);
  1474. }
  1475. /*
  1476. * Check the wm result.
  1477. *
  1478. * If any calculated watermark values is larger than the maximum value that
  1479. * can be programmed into the associated watermark register, that watermark
  1480. * must be disabled.
  1481. */
  1482. static bool ironlake_check_srwm(struct drm_device *dev, int level,
  1483. int fbc_wm, int display_wm, int cursor_wm,
  1484. const struct intel_watermark_params *display,
  1485. const struct intel_watermark_params *cursor)
  1486. {
  1487. struct drm_i915_private *dev_priv = dev->dev_private;
  1488. DRM_DEBUG_KMS("watermark %d: display plane %d, fbc lines %d,"
  1489. " cursor %d\n", level, display_wm, fbc_wm, cursor_wm);
  1490. if (fbc_wm > SNB_FBC_MAX_SRWM) {
  1491. DRM_DEBUG_KMS("fbc watermark(%d) is too large(%d), disabling wm%d+\n",
  1492. fbc_wm, SNB_FBC_MAX_SRWM, level);
  1493. /* fbc has it's own way to disable FBC WM */
  1494. I915_WRITE(DISP_ARB_CTL,
  1495. I915_READ(DISP_ARB_CTL) | DISP_FBC_WM_DIS);
  1496. return false;
  1497. } else if (INTEL_INFO(dev)->gen >= 6) {
  1498. /* enable FBC WM (except on ILK, where it must remain off) */
  1499. I915_WRITE(DISP_ARB_CTL,
  1500. I915_READ(DISP_ARB_CTL) & ~DISP_FBC_WM_DIS);
  1501. }
  1502. if (display_wm > display->max_wm) {
  1503. DRM_DEBUG_KMS("display watermark(%d) is too large(%d), disabling wm%d+\n",
  1504. display_wm, SNB_DISPLAY_MAX_SRWM, level);
  1505. return false;
  1506. }
  1507. if (cursor_wm > cursor->max_wm) {
  1508. DRM_DEBUG_KMS("cursor watermark(%d) is too large(%d), disabling wm%d+\n",
  1509. cursor_wm, SNB_CURSOR_MAX_SRWM, level);
  1510. return false;
  1511. }
  1512. if (!(fbc_wm || display_wm || cursor_wm)) {
  1513. DRM_DEBUG_KMS("latency %d is 0, disabling wm%d+\n", level, level);
  1514. return false;
  1515. }
  1516. return true;
  1517. }
  1518. /*
  1519. * Compute watermark values of WM[1-3],
  1520. */
  1521. static bool ironlake_compute_srwm(struct drm_device *dev, int level, int plane,
  1522. int latency_ns,
  1523. const struct intel_watermark_params *display,
  1524. const struct intel_watermark_params *cursor,
  1525. int *fbc_wm, int *display_wm, int *cursor_wm)
  1526. {
  1527. struct drm_crtc *crtc;
  1528. const struct drm_display_mode *adjusted_mode;
  1529. unsigned long line_time_us;
  1530. int hdisplay, htotal, pixel_size, clock;
  1531. int line_count, line_size;
  1532. int small, large;
  1533. int entries;
  1534. if (!latency_ns) {
  1535. *fbc_wm = *display_wm = *cursor_wm = 0;
  1536. return false;
  1537. }
  1538. crtc = intel_get_crtc_for_plane(dev, plane);
  1539. adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
  1540. clock = adjusted_mode->crtc_clock;
  1541. htotal = adjusted_mode->htotal;
  1542. hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
  1543. pixel_size = crtc->fb->bits_per_pixel / 8;
  1544. line_time_us = (htotal * 1000) / clock;
  1545. line_count = (latency_ns / line_time_us + 1000) / 1000;
  1546. line_size = hdisplay * pixel_size;
  1547. /* Use the minimum of the small and large buffer method for primary */
  1548. small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
  1549. large = line_count * line_size;
  1550. entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
  1551. *display_wm = entries + display->guard_size;
  1552. /*
  1553. * Spec says:
  1554. * FBC WM = ((Final Primary WM * 64) / number of bytes per line) + 2
  1555. */
  1556. *fbc_wm = DIV_ROUND_UP(*display_wm * 64, line_size) + 2;
  1557. /* calculate the self-refresh watermark for display cursor */
  1558. entries = line_count * pixel_size * 64;
  1559. entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
  1560. *cursor_wm = entries + cursor->guard_size;
  1561. return ironlake_check_srwm(dev, level,
  1562. *fbc_wm, *display_wm, *cursor_wm,
  1563. display, cursor);
  1564. }
  1565. static void ironlake_update_wm(struct drm_crtc *crtc)
  1566. {
  1567. struct drm_device *dev = crtc->dev;
  1568. struct drm_i915_private *dev_priv = dev->dev_private;
  1569. int fbc_wm, plane_wm, cursor_wm;
  1570. unsigned int enabled;
  1571. enabled = 0;
  1572. if (g4x_compute_wm0(dev, PIPE_A,
  1573. &ironlake_display_wm_info,
  1574. dev_priv->wm.pri_latency[0] * 100,
  1575. &ironlake_cursor_wm_info,
  1576. dev_priv->wm.cur_latency[0] * 100,
  1577. &plane_wm, &cursor_wm)) {
  1578. I915_WRITE(WM0_PIPEA_ILK,
  1579. (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
  1580. DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
  1581. " plane %d, " "cursor: %d\n",
  1582. plane_wm, cursor_wm);
  1583. enabled |= 1 << PIPE_A;
  1584. }
  1585. if (g4x_compute_wm0(dev, PIPE_B,
  1586. &ironlake_display_wm_info,
  1587. dev_priv->wm.pri_latency[0] * 100,
  1588. &ironlake_cursor_wm_info,
  1589. dev_priv->wm.cur_latency[0] * 100,
  1590. &plane_wm, &cursor_wm)) {
  1591. I915_WRITE(WM0_PIPEB_ILK,
  1592. (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
  1593. DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
  1594. " plane %d, cursor: %d\n",
  1595. plane_wm, cursor_wm);
  1596. enabled |= 1 << PIPE_B;
  1597. }
  1598. /*
  1599. * Calculate and update the self-refresh watermark only when one
  1600. * display plane is used.
  1601. */
  1602. I915_WRITE(WM3_LP_ILK, 0);
  1603. I915_WRITE(WM2_LP_ILK, 0);
  1604. I915_WRITE(WM1_LP_ILK, 0);
  1605. if (!single_plane_enabled(enabled))
  1606. return;
  1607. enabled = ffs(enabled) - 1;
  1608. /* WM1 */
  1609. if (!ironlake_compute_srwm(dev, 1, enabled,
  1610. dev_priv->wm.pri_latency[1] * 500,
  1611. &ironlake_display_srwm_info,
  1612. &ironlake_cursor_srwm_info,
  1613. &fbc_wm, &plane_wm, &cursor_wm))
  1614. return;
  1615. I915_WRITE(WM1_LP_ILK,
  1616. WM1_LP_SR_EN |
  1617. (dev_priv->wm.pri_latency[1] << WM1_LP_LATENCY_SHIFT) |
  1618. (fbc_wm << WM1_LP_FBC_SHIFT) |
  1619. (plane_wm << WM1_LP_SR_SHIFT) |
  1620. cursor_wm);
  1621. /* WM2 */
  1622. if (!ironlake_compute_srwm(dev, 2, enabled,
  1623. dev_priv->wm.pri_latency[2] * 500,
  1624. &ironlake_display_srwm_info,
  1625. &ironlake_cursor_srwm_info,
  1626. &fbc_wm, &plane_wm, &cursor_wm))
  1627. return;
  1628. I915_WRITE(WM2_LP_ILK,
  1629. WM2_LP_EN |
  1630. (dev_priv->wm.pri_latency[2] << WM1_LP_LATENCY_SHIFT) |
  1631. (fbc_wm << WM1_LP_FBC_SHIFT) |
  1632. (plane_wm << WM1_LP_SR_SHIFT) |
  1633. cursor_wm);
  1634. /*
  1635. * WM3 is unsupported on ILK, probably because we don't have latency
  1636. * data for that power state
  1637. */
  1638. }
  1639. static void sandybridge_update_wm(struct drm_crtc *crtc)
  1640. {
  1641. struct drm_device *dev = crtc->dev;
  1642. struct drm_i915_private *dev_priv = dev->dev_private;
  1643. int latency = dev_priv->wm.pri_latency[0] * 100; /* In unit 0.1us */
  1644. u32 val;
  1645. int fbc_wm, plane_wm, cursor_wm;
  1646. unsigned int enabled;
  1647. enabled = 0;
  1648. if (g4x_compute_wm0(dev, PIPE_A,
  1649. &sandybridge_display_wm_info, latency,
  1650. &sandybridge_cursor_wm_info, latency,
  1651. &plane_wm, &cursor_wm)) {
  1652. val = I915_READ(WM0_PIPEA_ILK);
  1653. val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
  1654. I915_WRITE(WM0_PIPEA_ILK, val |
  1655. ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
  1656. DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
  1657. " plane %d, " "cursor: %d\n",
  1658. plane_wm, cursor_wm);
  1659. enabled |= 1 << PIPE_A;
  1660. }
  1661. if (g4x_compute_wm0(dev, PIPE_B,
  1662. &sandybridge_display_wm_info, latency,
  1663. &sandybridge_cursor_wm_info, latency,
  1664. &plane_wm, &cursor_wm)) {
  1665. val = I915_READ(WM0_PIPEB_ILK);
  1666. val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
  1667. I915_WRITE(WM0_PIPEB_ILK, val |
  1668. ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
  1669. DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
  1670. " plane %d, cursor: %d\n",
  1671. plane_wm, cursor_wm);
  1672. enabled |= 1 << PIPE_B;
  1673. }
  1674. /*
  1675. * Calculate and update the self-refresh watermark only when one
  1676. * display plane is used.
  1677. *
  1678. * SNB support 3 levels of watermark.
  1679. *
  1680. * WM1/WM2/WM2 watermarks have to be enabled in the ascending order,
  1681. * and disabled in the descending order
  1682. *
  1683. */
  1684. I915_WRITE(WM3_LP_ILK, 0);
  1685. I915_WRITE(WM2_LP_ILK, 0);
  1686. I915_WRITE(WM1_LP_ILK, 0);
  1687. if (!single_plane_enabled(enabled) ||
  1688. dev_priv->sprite_scaling_enabled)
  1689. return;
  1690. enabled = ffs(enabled) - 1;
  1691. /* WM1 */
  1692. if (!ironlake_compute_srwm(dev, 1, enabled,
  1693. dev_priv->wm.pri_latency[1] * 500,
  1694. &sandybridge_display_srwm_info,
  1695. &sandybridge_cursor_srwm_info,
  1696. &fbc_wm, &plane_wm, &cursor_wm))
  1697. return;
  1698. I915_WRITE(WM1_LP_ILK,
  1699. WM1_LP_SR_EN |
  1700. (dev_priv->wm.pri_latency[1] << WM1_LP_LATENCY_SHIFT) |
  1701. (fbc_wm << WM1_LP_FBC_SHIFT) |
  1702. (plane_wm << WM1_LP_SR_SHIFT) |
  1703. cursor_wm);
  1704. /* WM2 */
  1705. if (!ironlake_compute_srwm(dev, 2, enabled,
  1706. dev_priv->wm.pri_latency[2] * 500,
  1707. &sandybridge_display_srwm_info,
  1708. &sandybridge_cursor_srwm_info,
  1709. &fbc_wm, &plane_wm, &cursor_wm))
  1710. return;
  1711. I915_WRITE(WM2_LP_ILK,
  1712. WM2_LP_EN |
  1713. (dev_priv->wm.pri_latency[2] << WM1_LP_LATENCY_SHIFT) |
  1714. (fbc_wm << WM1_LP_FBC_SHIFT) |
  1715. (plane_wm << WM1_LP_SR_SHIFT) |
  1716. cursor_wm);
  1717. /* WM3 */
  1718. if (!ironlake_compute_srwm(dev, 3, enabled,
  1719. dev_priv->wm.pri_latency[3] * 500,
  1720. &sandybridge_display_srwm_info,
  1721. &sandybridge_cursor_srwm_info,
  1722. &fbc_wm, &plane_wm, &cursor_wm))
  1723. return;
  1724. I915_WRITE(WM3_LP_ILK,
  1725. WM3_LP_EN |
  1726. (dev_priv->wm.pri_latency[3] << WM1_LP_LATENCY_SHIFT) |
  1727. (fbc_wm << WM1_LP_FBC_SHIFT) |
  1728. (plane_wm << WM1_LP_SR_SHIFT) |
  1729. cursor_wm);
  1730. }
  1731. static void ivybridge_update_wm(struct drm_crtc *crtc)
  1732. {
  1733. struct drm_device *dev = crtc->dev;
  1734. struct drm_i915_private *dev_priv = dev->dev_private;
  1735. int latency = dev_priv->wm.pri_latency[0] * 100; /* In unit 0.1us */
  1736. u32 val;
  1737. int fbc_wm, plane_wm, cursor_wm;
  1738. int ignore_fbc_wm, ignore_plane_wm, ignore_cursor_wm;
  1739. unsigned int enabled;
  1740. enabled = 0;
  1741. if (g4x_compute_wm0(dev, PIPE_A,
  1742. &sandybridge_display_wm_info, latency,
  1743. &sandybridge_cursor_wm_info, latency,
  1744. &plane_wm, &cursor_wm)) {
  1745. val = I915_READ(WM0_PIPEA_ILK);
  1746. val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
  1747. I915_WRITE(WM0_PIPEA_ILK, val |
  1748. ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
  1749. DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
  1750. " plane %d, " "cursor: %d\n",
  1751. plane_wm, cursor_wm);
  1752. enabled |= 1 << PIPE_A;
  1753. }
  1754. if (g4x_compute_wm0(dev, PIPE_B,
  1755. &sandybridge_display_wm_info, latency,
  1756. &sandybridge_cursor_wm_info, latency,
  1757. &plane_wm, &cursor_wm)) {
  1758. val = I915_READ(WM0_PIPEB_ILK);
  1759. val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
  1760. I915_WRITE(WM0_PIPEB_ILK, val |
  1761. ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
  1762. DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
  1763. " plane %d, cursor: %d\n",
  1764. plane_wm, cursor_wm);
  1765. enabled |= 1 << PIPE_B;
  1766. }
  1767. if (g4x_compute_wm0(dev, PIPE_C,
  1768. &sandybridge_display_wm_info, latency,
  1769. &sandybridge_cursor_wm_info, latency,
  1770. &plane_wm, &cursor_wm)) {
  1771. val = I915_READ(WM0_PIPEC_IVB);
  1772. val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
  1773. I915_WRITE(WM0_PIPEC_IVB, val |
  1774. ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
  1775. DRM_DEBUG_KMS("FIFO watermarks For pipe C -"
  1776. " plane %d, cursor: %d\n",
  1777. plane_wm, cursor_wm);
  1778. enabled |= 1 << PIPE_C;
  1779. }
  1780. /*
  1781. * Calculate and update the self-refresh watermark only when one
  1782. * display plane is used.
  1783. *
  1784. * SNB support 3 levels of watermark.
  1785. *
  1786. * WM1/WM2/WM2 watermarks have to be enabled in the ascending order,
  1787. * and disabled in the descending order
  1788. *
  1789. */
  1790. I915_WRITE(WM3_LP_ILK, 0);
  1791. I915_WRITE(WM2_LP_ILK, 0);
  1792. I915_WRITE(WM1_LP_ILK, 0);
  1793. if (!single_plane_enabled(enabled) ||
  1794. dev_priv->sprite_scaling_enabled)
  1795. return;
  1796. enabled = ffs(enabled) - 1;
  1797. /* WM1 */
  1798. if (!ironlake_compute_srwm(dev, 1, enabled,
  1799. dev_priv->wm.pri_latency[1] * 500,
  1800. &sandybridge_display_srwm_info,
  1801. &sandybridge_cursor_srwm_info,
  1802. &fbc_wm, &plane_wm, &cursor_wm))
  1803. return;
  1804. I915_WRITE(WM1_LP_ILK,
  1805. WM1_LP_SR_EN |
  1806. (dev_priv->wm.pri_latency[1] << WM1_LP_LATENCY_SHIFT) |
  1807. (fbc_wm << WM1_LP_FBC_SHIFT) |
  1808. (plane_wm << WM1_LP_SR_SHIFT) |
  1809. cursor_wm);
  1810. /* WM2 */
  1811. if (!ironlake_compute_srwm(dev, 2, enabled,
  1812. dev_priv->wm.pri_latency[2] * 500,
  1813. &sandybridge_display_srwm_info,
  1814. &sandybridge_cursor_srwm_info,
  1815. &fbc_wm, &plane_wm, &cursor_wm))
  1816. return;
  1817. I915_WRITE(WM2_LP_ILK,
  1818. WM2_LP_EN |
  1819. (dev_priv->wm.pri_latency[2] << WM1_LP_LATENCY_SHIFT) |
  1820. (fbc_wm << WM1_LP_FBC_SHIFT) |
  1821. (plane_wm << WM1_LP_SR_SHIFT) |
  1822. cursor_wm);
  1823. /* WM3, note we have to correct the cursor latency */
  1824. if (!ironlake_compute_srwm(dev, 3, enabled,
  1825. dev_priv->wm.pri_latency[3] * 500,
  1826. &sandybridge_display_srwm_info,
  1827. &sandybridge_cursor_srwm_info,
  1828. &fbc_wm, &plane_wm, &ignore_cursor_wm) ||
  1829. !ironlake_compute_srwm(dev, 3, enabled,
  1830. dev_priv->wm.cur_latency[3] * 500,
  1831. &sandybridge_display_srwm_info,
  1832. &sandybridge_cursor_srwm_info,
  1833. &ignore_fbc_wm, &ignore_plane_wm, &cursor_wm))
  1834. return;
  1835. I915_WRITE(WM3_LP_ILK,
  1836. WM3_LP_EN |
  1837. (dev_priv->wm.pri_latency[3] << WM1_LP_LATENCY_SHIFT) |
  1838. (fbc_wm << WM1_LP_FBC_SHIFT) |
  1839. (plane_wm << WM1_LP_SR_SHIFT) |
  1840. cursor_wm);
  1841. }
  1842. static uint32_t ilk_pipe_pixel_rate(struct drm_device *dev,
  1843. struct drm_crtc *crtc)
  1844. {
  1845. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1846. uint32_t pixel_rate;
  1847. pixel_rate = intel_crtc->config.adjusted_mode.crtc_clock;
  1848. /* We only use IF-ID interlacing. If we ever use PF-ID we'll need to
  1849. * adjust the pixel_rate here. */
  1850. if (intel_crtc->config.pch_pfit.enabled) {
  1851. uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
  1852. uint32_t pfit_size = intel_crtc->config.pch_pfit.size;
  1853. pipe_w = intel_crtc->config.pipe_src_w;
  1854. pipe_h = intel_crtc->config.pipe_src_h;
  1855. pfit_w = (pfit_size >> 16) & 0xFFFF;
  1856. pfit_h = pfit_size & 0xFFFF;
  1857. if (pipe_w < pfit_w)
  1858. pipe_w = pfit_w;
  1859. if (pipe_h < pfit_h)
  1860. pipe_h = pfit_h;
  1861. pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
  1862. pfit_w * pfit_h);
  1863. }
  1864. return pixel_rate;
  1865. }
  1866. /* latency must be in 0.1us units. */
  1867. static uint32_t ilk_wm_method1(uint32_t pixel_rate, uint8_t bytes_per_pixel,
  1868. uint32_t latency)
  1869. {
  1870. uint64_t ret;
  1871. if (WARN(latency == 0, "Latency value missing\n"))
  1872. return UINT_MAX;
  1873. ret = (uint64_t) pixel_rate * bytes_per_pixel * latency;
  1874. ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;
  1875. return ret;
  1876. }
  1877. /* latency must be in 0.1us units. */
  1878. static uint32_t ilk_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
  1879. uint32_t horiz_pixels, uint8_t bytes_per_pixel,
  1880. uint32_t latency)
  1881. {
  1882. uint32_t ret;
  1883. if (WARN(latency == 0, "Latency value missing\n"))
  1884. return UINT_MAX;
  1885. ret = (latency * pixel_rate) / (pipe_htotal * 10000);
  1886. ret = (ret + 1) * horiz_pixels * bytes_per_pixel;
  1887. ret = DIV_ROUND_UP(ret, 64) + 2;
  1888. return ret;
  1889. }
  1890. static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
  1891. uint8_t bytes_per_pixel)
  1892. {
  1893. return DIV_ROUND_UP(pri_val * 64, horiz_pixels * bytes_per_pixel) + 2;
  1894. }
  1895. struct hsw_pipe_wm_parameters {
  1896. bool active;
  1897. uint32_t pipe_htotal;
  1898. uint32_t pixel_rate;
  1899. struct intel_plane_wm_parameters pri;
  1900. struct intel_plane_wm_parameters spr;
  1901. struct intel_plane_wm_parameters cur;
  1902. };
  1903. struct hsw_wm_maximums {
  1904. uint16_t pri;
  1905. uint16_t spr;
  1906. uint16_t cur;
  1907. uint16_t fbc;
  1908. };
  1909. /* used in computing the new watermarks state */
  1910. struct intel_wm_config {
  1911. unsigned int num_pipes_active;
  1912. bool sprites_enabled;
  1913. bool sprites_scaled;
  1914. };
  1915. /*
  1916. * For both WM_PIPE and WM_LP.
  1917. * mem_value must be in 0.1us units.
  1918. */
  1919. static uint32_t ilk_compute_pri_wm(const struct hsw_pipe_wm_parameters *params,
  1920. uint32_t mem_value,
  1921. bool is_lp)
  1922. {
  1923. uint32_t method1, method2;
  1924. if (!params->active || !params->pri.enabled)
  1925. return 0;
  1926. method1 = ilk_wm_method1(params->pixel_rate,
  1927. params->pri.bytes_per_pixel,
  1928. mem_value);
  1929. if (!is_lp)
  1930. return method1;
  1931. method2 = ilk_wm_method2(params->pixel_rate,
  1932. params->pipe_htotal,
  1933. params->pri.horiz_pixels,
  1934. params->pri.bytes_per_pixel,
  1935. mem_value);
  1936. return min(method1, method2);
  1937. }
  1938. /*
  1939. * For both WM_PIPE and WM_LP.
  1940. * mem_value must be in 0.1us units.
  1941. */
  1942. static uint32_t ilk_compute_spr_wm(const struct hsw_pipe_wm_parameters *params,
  1943. uint32_t mem_value)
  1944. {
  1945. uint32_t method1, method2;
  1946. if (!params->active || !params->spr.enabled)
  1947. return 0;
  1948. method1 = ilk_wm_method1(params->pixel_rate,
  1949. params->spr.bytes_per_pixel,
  1950. mem_value);
  1951. method2 = ilk_wm_method2(params->pixel_rate,
  1952. params->pipe_htotal,
  1953. params->spr.horiz_pixels,
  1954. params->spr.bytes_per_pixel,
  1955. mem_value);
  1956. return min(method1, method2);
  1957. }
  1958. /*
  1959. * For both WM_PIPE and WM_LP.
  1960. * mem_value must be in 0.1us units.
  1961. */
  1962. static uint32_t ilk_compute_cur_wm(const struct hsw_pipe_wm_parameters *params,
  1963. uint32_t mem_value)
  1964. {
  1965. if (!params->active || !params->cur.enabled)
  1966. return 0;
  1967. return ilk_wm_method2(params->pixel_rate,
  1968. params->pipe_htotal,
  1969. params->cur.horiz_pixels,
  1970. params->cur.bytes_per_pixel,
  1971. mem_value);
  1972. }
  1973. /* Only for WM_LP. */
  1974. static uint32_t ilk_compute_fbc_wm(const struct hsw_pipe_wm_parameters *params,
  1975. uint32_t pri_val)
  1976. {
  1977. if (!params->active || !params->pri.enabled)
  1978. return 0;
  1979. return ilk_wm_fbc(pri_val,
  1980. params->pri.horiz_pixels,
  1981. params->pri.bytes_per_pixel);
  1982. }
  1983. static unsigned int ilk_display_fifo_size(const struct drm_device *dev)
  1984. {
  1985. if (INTEL_INFO(dev)->gen >= 8)
  1986. return 3072;
  1987. else if (INTEL_INFO(dev)->gen >= 7)
  1988. return 768;
  1989. else
  1990. return 512;
  1991. }
  1992. /* Calculate the maximum primary/sprite plane watermark */
  1993. static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
  1994. int level,
  1995. const struct intel_wm_config *config,
  1996. enum intel_ddb_partitioning ddb_partitioning,
  1997. bool is_sprite)
  1998. {
  1999. unsigned int fifo_size = ilk_display_fifo_size(dev);
  2000. unsigned int max;
  2001. /* if sprites aren't enabled, sprites get nothing */
  2002. if (is_sprite && !config->sprites_enabled)
  2003. return 0;
  2004. /* HSW allows LP1+ watermarks even with multiple pipes */
  2005. if (level == 0 || config->num_pipes_active > 1) {
  2006. fifo_size /= INTEL_INFO(dev)->num_pipes;
  2007. /*
  2008. * For some reason the non self refresh
  2009. * FIFO size is only half of the self
  2010. * refresh FIFO size on ILK/SNB.
  2011. */
  2012. if (INTEL_INFO(dev)->gen <= 6)
  2013. fifo_size /= 2;
  2014. }
  2015. if (config->sprites_enabled) {
  2016. /* level 0 is always calculated with 1:1 split */
  2017. if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
  2018. if (is_sprite)
  2019. fifo_size *= 5;
  2020. fifo_size /= 6;
  2021. } else {
  2022. fifo_size /= 2;
  2023. }
  2024. }
  2025. /* clamp to max that the registers can hold */
  2026. if (INTEL_INFO(dev)->gen >= 8)
  2027. max = level == 0 ? 255 : 2047;
  2028. else if (INTEL_INFO(dev)->gen >= 7)
  2029. /* IVB/HSW primary/sprite plane watermarks */
  2030. max = level == 0 ? 127 : 1023;
  2031. else if (!is_sprite)
  2032. /* ILK/SNB primary plane watermarks */
  2033. max = level == 0 ? 127 : 511;
  2034. else
  2035. /* ILK/SNB sprite plane watermarks */
  2036. max = level == 0 ? 63 : 255;
  2037. return min(fifo_size, max);
  2038. }
  2039. /* Calculate the maximum cursor plane watermark */
  2040. static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
  2041. int level,
  2042. const struct intel_wm_config *config)
  2043. {
  2044. /* HSW LP1+ watermarks w/ multiple pipes */
  2045. if (level > 0 && config->num_pipes_active > 1)
  2046. return 64;
  2047. /* otherwise just report max that registers can hold */
  2048. if (INTEL_INFO(dev)->gen >= 7)
  2049. return level == 0 ? 63 : 255;
  2050. else
  2051. return level == 0 ? 31 : 63;
  2052. }
  2053. /* Calculate the maximum FBC watermark */
  2054. static unsigned int ilk_fbc_wm_max(struct drm_device *dev)
  2055. {
  2056. /* max that registers can hold */
  2057. if (INTEL_INFO(dev)->gen >= 8)
  2058. return 31;
  2059. else
  2060. return 15;
  2061. }
  2062. static void ilk_compute_wm_maximums(struct drm_device *dev,
  2063. int level,
  2064. const struct intel_wm_config *config,
  2065. enum intel_ddb_partitioning ddb_partitioning,
  2066. struct hsw_wm_maximums *max)
  2067. {
  2068. max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
  2069. max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
  2070. max->cur = ilk_cursor_wm_max(dev, level, config);
  2071. max->fbc = ilk_fbc_wm_max(dev);
  2072. }
  2073. static bool ilk_validate_wm_level(int level,
  2074. const struct hsw_wm_maximums *max,
  2075. struct intel_wm_level *result)
  2076. {
  2077. bool ret;
  2078. /* already determined to be invalid? */
  2079. if (!result->enable)
  2080. return false;
  2081. result->enable = result->pri_val <= max->pri &&
  2082. result->spr_val <= max->spr &&
  2083. result->cur_val <= max->cur;
  2084. ret = result->enable;
  2085. /*
  2086. * HACK until we can pre-compute everything,
  2087. * and thus fail gracefully if LP0 watermarks
  2088. * are exceeded...
  2089. */
  2090. if (level == 0 && !result->enable) {
  2091. if (result->pri_val > max->pri)
  2092. DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
  2093. level, result->pri_val, max->pri);
  2094. if (result->spr_val > max->spr)
  2095. DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
  2096. level, result->spr_val, max->spr);
  2097. if (result->cur_val > max->cur)
  2098. DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
  2099. level, result->cur_val, max->cur);
  2100. result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
  2101. result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
  2102. result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
  2103. result->enable = true;
  2104. }
  2105. return ret;
  2106. }
  2107. static void ilk_compute_wm_level(struct drm_i915_private *dev_priv,
  2108. int level,
  2109. const struct hsw_pipe_wm_parameters *p,
  2110. struct intel_wm_level *result)
  2111. {
  2112. uint16_t pri_latency = dev_priv->wm.pri_latency[level];
  2113. uint16_t spr_latency = dev_priv->wm.spr_latency[level];
  2114. uint16_t cur_latency = dev_priv->wm.cur_latency[level];
  2115. /* WM1+ latency values stored in 0.5us units */
  2116. if (level > 0) {
  2117. pri_latency *= 5;
  2118. spr_latency *= 5;
  2119. cur_latency *= 5;
  2120. }
  2121. result->pri_val = ilk_compute_pri_wm(p, pri_latency, level);
  2122. result->spr_val = ilk_compute_spr_wm(p, spr_latency);
  2123. result->cur_val = ilk_compute_cur_wm(p, cur_latency);
  2124. result->fbc_val = ilk_compute_fbc_wm(p, result->pri_val);
  2125. result->enable = true;
  2126. }
  2127. static uint32_t
  2128. hsw_compute_linetime_wm(struct drm_device *dev, struct drm_crtc *crtc)
  2129. {
  2130. struct drm_i915_private *dev_priv = dev->dev_private;
  2131. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2132. struct drm_display_mode *mode = &intel_crtc->config.adjusted_mode;
  2133. u32 linetime, ips_linetime;
  2134. if (!intel_crtc_active(crtc))
  2135. return 0;
  2136. /* The WM are computed with base on how long it takes to fill a single
  2137. * row at the given clock rate, multiplied by 8.
  2138. * */
  2139. linetime = DIV_ROUND_CLOSEST(mode->htotal * 1000 * 8, mode->clock);
  2140. ips_linetime = DIV_ROUND_CLOSEST(mode->htotal * 1000 * 8,
  2141. intel_ddi_get_cdclk_freq(dev_priv));
  2142. return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
  2143. PIPE_WM_LINETIME_TIME(linetime);
  2144. }
  2145. static void intel_read_wm_latency(struct drm_device *dev, uint16_t wm[5])
  2146. {
  2147. struct drm_i915_private *dev_priv = dev->dev_private;
  2148. if (IS_HASWELL(dev)) {
  2149. uint64_t sskpd = I915_READ64(MCH_SSKPD);
  2150. wm[0] = (sskpd >> 56) & 0xFF;
  2151. if (wm[0] == 0)
  2152. wm[0] = sskpd & 0xF;
  2153. wm[1] = (sskpd >> 4) & 0xFF;
  2154. wm[2] = (sskpd >> 12) & 0xFF;
  2155. wm[3] = (sskpd >> 20) & 0x1FF;
  2156. wm[4] = (sskpd >> 32) & 0x1FF;
  2157. } else if (INTEL_INFO(dev)->gen >= 6) {
  2158. uint32_t sskpd = I915_READ(MCH_SSKPD);
  2159. wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
  2160. wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
  2161. wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
  2162. wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
  2163. } else if (INTEL_INFO(dev)->gen >= 5) {
  2164. uint32_t mltr = I915_READ(MLTR_ILK);
  2165. /* ILK primary LP0 latency is 700 ns */
  2166. wm[0] = 7;
  2167. wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
  2168. wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
  2169. }
  2170. }
  2171. static void intel_fixup_spr_wm_latency(struct drm_device *dev, uint16_t wm[5])
  2172. {
  2173. /* ILK sprite LP0 latency is 1300 ns */
  2174. if (INTEL_INFO(dev)->gen == 5)
  2175. wm[0] = 13;
  2176. }
  2177. static void intel_fixup_cur_wm_latency(struct drm_device *dev, uint16_t wm[5])
  2178. {
  2179. /* ILK cursor LP0 latency is 1300 ns */
  2180. if (INTEL_INFO(dev)->gen == 5)
  2181. wm[0] = 13;
  2182. /* WaDoubleCursorLP3Latency:ivb */
  2183. if (IS_IVYBRIDGE(dev))
  2184. wm[3] *= 2;
  2185. }
  2186. static int ilk_wm_max_level(const struct drm_device *dev)
  2187. {
  2188. /* how many WM levels are we expecting */
  2189. if (IS_HASWELL(dev))
  2190. return 4;
  2191. else if (INTEL_INFO(dev)->gen >= 6)
  2192. return 3;
  2193. else
  2194. return 2;
  2195. }
  2196. static void intel_print_wm_latency(struct drm_device *dev,
  2197. const char *name,
  2198. const uint16_t wm[5])
  2199. {
  2200. int level, max_level = ilk_wm_max_level(dev);
  2201. for (level = 0; level <= max_level; level++) {
  2202. unsigned int latency = wm[level];
  2203. if (latency == 0) {
  2204. DRM_ERROR("%s WM%d latency not provided\n",
  2205. name, level);
  2206. continue;
  2207. }
  2208. /* WM1+ latency values in 0.5us units */
  2209. if (level > 0)
  2210. latency *= 5;
  2211. DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
  2212. name, level, wm[level],
  2213. latency / 10, latency % 10);
  2214. }
  2215. }
  2216. static void intel_setup_wm_latency(struct drm_device *dev)
  2217. {
  2218. struct drm_i915_private *dev_priv = dev->dev_private;
  2219. intel_read_wm_latency(dev, dev_priv->wm.pri_latency);
  2220. memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
  2221. sizeof(dev_priv->wm.pri_latency));
  2222. memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
  2223. sizeof(dev_priv->wm.pri_latency));
  2224. intel_fixup_spr_wm_latency(dev, dev_priv->wm.spr_latency);
  2225. intel_fixup_cur_wm_latency(dev, dev_priv->wm.cur_latency);
  2226. intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
  2227. intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
  2228. intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
  2229. }
  2230. static void hsw_compute_wm_parameters(struct drm_crtc *crtc,
  2231. struct hsw_pipe_wm_parameters *p,
  2232. struct intel_wm_config *config)
  2233. {
  2234. struct drm_device *dev = crtc->dev;
  2235. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2236. enum pipe pipe = intel_crtc->pipe;
  2237. struct drm_plane *plane;
  2238. p->active = intel_crtc_active(crtc);
  2239. if (p->active) {
  2240. p->pipe_htotal = intel_crtc->config.adjusted_mode.htotal;
  2241. p->pixel_rate = ilk_pipe_pixel_rate(dev, crtc);
  2242. p->pri.bytes_per_pixel = crtc->fb->bits_per_pixel / 8;
  2243. p->cur.bytes_per_pixel = 4;
  2244. p->pri.horiz_pixels = intel_crtc->config.pipe_src_w;
  2245. p->cur.horiz_pixels = 64;
  2246. /* TODO: for now, assume primary and cursor planes are always enabled. */
  2247. p->pri.enabled = true;
  2248. p->cur.enabled = true;
  2249. }
  2250. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
  2251. config->num_pipes_active += intel_crtc_active(crtc);
  2252. list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
  2253. struct intel_plane *intel_plane = to_intel_plane(plane);
  2254. if (intel_plane->pipe == pipe)
  2255. p->spr = intel_plane->wm;
  2256. config->sprites_enabled |= intel_plane->wm.enabled;
  2257. config->sprites_scaled |= intel_plane->wm.scaled;
  2258. }
  2259. }
  2260. /* Compute new watermarks for the pipe */
  2261. static bool intel_compute_pipe_wm(struct drm_crtc *crtc,
  2262. const struct hsw_pipe_wm_parameters *params,
  2263. struct intel_pipe_wm *pipe_wm)
  2264. {
  2265. struct drm_device *dev = crtc->dev;
  2266. struct drm_i915_private *dev_priv = dev->dev_private;
  2267. int level, max_level = ilk_wm_max_level(dev);
  2268. /* LP0 watermark maximums depend on this pipe alone */
  2269. struct intel_wm_config config = {
  2270. .num_pipes_active = 1,
  2271. .sprites_enabled = params->spr.enabled,
  2272. .sprites_scaled = params->spr.scaled,
  2273. };
  2274. struct hsw_wm_maximums max;
  2275. /* LP0 watermarks always use 1/2 DDB partitioning */
  2276. ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);
  2277. for (level = 0; level <= max_level; level++)
  2278. ilk_compute_wm_level(dev_priv, level, params,
  2279. &pipe_wm->wm[level]);
  2280. pipe_wm->linetime = hsw_compute_linetime_wm(dev, crtc);
  2281. /* At least LP0 must be valid */
  2282. return ilk_validate_wm_level(0, &max, &pipe_wm->wm[0]);
  2283. }
  2284. /*
  2285. * Merge the watermarks from all active pipes for a specific level.
  2286. */
  2287. static void ilk_merge_wm_level(struct drm_device *dev,
  2288. int level,
  2289. struct intel_wm_level *ret_wm)
  2290. {
  2291. const struct intel_crtc *intel_crtc;
  2292. list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list, base.head) {
  2293. const struct intel_wm_level *wm =
  2294. &intel_crtc->wm.active.wm[level];
  2295. if (!wm->enable)
  2296. return;
  2297. ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
  2298. ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
  2299. ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
  2300. ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
  2301. }
  2302. ret_wm->enable = true;
  2303. }
  2304. /*
  2305. * Merge all low power watermarks for all active pipes.
  2306. */
  2307. static void ilk_wm_merge(struct drm_device *dev,
  2308. const struct hsw_wm_maximums *max,
  2309. struct intel_pipe_wm *merged)
  2310. {
  2311. int level, max_level = ilk_wm_max_level(dev);
  2312. merged->fbc_wm_enabled = true;
  2313. /* merge each WM1+ level */
  2314. for (level = 1; level <= max_level; level++) {
  2315. struct intel_wm_level *wm = &merged->wm[level];
  2316. ilk_merge_wm_level(dev, level, wm);
  2317. if (!ilk_validate_wm_level(level, max, wm))
  2318. break;
  2319. /*
  2320. * The spec says it is preferred to disable
  2321. * FBC WMs instead of disabling a WM level.
  2322. */
  2323. if (wm->fbc_val > max->fbc) {
  2324. merged->fbc_wm_enabled = false;
  2325. wm->fbc_val = 0;
  2326. }
  2327. }
  2328. }
  2329. static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
  2330. {
  2331. /* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
  2332. return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
  2333. }
  2334. static void hsw_compute_wm_results(struct drm_device *dev,
  2335. const struct intel_pipe_wm *merged,
  2336. enum intel_ddb_partitioning partitioning,
  2337. struct hsw_wm_values *results)
  2338. {
  2339. struct intel_crtc *intel_crtc;
  2340. int level, wm_lp;
  2341. results->enable_fbc_wm = merged->fbc_wm_enabled;
  2342. results->partitioning = partitioning;
  2343. /* LP1+ register values */
  2344. for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
  2345. const struct intel_wm_level *r;
  2346. level = ilk_wm_lp_to_level(wm_lp, merged);
  2347. r = &merged->wm[level];
  2348. if (!r->enable)
  2349. break;
  2350. results->wm_lp[wm_lp - 1] = WM3_LP_EN |
  2351. ((level * 2) << WM1_LP_LATENCY_SHIFT) |
  2352. (r->pri_val << WM1_LP_SR_SHIFT) |
  2353. r->cur_val;
  2354. if (INTEL_INFO(dev)->gen >= 8)
  2355. results->wm_lp[wm_lp - 1] |=
  2356. r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
  2357. else
  2358. results->wm_lp[wm_lp - 1] |=
  2359. r->fbc_val << WM1_LP_FBC_SHIFT;
  2360. results->wm_lp_spr[wm_lp - 1] = r->spr_val;
  2361. }
  2362. /* LP0 register values */
  2363. list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list, base.head) {
  2364. enum pipe pipe = intel_crtc->pipe;
  2365. const struct intel_wm_level *r =
  2366. &intel_crtc->wm.active.wm[0];
  2367. if (WARN_ON(!r->enable))
  2368. continue;
  2369. results->wm_linetime[pipe] = intel_crtc->wm.active.linetime;
  2370. results->wm_pipe[pipe] =
  2371. (r->pri_val << WM0_PIPE_PLANE_SHIFT) |
  2372. (r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
  2373. r->cur_val;
  2374. }
  2375. }
  2376. /* Find the result with the highest level enabled. Check for enable_fbc_wm in
  2377. * case both are at the same level. Prefer r1 in case they're the same. */
  2378. static struct intel_pipe_wm *hsw_find_best_result(struct drm_device *dev,
  2379. struct intel_pipe_wm *r1,
  2380. struct intel_pipe_wm *r2)
  2381. {
  2382. int level, max_level = ilk_wm_max_level(dev);
  2383. int level1 = 0, level2 = 0;
  2384. for (level = 1; level <= max_level; level++) {
  2385. if (r1->wm[level].enable)
  2386. level1 = level;
  2387. if (r2->wm[level].enable)
  2388. level2 = level;
  2389. }
  2390. if (level1 == level2) {
  2391. if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
  2392. return r2;
  2393. else
  2394. return r1;
  2395. } else if (level1 > level2) {
  2396. return r1;
  2397. } else {
  2398. return r2;
  2399. }
  2400. }
  2401. /* dirty bits used to track which watermarks need changes */
  2402. #define WM_DIRTY_PIPE(pipe) (1 << (pipe))
  2403. #define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
  2404. #define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
  2405. #define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
  2406. #define WM_DIRTY_FBC (1 << 24)
  2407. #define WM_DIRTY_DDB (1 << 25)
  2408. static unsigned int ilk_compute_wm_dirty(struct drm_device *dev,
  2409. const struct hsw_wm_values *old,
  2410. const struct hsw_wm_values *new)
  2411. {
  2412. unsigned int dirty = 0;
  2413. enum pipe pipe;
  2414. int wm_lp;
  2415. for_each_pipe(pipe) {
  2416. if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
  2417. dirty |= WM_DIRTY_LINETIME(pipe);
  2418. /* Must disable LP1+ watermarks too */
  2419. dirty |= WM_DIRTY_LP_ALL;
  2420. }
  2421. if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
  2422. dirty |= WM_DIRTY_PIPE(pipe);
  2423. /* Must disable LP1+ watermarks too */
  2424. dirty |= WM_DIRTY_LP_ALL;
  2425. }
  2426. }
  2427. if (old->enable_fbc_wm != new->enable_fbc_wm) {
  2428. dirty |= WM_DIRTY_FBC;
  2429. /* Must disable LP1+ watermarks too */
  2430. dirty |= WM_DIRTY_LP_ALL;
  2431. }
  2432. if (old->partitioning != new->partitioning) {
  2433. dirty |= WM_DIRTY_DDB;
  2434. /* Must disable LP1+ watermarks too */
  2435. dirty |= WM_DIRTY_LP_ALL;
  2436. }
  2437. /* LP1+ watermarks already deemed dirty, no need to continue */
  2438. if (dirty & WM_DIRTY_LP_ALL)
  2439. return dirty;
  2440. /* Find the lowest numbered LP1+ watermark in need of an update... */
  2441. for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
  2442. if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
  2443. old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
  2444. break;
  2445. }
  2446. /* ...and mark it and all higher numbered LP1+ watermarks as dirty */
  2447. for (; wm_lp <= 3; wm_lp++)
  2448. dirty |= WM_DIRTY_LP(wm_lp);
  2449. return dirty;
  2450. }
  2451. /*
  2452. * The spec says we shouldn't write when we don't need, because every write
  2453. * causes WMs to be re-evaluated, expending some power.
  2454. */
  2455. static void hsw_write_wm_values(struct drm_i915_private *dev_priv,
  2456. struct hsw_wm_values *results)
  2457. {
  2458. struct hsw_wm_values *previous = &dev_priv->wm.hw;
  2459. unsigned int dirty;
  2460. uint32_t val;
  2461. dirty = ilk_compute_wm_dirty(dev_priv->dev, previous, results);
  2462. if (!dirty)
  2463. return;
  2464. if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != 0)
  2465. I915_WRITE(WM3_LP_ILK, 0);
  2466. if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != 0)
  2467. I915_WRITE(WM2_LP_ILK, 0);
  2468. if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != 0)
  2469. I915_WRITE(WM1_LP_ILK, 0);
  2470. if (dirty & WM_DIRTY_PIPE(PIPE_A))
  2471. I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
  2472. if (dirty & WM_DIRTY_PIPE(PIPE_B))
  2473. I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
  2474. if (dirty & WM_DIRTY_PIPE(PIPE_C))
  2475. I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);
  2476. if (dirty & WM_DIRTY_LINETIME(PIPE_A))
  2477. I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
  2478. if (dirty & WM_DIRTY_LINETIME(PIPE_B))
  2479. I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
  2480. if (dirty & WM_DIRTY_LINETIME(PIPE_C))
  2481. I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);
  2482. if (dirty & WM_DIRTY_DDB) {
  2483. val = I915_READ(WM_MISC);
  2484. if (results->partitioning == INTEL_DDB_PART_1_2)
  2485. val &= ~WM_MISC_DATA_PARTITION_5_6;
  2486. else
  2487. val |= WM_MISC_DATA_PARTITION_5_6;
  2488. I915_WRITE(WM_MISC, val);
  2489. }
  2490. if (dirty & WM_DIRTY_FBC) {
  2491. val = I915_READ(DISP_ARB_CTL);
  2492. if (results->enable_fbc_wm)
  2493. val &= ~DISP_FBC_WM_DIS;
  2494. else
  2495. val |= DISP_FBC_WM_DIS;
  2496. I915_WRITE(DISP_ARB_CTL, val);
  2497. }
  2498. if (dirty & WM_DIRTY_LP(1) && previous->wm_lp_spr[0] != results->wm_lp_spr[0])
  2499. I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);
  2500. if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
  2501. I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
  2502. if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
  2503. I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
  2504. if (dirty & WM_DIRTY_LP(1) && results->wm_lp[0] != 0)
  2505. I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
  2506. if (dirty & WM_DIRTY_LP(2) && results->wm_lp[1] != 0)
  2507. I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
  2508. if (dirty & WM_DIRTY_LP(3) && results->wm_lp[2] != 0)
  2509. I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
  2510. dev_priv->wm.hw = *results;
  2511. }
  2512. static void haswell_update_wm(struct drm_crtc *crtc)
  2513. {
  2514. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2515. struct drm_device *dev = crtc->dev;
  2516. struct drm_i915_private *dev_priv = dev->dev_private;
  2517. struct hsw_wm_maximums max;
  2518. struct hsw_pipe_wm_parameters params = {};
  2519. struct hsw_wm_values results = {};
  2520. enum intel_ddb_partitioning partitioning;
  2521. struct intel_pipe_wm pipe_wm = {};
  2522. struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
  2523. struct intel_wm_config config = {};
  2524. hsw_compute_wm_parameters(crtc, &params, &config);
  2525. intel_compute_pipe_wm(crtc, &params, &pipe_wm);
  2526. if (!memcmp(&intel_crtc->wm.active, &pipe_wm, sizeof(pipe_wm)))
  2527. return;
  2528. intel_crtc->wm.active = pipe_wm;
  2529. ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
  2530. ilk_wm_merge(dev, &max, &lp_wm_1_2);
  2531. /* 5/6 split only in single pipe config on IVB+ */
  2532. if (INTEL_INFO(dev)->gen >= 7 &&
  2533. config.num_pipes_active == 1 && config.sprites_enabled) {
  2534. ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
  2535. ilk_wm_merge(dev, &max, &lp_wm_5_6);
  2536. best_lp_wm = hsw_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
  2537. } else {
  2538. best_lp_wm = &lp_wm_1_2;
  2539. }
  2540. partitioning = (best_lp_wm == &lp_wm_1_2) ?
  2541. INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
  2542. hsw_compute_wm_results(dev, best_lp_wm, partitioning, &results);
  2543. hsw_write_wm_values(dev_priv, &results);
  2544. }
  2545. static void haswell_update_sprite_wm(struct drm_plane *plane,
  2546. struct drm_crtc *crtc,
  2547. uint32_t sprite_width, int pixel_size,
  2548. bool enabled, bool scaled)
  2549. {
  2550. struct intel_plane *intel_plane = to_intel_plane(plane);
  2551. intel_plane->wm.enabled = enabled;
  2552. intel_plane->wm.scaled = scaled;
  2553. intel_plane->wm.horiz_pixels = sprite_width;
  2554. intel_plane->wm.bytes_per_pixel = pixel_size;
  2555. haswell_update_wm(crtc);
  2556. }
  2557. static bool
  2558. sandybridge_compute_sprite_wm(struct drm_device *dev, int plane,
  2559. uint32_t sprite_width, int pixel_size,
  2560. const struct intel_watermark_params *display,
  2561. int display_latency_ns, int *sprite_wm)
  2562. {
  2563. struct drm_crtc *crtc;
  2564. int clock;
  2565. int entries, tlb_miss;
  2566. crtc = intel_get_crtc_for_plane(dev, plane);
  2567. if (!intel_crtc_active(crtc)) {
  2568. *sprite_wm = display->guard_size;
  2569. return false;
  2570. }
  2571. clock = to_intel_crtc(crtc)->config.adjusted_mode.crtc_clock;
  2572. /* Use the small buffer method to calculate the sprite watermark */
  2573. entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
  2574. tlb_miss = display->fifo_size*display->cacheline_size -
  2575. sprite_width * 8;
  2576. if (tlb_miss > 0)
  2577. entries += tlb_miss;
  2578. entries = DIV_ROUND_UP(entries, display->cacheline_size);
  2579. *sprite_wm = entries + display->guard_size;
  2580. if (*sprite_wm > (int)display->max_wm)
  2581. *sprite_wm = display->max_wm;
  2582. return true;
  2583. }
  2584. static bool
  2585. sandybridge_compute_sprite_srwm(struct drm_device *dev, int plane,
  2586. uint32_t sprite_width, int pixel_size,
  2587. const struct intel_watermark_params *display,
  2588. int latency_ns, int *sprite_wm)
  2589. {
  2590. struct drm_crtc *crtc;
  2591. unsigned long line_time_us;
  2592. int clock;
  2593. int line_count, line_size;
  2594. int small, large;
  2595. int entries;
  2596. if (!latency_ns) {
  2597. *sprite_wm = 0;
  2598. return false;
  2599. }
  2600. crtc = intel_get_crtc_for_plane(dev, plane);
  2601. clock = to_intel_crtc(crtc)->config.adjusted_mode.crtc_clock;
  2602. if (!clock) {
  2603. *sprite_wm = 0;
  2604. return false;
  2605. }
  2606. line_time_us = (sprite_width * 1000) / clock;
  2607. if (!line_time_us) {
  2608. *sprite_wm = 0;
  2609. return false;
  2610. }
  2611. line_count = (latency_ns / line_time_us + 1000) / 1000;
  2612. line_size = sprite_width * pixel_size;
  2613. /* Use the minimum of the small and large buffer method for primary */
  2614. small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
  2615. large = line_count * line_size;
  2616. entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
  2617. *sprite_wm = entries + display->guard_size;
  2618. return *sprite_wm > 0x3ff ? false : true;
  2619. }
  2620. static void sandybridge_update_sprite_wm(struct drm_plane *plane,
  2621. struct drm_crtc *crtc,
  2622. uint32_t sprite_width, int pixel_size,
  2623. bool enabled, bool scaled)
  2624. {
  2625. struct drm_device *dev = plane->dev;
  2626. struct drm_i915_private *dev_priv = dev->dev_private;
  2627. int pipe = to_intel_plane(plane)->pipe;
  2628. int latency = dev_priv->wm.spr_latency[0] * 100; /* In unit 0.1us */
  2629. u32 val;
  2630. int sprite_wm, reg;
  2631. int ret;
  2632. if (!enabled)
  2633. return;
  2634. switch (pipe) {
  2635. case 0:
  2636. reg = WM0_PIPEA_ILK;
  2637. break;
  2638. case 1:
  2639. reg = WM0_PIPEB_ILK;
  2640. break;
  2641. case 2:
  2642. reg = WM0_PIPEC_IVB;
  2643. break;
  2644. default:
  2645. return; /* bad pipe */
  2646. }
  2647. ret = sandybridge_compute_sprite_wm(dev, pipe, sprite_width, pixel_size,
  2648. &sandybridge_display_wm_info,
  2649. latency, &sprite_wm);
  2650. if (!ret) {
  2651. DRM_DEBUG_KMS("failed to compute sprite wm for pipe %c\n",
  2652. pipe_name(pipe));
  2653. return;
  2654. }
  2655. val = I915_READ(reg);
  2656. val &= ~WM0_PIPE_SPRITE_MASK;
  2657. I915_WRITE(reg, val | (sprite_wm << WM0_PIPE_SPRITE_SHIFT));
  2658. DRM_DEBUG_KMS("sprite watermarks For pipe %c - %d\n", pipe_name(pipe), sprite_wm);
  2659. ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
  2660. pixel_size,
  2661. &sandybridge_display_srwm_info,
  2662. dev_priv->wm.spr_latency[1] * 500,
  2663. &sprite_wm);
  2664. if (!ret) {
  2665. DRM_DEBUG_KMS("failed to compute sprite lp1 wm on pipe %c\n",
  2666. pipe_name(pipe));
  2667. return;
  2668. }
  2669. I915_WRITE(WM1S_LP_ILK, sprite_wm);
  2670. /* Only IVB has two more LP watermarks for sprite */
  2671. if (!IS_IVYBRIDGE(dev))
  2672. return;
  2673. ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
  2674. pixel_size,
  2675. &sandybridge_display_srwm_info,
  2676. dev_priv->wm.spr_latency[2] * 500,
  2677. &sprite_wm);
  2678. if (!ret) {
  2679. DRM_DEBUG_KMS("failed to compute sprite lp2 wm on pipe %c\n",
  2680. pipe_name(pipe));
  2681. return;
  2682. }
  2683. I915_WRITE(WM2S_LP_IVB, sprite_wm);
  2684. ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
  2685. pixel_size,
  2686. &sandybridge_display_srwm_info,
  2687. dev_priv->wm.spr_latency[3] * 500,
  2688. &sprite_wm);
  2689. if (!ret) {
  2690. DRM_DEBUG_KMS("failed to compute sprite lp3 wm on pipe %c\n",
  2691. pipe_name(pipe));
  2692. return;
  2693. }
  2694. I915_WRITE(WM3S_LP_IVB, sprite_wm);
  2695. }
  2696. static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
  2697. {
  2698. struct drm_device *dev = crtc->dev;
  2699. struct drm_i915_private *dev_priv = dev->dev_private;
  2700. struct hsw_wm_values *hw = &dev_priv->wm.hw;
  2701. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2702. struct intel_pipe_wm *active = &intel_crtc->wm.active;
  2703. enum pipe pipe = intel_crtc->pipe;
  2704. static const unsigned int wm0_pipe_reg[] = {
  2705. [PIPE_A] = WM0_PIPEA_ILK,
  2706. [PIPE_B] = WM0_PIPEB_ILK,
  2707. [PIPE_C] = WM0_PIPEC_IVB,
  2708. };
  2709. hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
  2710. hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
  2711. if (intel_crtc_active(crtc)) {
  2712. u32 tmp = hw->wm_pipe[pipe];
  2713. /*
  2714. * For active pipes LP0 watermark is marked as
  2715. * enabled, and LP1+ watermaks as disabled since
  2716. * we can't really reverse compute them in case
  2717. * multiple pipes are active.
  2718. */
  2719. active->wm[0].enable = true;
  2720. active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
  2721. active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
  2722. active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
  2723. active->linetime = hw->wm_linetime[pipe];
  2724. } else {
  2725. int level, max_level = ilk_wm_max_level(dev);
  2726. /*
  2727. * For inactive pipes, all watermark levels
  2728. * should be marked as enabled but zeroed,
  2729. * which is what we'd compute them to.
  2730. */
  2731. for (level = 0; level <= max_level; level++)
  2732. active->wm[level].enable = true;
  2733. }
  2734. }
  2735. void ilk_wm_get_hw_state(struct drm_device *dev)
  2736. {
  2737. struct drm_i915_private *dev_priv = dev->dev_private;
  2738. struct hsw_wm_values *hw = &dev_priv->wm.hw;
  2739. struct drm_crtc *crtc;
  2740. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
  2741. ilk_pipe_wm_get_hw_state(crtc);
  2742. hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
  2743. hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
  2744. hw->wm_lp[2] = I915_READ(WM3_LP_ILK);
  2745. hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
  2746. hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
  2747. hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
  2748. hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
  2749. INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
  2750. hw->enable_fbc_wm =
  2751. !(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
  2752. }
  2753. /**
  2754. * intel_update_watermarks - update FIFO watermark values based on current modes
  2755. *
  2756. * Calculate watermark values for the various WM regs based on current mode
  2757. * and plane configuration.
  2758. *
  2759. * There are several cases to deal with here:
  2760. * - normal (i.e. non-self-refresh)
  2761. * - self-refresh (SR) mode
  2762. * - lines are large relative to FIFO size (buffer can hold up to 2)
  2763. * - lines are small relative to FIFO size (buffer can hold more than 2
  2764. * lines), so need to account for TLB latency
  2765. *
  2766. * The normal calculation is:
  2767. * watermark = dotclock * bytes per pixel * latency
  2768. * where latency is platform & configuration dependent (we assume pessimal
  2769. * values here).
  2770. *
  2771. * The SR calculation is:
  2772. * watermark = (trunc(latency/line time)+1) * surface width *
  2773. * bytes per pixel
  2774. * where
  2775. * line time = htotal / dotclock
  2776. * surface width = hdisplay for normal plane and 64 for cursor
  2777. * and latency is assumed to be high, as above.
  2778. *
  2779. * The final value programmed to the register should always be rounded up,
  2780. * and include an extra 2 entries to account for clock crossings.
  2781. *
  2782. * We don't use the sprite, so we can ignore that. And on Crestline we have
  2783. * to set the non-SR watermarks to 8.
  2784. */
  2785. void intel_update_watermarks(struct drm_crtc *crtc)
  2786. {
  2787. struct drm_i915_private *dev_priv = crtc->dev->dev_private;
  2788. if (dev_priv->display.update_wm)
  2789. dev_priv->display.update_wm(crtc);
  2790. }
  2791. void intel_update_sprite_watermarks(struct drm_plane *plane,
  2792. struct drm_crtc *crtc,
  2793. uint32_t sprite_width, int pixel_size,
  2794. bool enabled, bool scaled)
  2795. {
  2796. struct drm_i915_private *dev_priv = plane->dev->dev_private;
  2797. if (dev_priv->display.update_sprite_wm)
  2798. dev_priv->display.update_sprite_wm(plane, crtc, sprite_width,
  2799. pixel_size, enabled, scaled);
  2800. }
  2801. static struct drm_i915_gem_object *
  2802. intel_alloc_context_page(struct drm_device *dev)
  2803. {
  2804. struct drm_i915_gem_object *ctx;
  2805. int ret;
  2806. WARN_ON(!mutex_is_locked(&dev->struct_mutex));
  2807. ctx = i915_gem_alloc_object(dev, 4096);
  2808. if (!ctx) {
  2809. DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
  2810. return NULL;
  2811. }
  2812. ret = i915_gem_obj_ggtt_pin(ctx, 4096, true, false);
  2813. if (ret) {
  2814. DRM_ERROR("failed to pin power context: %d\n", ret);
  2815. goto err_unref;
  2816. }
  2817. ret = i915_gem_object_set_to_gtt_domain(ctx, 1);
  2818. if (ret) {
  2819. DRM_ERROR("failed to set-domain on power context: %d\n", ret);
  2820. goto err_unpin;
  2821. }
  2822. return ctx;
  2823. err_unpin:
  2824. i915_gem_object_unpin(ctx);
  2825. err_unref:
  2826. drm_gem_object_unreference(&ctx->base);
  2827. return NULL;
  2828. }
  2829. /**
  2830. * Lock protecting IPS related data structures
  2831. */
  2832. DEFINE_SPINLOCK(mchdev_lock);
  2833. /* Global for IPS driver to get at the current i915 device. Protected by
  2834. * mchdev_lock. */
  2835. static struct drm_i915_private *i915_mch_dev;
  2836. bool ironlake_set_drps(struct drm_device *dev, u8 val)
  2837. {
  2838. struct drm_i915_private *dev_priv = dev->dev_private;
  2839. u16 rgvswctl;
  2840. assert_spin_locked(&mchdev_lock);
  2841. rgvswctl = I915_READ16(MEMSWCTL);
  2842. if (rgvswctl & MEMCTL_CMD_STS) {
  2843. DRM_DEBUG("gpu busy, RCS change rejected\n");
  2844. return false; /* still busy with another command */
  2845. }
  2846. rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
  2847. (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
  2848. I915_WRITE16(MEMSWCTL, rgvswctl);
  2849. POSTING_READ16(MEMSWCTL);
  2850. rgvswctl |= MEMCTL_CMD_STS;
  2851. I915_WRITE16(MEMSWCTL, rgvswctl);
  2852. return true;
  2853. }
  2854. static void ironlake_enable_drps(struct drm_device *dev)
  2855. {
  2856. struct drm_i915_private *dev_priv = dev->dev_private;
  2857. u32 rgvmodectl = I915_READ(MEMMODECTL);
  2858. u8 fmax, fmin, fstart, vstart;
  2859. spin_lock_irq(&mchdev_lock);
  2860. /* Enable temp reporting */
  2861. I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
  2862. I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
  2863. /* 100ms RC evaluation intervals */
  2864. I915_WRITE(RCUPEI, 100000);
  2865. I915_WRITE(RCDNEI, 100000);
  2866. /* Set max/min thresholds to 90ms and 80ms respectively */
  2867. I915_WRITE(RCBMAXAVG, 90000);
  2868. I915_WRITE(RCBMINAVG, 80000);
  2869. I915_WRITE(MEMIHYST, 1);
  2870. /* Set up min, max, and cur for interrupt handling */
  2871. fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
  2872. fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
  2873. fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
  2874. MEMMODE_FSTART_SHIFT;
  2875. vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
  2876. PXVFREQ_PX_SHIFT;
  2877. dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
  2878. dev_priv->ips.fstart = fstart;
  2879. dev_priv->ips.max_delay = fstart;
  2880. dev_priv->ips.min_delay = fmin;
  2881. dev_priv->ips.cur_delay = fstart;
  2882. DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
  2883. fmax, fmin, fstart);
  2884. I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
  2885. /*
  2886. * Interrupts will be enabled in ironlake_irq_postinstall
  2887. */
  2888. I915_WRITE(VIDSTART, vstart);
  2889. POSTING_READ(VIDSTART);
  2890. rgvmodectl |= MEMMODE_SWMODE_EN;
  2891. I915_WRITE(MEMMODECTL, rgvmodectl);
  2892. if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
  2893. DRM_ERROR("stuck trying to change perf mode\n");
  2894. mdelay(1);
  2895. ironlake_set_drps(dev, fstart);
  2896. dev_priv->ips.last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
  2897. I915_READ(0x112e0);
  2898. dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
  2899. dev_priv->ips.last_count2 = I915_READ(0x112f4);
  2900. getrawmonotonic(&dev_priv->ips.last_time2);
  2901. spin_unlock_irq(&mchdev_lock);
  2902. }
  2903. static void ironlake_disable_drps(struct drm_device *dev)
  2904. {
  2905. struct drm_i915_private *dev_priv = dev->dev_private;
  2906. u16 rgvswctl;
  2907. spin_lock_irq(&mchdev_lock);
  2908. rgvswctl = I915_READ16(MEMSWCTL);
  2909. /* Ack interrupts, disable EFC interrupt */
  2910. I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
  2911. I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
  2912. I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
  2913. I915_WRITE(DEIIR, DE_PCU_EVENT);
  2914. I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
  2915. /* Go back to the starting frequency */
  2916. ironlake_set_drps(dev, dev_priv->ips.fstart);
  2917. mdelay(1);
  2918. rgvswctl |= MEMCTL_CMD_STS;
  2919. I915_WRITE(MEMSWCTL, rgvswctl);
  2920. mdelay(1);
  2921. spin_unlock_irq(&mchdev_lock);
  2922. }
  2923. /* There's a funny hw issue where the hw returns all 0 when reading from
  2924. * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
  2925. * ourselves, instead of doing a rmw cycle (which might result in us clearing
  2926. * all limits and the gpu stuck at whatever frequency it is at atm).
  2927. */
  2928. static u32 gen6_rps_limits(struct drm_i915_private *dev_priv, u8 *val)
  2929. {
  2930. u32 limits;
  2931. limits = 0;
  2932. if (*val >= dev_priv->rps.max_delay)
  2933. *val = dev_priv->rps.max_delay;
  2934. limits |= dev_priv->rps.max_delay << 24;
  2935. /* Only set the down limit when we've reached the lowest level to avoid
  2936. * getting more interrupts, otherwise leave this clear. This prevents a
  2937. * race in the hw when coming out of rc6: There's a tiny window where
  2938. * the hw runs at the minimal clock before selecting the desired
  2939. * frequency, if the down threshold expires in that window we will not
  2940. * receive a down interrupt. */
  2941. if (*val <= dev_priv->rps.min_delay) {
  2942. *val = dev_priv->rps.min_delay;
  2943. limits |= dev_priv->rps.min_delay << 16;
  2944. }
  2945. return limits;
  2946. }
  2947. static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
  2948. {
  2949. int new_power;
  2950. new_power = dev_priv->rps.power;
  2951. switch (dev_priv->rps.power) {
  2952. case LOW_POWER:
  2953. if (val > dev_priv->rps.rpe_delay + 1 && val > dev_priv->rps.cur_delay)
  2954. new_power = BETWEEN;
  2955. break;
  2956. case BETWEEN:
  2957. if (val <= dev_priv->rps.rpe_delay && val < dev_priv->rps.cur_delay)
  2958. new_power = LOW_POWER;
  2959. else if (val >= dev_priv->rps.rp0_delay && val > dev_priv->rps.cur_delay)
  2960. new_power = HIGH_POWER;
  2961. break;
  2962. case HIGH_POWER:
  2963. if (val < (dev_priv->rps.rp1_delay + dev_priv->rps.rp0_delay) >> 1 && val < dev_priv->rps.cur_delay)
  2964. new_power = BETWEEN;
  2965. break;
  2966. }
  2967. /* Max/min bins are special */
  2968. if (val == dev_priv->rps.min_delay)
  2969. new_power = LOW_POWER;
  2970. if (val == dev_priv->rps.max_delay)
  2971. new_power = HIGH_POWER;
  2972. if (new_power == dev_priv->rps.power)
  2973. return;
  2974. /* Note the units here are not exactly 1us, but 1280ns. */
  2975. switch (new_power) {
  2976. case LOW_POWER:
  2977. /* Upclock if more than 95% busy over 16ms */
  2978. I915_WRITE(GEN6_RP_UP_EI, 12500);
  2979. I915_WRITE(GEN6_RP_UP_THRESHOLD, 11800);
  2980. /* Downclock if less than 85% busy over 32ms */
  2981. I915_WRITE(GEN6_RP_DOWN_EI, 25000);
  2982. I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 21250);
  2983. I915_WRITE(GEN6_RP_CONTROL,
  2984. GEN6_RP_MEDIA_TURBO |
  2985. GEN6_RP_MEDIA_HW_NORMAL_MODE |
  2986. GEN6_RP_MEDIA_IS_GFX |
  2987. GEN6_RP_ENABLE |
  2988. GEN6_RP_UP_BUSY_AVG |
  2989. GEN6_RP_DOWN_IDLE_AVG);
  2990. break;
  2991. case BETWEEN:
  2992. /* Upclock if more than 90% busy over 13ms */
  2993. I915_WRITE(GEN6_RP_UP_EI, 10250);
  2994. I915_WRITE(GEN6_RP_UP_THRESHOLD, 9225);
  2995. /* Downclock if less than 75% busy over 32ms */
  2996. I915_WRITE(GEN6_RP_DOWN_EI, 25000);
  2997. I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 18750);
  2998. I915_WRITE(GEN6_RP_CONTROL,
  2999. GEN6_RP_MEDIA_TURBO |
  3000. GEN6_RP_MEDIA_HW_NORMAL_MODE |
  3001. GEN6_RP_MEDIA_IS_GFX |
  3002. GEN6_RP_ENABLE |
  3003. GEN6_RP_UP_BUSY_AVG |
  3004. GEN6_RP_DOWN_IDLE_AVG);
  3005. break;
  3006. case HIGH_POWER:
  3007. /* Upclock if more than 85% busy over 10ms */
  3008. I915_WRITE(GEN6_RP_UP_EI, 8000);
  3009. I915_WRITE(GEN6_RP_UP_THRESHOLD, 6800);
  3010. /* Downclock if less than 60% busy over 32ms */
  3011. I915_WRITE(GEN6_RP_DOWN_EI, 25000);
  3012. I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 15000);
  3013. I915_WRITE(GEN6_RP_CONTROL,
  3014. GEN6_RP_MEDIA_TURBO |
  3015. GEN6_RP_MEDIA_HW_NORMAL_MODE |
  3016. GEN6_RP_MEDIA_IS_GFX |
  3017. GEN6_RP_ENABLE |
  3018. GEN6_RP_UP_BUSY_AVG |
  3019. GEN6_RP_DOWN_IDLE_AVG);
  3020. break;
  3021. }
  3022. dev_priv->rps.power = new_power;
  3023. dev_priv->rps.last_adj = 0;
  3024. }
  3025. void gen6_set_rps(struct drm_device *dev, u8 val)
  3026. {
  3027. struct drm_i915_private *dev_priv = dev->dev_private;
  3028. u32 limits = gen6_rps_limits(dev_priv, &val);
  3029. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  3030. WARN_ON(val > dev_priv->rps.max_delay);
  3031. WARN_ON(val < dev_priv->rps.min_delay);
  3032. if (val == dev_priv->rps.cur_delay)
  3033. return;
  3034. gen6_set_rps_thresholds(dev_priv, val);
  3035. if (IS_HASWELL(dev))
  3036. I915_WRITE(GEN6_RPNSWREQ,
  3037. HSW_FREQUENCY(val));
  3038. else
  3039. I915_WRITE(GEN6_RPNSWREQ,
  3040. GEN6_FREQUENCY(val) |
  3041. GEN6_OFFSET(0) |
  3042. GEN6_AGGRESSIVE_TURBO);
  3043. /* Make sure we continue to get interrupts
  3044. * until we hit the minimum or maximum frequencies.
  3045. */
  3046. I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, limits);
  3047. POSTING_READ(GEN6_RPNSWREQ);
  3048. dev_priv->rps.cur_delay = val;
  3049. trace_intel_gpu_freq_change(val * 50);
  3050. }
  3051. void gen6_rps_idle(struct drm_i915_private *dev_priv)
  3052. {
  3053. mutex_lock(&dev_priv->rps.hw_lock);
  3054. if (dev_priv->rps.enabled) {
  3055. if (dev_priv->info->is_valleyview)
  3056. valleyview_set_rps(dev_priv->dev, dev_priv->rps.min_delay);
  3057. else
  3058. gen6_set_rps(dev_priv->dev, dev_priv->rps.min_delay);
  3059. dev_priv->rps.last_adj = 0;
  3060. }
  3061. mutex_unlock(&dev_priv->rps.hw_lock);
  3062. }
  3063. void gen6_rps_boost(struct drm_i915_private *dev_priv)
  3064. {
  3065. mutex_lock(&dev_priv->rps.hw_lock);
  3066. if (dev_priv->rps.enabled) {
  3067. if (dev_priv->info->is_valleyview)
  3068. valleyview_set_rps(dev_priv->dev, dev_priv->rps.max_delay);
  3069. else
  3070. gen6_set_rps(dev_priv->dev, dev_priv->rps.max_delay);
  3071. dev_priv->rps.last_adj = 0;
  3072. }
  3073. mutex_unlock(&dev_priv->rps.hw_lock);
  3074. }
  3075. /*
  3076. * Wait until the previous freq change has completed,
  3077. * or the timeout elapsed, and then update our notion
  3078. * of the current GPU frequency.
  3079. */
  3080. static void vlv_update_rps_cur_delay(struct drm_i915_private *dev_priv)
  3081. {
  3082. u32 pval;
  3083. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  3084. if (wait_for(((pval = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS)) & GENFREQSTATUS) == 0, 10))
  3085. DRM_DEBUG_DRIVER("timed out waiting for Punit\n");
  3086. pval >>= 8;
  3087. if (pval != dev_priv->rps.cur_delay)
  3088. DRM_DEBUG_DRIVER("Punit overrode GPU freq: %d MHz (%u) requested, but got %d Mhz (%u)\n",
  3089. vlv_gpu_freq(dev_priv->mem_freq, dev_priv->rps.cur_delay),
  3090. dev_priv->rps.cur_delay,
  3091. vlv_gpu_freq(dev_priv->mem_freq, pval), pval);
  3092. dev_priv->rps.cur_delay = pval;
  3093. }
  3094. void valleyview_set_rps(struct drm_device *dev, u8 val)
  3095. {
  3096. struct drm_i915_private *dev_priv = dev->dev_private;
  3097. gen6_rps_limits(dev_priv, &val);
  3098. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  3099. WARN_ON(val > dev_priv->rps.max_delay);
  3100. WARN_ON(val < dev_priv->rps.min_delay);
  3101. vlv_update_rps_cur_delay(dev_priv);
  3102. DRM_DEBUG_DRIVER("GPU freq request from %d MHz (%u) to %d MHz (%u)\n",
  3103. vlv_gpu_freq(dev_priv->mem_freq,
  3104. dev_priv->rps.cur_delay),
  3105. dev_priv->rps.cur_delay,
  3106. vlv_gpu_freq(dev_priv->mem_freq, val), val);
  3107. if (val == dev_priv->rps.cur_delay)
  3108. return;
  3109. vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
  3110. dev_priv->rps.cur_delay = val;
  3111. trace_intel_gpu_freq_change(vlv_gpu_freq(dev_priv->mem_freq, val));
  3112. }
  3113. static void gen6_disable_rps_interrupts(struct drm_device *dev)
  3114. {
  3115. struct drm_i915_private *dev_priv = dev->dev_private;
  3116. I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
  3117. I915_WRITE(GEN6_PMIER, I915_READ(GEN6_PMIER) & ~GEN6_PM_RPS_EVENTS);
  3118. /* Complete PM interrupt masking here doesn't race with the rps work
  3119. * item again unmasking PM interrupts because that is using a different
  3120. * register (PMIMR) to mask PM interrupts. The only risk is in leaving
  3121. * stale bits in PMIIR and PMIMR which gen6_enable_rps will clean up. */
  3122. spin_lock_irq(&dev_priv->irq_lock);
  3123. dev_priv->rps.pm_iir = 0;
  3124. spin_unlock_irq(&dev_priv->irq_lock);
  3125. I915_WRITE(GEN6_PMIIR, GEN6_PM_RPS_EVENTS);
  3126. }
  3127. static void gen6_disable_rps(struct drm_device *dev)
  3128. {
  3129. struct drm_i915_private *dev_priv = dev->dev_private;
  3130. I915_WRITE(GEN6_RC_CONTROL, 0);
  3131. I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
  3132. gen6_disable_rps_interrupts(dev);
  3133. }
  3134. static void valleyview_disable_rps(struct drm_device *dev)
  3135. {
  3136. struct drm_i915_private *dev_priv = dev->dev_private;
  3137. I915_WRITE(GEN6_RC_CONTROL, 0);
  3138. gen6_disable_rps_interrupts(dev);
  3139. if (dev_priv->vlv_pctx) {
  3140. drm_gem_object_unreference(&dev_priv->vlv_pctx->base);
  3141. dev_priv->vlv_pctx = NULL;
  3142. }
  3143. }
  3144. static void intel_print_rc6_info(struct drm_device *dev, u32 mode)
  3145. {
  3146. if (IS_GEN6(dev))
  3147. DRM_DEBUG_DRIVER("Sandybridge: deep RC6 disabled\n");
  3148. if (IS_HASWELL(dev))
  3149. DRM_DEBUG_DRIVER("Haswell: only RC6 available\n");
  3150. DRM_INFO("Enabling RC6 states: RC6 %s, RC6p %s, RC6pp %s\n",
  3151. (mode & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off",
  3152. (mode & GEN6_RC_CTL_RC6p_ENABLE) ? "on" : "off",
  3153. (mode & GEN6_RC_CTL_RC6pp_ENABLE) ? "on" : "off");
  3154. }
  3155. int intel_enable_rc6(const struct drm_device *dev)
  3156. {
  3157. /* No RC6 before Ironlake */
  3158. if (INTEL_INFO(dev)->gen < 5)
  3159. return 0;
  3160. /* Respect the kernel parameter if it is set */
  3161. if (i915_enable_rc6 >= 0)
  3162. return i915_enable_rc6;
  3163. /* Disable RC6 on Ironlake */
  3164. if (INTEL_INFO(dev)->gen == 5)
  3165. return 0;
  3166. if (IS_HASWELL(dev))
  3167. return INTEL_RC6_ENABLE;
  3168. /* snb/ivb have more than one rc6 state. */
  3169. if (INTEL_INFO(dev)->gen == 6)
  3170. return INTEL_RC6_ENABLE;
  3171. return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
  3172. }
  3173. static void gen6_enable_rps_interrupts(struct drm_device *dev)
  3174. {
  3175. struct drm_i915_private *dev_priv = dev->dev_private;
  3176. u32 enabled_intrs;
  3177. spin_lock_irq(&dev_priv->irq_lock);
  3178. WARN_ON(dev_priv->rps.pm_iir);
  3179. snb_enable_pm_irq(dev_priv, GEN6_PM_RPS_EVENTS);
  3180. I915_WRITE(GEN6_PMIIR, GEN6_PM_RPS_EVENTS);
  3181. spin_unlock_irq(&dev_priv->irq_lock);
  3182. /* only unmask PM interrupts we need. Mask all others. */
  3183. enabled_intrs = GEN6_PM_RPS_EVENTS;
  3184. /* IVB and SNB hard hangs on looping batchbuffer
  3185. * if GEN6_PM_UP_EI_EXPIRED is masked.
  3186. */
  3187. if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
  3188. enabled_intrs |= GEN6_PM_RP_UP_EI_EXPIRED;
  3189. I915_WRITE(GEN6_PMINTRMSK, ~enabled_intrs);
  3190. }
  3191. static void gen8_enable_rps(struct drm_device *dev)
  3192. {
  3193. struct drm_i915_private *dev_priv = dev->dev_private;
  3194. struct intel_ring_buffer *ring;
  3195. uint32_t rc6_mask = 0, rp_state_cap;
  3196. int unused;
  3197. /* 1a: Software RC state - RC0 */
  3198. I915_WRITE(GEN6_RC_STATE, 0);
  3199. /* 1c & 1d: Get forcewake during program sequence. Although the driver
  3200. * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
  3201. gen6_gt_force_wake_get(dev_priv);
  3202. /* 2a: Disable RC states. */
  3203. I915_WRITE(GEN6_RC_CONTROL, 0);
  3204. rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
  3205. /* 2b: Program RC6 thresholds.*/
  3206. I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
  3207. I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
  3208. I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
  3209. for_each_ring(ring, dev_priv, unused)
  3210. I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
  3211. I915_WRITE(GEN6_RC_SLEEP, 0);
  3212. I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
  3213. /* 3: Enable RC6 */
  3214. if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
  3215. rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
  3216. DRM_INFO("RC6 %s\n", (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off");
  3217. I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
  3218. GEN6_RC_CTL_EI_MODE(1) |
  3219. rc6_mask);
  3220. /* 4 Program defaults and thresholds for RPS*/
  3221. I915_WRITE(GEN6_RPNSWREQ, HSW_FREQUENCY(10)); /* Request 500 MHz */
  3222. I915_WRITE(GEN6_RC_VIDEO_FREQ, HSW_FREQUENCY(12)); /* Request 600 MHz */
  3223. /* NB: Docs say 1s, and 1000000 - which aren't equivalent */
  3224. I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */
  3225. /* Docs recommend 900MHz, and 300 MHz respectively */
  3226. I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
  3227. dev_priv->rps.max_delay << 24 |
  3228. dev_priv->rps.min_delay << 16);
  3229. I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
  3230. I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
  3231. I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
  3232. I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */
  3233. I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
  3234. /* 5: Enable RPS */
  3235. I915_WRITE(GEN6_RP_CONTROL,
  3236. GEN6_RP_MEDIA_TURBO |
  3237. GEN6_RP_MEDIA_HW_NORMAL_MODE |
  3238. GEN6_RP_MEDIA_IS_GFX |
  3239. GEN6_RP_ENABLE |
  3240. GEN6_RP_UP_BUSY_AVG |
  3241. GEN6_RP_DOWN_IDLE_AVG);
  3242. /* 6: Ring frequency + overclocking (our driver does this later */
  3243. gen6_set_rps(dev, (I915_READ(GEN6_GT_PERF_STATUS) & 0xff00) >> 8);
  3244. gen6_enable_rps_interrupts(dev);
  3245. gen6_gt_force_wake_put(dev_priv);
  3246. }
  3247. static void gen6_enable_rps(struct drm_device *dev)
  3248. {
  3249. struct drm_i915_private *dev_priv = dev->dev_private;
  3250. struct intel_ring_buffer *ring;
  3251. u32 rp_state_cap;
  3252. u32 gt_perf_status;
  3253. u32 rc6vids, pcu_mbox, rc6_mask = 0;
  3254. u32 gtfifodbg;
  3255. int rc6_mode;
  3256. int i, ret;
  3257. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  3258. /* Here begins a magic sequence of register writes to enable
  3259. * auto-downclocking.
  3260. *
  3261. * Perhaps there might be some value in exposing these to
  3262. * userspace...
  3263. */
  3264. I915_WRITE(GEN6_RC_STATE, 0);
  3265. /* Clear the DBG now so we don't confuse earlier errors */
  3266. if ((gtfifodbg = I915_READ(GTFIFODBG))) {
  3267. DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
  3268. I915_WRITE(GTFIFODBG, gtfifodbg);
  3269. }
  3270. gen6_gt_force_wake_get(dev_priv);
  3271. rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
  3272. gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
  3273. /* In units of 50MHz */
  3274. dev_priv->rps.hw_max = dev_priv->rps.max_delay = rp_state_cap & 0xff;
  3275. dev_priv->rps.min_delay = (rp_state_cap >> 16) & 0xff;
  3276. dev_priv->rps.rp1_delay = (rp_state_cap >> 8) & 0xff;
  3277. dev_priv->rps.rp0_delay = (rp_state_cap >> 0) & 0xff;
  3278. dev_priv->rps.rpe_delay = dev_priv->rps.rp1_delay;
  3279. dev_priv->rps.cur_delay = 0;
  3280. /* disable the counters and set deterministic thresholds */
  3281. I915_WRITE(GEN6_RC_CONTROL, 0);
  3282. I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
  3283. I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
  3284. I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
  3285. I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
  3286. I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
  3287. for_each_ring(ring, dev_priv, i)
  3288. I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
  3289. I915_WRITE(GEN6_RC_SLEEP, 0);
  3290. I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
  3291. if (IS_IVYBRIDGE(dev))
  3292. I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
  3293. else
  3294. I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
  3295. I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
  3296. I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
  3297. /* Check if we are enabling RC6 */
  3298. rc6_mode = intel_enable_rc6(dev_priv->dev);
  3299. if (rc6_mode & INTEL_RC6_ENABLE)
  3300. rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;
  3301. /* We don't use those on Haswell */
  3302. if (!IS_HASWELL(dev)) {
  3303. if (rc6_mode & INTEL_RC6p_ENABLE)
  3304. rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
  3305. if (rc6_mode & INTEL_RC6pp_ENABLE)
  3306. rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
  3307. }
  3308. intel_print_rc6_info(dev, rc6_mask);
  3309. I915_WRITE(GEN6_RC_CONTROL,
  3310. rc6_mask |
  3311. GEN6_RC_CTL_EI_MODE(1) |
  3312. GEN6_RC_CTL_HW_ENABLE);
  3313. /* Power down if completely idle for over 50ms */
  3314. I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
  3315. I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
  3316. ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_MIN_FREQ_TABLE, 0);
  3317. if (!ret) {
  3318. pcu_mbox = 0;
  3319. ret = sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &pcu_mbox);
  3320. if (!ret && (pcu_mbox & (1<<31))) { /* OC supported */
  3321. DRM_DEBUG_DRIVER("Overclocking supported. Max: %dMHz, Overclock max: %dMHz\n",
  3322. (dev_priv->rps.max_delay & 0xff) * 50,
  3323. (pcu_mbox & 0xff) * 50);
  3324. dev_priv->rps.hw_max = pcu_mbox & 0xff;
  3325. }
  3326. } else {
  3327. DRM_DEBUG_DRIVER("Failed to set the min frequency\n");
  3328. }
  3329. dev_priv->rps.power = HIGH_POWER; /* force a reset */
  3330. gen6_set_rps(dev_priv->dev, dev_priv->rps.min_delay);
  3331. gen6_enable_rps_interrupts(dev);
  3332. rc6vids = 0;
  3333. ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
  3334. if (IS_GEN6(dev) && ret) {
  3335. DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
  3336. } else if (IS_GEN6(dev) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
  3337. DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
  3338. GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
  3339. rc6vids &= 0xffff00;
  3340. rc6vids |= GEN6_ENCODE_RC6_VID(450);
  3341. ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
  3342. if (ret)
  3343. DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
  3344. }
  3345. gen6_gt_force_wake_put(dev_priv);
  3346. }
  3347. void gen6_update_ring_freq(struct drm_device *dev)
  3348. {
  3349. struct drm_i915_private *dev_priv = dev->dev_private;
  3350. int min_freq = 15;
  3351. unsigned int gpu_freq;
  3352. unsigned int max_ia_freq, min_ring_freq;
  3353. int scaling_factor = 180;
  3354. struct cpufreq_policy *policy;
  3355. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  3356. policy = cpufreq_cpu_get(0);
  3357. if (policy) {
  3358. max_ia_freq = policy->cpuinfo.max_freq;
  3359. cpufreq_cpu_put(policy);
  3360. } else {
  3361. /*
  3362. * Default to measured freq if none found, PCU will ensure we
  3363. * don't go over
  3364. */
  3365. max_ia_freq = tsc_khz;
  3366. }
  3367. /* Convert from kHz to MHz */
  3368. max_ia_freq /= 1000;
  3369. min_ring_freq = I915_READ(DCLK) & 0xf;
  3370. /* convert DDR frequency from units of 266.6MHz to bandwidth */
  3371. min_ring_freq = mult_frac(min_ring_freq, 8, 3);
  3372. /*
  3373. * For each potential GPU frequency, load a ring frequency we'd like
  3374. * to use for memory access. We do this by specifying the IA frequency
  3375. * the PCU should use as a reference to determine the ring frequency.
  3376. */
  3377. for (gpu_freq = dev_priv->rps.max_delay; gpu_freq >= dev_priv->rps.min_delay;
  3378. gpu_freq--) {
  3379. int diff = dev_priv->rps.max_delay - gpu_freq;
  3380. unsigned int ia_freq = 0, ring_freq = 0;
  3381. if (INTEL_INFO(dev)->gen >= 8) {
  3382. /* max(2 * GT, DDR). NB: GT is 50MHz units */
  3383. ring_freq = max(min_ring_freq, gpu_freq);
  3384. } else if (IS_HASWELL(dev)) {
  3385. ring_freq = mult_frac(gpu_freq, 5, 4);
  3386. ring_freq = max(min_ring_freq, ring_freq);
  3387. /* leave ia_freq as the default, chosen by cpufreq */
  3388. } else {
  3389. /* On older processors, there is no separate ring
  3390. * clock domain, so in order to boost the bandwidth
  3391. * of the ring, we need to upclock the CPU (ia_freq).
  3392. *
  3393. * For GPU frequencies less than 750MHz,
  3394. * just use the lowest ring freq.
  3395. */
  3396. if (gpu_freq < min_freq)
  3397. ia_freq = 800;
  3398. else
  3399. ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
  3400. ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
  3401. }
  3402. sandybridge_pcode_write(dev_priv,
  3403. GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
  3404. ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
  3405. ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
  3406. gpu_freq);
  3407. }
  3408. }
  3409. int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
  3410. {
  3411. u32 val, rp0;
  3412. val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
  3413. rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
  3414. /* Clamp to max */
  3415. rp0 = min_t(u32, rp0, 0xea);
  3416. return rp0;
  3417. }
  3418. static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
  3419. {
  3420. u32 val, rpe;
  3421. val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
  3422. rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
  3423. val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
  3424. rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;
  3425. return rpe;
  3426. }
  3427. int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
  3428. {
  3429. return vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
  3430. }
  3431. static void valleyview_setup_pctx(struct drm_device *dev)
  3432. {
  3433. struct drm_i915_private *dev_priv = dev->dev_private;
  3434. struct drm_i915_gem_object *pctx;
  3435. unsigned long pctx_paddr;
  3436. u32 pcbr;
  3437. int pctx_size = 24*1024;
  3438. pcbr = I915_READ(VLV_PCBR);
  3439. if (pcbr) {
  3440. /* BIOS set it up already, grab the pre-alloc'd space */
  3441. int pcbr_offset;
  3442. pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
  3443. pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv->dev,
  3444. pcbr_offset,
  3445. I915_GTT_OFFSET_NONE,
  3446. pctx_size);
  3447. goto out;
  3448. }
  3449. /*
  3450. * From the Gunit register HAS:
  3451. * The Gfx driver is expected to program this register and ensure
  3452. * proper allocation within Gfx stolen memory. For example, this
  3453. * register should be programmed such than the PCBR range does not
  3454. * overlap with other ranges, such as the frame buffer, protected
  3455. * memory, or any other relevant ranges.
  3456. */
  3457. pctx = i915_gem_object_create_stolen(dev, pctx_size);
  3458. if (!pctx) {
  3459. DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
  3460. return;
  3461. }
  3462. pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
  3463. I915_WRITE(VLV_PCBR, pctx_paddr);
  3464. out:
  3465. dev_priv->vlv_pctx = pctx;
  3466. }
  3467. static void valleyview_enable_rps(struct drm_device *dev)
  3468. {
  3469. struct drm_i915_private *dev_priv = dev->dev_private;
  3470. struct intel_ring_buffer *ring;
  3471. u32 gtfifodbg, val, rc6_mode = 0;
  3472. int i;
  3473. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  3474. if ((gtfifodbg = I915_READ(GTFIFODBG))) {
  3475. DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
  3476. gtfifodbg);
  3477. I915_WRITE(GTFIFODBG, gtfifodbg);
  3478. }
  3479. valleyview_setup_pctx(dev);
  3480. gen6_gt_force_wake_get(dev_priv);
  3481. I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
  3482. I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
  3483. I915_WRITE(GEN6_RP_UP_EI, 66000);
  3484. I915_WRITE(GEN6_RP_DOWN_EI, 350000);
  3485. I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
  3486. I915_WRITE(GEN6_RP_CONTROL,
  3487. GEN6_RP_MEDIA_TURBO |
  3488. GEN6_RP_MEDIA_HW_NORMAL_MODE |
  3489. GEN6_RP_MEDIA_IS_GFX |
  3490. GEN6_RP_ENABLE |
  3491. GEN6_RP_UP_BUSY_AVG |
  3492. GEN6_RP_DOWN_IDLE_CONT);
  3493. I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
  3494. I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
  3495. I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
  3496. for_each_ring(ring, dev_priv, i)
  3497. I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
  3498. I915_WRITE(GEN6_RC6_THRESHOLD, 0xc350);
  3499. /* allows RC6 residency counter to work */
  3500. I915_WRITE(VLV_COUNTER_CONTROL,
  3501. _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
  3502. VLV_MEDIA_RC6_COUNT_EN |
  3503. VLV_RENDER_RC6_COUNT_EN));
  3504. if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
  3505. rc6_mode = GEN7_RC_CTL_TO_MODE;
  3506. intel_print_rc6_info(dev, rc6_mode);
  3507. I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
  3508. val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
  3509. switch ((val >> 6) & 3) {
  3510. case 0:
  3511. case 1:
  3512. dev_priv->mem_freq = 800;
  3513. break;
  3514. case 2:
  3515. dev_priv->mem_freq = 1066;
  3516. break;
  3517. case 3:
  3518. dev_priv->mem_freq = 1333;
  3519. break;
  3520. }
  3521. DRM_DEBUG_DRIVER("DDR speed: %d MHz", dev_priv->mem_freq);
  3522. DRM_DEBUG_DRIVER("GPLL enabled? %s\n", val & 0x10 ? "yes" : "no");
  3523. DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
  3524. dev_priv->rps.cur_delay = (val >> 8) & 0xff;
  3525. DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
  3526. vlv_gpu_freq(dev_priv->mem_freq,
  3527. dev_priv->rps.cur_delay),
  3528. dev_priv->rps.cur_delay);
  3529. dev_priv->rps.max_delay = valleyview_rps_max_freq(dev_priv);
  3530. dev_priv->rps.hw_max = dev_priv->rps.max_delay;
  3531. DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
  3532. vlv_gpu_freq(dev_priv->mem_freq,
  3533. dev_priv->rps.max_delay),
  3534. dev_priv->rps.max_delay);
  3535. dev_priv->rps.rpe_delay = valleyview_rps_rpe_freq(dev_priv);
  3536. DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
  3537. vlv_gpu_freq(dev_priv->mem_freq,
  3538. dev_priv->rps.rpe_delay),
  3539. dev_priv->rps.rpe_delay);
  3540. dev_priv->rps.min_delay = valleyview_rps_min_freq(dev_priv);
  3541. DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
  3542. vlv_gpu_freq(dev_priv->mem_freq,
  3543. dev_priv->rps.min_delay),
  3544. dev_priv->rps.min_delay);
  3545. DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
  3546. vlv_gpu_freq(dev_priv->mem_freq,
  3547. dev_priv->rps.rpe_delay),
  3548. dev_priv->rps.rpe_delay);
  3549. valleyview_set_rps(dev_priv->dev, dev_priv->rps.rpe_delay);
  3550. gen6_enable_rps_interrupts(dev);
  3551. gen6_gt_force_wake_put(dev_priv);
  3552. }
  3553. void ironlake_teardown_rc6(struct drm_device *dev)
  3554. {
  3555. struct drm_i915_private *dev_priv = dev->dev_private;
  3556. if (dev_priv->ips.renderctx) {
  3557. i915_gem_object_unpin(dev_priv->ips.renderctx);
  3558. drm_gem_object_unreference(&dev_priv->ips.renderctx->base);
  3559. dev_priv->ips.renderctx = NULL;
  3560. }
  3561. if (dev_priv->ips.pwrctx) {
  3562. i915_gem_object_unpin(dev_priv->ips.pwrctx);
  3563. drm_gem_object_unreference(&dev_priv->ips.pwrctx->base);
  3564. dev_priv->ips.pwrctx = NULL;
  3565. }
  3566. }
  3567. static void ironlake_disable_rc6(struct drm_device *dev)
  3568. {
  3569. struct drm_i915_private *dev_priv = dev->dev_private;
  3570. if (I915_READ(PWRCTXA)) {
  3571. /* Wake the GPU, prevent RC6, then restore RSTDBYCTL */
  3572. I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) | RCX_SW_EXIT);
  3573. wait_for(((I915_READ(RSTDBYCTL) & RSX_STATUS_MASK) == RSX_STATUS_ON),
  3574. 50);
  3575. I915_WRITE(PWRCTXA, 0);
  3576. POSTING_READ(PWRCTXA);
  3577. I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
  3578. POSTING_READ(RSTDBYCTL);
  3579. }
  3580. }
  3581. static int ironlake_setup_rc6(struct drm_device *dev)
  3582. {
  3583. struct drm_i915_private *dev_priv = dev->dev_private;
  3584. if (dev_priv->ips.renderctx == NULL)
  3585. dev_priv->ips.renderctx = intel_alloc_context_page(dev);
  3586. if (!dev_priv->ips.renderctx)
  3587. return -ENOMEM;
  3588. if (dev_priv->ips.pwrctx == NULL)
  3589. dev_priv->ips.pwrctx = intel_alloc_context_page(dev);
  3590. if (!dev_priv->ips.pwrctx) {
  3591. ironlake_teardown_rc6(dev);
  3592. return -ENOMEM;
  3593. }
  3594. return 0;
  3595. }
  3596. static void ironlake_enable_rc6(struct drm_device *dev)
  3597. {
  3598. struct drm_i915_private *dev_priv = dev->dev_private;
  3599. struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
  3600. bool was_interruptible;
  3601. int ret;
  3602. /* rc6 disabled by default due to repeated reports of hanging during
  3603. * boot and resume.
  3604. */
  3605. if (!intel_enable_rc6(dev))
  3606. return;
  3607. WARN_ON(!mutex_is_locked(&dev->struct_mutex));
  3608. ret = ironlake_setup_rc6(dev);
  3609. if (ret)
  3610. return;
  3611. was_interruptible = dev_priv->mm.interruptible;
  3612. dev_priv->mm.interruptible = false;
  3613. /*
  3614. * GPU can automatically power down the render unit if given a page
  3615. * to save state.
  3616. */
  3617. ret = intel_ring_begin(ring, 6);
  3618. if (ret) {
  3619. ironlake_teardown_rc6(dev);
  3620. dev_priv->mm.interruptible = was_interruptible;
  3621. return;
  3622. }
  3623. intel_ring_emit(ring, MI_SUSPEND_FLUSH | MI_SUSPEND_FLUSH_EN);
  3624. intel_ring_emit(ring, MI_SET_CONTEXT);
  3625. intel_ring_emit(ring, i915_gem_obj_ggtt_offset(dev_priv->ips.renderctx) |
  3626. MI_MM_SPACE_GTT |
  3627. MI_SAVE_EXT_STATE_EN |
  3628. MI_RESTORE_EXT_STATE_EN |
  3629. MI_RESTORE_INHIBIT);
  3630. intel_ring_emit(ring, MI_SUSPEND_FLUSH);
  3631. intel_ring_emit(ring, MI_NOOP);
  3632. intel_ring_emit(ring, MI_FLUSH);
  3633. intel_ring_advance(ring);
  3634. /*
  3635. * Wait for the command parser to advance past MI_SET_CONTEXT. The HW
  3636. * does an implicit flush, combined with MI_FLUSH above, it should be
  3637. * safe to assume that renderctx is valid
  3638. */
  3639. ret = intel_ring_idle(ring);
  3640. dev_priv->mm.interruptible = was_interruptible;
  3641. if (ret) {
  3642. DRM_ERROR("failed to enable ironlake power savings\n");
  3643. ironlake_teardown_rc6(dev);
  3644. return;
  3645. }
  3646. I915_WRITE(PWRCTXA, i915_gem_obj_ggtt_offset(dev_priv->ips.pwrctx) | PWRCTX_EN);
  3647. I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
  3648. intel_print_rc6_info(dev, INTEL_RC6_ENABLE);
  3649. }
  3650. static unsigned long intel_pxfreq(u32 vidfreq)
  3651. {
  3652. unsigned long freq;
  3653. int div = (vidfreq & 0x3f0000) >> 16;
  3654. int post = (vidfreq & 0x3000) >> 12;
  3655. int pre = (vidfreq & 0x7);
  3656. if (!pre)
  3657. return 0;
  3658. freq = ((div * 133333) / ((1<<post) * pre));
  3659. return freq;
  3660. }
  3661. static const struct cparams {
  3662. u16 i;
  3663. u16 t;
  3664. u16 m;
  3665. u16 c;
  3666. } cparams[] = {
  3667. { 1, 1333, 301, 28664 },
  3668. { 1, 1066, 294, 24460 },
  3669. { 1, 800, 294, 25192 },
  3670. { 0, 1333, 276, 27605 },
  3671. { 0, 1066, 276, 27605 },
  3672. { 0, 800, 231, 23784 },
  3673. };
  3674. static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
  3675. {
  3676. u64 total_count, diff, ret;
  3677. u32 count1, count2, count3, m = 0, c = 0;
  3678. unsigned long now = jiffies_to_msecs(jiffies), diff1;
  3679. int i;
  3680. assert_spin_locked(&mchdev_lock);
  3681. diff1 = now - dev_priv->ips.last_time1;
  3682. /* Prevent division-by-zero if we are asking too fast.
  3683. * Also, we don't get interesting results if we are polling
  3684. * faster than once in 10ms, so just return the saved value
  3685. * in such cases.
  3686. */
  3687. if (diff1 <= 10)
  3688. return dev_priv->ips.chipset_power;
  3689. count1 = I915_READ(DMIEC);
  3690. count2 = I915_READ(DDREC);
  3691. count3 = I915_READ(CSIEC);
  3692. total_count = count1 + count2 + count3;
  3693. /* FIXME: handle per-counter overflow */
  3694. if (total_count < dev_priv->ips.last_count1) {
  3695. diff = ~0UL - dev_priv->ips.last_count1;
  3696. diff += total_count;
  3697. } else {
  3698. diff = total_count - dev_priv->ips.last_count1;
  3699. }
  3700. for (i = 0; i < ARRAY_SIZE(cparams); i++) {
  3701. if (cparams[i].i == dev_priv->ips.c_m &&
  3702. cparams[i].t == dev_priv->ips.r_t) {
  3703. m = cparams[i].m;
  3704. c = cparams[i].c;
  3705. break;
  3706. }
  3707. }
  3708. diff = div_u64(diff, diff1);
  3709. ret = ((m * diff) + c);
  3710. ret = div_u64(ret, 10);
  3711. dev_priv->ips.last_count1 = total_count;
  3712. dev_priv->ips.last_time1 = now;
  3713. dev_priv->ips.chipset_power = ret;
  3714. return ret;
  3715. }
  3716. unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
  3717. {
  3718. unsigned long val;
  3719. if (dev_priv->info->gen != 5)
  3720. return 0;
  3721. spin_lock_irq(&mchdev_lock);
  3722. val = __i915_chipset_val(dev_priv);
  3723. spin_unlock_irq(&mchdev_lock);
  3724. return val;
  3725. }
  3726. unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
  3727. {
  3728. unsigned long m, x, b;
  3729. u32 tsfs;
  3730. tsfs = I915_READ(TSFS);
  3731. m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
  3732. x = I915_READ8(TR1);
  3733. b = tsfs & TSFS_INTR_MASK;
  3734. return ((m * x) / 127) - b;
  3735. }
  3736. static u16 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
  3737. {
  3738. static const struct v_table {
  3739. u16 vd; /* in .1 mil */
  3740. u16 vm; /* in .1 mil */
  3741. } v_table[] = {
  3742. { 0, 0, },
  3743. { 375, 0, },
  3744. { 500, 0, },
  3745. { 625, 0, },
  3746. { 750, 0, },
  3747. { 875, 0, },
  3748. { 1000, 0, },
  3749. { 1125, 0, },
  3750. { 4125, 3000, },
  3751. { 4125, 3000, },
  3752. { 4125, 3000, },
  3753. { 4125, 3000, },
  3754. { 4125, 3000, },
  3755. { 4125, 3000, },
  3756. { 4125, 3000, },
  3757. { 4125, 3000, },
  3758. { 4125, 3000, },
  3759. { 4125, 3000, },
  3760. { 4125, 3000, },
  3761. { 4125, 3000, },
  3762. { 4125, 3000, },
  3763. { 4125, 3000, },
  3764. { 4125, 3000, },
  3765. { 4125, 3000, },
  3766. { 4125, 3000, },
  3767. { 4125, 3000, },
  3768. { 4125, 3000, },
  3769. { 4125, 3000, },
  3770. { 4125, 3000, },
  3771. { 4125, 3000, },
  3772. { 4125, 3000, },
  3773. { 4125, 3000, },
  3774. { 4250, 3125, },
  3775. { 4375, 3250, },
  3776. { 4500, 3375, },
  3777. { 4625, 3500, },
  3778. { 4750, 3625, },
  3779. { 4875, 3750, },
  3780. { 5000, 3875, },
  3781. { 5125, 4000, },
  3782. { 5250, 4125, },
  3783. { 5375, 4250, },
  3784. { 5500, 4375, },
  3785. { 5625, 4500, },
  3786. { 5750, 4625, },
  3787. { 5875, 4750, },
  3788. { 6000, 4875, },
  3789. { 6125, 5000, },
  3790. { 6250, 5125, },
  3791. { 6375, 5250, },
  3792. { 6500, 5375, },
  3793. { 6625, 5500, },
  3794. { 6750, 5625, },
  3795. { 6875, 5750, },
  3796. { 7000, 5875, },
  3797. { 7125, 6000, },
  3798. { 7250, 6125, },
  3799. { 7375, 6250, },
  3800. { 7500, 6375, },
  3801. { 7625, 6500, },
  3802. { 7750, 6625, },
  3803. { 7875, 6750, },
  3804. { 8000, 6875, },
  3805. { 8125, 7000, },
  3806. { 8250, 7125, },
  3807. { 8375, 7250, },
  3808. { 8500, 7375, },
  3809. { 8625, 7500, },
  3810. { 8750, 7625, },
  3811. { 8875, 7750, },
  3812. { 9000, 7875, },
  3813. { 9125, 8000, },
  3814. { 9250, 8125, },
  3815. { 9375, 8250, },
  3816. { 9500, 8375, },
  3817. { 9625, 8500, },
  3818. { 9750, 8625, },
  3819. { 9875, 8750, },
  3820. { 10000, 8875, },
  3821. { 10125, 9000, },
  3822. { 10250, 9125, },
  3823. { 10375, 9250, },
  3824. { 10500, 9375, },
  3825. { 10625, 9500, },
  3826. { 10750, 9625, },
  3827. { 10875, 9750, },
  3828. { 11000, 9875, },
  3829. { 11125, 10000, },
  3830. { 11250, 10125, },
  3831. { 11375, 10250, },
  3832. { 11500, 10375, },
  3833. { 11625, 10500, },
  3834. { 11750, 10625, },
  3835. { 11875, 10750, },
  3836. { 12000, 10875, },
  3837. { 12125, 11000, },
  3838. { 12250, 11125, },
  3839. { 12375, 11250, },
  3840. { 12500, 11375, },
  3841. { 12625, 11500, },
  3842. { 12750, 11625, },
  3843. { 12875, 11750, },
  3844. { 13000, 11875, },
  3845. { 13125, 12000, },
  3846. { 13250, 12125, },
  3847. { 13375, 12250, },
  3848. { 13500, 12375, },
  3849. { 13625, 12500, },
  3850. { 13750, 12625, },
  3851. { 13875, 12750, },
  3852. { 14000, 12875, },
  3853. { 14125, 13000, },
  3854. { 14250, 13125, },
  3855. { 14375, 13250, },
  3856. { 14500, 13375, },
  3857. { 14625, 13500, },
  3858. { 14750, 13625, },
  3859. { 14875, 13750, },
  3860. { 15000, 13875, },
  3861. { 15125, 14000, },
  3862. { 15250, 14125, },
  3863. { 15375, 14250, },
  3864. { 15500, 14375, },
  3865. { 15625, 14500, },
  3866. { 15750, 14625, },
  3867. { 15875, 14750, },
  3868. { 16000, 14875, },
  3869. { 16125, 15000, },
  3870. };
  3871. if (dev_priv->info->is_mobile)
  3872. return v_table[pxvid].vm;
  3873. else
  3874. return v_table[pxvid].vd;
  3875. }
  3876. static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
  3877. {
  3878. struct timespec now, diff1;
  3879. u64 diff;
  3880. unsigned long diffms;
  3881. u32 count;
  3882. assert_spin_locked(&mchdev_lock);
  3883. getrawmonotonic(&now);
  3884. diff1 = timespec_sub(now, dev_priv->ips.last_time2);
  3885. /* Don't divide by 0 */
  3886. diffms = diff1.tv_sec * 1000 + diff1.tv_nsec / 1000000;
  3887. if (!diffms)
  3888. return;
  3889. count = I915_READ(GFXEC);
  3890. if (count < dev_priv->ips.last_count2) {
  3891. diff = ~0UL - dev_priv->ips.last_count2;
  3892. diff += count;
  3893. } else {
  3894. diff = count - dev_priv->ips.last_count2;
  3895. }
  3896. dev_priv->ips.last_count2 = count;
  3897. dev_priv->ips.last_time2 = now;
  3898. /* More magic constants... */
  3899. diff = diff * 1181;
  3900. diff = div_u64(diff, diffms * 10);
  3901. dev_priv->ips.gfx_power = diff;
  3902. }
  3903. void i915_update_gfx_val(struct drm_i915_private *dev_priv)
  3904. {
  3905. if (dev_priv->info->gen != 5)
  3906. return;
  3907. spin_lock_irq(&mchdev_lock);
  3908. __i915_update_gfx_val(dev_priv);
  3909. spin_unlock_irq(&mchdev_lock);
  3910. }
  3911. static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
  3912. {
  3913. unsigned long t, corr, state1, corr2, state2;
  3914. u32 pxvid, ext_v;
  3915. assert_spin_locked(&mchdev_lock);
  3916. pxvid = I915_READ(PXVFREQ_BASE + (dev_priv->rps.cur_delay * 4));
  3917. pxvid = (pxvid >> 24) & 0x7f;
  3918. ext_v = pvid_to_extvid(dev_priv, pxvid);
  3919. state1 = ext_v;
  3920. t = i915_mch_val(dev_priv);
  3921. /* Revel in the empirically derived constants */
  3922. /* Correction factor in 1/100000 units */
  3923. if (t > 80)
  3924. corr = ((t * 2349) + 135940);
  3925. else if (t >= 50)
  3926. corr = ((t * 964) + 29317);
  3927. else /* < 50 */
  3928. corr = ((t * 301) + 1004);
  3929. corr = corr * ((150142 * state1) / 10000 - 78642);
  3930. corr /= 100000;
  3931. corr2 = (corr * dev_priv->ips.corr);
  3932. state2 = (corr2 * state1) / 10000;
  3933. state2 /= 100; /* convert to mW */
  3934. __i915_update_gfx_val(dev_priv);
  3935. return dev_priv->ips.gfx_power + state2;
  3936. }
  3937. unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
  3938. {
  3939. unsigned long val;
  3940. if (dev_priv->info->gen != 5)
  3941. return 0;
  3942. spin_lock_irq(&mchdev_lock);
  3943. val = __i915_gfx_val(dev_priv);
  3944. spin_unlock_irq(&mchdev_lock);
  3945. return val;
  3946. }
  3947. /**
  3948. * i915_read_mch_val - return value for IPS use
  3949. *
  3950. * Calculate and return a value for the IPS driver to use when deciding whether
  3951. * we have thermal and power headroom to increase CPU or GPU power budget.
  3952. */
  3953. unsigned long i915_read_mch_val(void)
  3954. {
  3955. struct drm_i915_private *dev_priv;
  3956. unsigned long chipset_val, graphics_val, ret = 0;
  3957. spin_lock_irq(&mchdev_lock);
  3958. if (!i915_mch_dev)
  3959. goto out_unlock;
  3960. dev_priv = i915_mch_dev;
  3961. chipset_val = __i915_chipset_val(dev_priv);
  3962. graphics_val = __i915_gfx_val(dev_priv);
  3963. ret = chipset_val + graphics_val;
  3964. out_unlock:
  3965. spin_unlock_irq(&mchdev_lock);
  3966. return ret;
  3967. }
  3968. EXPORT_SYMBOL_GPL(i915_read_mch_val);
  3969. /**
  3970. * i915_gpu_raise - raise GPU frequency limit
  3971. *
  3972. * Raise the limit; IPS indicates we have thermal headroom.
  3973. */
  3974. bool i915_gpu_raise(void)
  3975. {
  3976. struct drm_i915_private *dev_priv;
  3977. bool ret = true;
  3978. spin_lock_irq(&mchdev_lock);
  3979. if (!i915_mch_dev) {
  3980. ret = false;
  3981. goto out_unlock;
  3982. }
  3983. dev_priv = i915_mch_dev;
  3984. if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
  3985. dev_priv->ips.max_delay--;
  3986. out_unlock:
  3987. spin_unlock_irq(&mchdev_lock);
  3988. return ret;
  3989. }
  3990. EXPORT_SYMBOL_GPL(i915_gpu_raise);
  3991. /**
  3992. * i915_gpu_lower - lower GPU frequency limit
  3993. *
  3994. * IPS indicates we're close to a thermal limit, so throttle back the GPU
  3995. * frequency maximum.
  3996. */
  3997. bool i915_gpu_lower(void)
  3998. {
  3999. struct drm_i915_private *dev_priv;
  4000. bool ret = true;
  4001. spin_lock_irq(&mchdev_lock);
  4002. if (!i915_mch_dev) {
  4003. ret = false;
  4004. goto out_unlock;
  4005. }
  4006. dev_priv = i915_mch_dev;
  4007. if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
  4008. dev_priv->ips.max_delay++;
  4009. out_unlock:
  4010. spin_unlock_irq(&mchdev_lock);
  4011. return ret;
  4012. }
  4013. EXPORT_SYMBOL_GPL(i915_gpu_lower);
  4014. /**
  4015. * i915_gpu_busy - indicate GPU business to IPS
  4016. *
  4017. * Tell the IPS driver whether or not the GPU is busy.
  4018. */
  4019. bool i915_gpu_busy(void)
  4020. {
  4021. struct drm_i915_private *dev_priv;
  4022. struct intel_ring_buffer *ring;
  4023. bool ret = false;
  4024. int i;
  4025. spin_lock_irq(&mchdev_lock);
  4026. if (!i915_mch_dev)
  4027. goto out_unlock;
  4028. dev_priv = i915_mch_dev;
  4029. for_each_ring(ring, dev_priv, i)
  4030. ret |= !list_empty(&ring->request_list);
  4031. out_unlock:
  4032. spin_unlock_irq(&mchdev_lock);
  4033. return ret;
  4034. }
  4035. EXPORT_SYMBOL_GPL(i915_gpu_busy);
  4036. /**
  4037. * i915_gpu_turbo_disable - disable graphics turbo
  4038. *
  4039. * Disable graphics turbo by resetting the max frequency and setting the
  4040. * current frequency to the default.
  4041. */
  4042. bool i915_gpu_turbo_disable(void)
  4043. {
  4044. struct drm_i915_private *dev_priv;
  4045. bool ret = true;
  4046. spin_lock_irq(&mchdev_lock);
  4047. if (!i915_mch_dev) {
  4048. ret = false;
  4049. goto out_unlock;
  4050. }
  4051. dev_priv = i915_mch_dev;
  4052. dev_priv->ips.max_delay = dev_priv->ips.fstart;
  4053. if (!ironlake_set_drps(dev_priv->dev, dev_priv->ips.fstart))
  4054. ret = false;
  4055. out_unlock:
  4056. spin_unlock_irq(&mchdev_lock);
  4057. return ret;
  4058. }
  4059. EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
  4060. /**
  4061. * Tells the intel_ips driver that the i915 driver is now loaded, if
  4062. * IPS got loaded first.
  4063. *
  4064. * This awkward dance is so that neither module has to depend on the
  4065. * other in order for IPS to do the appropriate communication of
  4066. * GPU turbo limits to i915.
  4067. */
  4068. static void
  4069. ips_ping_for_i915_load(void)
  4070. {
  4071. void (*link)(void);
  4072. link = symbol_get(ips_link_to_i915_driver);
  4073. if (link) {
  4074. link();
  4075. symbol_put(ips_link_to_i915_driver);
  4076. }
  4077. }
  4078. void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
  4079. {
  4080. /* We only register the i915 ips part with intel-ips once everything is
  4081. * set up, to avoid intel-ips sneaking in and reading bogus values. */
  4082. spin_lock_irq(&mchdev_lock);
  4083. i915_mch_dev = dev_priv;
  4084. spin_unlock_irq(&mchdev_lock);
  4085. ips_ping_for_i915_load();
  4086. }
  4087. void intel_gpu_ips_teardown(void)
  4088. {
  4089. spin_lock_irq(&mchdev_lock);
  4090. i915_mch_dev = NULL;
  4091. spin_unlock_irq(&mchdev_lock);
  4092. }
  4093. static void intel_init_emon(struct drm_device *dev)
  4094. {
  4095. struct drm_i915_private *dev_priv = dev->dev_private;
  4096. u32 lcfuse;
  4097. u8 pxw[16];
  4098. int i;
  4099. /* Disable to program */
  4100. I915_WRITE(ECR, 0);
  4101. POSTING_READ(ECR);
  4102. /* Program energy weights for various events */
  4103. I915_WRITE(SDEW, 0x15040d00);
  4104. I915_WRITE(CSIEW0, 0x007f0000);
  4105. I915_WRITE(CSIEW1, 0x1e220004);
  4106. I915_WRITE(CSIEW2, 0x04000004);
  4107. for (i = 0; i < 5; i++)
  4108. I915_WRITE(PEW + (i * 4), 0);
  4109. for (i = 0; i < 3; i++)
  4110. I915_WRITE(DEW + (i * 4), 0);
  4111. /* Program P-state weights to account for frequency power adjustment */
  4112. for (i = 0; i < 16; i++) {
  4113. u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
  4114. unsigned long freq = intel_pxfreq(pxvidfreq);
  4115. unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
  4116. PXVFREQ_PX_SHIFT;
  4117. unsigned long val;
  4118. val = vid * vid;
  4119. val *= (freq / 1000);
  4120. val *= 255;
  4121. val /= (127*127*900);
  4122. if (val > 0xff)
  4123. DRM_ERROR("bad pxval: %ld\n", val);
  4124. pxw[i] = val;
  4125. }
  4126. /* Render standby states get 0 weight */
  4127. pxw[14] = 0;
  4128. pxw[15] = 0;
  4129. for (i = 0; i < 4; i++) {
  4130. u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
  4131. (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
  4132. I915_WRITE(PXW + (i * 4), val);
  4133. }
  4134. /* Adjust magic regs to magic values (more experimental results) */
  4135. I915_WRITE(OGW0, 0);
  4136. I915_WRITE(OGW1, 0);
  4137. I915_WRITE(EG0, 0x00007f00);
  4138. I915_WRITE(EG1, 0x0000000e);
  4139. I915_WRITE(EG2, 0x000e0000);
  4140. I915_WRITE(EG3, 0x68000300);
  4141. I915_WRITE(EG4, 0x42000000);
  4142. I915_WRITE(EG5, 0x00140031);
  4143. I915_WRITE(EG6, 0);
  4144. I915_WRITE(EG7, 0);
  4145. for (i = 0; i < 8; i++)
  4146. I915_WRITE(PXWL + (i * 4), 0);
  4147. /* Enable PMON + select events */
  4148. I915_WRITE(ECR, 0x80000019);
  4149. lcfuse = I915_READ(LCFUSE02);
  4150. dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
  4151. }
  4152. void intel_disable_gt_powersave(struct drm_device *dev)
  4153. {
  4154. struct drm_i915_private *dev_priv = dev->dev_private;
  4155. /* Interrupts should be disabled already to avoid re-arming. */
  4156. WARN_ON(dev->irq_enabled);
  4157. if (IS_IRONLAKE_M(dev)) {
  4158. ironlake_disable_drps(dev);
  4159. ironlake_disable_rc6(dev);
  4160. } else if (INTEL_INFO(dev)->gen >= 6) {
  4161. cancel_delayed_work_sync(&dev_priv->rps.delayed_resume_work);
  4162. cancel_work_sync(&dev_priv->rps.work);
  4163. mutex_lock(&dev_priv->rps.hw_lock);
  4164. if (IS_VALLEYVIEW(dev))
  4165. valleyview_disable_rps(dev);
  4166. else
  4167. gen6_disable_rps(dev);
  4168. dev_priv->rps.enabled = false;
  4169. mutex_unlock(&dev_priv->rps.hw_lock);
  4170. }
  4171. }
  4172. static void intel_gen6_powersave_work(struct work_struct *work)
  4173. {
  4174. struct drm_i915_private *dev_priv =
  4175. container_of(work, struct drm_i915_private,
  4176. rps.delayed_resume_work.work);
  4177. struct drm_device *dev = dev_priv->dev;
  4178. mutex_lock(&dev_priv->rps.hw_lock);
  4179. if (IS_VALLEYVIEW(dev)) {
  4180. valleyview_enable_rps(dev);
  4181. } else if (IS_BROADWELL(dev)) {
  4182. gen8_enable_rps(dev);
  4183. gen6_update_ring_freq(dev);
  4184. } else {
  4185. gen6_enable_rps(dev);
  4186. gen6_update_ring_freq(dev);
  4187. }
  4188. dev_priv->rps.enabled = true;
  4189. mutex_unlock(&dev_priv->rps.hw_lock);
  4190. }
  4191. void intel_enable_gt_powersave(struct drm_device *dev)
  4192. {
  4193. struct drm_i915_private *dev_priv = dev->dev_private;
  4194. if (IS_IRONLAKE_M(dev)) {
  4195. ironlake_enable_drps(dev);
  4196. ironlake_enable_rc6(dev);
  4197. intel_init_emon(dev);
  4198. } else if (IS_GEN6(dev) || IS_GEN7(dev)) {
  4199. /*
  4200. * PCU communication is slow and this doesn't need to be
  4201. * done at any specific time, so do this out of our fast path
  4202. * to make resume and init faster.
  4203. */
  4204. schedule_delayed_work(&dev_priv->rps.delayed_resume_work,
  4205. round_jiffies_up_relative(HZ));
  4206. }
  4207. }
  4208. static void ibx_init_clock_gating(struct drm_device *dev)
  4209. {
  4210. struct drm_i915_private *dev_priv = dev->dev_private;
  4211. /*
  4212. * On Ibex Peak and Cougar Point, we need to disable clock
  4213. * gating for the panel power sequencer or it will fail to
  4214. * start up when no ports are active.
  4215. */
  4216. I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
  4217. }
  4218. static void g4x_disable_trickle_feed(struct drm_device *dev)
  4219. {
  4220. struct drm_i915_private *dev_priv = dev->dev_private;
  4221. int pipe;
  4222. for_each_pipe(pipe) {
  4223. I915_WRITE(DSPCNTR(pipe),
  4224. I915_READ(DSPCNTR(pipe)) |
  4225. DISPPLANE_TRICKLE_FEED_DISABLE);
  4226. intel_flush_primary_plane(dev_priv, pipe);
  4227. }
  4228. }
  4229. static void ironlake_init_clock_gating(struct drm_device *dev)
  4230. {
  4231. struct drm_i915_private *dev_priv = dev->dev_private;
  4232. uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
  4233. /*
  4234. * Required for FBC
  4235. * WaFbcDisableDpfcClockGating:ilk
  4236. */
  4237. dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
  4238. ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
  4239. ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
  4240. I915_WRITE(PCH_3DCGDIS0,
  4241. MARIUNIT_CLOCK_GATE_DISABLE |
  4242. SVSMUNIT_CLOCK_GATE_DISABLE);
  4243. I915_WRITE(PCH_3DCGDIS1,
  4244. VFMUNIT_CLOCK_GATE_DISABLE);
  4245. /*
  4246. * According to the spec the following bits should be set in
  4247. * order to enable memory self-refresh
  4248. * The bit 22/21 of 0x42004
  4249. * The bit 5 of 0x42020
  4250. * The bit 15 of 0x45000
  4251. */
  4252. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  4253. (I915_READ(ILK_DISPLAY_CHICKEN2) |
  4254. ILK_DPARB_GATE | ILK_VSDPFD_FULL));
  4255. dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
  4256. I915_WRITE(DISP_ARB_CTL,
  4257. (I915_READ(DISP_ARB_CTL) |
  4258. DISP_FBC_WM_DIS));
  4259. I915_WRITE(WM3_LP_ILK, 0);
  4260. I915_WRITE(WM2_LP_ILK, 0);
  4261. I915_WRITE(WM1_LP_ILK, 0);
  4262. /*
  4263. * Based on the document from hardware guys the following bits
  4264. * should be set unconditionally in order to enable FBC.
  4265. * The bit 22 of 0x42000
  4266. * The bit 22 of 0x42004
  4267. * The bit 7,8,9 of 0x42020.
  4268. */
  4269. if (IS_IRONLAKE_M(dev)) {
  4270. /* WaFbcAsynchFlipDisableFbcQueue:ilk */
  4271. I915_WRITE(ILK_DISPLAY_CHICKEN1,
  4272. I915_READ(ILK_DISPLAY_CHICKEN1) |
  4273. ILK_FBCQ_DIS);
  4274. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  4275. I915_READ(ILK_DISPLAY_CHICKEN2) |
  4276. ILK_DPARB_GATE);
  4277. }
  4278. I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
  4279. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  4280. I915_READ(ILK_DISPLAY_CHICKEN2) |
  4281. ILK_ELPIN_409_SELECT);
  4282. I915_WRITE(_3D_CHICKEN2,
  4283. _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
  4284. _3D_CHICKEN2_WM_READ_PIPELINED);
  4285. /* WaDisableRenderCachePipelinedFlush:ilk */
  4286. I915_WRITE(CACHE_MODE_0,
  4287. _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
  4288. g4x_disable_trickle_feed(dev);
  4289. ibx_init_clock_gating(dev);
  4290. }
  4291. static void cpt_init_clock_gating(struct drm_device *dev)
  4292. {
  4293. struct drm_i915_private *dev_priv = dev->dev_private;
  4294. int pipe;
  4295. uint32_t val;
  4296. /*
  4297. * On Ibex Peak and Cougar Point, we need to disable clock
  4298. * gating for the panel power sequencer or it will fail to
  4299. * start up when no ports are active.
  4300. */
  4301. I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
  4302. PCH_DPLUNIT_CLOCK_GATE_DISABLE |
  4303. PCH_CPUNIT_CLOCK_GATE_DISABLE);
  4304. I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
  4305. DPLS_EDP_PPS_FIX_DIS);
  4306. /* The below fixes the weird display corruption, a few pixels shifted
  4307. * downward, on (only) LVDS of some HP laptops with IVY.
  4308. */
  4309. for_each_pipe(pipe) {
  4310. val = I915_READ(TRANS_CHICKEN2(pipe));
  4311. val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
  4312. val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
  4313. if (dev_priv->vbt.fdi_rx_polarity_inverted)
  4314. val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
  4315. val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
  4316. val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
  4317. val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
  4318. I915_WRITE(TRANS_CHICKEN2(pipe), val);
  4319. }
  4320. /* WADP0ClockGatingDisable */
  4321. for_each_pipe(pipe) {
  4322. I915_WRITE(TRANS_CHICKEN1(pipe),
  4323. TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
  4324. }
  4325. }
  4326. static void gen6_check_mch_setup(struct drm_device *dev)
  4327. {
  4328. struct drm_i915_private *dev_priv = dev->dev_private;
  4329. uint32_t tmp;
  4330. tmp = I915_READ(MCH_SSKPD);
  4331. if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL) {
  4332. DRM_INFO("Wrong MCH_SSKPD value: 0x%08x\n", tmp);
  4333. DRM_INFO("This can cause pipe underruns and display issues.\n");
  4334. DRM_INFO("Please upgrade your BIOS to fix this.\n");
  4335. }
  4336. }
  4337. static void gen6_init_clock_gating(struct drm_device *dev)
  4338. {
  4339. struct drm_i915_private *dev_priv = dev->dev_private;
  4340. uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
  4341. I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
  4342. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  4343. I915_READ(ILK_DISPLAY_CHICKEN2) |
  4344. ILK_ELPIN_409_SELECT);
  4345. /* WaDisableHiZPlanesWhenMSAAEnabled:snb */
  4346. I915_WRITE(_3D_CHICKEN,
  4347. _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
  4348. /* WaSetupGtModeTdRowDispatch:snb */
  4349. if (IS_SNB_GT1(dev))
  4350. I915_WRITE(GEN6_GT_MODE,
  4351. _MASKED_BIT_ENABLE(GEN6_TD_FOUR_ROW_DISPATCH_DISABLE));
  4352. I915_WRITE(WM3_LP_ILK, 0);
  4353. I915_WRITE(WM2_LP_ILK, 0);
  4354. I915_WRITE(WM1_LP_ILK, 0);
  4355. I915_WRITE(CACHE_MODE_0,
  4356. _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
  4357. I915_WRITE(GEN6_UCGCTL1,
  4358. I915_READ(GEN6_UCGCTL1) |
  4359. GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
  4360. GEN6_CSUNIT_CLOCK_GATE_DISABLE);
  4361. /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
  4362. * gating disable must be set. Failure to set it results in
  4363. * flickering pixels due to Z write ordering failures after
  4364. * some amount of runtime in the Mesa "fire" demo, and Unigine
  4365. * Sanctuary and Tropics, and apparently anything else with
  4366. * alpha test or pixel discard.
  4367. *
  4368. * According to the spec, bit 11 (RCCUNIT) must also be set,
  4369. * but we didn't debug actual testcases to find it out.
  4370. *
  4371. * Also apply WaDisableVDSUnitClockGating:snb and
  4372. * WaDisableRCPBUnitClockGating:snb.
  4373. */
  4374. I915_WRITE(GEN6_UCGCTL2,
  4375. GEN7_VDSUNIT_CLOCK_GATE_DISABLE |
  4376. GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
  4377. GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
  4378. /* Bspec says we need to always set all mask bits. */
  4379. I915_WRITE(_3D_CHICKEN3, (0xFFFF << 16) |
  4380. _3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL);
  4381. /*
  4382. * According to the spec the following bits should be
  4383. * set in order to enable memory self-refresh and fbc:
  4384. * The bit21 and bit22 of 0x42000
  4385. * The bit21 and bit22 of 0x42004
  4386. * The bit5 and bit7 of 0x42020
  4387. * The bit14 of 0x70180
  4388. * The bit14 of 0x71180
  4389. *
  4390. * WaFbcAsynchFlipDisableFbcQueue:snb
  4391. */
  4392. I915_WRITE(ILK_DISPLAY_CHICKEN1,
  4393. I915_READ(ILK_DISPLAY_CHICKEN1) |
  4394. ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
  4395. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  4396. I915_READ(ILK_DISPLAY_CHICKEN2) |
  4397. ILK_DPARB_GATE | ILK_VSDPFD_FULL);
  4398. I915_WRITE(ILK_DSPCLK_GATE_D,
  4399. I915_READ(ILK_DSPCLK_GATE_D) |
  4400. ILK_DPARBUNIT_CLOCK_GATE_ENABLE |
  4401. ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
  4402. g4x_disable_trickle_feed(dev);
  4403. /* The default value should be 0x200 according to docs, but the two
  4404. * platforms I checked have a 0 for this. (Maybe BIOS overrides?) */
  4405. I915_WRITE(GEN6_GT_MODE, _MASKED_BIT_DISABLE(0xffff));
  4406. I915_WRITE(GEN6_GT_MODE, _MASKED_BIT_ENABLE(GEN6_GT_MODE_HI));
  4407. cpt_init_clock_gating(dev);
  4408. gen6_check_mch_setup(dev);
  4409. }
  4410. static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
  4411. {
  4412. uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);
  4413. reg &= ~GEN7_FF_SCHED_MASK;
  4414. reg |= GEN7_FF_TS_SCHED_HW;
  4415. reg |= GEN7_FF_VS_SCHED_HW;
  4416. reg |= GEN7_FF_DS_SCHED_HW;
  4417. if (IS_HASWELL(dev_priv->dev))
  4418. reg &= ~GEN7_FF_VS_REF_CNT_FFME;
  4419. I915_WRITE(GEN7_FF_THREAD_MODE, reg);
  4420. }
  4421. static void lpt_init_clock_gating(struct drm_device *dev)
  4422. {
  4423. struct drm_i915_private *dev_priv = dev->dev_private;
  4424. /*
  4425. * TODO: this bit should only be enabled when really needed, then
  4426. * disabled when not needed anymore in order to save power.
  4427. */
  4428. if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE)
  4429. I915_WRITE(SOUTH_DSPCLK_GATE_D,
  4430. I915_READ(SOUTH_DSPCLK_GATE_D) |
  4431. PCH_LP_PARTITION_LEVEL_DISABLE);
  4432. /* WADPOClockGatingDisable:hsw */
  4433. I915_WRITE(_TRANSA_CHICKEN1,
  4434. I915_READ(_TRANSA_CHICKEN1) |
  4435. TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
  4436. }
  4437. static void lpt_suspend_hw(struct drm_device *dev)
  4438. {
  4439. struct drm_i915_private *dev_priv = dev->dev_private;
  4440. if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
  4441. uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);
  4442. val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
  4443. I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
  4444. }
  4445. }
  4446. static void gen8_init_clock_gating(struct drm_device *dev)
  4447. {
  4448. struct drm_i915_private *dev_priv = dev->dev_private;
  4449. enum pipe i;
  4450. I915_WRITE(WM3_LP_ILK, 0);
  4451. I915_WRITE(WM2_LP_ILK, 0);
  4452. I915_WRITE(WM1_LP_ILK, 0);
  4453. /* FIXME(BDW): Check all the w/a, some might only apply to
  4454. * pre-production hw. */
  4455. WARN(!i915_preliminary_hw_support,
  4456. "GEN8_CENTROID_PIXEL_OPT_DIS not be needed for production\n");
  4457. I915_WRITE(HALF_SLICE_CHICKEN3,
  4458. _MASKED_BIT_ENABLE(GEN8_CENTROID_PIXEL_OPT_DIS));
  4459. I915_WRITE(HALF_SLICE_CHICKEN3,
  4460. _MASKED_BIT_ENABLE(GEN8_SAMPLER_POWER_BYPASS_DIS));
  4461. I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_BWGTLB_DISABLE));
  4462. I915_WRITE(_3D_CHICKEN3,
  4463. _3D_CHICKEN_SDE_LIMIT_FIFO_POLY_DEPTH(2));
  4464. I915_WRITE(COMMON_SLICE_CHICKEN2,
  4465. _MASKED_BIT_ENABLE(GEN8_CSC2_SBE_VUE_CACHE_CONSERVATIVE));
  4466. I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
  4467. _MASKED_BIT_ENABLE(GEN7_SINGLE_SUBSCAN_DISPATCH_ENABLE));
  4468. /* WaSwitchSolVfFArbitrationPriority */
  4469. I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
  4470. /* WaPsrDPAMaskVBlankInSRD */
  4471. I915_WRITE(CHICKEN_PAR1_1,
  4472. I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);
  4473. /* WaPsrDPRSUnmaskVBlankInSRD */
  4474. for_each_pipe(i) {
  4475. I915_WRITE(CHICKEN_PIPESL_1(i),
  4476. I915_READ(CHICKEN_PIPESL_1(i) |
  4477. DPRS_MASK_VBLANK_SRD));
  4478. }
  4479. }
  4480. static void haswell_init_clock_gating(struct drm_device *dev)
  4481. {
  4482. struct drm_i915_private *dev_priv = dev->dev_private;
  4483. I915_WRITE(WM3_LP_ILK, 0);
  4484. I915_WRITE(WM2_LP_ILK, 0);
  4485. I915_WRITE(WM1_LP_ILK, 0);
  4486. /* According to the spec, bit 13 (RCZUNIT) must be set on IVB.
  4487. * This implements the WaDisableRCZUnitClockGating:hsw workaround.
  4488. */
  4489. I915_WRITE(GEN6_UCGCTL2, GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
  4490. /* Apply the WaDisableRHWOOptimizationForRenderHang:hsw workaround. */
  4491. I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
  4492. GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
  4493. /* WaApplyL3ControlAndL3ChickenMode:hsw */
  4494. I915_WRITE(GEN7_L3CNTLREG1,
  4495. GEN7_WA_FOR_GEN7_L3_CONTROL);
  4496. I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
  4497. GEN7_WA_L3_CHICKEN_MODE);
  4498. /* L3 caching of data atomics doesn't work -- disable it. */
  4499. I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
  4500. I915_WRITE(HSW_ROW_CHICKEN3,
  4501. _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));
  4502. /* This is required by WaCatErrorRejectionIssue:hsw */
  4503. I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
  4504. I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
  4505. GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
  4506. /* WaVSRefCountFullforceMissDisable:hsw */
  4507. gen7_setup_fixed_func_scheduler(dev_priv);
  4508. /* WaDisable4x2SubspanOptimization:hsw */
  4509. I915_WRITE(CACHE_MODE_1,
  4510. _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
  4511. /* WaSwitchSolVfFArbitrationPriority:hsw */
  4512. I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
  4513. /* WaRsPkgCStateDisplayPMReq:hsw */
  4514. I915_WRITE(CHICKEN_PAR1_1,
  4515. I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
  4516. lpt_init_clock_gating(dev);
  4517. }
  4518. static void ivybridge_init_clock_gating(struct drm_device *dev)
  4519. {
  4520. struct drm_i915_private *dev_priv = dev->dev_private;
  4521. uint32_t snpcr;
  4522. I915_WRITE(WM3_LP_ILK, 0);
  4523. I915_WRITE(WM2_LP_ILK, 0);
  4524. I915_WRITE(WM1_LP_ILK, 0);
  4525. I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
  4526. /* WaDisableEarlyCull:ivb */
  4527. I915_WRITE(_3D_CHICKEN3,
  4528. _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
  4529. /* WaDisableBackToBackFlipFix:ivb */
  4530. I915_WRITE(IVB_CHICKEN3,
  4531. CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
  4532. CHICKEN3_DGMG_DONE_FIX_DISABLE);
  4533. /* WaDisablePSDDualDispatchEnable:ivb */
  4534. if (IS_IVB_GT1(dev))
  4535. I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
  4536. _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
  4537. else
  4538. I915_WRITE(GEN7_HALF_SLICE_CHICKEN1_GT2,
  4539. _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
  4540. /* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
  4541. I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
  4542. GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
  4543. /* WaApplyL3ControlAndL3ChickenMode:ivb */
  4544. I915_WRITE(GEN7_L3CNTLREG1,
  4545. GEN7_WA_FOR_GEN7_L3_CONTROL);
  4546. I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
  4547. GEN7_WA_L3_CHICKEN_MODE);
  4548. if (IS_IVB_GT1(dev))
  4549. I915_WRITE(GEN7_ROW_CHICKEN2,
  4550. _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
  4551. else
  4552. I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
  4553. _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
  4554. /* WaForceL3Serialization:ivb */
  4555. I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
  4556. ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
  4557. /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
  4558. * gating disable must be set. Failure to set it results in
  4559. * flickering pixels due to Z write ordering failures after
  4560. * some amount of runtime in the Mesa "fire" demo, and Unigine
  4561. * Sanctuary and Tropics, and apparently anything else with
  4562. * alpha test or pixel discard.
  4563. *
  4564. * According to the spec, bit 11 (RCCUNIT) must also be set,
  4565. * but we didn't debug actual testcases to find it out.
  4566. *
  4567. * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
  4568. * This implements the WaDisableRCZUnitClockGating:ivb workaround.
  4569. */
  4570. I915_WRITE(GEN6_UCGCTL2,
  4571. GEN6_RCZUNIT_CLOCK_GATE_DISABLE |
  4572. GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
  4573. /* This is required by WaCatErrorRejectionIssue:ivb */
  4574. I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
  4575. I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
  4576. GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
  4577. g4x_disable_trickle_feed(dev);
  4578. /* WaVSRefCountFullforceMissDisable:ivb */
  4579. gen7_setup_fixed_func_scheduler(dev_priv);
  4580. /* WaDisable4x2SubspanOptimization:ivb */
  4581. I915_WRITE(CACHE_MODE_1,
  4582. _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
  4583. snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
  4584. snpcr &= ~GEN6_MBC_SNPCR_MASK;
  4585. snpcr |= GEN6_MBC_SNPCR_MED;
  4586. I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
  4587. if (!HAS_PCH_NOP(dev))
  4588. cpt_init_clock_gating(dev);
  4589. gen6_check_mch_setup(dev);
  4590. }
  4591. static void valleyview_init_clock_gating(struct drm_device *dev)
  4592. {
  4593. struct drm_i915_private *dev_priv = dev->dev_private;
  4594. I915_WRITE(DSPCLK_GATE_D, VRHUNIT_CLOCK_GATE_DISABLE);
  4595. /* WaDisableEarlyCull:vlv */
  4596. I915_WRITE(_3D_CHICKEN3,
  4597. _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
  4598. /* WaDisableBackToBackFlipFix:vlv */
  4599. I915_WRITE(IVB_CHICKEN3,
  4600. CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
  4601. CHICKEN3_DGMG_DONE_FIX_DISABLE);
  4602. /* WaDisablePSDDualDispatchEnable:vlv */
  4603. I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
  4604. _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
  4605. GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
  4606. /* Apply the WaDisableRHWOOptimizationForRenderHang:vlv workaround. */
  4607. I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
  4608. GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
  4609. /* WaApplyL3ControlAndL3ChickenMode:vlv */
  4610. I915_WRITE(GEN7_L3CNTLREG1, I915_READ(GEN7_L3CNTLREG1) | GEN7_L3AGDIS);
  4611. I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER, GEN7_WA_L3_CHICKEN_MODE);
  4612. /* WaForceL3Serialization:vlv */
  4613. I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
  4614. ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
  4615. /* WaDisableDopClockGating:vlv */
  4616. I915_WRITE(GEN7_ROW_CHICKEN2,
  4617. _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
  4618. /* This is required by WaCatErrorRejectionIssue:vlv */
  4619. I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
  4620. I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
  4621. GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
  4622. /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
  4623. * gating disable must be set. Failure to set it results in
  4624. * flickering pixels due to Z write ordering failures after
  4625. * some amount of runtime in the Mesa "fire" demo, and Unigine
  4626. * Sanctuary and Tropics, and apparently anything else with
  4627. * alpha test or pixel discard.
  4628. *
  4629. * According to the spec, bit 11 (RCCUNIT) must also be set,
  4630. * but we didn't debug actual testcases to find it out.
  4631. *
  4632. * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
  4633. * This implements the WaDisableRCZUnitClockGating:vlv workaround.
  4634. *
  4635. * Also apply WaDisableVDSUnitClockGating:vlv and
  4636. * WaDisableRCPBUnitClockGating:vlv.
  4637. */
  4638. I915_WRITE(GEN6_UCGCTL2,
  4639. GEN7_VDSUNIT_CLOCK_GATE_DISABLE |
  4640. GEN7_TDLUNIT_CLOCK_GATE_DISABLE |
  4641. GEN6_RCZUNIT_CLOCK_GATE_DISABLE |
  4642. GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
  4643. GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
  4644. I915_WRITE(GEN7_UCGCTL4, GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
  4645. I915_WRITE(MI_ARB_VLV, MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE);
  4646. I915_WRITE(CACHE_MODE_1,
  4647. _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
  4648. /*
  4649. * WaDisableVLVClockGating_VBIIssue:vlv
  4650. * Disable clock gating on th GCFG unit to prevent a delay
  4651. * in the reporting of vblank events.
  4652. */
  4653. I915_WRITE(VLV_GUNIT_CLOCK_GATE, 0xffffffff);
  4654. /* Conservative clock gating settings for now */
  4655. I915_WRITE(0x9400, 0xffffffff);
  4656. I915_WRITE(0x9404, 0xffffffff);
  4657. I915_WRITE(0x9408, 0xffffffff);
  4658. I915_WRITE(0x940c, 0xffffffff);
  4659. I915_WRITE(0x9410, 0xffffffff);
  4660. I915_WRITE(0x9414, 0xffffffff);
  4661. I915_WRITE(0x9418, 0xffffffff);
  4662. }
  4663. static void g4x_init_clock_gating(struct drm_device *dev)
  4664. {
  4665. struct drm_i915_private *dev_priv = dev->dev_private;
  4666. uint32_t dspclk_gate;
  4667. I915_WRITE(RENCLK_GATE_D1, 0);
  4668. I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
  4669. GS_UNIT_CLOCK_GATE_DISABLE |
  4670. CL_UNIT_CLOCK_GATE_DISABLE);
  4671. I915_WRITE(RAMCLK_GATE_D, 0);
  4672. dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
  4673. OVRUNIT_CLOCK_GATE_DISABLE |
  4674. OVCUNIT_CLOCK_GATE_DISABLE;
  4675. if (IS_GM45(dev))
  4676. dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
  4677. I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
  4678. /* WaDisableRenderCachePipelinedFlush */
  4679. I915_WRITE(CACHE_MODE_0,
  4680. _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
  4681. g4x_disable_trickle_feed(dev);
  4682. }
  4683. static void crestline_init_clock_gating(struct drm_device *dev)
  4684. {
  4685. struct drm_i915_private *dev_priv = dev->dev_private;
  4686. I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
  4687. I915_WRITE(RENCLK_GATE_D2, 0);
  4688. I915_WRITE(DSPCLK_GATE_D, 0);
  4689. I915_WRITE(RAMCLK_GATE_D, 0);
  4690. I915_WRITE16(DEUC, 0);
  4691. I915_WRITE(MI_ARB_STATE,
  4692. _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
  4693. }
  4694. static void broadwater_init_clock_gating(struct drm_device *dev)
  4695. {
  4696. struct drm_i915_private *dev_priv = dev->dev_private;
  4697. I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
  4698. I965_RCC_CLOCK_GATE_DISABLE |
  4699. I965_RCPB_CLOCK_GATE_DISABLE |
  4700. I965_ISC_CLOCK_GATE_DISABLE |
  4701. I965_FBC_CLOCK_GATE_DISABLE);
  4702. I915_WRITE(RENCLK_GATE_D2, 0);
  4703. I915_WRITE(MI_ARB_STATE,
  4704. _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
  4705. }
  4706. static void gen3_init_clock_gating(struct drm_device *dev)
  4707. {
  4708. struct drm_i915_private *dev_priv = dev->dev_private;
  4709. u32 dstate = I915_READ(D_STATE);
  4710. dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
  4711. DSTATE_DOT_CLOCK_GATING;
  4712. I915_WRITE(D_STATE, dstate);
  4713. if (IS_PINEVIEW(dev))
  4714. I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
  4715. /* IIR "flip pending" means done if this bit is set */
  4716. I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
  4717. }
  4718. static void i85x_init_clock_gating(struct drm_device *dev)
  4719. {
  4720. struct drm_i915_private *dev_priv = dev->dev_private;
  4721. I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
  4722. }
  4723. static void i830_init_clock_gating(struct drm_device *dev)
  4724. {
  4725. struct drm_i915_private *dev_priv = dev->dev_private;
  4726. I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
  4727. }
  4728. void intel_init_clock_gating(struct drm_device *dev)
  4729. {
  4730. struct drm_i915_private *dev_priv = dev->dev_private;
  4731. dev_priv->display.init_clock_gating(dev);
  4732. }
  4733. void intel_suspend_hw(struct drm_device *dev)
  4734. {
  4735. if (HAS_PCH_LPT(dev))
  4736. lpt_suspend_hw(dev);
  4737. }
  4738. static bool is_always_on_power_domain(struct drm_device *dev,
  4739. enum intel_display_power_domain domain)
  4740. {
  4741. unsigned long always_on_domains;
  4742. BUG_ON(BIT(domain) & ~POWER_DOMAIN_MASK);
  4743. if (IS_BROADWELL(dev)) {
  4744. always_on_domains = BDW_ALWAYS_ON_POWER_DOMAINS;
  4745. } else if (IS_HASWELL(dev)) {
  4746. always_on_domains = HSW_ALWAYS_ON_POWER_DOMAINS;
  4747. } else {
  4748. WARN_ON(1);
  4749. return true;
  4750. }
  4751. return BIT(domain) & always_on_domains;
  4752. }
  4753. /**
  4754. * We should only use the power well if we explicitly asked the hardware to
  4755. * enable it, so check if it's enabled and also check if we've requested it to
  4756. * be enabled.
  4757. */
  4758. bool intel_display_power_enabled(struct drm_device *dev,
  4759. enum intel_display_power_domain domain)
  4760. {
  4761. struct drm_i915_private *dev_priv = dev->dev_private;
  4762. if (!HAS_POWER_WELL(dev))
  4763. return true;
  4764. if (is_always_on_power_domain(dev, domain))
  4765. return true;
  4766. return I915_READ(HSW_PWR_WELL_DRIVER) ==
  4767. (HSW_PWR_WELL_ENABLE_REQUEST | HSW_PWR_WELL_STATE_ENABLED);
  4768. }
  4769. static void __intel_set_power_well(struct drm_device *dev, bool enable)
  4770. {
  4771. struct drm_i915_private *dev_priv = dev->dev_private;
  4772. bool is_enabled, enable_requested;
  4773. uint32_t tmp;
  4774. tmp = I915_READ(HSW_PWR_WELL_DRIVER);
  4775. is_enabled = tmp & HSW_PWR_WELL_STATE_ENABLED;
  4776. enable_requested = tmp & HSW_PWR_WELL_ENABLE_REQUEST;
  4777. if (enable) {
  4778. if (!enable_requested)
  4779. I915_WRITE(HSW_PWR_WELL_DRIVER,
  4780. HSW_PWR_WELL_ENABLE_REQUEST);
  4781. if (!is_enabled) {
  4782. DRM_DEBUG_KMS("Enabling power well\n");
  4783. if (wait_for((I915_READ(HSW_PWR_WELL_DRIVER) &
  4784. HSW_PWR_WELL_STATE_ENABLED), 20))
  4785. DRM_ERROR("Timeout enabling power well\n");
  4786. }
  4787. } else {
  4788. if (enable_requested) {
  4789. unsigned long irqflags;
  4790. enum pipe p;
  4791. I915_WRITE(HSW_PWR_WELL_DRIVER, 0);
  4792. POSTING_READ(HSW_PWR_WELL_DRIVER);
  4793. DRM_DEBUG_KMS("Requesting to disable the power well\n");
  4794. /*
  4795. * After this, the registers on the pipes that are part
  4796. * of the power well will become zero, so we have to
  4797. * adjust our counters according to that.
  4798. *
  4799. * FIXME: Should we do this in general in
  4800. * drm_vblank_post_modeset?
  4801. */
  4802. spin_lock_irqsave(&dev->vbl_lock, irqflags);
  4803. for_each_pipe(p)
  4804. if (p != PIPE_A)
  4805. dev->vblank[p].last = 0;
  4806. spin_unlock_irqrestore(&dev->vbl_lock, irqflags);
  4807. }
  4808. }
  4809. }
  4810. static void __intel_power_well_get(struct drm_device *dev,
  4811. struct i915_power_well *power_well)
  4812. {
  4813. if (!power_well->count++)
  4814. __intel_set_power_well(dev, true);
  4815. }
  4816. static void __intel_power_well_put(struct drm_device *dev,
  4817. struct i915_power_well *power_well)
  4818. {
  4819. WARN_ON(!power_well->count);
  4820. if (!--power_well->count && i915_disable_power_well)
  4821. __intel_set_power_well(dev, false);
  4822. }
  4823. void intel_display_power_get(struct drm_device *dev,
  4824. enum intel_display_power_domain domain)
  4825. {
  4826. struct drm_i915_private *dev_priv = dev->dev_private;
  4827. struct i915_power_domains *power_domains;
  4828. if (!HAS_POWER_WELL(dev))
  4829. return;
  4830. if (is_always_on_power_domain(dev, domain))
  4831. return;
  4832. power_domains = &dev_priv->power_domains;
  4833. mutex_lock(&power_domains->lock);
  4834. __intel_power_well_get(dev, &power_domains->power_wells[0]);
  4835. mutex_unlock(&power_domains->lock);
  4836. }
  4837. void intel_display_power_put(struct drm_device *dev,
  4838. enum intel_display_power_domain domain)
  4839. {
  4840. struct drm_i915_private *dev_priv = dev->dev_private;
  4841. struct i915_power_domains *power_domains;
  4842. if (!HAS_POWER_WELL(dev))
  4843. return;
  4844. if (is_always_on_power_domain(dev, domain))
  4845. return;
  4846. power_domains = &dev_priv->power_domains;
  4847. mutex_lock(&power_domains->lock);
  4848. __intel_power_well_put(dev, &power_domains->power_wells[0]);
  4849. mutex_unlock(&power_domains->lock);
  4850. }
  4851. static struct i915_power_domains *hsw_pwr;
  4852. /* Display audio driver power well request */
  4853. void i915_request_power_well(void)
  4854. {
  4855. struct drm_i915_private *dev_priv;
  4856. if (WARN_ON(!hsw_pwr))
  4857. return;
  4858. dev_priv = container_of(hsw_pwr, struct drm_i915_private,
  4859. power_domains);
  4860. mutex_lock(&hsw_pwr->lock);
  4861. __intel_power_well_get(dev_priv->dev, &hsw_pwr->power_wells[0]);
  4862. mutex_unlock(&hsw_pwr->lock);
  4863. }
  4864. EXPORT_SYMBOL_GPL(i915_request_power_well);
  4865. /* Display audio driver power well release */
  4866. void i915_release_power_well(void)
  4867. {
  4868. struct drm_i915_private *dev_priv;
  4869. if (WARN_ON(!hsw_pwr))
  4870. return;
  4871. dev_priv = container_of(hsw_pwr, struct drm_i915_private,
  4872. power_domains);
  4873. mutex_lock(&hsw_pwr->lock);
  4874. __intel_power_well_put(dev_priv->dev, &hsw_pwr->power_wells[0]);
  4875. mutex_unlock(&hsw_pwr->lock);
  4876. }
  4877. EXPORT_SYMBOL_GPL(i915_release_power_well);
  4878. int intel_power_domains_init(struct drm_device *dev)
  4879. {
  4880. struct drm_i915_private *dev_priv = dev->dev_private;
  4881. struct i915_power_domains *power_domains = &dev_priv->power_domains;
  4882. struct i915_power_well *power_well;
  4883. mutex_init(&power_domains->lock);
  4884. hsw_pwr = power_domains;
  4885. power_well = &power_domains->power_wells[0];
  4886. power_well->count = 0;
  4887. return 0;
  4888. }
  4889. void intel_power_domains_remove(struct drm_device *dev)
  4890. {
  4891. hsw_pwr = NULL;
  4892. }
  4893. static void intel_power_domains_resume(struct drm_device *dev)
  4894. {
  4895. struct drm_i915_private *dev_priv = dev->dev_private;
  4896. struct i915_power_domains *power_domains = &dev_priv->power_domains;
  4897. struct i915_power_well *power_well;
  4898. if (!HAS_POWER_WELL(dev))
  4899. return;
  4900. mutex_lock(&power_domains->lock);
  4901. power_well = &power_domains->power_wells[0];
  4902. __intel_set_power_well(dev, power_well->count > 0);
  4903. mutex_unlock(&power_domains->lock);
  4904. }
  4905. /*
  4906. * Starting with Haswell, we have a "Power Down Well" that can be turned off
  4907. * when not needed anymore. We have 4 registers that can request the power well
  4908. * to be enabled, and it will only be disabled if none of the registers is
  4909. * requesting it to be enabled.
  4910. */
  4911. void intel_power_domains_init_hw(struct drm_device *dev)
  4912. {
  4913. struct drm_i915_private *dev_priv = dev->dev_private;
  4914. if (!HAS_POWER_WELL(dev))
  4915. return;
  4916. /* For now, we need the power well to be always enabled. */
  4917. intel_display_set_init_power(dev, true);
  4918. intel_power_domains_resume(dev);
  4919. /* We're taking over the BIOS, so clear any requests made by it since
  4920. * the driver is in charge now. */
  4921. if (I915_READ(HSW_PWR_WELL_BIOS) & HSW_PWR_WELL_ENABLE_REQUEST)
  4922. I915_WRITE(HSW_PWR_WELL_BIOS, 0);
  4923. }
  4924. /* Disables PC8 so we can use the GMBUS and DP AUX interrupts. */
  4925. void intel_aux_display_runtime_get(struct drm_i915_private *dev_priv)
  4926. {
  4927. hsw_disable_package_c8(dev_priv);
  4928. }
  4929. void intel_aux_display_runtime_put(struct drm_i915_private *dev_priv)
  4930. {
  4931. hsw_enable_package_c8(dev_priv);
  4932. }
  4933. /* Set up chip specific power management-related functions */
  4934. void intel_init_pm(struct drm_device *dev)
  4935. {
  4936. struct drm_i915_private *dev_priv = dev->dev_private;
  4937. if (I915_HAS_FBC(dev)) {
  4938. if (HAS_PCH_SPLIT(dev)) {
  4939. dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
  4940. if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
  4941. dev_priv->display.enable_fbc =
  4942. gen7_enable_fbc;
  4943. else
  4944. dev_priv->display.enable_fbc =
  4945. ironlake_enable_fbc;
  4946. dev_priv->display.disable_fbc = ironlake_disable_fbc;
  4947. } else if (IS_GM45(dev)) {
  4948. dev_priv->display.fbc_enabled = g4x_fbc_enabled;
  4949. dev_priv->display.enable_fbc = g4x_enable_fbc;
  4950. dev_priv->display.disable_fbc = g4x_disable_fbc;
  4951. } else if (IS_CRESTLINE(dev)) {
  4952. dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
  4953. dev_priv->display.enable_fbc = i8xx_enable_fbc;
  4954. dev_priv->display.disable_fbc = i8xx_disable_fbc;
  4955. }
  4956. /* 855GM needs testing */
  4957. }
  4958. /* For cxsr */
  4959. if (IS_PINEVIEW(dev))
  4960. i915_pineview_get_mem_freq(dev);
  4961. else if (IS_GEN5(dev))
  4962. i915_ironlake_get_mem_freq(dev);
  4963. /* For FIFO watermark updates */
  4964. if (HAS_PCH_SPLIT(dev)) {
  4965. intel_setup_wm_latency(dev);
  4966. if (IS_GEN5(dev)) {
  4967. if (dev_priv->wm.pri_latency[1] &&
  4968. dev_priv->wm.spr_latency[1] &&
  4969. dev_priv->wm.cur_latency[1])
  4970. dev_priv->display.update_wm = ironlake_update_wm;
  4971. else {
  4972. DRM_DEBUG_KMS("Failed to get proper latency. "
  4973. "Disable CxSR\n");
  4974. dev_priv->display.update_wm = NULL;
  4975. }
  4976. dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
  4977. } else if (IS_GEN6(dev)) {
  4978. if (dev_priv->wm.pri_latency[0] &&
  4979. dev_priv->wm.spr_latency[0] &&
  4980. dev_priv->wm.cur_latency[0]) {
  4981. dev_priv->display.update_wm = sandybridge_update_wm;
  4982. dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
  4983. } else {
  4984. DRM_DEBUG_KMS("Failed to read display plane latency. "
  4985. "Disable CxSR\n");
  4986. dev_priv->display.update_wm = NULL;
  4987. }
  4988. dev_priv->display.init_clock_gating = gen6_init_clock_gating;
  4989. } else if (IS_IVYBRIDGE(dev)) {
  4990. if (dev_priv->wm.pri_latency[0] &&
  4991. dev_priv->wm.spr_latency[0] &&
  4992. dev_priv->wm.cur_latency[0]) {
  4993. dev_priv->display.update_wm = ivybridge_update_wm;
  4994. dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
  4995. } else {
  4996. DRM_DEBUG_KMS("Failed to read display plane latency. "
  4997. "Disable CxSR\n");
  4998. dev_priv->display.update_wm = NULL;
  4999. }
  5000. dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
  5001. } else if (IS_HASWELL(dev)) {
  5002. if (dev_priv->wm.pri_latency[0] &&
  5003. dev_priv->wm.spr_latency[0] &&
  5004. dev_priv->wm.cur_latency[0]) {
  5005. dev_priv->display.update_wm = haswell_update_wm;
  5006. dev_priv->display.update_sprite_wm =
  5007. haswell_update_sprite_wm;
  5008. } else {
  5009. DRM_DEBUG_KMS("Failed to read display plane latency. "
  5010. "Disable CxSR\n");
  5011. dev_priv->display.update_wm = NULL;
  5012. }
  5013. dev_priv->display.init_clock_gating = haswell_init_clock_gating;
  5014. } else if (INTEL_INFO(dev)->gen == 8) {
  5015. dev_priv->display.init_clock_gating = gen8_init_clock_gating;
  5016. } else
  5017. dev_priv->display.update_wm = NULL;
  5018. } else if (IS_VALLEYVIEW(dev)) {
  5019. dev_priv->display.update_wm = valleyview_update_wm;
  5020. dev_priv->display.init_clock_gating =
  5021. valleyview_init_clock_gating;
  5022. } else if (IS_PINEVIEW(dev)) {
  5023. if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
  5024. dev_priv->is_ddr3,
  5025. dev_priv->fsb_freq,
  5026. dev_priv->mem_freq)) {
  5027. DRM_INFO("failed to find known CxSR latency "
  5028. "(found ddr%s fsb freq %d, mem freq %d), "
  5029. "disabling CxSR\n",
  5030. (dev_priv->is_ddr3 == 1) ? "3" : "2",
  5031. dev_priv->fsb_freq, dev_priv->mem_freq);
  5032. /* Disable CxSR and never update its watermark again */
  5033. pineview_disable_cxsr(dev);
  5034. dev_priv->display.update_wm = NULL;
  5035. } else
  5036. dev_priv->display.update_wm = pineview_update_wm;
  5037. dev_priv->display.init_clock_gating = gen3_init_clock_gating;
  5038. } else if (IS_G4X(dev)) {
  5039. dev_priv->display.update_wm = g4x_update_wm;
  5040. dev_priv->display.init_clock_gating = g4x_init_clock_gating;
  5041. } else if (IS_GEN4(dev)) {
  5042. dev_priv->display.update_wm = i965_update_wm;
  5043. if (IS_CRESTLINE(dev))
  5044. dev_priv->display.init_clock_gating = crestline_init_clock_gating;
  5045. else if (IS_BROADWATER(dev))
  5046. dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
  5047. } else if (IS_GEN3(dev)) {
  5048. dev_priv->display.update_wm = i9xx_update_wm;
  5049. dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
  5050. dev_priv->display.init_clock_gating = gen3_init_clock_gating;
  5051. } else if (IS_I865G(dev)) {
  5052. dev_priv->display.update_wm = i830_update_wm;
  5053. dev_priv->display.init_clock_gating = i85x_init_clock_gating;
  5054. dev_priv->display.get_fifo_size = i830_get_fifo_size;
  5055. } else if (IS_I85X(dev)) {
  5056. dev_priv->display.update_wm = i9xx_update_wm;
  5057. dev_priv->display.get_fifo_size = i85x_get_fifo_size;
  5058. dev_priv->display.init_clock_gating = i85x_init_clock_gating;
  5059. } else {
  5060. dev_priv->display.update_wm = i830_update_wm;
  5061. dev_priv->display.init_clock_gating = i830_init_clock_gating;
  5062. if (IS_845G(dev))
  5063. dev_priv->display.get_fifo_size = i845_get_fifo_size;
  5064. else
  5065. dev_priv->display.get_fifo_size = i830_get_fifo_size;
  5066. }
  5067. }
  5068. int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u8 mbox, u32 *val)
  5069. {
  5070. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  5071. if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
  5072. DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
  5073. return -EAGAIN;
  5074. }
  5075. I915_WRITE(GEN6_PCODE_DATA, *val);
  5076. I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
  5077. if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
  5078. 500)) {
  5079. DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
  5080. return -ETIMEDOUT;
  5081. }
  5082. *val = I915_READ(GEN6_PCODE_DATA);
  5083. I915_WRITE(GEN6_PCODE_DATA, 0);
  5084. return 0;
  5085. }
  5086. int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u8 mbox, u32 val)
  5087. {
  5088. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  5089. if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
  5090. DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
  5091. return -EAGAIN;
  5092. }
  5093. I915_WRITE(GEN6_PCODE_DATA, val);
  5094. I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
  5095. if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
  5096. 500)) {
  5097. DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
  5098. return -ETIMEDOUT;
  5099. }
  5100. I915_WRITE(GEN6_PCODE_DATA, 0);
  5101. return 0;
  5102. }
  5103. int vlv_gpu_freq(int ddr_freq, int val)
  5104. {
  5105. int mult, base;
  5106. switch (ddr_freq) {
  5107. case 800:
  5108. mult = 20;
  5109. base = 120;
  5110. break;
  5111. case 1066:
  5112. mult = 22;
  5113. base = 133;
  5114. break;
  5115. case 1333:
  5116. mult = 21;
  5117. base = 125;
  5118. break;
  5119. default:
  5120. return -1;
  5121. }
  5122. return ((val - 0xbd) * mult) + base;
  5123. }
  5124. int vlv_freq_opcode(int ddr_freq, int val)
  5125. {
  5126. int mult, base;
  5127. switch (ddr_freq) {
  5128. case 800:
  5129. mult = 20;
  5130. base = 120;
  5131. break;
  5132. case 1066:
  5133. mult = 22;
  5134. base = 133;
  5135. break;
  5136. case 1333:
  5137. mult = 21;
  5138. base = 125;
  5139. break;
  5140. default:
  5141. return -1;
  5142. }
  5143. val /= mult;
  5144. val -= base / mult;
  5145. val += 0xbd;
  5146. if (val > 0xea)
  5147. val = 0xea;
  5148. return val;
  5149. }
  5150. void intel_pm_init(struct drm_device *dev)
  5151. {
  5152. struct drm_i915_private *dev_priv = dev->dev_private;
  5153. INIT_DELAYED_WORK(&dev_priv->rps.delayed_resume_work,
  5154. intel_gen6_powersave_work);
  5155. }