x86.c 80 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * derived from drivers/kvm/kvm_main.c
  5. *
  6. * Copyright (C) 2006 Qumranet, Inc.
  7. *
  8. * Authors:
  9. * Avi Kivity <avi@qumranet.com>
  10. * Yaniv Kamay <yaniv@qumranet.com>
  11. *
  12. * This work is licensed under the terms of the GNU GPL, version 2. See
  13. * the COPYING file in the top-level directory.
  14. *
  15. */
  16. #include <linux/kvm_host.h>
  17. #include "segment_descriptor.h"
  18. #include "irq.h"
  19. #include "mmu.h"
  20. #include <linux/clocksource.h>
  21. #include <linux/kvm.h>
  22. #include <linux/fs.h>
  23. #include <linux/vmalloc.h>
  24. #include <linux/module.h>
  25. #include <linux/mman.h>
  26. #include <linux/highmem.h>
  27. #include <asm/uaccess.h>
  28. #include <asm/msr.h>
  29. #define MAX_IO_MSRS 256
  30. #define CR0_RESERVED_BITS \
  31. (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
  32. | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
  33. | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
  34. #define CR4_RESERVED_BITS \
  35. (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
  36. | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \
  37. | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR \
  38. | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
  39. #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
  40. /* EFER defaults:
  41. * - enable syscall per default because its emulated by KVM
  42. * - enable LME and LMA per default on 64 bit KVM
  43. */
  44. #ifdef CONFIG_X86_64
  45. static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffafeULL;
  46. #else
  47. static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffffeULL;
  48. #endif
  49. #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
  50. #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
  51. static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
  52. struct kvm_cpuid_entry2 __user *entries);
  53. struct kvm_x86_ops *kvm_x86_ops;
  54. struct kvm_stats_debugfs_item debugfs_entries[] = {
  55. { "pf_fixed", VCPU_STAT(pf_fixed) },
  56. { "pf_guest", VCPU_STAT(pf_guest) },
  57. { "tlb_flush", VCPU_STAT(tlb_flush) },
  58. { "invlpg", VCPU_STAT(invlpg) },
  59. { "exits", VCPU_STAT(exits) },
  60. { "io_exits", VCPU_STAT(io_exits) },
  61. { "mmio_exits", VCPU_STAT(mmio_exits) },
  62. { "signal_exits", VCPU_STAT(signal_exits) },
  63. { "irq_window", VCPU_STAT(irq_window_exits) },
  64. { "halt_exits", VCPU_STAT(halt_exits) },
  65. { "halt_wakeup", VCPU_STAT(halt_wakeup) },
  66. { "request_irq", VCPU_STAT(request_irq_exits) },
  67. { "irq_exits", VCPU_STAT(irq_exits) },
  68. { "host_state_reload", VCPU_STAT(host_state_reload) },
  69. { "efer_reload", VCPU_STAT(efer_reload) },
  70. { "fpu_reload", VCPU_STAT(fpu_reload) },
  71. { "insn_emulation", VCPU_STAT(insn_emulation) },
  72. { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
  73. { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
  74. { "mmu_pte_write", VM_STAT(mmu_pte_write) },
  75. { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
  76. { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
  77. { "mmu_flooded", VM_STAT(mmu_flooded) },
  78. { "mmu_recycled", VM_STAT(mmu_recycled) },
  79. { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
  80. { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
  81. { NULL }
  82. };
  83. unsigned long segment_base(u16 selector)
  84. {
  85. struct descriptor_table gdt;
  86. struct segment_descriptor *d;
  87. unsigned long table_base;
  88. unsigned long v;
  89. if (selector == 0)
  90. return 0;
  91. asm("sgdt %0" : "=m"(gdt));
  92. table_base = gdt.base;
  93. if (selector & 4) { /* from ldt */
  94. u16 ldt_selector;
  95. asm("sldt %0" : "=g"(ldt_selector));
  96. table_base = segment_base(ldt_selector);
  97. }
  98. d = (struct segment_descriptor *)(table_base + (selector & ~7));
  99. v = d->base_low | ((unsigned long)d->base_mid << 16) |
  100. ((unsigned long)d->base_high << 24);
  101. #ifdef CONFIG_X86_64
  102. if (d->system == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
  103. v |= ((unsigned long) \
  104. ((struct segment_descriptor_64 *)d)->base_higher) << 32;
  105. #endif
  106. return v;
  107. }
  108. EXPORT_SYMBOL_GPL(segment_base);
  109. u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
  110. {
  111. if (irqchip_in_kernel(vcpu->kvm))
  112. return vcpu->arch.apic_base;
  113. else
  114. return vcpu->arch.apic_base;
  115. }
  116. EXPORT_SYMBOL_GPL(kvm_get_apic_base);
  117. void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
  118. {
  119. /* TODO: reserve bits check */
  120. if (irqchip_in_kernel(vcpu->kvm))
  121. kvm_lapic_set_base(vcpu, data);
  122. else
  123. vcpu->arch.apic_base = data;
  124. }
  125. EXPORT_SYMBOL_GPL(kvm_set_apic_base);
  126. void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
  127. {
  128. WARN_ON(vcpu->arch.exception.pending);
  129. vcpu->arch.exception.pending = true;
  130. vcpu->arch.exception.has_error_code = false;
  131. vcpu->arch.exception.nr = nr;
  132. }
  133. EXPORT_SYMBOL_GPL(kvm_queue_exception);
  134. void kvm_inject_page_fault(struct kvm_vcpu *vcpu, unsigned long addr,
  135. u32 error_code)
  136. {
  137. ++vcpu->stat.pf_guest;
  138. if (vcpu->arch.exception.pending && vcpu->arch.exception.nr == PF_VECTOR) {
  139. printk(KERN_DEBUG "kvm: inject_page_fault:"
  140. " double fault 0x%lx\n", addr);
  141. vcpu->arch.exception.nr = DF_VECTOR;
  142. vcpu->arch.exception.error_code = 0;
  143. return;
  144. }
  145. vcpu->arch.cr2 = addr;
  146. kvm_queue_exception_e(vcpu, PF_VECTOR, error_code);
  147. }
  148. void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
  149. {
  150. WARN_ON(vcpu->arch.exception.pending);
  151. vcpu->arch.exception.pending = true;
  152. vcpu->arch.exception.has_error_code = true;
  153. vcpu->arch.exception.nr = nr;
  154. vcpu->arch.exception.error_code = error_code;
  155. }
  156. EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
  157. static void __queue_exception(struct kvm_vcpu *vcpu)
  158. {
  159. kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
  160. vcpu->arch.exception.has_error_code,
  161. vcpu->arch.exception.error_code);
  162. }
  163. /*
  164. * Load the pae pdptrs. Return true is they are all valid.
  165. */
  166. int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
  167. {
  168. gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
  169. unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
  170. int i;
  171. int ret;
  172. u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
  173. down_read(&vcpu->kvm->slots_lock);
  174. ret = kvm_read_guest_page(vcpu->kvm, pdpt_gfn, pdpte,
  175. offset * sizeof(u64), sizeof(pdpte));
  176. if (ret < 0) {
  177. ret = 0;
  178. goto out;
  179. }
  180. for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
  181. if ((pdpte[i] & 1) && (pdpte[i] & 0xfffffff0000001e6ull)) {
  182. ret = 0;
  183. goto out;
  184. }
  185. }
  186. ret = 1;
  187. memcpy(vcpu->arch.pdptrs, pdpte, sizeof(vcpu->arch.pdptrs));
  188. out:
  189. up_read(&vcpu->kvm->slots_lock);
  190. return ret;
  191. }
  192. EXPORT_SYMBOL_GPL(load_pdptrs);
  193. static bool pdptrs_changed(struct kvm_vcpu *vcpu)
  194. {
  195. u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
  196. bool changed = true;
  197. int r;
  198. if (is_long_mode(vcpu) || !is_pae(vcpu))
  199. return false;
  200. down_read(&vcpu->kvm->slots_lock);
  201. r = kvm_read_guest(vcpu->kvm, vcpu->arch.cr3 & ~31u, pdpte, sizeof(pdpte));
  202. if (r < 0)
  203. goto out;
  204. changed = memcmp(pdpte, vcpu->arch.pdptrs, sizeof(pdpte)) != 0;
  205. out:
  206. up_read(&vcpu->kvm->slots_lock);
  207. return changed;
  208. }
  209. void set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  210. {
  211. if (cr0 & CR0_RESERVED_BITS) {
  212. printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
  213. cr0, vcpu->arch.cr0);
  214. kvm_inject_gp(vcpu, 0);
  215. return;
  216. }
  217. if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) {
  218. printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n");
  219. kvm_inject_gp(vcpu, 0);
  220. return;
  221. }
  222. if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) {
  223. printk(KERN_DEBUG "set_cr0: #GP, set PG flag "
  224. "and a clear PE flag\n");
  225. kvm_inject_gp(vcpu, 0);
  226. return;
  227. }
  228. if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
  229. #ifdef CONFIG_X86_64
  230. if ((vcpu->arch.shadow_efer & EFER_LME)) {
  231. int cs_db, cs_l;
  232. if (!is_pae(vcpu)) {
  233. printk(KERN_DEBUG "set_cr0: #GP, start paging "
  234. "in long mode while PAE is disabled\n");
  235. kvm_inject_gp(vcpu, 0);
  236. return;
  237. }
  238. kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  239. if (cs_l) {
  240. printk(KERN_DEBUG "set_cr0: #GP, start paging "
  241. "in long mode while CS.L == 1\n");
  242. kvm_inject_gp(vcpu, 0);
  243. return;
  244. }
  245. } else
  246. #endif
  247. if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
  248. printk(KERN_DEBUG "set_cr0: #GP, pdptrs "
  249. "reserved bits\n");
  250. kvm_inject_gp(vcpu, 0);
  251. return;
  252. }
  253. }
  254. kvm_x86_ops->set_cr0(vcpu, cr0);
  255. vcpu->arch.cr0 = cr0;
  256. kvm_mmu_reset_context(vcpu);
  257. return;
  258. }
  259. EXPORT_SYMBOL_GPL(set_cr0);
  260. void lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
  261. {
  262. set_cr0(vcpu, (vcpu->arch.cr0 & ~0x0ful) | (msw & 0x0f));
  263. }
  264. EXPORT_SYMBOL_GPL(lmsw);
  265. void set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  266. {
  267. if (cr4 & CR4_RESERVED_BITS) {
  268. printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n");
  269. kvm_inject_gp(vcpu, 0);
  270. return;
  271. }
  272. if (is_long_mode(vcpu)) {
  273. if (!(cr4 & X86_CR4_PAE)) {
  274. printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while "
  275. "in long mode\n");
  276. kvm_inject_gp(vcpu, 0);
  277. return;
  278. }
  279. } else if (is_paging(vcpu) && !is_pae(vcpu) && (cr4 & X86_CR4_PAE)
  280. && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
  281. printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n");
  282. kvm_inject_gp(vcpu, 0);
  283. return;
  284. }
  285. if (cr4 & X86_CR4_VMXE) {
  286. printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n");
  287. kvm_inject_gp(vcpu, 0);
  288. return;
  289. }
  290. kvm_x86_ops->set_cr4(vcpu, cr4);
  291. vcpu->arch.cr4 = cr4;
  292. kvm_mmu_reset_context(vcpu);
  293. }
  294. EXPORT_SYMBOL_GPL(set_cr4);
  295. void set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
  296. {
  297. if (cr3 == vcpu->arch.cr3 && !pdptrs_changed(vcpu)) {
  298. kvm_mmu_flush_tlb(vcpu);
  299. return;
  300. }
  301. if (is_long_mode(vcpu)) {
  302. if (cr3 & CR3_L_MODE_RESERVED_BITS) {
  303. printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
  304. kvm_inject_gp(vcpu, 0);
  305. return;
  306. }
  307. } else {
  308. if (is_pae(vcpu)) {
  309. if (cr3 & CR3_PAE_RESERVED_BITS) {
  310. printk(KERN_DEBUG
  311. "set_cr3: #GP, reserved bits\n");
  312. kvm_inject_gp(vcpu, 0);
  313. return;
  314. }
  315. if (is_paging(vcpu) && !load_pdptrs(vcpu, cr3)) {
  316. printk(KERN_DEBUG "set_cr3: #GP, pdptrs "
  317. "reserved bits\n");
  318. kvm_inject_gp(vcpu, 0);
  319. return;
  320. }
  321. }
  322. /*
  323. * We don't check reserved bits in nonpae mode, because
  324. * this isn't enforced, and VMware depends on this.
  325. */
  326. }
  327. down_read(&vcpu->kvm->slots_lock);
  328. /*
  329. * Does the new cr3 value map to physical memory? (Note, we
  330. * catch an invalid cr3 even in real-mode, because it would
  331. * cause trouble later on when we turn on paging anyway.)
  332. *
  333. * A real CPU would silently accept an invalid cr3 and would
  334. * attempt to use it - with largely undefined (and often hard
  335. * to debug) behavior on the guest side.
  336. */
  337. if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
  338. kvm_inject_gp(vcpu, 0);
  339. else {
  340. vcpu->arch.cr3 = cr3;
  341. vcpu->arch.mmu.new_cr3(vcpu);
  342. }
  343. up_read(&vcpu->kvm->slots_lock);
  344. }
  345. EXPORT_SYMBOL_GPL(set_cr3);
  346. void set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
  347. {
  348. if (cr8 & CR8_RESERVED_BITS) {
  349. printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8);
  350. kvm_inject_gp(vcpu, 0);
  351. return;
  352. }
  353. if (irqchip_in_kernel(vcpu->kvm))
  354. kvm_lapic_set_tpr(vcpu, cr8);
  355. else
  356. vcpu->arch.cr8 = cr8;
  357. }
  358. EXPORT_SYMBOL_GPL(set_cr8);
  359. unsigned long get_cr8(struct kvm_vcpu *vcpu)
  360. {
  361. if (irqchip_in_kernel(vcpu->kvm))
  362. return kvm_lapic_get_cr8(vcpu);
  363. else
  364. return vcpu->arch.cr8;
  365. }
  366. EXPORT_SYMBOL_GPL(get_cr8);
  367. /*
  368. * List of msr numbers which we expose to userspace through KVM_GET_MSRS
  369. * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
  370. *
  371. * This list is modified at module load time to reflect the
  372. * capabilities of the host cpu.
  373. */
  374. static u32 msrs_to_save[] = {
  375. MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
  376. MSR_K6_STAR,
  377. #ifdef CONFIG_X86_64
  378. MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
  379. #endif
  380. MSR_IA32_TIME_STAMP_COUNTER, MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
  381. };
  382. static unsigned num_msrs_to_save;
  383. static u32 emulated_msrs[] = {
  384. MSR_IA32_MISC_ENABLE,
  385. };
  386. static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
  387. {
  388. if (efer & efer_reserved_bits) {
  389. printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n",
  390. efer);
  391. kvm_inject_gp(vcpu, 0);
  392. return;
  393. }
  394. if (is_paging(vcpu)
  395. && (vcpu->arch.shadow_efer & EFER_LME) != (efer & EFER_LME)) {
  396. printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n");
  397. kvm_inject_gp(vcpu, 0);
  398. return;
  399. }
  400. kvm_x86_ops->set_efer(vcpu, efer);
  401. efer &= ~EFER_LMA;
  402. efer |= vcpu->arch.shadow_efer & EFER_LMA;
  403. vcpu->arch.shadow_efer = efer;
  404. }
  405. void kvm_enable_efer_bits(u64 mask)
  406. {
  407. efer_reserved_bits &= ~mask;
  408. }
  409. EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
  410. /*
  411. * Writes msr value into into the appropriate "register".
  412. * Returns 0 on success, non-0 otherwise.
  413. * Assumes vcpu_load() was already called.
  414. */
  415. int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  416. {
  417. return kvm_x86_ops->set_msr(vcpu, msr_index, data);
  418. }
  419. /*
  420. * Adapt set_msr() to msr_io()'s calling convention
  421. */
  422. static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
  423. {
  424. return kvm_set_msr(vcpu, index, *data);
  425. }
  426. static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
  427. {
  428. static int version;
  429. struct kvm_wall_clock wc;
  430. struct timespec wc_ts;
  431. if (!wall_clock)
  432. return;
  433. version++;
  434. down_read(&kvm->slots_lock);
  435. kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
  436. wc_ts = current_kernel_time();
  437. wc.wc_sec = wc_ts.tv_sec;
  438. wc.wc_nsec = wc_ts.tv_nsec;
  439. wc.wc_version = version;
  440. kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
  441. version++;
  442. kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
  443. up_read(&kvm->slots_lock);
  444. }
  445. static void kvm_write_guest_time(struct kvm_vcpu *v)
  446. {
  447. struct timespec ts;
  448. unsigned long flags;
  449. struct kvm_vcpu_arch *vcpu = &v->arch;
  450. void *shared_kaddr;
  451. if ((!vcpu->time_page))
  452. return;
  453. /* Keep irq disabled to prevent changes to the clock */
  454. local_irq_save(flags);
  455. kvm_get_msr(v, MSR_IA32_TIME_STAMP_COUNTER,
  456. &vcpu->hv_clock.tsc_timestamp);
  457. ktime_get_ts(&ts);
  458. local_irq_restore(flags);
  459. /* With all the info we got, fill in the values */
  460. vcpu->hv_clock.system_time = ts.tv_nsec +
  461. (NSEC_PER_SEC * (u64)ts.tv_sec);
  462. /*
  463. * The interface expects us to write an even number signaling that the
  464. * update is finished. Since the guest won't see the intermediate
  465. * state, we just write "2" at the end
  466. */
  467. vcpu->hv_clock.version = 2;
  468. shared_kaddr = kmap_atomic(vcpu->time_page, KM_USER0);
  469. memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
  470. sizeof(vcpu->hv_clock));
  471. kunmap_atomic(shared_kaddr, KM_USER0);
  472. mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
  473. }
  474. int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  475. {
  476. switch (msr) {
  477. case MSR_EFER:
  478. set_efer(vcpu, data);
  479. break;
  480. case MSR_IA32_MC0_STATUS:
  481. pr_unimpl(vcpu, "%s: MSR_IA32_MC0_STATUS 0x%llx, nop\n",
  482. __FUNCTION__, data);
  483. break;
  484. case MSR_IA32_MCG_STATUS:
  485. pr_unimpl(vcpu, "%s: MSR_IA32_MCG_STATUS 0x%llx, nop\n",
  486. __FUNCTION__, data);
  487. break;
  488. case MSR_IA32_MCG_CTL:
  489. pr_unimpl(vcpu, "%s: MSR_IA32_MCG_CTL 0x%llx, nop\n",
  490. __FUNCTION__, data);
  491. break;
  492. case MSR_IA32_UCODE_REV:
  493. case MSR_IA32_UCODE_WRITE:
  494. case 0x200 ... 0x2ff: /* MTRRs */
  495. break;
  496. case MSR_IA32_APICBASE:
  497. kvm_set_apic_base(vcpu, data);
  498. break;
  499. case MSR_IA32_MISC_ENABLE:
  500. vcpu->arch.ia32_misc_enable_msr = data;
  501. break;
  502. case MSR_KVM_WALL_CLOCK:
  503. vcpu->kvm->arch.wall_clock = data;
  504. kvm_write_wall_clock(vcpu->kvm, data);
  505. break;
  506. case MSR_KVM_SYSTEM_TIME: {
  507. if (vcpu->arch.time_page) {
  508. kvm_release_page_dirty(vcpu->arch.time_page);
  509. vcpu->arch.time_page = NULL;
  510. }
  511. vcpu->arch.time = data;
  512. /* we verify if the enable bit is set... */
  513. if (!(data & 1))
  514. break;
  515. /* ...but clean it before doing the actual write */
  516. vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);
  517. vcpu->arch.hv_clock.tsc_to_system_mul =
  518. clocksource_khz2mult(tsc_khz, 22);
  519. vcpu->arch.hv_clock.tsc_shift = 22;
  520. down_read(&current->mm->mmap_sem);
  521. down_read(&vcpu->kvm->slots_lock);
  522. vcpu->arch.time_page =
  523. gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
  524. up_read(&vcpu->kvm->slots_lock);
  525. up_read(&current->mm->mmap_sem);
  526. if (is_error_page(vcpu->arch.time_page)) {
  527. kvm_release_page_clean(vcpu->arch.time_page);
  528. vcpu->arch.time_page = NULL;
  529. }
  530. kvm_write_guest_time(vcpu);
  531. break;
  532. }
  533. default:
  534. pr_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n", msr, data);
  535. return 1;
  536. }
  537. return 0;
  538. }
  539. EXPORT_SYMBOL_GPL(kvm_set_msr_common);
  540. /*
  541. * Reads an msr value (of 'msr_index') into 'pdata'.
  542. * Returns 0 on success, non-0 otherwise.
  543. * Assumes vcpu_load() was already called.
  544. */
  545. int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  546. {
  547. return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
  548. }
  549. int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  550. {
  551. u64 data;
  552. switch (msr) {
  553. case 0xc0010010: /* SYSCFG */
  554. case 0xc0010015: /* HWCR */
  555. case MSR_IA32_PLATFORM_ID:
  556. case MSR_IA32_P5_MC_ADDR:
  557. case MSR_IA32_P5_MC_TYPE:
  558. case MSR_IA32_MC0_CTL:
  559. case MSR_IA32_MCG_STATUS:
  560. case MSR_IA32_MCG_CAP:
  561. case MSR_IA32_MCG_CTL:
  562. case MSR_IA32_MC0_MISC:
  563. case MSR_IA32_MC0_MISC+4:
  564. case MSR_IA32_MC0_MISC+8:
  565. case MSR_IA32_MC0_MISC+12:
  566. case MSR_IA32_MC0_MISC+16:
  567. case MSR_IA32_UCODE_REV:
  568. case MSR_IA32_PERF_STATUS:
  569. case MSR_IA32_EBL_CR_POWERON:
  570. /* MTRR registers */
  571. case 0xfe:
  572. case 0x200 ... 0x2ff:
  573. data = 0;
  574. break;
  575. case 0xcd: /* fsb frequency */
  576. data = 3;
  577. break;
  578. case MSR_IA32_APICBASE:
  579. data = kvm_get_apic_base(vcpu);
  580. break;
  581. case MSR_IA32_MISC_ENABLE:
  582. data = vcpu->arch.ia32_misc_enable_msr;
  583. break;
  584. case MSR_EFER:
  585. data = vcpu->arch.shadow_efer;
  586. break;
  587. case MSR_KVM_WALL_CLOCK:
  588. data = vcpu->kvm->arch.wall_clock;
  589. break;
  590. case MSR_KVM_SYSTEM_TIME:
  591. data = vcpu->arch.time;
  592. break;
  593. default:
  594. pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
  595. return 1;
  596. }
  597. *pdata = data;
  598. return 0;
  599. }
  600. EXPORT_SYMBOL_GPL(kvm_get_msr_common);
  601. /*
  602. * Read or write a bunch of msrs. All parameters are kernel addresses.
  603. *
  604. * @return number of msrs set successfully.
  605. */
  606. static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
  607. struct kvm_msr_entry *entries,
  608. int (*do_msr)(struct kvm_vcpu *vcpu,
  609. unsigned index, u64 *data))
  610. {
  611. int i;
  612. vcpu_load(vcpu);
  613. for (i = 0; i < msrs->nmsrs; ++i)
  614. if (do_msr(vcpu, entries[i].index, &entries[i].data))
  615. break;
  616. vcpu_put(vcpu);
  617. return i;
  618. }
  619. /*
  620. * Read or write a bunch of msrs. Parameters are user addresses.
  621. *
  622. * @return number of msrs set successfully.
  623. */
  624. static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
  625. int (*do_msr)(struct kvm_vcpu *vcpu,
  626. unsigned index, u64 *data),
  627. int writeback)
  628. {
  629. struct kvm_msrs msrs;
  630. struct kvm_msr_entry *entries;
  631. int r, n;
  632. unsigned size;
  633. r = -EFAULT;
  634. if (copy_from_user(&msrs, user_msrs, sizeof msrs))
  635. goto out;
  636. r = -E2BIG;
  637. if (msrs.nmsrs >= MAX_IO_MSRS)
  638. goto out;
  639. r = -ENOMEM;
  640. size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
  641. entries = vmalloc(size);
  642. if (!entries)
  643. goto out;
  644. r = -EFAULT;
  645. if (copy_from_user(entries, user_msrs->entries, size))
  646. goto out_free;
  647. r = n = __msr_io(vcpu, &msrs, entries, do_msr);
  648. if (r < 0)
  649. goto out_free;
  650. r = -EFAULT;
  651. if (writeback && copy_to_user(user_msrs->entries, entries, size))
  652. goto out_free;
  653. r = n;
  654. out_free:
  655. vfree(entries);
  656. out:
  657. return r;
  658. }
  659. /*
  660. * Make sure that a cpu that is being hot-unplugged does not have any vcpus
  661. * cached on it.
  662. */
  663. void decache_vcpus_on_cpu(int cpu)
  664. {
  665. struct kvm *vm;
  666. struct kvm_vcpu *vcpu;
  667. int i;
  668. spin_lock(&kvm_lock);
  669. list_for_each_entry(vm, &vm_list, vm_list)
  670. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  671. vcpu = vm->vcpus[i];
  672. if (!vcpu)
  673. continue;
  674. /*
  675. * If the vcpu is locked, then it is running on some
  676. * other cpu and therefore it is not cached on the
  677. * cpu in question.
  678. *
  679. * If it's not locked, check the last cpu it executed
  680. * on.
  681. */
  682. if (mutex_trylock(&vcpu->mutex)) {
  683. if (vcpu->cpu == cpu) {
  684. kvm_x86_ops->vcpu_decache(vcpu);
  685. vcpu->cpu = -1;
  686. }
  687. mutex_unlock(&vcpu->mutex);
  688. }
  689. }
  690. spin_unlock(&kvm_lock);
  691. }
  692. int kvm_dev_ioctl_check_extension(long ext)
  693. {
  694. int r;
  695. switch (ext) {
  696. case KVM_CAP_IRQCHIP:
  697. case KVM_CAP_HLT:
  698. case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
  699. case KVM_CAP_USER_MEMORY:
  700. case KVM_CAP_SET_TSS_ADDR:
  701. case KVM_CAP_EXT_CPUID:
  702. case KVM_CAP_CLOCKSOURCE:
  703. r = 1;
  704. break;
  705. case KVM_CAP_VAPIC:
  706. r = !kvm_x86_ops->cpu_has_accelerated_tpr();
  707. break;
  708. case KVM_CAP_NR_VCPUS:
  709. r = KVM_MAX_VCPUS;
  710. break;
  711. default:
  712. r = 0;
  713. break;
  714. }
  715. return r;
  716. }
  717. long kvm_arch_dev_ioctl(struct file *filp,
  718. unsigned int ioctl, unsigned long arg)
  719. {
  720. void __user *argp = (void __user *)arg;
  721. long r;
  722. switch (ioctl) {
  723. case KVM_GET_MSR_INDEX_LIST: {
  724. struct kvm_msr_list __user *user_msr_list = argp;
  725. struct kvm_msr_list msr_list;
  726. unsigned n;
  727. r = -EFAULT;
  728. if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
  729. goto out;
  730. n = msr_list.nmsrs;
  731. msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
  732. if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
  733. goto out;
  734. r = -E2BIG;
  735. if (n < num_msrs_to_save)
  736. goto out;
  737. r = -EFAULT;
  738. if (copy_to_user(user_msr_list->indices, &msrs_to_save,
  739. num_msrs_to_save * sizeof(u32)))
  740. goto out;
  741. if (copy_to_user(user_msr_list->indices
  742. + num_msrs_to_save * sizeof(u32),
  743. &emulated_msrs,
  744. ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
  745. goto out;
  746. r = 0;
  747. break;
  748. }
  749. case KVM_GET_SUPPORTED_CPUID: {
  750. struct kvm_cpuid2 __user *cpuid_arg = argp;
  751. struct kvm_cpuid2 cpuid;
  752. r = -EFAULT;
  753. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  754. goto out;
  755. r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
  756. cpuid_arg->entries);
  757. if (r)
  758. goto out;
  759. r = -EFAULT;
  760. if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
  761. goto out;
  762. r = 0;
  763. break;
  764. }
  765. default:
  766. r = -EINVAL;
  767. }
  768. out:
  769. return r;
  770. }
  771. void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
  772. {
  773. kvm_x86_ops->vcpu_load(vcpu, cpu);
  774. kvm_write_guest_time(vcpu);
  775. }
  776. void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
  777. {
  778. kvm_x86_ops->vcpu_put(vcpu);
  779. kvm_put_guest_fpu(vcpu);
  780. }
  781. static int is_efer_nx(void)
  782. {
  783. u64 efer;
  784. rdmsrl(MSR_EFER, efer);
  785. return efer & EFER_NX;
  786. }
  787. static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
  788. {
  789. int i;
  790. struct kvm_cpuid_entry2 *e, *entry;
  791. entry = NULL;
  792. for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
  793. e = &vcpu->arch.cpuid_entries[i];
  794. if (e->function == 0x80000001) {
  795. entry = e;
  796. break;
  797. }
  798. }
  799. if (entry && (entry->edx & (1 << 20)) && !is_efer_nx()) {
  800. entry->edx &= ~(1 << 20);
  801. printk(KERN_INFO "kvm: guest NX capability removed\n");
  802. }
  803. }
  804. /* when an old userspace process fills a new kernel module */
  805. static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
  806. struct kvm_cpuid *cpuid,
  807. struct kvm_cpuid_entry __user *entries)
  808. {
  809. int r, i;
  810. struct kvm_cpuid_entry *cpuid_entries;
  811. r = -E2BIG;
  812. if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
  813. goto out;
  814. r = -ENOMEM;
  815. cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent);
  816. if (!cpuid_entries)
  817. goto out;
  818. r = -EFAULT;
  819. if (copy_from_user(cpuid_entries, entries,
  820. cpuid->nent * sizeof(struct kvm_cpuid_entry)))
  821. goto out_free;
  822. for (i = 0; i < cpuid->nent; i++) {
  823. vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
  824. vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
  825. vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
  826. vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
  827. vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
  828. vcpu->arch.cpuid_entries[i].index = 0;
  829. vcpu->arch.cpuid_entries[i].flags = 0;
  830. vcpu->arch.cpuid_entries[i].padding[0] = 0;
  831. vcpu->arch.cpuid_entries[i].padding[1] = 0;
  832. vcpu->arch.cpuid_entries[i].padding[2] = 0;
  833. }
  834. vcpu->arch.cpuid_nent = cpuid->nent;
  835. cpuid_fix_nx_cap(vcpu);
  836. r = 0;
  837. out_free:
  838. vfree(cpuid_entries);
  839. out:
  840. return r;
  841. }
  842. static int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
  843. struct kvm_cpuid2 *cpuid,
  844. struct kvm_cpuid_entry2 __user *entries)
  845. {
  846. int r;
  847. r = -E2BIG;
  848. if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
  849. goto out;
  850. r = -EFAULT;
  851. if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
  852. cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
  853. goto out;
  854. vcpu->arch.cpuid_nent = cpuid->nent;
  855. return 0;
  856. out:
  857. return r;
  858. }
  859. static int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
  860. struct kvm_cpuid2 *cpuid,
  861. struct kvm_cpuid_entry2 __user *entries)
  862. {
  863. int r;
  864. r = -E2BIG;
  865. if (cpuid->nent < vcpu->arch.cpuid_nent)
  866. goto out;
  867. r = -EFAULT;
  868. if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
  869. vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
  870. goto out;
  871. return 0;
  872. out:
  873. cpuid->nent = vcpu->arch.cpuid_nent;
  874. return r;
  875. }
  876. static inline u32 bit(int bitno)
  877. {
  878. return 1 << (bitno & 31);
  879. }
  880. static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
  881. u32 index)
  882. {
  883. entry->function = function;
  884. entry->index = index;
  885. cpuid_count(entry->function, entry->index,
  886. &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
  887. entry->flags = 0;
  888. }
  889. static void do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
  890. u32 index, int *nent, int maxnent)
  891. {
  892. const u32 kvm_supported_word0_x86_features = bit(X86_FEATURE_FPU) |
  893. bit(X86_FEATURE_VME) | bit(X86_FEATURE_DE) |
  894. bit(X86_FEATURE_PSE) | bit(X86_FEATURE_TSC) |
  895. bit(X86_FEATURE_MSR) | bit(X86_FEATURE_PAE) |
  896. bit(X86_FEATURE_CX8) | bit(X86_FEATURE_APIC) |
  897. bit(X86_FEATURE_SEP) | bit(X86_FEATURE_PGE) |
  898. bit(X86_FEATURE_CMOV) | bit(X86_FEATURE_PSE36) |
  899. bit(X86_FEATURE_CLFLSH) | bit(X86_FEATURE_MMX) |
  900. bit(X86_FEATURE_FXSR) | bit(X86_FEATURE_XMM) |
  901. bit(X86_FEATURE_XMM2) | bit(X86_FEATURE_SELFSNOOP);
  902. const u32 kvm_supported_word1_x86_features = bit(X86_FEATURE_FPU) |
  903. bit(X86_FEATURE_VME) | bit(X86_FEATURE_DE) |
  904. bit(X86_FEATURE_PSE) | bit(X86_FEATURE_TSC) |
  905. bit(X86_FEATURE_MSR) | bit(X86_FEATURE_PAE) |
  906. bit(X86_FEATURE_CX8) | bit(X86_FEATURE_APIC) |
  907. bit(X86_FEATURE_PGE) |
  908. bit(X86_FEATURE_CMOV) | bit(X86_FEATURE_PSE36) |
  909. bit(X86_FEATURE_MMX) | bit(X86_FEATURE_FXSR) |
  910. bit(X86_FEATURE_SYSCALL) |
  911. (bit(X86_FEATURE_NX) && is_efer_nx()) |
  912. #ifdef CONFIG_X86_64
  913. bit(X86_FEATURE_LM) |
  914. #endif
  915. bit(X86_FEATURE_MMXEXT) |
  916. bit(X86_FEATURE_3DNOWEXT) |
  917. bit(X86_FEATURE_3DNOW);
  918. const u32 kvm_supported_word3_x86_features =
  919. bit(X86_FEATURE_XMM3) | bit(X86_FEATURE_CX16);
  920. const u32 kvm_supported_word6_x86_features =
  921. bit(X86_FEATURE_LAHF_LM) | bit(X86_FEATURE_CMP_LEGACY);
  922. /* all func 2 cpuid_count() should be called on the same cpu */
  923. get_cpu();
  924. do_cpuid_1_ent(entry, function, index);
  925. ++*nent;
  926. switch (function) {
  927. case 0:
  928. entry->eax = min(entry->eax, (u32)0xb);
  929. break;
  930. case 1:
  931. entry->edx &= kvm_supported_word0_x86_features;
  932. entry->ecx &= kvm_supported_word3_x86_features;
  933. break;
  934. /* function 2 entries are STATEFUL. That is, repeated cpuid commands
  935. * may return different values. This forces us to get_cpu() before
  936. * issuing the first command, and also to emulate this annoying behavior
  937. * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
  938. case 2: {
  939. int t, times = entry->eax & 0xff;
  940. entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
  941. for (t = 1; t < times && *nent < maxnent; ++t) {
  942. do_cpuid_1_ent(&entry[t], function, 0);
  943. entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
  944. ++*nent;
  945. }
  946. break;
  947. }
  948. /* function 4 and 0xb have additional index. */
  949. case 4: {
  950. int index, cache_type;
  951. entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  952. /* read more entries until cache_type is zero */
  953. for (index = 1; *nent < maxnent; ++index) {
  954. cache_type = entry[index - 1].eax & 0x1f;
  955. if (!cache_type)
  956. break;
  957. do_cpuid_1_ent(&entry[index], function, index);
  958. entry[index].flags |=
  959. KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  960. ++*nent;
  961. }
  962. break;
  963. }
  964. case 0xb: {
  965. int index, level_type;
  966. entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  967. /* read more entries until level_type is zero */
  968. for (index = 1; *nent < maxnent; ++index) {
  969. level_type = entry[index - 1].ecx & 0xff;
  970. if (!level_type)
  971. break;
  972. do_cpuid_1_ent(&entry[index], function, index);
  973. entry[index].flags |=
  974. KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  975. ++*nent;
  976. }
  977. break;
  978. }
  979. case 0x80000000:
  980. entry->eax = min(entry->eax, 0x8000001a);
  981. break;
  982. case 0x80000001:
  983. entry->edx &= kvm_supported_word1_x86_features;
  984. entry->ecx &= kvm_supported_word6_x86_features;
  985. break;
  986. }
  987. put_cpu();
  988. }
  989. static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
  990. struct kvm_cpuid_entry2 __user *entries)
  991. {
  992. struct kvm_cpuid_entry2 *cpuid_entries;
  993. int limit, nent = 0, r = -E2BIG;
  994. u32 func;
  995. if (cpuid->nent < 1)
  996. goto out;
  997. r = -ENOMEM;
  998. cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
  999. if (!cpuid_entries)
  1000. goto out;
  1001. do_cpuid_ent(&cpuid_entries[0], 0, 0, &nent, cpuid->nent);
  1002. limit = cpuid_entries[0].eax;
  1003. for (func = 1; func <= limit && nent < cpuid->nent; ++func)
  1004. do_cpuid_ent(&cpuid_entries[nent], func, 0,
  1005. &nent, cpuid->nent);
  1006. r = -E2BIG;
  1007. if (nent >= cpuid->nent)
  1008. goto out_free;
  1009. do_cpuid_ent(&cpuid_entries[nent], 0x80000000, 0, &nent, cpuid->nent);
  1010. limit = cpuid_entries[nent - 1].eax;
  1011. for (func = 0x80000001; func <= limit && nent < cpuid->nent; ++func)
  1012. do_cpuid_ent(&cpuid_entries[nent], func, 0,
  1013. &nent, cpuid->nent);
  1014. r = -EFAULT;
  1015. if (copy_to_user(entries, cpuid_entries,
  1016. nent * sizeof(struct kvm_cpuid_entry2)))
  1017. goto out_free;
  1018. cpuid->nent = nent;
  1019. r = 0;
  1020. out_free:
  1021. vfree(cpuid_entries);
  1022. out:
  1023. return r;
  1024. }
  1025. static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
  1026. struct kvm_lapic_state *s)
  1027. {
  1028. vcpu_load(vcpu);
  1029. memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
  1030. vcpu_put(vcpu);
  1031. return 0;
  1032. }
  1033. static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
  1034. struct kvm_lapic_state *s)
  1035. {
  1036. vcpu_load(vcpu);
  1037. memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s);
  1038. kvm_apic_post_state_restore(vcpu);
  1039. vcpu_put(vcpu);
  1040. return 0;
  1041. }
  1042. static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
  1043. struct kvm_interrupt *irq)
  1044. {
  1045. if (irq->irq < 0 || irq->irq >= 256)
  1046. return -EINVAL;
  1047. if (irqchip_in_kernel(vcpu->kvm))
  1048. return -ENXIO;
  1049. vcpu_load(vcpu);
  1050. set_bit(irq->irq, vcpu->arch.irq_pending);
  1051. set_bit(irq->irq / BITS_PER_LONG, &vcpu->arch.irq_summary);
  1052. vcpu_put(vcpu);
  1053. return 0;
  1054. }
  1055. static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
  1056. struct kvm_tpr_access_ctl *tac)
  1057. {
  1058. if (tac->flags)
  1059. return -EINVAL;
  1060. vcpu->arch.tpr_access_reporting = !!tac->enabled;
  1061. return 0;
  1062. }
  1063. long kvm_arch_vcpu_ioctl(struct file *filp,
  1064. unsigned int ioctl, unsigned long arg)
  1065. {
  1066. struct kvm_vcpu *vcpu = filp->private_data;
  1067. void __user *argp = (void __user *)arg;
  1068. int r;
  1069. switch (ioctl) {
  1070. case KVM_GET_LAPIC: {
  1071. struct kvm_lapic_state lapic;
  1072. memset(&lapic, 0, sizeof lapic);
  1073. r = kvm_vcpu_ioctl_get_lapic(vcpu, &lapic);
  1074. if (r)
  1075. goto out;
  1076. r = -EFAULT;
  1077. if (copy_to_user(argp, &lapic, sizeof lapic))
  1078. goto out;
  1079. r = 0;
  1080. break;
  1081. }
  1082. case KVM_SET_LAPIC: {
  1083. struct kvm_lapic_state lapic;
  1084. r = -EFAULT;
  1085. if (copy_from_user(&lapic, argp, sizeof lapic))
  1086. goto out;
  1087. r = kvm_vcpu_ioctl_set_lapic(vcpu, &lapic);;
  1088. if (r)
  1089. goto out;
  1090. r = 0;
  1091. break;
  1092. }
  1093. case KVM_INTERRUPT: {
  1094. struct kvm_interrupt irq;
  1095. r = -EFAULT;
  1096. if (copy_from_user(&irq, argp, sizeof irq))
  1097. goto out;
  1098. r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
  1099. if (r)
  1100. goto out;
  1101. r = 0;
  1102. break;
  1103. }
  1104. case KVM_SET_CPUID: {
  1105. struct kvm_cpuid __user *cpuid_arg = argp;
  1106. struct kvm_cpuid cpuid;
  1107. r = -EFAULT;
  1108. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  1109. goto out;
  1110. r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
  1111. if (r)
  1112. goto out;
  1113. break;
  1114. }
  1115. case KVM_SET_CPUID2: {
  1116. struct kvm_cpuid2 __user *cpuid_arg = argp;
  1117. struct kvm_cpuid2 cpuid;
  1118. r = -EFAULT;
  1119. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  1120. goto out;
  1121. r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
  1122. cpuid_arg->entries);
  1123. if (r)
  1124. goto out;
  1125. break;
  1126. }
  1127. case KVM_GET_CPUID2: {
  1128. struct kvm_cpuid2 __user *cpuid_arg = argp;
  1129. struct kvm_cpuid2 cpuid;
  1130. r = -EFAULT;
  1131. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  1132. goto out;
  1133. r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
  1134. cpuid_arg->entries);
  1135. if (r)
  1136. goto out;
  1137. r = -EFAULT;
  1138. if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
  1139. goto out;
  1140. r = 0;
  1141. break;
  1142. }
  1143. case KVM_GET_MSRS:
  1144. r = msr_io(vcpu, argp, kvm_get_msr, 1);
  1145. break;
  1146. case KVM_SET_MSRS:
  1147. r = msr_io(vcpu, argp, do_set_msr, 0);
  1148. break;
  1149. case KVM_TPR_ACCESS_REPORTING: {
  1150. struct kvm_tpr_access_ctl tac;
  1151. r = -EFAULT;
  1152. if (copy_from_user(&tac, argp, sizeof tac))
  1153. goto out;
  1154. r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
  1155. if (r)
  1156. goto out;
  1157. r = -EFAULT;
  1158. if (copy_to_user(argp, &tac, sizeof tac))
  1159. goto out;
  1160. r = 0;
  1161. break;
  1162. };
  1163. case KVM_SET_VAPIC_ADDR: {
  1164. struct kvm_vapic_addr va;
  1165. r = -EINVAL;
  1166. if (!irqchip_in_kernel(vcpu->kvm))
  1167. goto out;
  1168. r = -EFAULT;
  1169. if (copy_from_user(&va, argp, sizeof va))
  1170. goto out;
  1171. r = 0;
  1172. kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
  1173. break;
  1174. }
  1175. default:
  1176. r = -EINVAL;
  1177. }
  1178. out:
  1179. return r;
  1180. }
  1181. static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
  1182. {
  1183. int ret;
  1184. if (addr > (unsigned int)(-3 * PAGE_SIZE))
  1185. return -1;
  1186. ret = kvm_x86_ops->set_tss_addr(kvm, addr);
  1187. return ret;
  1188. }
  1189. static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
  1190. u32 kvm_nr_mmu_pages)
  1191. {
  1192. if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
  1193. return -EINVAL;
  1194. down_write(&kvm->slots_lock);
  1195. kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
  1196. kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
  1197. up_write(&kvm->slots_lock);
  1198. return 0;
  1199. }
  1200. static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
  1201. {
  1202. return kvm->arch.n_alloc_mmu_pages;
  1203. }
  1204. gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
  1205. {
  1206. int i;
  1207. struct kvm_mem_alias *alias;
  1208. for (i = 0; i < kvm->arch.naliases; ++i) {
  1209. alias = &kvm->arch.aliases[i];
  1210. if (gfn >= alias->base_gfn
  1211. && gfn < alias->base_gfn + alias->npages)
  1212. return alias->target_gfn + gfn - alias->base_gfn;
  1213. }
  1214. return gfn;
  1215. }
  1216. /*
  1217. * Set a new alias region. Aliases map a portion of physical memory into
  1218. * another portion. This is useful for memory windows, for example the PC
  1219. * VGA region.
  1220. */
  1221. static int kvm_vm_ioctl_set_memory_alias(struct kvm *kvm,
  1222. struct kvm_memory_alias *alias)
  1223. {
  1224. int r, n;
  1225. struct kvm_mem_alias *p;
  1226. r = -EINVAL;
  1227. /* General sanity checks */
  1228. if (alias->memory_size & (PAGE_SIZE - 1))
  1229. goto out;
  1230. if (alias->guest_phys_addr & (PAGE_SIZE - 1))
  1231. goto out;
  1232. if (alias->slot >= KVM_ALIAS_SLOTS)
  1233. goto out;
  1234. if (alias->guest_phys_addr + alias->memory_size
  1235. < alias->guest_phys_addr)
  1236. goto out;
  1237. if (alias->target_phys_addr + alias->memory_size
  1238. < alias->target_phys_addr)
  1239. goto out;
  1240. down_write(&kvm->slots_lock);
  1241. p = &kvm->arch.aliases[alias->slot];
  1242. p->base_gfn = alias->guest_phys_addr >> PAGE_SHIFT;
  1243. p->npages = alias->memory_size >> PAGE_SHIFT;
  1244. p->target_gfn = alias->target_phys_addr >> PAGE_SHIFT;
  1245. for (n = KVM_ALIAS_SLOTS; n > 0; --n)
  1246. if (kvm->arch.aliases[n - 1].npages)
  1247. break;
  1248. kvm->arch.naliases = n;
  1249. kvm_mmu_zap_all(kvm);
  1250. up_write(&kvm->slots_lock);
  1251. return 0;
  1252. out:
  1253. return r;
  1254. }
  1255. static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
  1256. {
  1257. int r;
  1258. r = 0;
  1259. switch (chip->chip_id) {
  1260. case KVM_IRQCHIP_PIC_MASTER:
  1261. memcpy(&chip->chip.pic,
  1262. &pic_irqchip(kvm)->pics[0],
  1263. sizeof(struct kvm_pic_state));
  1264. break;
  1265. case KVM_IRQCHIP_PIC_SLAVE:
  1266. memcpy(&chip->chip.pic,
  1267. &pic_irqchip(kvm)->pics[1],
  1268. sizeof(struct kvm_pic_state));
  1269. break;
  1270. case KVM_IRQCHIP_IOAPIC:
  1271. memcpy(&chip->chip.ioapic,
  1272. ioapic_irqchip(kvm),
  1273. sizeof(struct kvm_ioapic_state));
  1274. break;
  1275. default:
  1276. r = -EINVAL;
  1277. break;
  1278. }
  1279. return r;
  1280. }
  1281. static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
  1282. {
  1283. int r;
  1284. r = 0;
  1285. switch (chip->chip_id) {
  1286. case KVM_IRQCHIP_PIC_MASTER:
  1287. memcpy(&pic_irqchip(kvm)->pics[0],
  1288. &chip->chip.pic,
  1289. sizeof(struct kvm_pic_state));
  1290. break;
  1291. case KVM_IRQCHIP_PIC_SLAVE:
  1292. memcpy(&pic_irqchip(kvm)->pics[1],
  1293. &chip->chip.pic,
  1294. sizeof(struct kvm_pic_state));
  1295. break;
  1296. case KVM_IRQCHIP_IOAPIC:
  1297. memcpy(ioapic_irqchip(kvm),
  1298. &chip->chip.ioapic,
  1299. sizeof(struct kvm_ioapic_state));
  1300. break;
  1301. default:
  1302. r = -EINVAL;
  1303. break;
  1304. }
  1305. kvm_pic_update_irq(pic_irqchip(kvm));
  1306. return r;
  1307. }
  1308. /*
  1309. * Get (and clear) the dirty memory log for a memory slot.
  1310. */
  1311. int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
  1312. struct kvm_dirty_log *log)
  1313. {
  1314. int r;
  1315. int n;
  1316. struct kvm_memory_slot *memslot;
  1317. int is_dirty = 0;
  1318. down_write(&kvm->slots_lock);
  1319. r = kvm_get_dirty_log(kvm, log, &is_dirty);
  1320. if (r)
  1321. goto out;
  1322. /* If nothing is dirty, don't bother messing with page tables. */
  1323. if (is_dirty) {
  1324. kvm_mmu_slot_remove_write_access(kvm, log->slot);
  1325. kvm_flush_remote_tlbs(kvm);
  1326. memslot = &kvm->memslots[log->slot];
  1327. n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
  1328. memset(memslot->dirty_bitmap, 0, n);
  1329. }
  1330. r = 0;
  1331. out:
  1332. up_write(&kvm->slots_lock);
  1333. return r;
  1334. }
  1335. long kvm_arch_vm_ioctl(struct file *filp,
  1336. unsigned int ioctl, unsigned long arg)
  1337. {
  1338. struct kvm *kvm = filp->private_data;
  1339. void __user *argp = (void __user *)arg;
  1340. int r = -EINVAL;
  1341. switch (ioctl) {
  1342. case KVM_SET_TSS_ADDR:
  1343. r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
  1344. if (r < 0)
  1345. goto out;
  1346. break;
  1347. case KVM_SET_MEMORY_REGION: {
  1348. struct kvm_memory_region kvm_mem;
  1349. struct kvm_userspace_memory_region kvm_userspace_mem;
  1350. r = -EFAULT;
  1351. if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
  1352. goto out;
  1353. kvm_userspace_mem.slot = kvm_mem.slot;
  1354. kvm_userspace_mem.flags = kvm_mem.flags;
  1355. kvm_userspace_mem.guest_phys_addr = kvm_mem.guest_phys_addr;
  1356. kvm_userspace_mem.memory_size = kvm_mem.memory_size;
  1357. r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 0);
  1358. if (r)
  1359. goto out;
  1360. break;
  1361. }
  1362. case KVM_SET_NR_MMU_PAGES:
  1363. r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
  1364. if (r)
  1365. goto out;
  1366. break;
  1367. case KVM_GET_NR_MMU_PAGES:
  1368. r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
  1369. break;
  1370. case KVM_SET_MEMORY_ALIAS: {
  1371. struct kvm_memory_alias alias;
  1372. r = -EFAULT;
  1373. if (copy_from_user(&alias, argp, sizeof alias))
  1374. goto out;
  1375. r = kvm_vm_ioctl_set_memory_alias(kvm, &alias);
  1376. if (r)
  1377. goto out;
  1378. break;
  1379. }
  1380. case KVM_CREATE_IRQCHIP:
  1381. r = -ENOMEM;
  1382. kvm->arch.vpic = kvm_create_pic(kvm);
  1383. if (kvm->arch.vpic) {
  1384. r = kvm_ioapic_init(kvm);
  1385. if (r) {
  1386. kfree(kvm->arch.vpic);
  1387. kvm->arch.vpic = NULL;
  1388. goto out;
  1389. }
  1390. } else
  1391. goto out;
  1392. break;
  1393. case KVM_IRQ_LINE: {
  1394. struct kvm_irq_level irq_event;
  1395. r = -EFAULT;
  1396. if (copy_from_user(&irq_event, argp, sizeof irq_event))
  1397. goto out;
  1398. if (irqchip_in_kernel(kvm)) {
  1399. mutex_lock(&kvm->lock);
  1400. if (irq_event.irq < 16)
  1401. kvm_pic_set_irq(pic_irqchip(kvm),
  1402. irq_event.irq,
  1403. irq_event.level);
  1404. kvm_ioapic_set_irq(kvm->arch.vioapic,
  1405. irq_event.irq,
  1406. irq_event.level);
  1407. mutex_unlock(&kvm->lock);
  1408. r = 0;
  1409. }
  1410. break;
  1411. }
  1412. case KVM_GET_IRQCHIP: {
  1413. /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
  1414. struct kvm_irqchip chip;
  1415. r = -EFAULT;
  1416. if (copy_from_user(&chip, argp, sizeof chip))
  1417. goto out;
  1418. r = -ENXIO;
  1419. if (!irqchip_in_kernel(kvm))
  1420. goto out;
  1421. r = kvm_vm_ioctl_get_irqchip(kvm, &chip);
  1422. if (r)
  1423. goto out;
  1424. r = -EFAULT;
  1425. if (copy_to_user(argp, &chip, sizeof chip))
  1426. goto out;
  1427. r = 0;
  1428. break;
  1429. }
  1430. case KVM_SET_IRQCHIP: {
  1431. /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
  1432. struct kvm_irqchip chip;
  1433. r = -EFAULT;
  1434. if (copy_from_user(&chip, argp, sizeof chip))
  1435. goto out;
  1436. r = -ENXIO;
  1437. if (!irqchip_in_kernel(kvm))
  1438. goto out;
  1439. r = kvm_vm_ioctl_set_irqchip(kvm, &chip);
  1440. if (r)
  1441. goto out;
  1442. r = 0;
  1443. break;
  1444. }
  1445. default:
  1446. ;
  1447. }
  1448. out:
  1449. return r;
  1450. }
  1451. static void kvm_init_msr_list(void)
  1452. {
  1453. u32 dummy[2];
  1454. unsigned i, j;
  1455. for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
  1456. if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
  1457. continue;
  1458. if (j < i)
  1459. msrs_to_save[j] = msrs_to_save[i];
  1460. j++;
  1461. }
  1462. num_msrs_to_save = j;
  1463. }
  1464. /*
  1465. * Only apic need an MMIO device hook, so shortcut now..
  1466. */
  1467. static struct kvm_io_device *vcpu_find_pervcpu_dev(struct kvm_vcpu *vcpu,
  1468. gpa_t addr)
  1469. {
  1470. struct kvm_io_device *dev;
  1471. if (vcpu->arch.apic) {
  1472. dev = &vcpu->arch.apic->dev;
  1473. if (dev->in_range(dev, addr))
  1474. return dev;
  1475. }
  1476. return NULL;
  1477. }
  1478. static struct kvm_io_device *vcpu_find_mmio_dev(struct kvm_vcpu *vcpu,
  1479. gpa_t addr)
  1480. {
  1481. struct kvm_io_device *dev;
  1482. dev = vcpu_find_pervcpu_dev(vcpu, addr);
  1483. if (dev == NULL)
  1484. dev = kvm_io_bus_find_dev(&vcpu->kvm->mmio_bus, addr);
  1485. return dev;
  1486. }
  1487. int emulator_read_std(unsigned long addr,
  1488. void *val,
  1489. unsigned int bytes,
  1490. struct kvm_vcpu *vcpu)
  1491. {
  1492. void *data = val;
  1493. int r = X86EMUL_CONTINUE;
  1494. down_read(&vcpu->kvm->slots_lock);
  1495. while (bytes) {
  1496. gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
  1497. unsigned offset = addr & (PAGE_SIZE-1);
  1498. unsigned tocopy = min(bytes, (unsigned)PAGE_SIZE - offset);
  1499. int ret;
  1500. if (gpa == UNMAPPED_GVA) {
  1501. r = X86EMUL_PROPAGATE_FAULT;
  1502. goto out;
  1503. }
  1504. ret = kvm_read_guest(vcpu->kvm, gpa, data, tocopy);
  1505. if (ret < 0) {
  1506. r = X86EMUL_UNHANDLEABLE;
  1507. goto out;
  1508. }
  1509. bytes -= tocopy;
  1510. data += tocopy;
  1511. addr += tocopy;
  1512. }
  1513. out:
  1514. up_read(&vcpu->kvm->slots_lock);
  1515. return r;
  1516. }
  1517. EXPORT_SYMBOL_GPL(emulator_read_std);
  1518. static int emulator_read_emulated(unsigned long addr,
  1519. void *val,
  1520. unsigned int bytes,
  1521. struct kvm_vcpu *vcpu)
  1522. {
  1523. struct kvm_io_device *mmio_dev;
  1524. gpa_t gpa;
  1525. if (vcpu->mmio_read_completed) {
  1526. memcpy(val, vcpu->mmio_data, bytes);
  1527. vcpu->mmio_read_completed = 0;
  1528. return X86EMUL_CONTINUE;
  1529. }
  1530. down_read(&vcpu->kvm->slots_lock);
  1531. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
  1532. up_read(&vcpu->kvm->slots_lock);
  1533. /* For APIC access vmexit */
  1534. if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
  1535. goto mmio;
  1536. if (emulator_read_std(addr, val, bytes, vcpu)
  1537. == X86EMUL_CONTINUE)
  1538. return X86EMUL_CONTINUE;
  1539. if (gpa == UNMAPPED_GVA)
  1540. return X86EMUL_PROPAGATE_FAULT;
  1541. mmio:
  1542. /*
  1543. * Is this MMIO handled locally?
  1544. */
  1545. mutex_lock(&vcpu->kvm->lock);
  1546. mmio_dev = vcpu_find_mmio_dev(vcpu, gpa);
  1547. if (mmio_dev) {
  1548. kvm_iodevice_read(mmio_dev, gpa, bytes, val);
  1549. mutex_unlock(&vcpu->kvm->lock);
  1550. return X86EMUL_CONTINUE;
  1551. }
  1552. mutex_unlock(&vcpu->kvm->lock);
  1553. vcpu->mmio_needed = 1;
  1554. vcpu->mmio_phys_addr = gpa;
  1555. vcpu->mmio_size = bytes;
  1556. vcpu->mmio_is_write = 0;
  1557. return X86EMUL_UNHANDLEABLE;
  1558. }
  1559. static int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
  1560. const void *val, int bytes)
  1561. {
  1562. int ret;
  1563. down_read(&vcpu->kvm->slots_lock);
  1564. ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
  1565. if (ret < 0) {
  1566. up_read(&vcpu->kvm->slots_lock);
  1567. return 0;
  1568. }
  1569. kvm_mmu_pte_write(vcpu, gpa, val, bytes);
  1570. up_read(&vcpu->kvm->slots_lock);
  1571. return 1;
  1572. }
  1573. static int emulator_write_emulated_onepage(unsigned long addr,
  1574. const void *val,
  1575. unsigned int bytes,
  1576. struct kvm_vcpu *vcpu)
  1577. {
  1578. struct kvm_io_device *mmio_dev;
  1579. gpa_t gpa;
  1580. down_read(&vcpu->kvm->slots_lock);
  1581. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
  1582. up_read(&vcpu->kvm->slots_lock);
  1583. if (gpa == UNMAPPED_GVA) {
  1584. kvm_inject_page_fault(vcpu, addr, 2);
  1585. return X86EMUL_PROPAGATE_FAULT;
  1586. }
  1587. /* For APIC access vmexit */
  1588. if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
  1589. goto mmio;
  1590. if (emulator_write_phys(vcpu, gpa, val, bytes))
  1591. return X86EMUL_CONTINUE;
  1592. mmio:
  1593. /*
  1594. * Is this MMIO handled locally?
  1595. */
  1596. mutex_lock(&vcpu->kvm->lock);
  1597. mmio_dev = vcpu_find_mmio_dev(vcpu, gpa);
  1598. if (mmio_dev) {
  1599. kvm_iodevice_write(mmio_dev, gpa, bytes, val);
  1600. mutex_unlock(&vcpu->kvm->lock);
  1601. return X86EMUL_CONTINUE;
  1602. }
  1603. mutex_unlock(&vcpu->kvm->lock);
  1604. vcpu->mmio_needed = 1;
  1605. vcpu->mmio_phys_addr = gpa;
  1606. vcpu->mmio_size = bytes;
  1607. vcpu->mmio_is_write = 1;
  1608. memcpy(vcpu->mmio_data, val, bytes);
  1609. return X86EMUL_CONTINUE;
  1610. }
  1611. int emulator_write_emulated(unsigned long addr,
  1612. const void *val,
  1613. unsigned int bytes,
  1614. struct kvm_vcpu *vcpu)
  1615. {
  1616. /* Crossing a page boundary? */
  1617. if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
  1618. int rc, now;
  1619. now = -addr & ~PAGE_MASK;
  1620. rc = emulator_write_emulated_onepage(addr, val, now, vcpu);
  1621. if (rc != X86EMUL_CONTINUE)
  1622. return rc;
  1623. addr += now;
  1624. val += now;
  1625. bytes -= now;
  1626. }
  1627. return emulator_write_emulated_onepage(addr, val, bytes, vcpu);
  1628. }
  1629. EXPORT_SYMBOL_GPL(emulator_write_emulated);
  1630. static int emulator_cmpxchg_emulated(unsigned long addr,
  1631. const void *old,
  1632. const void *new,
  1633. unsigned int bytes,
  1634. struct kvm_vcpu *vcpu)
  1635. {
  1636. static int reported;
  1637. if (!reported) {
  1638. reported = 1;
  1639. printk(KERN_WARNING "kvm: emulating exchange as write\n");
  1640. }
  1641. #ifndef CONFIG_X86_64
  1642. /* guests cmpxchg8b have to be emulated atomically */
  1643. if (bytes == 8) {
  1644. gpa_t gpa;
  1645. struct page *page;
  1646. char *kaddr;
  1647. u64 val;
  1648. down_read(&vcpu->kvm->slots_lock);
  1649. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
  1650. if (gpa == UNMAPPED_GVA ||
  1651. (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
  1652. goto emul_write;
  1653. if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
  1654. goto emul_write;
  1655. val = *(u64 *)new;
  1656. down_read(&current->mm->mmap_sem);
  1657. page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
  1658. up_read(&current->mm->mmap_sem);
  1659. kaddr = kmap_atomic(page, KM_USER0);
  1660. set_64bit((u64 *)(kaddr + offset_in_page(gpa)), val);
  1661. kunmap_atomic(kaddr, KM_USER0);
  1662. kvm_release_page_dirty(page);
  1663. emul_write:
  1664. up_read(&vcpu->kvm->slots_lock);
  1665. }
  1666. #endif
  1667. return emulator_write_emulated(addr, new, bytes, vcpu);
  1668. }
  1669. static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
  1670. {
  1671. return kvm_x86_ops->get_segment_base(vcpu, seg);
  1672. }
  1673. int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
  1674. {
  1675. return X86EMUL_CONTINUE;
  1676. }
  1677. int emulate_clts(struct kvm_vcpu *vcpu)
  1678. {
  1679. kvm_x86_ops->set_cr0(vcpu, vcpu->arch.cr0 & ~X86_CR0_TS);
  1680. return X86EMUL_CONTINUE;
  1681. }
  1682. int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
  1683. {
  1684. struct kvm_vcpu *vcpu = ctxt->vcpu;
  1685. switch (dr) {
  1686. case 0 ... 3:
  1687. *dest = kvm_x86_ops->get_dr(vcpu, dr);
  1688. return X86EMUL_CONTINUE;
  1689. default:
  1690. pr_unimpl(vcpu, "%s: unexpected dr %u\n", __FUNCTION__, dr);
  1691. return X86EMUL_UNHANDLEABLE;
  1692. }
  1693. }
  1694. int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
  1695. {
  1696. unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
  1697. int exception;
  1698. kvm_x86_ops->set_dr(ctxt->vcpu, dr, value & mask, &exception);
  1699. if (exception) {
  1700. /* FIXME: better handling */
  1701. return X86EMUL_UNHANDLEABLE;
  1702. }
  1703. return X86EMUL_CONTINUE;
  1704. }
  1705. void kvm_report_emulation_failure(struct kvm_vcpu *vcpu, const char *context)
  1706. {
  1707. static int reported;
  1708. u8 opcodes[4];
  1709. unsigned long rip = vcpu->arch.rip;
  1710. unsigned long rip_linear;
  1711. rip_linear = rip + get_segment_base(vcpu, VCPU_SREG_CS);
  1712. if (reported)
  1713. return;
  1714. emulator_read_std(rip_linear, (void *)opcodes, 4, vcpu);
  1715. printk(KERN_ERR "emulation failed (%s) rip %lx %02x %02x %02x %02x\n",
  1716. context, rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
  1717. reported = 1;
  1718. }
  1719. EXPORT_SYMBOL_GPL(kvm_report_emulation_failure);
  1720. struct x86_emulate_ops emulate_ops = {
  1721. .read_std = emulator_read_std,
  1722. .read_emulated = emulator_read_emulated,
  1723. .write_emulated = emulator_write_emulated,
  1724. .cmpxchg_emulated = emulator_cmpxchg_emulated,
  1725. };
  1726. int emulate_instruction(struct kvm_vcpu *vcpu,
  1727. struct kvm_run *run,
  1728. unsigned long cr2,
  1729. u16 error_code,
  1730. int emulation_type)
  1731. {
  1732. int r;
  1733. struct decode_cache *c;
  1734. vcpu->arch.mmio_fault_cr2 = cr2;
  1735. kvm_x86_ops->cache_regs(vcpu);
  1736. vcpu->mmio_is_write = 0;
  1737. vcpu->arch.pio.string = 0;
  1738. if (!(emulation_type & EMULTYPE_NO_DECODE)) {
  1739. int cs_db, cs_l;
  1740. kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  1741. vcpu->arch.emulate_ctxt.vcpu = vcpu;
  1742. vcpu->arch.emulate_ctxt.eflags = kvm_x86_ops->get_rflags(vcpu);
  1743. vcpu->arch.emulate_ctxt.mode =
  1744. (vcpu->arch.emulate_ctxt.eflags & X86_EFLAGS_VM)
  1745. ? X86EMUL_MODE_REAL : cs_l
  1746. ? X86EMUL_MODE_PROT64 : cs_db
  1747. ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
  1748. if (vcpu->arch.emulate_ctxt.mode == X86EMUL_MODE_PROT64) {
  1749. vcpu->arch.emulate_ctxt.cs_base = 0;
  1750. vcpu->arch.emulate_ctxt.ds_base = 0;
  1751. vcpu->arch.emulate_ctxt.es_base = 0;
  1752. vcpu->arch.emulate_ctxt.ss_base = 0;
  1753. } else {
  1754. vcpu->arch.emulate_ctxt.cs_base =
  1755. get_segment_base(vcpu, VCPU_SREG_CS);
  1756. vcpu->arch.emulate_ctxt.ds_base =
  1757. get_segment_base(vcpu, VCPU_SREG_DS);
  1758. vcpu->arch.emulate_ctxt.es_base =
  1759. get_segment_base(vcpu, VCPU_SREG_ES);
  1760. vcpu->arch.emulate_ctxt.ss_base =
  1761. get_segment_base(vcpu, VCPU_SREG_SS);
  1762. }
  1763. vcpu->arch.emulate_ctxt.gs_base =
  1764. get_segment_base(vcpu, VCPU_SREG_GS);
  1765. vcpu->arch.emulate_ctxt.fs_base =
  1766. get_segment_base(vcpu, VCPU_SREG_FS);
  1767. r = x86_decode_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
  1768. /* Reject the instructions other than VMCALL/VMMCALL when
  1769. * try to emulate invalid opcode */
  1770. c = &vcpu->arch.emulate_ctxt.decode;
  1771. if ((emulation_type & EMULTYPE_TRAP_UD) &&
  1772. (!(c->twobyte && c->b == 0x01 &&
  1773. (c->modrm_reg == 0 || c->modrm_reg == 3) &&
  1774. c->modrm_mod == 3 && c->modrm_rm == 1)))
  1775. return EMULATE_FAIL;
  1776. ++vcpu->stat.insn_emulation;
  1777. if (r) {
  1778. ++vcpu->stat.insn_emulation_fail;
  1779. if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
  1780. return EMULATE_DONE;
  1781. return EMULATE_FAIL;
  1782. }
  1783. }
  1784. r = x86_emulate_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
  1785. if (vcpu->arch.pio.string)
  1786. return EMULATE_DO_MMIO;
  1787. if ((r || vcpu->mmio_is_write) && run) {
  1788. run->exit_reason = KVM_EXIT_MMIO;
  1789. run->mmio.phys_addr = vcpu->mmio_phys_addr;
  1790. memcpy(run->mmio.data, vcpu->mmio_data, 8);
  1791. run->mmio.len = vcpu->mmio_size;
  1792. run->mmio.is_write = vcpu->mmio_is_write;
  1793. }
  1794. if (r) {
  1795. if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
  1796. return EMULATE_DONE;
  1797. if (!vcpu->mmio_needed) {
  1798. kvm_report_emulation_failure(vcpu, "mmio");
  1799. return EMULATE_FAIL;
  1800. }
  1801. return EMULATE_DO_MMIO;
  1802. }
  1803. kvm_x86_ops->decache_regs(vcpu);
  1804. kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
  1805. if (vcpu->mmio_is_write) {
  1806. vcpu->mmio_needed = 0;
  1807. return EMULATE_DO_MMIO;
  1808. }
  1809. return EMULATE_DONE;
  1810. }
  1811. EXPORT_SYMBOL_GPL(emulate_instruction);
  1812. static void free_pio_guest_pages(struct kvm_vcpu *vcpu)
  1813. {
  1814. int i;
  1815. for (i = 0; i < ARRAY_SIZE(vcpu->arch.pio.guest_pages); ++i)
  1816. if (vcpu->arch.pio.guest_pages[i]) {
  1817. kvm_release_page_dirty(vcpu->arch.pio.guest_pages[i]);
  1818. vcpu->arch.pio.guest_pages[i] = NULL;
  1819. }
  1820. }
  1821. static int pio_copy_data(struct kvm_vcpu *vcpu)
  1822. {
  1823. void *p = vcpu->arch.pio_data;
  1824. void *q;
  1825. unsigned bytes;
  1826. int nr_pages = vcpu->arch.pio.guest_pages[1] ? 2 : 1;
  1827. q = vmap(vcpu->arch.pio.guest_pages, nr_pages, VM_READ|VM_WRITE,
  1828. PAGE_KERNEL);
  1829. if (!q) {
  1830. free_pio_guest_pages(vcpu);
  1831. return -ENOMEM;
  1832. }
  1833. q += vcpu->arch.pio.guest_page_offset;
  1834. bytes = vcpu->arch.pio.size * vcpu->arch.pio.cur_count;
  1835. if (vcpu->arch.pio.in)
  1836. memcpy(q, p, bytes);
  1837. else
  1838. memcpy(p, q, bytes);
  1839. q -= vcpu->arch.pio.guest_page_offset;
  1840. vunmap(q);
  1841. free_pio_guest_pages(vcpu);
  1842. return 0;
  1843. }
  1844. int complete_pio(struct kvm_vcpu *vcpu)
  1845. {
  1846. struct kvm_pio_request *io = &vcpu->arch.pio;
  1847. long delta;
  1848. int r;
  1849. kvm_x86_ops->cache_regs(vcpu);
  1850. if (!io->string) {
  1851. if (io->in)
  1852. memcpy(&vcpu->arch.regs[VCPU_REGS_RAX], vcpu->arch.pio_data,
  1853. io->size);
  1854. } else {
  1855. if (io->in) {
  1856. r = pio_copy_data(vcpu);
  1857. if (r) {
  1858. kvm_x86_ops->cache_regs(vcpu);
  1859. return r;
  1860. }
  1861. }
  1862. delta = 1;
  1863. if (io->rep) {
  1864. delta *= io->cur_count;
  1865. /*
  1866. * The size of the register should really depend on
  1867. * current address size.
  1868. */
  1869. vcpu->arch.regs[VCPU_REGS_RCX] -= delta;
  1870. }
  1871. if (io->down)
  1872. delta = -delta;
  1873. delta *= io->size;
  1874. if (io->in)
  1875. vcpu->arch.regs[VCPU_REGS_RDI] += delta;
  1876. else
  1877. vcpu->arch.regs[VCPU_REGS_RSI] += delta;
  1878. }
  1879. kvm_x86_ops->decache_regs(vcpu);
  1880. io->count -= io->cur_count;
  1881. io->cur_count = 0;
  1882. return 0;
  1883. }
  1884. static void kernel_pio(struct kvm_io_device *pio_dev,
  1885. struct kvm_vcpu *vcpu,
  1886. void *pd)
  1887. {
  1888. /* TODO: String I/O for in kernel device */
  1889. mutex_lock(&vcpu->kvm->lock);
  1890. if (vcpu->arch.pio.in)
  1891. kvm_iodevice_read(pio_dev, vcpu->arch.pio.port,
  1892. vcpu->arch.pio.size,
  1893. pd);
  1894. else
  1895. kvm_iodevice_write(pio_dev, vcpu->arch.pio.port,
  1896. vcpu->arch.pio.size,
  1897. pd);
  1898. mutex_unlock(&vcpu->kvm->lock);
  1899. }
  1900. static void pio_string_write(struct kvm_io_device *pio_dev,
  1901. struct kvm_vcpu *vcpu)
  1902. {
  1903. struct kvm_pio_request *io = &vcpu->arch.pio;
  1904. void *pd = vcpu->arch.pio_data;
  1905. int i;
  1906. mutex_lock(&vcpu->kvm->lock);
  1907. for (i = 0; i < io->cur_count; i++) {
  1908. kvm_iodevice_write(pio_dev, io->port,
  1909. io->size,
  1910. pd);
  1911. pd += io->size;
  1912. }
  1913. mutex_unlock(&vcpu->kvm->lock);
  1914. }
  1915. static struct kvm_io_device *vcpu_find_pio_dev(struct kvm_vcpu *vcpu,
  1916. gpa_t addr)
  1917. {
  1918. return kvm_io_bus_find_dev(&vcpu->kvm->pio_bus, addr);
  1919. }
  1920. int kvm_emulate_pio(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
  1921. int size, unsigned port)
  1922. {
  1923. struct kvm_io_device *pio_dev;
  1924. vcpu->run->exit_reason = KVM_EXIT_IO;
  1925. vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
  1926. vcpu->run->io.size = vcpu->arch.pio.size = size;
  1927. vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
  1928. vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = 1;
  1929. vcpu->run->io.port = vcpu->arch.pio.port = port;
  1930. vcpu->arch.pio.in = in;
  1931. vcpu->arch.pio.string = 0;
  1932. vcpu->arch.pio.down = 0;
  1933. vcpu->arch.pio.guest_page_offset = 0;
  1934. vcpu->arch.pio.rep = 0;
  1935. kvm_x86_ops->cache_regs(vcpu);
  1936. memcpy(vcpu->arch.pio_data, &vcpu->arch.regs[VCPU_REGS_RAX], 4);
  1937. kvm_x86_ops->decache_regs(vcpu);
  1938. kvm_x86_ops->skip_emulated_instruction(vcpu);
  1939. pio_dev = vcpu_find_pio_dev(vcpu, port);
  1940. if (pio_dev) {
  1941. kernel_pio(pio_dev, vcpu, vcpu->arch.pio_data);
  1942. complete_pio(vcpu);
  1943. return 1;
  1944. }
  1945. return 0;
  1946. }
  1947. EXPORT_SYMBOL_GPL(kvm_emulate_pio);
  1948. int kvm_emulate_pio_string(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
  1949. int size, unsigned long count, int down,
  1950. gva_t address, int rep, unsigned port)
  1951. {
  1952. unsigned now, in_page;
  1953. int i, ret = 0;
  1954. int nr_pages = 1;
  1955. struct page *page;
  1956. struct kvm_io_device *pio_dev;
  1957. vcpu->run->exit_reason = KVM_EXIT_IO;
  1958. vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
  1959. vcpu->run->io.size = vcpu->arch.pio.size = size;
  1960. vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
  1961. vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = count;
  1962. vcpu->run->io.port = vcpu->arch.pio.port = port;
  1963. vcpu->arch.pio.in = in;
  1964. vcpu->arch.pio.string = 1;
  1965. vcpu->arch.pio.down = down;
  1966. vcpu->arch.pio.guest_page_offset = offset_in_page(address);
  1967. vcpu->arch.pio.rep = rep;
  1968. if (!count) {
  1969. kvm_x86_ops->skip_emulated_instruction(vcpu);
  1970. return 1;
  1971. }
  1972. if (!down)
  1973. in_page = PAGE_SIZE - offset_in_page(address);
  1974. else
  1975. in_page = offset_in_page(address) + size;
  1976. now = min(count, (unsigned long)in_page / size);
  1977. if (!now) {
  1978. /*
  1979. * String I/O straddles page boundary. Pin two guest pages
  1980. * so that we satisfy atomicity constraints. Do just one
  1981. * transaction to avoid complexity.
  1982. */
  1983. nr_pages = 2;
  1984. now = 1;
  1985. }
  1986. if (down) {
  1987. /*
  1988. * String I/O in reverse. Yuck. Kill the guest, fix later.
  1989. */
  1990. pr_unimpl(vcpu, "guest string pio down\n");
  1991. kvm_inject_gp(vcpu, 0);
  1992. return 1;
  1993. }
  1994. vcpu->run->io.count = now;
  1995. vcpu->arch.pio.cur_count = now;
  1996. if (vcpu->arch.pio.cur_count == vcpu->arch.pio.count)
  1997. kvm_x86_ops->skip_emulated_instruction(vcpu);
  1998. for (i = 0; i < nr_pages; ++i) {
  1999. down_read(&vcpu->kvm->slots_lock);
  2000. page = gva_to_page(vcpu, address + i * PAGE_SIZE);
  2001. vcpu->arch.pio.guest_pages[i] = page;
  2002. up_read(&vcpu->kvm->slots_lock);
  2003. if (!page) {
  2004. kvm_inject_gp(vcpu, 0);
  2005. free_pio_guest_pages(vcpu);
  2006. return 1;
  2007. }
  2008. }
  2009. pio_dev = vcpu_find_pio_dev(vcpu, port);
  2010. if (!vcpu->arch.pio.in) {
  2011. /* string PIO write */
  2012. ret = pio_copy_data(vcpu);
  2013. if (ret >= 0 && pio_dev) {
  2014. pio_string_write(pio_dev, vcpu);
  2015. complete_pio(vcpu);
  2016. if (vcpu->arch.pio.count == 0)
  2017. ret = 1;
  2018. }
  2019. } else if (pio_dev)
  2020. pr_unimpl(vcpu, "no string pio read support yet, "
  2021. "port %x size %d count %ld\n",
  2022. port, size, count);
  2023. return ret;
  2024. }
  2025. EXPORT_SYMBOL_GPL(kvm_emulate_pio_string);
  2026. int kvm_arch_init(void *opaque)
  2027. {
  2028. int r;
  2029. struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
  2030. if (kvm_x86_ops) {
  2031. printk(KERN_ERR "kvm: already loaded the other module\n");
  2032. r = -EEXIST;
  2033. goto out;
  2034. }
  2035. if (!ops->cpu_has_kvm_support()) {
  2036. printk(KERN_ERR "kvm: no hardware support\n");
  2037. r = -EOPNOTSUPP;
  2038. goto out;
  2039. }
  2040. if (ops->disabled_by_bios()) {
  2041. printk(KERN_ERR "kvm: disabled by bios\n");
  2042. r = -EOPNOTSUPP;
  2043. goto out;
  2044. }
  2045. r = kvm_mmu_module_init();
  2046. if (r)
  2047. goto out;
  2048. kvm_init_msr_list();
  2049. kvm_x86_ops = ops;
  2050. kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
  2051. return 0;
  2052. out:
  2053. return r;
  2054. }
  2055. void kvm_arch_exit(void)
  2056. {
  2057. kvm_x86_ops = NULL;
  2058. kvm_mmu_module_exit();
  2059. }
  2060. int kvm_emulate_halt(struct kvm_vcpu *vcpu)
  2061. {
  2062. ++vcpu->stat.halt_exits;
  2063. if (irqchip_in_kernel(vcpu->kvm)) {
  2064. vcpu->arch.mp_state = VCPU_MP_STATE_HALTED;
  2065. kvm_vcpu_block(vcpu);
  2066. if (vcpu->arch.mp_state != VCPU_MP_STATE_RUNNABLE)
  2067. return -EINTR;
  2068. return 1;
  2069. } else {
  2070. vcpu->run->exit_reason = KVM_EXIT_HLT;
  2071. return 0;
  2072. }
  2073. }
  2074. EXPORT_SYMBOL_GPL(kvm_emulate_halt);
  2075. int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
  2076. {
  2077. unsigned long nr, a0, a1, a2, a3, ret;
  2078. kvm_x86_ops->cache_regs(vcpu);
  2079. nr = vcpu->arch.regs[VCPU_REGS_RAX];
  2080. a0 = vcpu->arch.regs[VCPU_REGS_RBX];
  2081. a1 = vcpu->arch.regs[VCPU_REGS_RCX];
  2082. a2 = vcpu->arch.regs[VCPU_REGS_RDX];
  2083. a3 = vcpu->arch.regs[VCPU_REGS_RSI];
  2084. if (!is_long_mode(vcpu)) {
  2085. nr &= 0xFFFFFFFF;
  2086. a0 &= 0xFFFFFFFF;
  2087. a1 &= 0xFFFFFFFF;
  2088. a2 &= 0xFFFFFFFF;
  2089. a3 &= 0xFFFFFFFF;
  2090. }
  2091. switch (nr) {
  2092. case KVM_HC_VAPIC_POLL_IRQ:
  2093. ret = 0;
  2094. break;
  2095. default:
  2096. ret = -KVM_ENOSYS;
  2097. break;
  2098. }
  2099. vcpu->arch.regs[VCPU_REGS_RAX] = ret;
  2100. kvm_x86_ops->decache_regs(vcpu);
  2101. return 0;
  2102. }
  2103. EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
  2104. int kvm_fix_hypercall(struct kvm_vcpu *vcpu)
  2105. {
  2106. char instruction[3];
  2107. int ret = 0;
  2108. /*
  2109. * Blow out the MMU to ensure that no other VCPU has an active mapping
  2110. * to ensure that the updated hypercall appears atomically across all
  2111. * VCPUs.
  2112. */
  2113. kvm_mmu_zap_all(vcpu->kvm);
  2114. kvm_x86_ops->cache_regs(vcpu);
  2115. kvm_x86_ops->patch_hypercall(vcpu, instruction);
  2116. if (emulator_write_emulated(vcpu->arch.rip, instruction, 3, vcpu)
  2117. != X86EMUL_CONTINUE)
  2118. ret = -EFAULT;
  2119. return ret;
  2120. }
  2121. static u64 mk_cr_64(u64 curr_cr, u32 new_val)
  2122. {
  2123. return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
  2124. }
  2125. void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  2126. {
  2127. struct descriptor_table dt = { limit, base };
  2128. kvm_x86_ops->set_gdt(vcpu, &dt);
  2129. }
  2130. void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  2131. {
  2132. struct descriptor_table dt = { limit, base };
  2133. kvm_x86_ops->set_idt(vcpu, &dt);
  2134. }
  2135. void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
  2136. unsigned long *rflags)
  2137. {
  2138. lmsw(vcpu, msw);
  2139. *rflags = kvm_x86_ops->get_rflags(vcpu);
  2140. }
  2141. unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
  2142. {
  2143. kvm_x86_ops->decache_cr4_guest_bits(vcpu);
  2144. switch (cr) {
  2145. case 0:
  2146. return vcpu->arch.cr0;
  2147. case 2:
  2148. return vcpu->arch.cr2;
  2149. case 3:
  2150. return vcpu->arch.cr3;
  2151. case 4:
  2152. return vcpu->arch.cr4;
  2153. case 8:
  2154. return get_cr8(vcpu);
  2155. default:
  2156. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
  2157. return 0;
  2158. }
  2159. }
  2160. void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
  2161. unsigned long *rflags)
  2162. {
  2163. switch (cr) {
  2164. case 0:
  2165. set_cr0(vcpu, mk_cr_64(vcpu->arch.cr0, val));
  2166. *rflags = kvm_x86_ops->get_rflags(vcpu);
  2167. break;
  2168. case 2:
  2169. vcpu->arch.cr2 = val;
  2170. break;
  2171. case 3:
  2172. set_cr3(vcpu, val);
  2173. break;
  2174. case 4:
  2175. set_cr4(vcpu, mk_cr_64(vcpu->arch.cr4, val));
  2176. break;
  2177. case 8:
  2178. set_cr8(vcpu, val & 0xfUL);
  2179. break;
  2180. default:
  2181. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
  2182. }
  2183. }
  2184. static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
  2185. {
  2186. struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
  2187. int j, nent = vcpu->arch.cpuid_nent;
  2188. e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
  2189. /* when no next entry is found, the current entry[i] is reselected */
  2190. for (j = i + 1; j == i; j = (j + 1) % nent) {
  2191. struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j];
  2192. if (ej->function == e->function) {
  2193. ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
  2194. return j;
  2195. }
  2196. }
  2197. return 0; /* silence gcc, even though control never reaches here */
  2198. }
  2199. /* find an entry with matching function, matching index (if needed), and that
  2200. * should be read next (if it's stateful) */
  2201. static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
  2202. u32 function, u32 index)
  2203. {
  2204. if (e->function != function)
  2205. return 0;
  2206. if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
  2207. return 0;
  2208. if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
  2209. !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
  2210. return 0;
  2211. return 1;
  2212. }
  2213. void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
  2214. {
  2215. int i;
  2216. u32 function, index;
  2217. struct kvm_cpuid_entry2 *e, *best;
  2218. kvm_x86_ops->cache_regs(vcpu);
  2219. function = vcpu->arch.regs[VCPU_REGS_RAX];
  2220. index = vcpu->arch.regs[VCPU_REGS_RCX];
  2221. vcpu->arch.regs[VCPU_REGS_RAX] = 0;
  2222. vcpu->arch.regs[VCPU_REGS_RBX] = 0;
  2223. vcpu->arch.regs[VCPU_REGS_RCX] = 0;
  2224. vcpu->arch.regs[VCPU_REGS_RDX] = 0;
  2225. best = NULL;
  2226. for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
  2227. e = &vcpu->arch.cpuid_entries[i];
  2228. if (is_matching_cpuid_entry(e, function, index)) {
  2229. if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
  2230. move_to_next_stateful_cpuid_entry(vcpu, i);
  2231. best = e;
  2232. break;
  2233. }
  2234. /*
  2235. * Both basic or both extended?
  2236. */
  2237. if (((e->function ^ function) & 0x80000000) == 0)
  2238. if (!best || e->function > best->function)
  2239. best = e;
  2240. }
  2241. if (best) {
  2242. vcpu->arch.regs[VCPU_REGS_RAX] = best->eax;
  2243. vcpu->arch.regs[VCPU_REGS_RBX] = best->ebx;
  2244. vcpu->arch.regs[VCPU_REGS_RCX] = best->ecx;
  2245. vcpu->arch.regs[VCPU_REGS_RDX] = best->edx;
  2246. }
  2247. kvm_x86_ops->decache_regs(vcpu);
  2248. kvm_x86_ops->skip_emulated_instruction(vcpu);
  2249. }
  2250. EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
  2251. /*
  2252. * Check if userspace requested an interrupt window, and that the
  2253. * interrupt window is open.
  2254. *
  2255. * No need to exit to userspace if we already have an interrupt queued.
  2256. */
  2257. static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu,
  2258. struct kvm_run *kvm_run)
  2259. {
  2260. return (!vcpu->arch.irq_summary &&
  2261. kvm_run->request_interrupt_window &&
  2262. vcpu->arch.interrupt_window_open &&
  2263. (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF));
  2264. }
  2265. static void post_kvm_run_save(struct kvm_vcpu *vcpu,
  2266. struct kvm_run *kvm_run)
  2267. {
  2268. kvm_run->if_flag = (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
  2269. kvm_run->cr8 = get_cr8(vcpu);
  2270. kvm_run->apic_base = kvm_get_apic_base(vcpu);
  2271. if (irqchip_in_kernel(vcpu->kvm))
  2272. kvm_run->ready_for_interrupt_injection = 1;
  2273. else
  2274. kvm_run->ready_for_interrupt_injection =
  2275. (vcpu->arch.interrupt_window_open &&
  2276. vcpu->arch.irq_summary == 0);
  2277. }
  2278. static void vapic_enter(struct kvm_vcpu *vcpu)
  2279. {
  2280. struct kvm_lapic *apic = vcpu->arch.apic;
  2281. struct page *page;
  2282. if (!apic || !apic->vapic_addr)
  2283. return;
  2284. down_read(&current->mm->mmap_sem);
  2285. page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
  2286. up_read(&current->mm->mmap_sem);
  2287. vcpu->arch.apic->vapic_page = page;
  2288. }
  2289. static void vapic_exit(struct kvm_vcpu *vcpu)
  2290. {
  2291. struct kvm_lapic *apic = vcpu->arch.apic;
  2292. if (!apic || !apic->vapic_addr)
  2293. return;
  2294. kvm_release_page_dirty(apic->vapic_page);
  2295. mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
  2296. }
  2297. static int __vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2298. {
  2299. int r;
  2300. if (unlikely(vcpu->arch.mp_state == VCPU_MP_STATE_SIPI_RECEIVED)) {
  2301. pr_debug("vcpu %d received sipi with vector # %x\n",
  2302. vcpu->vcpu_id, vcpu->arch.sipi_vector);
  2303. kvm_lapic_reset(vcpu);
  2304. r = kvm_x86_ops->vcpu_reset(vcpu);
  2305. if (r)
  2306. return r;
  2307. vcpu->arch.mp_state = VCPU_MP_STATE_RUNNABLE;
  2308. }
  2309. vapic_enter(vcpu);
  2310. preempted:
  2311. if (vcpu->guest_debug.enabled)
  2312. kvm_x86_ops->guest_debug_pre(vcpu);
  2313. again:
  2314. r = kvm_mmu_reload(vcpu);
  2315. if (unlikely(r))
  2316. goto out;
  2317. if (vcpu->requests) {
  2318. if (test_and_clear_bit(KVM_REQ_MIGRATE_TIMER, &vcpu->requests))
  2319. __kvm_migrate_apic_timer(vcpu);
  2320. if (test_and_clear_bit(KVM_REQ_REPORT_TPR_ACCESS,
  2321. &vcpu->requests)) {
  2322. kvm_run->exit_reason = KVM_EXIT_TPR_ACCESS;
  2323. r = 0;
  2324. goto out;
  2325. }
  2326. }
  2327. kvm_inject_pending_timer_irqs(vcpu);
  2328. preempt_disable();
  2329. kvm_x86_ops->prepare_guest_switch(vcpu);
  2330. kvm_load_guest_fpu(vcpu);
  2331. local_irq_disable();
  2332. if (need_resched()) {
  2333. local_irq_enable();
  2334. preempt_enable();
  2335. r = 1;
  2336. goto out;
  2337. }
  2338. if (signal_pending(current)) {
  2339. local_irq_enable();
  2340. preempt_enable();
  2341. r = -EINTR;
  2342. kvm_run->exit_reason = KVM_EXIT_INTR;
  2343. ++vcpu->stat.signal_exits;
  2344. goto out;
  2345. }
  2346. if (vcpu->arch.exception.pending)
  2347. __queue_exception(vcpu);
  2348. else if (irqchip_in_kernel(vcpu->kvm))
  2349. kvm_x86_ops->inject_pending_irq(vcpu);
  2350. else
  2351. kvm_x86_ops->inject_pending_vectors(vcpu, kvm_run);
  2352. kvm_lapic_sync_to_vapic(vcpu);
  2353. vcpu->guest_mode = 1;
  2354. kvm_guest_enter();
  2355. if (vcpu->requests)
  2356. if (test_and_clear_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
  2357. kvm_x86_ops->tlb_flush(vcpu);
  2358. kvm_x86_ops->run(vcpu, kvm_run);
  2359. vcpu->guest_mode = 0;
  2360. local_irq_enable();
  2361. ++vcpu->stat.exits;
  2362. /*
  2363. * We must have an instruction between local_irq_enable() and
  2364. * kvm_guest_exit(), so the timer interrupt isn't delayed by
  2365. * the interrupt shadow. The stat.exits increment will do nicely.
  2366. * But we need to prevent reordering, hence this barrier():
  2367. */
  2368. barrier();
  2369. kvm_guest_exit();
  2370. preempt_enable();
  2371. /*
  2372. * Profile KVM exit RIPs:
  2373. */
  2374. if (unlikely(prof_on == KVM_PROFILING)) {
  2375. kvm_x86_ops->cache_regs(vcpu);
  2376. profile_hit(KVM_PROFILING, (void *)vcpu->arch.rip);
  2377. }
  2378. if (vcpu->arch.exception.pending && kvm_x86_ops->exception_injected(vcpu))
  2379. vcpu->arch.exception.pending = false;
  2380. kvm_lapic_sync_from_vapic(vcpu);
  2381. r = kvm_x86_ops->handle_exit(kvm_run, vcpu);
  2382. if (r > 0) {
  2383. if (dm_request_for_irq_injection(vcpu, kvm_run)) {
  2384. r = -EINTR;
  2385. kvm_run->exit_reason = KVM_EXIT_INTR;
  2386. ++vcpu->stat.request_irq_exits;
  2387. goto out;
  2388. }
  2389. if (!need_resched())
  2390. goto again;
  2391. }
  2392. out:
  2393. if (r > 0) {
  2394. kvm_resched(vcpu);
  2395. goto preempted;
  2396. }
  2397. post_kvm_run_save(vcpu, kvm_run);
  2398. vapic_exit(vcpu);
  2399. return r;
  2400. }
  2401. int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2402. {
  2403. int r;
  2404. sigset_t sigsaved;
  2405. vcpu_load(vcpu);
  2406. if (unlikely(vcpu->arch.mp_state == VCPU_MP_STATE_UNINITIALIZED)) {
  2407. kvm_vcpu_block(vcpu);
  2408. vcpu_put(vcpu);
  2409. return -EAGAIN;
  2410. }
  2411. if (vcpu->sigset_active)
  2412. sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
  2413. /* re-sync apic's tpr */
  2414. if (!irqchip_in_kernel(vcpu->kvm))
  2415. set_cr8(vcpu, kvm_run->cr8);
  2416. if (vcpu->arch.pio.cur_count) {
  2417. r = complete_pio(vcpu);
  2418. if (r)
  2419. goto out;
  2420. }
  2421. #if CONFIG_HAS_IOMEM
  2422. if (vcpu->mmio_needed) {
  2423. memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
  2424. vcpu->mmio_read_completed = 1;
  2425. vcpu->mmio_needed = 0;
  2426. r = emulate_instruction(vcpu, kvm_run,
  2427. vcpu->arch.mmio_fault_cr2, 0,
  2428. EMULTYPE_NO_DECODE);
  2429. if (r == EMULATE_DO_MMIO) {
  2430. /*
  2431. * Read-modify-write. Back to userspace.
  2432. */
  2433. r = 0;
  2434. goto out;
  2435. }
  2436. }
  2437. #endif
  2438. if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL) {
  2439. kvm_x86_ops->cache_regs(vcpu);
  2440. vcpu->arch.regs[VCPU_REGS_RAX] = kvm_run->hypercall.ret;
  2441. kvm_x86_ops->decache_regs(vcpu);
  2442. }
  2443. r = __vcpu_run(vcpu, kvm_run);
  2444. out:
  2445. if (vcpu->sigset_active)
  2446. sigprocmask(SIG_SETMASK, &sigsaved, NULL);
  2447. vcpu_put(vcpu);
  2448. return r;
  2449. }
  2450. int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
  2451. {
  2452. vcpu_load(vcpu);
  2453. kvm_x86_ops->cache_regs(vcpu);
  2454. regs->rax = vcpu->arch.regs[VCPU_REGS_RAX];
  2455. regs->rbx = vcpu->arch.regs[VCPU_REGS_RBX];
  2456. regs->rcx = vcpu->arch.regs[VCPU_REGS_RCX];
  2457. regs->rdx = vcpu->arch.regs[VCPU_REGS_RDX];
  2458. regs->rsi = vcpu->arch.regs[VCPU_REGS_RSI];
  2459. regs->rdi = vcpu->arch.regs[VCPU_REGS_RDI];
  2460. regs->rsp = vcpu->arch.regs[VCPU_REGS_RSP];
  2461. regs->rbp = vcpu->arch.regs[VCPU_REGS_RBP];
  2462. #ifdef CONFIG_X86_64
  2463. regs->r8 = vcpu->arch.regs[VCPU_REGS_R8];
  2464. regs->r9 = vcpu->arch.regs[VCPU_REGS_R9];
  2465. regs->r10 = vcpu->arch.regs[VCPU_REGS_R10];
  2466. regs->r11 = vcpu->arch.regs[VCPU_REGS_R11];
  2467. regs->r12 = vcpu->arch.regs[VCPU_REGS_R12];
  2468. regs->r13 = vcpu->arch.regs[VCPU_REGS_R13];
  2469. regs->r14 = vcpu->arch.regs[VCPU_REGS_R14];
  2470. regs->r15 = vcpu->arch.regs[VCPU_REGS_R15];
  2471. #endif
  2472. regs->rip = vcpu->arch.rip;
  2473. regs->rflags = kvm_x86_ops->get_rflags(vcpu);
  2474. /*
  2475. * Don't leak debug flags in case they were set for guest debugging
  2476. */
  2477. if (vcpu->guest_debug.enabled && vcpu->guest_debug.singlestep)
  2478. regs->rflags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
  2479. vcpu_put(vcpu);
  2480. return 0;
  2481. }
  2482. int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
  2483. {
  2484. vcpu_load(vcpu);
  2485. vcpu->arch.regs[VCPU_REGS_RAX] = regs->rax;
  2486. vcpu->arch.regs[VCPU_REGS_RBX] = regs->rbx;
  2487. vcpu->arch.regs[VCPU_REGS_RCX] = regs->rcx;
  2488. vcpu->arch.regs[VCPU_REGS_RDX] = regs->rdx;
  2489. vcpu->arch.regs[VCPU_REGS_RSI] = regs->rsi;
  2490. vcpu->arch.regs[VCPU_REGS_RDI] = regs->rdi;
  2491. vcpu->arch.regs[VCPU_REGS_RSP] = regs->rsp;
  2492. vcpu->arch.regs[VCPU_REGS_RBP] = regs->rbp;
  2493. #ifdef CONFIG_X86_64
  2494. vcpu->arch.regs[VCPU_REGS_R8] = regs->r8;
  2495. vcpu->arch.regs[VCPU_REGS_R9] = regs->r9;
  2496. vcpu->arch.regs[VCPU_REGS_R10] = regs->r10;
  2497. vcpu->arch.regs[VCPU_REGS_R11] = regs->r11;
  2498. vcpu->arch.regs[VCPU_REGS_R12] = regs->r12;
  2499. vcpu->arch.regs[VCPU_REGS_R13] = regs->r13;
  2500. vcpu->arch.regs[VCPU_REGS_R14] = regs->r14;
  2501. vcpu->arch.regs[VCPU_REGS_R15] = regs->r15;
  2502. #endif
  2503. vcpu->arch.rip = regs->rip;
  2504. kvm_x86_ops->set_rflags(vcpu, regs->rflags);
  2505. kvm_x86_ops->decache_regs(vcpu);
  2506. vcpu_put(vcpu);
  2507. return 0;
  2508. }
  2509. static void get_segment(struct kvm_vcpu *vcpu,
  2510. struct kvm_segment *var, int seg)
  2511. {
  2512. return kvm_x86_ops->get_segment(vcpu, var, seg);
  2513. }
  2514. void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
  2515. {
  2516. struct kvm_segment cs;
  2517. get_segment(vcpu, &cs, VCPU_SREG_CS);
  2518. *db = cs.db;
  2519. *l = cs.l;
  2520. }
  2521. EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
  2522. int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
  2523. struct kvm_sregs *sregs)
  2524. {
  2525. struct descriptor_table dt;
  2526. int pending_vec;
  2527. vcpu_load(vcpu);
  2528. get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  2529. get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  2530. get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  2531. get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  2532. get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  2533. get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  2534. get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  2535. get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  2536. kvm_x86_ops->get_idt(vcpu, &dt);
  2537. sregs->idt.limit = dt.limit;
  2538. sregs->idt.base = dt.base;
  2539. kvm_x86_ops->get_gdt(vcpu, &dt);
  2540. sregs->gdt.limit = dt.limit;
  2541. sregs->gdt.base = dt.base;
  2542. kvm_x86_ops->decache_cr4_guest_bits(vcpu);
  2543. sregs->cr0 = vcpu->arch.cr0;
  2544. sregs->cr2 = vcpu->arch.cr2;
  2545. sregs->cr3 = vcpu->arch.cr3;
  2546. sregs->cr4 = vcpu->arch.cr4;
  2547. sregs->cr8 = get_cr8(vcpu);
  2548. sregs->efer = vcpu->arch.shadow_efer;
  2549. sregs->apic_base = kvm_get_apic_base(vcpu);
  2550. if (irqchip_in_kernel(vcpu->kvm)) {
  2551. memset(sregs->interrupt_bitmap, 0,
  2552. sizeof sregs->interrupt_bitmap);
  2553. pending_vec = kvm_x86_ops->get_irq(vcpu);
  2554. if (pending_vec >= 0)
  2555. set_bit(pending_vec,
  2556. (unsigned long *)sregs->interrupt_bitmap);
  2557. } else
  2558. memcpy(sregs->interrupt_bitmap, vcpu->arch.irq_pending,
  2559. sizeof sregs->interrupt_bitmap);
  2560. vcpu_put(vcpu);
  2561. return 0;
  2562. }
  2563. static void set_segment(struct kvm_vcpu *vcpu,
  2564. struct kvm_segment *var, int seg)
  2565. {
  2566. return kvm_x86_ops->set_segment(vcpu, var, seg);
  2567. }
  2568. int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
  2569. struct kvm_sregs *sregs)
  2570. {
  2571. int mmu_reset_needed = 0;
  2572. int i, pending_vec, max_bits;
  2573. struct descriptor_table dt;
  2574. vcpu_load(vcpu);
  2575. dt.limit = sregs->idt.limit;
  2576. dt.base = sregs->idt.base;
  2577. kvm_x86_ops->set_idt(vcpu, &dt);
  2578. dt.limit = sregs->gdt.limit;
  2579. dt.base = sregs->gdt.base;
  2580. kvm_x86_ops->set_gdt(vcpu, &dt);
  2581. vcpu->arch.cr2 = sregs->cr2;
  2582. mmu_reset_needed |= vcpu->arch.cr3 != sregs->cr3;
  2583. vcpu->arch.cr3 = sregs->cr3;
  2584. set_cr8(vcpu, sregs->cr8);
  2585. mmu_reset_needed |= vcpu->arch.shadow_efer != sregs->efer;
  2586. kvm_x86_ops->set_efer(vcpu, sregs->efer);
  2587. kvm_set_apic_base(vcpu, sregs->apic_base);
  2588. kvm_x86_ops->decache_cr4_guest_bits(vcpu);
  2589. mmu_reset_needed |= vcpu->arch.cr0 != sregs->cr0;
  2590. kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
  2591. vcpu->arch.cr0 = sregs->cr0;
  2592. mmu_reset_needed |= vcpu->arch.cr4 != sregs->cr4;
  2593. kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
  2594. if (!is_long_mode(vcpu) && is_pae(vcpu))
  2595. load_pdptrs(vcpu, vcpu->arch.cr3);
  2596. if (mmu_reset_needed)
  2597. kvm_mmu_reset_context(vcpu);
  2598. if (!irqchip_in_kernel(vcpu->kvm)) {
  2599. memcpy(vcpu->arch.irq_pending, sregs->interrupt_bitmap,
  2600. sizeof vcpu->arch.irq_pending);
  2601. vcpu->arch.irq_summary = 0;
  2602. for (i = 0; i < ARRAY_SIZE(vcpu->arch.irq_pending); ++i)
  2603. if (vcpu->arch.irq_pending[i])
  2604. __set_bit(i, &vcpu->arch.irq_summary);
  2605. } else {
  2606. max_bits = (sizeof sregs->interrupt_bitmap) << 3;
  2607. pending_vec = find_first_bit(
  2608. (const unsigned long *)sregs->interrupt_bitmap,
  2609. max_bits);
  2610. /* Only pending external irq is handled here */
  2611. if (pending_vec < max_bits) {
  2612. kvm_x86_ops->set_irq(vcpu, pending_vec);
  2613. pr_debug("Set back pending irq %d\n",
  2614. pending_vec);
  2615. }
  2616. }
  2617. set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  2618. set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  2619. set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  2620. set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  2621. set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  2622. set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  2623. set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  2624. set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  2625. vcpu_put(vcpu);
  2626. return 0;
  2627. }
  2628. int kvm_arch_vcpu_ioctl_debug_guest(struct kvm_vcpu *vcpu,
  2629. struct kvm_debug_guest *dbg)
  2630. {
  2631. int r;
  2632. vcpu_load(vcpu);
  2633. r = kvm_x86_ops->set_guest_debug(vcpu, dbg);
  2634. vcpu_put(vcpu);
  2635. return r;
  2636. }
  2637. /*
  2638. * fxsave fpu state. Taken from x86_64/processor.h. To be killed when
  2639. * we have asm/x86/processor.h
  2640. */
  2641. struct fxsave {
  2642. u16 cwd;
  2643. u16 swd;
  2644. u16 twd;
  2645. u16 fop;
  2646. u64 rip;
  2647. u64 rdp;
  2648. u32 mxcsr;
  2649. u32 mxcsr_mask;
  2650. u32 st_space[32]; /* 8*16 bytes for each FP-reg = 128 bytes */
  2651. #ifdef CONFIG_X86_64
  2652. u32 xmm_space[64]; /* 16*16 bytes for each XMM-reg = 256 bytes */
  2653. #else
  2654. u32 xmm_space[32]; /* 8*16 bytes for each XMM-reg = 128 bytes */
  2655. #endif
  2656. };
  2657. /*
  2658. * Translate a guest virtual address to a guest physical address.
  2659. */
  2660. int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
  2661. struct kvm_translation *tr)
  2662. {
  2663. unsigned long vaddr = tr->linear_address;
  2664. gpa_t gpa;
  2665. vcpu_load(vcpu);
  2666. down_read(&vcpu->kvm->slots_lock);
  2667. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, vaddr);
  2668. up_read(&vcpu->kvm->slots_lock);
  2669. tr->physical_address = gpa;
  2670. tr->valid = gpa != UNMAPPED_GVA;
  2671. tr->writeable = 1;
  2672. tr->usermode = 0;
  2673. vcpu_put(vcpu);
  2674. return 0;
  2675. }
  2676. int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  2677. {
  2678. struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
  2679. vcpu_load(vcpu);
  2680. memcpy(fpu->fpr, fxsave->st_space, 128);
  2681. fpu->fcw = fxsave->cwd;
  2682. fpu->fsw = fxsave->swd;
  2683. fpu->ftwx = fxsave->twd;
  2684. fpu->last_opcode = fxsave->fop;
  2685. fpu->last_ip = fxsave->rip;
  2686. fpu->last_dp = fxsave->rdp;
  2687. memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
  2688. vcpu_put(vcpu);
  2689. return 0;
  2690. }
  2691. int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  2692. {
  2693. struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
  2694. vcpu_load(vcpu);
  2695. memcpy(fxsave->st_space, fpu->fpr, 128);
  2696. fxsave->cwd = fpu->fcw;
  2697. fxsave->swd = fpu->fsw;
  2698. fxsave->twd = fpu->ftwx;
  2699. fxsave->fop = fpu->last_opcode;
  2700. fxsave->rip = fpu->last_ip;
  2701. fxsave->rdp = fpu->last_dp;
  2702. memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
  2703. vcpu_put(vcpu);
  2704. return 0;
  2705. }
  2706. void fx_init(struct kvm_vcpu *vcpu)
  2707. {
  2708. unsigned after_mxcsr_mask;
  2709. /* Initialize guest FPU by resetting ours and saving into guest's */
  2710. preempt_disable();
  2711. fx_save(&vcpu->arch.host_fx_image);
  2712. fpu_init();
  2713. fx_save(&vcpu->arch.guest_fx_image);
  2714. fx_restore(&vcpu->arch.host_fx_image);
  2715. preempt_enable();
  2716. vcpu->arch.cr0 |= X86_CR0_ET;
  2717. after_mxcsr_mask = offsetof(struct i387_fxsave_struct, st_space);
  2718. vcpu->arch.guest_fx_image.mxcsr = 0x1f80;
  2719. memset((void *)&vcpu->arch.guest_fx_image + after_mxcsr_mask,
  2720. 0, sizeof(struct i387_fxsave_struct) - after_mxcsr_mask);
  2721. }
  2722. EXPORT_SYMBOL_GPL(fx_init);
  2723. void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
  2724. {
  2725. if (!vcpu->fpu_active || vcpu->guest_fpu_loaded)
  2726. return;
  2727. vcpu->guest_fpu_loaded = 1;
  2728. fx_save(&vcpu->arch.host_fx_image);
  2729. fx_restore(&vcpu->arch.guest_fx_image);
  2730. }
  2731. EXPORT_SYMBOL_GPL(kvm_load_guest_fpu);
  2732. void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
  2733. {
  2734. if (!vcpu->guest_fpu_loaded)
  2735. return;
  2736. vcpu->guest_fpu_loaded = 0;
  2737. fx_save(&vcpu->arch.guest_fx_image);
  2738. fx_restore(&vcpu->arch.host_fx_image);
  2739. ++vcpu->stat.fpu_reload;
  2740. }
  2741. EXPORT_SYMBOL_GPL(kvm_put_guest_fpu);
  2742. void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
  2743. {
  2744. kvm_x86_ops->vcpu_free(vcpu);
  2745. }
  2746. struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
  2747. unsigned int id)
  2748. {
  2749. return kvm_x86_ops->vcpu_create(kvm, id);
  2750. }
  2751. int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
  2752. {
  2753. int r;
  2754. /* We do fxsave: this must be aligned. */
  2755. BUG_ON((unsigned long)&vcpu->arch.host_fx_image & 0xF);
  2756. vcpu_load(vcpu);
  2757. r = kvm_arch_vcpu_reset(vcpu);
  2758. if (r == 0)
  2759. r = kvm_mmu_setup(vcpu);
  2760. vcpu_put(vcpu);
  2761. if (r < 0)
  2762. goto free_vcpu;
  2763. return 0;
  2764. free_vcpu:
  2765. kvm_x86_ops->vcpu_free(vcpu);
  2766. return r;
  2767. }
  2768. void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
  2769. {
  2770. vcpu_load(vcpu);
  2771. kvm_mmu_unload(vcpu);
  2772. vcpu_put(vcpu);
  2773. kvm_x86_ops->vcpu_free(vcpu);
  2774. }
  2775. int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu)
  2776. {
  2777. return kvm_x86_ops->vcpu_reset(vcpu);
  2778. }
  2779. void kvm_arch_hardware_enable(void *garbage)
  2780. {
  2781. kvm_x86_ops->hardware_enable(garbage);
  2782. }
  2783. void kvm_arch_hardware_disable(void *garbage)
  2784. {
  2785. kvm_x86_ops->hardware_disable(garbage);
  2786. }
  2787. int kvm_arch_hardware_setup(void)
  2788. {
  2789. return kvm_x86_ops->hardware_setup();
  2790. }
  2791. void kvm_arch_hardware_unsetup(void)
  2792. {
  2793. kvm_x86_ops->hardware_unsetup();
  2794. }
  2795. void kvm_arch_check_processor_compat(void *rtn)
  2796. {
  2797. kvm_x86_ops->check_processor_compatibility(rtn);
  2798. }
  2799. int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
  2800. {
  2801. struct page *page;
  2802. struct kvm *kvm;
  2803. int r;
  2804. BUG_ON(vcpu->kvm == NULL);
  2805. kvm = vcpu->kvm;
  2806. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  2807. if (!irqchip_in_kernel(kvm) || vcpu->vcpu_id == 0)
  2808. vcpu->arch.mp_state = VCPU_MP_STATE_RUNNABLE;
  2809. else
  2810. vcpu->arch.mp_state = VCPU_MP_STATE_UNINITIALIZED;
  2811. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  2812. if (!page) {
  2813. r = -ENOMEM;
  2814. goto fail;
  2815. }
  2816. vcpu->arch.pio_data = page_address(page);
  2817. r = kvm_mmu_create(vcpu);
  2818. if (r < 0)
  2819. goto fail_free_pio_data;
  2820. if (irqchip_in_kernel(kvm)) {
  2821. r = kvm_create_lapic(vcpu);
  2822. if (r < 0)
  2823. goto fail_mmu_destroy;
  2824. }
  2825. return 0;
  2826. fail_mmu_destroy:
  2827. kvm_mmu_destroy(vcpu);
  2828. fail_free_pio_data:
  2829. free_page((unsigned long)vcpu->arch.pio_data);
  2830. fail:
  2831. return r;
  2832. }
  2833. void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
  2834. {
  2835. kvm_free_lapic(vcpu);
  2836. kvm_mmu_destroy(vcpu);
  2837. free_page((unsigned long)vcpu->arch.pio_data);
  2838. }
  2839. struct kvm *kvm_arch_create_vm(void)
  2840. {
  2841. struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
  2842. if (!kvm)
  2843. return ERR_PTR(-ENOMEM);
  2844. INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
  2845. return kvm;
  2846. }
  2847. static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
  2848. {
  2849. vcpu_load(vcpu);
  2850. kvm_mmu_unload(vcpu);
  2851. vcpu_put(vcpu);
  2852. }
  2853. static void kvm_free_vcpus(struct kvm *kvm)
  2854. {
  2855. unsigned int i;
  2856. /*
  2857. * Unpin any mmu pages first.
  2858. */
  2859. for (i = 0; i < KVM_MAX_VCPUS; ++i)
  2860. if (kvm->vcpus[i])
  2861. kvm_unload_vcpu_mmu(kvm->vcpus[i]);
  2862. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  2863. if (kvm->vcpus[i]) {
  2864. kvm_arch_vcpu_free(kvm->vcpus[i]);
  2865. kvm->vcpus[i] = NULL;
  2866. }
  2867. }
  2868. }
  2869. void kvm_arch_destroy_vm(struct kvm *kvm)
  2870. {
  2871. kfree(kvm->arch.vpic);
  2872. kfree(kvm->arch.vioapic);
  2873. kvm_free_vcpus(kvm);
  2874. kvm_free_physmem(kvm);
  2875. kfree(kvm);
  2876. }
  2877. int kvm_arch_set_memory_region(struct kvm *kvm,
  2878. struct kvm_userspace_memory_region *mem,
  2879. struct kvm_memory_slot old,
  2880. int user_alloc)
  2881. {
  2882. int npages = mem->memory_size >> PAGE_SHIFT;
  2883. struct kvm_memory_slot *memslot = &kvm->memslots[mem->slot];
  2884. /*To keep backward compatibility with older userspace,
  2885. *x86 needs to hanlde !user_alloc case.
  2886. */
  2887. if (!user_alloc) {
  2888. if (npages && !old.rmap) {
  2889. down_write(&current->mm->mmap_sem);
  2890. memslot->userspace_addr = do_mmap(NULL, 0,
  2891. npages * PAGE_SIZE,
  2892. PROT_READ | PROT_WRITE,
  2893. MAP_SHARED | MAP_ANONYMOUS,
  2894. 0);
  2895. up_write(&current->mm->mmap_sem);
  2896. if (IS_ERR((void *)memslot->userspace_addr))
  2897. return PTR_ERR((void *)memslot->userspace_addr);
  2898. } else {
  2899. if (!old.user_alloc && old.rmap) {
  2900. int ret;
  2901. down_write(&current->mm->mmap_sem);
  2902. ret = do_munmap(current->mm, old.userspace_addr,
  2903. old.npages * PAGE_SIZE);
  2904. up_write(&current->mm->mmap_sem);
  2905. if (ret < 0)
  2906. printk(KERN_WARNING
  2907. "kvm_vm_ioctl_set_memory_region: "
  2908. "failed to munmap memory\n");
  2909. }
  2910. }
  2911. }
  2912. if (!kvm->arch.n_requested_mmu_pages) {
  2913. unsigned int nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
  2914. kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
  2915. }
  2916. kvm_mmu_slot_remove_write_access(kvm, mem->slot);
  2917. kvm_flush_remote_tlbs(kvm);
  2918. return 0;
  2919. }
  2920. int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
  2921. {
  2922. return vcpu->arch.mp_state == VCPU_MP_STATE_RUNNABLE
  2923. || vcpu->arch.mp_state == VCPU_MP_STATE_SIPI_RECEIVED;
  2924. }
  2925. static void vcpu_kick_intr(void *info)
  2926. {
  2927. #ifdef DEBUG
  2928. struct kvm_vcpu *vcpu = (struct kvm_vcpu *)info;
  2929. printk(KERN_DEBUG "vcpu_kick_intr %p \n", vcpu);
  2930. #endif
  2931. }
  2932. void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
  2933. {
  2934. int ipi_pcpu = vcpu->cpu;
  2935. if (waitqueue_active(&vcpu->wq)) {
  2936. wake_up_interruptible(&vcpu->wq);
  2937. ++vcpu->stat.halt_wakeup;
  2938. }
  2939. if (vcpu->guest_mode)
  2940. smp_call_function_single(ipi_pcpu, vcpu_kick_intr, vcpu, 0, 0);
  2941. }