time.c 32 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204
  1. /*
  2. * Common time routines among all ppc machines.
  3. *
  4. * Written by Cort Dougan (cort@cs.nmt.edu) to merge
  5. * Paul Mackerras' version and mine for PReP and Pmac.
  6. * MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net).
  7. * Converted for 64-bit by Mike Corrigan (mikejc@us.ibm.com)
  8. *
  9. * First round of bugfixes by Gabriel Paubert (paubert@iram.es)
  10. * to make clock more stable (2.4.0-test5). The only thing
  11. * that this code assumes is that the timebases have been synchronized
  12. * by firmware on SMP and are never stopped (never do sleep
  13. * on SMP then, nap and doze are OK).
  14. *
  15. * Speeded up do_gettimeofday by getting rid of references to
  16. * xtime (which required locks for consistency). (mikejc@us.ibm.com)
  17. *
  18. * TODO (not necessarily in this file):
  19. * - improve precision and reproducibility of timebase frequency
  20. * measurement at boot time. (for iSeries, we calibrate the timebase
  21. * against the Titan chip's clock.)
  22. * - for astronomical applications: add a new function to get
  23. * non ambiguous timestamps even around leap seconds. This needs
  24. * a new timestamp format and a good name.
  25. *
  26. * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
  27. * "A Kernel Model for Precision Timekeeping" by Dave Mills
  28. *
  29. * This program is free software; you can redistribute it and/or
  30. * modify it under the terms of the GNU General Public License
  31. * as published by the Free Software Foundation; either version
  32. * 2 of the License, or (at your option) any later version.
  33. */
  34. #include <linux/errno.h>
  35. #include <linux/module.h>
  36. #include <linux/sched.h>
  37. #include <linux/kernel.h>
  38. #include <linux/param.h>
  39. #include <linux/string.h>
  40. #include <linux/mm.h>
  41. #include <linux/interrupt.h>
  42. #include <linux/timex.h>
  43. #include <linux/kernel_stat.h>
  44. #include <linux/time.h>
  45. #include <linux/init.h>
  46. #include <linux/profile.h>
  47. #include <linux/cpu.h>
  48. #include <linux/security.h>
  49. #include <linux/percpu.h>
  50. #include <linux/rtc.h>
  51. #include <linux/jiffies.h>
  52. #include <linux/posix-timers.h>
  53. #include <linux/irq.h>
  54. #include <linux/delay.h>
  55. #include <linux/perf_counter.h>
  56. #include <asm/io.h>
  57. #include <asm/processor.h>
  58. #include <asm/nvram.h>
  59. #include <asm/cache.h>
  60. #include <asm/machdep.h>
  61. #include <asm/uaccess.h>
  62. #include <asm/time.h>
  63. #include <asm/prom.h>
  64. #include <asm/irq.h>
  65. #include <asm/div64.h>
  66. #include <asm/smp.h>
  67. #include <asm/vdso_datapage.h>
  68. #include <asm/firmware.h>
  69. #include <asm/cputime.h>
  70. #ifdef CONFIG_PPC_ISERIES
  71. #include <asm/iseries/it_lp_queue.h>
  72. #include <asm/iseries/hv_call_xm.h>
  73. #endif
  74. /* powerpc clocksource/clockevent code */
  75. #include <linux/clockchips.h>
  76. #include <linux/clocksource.h>
  77. static cycle_t rtc_read(struct clocksource *);
  78. static struct clocksource clocksource_rtc = {
  79. .name = "rtc",
  80. .rating = 400,
  81. .flags = CLOCK_SOURCE_IS_CONTINUOUS,
  82. .mask = CLOCKSOURCE_MASK(64),
  83. .shift = 22,
  84. .mult = 0, /* To be filled in */
  85. .read = rtc_read,
  86. };
  87. static cycle_t timebase_read(struct clocksource *);
  88. static struct clocksource clocksource_timebase = {
  89. .name = "timebase",
  90. .rating = 400,
  91. .flags = CLOCK_SOURCE_IS_CONTINUOUS,
  92. .mask = CLOCKSOURCE_MASK(64),
  93. .shift = 22,
  94. .mult = 0, /* To be filled in */
  95. .read = timebase_read,
  96. };
  97. #define DECREMENTER_MAX 0x7fffffff
  98. static int decrementer_set_next_event(unsigned long evt,
  99. struct clock_event_device *dev);
  100. static void decrementer_set_mode(enum clock_event_mode mode,
  101. struct clock_event_device *dev);
  102. static struct clock_event_device decrementer_clockevent = {
  103. .name = "decrementer",
  104. .rating = 200,
  105. .shift = 0, /* To be filled in */
  106. .mult = 0, /* To be filled in */
  107. .irq = 0,
  108. .set_next_event = decrementer_set_next_event,
  109. .set_mode = decrementer_set_mode,
  110. .features = CLOCK_EVT_FEAT_ONESHOT,
  111. };
  112. struct decrementer_clock {
  113. struct clock_event_device event;
  114. u64 next_tb;
  115. };
  116. static DEFINE_PER_CPU(struct decrementer_clock, decrementers);
  117. #ifdef CONFIG_PPC_ISERIES
  118. static unsigned long __initdata iSeries_recal_titan;
  119. static signed long __initdata iSeries_recal_tb;
  120. /* Forward declaration is only needed for iSereis compiles */
  121. static void __init clocksource_init(void);
  122. #endif
  123. #define XSEC_PER_SEC (1024*1024)
  124. #ifdef CONFIG_PPC64
  125. #define SCALE_XSEC(xsec, max) (((xsec) * max) / XSEC_PER_SEC)
  126. #else
  127. /* compute ((xsec << 12) * max) >> 32 */
  128. #define SCALE_XSEC(xsec, max) mulhwu((xsec) << 12, max)
  129. #endif
  130. unsigned long tb_ticks_per_jiffy;
  131. unsigned long tb_ticks_per_usec = 100; /* sane default */
  132. EXPORT_SYMBOL(tb_ticks_per_usec);
  133. unsigned long tb_ticks_per_sec;
  134. EXPORT_SYMBOL(tb_ticks_per_sec); /* for cputime_t conversions */
  135. u64 tb_to_xs;
  136. unsigned tb_to_us;
  137. #define TICKLEN_SCALE NTP_SCALE_SHIFT
  138. static u64 last_tick_len; /* units are ns / 2^TICKLEN_SCALE */
  139. static u64 ticklen_to_xs; /* 0.64 fraction */
  140. /* If last_tick_len corresponds to about 1/HZ seconds, then
  141. last_tick_len << TICKLEN_SHIFT will be about 2^63. */
  142. #define TICKLEN_SHIFT (63 - 30 - TICKLEN_SCALE + SHIFT_HZ)
  143. DEFINE_SPINLOCK(rtc_lock);
  144. EXPORT_SYMBOL_GPL(rtc_lock);
  145. static u64 tb_to_ns_scale __read_mostly;
  146. static unsigned tb_to_ns_shift __read_mostly;
  147. static unsigned long boot_tb __read_mostly;
  148. extern struct timezone sys_tz;
  149. static long timezone_offset;
  150. unsigned long ppc_proc_freq;
  151. EXPORT_SYMBOL(ppc_proc_freq);
  152. unsigned long ppc_tb_freq;
  153. static u64 tb_last_jiffy __cacheline_aligned_in_smp;
  154. static DEFINE_PER_CPU(u64, last_jiffy);
  155. #ifdef CONFIG_VIRT_CPU_ACCOUNTING
  156. /*
  157. * Factors for converting from cputime_t (timebase ticks) to
  158. * jiffies, milliseconds, seconds, and clock_t (1/USER_HZ seconds).
  159. * These are all stored as 0.64 fixed-point binary fractions.
  160. */
  161. u64 __cputime_jiffies_factor;
  162. EXPORT_SYMBOL(__cputime_jiffies_factor);
  163. u64 __cputime_msec_factor;
  164. EXPORT_SYMBOL(__cputime_msec_factor);
  165. u64 __cputime_sec_factor;
  166. EXPORT_SYMBOL(__cputime_sec_factor);
  167. u64 __cputime_clockt_factor;
  168. EXPORT_SYMBOL(__cputime_clockt_factor);
  169. DEFINE_PER_CPU(unsigned long, cputime_last_delta);
  170. DEFINE_PER_CPU(unsigned long, cputime_scaled_last_delta);
  171. cputime_t cputime_one_jiffy;
  172. static void calc_cputime_factors(void)
  173. {
  174. struct div_result res;
  175. div128_by_32(HZ, 0, tb_ticks_per_sec, &res);
  176. __cputime_jiffies_factor = res.result_low;
  177. div128_by_32(1000, 0, tb_ticks_per_sec, &res);
  178. __cputime_msec_factor = res.result_low;
  179. div128_by_32(1, 0, tb_ticks_per_sec, &res);
  180. __cputime_sec_factor = res.result_low;
  181. div128_by_32(USER_HZ, 0, tb_ticks_per_sec, &res);
  182. __cputime_clockt_factor = res.result_low;
  183. }
  184. /*
  185. * Read the PURR on systems that have it, otherwise the timebase.
  186. */
  187. static u64 read_purr(void)
  188. {
  189. if (cpu_has_feature(CPU_FTR_PURR))
  190. return mfspr(SPRN_PURR);
  191. return mftb();
  192. }
  193. /*
  194. * Read the SPURR on systems that have it, otherwise the purr
  195. */
  196. static u64 read_spurr(u64 purr)
  197. {
  198. /*
  199. * cpus without PURR won't have a SPURR
  200. * We already know the former when we use this, so tell gcc
  201. */
  202. if (cpu_has_feature(CPU_FTR_PURR) && cpu_has_feature(CPU_FTR_SPURR))
  203. return mfspr(SPRN_SPURR);
  204. return purr;
  205. }
  206. /*
  207. * Account time for a transition between system, hard irq
  208. * or soft irq state.
  209. */
  210. void account_system_vtime(struct task_struct *tsk)
  211. {
  212. u64 now, nowscaled, delta, deltascaled, sys_time;
  213. unsigned long flags;
  214. local_irq_save(flags);
  215. now = read_purr();
  216. nowscaled = read_spurr(now);
  217. delta = now - get_paca()->startpurr;
  218. deltascaled = nowscaled - get_paca()->startspurr;
  219. get_paca()->startpurr = now;
  220. get_paca()->startspurr = nowscaled;
  221. if (!in_interrupt()) {
  222. /* deltascaled includes both user and system time.
  223. * Hence scale it based on the purr ratio to estimate
  224. * the system time */
  225. sys_time = get_paca()->system_time;
  226. if (get_paca()->user_time)
  227. deltascaled = deltascaled * sys_time /
  228. (sys_time + get_paca()->user_time);
  229. delta += sys_time;
  230. get_paca()->system_time = 0;
  231. }
  232. if (in_irq() || idle_task(smp_processor_id()) != tsk)
  233. account_system_time(tsk, 0, delta, deltascaled);
  234. else
  235. account_idle_time(delta);
  236. per_cpu(cputime_last_delta, smp_processor_id()) = delta;
  237. per_cpu(cputime_scaled_last_delta, smp_processor_id()) = deltascaled;
  238. local_irq_restore(flags);
  239. }
  240. /*
  241. * Transfer the user and system times accumulated in the paca
  242. * by the exception entry and exit code to the generic process
  243. * user and system time records.
  244. * Must be called with interrupts disabled.
  245. */
  246. void account_process_tick(struct task_struct *tsk, int user_tick)
  247. {
  248. cputime_t utime, utimescaled;
  249. utime = get_paca()->user_time;
  250. get_paca()->user_time = 0;
  251. utimescaled = cputime_to_scaled(utime);
  252. account_user_time(tsk, utime, utimescaled);
  253. }
  254. /*
  255. * Stuff for accounting stolen time.
  256. */
  257. struct cpu_purr_data {
  258. int initialized; /* thread is running */
  259. u64 tb; /* last TB value read */
  260. u64 purr; /* last PURR value read */
  261. u64 spurr; /* last SPURR value read */
  262. };
  263. /*
  264. * Each entry in the cpu_purr_data array is manipulated only by its
  265. * "owner" cpu -- usually in the timer interrupt but also occasionally
  266. * in process context for cpu online. As long as cpus do not touch
  267. * each others' cpu_purr_data, disabling local interrupts is
  268. * sufficient to serialize accesses.
  269. */
  270. static DEFINE_PER_CPU(struct cpu_purr_data, cpu_purr_data);
  271. static void snapshot_tb_and_purr(void *data)
  272. {
  273. unsigned long flags;
  274. struct cpu_purr_data *p = &__get_cpu_var(cpu_purr_data);
  275. local_irq_save(flags);
  276. p->tb = get_tb_or_rtc();
  277. p->purr = mfspr(SPRN_PURR);
  278. wmb();
  279. p->initialized = 1;
  280. local_irq_restore(flags);
  281. }
  282. /*
  283. * Called during boot when all cpus have come up.
  284. */
  285. void snapshot_timebases(void)
  286. {
  287. if (!cpu_has_feature(CPU_FTR_PURR))
  288. return;
  289. on_each_cpu(snapshot_tb_and_purr, NULL, 1);
  290. }
  291. /*
  292. * Must be called with interrupts disabled.
  293. */
  294. void calculate_steal_time(void)
  295. {
  296. u64 tb, purr;
  297. s64 stolen;
  298. struct cpu_purr_data *pme;
  299. pme = &__get_cpu_var(cpu_purr_data);
  300. if (!pme->initialized)
  301. return; /* !CPU_FTR_PURR or early in early boot */
  302. tb = mftb();
  303. purr = mfspr(SPRN_PURR);
  304. stolen = (tb - pme->tb) - (purr - pme->purr);
  305. if (stolen > 0) {
  306. if (idle_task(smp_processor_id()) != current)
  307. account_steal_time(stolen);
  308. else
  309. account_idle_time(stolen);
  310. }
  311. pme->tb = tb;
  312. pme->purr = purr;
  313. }
  314. #ifdef CONFIG_PPC_SPLPAR
  315. /*
  316. * Must be called before the cpu is added to the online map when
  317. * a cpu is being brought up at runtime.
  318. */
  319. static void snapshot_purr(void)
  320. {
  321. struct cpu_purr_data *pme;
  322. unsigned long flags;
  323. if (!cpu_has_feature(CPU_FTR_PURR))
  324. return;
  325. local_irq_save(flags);
  326. pme = &__get_cpu_var(cpu_purr_data);
  327. pme->tb = mftb();
  328. pme->purr = mfspr(SPRN_PURR);
  329. pme->initialized = 1;
  330. local_irq_restore(flags);
  331. }
  332. #endif /* CONFIG_PPC_SPLPAR */
  333. #else /* ! CONFIG_VIRT_CPU_ACCOUNTING */
  334. #define calc_cputime_factors()
  335. #define calculate_steal_time() do { } while (0)
  336. #endif
  337. #if !(defined(CONFIG_VIRT_CPU_ACCOUNTING) && defined(CONFIG_PPC_SPLPAR))
  338. #define snapshot_purr() do { } while (0)
  339. #endif
  340. /*
  341. * Called when a cpu comes up after the system has finished booting,
  342. * i.e. as a result of a hotplug cpu action.
  343. */
  344. void snapshot_timebase(void)
  345. {
  346. __get_cpu_var(last_jiffy) = get_tb_or_rtc();
  347. snapshot_purr();
  348. }
  349. void __delay(unsigned long loops)
  350. {
  351. unsigned long start;
  352. int diff;
  353. if (__USE_RTC()) {
  354. start = get_rtcl();
  355. do {
  356. /* the RTCL register wraps at 1000000000 */
  357. diff = get_rtcl() - start;
  358. if (diff < 0)
  359. diff += 1000000000;
  360. } while (diff < loops);
  361. } else {
  362. start = get_tbl();
  363. while (get_tbl() - start < loops)
  364. HMT_low();
  365. HMT_medium();
  366. }
  367. }
  368. EXPORT_SYMBOL(__delay);
  369. void udelay(unsigned long usecs)
  370. {
  371. __delay(tb_ticks_per_usec * usecs);
  372. }
  373. EXPORT_SYMBOL(udelay);
  374. static inline void update_gtod(u64 new_tb_stamp, u64 new_stamp_xsec,
  375. u64 new_tb_to_xs)
  376. {
  377. /*
  378. * tb_update_count is used to allow the userspace gettimeofday code
  379. * to assure itself that it sees a consistent view of the tb_to_xs and
  380. * stamp_xsec variables. It reads the tb_update_count, then reads
  381. * tb_to_xs and stamp_xsec and then reads tb_update_count again. If
  382. * the two values of tb_update_count match and are even then the
  383. * tb_to_xs and stamp_xsec values are consistent. If not, then it
  384. * loops back and reads them again until this criteria is met.
  385. * We expect the caller to have done the first increment of
  386. * vdso_data->tb_update_count already.
  387. */
  388. vdso_data->tb_orig_stamp = new_tb_stamp;
  389. vdso_data->stamp_xsec = new_stamp_xsec;
  390. vdso_data->tb_to_xs = new_tb_to_xs;
  391. vdso_data->wtom_clock_sec = wall_to_monotonic.tv_sec;
  392. vdso_data->wtom_clock_nsec = wall_to_monotonic.tv_nsec;
  393. vdso_data->stamp_xtime = xtime;
  394. smp_wmb();
  395. ++(vdso_data->tb_update_count);
  396. }
  397. #ifdef CONFIG_SMP
  398. unsigned long profile_pc(struct pt_regs *regs)
  399. {
  400. unsigned long pc = instruction_pointer(regs);
  401. if (in_lock_functions(pc))
  402. return regs->link;
  403. return pc;
  404. }
  405. EXPORT_SYMBOL(profile_pc);
  406. #endif
  407. #ifdef CONFIG_PPC_ISERIES
  408. /*
  409. * This function recalibrates the timebase based on the 49-bit time-of-day
  410. * value in the Titan chip. The Titan is much more accurate than the value
  411. * returned by the service processor for the timebase frequency.
  412. */
  413. static int __init iSeries_tb_recal(void)
  414. {
  415. struct div_result divres;
  416. unsigned long titan, tb;
  417. /* Make sure we only run on iSeries */
  418. if (!firmware_has_feature(FW_FEATURE_ISERIES))
  419. return -ENODEV;
  420. tb = get_tb();
  421. titan = HvCallXm_loadTod();
  422. if ( iSeries_recal_titan ) {
  423. unsigned long tb_ticks = tb - iSeries_recal_tb;
  424. unsigned long titan_usec = (titan - iSeries_recal_titan) >> 12;
  425. unsigned long new_tb_ticks_per_sec = (tb_ticks * USEC_PER_SEC)/titan_usec;
  426. unsigned long new_tb_ticks_per_jiffy = (new_tb_ticks_per_sec+(HZ/2))/HZ;
  427. long tick_diff = new_tb_ticks_per_jiffy - tb_ticks_per_jiffy;
  428. char sign = '+';
  429. /* make sure tb_ticks_per_sec and tb_ticks_per_jiffy are consistent */
  430. new_tb_ticks_per_sec = new_tb_ticks_per_jiffy * HZ;
  431. if ( tick_diff < 0 ) {
  432. tick_diff = -tick_diff;
  433. sign = '-';
  434. }
  435. if ( tick_diff ) {
  436. if ( tick_diff < tb_ticks_per_jiffy/25 ) {
  437. printk( "Titan recalibrate: new tb_ticks_per_jiffy = %lu (%c%ld)\n",
  438. new_tb_ticks_per_jiffy, sign, tick_diff );
  439. tb_ticks_per_jiffy = new_tb_ticks_per_jiffy;
  440. tb_ticks_per_sec = new_tb_ticks_per_sec;
  441. calc_cputime_factors();
  442. div128_by_32( XSEC_PER_SEC, 0, tb_ticks_per_sec, &divres );
  443. tb_to_xs = divres.result_low;
  444. vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
  445. vdso_data->tb_to_xs = tb_to_xs;
  446. setup_cputime_one_jiffy();
  447. }
  448. else {
  449. printk( "Titan recalibrate: FAILED (difference > 4 percent)\n"
  450. " new tb_ticks_per_jiffy = %lu\n"
  451. " old tb_ticks_per_jiffy = %lu\n",
  452. new_tb_ticks_per_jiffy, tb_ticks_per_jiffy );
  453. }
  454. }
  455. }
  456. iSeries_recal_titan = titan;
  457. iSeries_recal_tb = tb;
  458. /* Called here as now we know accurate values for the timebase */
  459. clocksource_init();
  460. return 0;
  461. }
  462. late_initcall(iSeries_tb_recal);
  463. /* Called from platform early init */
  464. void __init iSeries_time_init_early(void)
  465. {
  466. iSeries_recal_tb = get_tb();
  467. iSeries_recal_titan = HvCallXm_loadTod();
  468. }
  469. #endif /* CONFIG_PPC_ISERIES */
  470. #if defined(CONFIG_PERF_COUNTERS) && defined(CONFIG_PPC32)
  471. DEFINE_PER_CPU(u8, perf_counter_pending);
  472. void set_perf_counter_pending(void)
  473. {
  474. get_cpu_var(perf_counter_pending) = 1;
  475. set_dec(1);
  476. put_cpu_var(perf_counter_pending);
  477. }
  478. #define test_perf_counter_pending() __get_cpu_var(perf_counter_pending)
  479. #define clear_perf_counter_pending() __get_cpu_var(perf_counter_pending) = 0
  480. #else /* CONFIG_PERF_COUNTERS && CONFIG_PPC32 */
  481. #define test_perf_counter_pending() 0
  482. #define clear_perf_counter_pending()
  483. #endif /* CONFIG_PERF_COUNTERS && CONFIG_PPC32 */
  484. /*
  485. * For iSeries shared processors, we have to let the hypervisor
  486. * set the hardware decrementer. We set a virtual decrementer
  487. * in the lppaca and call the hypervisor if the virtual
  488. * decrementer is less than the current value in the hardware
  489. * decrementer. (almost always the new decrementer value will
  490. * be greater than the current hardware decementer so the hypervisor
  491. * call will not be needed)
  492. */
  493. /*
  494. * timer_interrupt - gets called when the decrementer overflows,
  495. * with interrupts disabled.
  496. */
  497. void timer_interrupt(struct pt_regs * regs)
  498. {
  499. struct pt_regs *old_regs;
  500. struct decrementer_clock *decrementer = &__get_cpu_var(decrementers);
  501. struct clock_event_device *evt = &decrementer->event;
  502. u64 now;
  503. /* Ensure a positive value is written to the decrementer, or else
  504. * some CPUs will continuue to take decrementer exceptions */
  505. set_dec(DECREMENTER_MAX);
  506. #ifdef CONFIG_PPC32
  507. if (test_perf_counter_pending()) {
  508. clear_perf_counter_pending();
  509. perf_counter_do_pending();
  510. }
  511. if (atomic_read(&ppc_n_lost_interrupts) != 0)
  512. do_IRQ(regs);
  513. #endif
  514. now = get_tb_or_rtc();
  515. if (now < decrementer->next_tb) {
  516. /* not time for this event yet */
  517. now = decrementer->next_tb - now;
  518. if (now <= DECREMENTER_MAX)
  519. set_dec((int)now);
  520. return;
  521. }
  522. old_regs = set_irq_regs(regs);
  523. irq_enter();
  524. calculate_steal_time();
  525. #ifdef CONFIG_PPC_ISERIES
  526. if (firmware_has_feature(FW_FEATURE_ISERIES))
  527. get_lppaca()->int_dword.fields.decr_int = 0;
  528. #endif
  529. if (evt->event_handler)
  530. evt->event_handler(evt);
  531. #ifdef CONFIG_PPC_ISERIES
  532. if (firmware_has_feature(FW_FEATURE_ISERIES) && hvlpevent_is_pending())
  533. process_hvlpevents();
  534. #endif
  535. #ifdef CONFIG_PPC64
  536. /* collect purr register values often, for accurate calculations */
  537. if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
  538. struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
  539. cu->current_tb = mfspr(SPRN_PURR);
  540. }
  541. #endif
  542. irq_exit();
  543. set_irq_regs(old_regs);
  544. }
  545. void wakeup_decrementer(void)
  546. {
  547. unsigned long ticks;
  548. /*
  549. * The timebase gets saved on sleep and restored on wakeup,
  550. * so all we need to do is to reset the decrementer.
  551. */
  552. ticks = tb_ticks_since(__get_cpu_var(last_jiffy));
  553. if (ticks < tb_ticks_per_jiffy)
  554. ticks = tb_ticks_per_jiffy - ticks;
  555. else
  556. ticks = 1;
  557. set_dec(ticks);
  558. }
  559. #ifdef CONFIG_SUSPEND
  560. void generic_suspend_disable_irqs(void)
  561. {
  562. preempt_disable();
  563. /* Disable the decrementer, so that it doesn't interfere
  564. * with suspending.
  565. */
  566. set_dec(0x7fffffff);
  567. local_irq_disable();
  568. set_dec(0x7fffffff);
  569. }
  570. void generic_suspend_enable_irqs(void)
  571. {
  572. wakeup_decrementer();
  573. local_irq_enable();
  574. preempt_enable();
  575. }
  576. /* Overrides the weak version in kernel/power/main.c */
  577. void arch_suspend_disable_irqs(void)
  578. {
  579. if (ppc_md.suspend_disable_irqs)
  580. ppc_md.suspend_disable_irqs();
  581. generic_suspend_disable_irqs();
  582. }
  583. /* Overrides the weak version in kernel/power/main.c */
  584. void arch_suspend_enable_irqs(void)
  585. {
  586. generic_suspend_enable_irqs();
  587. if (ppc_md.suspend_enable_irqs)
  588. ppc_md.suspend_enable_irqs();
  589. }
  590. #endif
  591. #ifdef CONFIG_SMP
  592. void __init smp_space_timers(unsigned int max_cpus)
  593. {
  594. int i;
  595. u64 previous_tb = per_cpu(last_jiffy, boot_cpuid);
  596. /* make sure tb > per_cpu(last_jiffy, cpu) for all cpus always */
  597. previous_tb -= tb_ticks_per_jiffy;
  598. for_each_possible_cpu(i) {
  599. if (i == boot_cpuid)
  600. continue;
  601. per_cpu(last_jiffy, i) = previous_tb;
  602. }
  603. }
  604. #endif
  605. /*
  606. * Scheduler clock - returns current time in nanosec units.
  607. *
  608. * Note: mulhdu(a, b) (multiply high double unsigned) returns
  609. * the high 64 bits of a * b, i.e. (a * b) >> 64, where a and b
  610. * are 64-bit unsigned numbers.
  611. */
  612. unsigned long long sched_clock(void)
  613. {
  614. if (__USE_RTC())
  615. return get_rtc();
  616. return mulhdu(get_tb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift;
  617. }
  618. static int __init get_freq(char *name, int cells, unsigned long *val)
  619. {
  620. struct device_node *cpu;
  621. const unsigned int *fp;
  622. int found = 0;
  623. /* The cpu node should have timebase and clock frequency properties */
  624. cpu = of_find_node_by_type(NULL, "cpu");
  625. if (cpu) {
  626. fp = of_get_property(cpu, name, NULL);
  627. if (fp) {
  628. found = 1;
  629. *val = of_read_ulong(fp, cells);
  630. }
  631. of_node_put(cpu);
  632. }
  633. return found;
  634. }
  635. void __init generic_calibrate_decr(void)
  636. {
  637. ppc_tb_freq = DEFAULT_TB_FREQ; /* hardcoded default */
  638. if (!get_freq("ibm,extended-timebase-frequency", 2, &ppc_tb_freq) &&
  639. !get_freq("timebase-frequency", 1, &ppc_tb_freq)) {
  640. printk(KERN_ERR "WARNING: Estimating decrementer frequency "
  641. "(not found)\n");
  642. }
  643. ppc_proc_freq = DEFAULT_PROC_FREQ; /* hardcoded default */
  644. if (!get_freq("ibm,extended-clock-frequency", 2, &ppc_proc_freq) &&
  645. !get_freq("clock-frequency", 1, &ppc_proc_freq)) {
  646. printk(KERN_ERR "WARNING: Estimating processor frequency "
  647. "(not found)\n");
  648. }
  649. #if defined(CONFIG_BOOKE) || defined(CONFIG_40x)
  650. /* Clear any pending timer interrupts */
  651. mtspr(SPRN_TSR, TSR_ENW | TSR_WIS | TSR_DIS | TSR_FIS);
  652. /* Enable decrementer interrupt */
  653. mtspr(SPRN_TCR, TCR_DIE);
  654. #endif
  655. }
  656. int update_persistent_clock(struct timespec now)
  657. {
  658. struct rtc_time tm;
  659. if (!ppc_md.set_rtc_time)
  660. return 0;
  661. to_tm(now.tv_sec + 1 + timezone_offset, &tm);
  662. tm.tm_year -= 1900;
  663. tm.tm_mon -= 1;
  664. return ppc_md.set_rtc_time(&tm);
  665. }
  666. void read_persistent_clock(struct timespec *ts)
  667. {
  668. struct rtc_time tm;
  669. static int first = 1;
  670. ts->tv_nsec = 0;
  671. /* XXX this is a litle fragile but will work okay in the short term */
  672. if (first) {
  673. first = 0;
  674. if (ppc_md.time_init)
  675. timezone_offset = ppc_md.time_init();
  676. /* get_boot_time() isn't guaranteed to be safe to call late */
  677. if (ppc_md.get_boot_time) {
  678. ts->tv_sec = ppc_md.get_boot_time() - timezone_offset;
  679. return;
  680. }
  681. }
  682. if (!ppc_md.get_rtc_time) {
  683. ts->tv_sec = 0;
  684. return;
  685. }
  686. ppc_md.get_rtc_time(&tm);
  687. ts->tv_sec = mktime(tm.tm_year+1900, tm.tm_mon+1, tm.tm_mday,
  688. tm.tm_hour, tm.tm_min, tm.tm_sec);
  689. }
  690. /* clocksource code */
  691. static cycle_t rtc_read(struct clocksource *cs)
  692. {
  693. return (cycle_t)get_rtc();
  694. }
  695. static cycle_t timebase_read(struct clocksource *cs)
  696. {
  697. return (cycle_t)get_tb();
  698. }
  699. void update_vsyscall(struct timespec *wall_time, struct clocksource *clock)
  700. {
  701. u64 t2x, stamp_xsec;
  702. if (clock != &clocksource_timebase)
  703. return;
  704. /* Make userspace gettimeofday spin until we're done. */
  705. ++vdso_data->tb_update_count;
  706. smp_mb();
  707. /* XXX this assumes clock->shift == 22 */
  708. /* 4611686018 ~= 2^(20+64-22) / 1e9 */
  709. t2x = (u64) clock->mult * 4611686018ULL;
  710. stamp_xsec = (u64) xtime.tv_nsec * XSEC_PER_SEC;
  711. do_div(stamp_xsec, 1000000000);
  712. stamp_xsec += (u64) xtime.tv_sec * XSEC_PER_SEC;
  713. update_gtod(clock->cycle_last, stamp_xsec, t2x);
  714. }
  715. void update_vsyscall_tz(void)
  716. {
  717. /* Make userspace gettimeofday spin until we're done. */
  718. ++vdso_data->tb_update_count;
  719. smp_mb();
  720. vdso_data->tz_minuteswest = sys_tz.tz_minuteswest;
  721. vdso_data->tz_dsttime = sys_tz.tz_dsttime;
  722. smp_mb();
  723. ++vdso_data->tb_update_count;
  724. }
  725. static void __init clocksource_init(void)
  726. {
  727. struct clocksource *clock;
  728. if (__USE_RTC())
  729. clock = &clocksource_rtc;
  730. else
  731. clock = &clocksource_timebase;
  732. clock->mult = clocksource_hz2mult(tb_ticks_per_sec, clock->shift);
  733. if (clocksource_register(clock)) {
  734. printk(KERN_ERR "clocksource: %s is already registered\n",
  735. clock->name);
  736. return;
  737. }
  738. printk(KERN_INFO "clocksource: %s mult[%x] shift[%d] registered\n",
  739. clock->name, clock->mult, clock->shift);
  740. }
  741. static int decrementer_set_next_event(unsigned long evt,
  742. struct clock_event_device *dev)
  743. {
  744. __get_cpu_var(decrementers).next_tb = get_tb_or_rtc() + evt;
  745. set_dec(evt);
  746. return 0;
  747. }
  748. static void decrementer_set_mode(enum clock_event_mode mode,
  749. struct clock_event_device *dev)
  750. {
  751. if (mode != CLOCK_EVT_MODE_ONESHOT)
  752. decrementer_set_next_event(DECREMENTER_MAX, dev);
  753. }
  754. static void __init setup_clockevent_multiplier(unsigned long hz)
  755. {
  756. u64 mult, shift = 32;
  757. while (1) {
  758. mult = div_sc(hz, NSEC_PER_SEC, shift);
  759. if (mult && (mult >> 32UL) == 0UL)
  760. break;
  761. shift--;
  762. }
  763. decrementer_clockevent.shift = shift;
  764. decrementer_clockevent.mult = mult;
  765. }
  766. static void register_decrementer_clockevent(int cpu)
  767. {
  768. struct clock_event_device *dec = &per_cpu(decrementers, cpu).event;
  769. *dec = decrementer_clockevent;
  770. dec->cpumask = cpumask_of(cpu);
  771. printk(KERN_DEBUG "clockevent: %s mult[%lx] shift[%d] cpu[%d]\n",
  772. dec->name, dec->mult, dec->shift, cpu);
  773. clockevents_register_device(dec);
  774. }
  775. static void __init init_decrementer_clockevent(void)
  776. {
  777. int cpu = smp_processor_id();
  778. setup_clockevent_multiplier(ppc_tb_freq);
  779. decrementer_clockevent.max_delta_ns =
  780. clockevent_delta2ns(DECREMENTER_MAX, &decrementer_clockevent);
  781. decrementer_clockevent.min_delta_ns =
  782. clockevent_delta2ns(2, &decrementer_clockevent);
  783. register_decrementer_clockevent(cpu);
  784. }
  785. void secondary_cpu_time_init(void)
  786. {
  787. /* FIME: Should make unrelatred change to move snapshot_timebase
  788. * call here ! */
  789. register_decrementer_clockevent(smp_processor_id());
  790. }
  791. /* This function is only called on the boot processor */
  792. void __init time_init(void)
  793. {
  794. unsigned long flags;
  795. struct div_result res;
  796. u64 scale, x;
  797. unsigned shift;
  798. if (__USE_RTC()) {
  799. /* 601 processor: dec counts down by 128 every 128ns */
  800. ppc_tb_freq = 1000000000;
  801. tb_last_jiffy = get_rtcl();
  802. } else {
  803. /* Normal PowerPC with timebase register */
  804. ppc_md.calibrate_decr();
  805. printk(KERN_DEBUG "time_init: decrementer frequency = %lu.%.6lu MHz\n",
  806. ppc_tb_freq / 1000000, ppc_tb_freq % 1000000);
  807. printk(KERN_DEBUG "time_init: processor frequency = %lu.%.6lu MHz\n",
  808. ppc_proc_freq / 1000000, ppc_proc_freq % 1000000);
  809. tb_last_jiffy = get_tb();
  810. }
  811. tb_ticks_per_jiffy = ppc_tb_freq / HZ;
  812. tb_ticks_per_sec = ppc_tb_freq;
  813. tb_ticks_per_usec = ppc_tb_freq / 1000000;
  814. tb_to_us = mulhwu_scale_factor(ppc_tb_freq, 1000000);
  815. calc_cputime_factors();
  816. setup_cputime_one_jiffy();
  817. /*
  818. * Calculate the length of each tick in ns. It will not be
  819. * exactly 1e9/HZ unless ppc_tb_freq is divisible by HZ.
  820. * We compute 1e9 * tb_ticks_per_jiffy / ppc_tb_freq,
  821. * rounded up.
  822. */
  823. x = (u64) NSEC_PER_SEC * tb_ticks_per_jiffy + ppc_tb_freq - 1;
  824. do_div(x, ppc_tb_freq);
  825. tick_nsec = x;
  826. last_tick_len = x << TICKLEN_SCALE;
  827. /*
  828. * Compute ticklen_to_xs, which is a factor which gets multiplied
  829. * by (last_tick_len << TICKLEN_SHIFT) to get a tb_to_xs value.
  830. * It is computed as:
  831. * ticklen_to_xs = 2^N / (tb_ticks_per_jiffy * 1e9)
  832. * where N = 64 + 20 - TICKLEN_SCALE - TICKLEN_SHIFT
  833. * which turns out to be N = 51 - SHIFT_HZ.
  834. * This gives the result as a 0.64 fixed-point fraction.
  835. * That value is reduced by an offset amounting to 1 xsec per
  836. * 2^31 timebase ticks to avoid problems with time going backwards
  837. * by 1 xsec when we do timer_recalc_offset due to losing the
  838. * fractional xsec. That offset is equal to ppc_tb_freq/2^51
  839. * since there are 2^20 xsec in a second.
  840. */
  841. div128_by_32((1ULL << 51) - ppc_tb_freq, 0,
  842. tb_ticks_per_jiffy << SHIFT_HZ, &res);
  843. div128_by_32(res.result_high, res.result_low, NSEC_PER_SEC, &res);
  844. ticklen_to_xs = res.result_low;
  845. /* Compute tb_to_xs from tick_nsec */
  846. tb_to_xs = mulhdu(last_tick_len << TICKLEN_SHIFT, ticklen_to_xs);
  847. /*
  848. * Compute scale factor for sched_clock.
  849. * The calibrate_decr() function has set tb_ticks_per_sec,
  850. * which is the timebase frequency.
  851. * We compute 1e9 * 2^64 / tb_ticks_per_sec and interpret
  852. * the 128-bit result as a 64.64 fixed-point number.
  853. * We then shift that number right until it is less than 1.0,
  854. * giving us the scale factor and shift count to use in
  855. * sched_clock().
  856. */
  857. div128_by_32(1000000000, 0, tb_ticks_per_sec, &res);
  858. scale = res.result_low;
  859. for (shift = 0; res.result_high != 0; ++shift) {
  860. scale = (scale >> 1) | (res.result_high << 63);
  861. res.result_high >>= 1;
  862. }
  863. tb_to_ns_scale = scale;
  864. tb_to_ns_shift = shift;
  865. /* Save the current timebase to pretty up CONFIG_PRINTK_TIME */
  866. boot_tb = get_tb_or_rtc();
  867. write_seqlock_irqsave(&xtime_lock, flags);
  868. /* If platform provided a timezone (pmac), we correct the time */
  869. if (timezone_offset) {
  870. sys_tz.tz_minuteswest = -timezone_offset / 60;
  871. sys_tz.tz_dsttime = 0;
  872. }
  873. vdso_data->tb_orig_stamp = tb_last_jiffy;
  874. vdso_data->tb_update_count = 0;
  875. vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
  876. vdso_data->stamp_xsec = (u64) xtime.tv_sec * XSEC_PER_SEC;
  877. vdso_data->tb_to_xs = tb_to_xs;
  878. write_sequnlock_irqrestore(&xtime_lock, flags);
  879. /* Register the clocksource, if we're not running on iSeries */
  880. if (!firmware_has_feature(FW_FEATURE_ISERIES))
  881. clocksource_init();
  882. init_decrementer_clockevent();
  883. }
  884. #define FEBRUARY 2
  885. #define STARTOFTIME 1970
  886. #define SECDAY 86400L
  887. #define SECYR (SECDAY * 365)
  888. #define leapyear(year) ((year) % 4 == 0 && \
  889. ((year) % 100 != 0 || (year) % 400 == 0))
  890. #define days_in_year(a) (leapyear(a) ? 366 : 365)
  891. #define days_in_month(a) (month_days[(a) - 1])
  892. static int month_days[12] = {
  893. 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
  894. };
  895. /*
  896. * This only works for the Gregorian calendar - i.e. after 1752 (in the UK)
  897. */
  898. void GregorianDay(struct rtc_time * tm)
  899. {
  900. int leapsToDate;
  901. int lastYear;
  902. int day;
  903. int MonthOffset[] = { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 };
  904. lastYear = tm->tm_year - 1;
  905. /*
  906. * Number of leap corrections to apply up to end of last year
  907. */
  908. leapsToDate = lastYear / 4 - lastYear / 100 + lastYear / 400;
  909. /*
  910. * This year is a leap year if it is divisible by 4 except when it is
  911. * divisible by 100 unless it is divisible by 400
  912. *
  913. * e.g. 1904 was a leap year, 1900 was not, 1996 is, and 2000 was
  914. */
  915. day = tm->tm_mon > 2 && leapyear(tm->tm_year);
  916. day += lastYear*365 + leapsToDate + MonthOffset[tm->tm_mon-1] +
  917. tm->tm_mday;
  918. tm->tm_wday = day % 7;
  919. }
  920. void to_tm(int tim, struct rtc_time * tm)
  921. {
  922. register int i;
  923. register long hms, day;
  924. day = tim / SECDAY;
  925. hms = tim % SECDAY;
  926. /* Hours, minutes, seconds are easy */
  927. tm->tm_hour = hms / 3600;
  928. tm->tm_min = (hms % 3600) / 60;
  929. tm->tm_sec = (hms % 3600) % 60;
  930. /* Number of years in days */
  931. for (i = STARTOFTIME; day >= days_in_year(i); i++)
  932. day -= days_in_year(i);
  933. tm->tm_year = i;
  934. /* Number of months in days left */
  935. if (leapyear(tm->tm_year))
  936. days_in_month(FEBRUARY) = 29;
  937. for (i = 1; day >= days_in_month(i); i++)
  938. day -= days_in_month(i);
  939. days_in_month(FEBRUARY) = 28;
  940. tm->tm_mon = i;
  941. /* Days are what is left over (+1) from all that. */
  942. tm->tm_mday = day + 1;
  943. /*
  944. * Determine the day of week
  945. */
  946. GregorianDay(tm);
  947. }
  948. /* Auxiliary function to compute scaling factors */
  949. /* Actually the choice of a timebase running at 1/4 the of the bus
  950. * frequency giving resolution of a few tens of nanoseconds is quite nice.
  951. * It makes this computation very precise (27-28 bits typically) which
  952. * is optimistic considering the stability of most processor clock
  953. * oscillators and the precision with which the timebase frequency
  954. * is measured but does not harm.
  955. */
  956. unsigned mulhwu_scale_factor(unsigned inscale, unsigned outscale)
  957. {
  958. unsigned mlt=0, tmp, err;
  959. /* No concern for performance, it's done once: use a stupid
  960. * but safe and compact method to find the multiplier.
  961. */
  962. for (tmp = 1U<<31; tmp != 0; tmp >>= 1) {
  963. if (mulhwu(inscale, mlt|tmp) < outscale)
  964. mlt |= tmp;
  965. }
  966. /* We might still be off by 1 for the best approximation.
  967. * A side effect of this is that if outscale is too large
  968. * the returned value will be zero.
  969. * Many corner cases have been checked and seem to work,
  970. * some might have been forgotten in the test however.
  971. */
  972. err = inscale * (mlt+1);
  973. if (err <= inscale/2)
  974. mlt++;
  975. return mlt;
  976. }
  977. /*
  978. * Divide a 128-bit dividend by a 32-bit divisor, leaving a 128 bit
  979. * result.
  980. */
  981. void div128_by_32(u64 dividend_high, u64 dividend_low,
  982. unsigned divisor, struct div_result *dr)
  983. {
  984. unsigned long a, b, c, d;
  985. unsigned long w, x, y, z;
  986. u64 ra, rb, rc;
  987. a = dividend_high >> 32;
  988. b = dividend_high & 0xffffffff;
  989. c = dividend_low >> 32;
  990. d = dividend_low & 0xffffffff;
  991. w = a / divisor;
  992. ra = ((u64)(a - (w * divisor)) << 32) + b;
  993. rb = ((u64) do_div(ra, divisor) << 32) + c;
  994. x = ra;
  995. rc = ((u64) do_div(rb, divisor) << 32) + d;
  996. y = rb;
  997. do_div(rc, divisor);
  998. z = rc;
  999. dr->result_high = ((u64)w << 32) + x;
  1000. dr->result_low = ((u64)y << 32) + z;
  1001. }
  1002. /* We don't need to calibrate delay, we use the CPU timebase for that */
  1003. void calibrate_delay(void)
  1004. {
  1005. /* Some generic code (such as spinlock debug) use loops_per_jiffy
  1006. * as the number of __delay(1) in a jiffy, so make it so
  1007. */
  1008. loops_per_jiffy = tb_ticks_per_jiffy;
  1009. }
  1010. static int __init rtc_init(void)
  1011. {
  1012. struct platform_device *pdev;
  1013. if (!ppc_md.get_rtc_time)
  1014. return -ENODEV;
  1015. pdev = platform_device_register_simple("rtc-generic", -1, NULL, 0);
  1016. if (IS_ERR(pdev))
  1017. return PTR_ERR(pdev);
  1018. return 0;
  1019. }
  1020. module_init(rtc_init);