sched.c 253 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229923092319232923392349235923692379238923992409241924292439244924592469247924892499250925192529253925492559256925792589259926092619262926392649265926692679268926992709271927292739274927592769277927892799280928192829283928492859286928792889289929092919292929392949295929692979298929993009301930293039304930593069307930893099310931193129313931493159316931793189319932093219322932393249325932693279328932993309331933293339334933593369337933893399340934193429343934493459346934793489349935093519352935393549355935693579358935993609361936293639364936593669367936893699370937193729373937493759376937793789379938093819382938393849385938693879388938993909391939293939394939593969397939893999400940194029403940494059406940794089409941094119412941394149415941694179418941994209421942294239424942594269427942894299430943194329433943494359436943794389439944094419442944394449445944694479448944994509451945294539454945594569457945894599460946194629463946494659466946794689469947094719472947394749475947694779478947994809481948294839484948594869487948894899490949194929493949494959496949794989499950095019502950395049505950695079508950995109511951295139514951595169517951895199520952195229523952495259526952795289529953095319532953395349535953695379538953995409541954295439544954595469547954895499550955195529553955495559556955795589559956095619562956395649565956695679568956995709571957295739574957595769577957895799580958195829583958495859586958795889589959095919592959395949595959695979598959996009601960296039604960596069607960896099610961196129613961496159616961796189619962096219622962396249625962696279628962996309631963296339634963596369637963896399640964196429643964496459646964796489649965096519652965396549655965696579658965996609661966296639664966596669667966896699670967196729673967496759676967796789679968096819682968396849685968696879688968996909691969296939694969596969697969896999700970197029703970497059706970797089709971097119712971397149715971697179718971997209721972297239724972597269727972897299730973197329733973497359736973797389739974097419742974397449745974697479748974997509751975297539754975597569757975897599760976197629763976497659766976797689769977097719772977397749775977697779778977997809781978297839784978597869787978897899790979197929793979497959796979797989799980098019802980398049805980698079808980998109811981298139814981598169817981898199820982198229823982498259826982798289829983098319832983398349835983698379838983998409841984298439844984598469847984898499850985198529853985498559856985798589859986098619862986398649865986698679868986998709871987298739874987598769877987898799880988198829883988498859886988798889889989098919892989398949895989698979898989999009901990299039904990599069907990899099910991199129913991499159916991799189919992099219922992399249925992699279928992999309931993299339934993599369937993899399940994199429943994499459946994799489949995099519952995399549955995699579958995999609961996299639964996599669967996899699970997199729973997499759976997799789979998099819982998399849985998699879988998999909991999299939994999599969997999899991000010001100021000310004100051000610007100081000910010100111001210013100141001510016100171001810019100201002110022100231002410025100261002710028100291003010031100321003310034100351003610037100381003910040100411004210043100441004510046100471004810049100501005110052100531005410055100561005710058100591006010061100621006310064100651006610067100681006910070100711007210073100741007510076100771007810079100801008110082100831008410085100861008710088100891009010091100921009310094100951009610097100981009910100101011010210103101041010510106101071010810109101101011110112101131011410115101161011710118101191012010121101221012310124101251012610127101281012910130101311013210133101341013510136101371013810139101401014110142101431014410145101461014710148101491015010151101521015310154101551015610157101581015910160101611016210163101641016510166101671016810169101701017110172101731017410175101761017710178101791018010181101821018310184101851018610187101881018910190101911019210193101941019510196101971019810199102001020110202102031020410205102061020710208102091021010211102121021310214102151021610217102181021910220102211022210223102241022510226102271022810229102301023110232102331023410235102361023710238102391024010241102421024310244102451024610247102481024910250102511025210253102541025510256102571025810259102601026110262102631026410265102661026710268102691027010271102721027310274102751027610277102781027910280102811028210283102841028510286102871028810289102901029110292102931029410295102961029710298102991030010301103021030310304103051030610307103081030910310103111031210313103141031510316103171031810319103201032110322103231032410325103261032710328103291033010331103321033310334103351033610337103381033910340103411034210343103441034510346
  1. /*
  2. * kernel/sched.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. * 2007-04-15 Work begun on replacing all interactivity tuning with a
  20. * fair scheduling design by Con Kolivas.
  21. * 2007-05-05 Load balancing (smp-nice) and other improvements
  22. * by Peter Williams
  23. * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
  24. * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
  25. * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
  26. * Thomas Gleixner, Mike Kravetz
  27. */
  28. #include <linux/mm.h>
  29. #include <linux/module.h>
  30. #include <linux/nmi.h>
  31. #include <linux/init.h>
  32. #include <linux/uaccess.h>
  33. #include <linux/highmem.h>
  34. #include <linux/smp_lock.h>
  35. #include <asm/mmu_context.h>
  36. #include <linux/interrupt.h>
  37. #include <linux/capability.h>
  38. #include <linux/completion.h>
  39. #include <linux/kernel_stat.h>
  40. #include <linux/debug_locks.h>
  41. #include <linux/security.h>
  42. #include <linux/notifier.h>
  43. #include <linux/profile.h>
  44. #include <linux/freezer.h>
  45. #include <linux/vmalloc.h>
  46. #include <linux/blkdev.h>
  47. #include <linux/delay.h>
  48. #include <linux/pid_namespace.h>
  49. #include <linux/smp.h>
  50. #include <linux/threads.h>
  51. #include <linux/timer.h>
  52. #include <linux/rcupdate.h>
  53. #include <linux/cpu.h>
  54. #include <linux/cpuset.h>
  55. #include <linux/percpu.h>
  56. #include <linux/kthread.h>
  57. #include <linux/proc_fs.h>
  58. #include <linux/seq_file.h>
  59. #include <linux/sysctl.h>
  60. #include <linux/syscalls.h>
  61. #include <linux/times.h>
  62. #include <linux/tsacct_kern.h>
  63. #include <linux/kprobes.h>
  64. #include <linux/delayacct.h>
  65. #include <linux/reciprocal_div.h>
  66. #include <linux/unistd.h>
  67. #include <linux/pagemap.h>
  68. #include <linux/hrtimer.h>
  69. #include <linux/tick.h>
  70. #include <linux/bootmem.h>
  71. #include <linux/debugfs.h>
  72. #include <linux/ctype.h>
  73. #include <linux/ftrace.h>
  74. #include <trace/sched.h>
  75. #include <asm/tlb.h>
  76. #include <asm/irq_regs.h>
  77. #include "sched_cpupri.h"
  78. /*
  79. * Convert user-nice values [ -20 ... 0 ... 19 ]
  80. * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
  81. * and back.
  82. */
  83. #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
  84. #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
  85. #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
  86. /*
  87. * 'User priority' is the nice value converted to something we
  88. * can work with better when scaling various scheduler parameters,
  89. * it's a [ 0 ... 39 ] range.
  90. */
  91. #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
  92. #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
  93. #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
  94. /*
  95. * Helpers for converting nanosecond timing to jiffy resolution
  96. */
  97. #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
  98. #define NICE_0_LOAD SCHED_LOAD_SCALE
  99. #define NICE_0_SHIFT SCHED_LOAD_SHIFT
  100. /*
  101. * These are the 'tuning knobs' of the scheduler:
  102. *
  103. * default timeslice is 100 msecs (used only for SCHED_RR tasks).
  104. * Timeslices get refilled after they expire.
  105. */
  106. #define DEF_TIMESLICE (100 * HZ / 1000)
  107. /*
  108. * single value that denotes runtime == period, ie unlimited time.
  109. */
  110. #define RUNTIME_INF ((u64)~0ULL)
  111. DEFINE_TRACE(sched_wait_task);
  112. DEFINE_TRACE(sched_wakeup);
  113. DEFINE_TRACE(sched_wakeup_new);
  114. DEFINE_TRACE(sched_switch);
  115. DEFINE_TRACE(sched_migrate_task);
  116. #ifdef CONFIG_SMP
  117. static void double_rq_lock(struct rq *rq1, struct rq *rq2);
  118. /*
  119. * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
  120. * Since cpu_power is a 'constant', we can use a reciprocal divide.
  121. */
  122. static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
  123. {
  124. return reciprocal_divide(load, sg->reciprocal_cpu_power);
  125. }
  126. /*
  127. * Each time a sched group cpu_power is changed,
  128. * we must compute its reciprocal value
  129. */
  130. static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
  131. {
  132. sg->__cpu_power += val;
  133. sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
  134. }
  135. #endif
  136. static inline int rt_policy(int policy)
  137. {
  138. if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
  139. return 1;
  140. return 0;
  141. }
  142. static inline int task_has_rt_policy(struct task_struct *p)
  143. {
  144. return rt_policy(p->policy);
  145. }
  146. /*
  147. * This is the priority-queue data structure of the RT scheduling class:
  148. */
  149. struct rt_prio_array {
  150. DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
  151. struct list_head queue[MAX_RT_PRIO];
  152. };
  153. struct rt_bandwidth {
  154. /* nests inside the rq lock: */
  155. spinlock_t rt_runtime_lock;
  156. ktime_t rt_period;
  157. u64 rt_runtime;
  158. struct hrtimer rt_period_timer;
  159. };
  160. static struct rt_bandwidth def_rt_bandwidth;
  161. static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
  162. static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
  163. {
  164. struct rt_bandwidth *rt_b =
  165. container_of(timer, struct rt_bandwidth, rt_period_timer);
  166. ktime_t now;
  167. int overrun;
  168. int idle = 0;
  169. for (;;) {
  170. now = hrtimer_cb_get_time(timer);
  171. overrun = hrtimer_forward(timer, now, rt_b->rt_period);
  172. if (!overrun)
  173. break;
  174. idle = do_sched_rt_period_timer(rt_b, overrun);
  175. }
  176. return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
  177. }
  178. static
  179. void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
  180. {
  181. rt_b->rt_period = ns_to_ktime(period);
  182. rt_b->rt_runtime = runtime;
  183. spin_lock_init(&rt_b->rt_runtime_lock);
  184. hrtimer_init(&rt_b->rt_period_timer,
  185. CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  186. rt_b->rt_period_timer.function = sched_rt_period_timer;
  187. }
  188. static inline int rt_bandwidth_enabled(void)
  189. {
  190. return sysctl_sched_rt_runtime >= 0;
  191. }
  192. static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
  193. {
  194. ktime_t now;
  195. if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
  196. return;
  197. if (hrtimer_active(&rt_b->rt_period_timer))
  198. return;
  199. spin_lock(&rt_b->rt_runtime_lock);
  200. for (;;) {
  201. unsigned long delta;
  202. ktime_t soft, hard;
  203. if (hrtimer_active(&rt_b->rt_period_timer))
  204. break;
  205. now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
  206. hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
  207. soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
  208. hard = hrtimer_get_expires(&rt_b->rt_period_timer);
  209. delta = ktime_to_ns(ktime_sub(hard, soft));
  210. __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
  211. HRTIMER_MODE_ABS, 0);
  212. }
  213. spin_unlock(&rt_b->rt_runtime_lock);
  214. }
  215. #ifdef CONFIG_RT_GROUP_SCHED
  216. static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
  217. {
  218. hrtimer_cancel(&rt_b->rt_period_timer);
  219. }
  220. #endif
  221. /*
  222. * sched_domains_mutex serializes calls to arch_init_sched_domains,
  223. * detach_destroy_domains and partition_sched_domains.
  224. */
  225. static DEFINE_MUTEX(sched_domains_mutex);
  226. #ifdef CONFIG_GROUP_SCHED
  227. #include <linux/cgroup.h>
  228. struct cfs_rq;
  229. static LIST_HEAD(task_groups);
  230. /* task group related information */
  231. struct task_group {
  232. #ifdef CONFIG_CGROUP_SCHED
  233. struct cgroup_subsys_state css;
  234. #endif
  235. #ifdef CONFIG_USER_SCHED
  236. uid_t uid;
  237. #endif
  238. #ifdef CONFIG_FAIR_GROUP_SCHED
  239. /* schedulable entities of this group on each cpu */
  240. struct sched_entity **se;
  241. /* runqueue "owned" by this group on each cpu */
  242. struct cfs_rq **cfs_rq;
  243. unsigned long shares;
  244. #endif
  245. #ifdef CONFIG_RT_GROUP_SCHED
  246. struct sched_rt_entity **rt_se;
  247. struct rt_rq **rt_rq;
  248. struct rt_bandwidth rt_bandwidth;
  249. #endif
  250. struct rcu_head rcu;
  251. struct list_head list;
  252. struct task_group *parent;
  253. struct list_head siblings;
  254. struct list_head children;
  255. };
  256. #ifdef CONFIG_USER_SCHED
  257. /* Helper function to pass uid information to create_sched_user() */
  258. void set_tg_uid(struct user_struct *user)
  259. {
  260. user->tg->uid = user->uid;
  261. }
  262. /*
  263. * Root task group.
  264. * Every UID task group (including init_task_group aka UID-0) will
  265. * be a child to this group.
  266. */
  267. struct task_group root_task_group;
  268. #ifdef CONFIG_FAIR_GROUP_SCHED
  269. /* Default task group's sched entity on each cpu */
  270. static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
  271. /* Default task group's cfs_rq on each cpu */
  272. static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
  273. #endif /* CONFIG_FAIR_GROUP_SCHED */
  274. #ifdef CONFIG_RT_GROUP_SCHED
  275. static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
  276. static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
  277. #endif /* CONFIG_RT_GROUP_SCHED */
  278. #else /* !CONFIG_USER_SCHED */
  279. #define root_task_group init_task_group
  280. #endif /* CONFIG_USER_SCHED */
  281. /* task_group_lock serializes add/remove of task groups and also changes to
  282. * a task group's cpu shares.
  283. */
  284. static DEFINE_SPINLOCK(task_group_lock);
  285. #ifdef CONFIG_SMP
  286. static int root_task_group_empty(void)
  287. {
  288. return list_empty(&root_task_group.children);
  289. }
  290. #endif
  291. #ifdef CONFIG_FAIR_GROUP_SCHED
  292. #ifdef CONFIG_USER_SCHED
  293. # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
  294. #else /* !CONFIG_USER_SCHED */
  295. # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
  296. #endif /* CONFIG_USER_SCHED */
  297. /*
  298. * A weight of 0 or 1 can cause arithmetics problems.
  299. * A weight of a cfs_rq is the sum of weights of which entities
  300. * are queued on this cfs_rq, so a weight of a entity should not be
  301. * too large, so as the shares value of a task group.
  302. * (The default weight is 1024 - so there's no practical
  303. * limitation from this.)
  304. */
  305. #define MIN_SHARES 2
  306. #define MAX_SHARES (1UL << 18)
  307. static int init_task_group_load = INIT_TASK_GROUP_LOAD;
  308. #endif
  309. /* Default task group.
  310. * Every task in system belong to this group at bootup.
  311. */
  312. struct task_group init_task_group;
  313. /* return group to which a task belongs */
  314. static inline struct task_group *task_group(struct task_struct *p)
  315. {
  316. struct task_group *tg;
  317. #ifdef CONFIG_USER_SCHED
  318. rcu_read_lock();
  319. tg = __task_cred(p)->user->tg;
  320. rcu_read_unlock();
  321. #elif defined(CONFIG_CGROUP_SCHED)
  322. tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
  323. struct task_group, css);
  324. #else
  325. tg = &init_task_group;
  326. #endif
  327. return tg;
  328. }
  329. /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
  330. static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
  331. {
  332. #ifdef CONFIG_FAIR_GROUP_SCHED
  333. p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
  334. p->se.parent = task_group(p)->se[cpu];
  335. #endif
  336. #ifdef CONFIG_RT_GROUP_SCHED
  337. p->rt.rt_rq = task_group(p)->rt_rq[cpu];
  338. p->rt.parent = task_group(p)->rt_se[cpu];
  339. #endif
  340. }
  341. #else
  342. #ifdef CONFIG_SMP
  343. static int root_task_group_empty(void)
  344. {
  345. return 1;
  346. }
  347. #endif
  348. static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
  349. static inline struct task_group *task_group(struct task_struct *p)
  350. {
  351. return NULL;
  352. }
  353. #endif /* CONFIG_GROUP_SCHED */
  354. /* CFS-related fields in a runqueue */
  355. struct cfs_rq {
  356. struct load_weight load;
  357. unsigned long nr_running;
  358. u64 exec_clock;
  359. u64 min_vruntime;
  360. struct rb_root tasks_timeline;
  361. struct rb_node *rb_leftmost;
  362. struct list_head tasks;
  363. struct list_head *balance_iterator;
  364. /*
  365. * 'curr' points to currently running entity on this cfs_rq.
  366. * It is set to NULL otherwise (i.e when none are currently running).
  367. */
  368. struct sched_entity *curr, *next, *last;
  369. unsigned int nr_spread_over;
  370. #ifdef CONFIG_FAIR_GROUP_SCHED
  371. struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
  372. /*
  373. * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
  374. * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
  375. * (like users, containers etc.)
  376. *
  377. * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
  378. * list is used during load balance.
  379. */
  380. struct list_head leaf_cfs_rq_list;
  381. struct task_group *tg; /* group that "owns" this runqueue */
  382. #ifdef CONFIG_SMP
  383. /*
  384. * the part of load.weight contributed by tasks
  385. */
  386. unsigned long task_weight;
  387. /*
  388. * h_load = weight * f(tg)
  389. *
  390. * Where f(tg) is the recursive weight fraction assigned to
  391. * this group.
  392. */
  393. unsigned long h_load;
  394. /*
  395. * this cpu's part of tg->shares
  396. */
  397. unsigned long shares;
  398. /*
  399. * load.weight at the time we set shares
  400. */
  401. unsigned long rq_weight;
  402. #endif
  403. #endif
  404. };
  405. /* Real-Time classes' related field in a runqueue: */
  406. struct rt_rq {
  407. struct rt_prio_array active;
  408. unsigned long rt_nr_running;
  409. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  410. struct {
  411. int curr; /* highest queued rt task prio */
  412. #ifdef CONFIG_SMP
  413. int next; /* next highest */
  414. #endif
  415. } highest_prio;
  416. #endif
  417. #ifdef CONFIG_SMP
  418. unsigned long rt_nr_migratory;
  419. int overloaded;
  420. struct plist_head pushable_tasks;
  421. #endif
  422. int rt_throttled;
  423. u64 rt_time;
  424. u64 rt_runtime;
  425. /* Nests inside the rq lock: */
  426. spinlock_t rt_runtime_lock;
  427. #ifdef CONFIG_RT_GROUP_SCHED
  428. unsigned long rt_nr_boosted;
  429. struct rq *rq;
  430. struct list_head leaf_rt_rq_list;
  431. struct task_group *tg;
  432. struct sched_rt_entity *rt_se;
  433. #endif
  434. };
  435. #ifdef CONFIG_SMP
  436. /*
  437. * We add the notion of a root-domain which will be used to define per-domain
  438. * variables. Each exclusive cpuset essentially defines an island domain by
  439. * fully partitioning the member cpus from any other cpuset. Whenever a new
  440. * exclusive cpuset is created, we also create and attach a new root-domain
  441. * object.
  442. *
  443. */
  444. struct root_domain {
  445. atomic_t refcount;
  446. cpumask_var_t span;
  447. cpumask_var_t online;
  448. /*
  449. * The "RT overload" flag: it gets set if a CPU has more than
  450. * one runnable RT task.
  451. */
  452. cpumask_var_t rto_mask;
  453. atomic_t rto_count;
  454. #ifdef CONFIG_SMP
  455. struct cpupri cpupri;
  456. #endif
  457. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  458. /*
  459. * Preferred wake up cpu nominated by sched_mc balance that will be
  460. * used when most cpus are idle in the system indicating overall very
  461. * low system utilisation. Triggered at POWERSAVINGS_BALANCE_WAKEUP(2)
  462. */
  463. unsigned int sched_mc_preferred_wakeup_cpu;
  464. #endif
  465. };
  466. /*
  467. * By default the system creates a single root-domain with all cpus as
  468. * members (mimicking the global state we have today).
  469. */
  470. static struct root_domain def_root_domain;
  471. #endif
  472. /*
  473. * This is the main, per-CPU runqueue data structure.
  474. *
  475. * Locking rule: those places that want to lock multiple runqueues
  476. * (such as the load balancing or the thread migration code), lock
  477. * acquire operations must be ordered by ascending &runqueue.
  478. */
  479. struct rq {
  480. /* runqueue lock: */
  481. spinlock_t lock;
  482. /*
  483. * nr_running and cpu_load should be in the same cacheline because
  484. * remote CPUs use both these fields when doing load calculation.
  485. */
  486. unsigned long nr_running;
  487. #define CPU_LOAD_IDX_MAX 5
  488. unsigned long cpu_load[CPU_LOAD_IDX_MAX];
  489. #ifdef CONFIG_NO_HZ
  490. unsigned long last_tick_seen;
  491. unsigned char in_nohz_recently;
  492. #endif
  493. /* capture load from *all* tasks on this cpu: */
  494. struct load_weight load;
  495. unsigned long nr_load_updates;
  496. u64 nr_switches;
  497. struct cfs_rq cfs;
  498. struct rt_rq rt;
  499. #ifdef CONFIG_FAIR_GROUP_SCHED
  500. /* list of leaf cfs_rq on this cpu: */
  501. struct list_head leaf_cfs_rq_list;
  502. #endif
  503. #ifdef CONFIG_RT_GROUP_SCHED
  504. struct list_head leaf_rt_rq_list;
  505. #endif
  506. /*
  507. * This is part of a global counter where only the total sum
  508. * over all CPUs matters. A task can increase this counter on
  509. * one CPU and if it got migrated afterwards it may decrease
  510. * it on another CPU. Always updated under the runqueue lock:
  511. */
  512. unsigned long nr_uninterruptible;
  513. struct task_struct *curr, *idle;
  514. unsigned long next_balance;
  515. struct mm_struct *prev_mm;
  516. u64 clock;
  517. atomic_t nr_iowait;
  518. #ifdef CONFIG_SMP
  519. struct root_domain *rd;
  520. struct sched_domain *sd;
  521. unsigned char idle_at_tick;
  522. /* For active balancing */
  523. int active_balance;
  524. int push_cpu;
  525. /* cpu of this runqueue: */
  526. int cpu;
  527. int online;
  528. unsigned long avg_load_per_task;
  529. struct task_struct *migration_thread;
  530. struct list_head migration_queue;
  531. #endif
  532. #ifdef CONFIG_SCHED_HRTICK
  533. #ifdef CONFIG_SMP
  534. int hrtick_csd_pending;
  535. struct call_single_data hrtick_csd;
  536. #endif
  537. struct hrtimer hrtick_timer;
  538. #endif
  539. #ifdef CONFIG_SCHEDSTATS
  540. /* latency stats */
  541. struct sched_info rq_sched_info;
  542. unsigned long long rq_cpu_time;
  543. /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
  544. /* sys_sched_yield() stats */
  545. unsigned int yld_count;
  546. /* schedule() stats */
  547. unsigned int sched_switch;
  548. unsigned int sched_count;
  549. unsigned int sched_goidle;
  550. /* try_to_wake_up() stats */
  551. unsigned int ttwu_count;
  552. unsigned int ttwu_local;
  553. /* BKL stats */
  554. unsigned int bkl_count;
  555. #endif
  556. };
  557. static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  558. static inline void check_preempt_curr(struct rq *rq, struct task_struct *p, int sync)
  559. {
  560. rq->curr->sched_class->check_preempt_curr(rq, p, sync);
  561. }
  562. static inline int cpu_of(struct rq *rq)
  563. {
  564. #ifdef CONFIG_SMP
  565. return rq->cpu;
  566. #else
  567. return 0;
  568. #endif
  569. }
  570. /*
  571. * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
  572. * See detach_destroy_domains: synchronize_sched for details.
  573. *
  574. * The domain tree of any CPU may only be accessed from within
  575. * preempt-disabled sections.
  576. */
  577. #define for_each_domain(cpu, __sd) \
  578. for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
  579. #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
  580. #define this_rq() (&__get_cpu_var(runqueues))
  581. #define task_rq(p) cpu_rq(task_cpu(p))
  582. #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
  583. static inline void update_rq_clock(struct rq *rq)
  584. {
  585. rq->clock = sched_clock_cpu(cpu_of(rq));
  586. }
  587. /*
  588. * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
  589. */
  590. #ifdef CONFIG_SCHED_DEBUG
  591. # define const_debug __read_mostly
  592. #else
  593. # define const_debug static const
  594. #endif
  595. /**
  596. * runqueue_is_locked
  597. *
  598. * Returns true if the current cpu runqueue is locked.
  599. * This interface allows printk to be called with the runqueue lock
  600. * held and know whether or not it is OK to wake up the klogd.
  601. */
  602. int runqueue_is_locked(void)
  603. {
  604. int cpu = get_cpu();
  605. struct rq *rq = cpu_rq(cpu);
  606. int ret;
  607. ret = spin_is_locked(&rq->lock);
  608. put_cpu();
  609. return ret;
  610. }
  611. /*
  612. * Debugging: various feature bits
  613. */
  614. #define SCHED_FEAT(name, enabled) \
  615. __SCHED_FEAT_##name ,
  616. enum {
  617. #include "sched_features.h"
  618. };
  619. #undef SCHED_FEAT
  620. #define SCHED_FEAT(name, enabled) \
  621. (1UL << __SCHED_FEAT_##name) * enabled |
  622. const_debug unsigned int sysctl_sched_features =
  623. #include "sched_features.h"
  624. 0;
  625. #undef SCHED_FEAT
  626. #ifdef CONFIG_SCHED_DEBUG
  627. #define SCHED_FEAT(name, enabled) \
  628. #name ,
  629. static __read_mostly char *sched_feat_names[] = {
  630. #include "sched_features.h"
  631. NULL
  632. };
  633. #undef SCHED_FEAT
  634. static int sched_feat_show(struct seq_file *m, void *v)
  635. {
  636. int i;
  637. for (i = 0; sched_feat_names[i]; i++) {
  638. if (!(sysctl_sched_features & (1UL << i)))
  639. seq_puts(m, "NO_");
  640. seq_printf(m, "%s ", sched_feat_names[i]);
  641. }
  642. seq_puts(m, "\n");
  643. return 0;
  644. }
  645. static ssize_t
  646. sched_feat_write(struct file *filp, const char __user *ubuf,
  647. size_t cnt, loff_t *ppos)
  648. {
  649. char buf[64];
  650. char *cmp = buf;
  651. int neg = 0;
  652. int i;
  653. if (cnt > 63)
  654. cnt = 63;
  655. if (copy_from_user(&buf, ubuf, cnt))
  656. return -EFAULT;
  657. buf[cnt] = 0;
  658. if (strncmp(buf, "NO_", 3) == 0) {
  659. neg = 1;
  660. cmp += 3;
  661. }
  662. for (i = 0; sched_feat_names[i]; i++) {
  663. int len = strlen(sched_feat_names[i]);
  664. if (strncmp(cmp, sched_feat_names[i], len) == 0) {
  665. if (neg)
  666. sysctl_sched_features &= ~(1UL << i);
  667. else
  668. sysctl_sched_features |= (1UL << i);
  669. break;
  670. }
  671. }
  672. if (!sched_feat_names[i])
  673. return -EINVAL;
  674. filp->f_pos += cnt;
  675. return cnt;
  676. }
  677. static int sched_feat_open(struct inode *inode, struct file *filp)
  678. {
  679. return single_open(filp, sched_feat_show, NULL);
  680. }
  681. static struct file_operations sched_feat_fops = {
  682. .open = sched_feat_open,
  683. .write = sched_feat_write,
  684. .read = seq_read,
  685. .llseek = seq_lseek,
  686. .release = single_release,
  687. };
  688. static __init int sched_init_debug(void)
  689. {
  690. debugfs_create_file("sched_features", 0644, NULL, NULL,
  691. &sched_feat_fops);
  692. return 0;
  693. }
  694. late_initcall(sched_init_debug);
  695. #endif
  696. #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
  697. /*
  698. * Number of tasks to iterate in a single balance run.
  699. * Limited because this is done with IRQs disabled.
  700. */
  701. const_debug unsigned int sysctl_sched_nr_migrate = 32;
  702. /*
  703. * ratelimit for updating the group shares.
  704. * default: 0.25ms
  705. */
  706. unsigned int sysctl_sched_shares_ratelimit = 250000;
  707. /*
  708. * Inject some fuzzyness into changing the per-cpu group shares
  709. * this avoids remote rq-locks at the expense of fairness.
  710. * default: 4
  711. */
  712. unsigned int sysctl_sched_shares_thresh = 4;
  713. /*
  714. * period over which we measure -rt task cpu usage in us.
  715. * default: 1s
  716. */
  717. unsigned int sysctl_sched_rt_period = 1000000;
  718. static __read_mostly int scheduler_running;
  719. /*
  720. * part of the period that we allow rt tasks to run in us.
  721. * default: 0.95s
  722. */
  723. int sysctl_sched_rt_runtime = 950000;
  724. static inline u64 global_rt_period(void)
  725. {
  726. return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
  727. }
  728. static inline u64 global_rt_runtime(void)
  729. {
  730. if (sysctl_sched_rt_runtime < 0)
  731. return RUNTIME_INF;
  732. return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
  733. }
  734. #ifndef prepare_arch_switch
  735. # define prepare_arch_switch(next) do { } while (0)
  736. #endif
  737. #ifndef finish_arch_switch
  738. # define finish_arch_switch(prev) do { } while (0)
  739. #endif
  740. static inline int task_current(struct rq *rq, struct task_struct *p)
  741. {
  742. return rq->curr == p;
  743. }
  744. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  745. static inline int task_running(struct rq *rq, struct task_struct *p)
  746. {
  747. return task_current(rq, p);
  748. }
  749. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  750. {
  751. }
  752. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  753. {
  754. #ifdef CONFIG_DEBUG_SPINLOCK
  755. /* this is a valid case when another task releases the spinlock */
  756. rq->lock.owner = current;
  757. #endif
  758. /*
  759. * If we are tracking spinlock dependencies then we have to
  760. * fix up the runqueue lock - which gets 'carried over' from
  761. * prev into current:
  762. */
  763. spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
  764. spin_unlock_irq(&rq->lock);
  765. }
  766. #else /* __ARCH_WANT_UNLOCKED_CTXSW */
  767. static inline int task_running(struct rq *rq, struct task_struct *p)
  768. {
  769. #ifdef CONFIG_SMP
  770. return p->oncpu;
  771. #else
  772. return task_current(rq, p);
  773. #endif
  774. }
  775. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  776. {
  777. #ifdef CONFIG_SMP
  778. /*
  779. * We can optimise this out completely for !SMP, because the
  780. * SMP rebalancing from interrupt is the only thing that cares
  781. * here.
  782. */
  783. next->oncpu = 1;
  784. #endif
  785. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  786. spin_unlock_irq(&rq->lock);
  787. #else
  788. spin_unlock(&rq->lock);
  789. #endif
  790. }
  791. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  792. {
  793. #ifdef CONFIG_SMP
  794. /*
  795. * After ->oncpu is cleared, the task can be moved to a different CPU.
  796. * We must ensure this doesn't happen until the switch is completely
  797. * finished.
  798. */
  799. smp_wmb();
  800. prev->oncpu = 0;
  801. #endif
  802. #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  803. local_irq_enable();
  804. #endif
  805. }
  806. #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
  807. /*
  808. * __task_rq_lock - lock the runqueue a given task resides on.
  809. * Must be called interrupts disabled.
  810. */
  811. static inline struct rq *__task_rq_lock(struct task_struct *p)
  812. __acquires(rq->lock)
  813. {
  814. for (;;) {
  815. struct rq *rq = task_rq(p);
  816. spin_lock(&rq->lock);
  817. if (likely(rq == task_rq(p)))
  818. return rq;
  819. spin_unlock(&rq->lock);
  820. }
  821. }
  822. /*
  823. * task_rq_lock - lock the runqueue a given task resides on and disable
  824. * interrupts. Note the ordering: we can safely lookup the task_rq without
  825. * explicitly disabling preemption.
  826. */
  827. static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
  828. __acquires(rq->lock)
  829. {
  830. struct rq *rq;
  831. for (;;) {
  832. local_irq_save(*flags);
  833. rq = task_rq(p);
  834. spin_lock(&rq->lock);
  835. if (likely(rq == task_rq(p)))
  836. return rq;
  837. spin_unlock_irqrestore(&rq->lock, *flags);
  838. }
  839. }
  840. void task_rq_unlock_wait(struct task_struct *p)
  841. {
  842. struct rq *rq = task_rq(p);
  843. smp_mb(); /* spin-unlock-wait is not a full memory barrier */
  844. spin_unlock_wait(&rq->lock);
  845. }
  846. static void __task_rq_unlock(struct rq *rq)
  847. __releases(rq->lock)
  848. {
  849. spin_unlock(&rq->lock);
  850. }
  851. static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
  852. __releases(rq->lock)
  853. {
  854. spin_unlock_irqrestore(&rq->lock, *flags);
  855. }
  856. /*
  857. * this_rq_lock - lock this runqueue and disable interrupts.
  858. */
  859. static struct rq *this_rq_lock(void)
  860. __acquires(rq->lock)
  861. {
  862. struct rq *rq;
  863. local_irq_disable();
  864. rq = this_rq();
  865. spin_lock(&rq->lock);
  866. return rq;
  867. }
  868. #ifdef CONFIG_SCHED_HRTICK
  869. /*
  870. * Use HR-timers to deliver accurate preemption points.
  871. *
  872. * Its all a bit involved since we cannot program an hrt while holding the
  873. * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
  874. * reschedule event.
  875. *
  876. * When we get rescheduled we reprogram the hrtick_timer outside of the
  877. * rq->lock.
  878. */
  879. /*
  880. * Use hrtick when:
  881. * - enabled by features
  882. * - hrtimer is actually high res
  883. */
  884. static inline int hrtick_enabled(struct rq *rq)
  885. {
  886. if (!sched_feat(HRTICK))
  887. return 0;
  888. if (!cpu_active(cpu_of(rq)))
  889. return 0;
  890. return hrtimer_is_hres_active(&rq->hrtick_timer);
  891. }
  892. static void hrtick_clear(struct rq *rq)
  893. {
  894. if (hrtimer_active(&rq->hrtick_timer))
  895. hrtimer_cancel(&rq->hrtick_timer);
  896. }
  897. /*
  898. * High-resolution timer tick.
  899. * Runs from hardirq context with interrupts disabled.
  900. */
  901. static enum hrtimer_restart hrtick(struct hrtimer *timer)
  902. {
  903. struct rq *rq = container_of(timer, struct rq, hrtick_timer);
  904. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  905. spin_lock(&rq->lock);
  906. update_rq_clock(rq);
  907. rq->curr->sched_class->task_tick(rq, rq->curr, 1);
  908. spin_unlock(&rq->lock);
  909. return HRTIMER_NORESTART;
  910. }
  911. #ifdef CONFIG_SMP
  912. /*
  913. * called from hardirq (IPI) context
  914. */
  915. static void __hrtick_start(void *arg)
  916. {
  917. struct rq *rq = arg;
  918. spin_lock(&rq->lock);
  919. hrtimer_restart(&rq->hrtick_timer);
  920. rq->hrtick_csd_pending = 0;
  921. spin_unlock(&rq->lock);
  922. }
  923. /*
  924. * Called to set the hrtick timer state.
  925. *
  926. * called with rq->lock held and irqs disabled
  927. */
  928. static void hrtick_start(struct rq *rq, u64 delay)
  929. {
  930. struct hrtimer *timer = &rq->hrtick_timer;
  931. ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
  932. hrtimer_set_expires(timer, time);
  933. if (rq == this_rq()) {
  934. hrtimer_restart(timer);
  935. } else if (!rq->hrtick_csd_pending) {
  936. __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
  937. rq->hrtick_csd_pending = 1;
  938. }
  939. }
  940. static int
  941. hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
  942. {
  943. int cpu = (int)(long)hcpu;
  944. switch (action) {
  945. case CPU_UP_CANCELED:
  946. case CPU_UP_CANCELED_FROZEN:
  947. case CPU_DOWN_PREPARE:
  948. case CPU_DOWN_PREPARE_FROZEN:
  949. case CPU_DEAD:
  950. case CPU_DEAD_FROZEN:
  951. hrtick_clear(cpu_rq(cpu));
  952. return NOTIFY_OK;
  953. }
  954. return NOTIFY_DONE;
  955. }
  956. static __init void init_hrtick(void)
  957. {
  958. hotcpu_notifier(hotplug_hrtick, 0);
  959. }
  960. #else
  961. /*
  962. * Called to set the hrtick timer state.
  963. *
  964. * called with rq->lock held and irqs disabled
  965. */
  966. static void hrtick_start(struct rq *rq, u64 delay)
  967. {
  968. __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
  969. HRTIMER_MODE_REL, 0);
  970. }
  971. static inline void init_hrtick(void)
  972. {
  973. }
  974. #endif /* CONFIG_SMP */
  975. static void init_rq_hrtick(struct rq *rq)
  976. {
  977. #ifdef CONFIG_SMP
  978. rq->hrtick_csd_pending = 0;
  979. rq->hrtick_csd.flags = 0;
  980. rq->hrtick_csd.func = __hrtick_start;
  981. rq->hrtick_csd.info = rq;
  982. #endif
  983. hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  984. rq->hrtick_timer.function = hrtick;
  985. }
  986. #else /* CONFIG_SCHED_HRTICK */
  987. static inline void hrtick_clear(struct rq *rq)
  988. {
  989. }
  990. static inline void init_rq_hrtick(struct rq *rq)
  991. {
  992. }
  993. static inline void init_hrtick(void)
  994. {
  995. }
  996. #endif /* CONFIG_SCHED_HRTICK */
  997. /*
  998. * resched_task - mark a task 'to be rescheduled now'.
  999. *
  1000. * On UP this means the setting of the need_resched flag, on SMP it
  1001. * might also involve a cross-CPU call to trigger the scheduler on
  1002. * the target CPU.
  1003. */
  1004. #ifdef CONFIG_SMP
  1005. #ifndef tsk_is_polling
  1006. #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
  1007. #endif
  1008. static void resched_task(struct task_struct *p)
  1009. {
  1010. int cpu;
  1011. assert_spin_locked(&task_rq(p)->lock);
  1012. if (test_tsk_need_resched(p))
  1013. return;
  1014. set_tsk_need_resched(p);
  1015. cpu = task_cpu(p);
  1016. if (cpu == smp_processor_id())
  1017. return;
  1018. /* NEED_RESCHED must be visible before we test polling */
  1019. smp_mb();
  1020. if (!tsk_is_polling(p))
  1021. smp_send_reschedule(cpu);
  1022. }
  1023. static void resched_cpu(int cpu)
  1024. {
  1025. struct rq *rq = cpu_rq(cpu);
  1026. unsigned long flags;
  1027. if (!spin_trylock_irqsave(&rq->lock, flags))
  1028. return;
  1029. resched_task(cpu_curr(cpu));
  1030. spin_unlock_irqrestore(&rq->lock, flags);
  1031. }
  1032. #ifdef CONFIG_NO_HZ
  1033. /*
  1034. * When add_timer_on() enqueues a timer into the timer wheel of an
  1035. * idle CPU then this timer might expire before the next timer event
  1036. * which is scheduled to wake up that CPU. In case of a completely
  1037. * idle system the next event might even be infinite time into the
  1038. * future. wake_up_idle_cpu() ensures that the CPU is woken up and
  1039. * leaves the inner idle loop so the newly added timer is taken into
  1040. * account when the CPU goes back to idle and evaluates the timer
  1041. * wheel for the next timer event.
  1042. */
  1043. void wake_up_idle_cpu(int cpu)
  1044. {
  1045. struct rq *rq = cpu_rq(cpu);
  1046. if (cpu == smp_processor_id())
  1047. return;
  1048. /*
  1049. * This is safe, as this function is called with the timer
  1050. * wheel base lock of (cpu) held. When the CPU is on the way
  1051. * to idle and has not yet set rq->curr to idle then it will
  1052. * be serialized on the timer wheel base lock and take the new
  1053. * timer into account automatically.
  1054. */
  1055. if (rq->curr != rq->idle)
  1056. return;
  1057. /*
  1058. * We can set TIF_RESCHED on the idle task of the other CPU
  1059. * lockless. The worst case is that the other CPU runs the
  1060. * idle task through an additional NOOP schedule()
  1061. */
  1062. set_tsk_need_resched(rq->idle);
  1063. /* NEED_RESCHED must be visible before we test polling */
  1064. smp_mb();
  1065. if (!tsk_is_polling(rq->idle))
  1066. smp_send_reschedule(cpu);
  1067. }
  1068. #endif /* CONFIG_NO_HZ */
  1069. #else /* !CONFIG_SMP */
  1070. static void resched_task(struct task_struct *p)
  1071. {
  1072. assert_spin_locked(&task_rq(p)->lock);
  1073. set_tsk_need_resched(p);
  1074. }
  1075. #endif /* CONFIG_SMP */
  1076. #if BITS_PER_LONG == 32
  1077. # define WMULT_CONST (~0UL)
  1078. #else
  1079. # define WMULT_CONST (1UL << 32)
  1080. #endif
  1081. #define WMULT_SHIFT 32
  1082. /*
  1083. * Shift right and round:
  1084. */
  1085. #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
  1086. /*
  1087. * delta *= weight / lw
  1088. */
  1089. static unsigned long
  1090. calc_delta_mine(unsigned long delta_exec, unsigned long weight,
  1091. struct load_weight *lw)
  1092. {
  1093. u64 tmp;
  1094. if (!lw->inv_weight) {
  1095. if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
  1096. lw->inv_weight = 1;
  1097. else
  1098. lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
  1099. / (lw->weight+1);
  1100. }
  1101. tmp = (u64)delta_exec * weight;
  1102. /*
  1103. * Check whether we'd overflow the 64-bit multiplication:
  1104. */
  1105. if (unlikely(tmp > WMULT_CONST))
  1106. tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
  1107. WMULT_SHIFT/2);
  1108. else
  1109. tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
  1110. return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
  1111. }
  1112. static inline void update_load_add(struct load_weight *lw, unsigned long inc)
  1113. {
  1114. lw->weight += inc;
  1115. lw->inv_weight = 0;
  1116. }
  1117. static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
  1118. {
  1119. lw->weight -= dec;
  1120. lw->inv_weight = 0;
  1121. }
  1122. /*
  1123. * To aid in avoiding the subversion of "niceness" due to uneven distribution
  1124. * of tasks with abnormal "nice" values across CPUs the contribution that
  1125. * each task makes to its run queue's load is weighted according to its
  1126. * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
  1127. * scaled version of the new time slice allocation that they receive on time
  1128. * slice expiry etc.
  1129. */
  1130. #define WEIGHT_IDLEPRIO 3
  1131. #define WMULT_IDLEPRIO 1431655765
  1132. /*
  1133. * Nice levels are multiplicative, with a gentle 10% change for every
  1134. * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
  1135. * nice 1, it will get ~10% less CPU time than another CPU-bound task
  1136. * that remained on nice 0.
  1137. *
  1138. * The "10% effect" is relative and cumulative: from _any_ nice level,
  1139. * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
  1140. * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
  1141. * If a task goes up by ~10% and another task goes down by ~10% then
  1142. * the relative distance between them is ~25%.)
  1143. */
  1144. static const int prio_to_weight[40] = {
  1145. /* -20 */ 88761, 71755, 56483, 46273, 36291,
  1146. /* -15 */ 29154, 23254, 18705, 14949, 11916,
  1147. /* -10 */ 9548, 7620, 6100, 4904, 3906,
  1148. /* -5 */ 3121, 2501, 1991, 1586, 1277,
  1149. /* 0 */ 1024, 820, 655, 526, 423,
  1150. /* 5 */ 335, 272, 215, 172, 137,
  1151. /* 10 */ 110, 87, 70, 56, 45,
  1152. /* 15 */ 36, 29, 23, 18, 15,
  1153. };
  1154. /*
  1155. * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
  1156. *
  1157. * In cases where the weight does not change often, we can use the
  1158. * precalculated inverse to speed up arithmetics by turning divisions
  1159. * into multiplications:
  1160. */
  1161. static const u32 prio_to_wmult[40] = {
  1162. /* -20 */ 48388, 59856, 76040, 92818, 118348,
  1163. /* -15 */ 147320, 184698, 229616, 287308, 360437,
  1164. /* -10 */ 449829, 563644, 704093, 875809, 1099582,
  1165. /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
  1166. /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
  1167. /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
  1168. /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
  1169. /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
  1170. };
  1171. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
  1172. /*
  1173. * runqueue iterator, to support SMP load-balancing between different
  1174. * scheduling classes, without having to expose their internal data
  1175. * structures to the load-balancing proper:
  1176. */
  1177. struct rq_iterator {
  1178. void *arg;
  1179. struct task_struct *(*start)(void *);
  1180. struct task_struct *(*next)(void *);
  1181. };
  1182. #ifdef CONFIG_SMP
  1183. static unsigned long
  1184. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1185. unsigned long max_load_move, struct sched_domain *sd,
  1186. enum cpu_idle_type idle, int *all_pinned,
  1187. int *this_best_prio, struct rq_iterator *iterator);
  1188. static int
  1189. iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1190. struct sched_domain *sd, enum cpu_idle_type idle,
  1191. struct rq_iterator *iterator);
  1192. #endif
  1193. /* Time spent by the tasks of the cpu accounting group executing in ... */
  1194. enum cpuacct_stat_index {
  1195. CPUACCT_STAT_USER, /* ... user mode */
  1196. CPUACCT_STAT_SYSTEM, /* ... kernel mode */
  1197. CPUACCT_STAT_NSTATS,
  1198. };
  1199. #ifdef CONFIG_CGROUP_CPUACCT
  1200. static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
  1201. static void cpuacct_update_stats(struct task_struct *tsk,
  1202. enum cpuacct_stat_index idx, cputime_t val);
  1203. #else
  1204. static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
  1205. static inline void cpuacct_update_stats(struct task_struct *tsk,
  1206. enum cpuacct_stat_index idx, cputime_t val) {}
  1207. #endif
  1208. static inline void inc_cpu_load(struct rq *rq, unsigned long load)
  1209. {
  1210. update_load_add(&rq->load, load);
  1211. }
  1212. static inline void dec_cpu_load(struct rq *rq, unsigned long load)
  1213. {
  1214. update_load_sub(&rq->load, load);
  1215. }
  1216. #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
  1217. typedef int (*tg_visitor)(struct task_group *, void *);
  1218. /*
  1219. * Iterate the full tree, calling @down when first entering a node and @up when
  1220. * leaving it for the final time.
  1221. */
  1222. static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
  1223. {
  1224. struct task_group *parent, *child;
  1225. int ret;
  1226. rcu_read_lock();
  1227. parent = &root_task_group;
  1228. down:
  1229. ret = (*down)(parent, data);
  1230. if (ret)
  1231. goto out_unlock;
  1232. list_for_each_entry_rcu(child, &parent->children, siblings) {
  1233. parent = child;
  1234. goto down;
  1235. up:
  1236. continue;
  1237. }
  1238. ret = (*up)(parent, data);
  1239. if (ret)
  1240. goto out_unlock;
  1241. child = parent;
  1242. parent = parent->parent;
  1243. if (parent)
  1244. goto up;
  1245. out_unlock:
  1246. rcu_read_unlock();
  1247. return ret;
  1248. }
  1249. static int tg_nop(struct task_group *tg, void *data)
  1250. {
  1251. return 0;
  1252. }
  1253. #endif
  1254. #ifdef CONFIG_SMP
  1255. static unsigned long source_load(int cpu, int type);
  1256. static unsigned long target_load(int cpu, int type);
  1257. static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
  1258. static unsigned long cpu_avg_load_per_task(int cpu)
  1259. {
  1260. struct rq *rq = cpu_rq(cpu);
  1261. unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
  1262. if (nr_running)
  1263. rq->avg_load_per_task = rq->load.weight / nr_running;
  1264. else
  1265. rq->avg_load_per_task = 0;
  1266. return rq->avg_load_per_task;
  1267. }
  1268. #ifdef CONFIG_FAIR_GROUP_SCHED
  1269. static void __set_se_shares(struct sched_entity *se, unsigned long shares);
  1270. /*
  1271. * Calculate and set the cpu's group shares.
  1272. */
  1273. static void
  1274. update_group_shares_cpu(struct task_group *tg, int cpu,
  1275. unsigned long sd_shares, unsigned long sd_rq_weight)
  1276. {
  1277. unsigned long shares;
  1278. unsigned long rq_weight;
  1279. if (!tg->se[cpu])
  1280. return;
  1281. rq_weight = tg->cfs_rq[cpu]->rq_weight;
  1282. /*
  1283. * \Sum shares * rq_weight
  1284. * shares = -----------------------
  1285. * \Sum rq_weight
  1286. *
  1287. */
  1288. shares = (sd_shares * rq_weight) / sd_rq_weight;
  1289. shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
  1290. if (abs(shares - tg->se[cpu]->load.weight) >
  1291. sysctl_sched_shares_thresh) {
  1292. struct rq *rq = cpu_rq(cpu);
  1293. unsigned long flags;
  1294. spin_lock_irqsave(&rq->lock, flags);
  1295. tg->cfs_rq[cpu]->shares = shares;
  1296. __set_se_shares(tg->se[cpu], shares);
  1297. spin_unlock_irqrestore(&rq->lock, flags);
  1298. }
  1299. }
  1300. /*
  1301. * Re-compute the task group their per cpu shares over the given domain.
  1302. * This needs to be done in a bottom-up fashion because the rq weight of a
  1303. * parent group depends on the shares of its child groups.
  1304. */
  1305. static int tg_shares_up(struct task_group *tg, void *data)
  1306. {
  1307. unsigned long weight, rq_weight = 0;
  1308. unsigned long shares = 0;
  1309. struct sched_domain *sd = data;
  1310. int i;
  1311. for_each_cpu(i, sched_domain_span(sd)) {
  1312. /*
  1313. * If there are currently no tasks on the cpu pretend there
  1314. * is one of average load so that when a new task gets to
  1315. * run here it will not get delayed by group starvation.
  1316. */
  1317. weight = tg->cfs_rq[i]->load.weight;
  1318. if (!weight)
  1319. weight = NICE_0_LOAD;
  1320. tg->cfs_rq[i]->rq_weight = weight;
  1321. rq_weight += weight;
  1322. shares += tg->cfs_rq[i]->shares;
  1323. }
  1324. if ((!shares && rq_weight) || shares > tg->shares)
  1325. shares = tg->shares;
  1326. if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
  1327. shares = tg->shares;
  1328. for_each_cpu(i, sched_domain_span(sd))
  1329. update_group_shares_cpu(tg, i, shares, rq_weight);
  1330. return 0;
  1331. }
  1332. /*
  1333. * Compute the cpu's hierarchical load factor for each task group.
  1334. * This needs to be done in a top-down fashion because the load of a child
  1335. * group is a fraction of its parents load.
  1336. */
  1337. static int tg_load_down(struct task_group *tg, void *data)
  1338. {
  1339. unsigned long load;
  1340. long cpu = (long)data;
  1341. if (!tg->parent) {
  1342. load = cpu_rq(cpu)->load.weight;
  1343. } else {
  1344. load = tg->parent->cfs_rq[cpu]->h_load;
  1345. load *= tg->cfs_rq[cpu]->shares;
  1346. load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
  1347. }
  1348. tg->cfs_rq[cpu]->h_load = load;
  1349. return 0;
  1350. }
  1351. static void update_shares(struct sched_domain *sd)
  1352. {
  1353. u64 now = cpu_clock(raw_smp_processor_id());
  1354. s64 elapsed = now - sd->last_update;
  1355. if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
  1356. sd->last_update = now;
  1357. walk_tg_tree(tg_nop, tg_shares_up, sd);
  1358. }
  1359. }
  1360. static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
  1361. {
  1362. spin_unlock(&rq->lock);
  1363. update_shares(sd);
  1364. spin_lock(&rq->lock);
  1365. }
  1366. static void update_h_load(long cpu)
  1367. {
  1368. walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
  1369. }
  1370. #else
  1371. static inline void update_shares(struct sched_domain *sd)
  1372. {
  1373. }
  1374. static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
  1375. {
  1376. }
  1377. #endif
  1378. #ifdef CONFIG_PREEMPT
  1379. /*
  1380. * fair double_lock_balance: Safely acquires both rq->locks in a fair
  1381. * way at the expense of forcing extra atomic operations in all
  1382. * invocations. This assures that the double_lock is acquired using the
  1383. * same underlying policy as the spinlock_t on this architecture, which
  1384. * reduces latency compared to the unfair variant below. However, it
  1385. * also adds more overhead and therefore may reduce throughput.
  1386. */
  1387. static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1388. __releases(this_rq->lock)
  1389. __acquires(busiest->lock)
  1390. __acquires(this_rq->lock)
  1391. {
  1392. spin_unlock(&this_rq->lock);
  1393. double_rq_lock(this_rq, busiest);
  1394. return 1;
  1395. }
  1396. #else
  1397. /*
  1398. * Unfair double_lock_balance: Optimizes throughput at the expense of
  1399. * latency by eliminating extra atomic operations when the locks are
  1400. * already in proper order on entry. This favors lower cpu-ids and will
  1401. * grant the double lock to lower cpus over higher ids under contention,
  1402. * regardless of entry order into the function.
  1403. */
  1404. static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1405. __releases(this_rq->lock)
  1406. __acquires(busiest->lock)
  1407. __acquires(this_rq->lock)
  1408. {
  1409. int ret = 0;
  1410. if (unlikely(!spin_trylock(&busiest->lock))) {
  1411. if (busiest < this_rq) {
  1412. spin_unlock(&this_rq->lock);
  1413. spin_lock(&busiest->lock);
  1414. spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
  1415. ret = 1;
  1416. } else
  1417. spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
  1418. }
  1419. return ret;
  1420. }
  1421. #endif /* CONFIG_PREEMPT */
  1422. /*
  1423. * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
  1424. */
  1425. static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1426. {
  1427. if (unlikely(!irqs_disabled())) {
  1428. /* printk() doesn't work good under rq->lock */
  1429. spin_unlock(&this_rq->lock);
  1430. BUG_ON(1);
  1431. }
  1432. return _double_lock_balance(this_rq, busiest);
  1433. }
  1434. static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
  1435. __releases(busiest->lock)
  1436. {
  1437. spin_unlock(&busiest->lock);
  1438. lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
  1439. }
  1440. #endif
  1441. #ifdef CONFIG_FAIR_GROUP_SCHED
  1442. static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
  1443. {
  1444. #ifdef CONFIG_SMP
  1445. cfs_rq->shares = shares;
  1446. #endif
  1447. }
  1448. #endif
  1449. #include "sched_stats.h"
  1450. #include "sched_idletask.c"
  1451. #include "sched_fair.c"
  1452. #include "sched_rt.c"
  1453. #ifdef CONFIG_SCHED_DEBUG
  1454. # include "sched_debug.c"
  1455. #endif
  1456. #define sched_class_highest (&rt_sched_class)
  1457. #define for_each_class(class) \
  1458. for (class = sched_class_highest; class; class = class->next)
  1459. static void inc_nr_running(struct rq *rq)
  1460. {
  1461. rq->nr_running++;
  1462. }
  1463. static void dec_nr_running(struct rq *rq)
  1464. {
  1465. rq->nr_running--;
  1466. }
  1467. static void set_load_weight(struct task_struct *p)
  1468. {
  1469. if (task_has_rt_policy(p)) {
  1470. p->se.load.weight = prio_to_weight[0] * 2;
  1471. p->se.load.inv_weight = prio_to_wmult[0] >> 1;
  1472. return;
  1473. }
  1474. /*
  1475. * SCHED_IDLE tasks get minimal weight:
  1476. */
  1477. if (p->policy == SCHED_IDLE) {
  1478. p->se.load.weight = WEIGHT_IDLEPRIO;
  1479. p->se.load.inv_weight = WMULT_IDLEPRIO;
  1480. return;
  1481. }
  1482. p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
  1483. p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
  1484. }
  1485. static void update_avg(u64 *avg, u64 sample)
  1486. {
  1487. s64 diff = sample - *avg;
  1488. *avg += diff >> 3;
  1489. }
  1490. static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
  1491. {
  1492. if (wakeup)
  1493. p->se.start_runtime = p->se.sum_exec_runtime;
  1494. sched_info_queued(p);
  1495. p->sched_class->enqueue_task(rq, p, wakeup);
  1496. p->se.on_rq = 1;
  1497. }
  1498. static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
  1499. {
  1500. if (sleep) {
  1501. if (p->se.last_wakeup) {
  1502. update_avg(&p->se.avg_overlap,
  1503. p->se.sum_exec_runtime - p->se.last_wakeup);
  1504. p->se.last_wakeup = 0;
  1505. } else {
  1506. update_avg(&p->se.avg_wakeup,
  1507. sysctl_sched_wakeup_granularity);
  1508. }
  1509. }
  1510. sched_info_dequeued(p);
  1511. p->sched_class->dequeue_task(rq, p, sleep);
  1512. p->se.on_rq = 0;
  1513. }
  1514. /*
  1515. * __normal_prio - return the priority that is based on the static prio
  1516. */
  1517. static inline int __normal_prio(struct task_struct *p)
  1518. {
  1519. return p->static_prio;
  1520. }
  1521. /*
  1522. * Calculate the expected normal priority: i.e. priority
  1523. * without taking RT-inheritance into account. Might be
  1524. * boosted by interactivity modifiers. Changes upon fork,
  1525. * setprio syscalls, and whenever the interactivity
  1526. * estimator recalculates.
  1527. */
  1528. static inline int normal_prio(struct task_struct *p)
  1529. {
  1530. int prio;
  1531. if (task_has_rt_policy(p))
  1532. prio = MAX_RT_PRIO-1 - p->rt_priority;
  1533. else
  1534. prio = __normal_prio(p);
  1535. return prio;
  1536. }
  1537. /*
  1538. * Calculate the current priority, i.e. the priority
  1539. * taken into account by the scheduler. This value might
  1540. * be boosted by RT tasks, or might be boosted by
  1541. * interactivity modifiers. Will be RT if the task got
  1542. * RT-boosted. If not then it returns p->normal_prio.
  1543. */
  1544. static int effective_prio(struct task_struct *p)
  1545. {
  1546. p->normal_prio = normal_prio(p);
  1547. /*
  1548. * If we are RT tasks or we were boosted to RT priority,
  1549. * keep the priority unchanged. Otherwise, update priority
  1550. * to the normal priority:
  1551. */
  1552. if (!rt_prio(p->prio))
  1553. return p->normal_prio;
  1554. return p->prio;
  1555. }
  1556. /*
  1557. * activate_task - move a task to the runqueue.
  1558. */
  1559. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
  1560. {
  1561. if (task_contributes_to_load(p))
  1562. rq->nr_uninterruptible--;
  1563. enqueue_task(rq, p, wakeup);
  1564. inc_nr_running(rq);
  1565. }
  1566. /*
  1567. * deactivate_task - remove a task from the runqueue.
  1568. */
  1569. static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
  1570. {
  1571. if (task_contributes_to_load(p))
  1572. rq->nr_uninterruptible++;
  1573. dequeue_task(rq, p, sleep);
  1574. dec_nr_running(rq);
  1575. }
  1576. /**
  1577. * task_curr - is this task currently executing on a CPU?
  1578. * @p: the task in question.
  1579. */
  1580. inline int task_curr(const struct task_struct *p)
  1581. {
  1582. return cpu_curr(task_cpu(p)) == p;
  1583. }
  1584. static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
  1585. {
  1586. set_task_rq(p, cpu);
  1587. #ifdef CONFIG_SMP
  1588. /*
  1589. * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
  1590. * successfuly executed on another CPU. We must ensure that updates of
  1591. * per-task data have been completed by this moment.
  1592. */
  1593. smp_wmb();
  1594. task_thread_info(p)->cpu = cpu;
  1595. #endif
  1596. }
  1597. static inline void check_class_changed(struct rq *rq, struct task_struct *p,
  1598. const struct sched_class *prev_class,
  1599. int oldprio, int running)
  1600. {
  1601. if (prev_class != p->sched_class) {
  1602. if (prev_class->switched_from)
  1603. prev_class->switched_from(rq, p, running);
  1604. p->sched_class->switched_to(rq, p, running);
  1605. } else
  1606. p->sched_class->prio_changed(rq, p, oldprio, running);
  1607. }
  1608. #ifdef CONFIG_SMP
  1609. /* Used instead of source_load when we know the type == 0 */
  1610. static unsigned long weighted_cpuload(const int cpu)
  1611. {
  1612. return cpu_rq(cpu)->load.weight;
  1613. }
  1614. /*
  1615. * Is this task likely cache-hot:
  1616. */
  1617. static int
  1618. task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
  1619. {
  1620. s64 delta;
  1621. /*
  1622. * Buddy candidates are cache hot:
  1623. */
  1624. if (sched_feat(CACHE_HOT_BUDDY) &&
  1625. (&p->se == cfs_rq_of(&p->se)->next ||
  1626. &p->se == cfs_rq_of(&p->se)->last))
  1627. return 1;
  1628. if (p->sched_class != &fair_sched_class)
  1629. return 0;
  1630. if (sysctl_sched_migration_cost == -1)
  1631. return 1;
  1632. if (sysctl_sched_migration_cost == 0)
  1633. return 0;
  1634. delta = now - p->se.exec_start;
  1635. return delta < (s64)sysctl_sched_migration_cost;
  1636. }
  1637. void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
  1638. {
  1639. int old_cpu = task_cpu(p);
  1640. struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
  1641. struct cfs_rq *old_cfsrq = task_cfs_rq(p),
  1642. *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
  1643. u64 clock_offset;
  1644. clock_offset = old_rq->clock - new_rq->clock;
  1645. trace_sched_migrate_task(p, task_cpu(p), new_cpu);
  1646. #ifdef CONFIG_SCHEDSTATS
  1647. if (p->se.wait_start)
  1648. p->se.wait_start -= clock_offset;
  1649. if (p->se.sleep_start)
  1650. p->se.sleep_start -= clock_offset;
  1651. if (p->se.block_start)
  1652. p->se.block_start -= clock_offset;
  1653. if (old_cpu != new_cpu) {
  1654. schedstat_inc(p, se.nr_migrations);
  1655. if (task_hot(p, old_rq->clock, NULL))
  1656. schedstat_inc(p, se.nr_forced2_migrations);
  1657. }
  1658. #endif
  1659. p->se.vruntime -= old_cfsrq->min_vruntime -
  1660. new_cfsrq->min_vruntime;
  1661. __set_task_cpu(p, new_cpu);
  1662. }
  1663. struct migration_req {
  1664. struct list_head list;
  1665. struct task_struct *task;
  1666. int dest_cpu;
  1667. struct completion done;
  1668. };
  1669. /*
  1670. * The task's runqueue lock must be held.
  1671. * Returns true if you have to wait for migration thread.
  1672. */
  1673. static int
  1674. migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
  1675. {
  1676. struct rq *rq = task_rq(p);
  1677. /*
  1678. * If the task is not on a runqueue (and not running), then
  1679. * it is sufficient to simply update the task's cpu field.
  1680. */
  1681. if (!p->se.on_rq && !task_running(rq, p)) {
  1682. set_task_cpu(p, dest_cpu);
  1683. return 0;
  1684. }
  1685. init_completion(&req->done);
  1686. req->task = p;
  1687. req->dest_cpu = dest_cpu;
  1688. list_add(&req->list, &rq->migration_queue);
  1689. return 1;
  1690. }
  1691. /*
  1692. * wait_task_inactive - wait for a thread to unschedule.
  1693. *
  1694. * If @match_state is nonzero, it's the @p->state value just checked and
  1695. * not expected to change. If it changes, i.e. @p might have woken up,
  1696. * then return zero. When we succeed in waiting for @p to be off its CPU,
  1697. * we return a positive number (its total switch count). If a second call
  1698. * a short while later returns the same number, the caller can be sure that
  1699. * @p has remained unscheduled the whole time.
  1700. *
  1701. * The caller must ensure that the task *will* unschedule sometime soon,
  1702. * else this function might spin for a *long* time. This function can't
  1703. * be called with interrupts off, or it may introduce deadlock with
  1704. * smp_call_function() if an IPI is sent by the same process we are
  1705. * waiting to become inactive.
  1706. */
  1707. unsigned long wait_task_inactive(struct task_struct *p, long match_state)
  1708. {
  1709. unsigned long flags;
  1710. int running, on_rq;
  1711. unsigned long ncsw;
  1712. struct rq *rq;
  1713. for (;;) {
  1714. /*
  1715. * We do the initial early heuristics without holding
  1716. * any task-queue locks at all. We'll only try to get
  1717. * the runqueue lock when things look like they will
  1718. * work out!
  1719. */
  1720. rq = task_rq(p);
  1721. /*
  1722. * If the task is actively running on another CPU
  1723. * still, just relax and busy-wait without holding
  1724. * any locks.
  1725. *
  1726. * NOTE! Since we don't hold any locks, it's not
  1727. * even sure that "rq" stays as the right runqueue!
  1728. * But we don't care, since "task_running()" will
  1729. * return false if the runqueue has changed and p
  1730. * is actually now running somewhere else!
  1731. */
  1732. while (task_running(rq, p)) {
  1733. if (match_state && unlikely(p->state != match_state))
  1734. return 0;
  1735. cpu_relax();
  1736. }
  1737. /*
  1738. * Ok, time to look more closely! We need the rq
  1739. * lock now, to be *sure*. If we're wrong, we'll
  1740. * just go back and repeat.
  1741. */
  1742. rq = task_rq_lock(p, &flags);
  1743. trace_sched_wait_task(rq, p);
  1744. running = task_running(rq, p);
  1745. on_rq = p->se.on_rq;
  1746. ncsw = 0;
  1747. if (!match_state || p->state == match_state)
  1748. ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
  1749. task_rq_unlock(rq, &flags);
  1750. /*
  1751. * If it changed from the expected state, bail out now.
  1752. */
  1753. if (unlikely(!ncsw))
  1754. break;
  1755. /*
  1756. * Was it really running after all now that we
  1757. * checked with the proper locks actually held?
  1758. *
  1759. * Oops. Go back and try again..
  1760. */
  1761. if (unlikely(running)) {
  1762. cpu_relax();
  1763. continue;
  1764. }
  1765. /*
  1766. * It's not enough that it's not actively running,
  1767. * it must be off the runqueue _entirely_, and not
  1768. * preempted!
  1769. *
  1770. * So if it was still runnable (but just not actively
  1771. * running right now), it's preempted, and we should
  1772. * yield - it could be a while.
  1773. */
  1774. if (unlikely(on_rq)) {
  1775. schedule_timeout_uninterruptible(1);
  1776. continue;
  1777. }
  1778. /*
  1779. * Ahh, all good. It wasn't running, and it wasn't
  1780. * runnable, which means that it will never become
  1781. * running in the future either. We're all done!
  1782. */
  1783. break;
  1784. }
  1785. return ncsw;
  1786. }
  1787. /***
  1788. * kick_process - kick a running thread to enter/exit the kernel
  1789. * @p: the to-be-kicked thread
  1790. *
  1791. * Cause a process which is running on another CPU to enter
  1792. * kernel-mode, without any delay. (to get signals handled.)
  1793. *
  1794. * NOTE: this function doesnt have to take the runqueue lock,
  1795. * because all it wants to ensure is that the remote task enters
  1796. * the kernel. If the IPI races and the task has been migrated
  1797. * to another CPU then no harm is done and the purpose has been
  1798. * achieved as well.
  1799. */
  1800. void kick_process(struct task_struct *p)
  1801. {
  1802. int cpu;
  1803. preempt_disable();
  1804. cpu = task_cpu(p);
  1805. if ((cpu != smp_processor_id()) && task_curr(p))
  1806. smp_send_reschedule(cpu);
  1807. preempt_enable();
  1808. }
  1809. /*
  1810. * Return a low guess at the load of a migration-source cpu weighted
  1811. * according to the scheduling class and "nice" value.
  1812. *
  1813. * We want to under-estimate the load of migration sources, to
  1814. * balance conservatively.
  1815. */
  1816. static unsigned long source_load(int cpu, int type)
  1817. {
  1818. struct rq *rq = cpu_rq(cpu);
  1819. unsigned long total = weighted_cpuload(cpu);
  1820. if (type == 0 || !sched_feat(LB_BIAS))
  1821. return total;
  1822. return min(rq->cpu_load[type-1], total);
  1823. }
  1824. /*
  1825. * Return a high guess at the load of a migration-target cpu weighted
  1826. * according to the scheduling class and "nice" value.
  1827. */
  1828. static unsigned long target_load(int cpu, int type)
  1829. {
  1830. struct rq *rq = cpu_rq(cpu);
  1831. unsigned long total = weighted_cpuload(cpu);
  1832. if (type == 0 || !sched_feat(LB_BIAS))
  1833. return total;
  1834. return max(rq->cpu_load[type-1], total);
  1835. }
  1836. /*
  1837. * find_idlest_group finds and returns the least busy CPU group within the
  1838. * domain.
  1839. */
  1840. static struct sched_group *
  1841. find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
  1842. {
  1843. struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
  1844. unsigned long min_load = ULONG_MAX, this_load = 0;
  1845. int load_idx = sd->forkexec_idx;
  1846. int imbalance = 100 + (sd->imbalance_pct-100)/2;
  1847. do {
  1848. unsigned long load, avg_load;
  1849. int local_group;
  1850. int i;
  1851. /* Skip over this group if it has no CPUs allowed */
  1852. if (!cpumask_intersects(sched_group_cpus(group),
  1853. &p->cpus_allowed))
  1854. continue;
  1855. local_group = cpumask_test_cpu(this_cpu,
  1856. sched_group_cpus(group));
  1857. /* Tally up the load of all CPUs in the group */
  1858. avg_load = 0;
  1859. for_each_cpu(i, sched_group_cpus(group)) {
  1860. /* Bias balancing toward cpus of our domain */
  1861. if (local_group)
  1862. load = source_load(i, load_idx);
  1863. else
  1864. load = target_load(i, load_idx);
  1865. avg_load += load;
  1866. }
  1867. /* Adjust by relative CPU power of the group */
  1868. avg_load = sg_div_cpu_power(group,
  1869. avg_load * SCHED_LOAD_SCALE);
  1870. if (local_group) {
  1871. this_load = avg_load;
  1872. this = group;
  1873. } else if (avg_load < min_load) {
  1874. min_load = avg_load;
  1875. idlest = group;
  1876. }
  1877. } while (group = group->next, group != sd->groups);
  1878. if (!idlest || 100*this_load < imbalance*min_load)
  1879. return NULL;
  1880. return idlest;
  1881. }
  1882. /*
  1883. * find_idlest_cpu - find the idlest cpu among the cpus in group.
  1884. */
  1885. static int
  1886. find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
  1887. {
  1888. unsigned long load, min_load = ULONG_MAX;
  1889. int idlest = -1;
  1890. int i;
  1891. /* Traverse only the allowed CPUs */
  1892. for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
  1893. load = weighted_cpuload(i);
  1894. if (load < min_load || (load == min_load && i == this_cpu)) {
  1895. min_load = load;
  1896. idlest = i;
  1897. }
  1898. }
  1899. return idlest;
  1900. }
  1901. /*
  1902. * sched_balance_self: balance the current task (running on cpu) in domains
  1903. * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
  1904. * SD_BALANCE_EXEC.
  1905. *
  1906. * Balance, ie. select the least loaded group.
  1907. *
  1908. * Returns the target CPU number, or the same CPU if no balancing is needed.
  1909. *
  1910. * preempt must be disabled.
  1911. */
  1912. static int sched_balance_self(int cpu, int flag)
  1913. {
  1914. struct task_struct *t = current;
  1915. struct sched_domain *tmp, *sd = NULL;
  1916. for_each_domain(cpu, tmp) {
  1917. /*
  1918. * If power savings logic is enabled for a domain, stop there.
  1919. */
  1920. if (tmp->flags & SD_POWERSAVINGS_BALANCE)
  1921. break;
  1922. if (tmp->flags & flag)
  1923. sd = tmp;
  1924. }
  1925. if (sd)
  1926. update_shares(sd);
  1927. while (sd) {
  1928. struct sched_group *group;
  1929. int new_cpu, weight;
  1930. if (!(sd->flags & flag)) {
  1931. sd = sd->child;
  1932. continue;
  1933. }
  1934. group = find_idlest_group(sd, t, cpu);
  1935. if (!group) {
  1936. sd = sd->child;
  1937. continue;
  1938. }
  1939. new_cpu = find_idlest_cpu(group, t, cpu);
  1940. if (new_cpu == -1 || new_cpu == cpu) {
  1941. /* Now try balancing at a lower domain level of cpu */
  1942. sd = sd->child;
  1943. continue;
  1944. }
  1945. /* Now try balancing at a lower domain level of new_cpu */
  1946. cpu = new_cpu;
  1947. weight = cpumask_weight(sched_domain_span(sd));
  1948. sd = NULL;
  1949. for_each_domain(cpu, tmp) {
  1950. if (weight <= cpumask_weight(sched_domain_span(tmp)))
  1951. break;
  1952. if (tmp->flags & flag)
  1953. sd = tmp;
  1954. }
  1955. /* while loop will break here if sd == NULL */
  1956. }
  1957. return cpu;
  1958. }
  1959. #endif /* CONFIG_SMP */
  1960. /***
  1961. * try_to_wake_up - wake up a thread
  1962. * @p: the to-be-woken-up thread
  1963. * @state: the mask of task states that can be woken
  1964. * @sync: do a synchronous wakeup?
  1965. *
  1966. * Put it on the run-queue if it's not already there. The "current"
  1967. * thread is always on the run-queue (except when the actual
  1968. * re-schedule is in progress), and as such you're allowed to do
  1969. * the simpler "current->state = TASK_RUNNING" to mark yourself
  1970. * runnable without the overhead of this.
  1971. *
  1972. * returns failure only if the task is already active.
  1973. */
  1974. static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
  1975. {
  1976. int cpu, orig_cpu, this_cpu, success = 0;
  1977. unsigned long flags;
  1978. long old_state;
  1979. struct rq *rq;
  1980. if (!sched_feat(SYNC_WAKEUPS))
  1981. sync = 0;
  1982. #ifdef CONFIG_SMP
  1983. if (sched_feat(LB_WAKEUP_UPDATE) && !root_task_group_empty()) {
  1984. struct sched_domain *sd;
  1985. this_cpu = raw_smp_processor_id();
  1986. cpu = task_cpu(p);
  1987. for_each_domain(this_cpu, sd) {
  1988. if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  1989. update_shares(sd);
  1990. break;
  1991. }
  1992. }
  1993. }
  1994. #endif
  1995. smp_wmb();
  1996. rq = task_rq_lock(p, &flags);
  1997. update_rq_clock(rq);
  1998. old_state = p->state;
  1999. if (!(old_state & state))
  2000. goto out;
  2001. if (p->se.on_rq)
  2002. goto out_running;
  2003. cpu = task_cpu(p);
  2004. orig_cpu = cpu;
  2005. this_cpu = smp_processor_id();
  2006. #ifdef CONFIG_SMP
  2007. if (unlikely(task_running(rq, p)))
  2008. goto out_activate;
  2009. cpu = p->sched_class->select_task_rq(p, sync);
  2010. if (cpu != orig_cpu) {
  2011. set_task_cpu(p, cpu);
  2012. task_rq_unlock(rq, &flags);
  2013. /* might preempt at this point */
  2014. rq = task_rq_lock(p, &flags);
  2015. old_state = p->state;
  2016. if (!(old_state & state))
  2017. goto out;
  2018. if (p->se.on_rq)
  2019. goto out_running;
  2020. this_cpu = smp_processor_id();
  2021. cpu = task_cpu(p);
  2022. }
  2023. #ifdef CONFIG_SCHEDSTATS
  2024. schedstat_inc(rq, ttwu_count);
  2025. if (cpu == this_cpu)
  2026. schedstat_inc(rq, ttwu_local);
  2027. else {
  2028. struct sched_domain *sd;
  2029. for_each_domain(this_cpu, sd) {
  2030. if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  2031. schedstat_inc(sd, ttwu_wake_remote);
  2032. break;
  2033. }
  2034. }
  2035. }
  2036. #endif /* CONFIG_SCHEDSTATS */
  2037. out_activate:
  2038. #endif /* CONFIG_SMP */
  2039. schedstat_inc(p, se.nr_wakeups);
  2040. if (sync)
  2041. schedstat_inc(p, se.nr_wakeups_sync);
  2042. if (orig_cpu != cpu)
  2043. schedstat_inc(p, se.nr_wakeups_migrate);
  2044. if (cpu == this_cpu)
  2045. schedstat_inc(p, se.nr_wakeups_local);
  2046. else
  2047. schedstat_inc(p, se.nr_wakeups_remote);
  2048. activate_task(rq, p, 1);
  2049. success = 1;
  2050. /*
  2051. * Only attribute actual wakeups done by this task.
  2052. */
  2053. if (!in_interrupt()) {
  2054. struct sched_entity *se = &current->se;
  2055. u64 sample = se->sum_exec_runtime;
  2056. if (se->last_wakeup)
  2057. sample -= se->last_wakeup;
  2058. else
  2059. sample -= se->start_runtime;
  2060. update_avg(&se->avg_wakeup, sample);
  2061. se->last_wakeup = se->sum_exec_runtime;
  2062. }
  2063. out_running:
  2064. trace_sched_wakeup(rq, p, success);
  2065. check_preempt_curr(rq, p, sync);
  2066. p->state = TASK_RUNNING;
  2067. #ifdef CONFIG_SMP
  2068. if (p->sched_class->task_wake_up)
  2069. p->sched_class->task_wake_up(rq, p);
  2070. #endif
  2071. out:
  2072. task_rq_unlock(rq, &flags);
  2073. return success;
  2074. }
  2075. int wake_up_process(struct task_struct *p)
  2076. {
  2077. return try_to_wake_up(p, TASK_ALL, 0);
  2078. }
  2079. EXPORT_SYMBOL(wake_up_process);
  2080. int wake_up_state(struct task_struct *p, unsigned int state)
  2081. {
  2082. return try_to_wake_up(p, state, 0);
  2083. }
  2084. /*
  2085. * Perform scheduler related setup for a newly forked process p.
  2086. * p is forked by current.
  2087. *
  2088. * __sched_fork() is basic setup used by init_idle() too:
  2089. */
  2090. static void __sched_fork(struct task_struct *p)
  2091. {
  2092. p->se.exec_start = 0;
  2093. p->se.sum_exec_runtime = 0;
  2094. p->se.prev_sum_exec_runtime = 0;
  2095. p->se.last_wakeup = 0;
  2096. p->se.avg_overlap = 0;
  2097. p->se.start_runtime = 0;
  2098. p->se.avg_wakeup = sysctl_sched_wakeup_granularity;
  2099. #ifdef CONFIG_SCHEDSTATS
  2100. p->se.wait_start = 0;
  2101. p->se.sum_sleep_runtime = 0;
  2102. p->se.sleep_start = 0;
  2103. p->se.block_start = 0;
  2104. p->se.sleep_max = 0;
  2105. p->se.block_max = 0;
  2106. p->se.exec_max = 0;
  2107. p->se.slice_max = 0;
  2108. p->se.wait_max = 0;
  2109. #endif
  2110. INIT_LIST_HEAD(&p->rt.run_list);
  2111. p->se.on_rq = 0;
  2112. INIT_LIST_HEAD(&p->se.group_node);
  2113. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2114. INIT_HLIST_HEAD(&p->preempt_notifiers);
  2115. #endif
  2116. /*
  2117. * We mark the process as running here, but have not actually
  2118. * inserted it onto the runqueue yet. This guarantees that
  2119. * nobody will actually run it, and a signal or other external
  2120. * event cannot wake it up and insert it on the runqueue either.
  2121. */
  2122. p->state = TASK_RUNNING;
  2123. }
  2124. /*
  2125. * fork()/clone()-time setup:
  2126. */
  2127. void sched_fork(struct task_struct *p, int clone_flags)
  2128. {
  2129. int cpu = get_cpu();
  2130. __sched_fork(p);
  2131. #ifdef CONFIG_SMP
  2132. cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
  2133. #endif
  2134. set_task_cpu(p, cpu);
  2135. /*
  2136. * Make sure we do not leak PI boosting priority to the child:
  2137. */
  2138. p->prio = current->normal_prio;
  2139. if (!rt_prio(p->prio))
  2140. p->sched_class = &fair_sched_class;
  2141. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  2142. if (likely(sched_info_on()))
  2143. memset(&p->sched_info, 0, sizeof(p->sched_info));
  2144. #endif
  2145. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  2146. p->oncpu = 0;
  2147. #endif
  2148. #ifdef CONFIG_PREEMPT
  2149. /* Want to start with kernel preemption disabled. */
  2150. task_thread_info(p)->preempt_count = 1;
  2151. #endif
  2152. plist_node_init(&p->pushable_tasks, MAX_PRIO);
  2153. put_cpu();
  2154. }
  2155. /*
  2156. * wake_up_new_task - wake up a newly created task for the first time.
  2157. *
  2158. * This function will do some initial scheduler statistics housekeeping
  2159. * that must be done for every newly created context, then puts the task
  2160. * on the runqueue and wakes it.
  2161. */
  2162. void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
  2163. {
  2164. unsigned long flags;
  2165. struct rq *rq;
  2166. rq = task_rq_lock(p, &flags);
  2167. BUG_ON(p->state != TASK_RUNNING);
  2168. update_rq_clock(rq);
  2169. p->prio = effective_prio(p);
  2170. if (!p->sched_class->task_new || !current->se.on_rq) {
  2171. activate_task(rq, p, 0);
  2172. } else {
  2173. /*
  2174. * Let the scheduling class do new task startup
  2175. * management (if any):
  2176. */
  2177. p->sched_class->task_new(rq, p);
  2178. inc_nr_running(rq);
  2179. }
  2180. trace_sched_wakeup_new(rq, p, 1);
  2181. check_preempt_curr(rq, p, 0);
  2182. #ifdef CONFIG_SMP
  2183. if (p->sched_class->task_wake_up)
  2184. p->sched_class->task_wake_up(rq, p);
  2185. #endif
  2186. task_rq_unlock(rq, &flags);
  2187. }
  2188. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2189. /**
  2190. * preempt_notifier_register - tell me when current is being preempted & rescheduled
  2191. * @notifier: notifier struct to register
  2192. */
  2193. void preempt_notifier_register(struct preempt_notifier *notifier)
  2194. {
  2195. hlist_add_head(&notifier->link, &current->preempt_notifiers);
  2196. }
  2197. EXPORT_SYMBOL_GPL(preempt_notifier_register);
  2198. /**
  2199. * preempt_notifier_unregister - no longer interested in preemption notifications
  2200. * @notifier: notifier struct to unregister
  2201. *
  2202. * This is safe to call from within a preemption notifier.
  2203. */
  2204. void preempt_notifier_unregister(struct preempt_notifier *notifier)
  2205. {
  2206. hlist_del(&notifier->link);
  2207. }
  2208. EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
  2209. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2210. {
  2211. struct preempt_notifier *notifier;
  2212. struct hlist_node *node;
  2213. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2214. notifier->ops->sched_in(notifier, raw_smp_processor_id());
  2215. }
  2216. static void
  2217. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2218. struct task_struct *next)
  2219. {
  2220. struct preempt_notifier *notifier;
  2221. struct hlist_node *node;
  2222. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2223. notifier->ops->sched_out(notifier, next);
  2224. }
  2225. #else /* !CONFIG_PREEMPT_NOTIFIERS */
  2226. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2227. {
  2228. }
  2229. static void
  2230. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2231. struct task_struct *next)
  2232. {
  2233. }
  2234. #endif /* CONFIG_PREEMPT_NOTIFIERS */
  2235. /**
  2236. * prepare_task_switch - prepare to switch tasks
  2237. * @rq: the runqueue preparing to switch
  2238. * @prev: the current task that is being switched out
  2239. * @next: the task we are going to switch to.
  2240. *
  2241. * This is called with the rq lock held and interrupts off. It must
  2242. * be paired with a subsequent finish_task_switch after the context
  2243. * switch.
  2244. *
  2245. * prepare_task_switch sets up locking and calls architecture specific
  2246. * hooks.
  2247. */
  2248. static inline void
  2249. prepare_task_switch(struct rq *rq, struct task_struct *prev,
  2250. struct task_struct *next)
  2251. {
  2252. fire_sched_out_preempt_notifiers(prev, next);
  2253. prepare_lock_switch(rq, next);
  2254. prepare_arch_switch(next);
  2255. }
  2256. /**
  2257. * finish_task_switch - clean up after a task-switch
  2258. * @rq: runqueue associated with task-switch
  2259. * @prev: the thread we just switched away from.
  2260. *
  2261. * finish_task_switch must be called after the context switch, paired
  2262. * with a prepare_task_switch call before the context switch.
  2263. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  2264. * and do any other architecture-specific cleanup actions.
  2265. *
  2266. * Note that we may have delayed dropping an mm in context_switch(). If
  2267. * so, we finish that here outside of the runqueue lock. (Doing it
  2268. * with the lock held can cause deadlocks; see schedule() for
  2269. * details.)
  2270. */
  2271. static void finish_task_switch(struct rq *rq, struct task_struct *prev)
  2272. __releases(rq->lock)
  2273. {
  2274. struct mm_struct *mm = rq->prev_mm;
  2275. long prev_state;
  2276. #ifdef CONFIG_SMP
  2277. int post_schedule = 0;
  2278. if (current->sched_class->needs_post_schedule)
  2279. post_schedule = current->sched_class->needs_post_schedule(rq);
  2280. #endif
  2281. rq->prev_mm = NULL;
  2282. /*
  2283. * A task struct has one reference for the use as "current".
  2284. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  2285. * schedule one last time. The schedule call will never return, and
  2286. * the scheduled task must drop that reference.
  2287. * The test for TASK_DEAD must occur while the runqueue locks are
  2288. * still held, otherwise prev could be scheduled on another cpu, die
  2289. * there before we look at prev->state, and then the reference would
  2290. * be dropped twice.
  2291. * Manfred Spraul <manfred@colorfullife.com>
  2292. */
  2293. prev_state = prev->state;
  2294. finish_arch_switch(prev);
  2295. finish_lock_switch(rq, prev);
  2296. #ifdef CONFIG_SMP
  2297. if (post_schedule)
  2298. current->sched_class->post_schedule(rq);
  2299. #endif
  2300. fire_sched_in_preempt_notifiers(current);
  2301. if (mm)
  2302. mmdrop(mm);
  2303. if (unlikely(prev_state == TASK_DEAD)) {
  2304. /*
  2305. * Remove function-return probe instances associated with this
  2306. * task and put them back on the free list.
  2307. */
  2308. kprobe_flush_task(prev);
  2309. put_task_struct(prev);
  2310. }
  2311. }
  2312. /**
  2313. * schedule_tail - first thing a freshly forked thread must call.
  2314. * @prev: the thread we just switched away from.
  2315. */
  2316. asmlinkage void schedule_tail(struct task_struct *prev)
  2317. __releases(rq->lock)
  2318. {
  2319. struct rq *rq = this_rq();
  2320. finish_task_switch(rq, prev);
  2321. #ifdef __ARCH_WANT_UNLOCKED_CTXSW
  2322. /* In this case, finish_task_switch does not reenable preemption */
  2323. preempt_enable();
  2324. #endif
  2325. if (current->set_child_tid)
  2326. put_user(task_pid_vnr(current), current->set_child_tid);
  2327. }
  2328. /*
  2329. * context_switch - switch to the new MM and the new
  2330. * thread's register state.
  2331. */
  2332. static inline void
  2333. context_switch(struct rq *rq, struct task_struct *prev,
  2334. struct task_struct *next)
  2335. {
  2336. struct mm_struct *mm, *oldmm;
  2337. prepare_task_switch(rq, prev, next);
  2338. trace_sched_switch(rq, prev, next);
  2339. mm = next->mm;
  2340. oldmm = prev->active_mm;
  2341. /*
  2342. * For paravirt, this is coupled with an exit in switch_to to
  2343. * combine the page table reload and the switch backend into
  2344. * one hypercall.
  2345. */
  2346. arch_enter_lazy_cpu_mode();
  2347. if (unlikely(!mm)) {
  2348. next->active_mm = oldmm;
  2349. atomic_inc(&oldmm->mm_count);
  2350. enter_lazy_tlb(oldmm, next);
  2351. } else
  2352. switch_mm(oldmm, mm, next);
  2353. if (unlikely(!prev->mm)) {
  2354. prev->active_mm = NULL;
  2355. rq->prev_mm = oldmm;
  2356. }
  2357. /*
  2358. * Since the runqueue lock will be released by the next
  2359. * task (which is an invalid locking op but in the case
  2360. * of the scheduler it's an obvious special-case), so we
  2361. * do an early lockdep release here:
  2362. */
  2363. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  2364. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  2365. #endif
  2366. /* Here we just switch the register state and the stack. */
  2367. switch_to(prev, next, prev);
  2368. barrier();
  2369. /*
  2370. * this_rq must be evaluated again because prev may have moved
  2371. * CPUs since it called schedule(), thus the 'rq' on its stack
  2372. * frame will be invalid.
  2373. */
  2374. finish_task_switch(this_rq(), prev);
  2375. }
  2376. /*
  2377. * nr_running, nr_uninterruptible and nr_context_switches:
  2378. *
  2379. * externally visible scheduler statistics: current number of runnable
  2380. * threads, current number of uninterruptible-sleeping threads, total
  2381. * number of context switches performed since bootup.
  2382. */
  2383. unsigned long nr_running(void)
  2384. {
  2385. unsigned long i, sum = 0;
  2386. for_each_online_cpu(i)
  2387. sum += cpu_rq(i)->nr_running;
  2388. return sum;
  2389. }
  2390. unsigned long nr_uninterruptible(void)
  2391. {
  2392. unsigned long i, sum = 0;
  2393. for_each_possible_cpu(i)
  2394. sum += cpu_rq(i)->nr_uninterruptible;
  2395. /*
  2396. * Since we read the counters lockless, it might be slightly
  2397. * inaccurate. Do not allow it to go below zero though:
  2398. */
  2399. if (unlikely((long)sum < 0))
  2400. sum = 0;
  2401. return sum;
  2402. }
  2403. unsigned long long nr_context_switches(void)
  2404. {
  2405. int i;
  2406. unsigned long long sum = 0;
  2407. for_each_possible_cpu(i)
  2408. sum += cpu_rq(i)->nr_switches;
  2409. return sum;
  2410. }
  2411. unsigned long nr_iowait(void)
  2412. {
  2413. unsigned long i, sum = 0;
  2414. for_each_possible_cpu(i)
  2415. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  2416. return sum;
  2417. }
  2418. unsigned long nr_active(void)
  2419. {
  2420. unsigned long i, running = 0, uninterruptible = 0;
  2421. for_each_online_cpu(i) {
  2422. running += cpu_rq(i)->nr_running;
  2423. uninterruptible += cpu_rq(i)->nr_uninterruptible;
  2424. }
  2425. if (unlikely((long)uninterruptible < 0))
  2426. uninterruptible = 0;
  2427. return running + uninterruptible;
  2428. }
  2429. /*
  2430. * Update rq->cpu_load[] statistics. This function is usually called every
  2431. * scheduler tick (TICK_NSEC).
  2432. */
  2433. static void update_cpu_load(struct rq *this_rq)
  2434. {
  2435. unsigned long this_load = this_rq->load.weight;
  2436. int i, scale;
  2437. this_rq->nr_load_updates++;
  2438. /* Update our load: */
  2439. for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
  2440. unsigned long old_load, new_load;
  2441. /* scale is effectively 1 << i now, and >> i divides by scale */
  2442. old_load = this_rq->cpu_load[i];
  2443. new_load = this_load;
  2444. /*
  2445. * Round up the averaging division if load is increasing. This
  2446. * prevents us from getting stuck on 9 if the load is 10, for
  2447. * example.
  2448. */
  2449. if (new_load > old_load)
  2450. new_load += scale-1;
  2451. this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
  2452. }
  2453. }
  2454. #ifdef CONFIG_SMP
  2455. /*
  2456. * double_rq_lock - safely lock two runqueues
  2457. *
  2458. * Note this does not disable interrupts like task_rq_lock,
  2459. * you need to do so manually before calling.
  2460. */
  2461. static void double_rq_lock(struct rq *rq1, struct rq *rq2)
  2462. __acquires(rq1->lock)
  2463. __acquires(rq2->lock)
  2464. {
  2465. BUG_ON(!irqs_disabled());
  2466. if (rq1 == rq2) {
  2467. spin_lock(&rq1->lock);
  2468. __acquire(rq2->lock); /* Fake it out ;) */
  2469. } else {
  2470. if (rq1 < rq2) {
  2471. spin_lock(&rq1->lock);
  2472. spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
  2473. } else {
  2474. spin_lock(&rq2->lock);
  2475. spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
  2476. }
  2477. }
  2478. update_rq_clock(rq1);
  2479. update_rq_clock(rq2);
  2480. }
  2481. /*
  2482. * double_rq_unlock - safely unlock two runqueues
  2483. *
  2484. * Note this does not restore interrupts like task_rq_unlock,
  2485. * you need to do so manually after calling.
  2486. */
  2487. static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
  2488. __releases(rq1->lock)
  2489. __releases(rq2->lock)
  2490. {
  2491. spin_unlock(&rq1->lock);
  2492. if (rq1 != rq2)
  2493. spin_unlock(&rq2->lock);
  2494. else
  2495. __release(rq2->lock);
  2496. }
  2497. /*
  2498. * If dest_cpu is allowed for this process, migrate the task to it.
  2499. * This is accomplished by forcing the cpu_allowed mask to only
  2500. * allow dest_cpu, which will force the cpu onto dest_cpu. Then
  2501. * the cpu_allowed mask is restored.
  2502. */
  2503. static void sched_migrate_task(struct task_struct *p, int dest_cpu)
  2504. {
  2505. struct migration_req req;
  2506. unsigned long flags;
  2507. struct rq *rq;
  2508. rq = task_rq_lock(p, &flags);
  2509. if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
  2510. || unlikely(!cpu_active(dest_cpu)))
  2511. goto out;
  2512. /* force the process onto the specified CPU */
  2513. if (migrate_task(p, dest_cpu, &req)) {
  2514. /* Need to wait for migration thread (might exit: take ref). */
  2515. struct task_struct *mt = rq->migration_thread;
  2516. get_task_struct(mt);
  2517. task_rq_unlock(rq, &flags);
  2518. wake_up_process(mt);
  2519. put_task_struct(mt);
  2520. wait_for_completion(&req.done);
  2521. return;
  2522. }
  2523. out:
  2524. task_rq_unlock(rq, &flags);
  2525. }
  2526. /*
  2527. * sched_exec - execve() is a valuable balancing opportunity, because at
  2528. * this point the task has the smallest effective memory and cache footprint.
  2529. */
  2530. void sched_exec(void)
  2531. {
  2532. int new_cpu, this_cpu = get_cpu();
  2533. new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
  2534. put_cpu();
  2535. if (new_cpu != this_cpu)
  2536. sched_migrate_task(current, new_cpu);
  2537. }
  2538. /*
  2539. * pull_task - move a task from a remote runqueue to the local runqueue.
  2540. * Both runqueues must be locked.
  2541. */
  2542. static void pull_task(struct rq *src_rq, struct task_struct *p,
  2543. struct rq *this_rq, int this_cpu)
  2544. {
  2545. deactivate_task(src_rq, p, 0);
  2546. set_task_cpu(p, this_cpu);
  2547. activate_task(this_rq, p, 0);
  2548. /*
  2549. * Note that idle threads have a prio of MAX_PRIO, for this test
  2550. * to be always true for them.
  2551. */
  2552. check_preempt_curr(this_rq, p, 0);
  2553. }
  2554. /*
  2555. * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
  2556. */
  2557. static
  2558. int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
  2559. struct sched_domain *sd, enum cpu_idle_type idle,
  2560. int *all_pinned)
  2561. {
  2562. int tsk_cache_hot = 0;
  2563. /*
  2564. * We do not migrate tasks that are:
  2565. * 1) running (obviously), or
  2566. * 2) cannot be migrated to this CPU due to cpus_allowed, or
  2567. * 3) are cache-hot on their current CPU.
  2568. */
  2569. if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
  2570. schedstat_inc(p, se.nr_failed_migrations_affine);
  2571. return 0;
  2572. }
  2573. *all_pinned = 0;
  2574. if (task_running(rq, p)) {
  2575. schedstat_inc(p, se.nr_failed_migrations_running);
  2576. return 0;
  2577. }
  2578. /*
  2579. * Aggressive migration if:
  2580. * 1) task is cache cold, or
  2581. * 2) too many balance attempts have failed.
  2582. */
  2583. tsk_cache_hot = task_hot(p, rq->clock, sd);
  2584. if (!tsk_cache_hot ||
  2585. sd->nr_balance_failed > sd->cache_nice_tries) {
  2586. #ifdef CONFIG_SCHEDSTATS
  2587. if (tsk_cache_hot) {
  2588. schedstat_inc(sd, lb_hot_gained[idle]);
  2589. schedstat_inc(p, se.nr_forced_migrations);
  2590. }
  2591. #endif
  2592. return 1;
  2593. }
  2594. if (tsk_cache_hot) {
  2595. schedstat_inc(p, se.nr_failed_migrations_hot);
  2596. return 0;
  2597. }
  2598. return 1;
  2599. }
  2600. static unsigned long
  2601. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2602. unsigned long max_load_move, struct sched_domain *sd,
  2603. enum cpu_idle_type idle, int *all_pinned,
  2604. int *this_best_prio, struct rq_iterator *iterator)
  2605. {
  2606. int loops = 0, pulled = 0, pinned = 0;
  2607. struct task_struct *p;
  2608. long rem_load_move = max_load_move;
  2609. if (max_load_move == 0)
  2610. goto out;
  2611. pinned = 1;
  2612. /*
  2613. * Start the load-balancing iterator:
  2614. */
  2615. p = iterator->start(iterator->arg);
  2616. next:
  2617. if (!p || loops++ > sysctl_sched_nr_migrate)
  2618. goto out;
  2619. if ((p->se.load.weight >> 1) > rem_load_move ||
  2620. !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  2621. p = iterator->next(iterator->arg);
  2622. goto next;
  2623. }
  2624. pull_task(busiest, p, this_rq, this_cpu);
  2625. pulled++;
  2626. rem_load_move -= p->se.load.weight;
  2627. #ifdef CONFIG_PREEMPT
  2628. /*
  2629. * NEWIDLE balancing is a source of latency, so preemptible kernels
  2630. * will stop after the first task is pulled to minimize the critical
  2631. * section.
  2632. */
  2633. if (idle == CPU_NEWLY_IDLE)
  2634. goto out;
  2635. #endif
  2636. /*
  2637. * We only want to steal up to the prescribed amount of weighted load.
  2638. */
  2639. if (rem_load_move > 0) {
  2640. if (p->prio < *this_best_prio)
  2641. *this_best_prio = p->prio;
  2642. p = iterator->next(iterator->arg);
  2643. goto next;
  2644. }
  2645. out:
  2646. /*
  2647. * Right now, this is one of only two places pull_task() is called,
  2648. * so we can safely collect pull_task() stats here rather than
  2649. * inside pull_task().
  2650. */
  2651. schedstat_add(sd, lb_gained[idle], pulled);
  2652. if (all_pinned)
  2653. *all_pinned = pinned;
  2654. return max_load_move - rem_load_move;
  2655. }
  2656. /*
  2657. * move_tasks tries to move up to max_load_move weighted load from busiest to
  2658. * this_rq, as part of a balancing operation within domain "sd".
  2659. * Returns 1 if successful and 0 otherwise.
  2660. *
  2661. * Called with both runqueues locked.
  2662. */
  2663. static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2664. unsigned long max_load_move,
  2665. struct sched_domain *sd, enum cpu_idle_type idle,
  2666. int *all_pinned)
  2667. {
  2668. const struct sched_class *class = sched_class_highest;
  2669. unsigned long total_load_moved = 0;
  2670. int this_best_prio = this_rq->curr->prio;
  2671. do {
  2672. total_load_moved +=
  2673. class->load_balance(this_rq, this_cpu, busiest,
  2674. max_load_move - total_load_moved,
  2675. sd, idle, all_pinned, &this_best_prio);
  2676. class = class->next;
  2677. #ifdef CONFIG_PREEMPT
  2678. /*
  2679. * NEWIDLE balancing is a source of latency, so preemptible
  2680. * kernels will stop after the first task is pulled to minimize
  2681. * the critical section.
  2682. */
  2683. if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
  2684. break;
  2685. #endif
  2686. } while (class && max_load_move > total_load_moved);
  2687. return total_load_moved > 0;
  2688. }
  2689. static int
  2690. iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2691. struct sched_domain *sd, enum cpu_idle_type idle,
  2692. struct rq_iterator *iterator)
  2693. {
  2694. struct task_struct *p = iterator->start(iterator->arg);
  2695. int pinned = 0;
  2696. while (p) {
  2697. if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  2698. pull_task(busiest, p, this_rq, this_cpu);
  2699. /*
  2700. * Right now, this is only the second place pull_task()
  2701. * is called, so we can safely collect pull_task()
  2702. * stats here rather than inside pull_task().
  2703. */
  2704. schedstat_inc(sd, lb_gained[idle]);
  2705. return 1;
  2706. }
  2707. p = iterator->next(iterator->arg);
  2708. }
  2709. return 0;
  2710. }
  2711. /*
  2712. * move_one_task tries to move exactly one task from busiest to this_rq, as
  2713. * part of active balancing operations within "domain".
  2714. * Returns 1 if successful and 0 otherwise.
  2715. *
  2716. * Called with both runqueues locked.
  2717. */
  2718. static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2719. struct sched_domain *sd, enum cpu_idle_type idle)
  2720. {
  2721. const struct sched_class *class;
  2722. for (class = sched_class_highest; class; class = class->next)
  2723. if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
  2724. return 1;
  2725. return 0;
  2726. }
  2727. /********** Helpers for find_busiest_group ************************/
  2728. /*
  2729. * sd_lb_stats - Structure to store the statistics of a sched_domain
  2730. * during load balancing.
  2731. */
  2732. struct sd_lb_stats {
  2733. struct sched_group *busiest; /* Busiest group in this sd */
  2734. struct sched_group *this; /* Local group in this sd */
  2735. unsigned long total_load; /* Total load of all groups in sd */
  2736. unsigned long total_pwr; /* Total power of all groups in sd */
  2737. unsigned long avg_load; /* Average load across all groups in sd */
  2738. /** Statistics of this group */
  2739. unsigned long this_load;
  2740. unsigned long this_load_per_task;
  2741. unsigned long this_nr_running;
  2742. /* Statistics of the busiest group */
  2743. unsigned long max_load;
  2744. unsigned long busiest_load_per_task;
  2745. unsigned long busiest_nr_running;
  2746. int group_imb; /* Is there imbalance in this sd */
  2747. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2748. int power_savings_balance; /* Is powersave balance needed for this sd */
  2749. struct sched_group *group_min; /* Least loaded group in sd */
  2750. struct sched_group *group_leader; /* Group which relieves group_min */
  2751. unsigned long min_load_per_task; /* load_per_task in group_min */
  2752. unsigned long leader_nr_running; /* Nr running of group_leader */
  2753. unsigned long min_nr_running; /* Nr running of group_min */
  2754. #endif
  2755. };
  2756. /*
  2757. * sg_lb_stats - stats of a sched_group required for load_balancing
  2758. */
  2759. struct sg_lb_stats {
  2760. unsigned long avg_load; /*Avg load across the CPUs of the group */
  2761. unsigned long group_load; /* Total load over the CPUs of the group */
  2762. unsigned long sum_nr_running; /* Nr tasks running in the group */
  2763. unsigned long sum_weighted_load; /* Weighted load of group's tasks */
  2764. unsigned long group_capacity;
  2765. int group_imb; /* Is there an imbalance in the group ? */
  2766. };
  2767. /**
  2768. * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
  2769. * @group: The group whose first cpu is to be returned.
  2770. */
  2771. static inline unsigned int group_first_cpu(struct sched_group *group)
  2772. {
  2773. return cpumask_first(sched_group_cpus(group));
  2774. }
  2775. /**
  2776. * get_sd_load_idx - Obtain the load index for a given sched domain.
  2777. * @sd: The sched_domain whose load_idx is to be obtained.
  2778. * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
  2779. */
  2780. static inline int get_sd_load_idx(struct sched_domain *sd,
  2781. enum cpu_idle_type idle)
  2782. {
  2783. int load_idx;
  2784. switch (idle) {
  2785. case CPU_NOT_IDLE:
  2786. load_idx = sd->busy_idx;
  2787. break;
  2788. case CPU_NEWLY_IDLE:
  2789. load_idx = sd->newidle_idx;
  2790. break;
  2791. default:
  2792. load_idx = sd->idle_idx;
  2793. break;
  2794. }
  2795. return load_idx;
  2796. }
  2797. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2798. /**
  2799. * init_sd_power_savings_stats - Initialize power savings statistics for
  2800. * the given sched_domain, during load balancing.
  2801. *
  2802. * @sd: Sched domain whose power-savings statistics are to be initialized.
  2803. * @sds: Variable containing the statistics for sd.
  2804. * @idle: Idle status of the CPU at which we're performing load-balancing.
  2805. */
  2806. static inline void init_sd_power_savings_stats(struct sched_domain *sd,
  2807. struct sd_lb_stats *sds, enum cpu_idle_type idle)
  2808. {
  2809. /*
  2810. * Busy processors will not participate in power savings
  2811. * balance.
  2812. */
  2813. if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2814. sds->power_savings_balance = 0;
  2815. else {
  2816. sds->power_savings_balance = 1;
  2817. sds->min_nr_running = ULONG_MAX;
  2818. sds->leader_nr_running = 0;
  2819. }
  2820. }
  2821. /**
  2822. * update_sd_power_savings_stats - Update the power saving stats for a
  2823. * sched_domain while performing load balancing.
  2824. *
  2825. * @group: sched_group belonging to the sched_domain under consideration.
  2826. * @sds: Variable containing the statistics of the sched_domain
  2827. * @local_group: Does group contain the CPU for which we're performing
  2828. * load balancing ?
  2829. * @sgs: Variable containing the statistics of the group.
  2830. */
  2831. static inline void update_sd_power_savings_stats(struct sched_group *group,
  2832. struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
  2833. {
  2834. if (!sds->power_savings_balance)
  2835. return;
  2836. /*
  2837. * If the local group is idle or completely loaded
  2838. * no need to do power savings balance at this domain
  2839. */
  2840. if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
  2841. !sds->this_nr_running))
  2842. sds->power_savings_balance = 0;
  2843. /*
  2844. * If a group is already running at full capacity or idle,
  2845. * don't include that group in power savings calculations
  2846. */
  2847. if (!sds->power_savings_balance ||
  2848. sgs->sum_nr_running >= sgs->group_capacity ||
  2849. !sgs->sum_nr_running)
  2850. return;
  2851. /*
  2852. * Calculate the group which has the least non-idle load.
  2853. * This is the group from where we need to pick up the load
  2854. * for saving power
  2855. */
  2856. if ((sgs->sum_nr_running < sds->min_nr_running) ||
  2857. (sgs->sum_nr_running == sds->min_nr_running &&
  2858. group_first_cpu(group) > group_first_cpu(sds->group_min))) {
  2859. sds->group_min = group;
  2860. sds->min_nr_running = sgs->sum_nr_running;
  2861. sds->min_load_per_task = sgs->sum_weighted_load /
  2862. sgs->sum_nr_running;
  2863. }
  2864. /*
  2865. * Calculate the group which is almost near its
  2866. * capacity but still has some space to pick up some load
  2867. * from other group and save more power
  2868. */
  2869. if (sgs->sum_nr_running > sgs->group_capacity - 1)
  2870. return;
  2871. if (sgs->sum_nr_running > sds->leader_nr_running ||
  2872. (sgs->sum_nr_running == sds->leader_nr_running &&
  2873. group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
  2874. sds->group_leader = group;
  2875. sds->leader_nr_running = sgs->sum_nr_running;
  2876. }
  2877. }
  2878. /**
  2879. * check_power_save_busiest_group - see if there is potential for some power-savings balance
  2880. * @sds: Variable containing the statistics of the sched_domain
  2881. * under consideration.
  2882. * @this_cpu: Cpu at which we're currently performing load-balancing.
  2883. * @imbalance: Variable to store the imbalance.
  2884. *
  2885. * Description:
  2886. * Check if we have potential to perform some power-savings balance.
  2887. * If yes, set the busiest group to be the least loaded group in the
  2888. * sched_domain, so that it's CPUs can be put to idle.
  2889. *
  2890. * Returns 1 if there is potential to perform power-savings balance.
  2891. * Else returns 0.
  2892. */
  2893. static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
  2894. int this_cpu, unsigned long *imbalance)
  2895. {
  2896. if (!sds->power_savings_balance)
  2897. return 0;
  2898. if (sds->this != sds->group_leader ||
  2899. sds->group_leader == sds->group_min)
  2900. return 0;
  2901. *imbalance = sds->min_load_per_task;
  2902. sds->busiest = sds->group_min;
  2903. if (sched_mc_power_savings >= POWERSAVINGS_BALANCE_WAKEUP) {
  2904. cpu_rq(this_cpu)->rd->sched_mc_preferred_wakeup_cpu =
  2905. group_first_cpu(sds->group_leader);
  2906. }
  2907. return 1;
  2908. }
  2909. #else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  2910. static inline void init_sd_power_savings_stats(struct sched_domain *sd,
  2911. struct sd_lb_stats *sds, enum cpu_idle_type idle)
  2912. {
  2913. return;
  2914. }
  2915. static inline void update_sd_power_savings_stats(struct sched_group *group,
  2916. struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
  2917. {
  2918. return;
  2919. }
  2920. static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
  2921. int this_cpu, unsigned long *imbalance)
  2922. {
  2923. return 0;
  2924. }
  2925. #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  2926. /**
  2927. * update_sg_lb_stats - Update sched_group's statistics for load balancing.
  2928. * @group: sched_group whose statistics are to be updated.
  2929. * @this_cpu: Cpu for which load balance is currently performed.
  2930. * @idle: Idle status of this_cpu
  2931. * @load_idx: Load index of sched_domain of this_cpu for load calc.
  2932. * @sd_idle: Idle status of the sched_domain containing group.
  2933. * @local_group: Does group contain this_cpu.
  2934. * @cpus: Set of cpus considered for load balancing.
  2935. * @balance: Should we balance.
  2936. * @sgs: variable to hold the statistics for this group.
  2937. */
  2938. static inline void update_sg_lb_stats(struct sched_group *group, int this_cpu,
  2939. enum cpu_idle_type idle, int load_idx, int *sd_idle,
  2940. int local_group, const struct cpumask *cpus,
  2941. int *balance, struct sg_lb_stats *sgs)
  2942. {
  2943. unsigned long load, max_cpu_load, min_cpu_load;
  2944. int i;
  2945. unsigned int balance_cpu = -1, first_idle_cpu = 0;
  2946. unsigned long sum_avg_load_per_task;
  2947. unsigned long avg_load_per_task;
  2948. if (local_group)
  2949. balance_cpu = group_first_cpu(group);
  2950. /* Tally up the load of all CPUs in the group */
  2951. sum_avg_load_per_task = avg_load_per_task = 0;
  2952. max_cpu_load = 0;
  2953. min_cpu_load = ~0UL;
  2954. for_each_cpu_and(i, sched_group_cpus(group), cpus) {
  2955. struct rq *rq = cpu_rq(i);
  2956. if (*sd_idle && rq->nr_running)
  2957. *sd_idle = 0;
  2958. /* Bias balancing toward cpus of our domain */
  2959. if (local_group) {
  2960. if (idle_cpu(i) && !first_idle_cpu) {
  2961. first_idle_cpu = 1;
  2962. balance_cpu = i;
  2963. }
  2964. load = target_load(i, load_idx);
  2965. } else {
  2966. load = source_load(i, load_idx);
  2967. if (load > max_cpu_load)
  2968. max_cpu_load = load;
  2969. if (min_cpu_load > load)
  2970. min_cpu_load = load;
  2971. }
  2972. sgs->group_load += load;
  2973. sgs->sum_nr_running += rq->nr_running;
  2974. sgs->sum_weighted_load += weighted_cpuload(i);
  2975. sum_avg_load_per_task += cpu_avg_load_per_task(i);
  2976. }
  2977. /*
  2978. * First idle cpu or the first cpu(busiest) in this sched group
  2979. * is eligible for doing load balancing at this and above
  2980. * domains. In the newly idle case, we will allow all the cpu's
  2981. * to do the newly idle load balance.
  2982. */
  2983. if (idle != CPU_NEWLY_IDLE && local_group &&
  2984. balance_cpu != this_cpu && balance) {
  2985. *balance = 0;
  2986. return;
  2987. }
  2988. /* Adjust by relative CPU power of the group */
  2989. sgs->avg_load = sg_div_cpu_power(group,
  2990. sgs->group_load * SCHED_LOAD_SCALE);
  2991. /*
  2992. * Consider the group unbalanced when the imbalance is larger
  2993. * than the average weight of two tasks.
  2994. *
  2995. * APZ: with cgroup the avg task weight can vary wildly and
  2996. * might not be a suitable number - should we keep a
  2997. * normalized nr_running number somewhere that negates
  2998. * the hierarchy?
  2999. */
  3000. avg_load_per_task = sg_div_cpu_power(group,
  3001. sum_avg_load_per_task * SCHED_LOAD_SCALE);
  3002. if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
  3003. sgs->group_imb = 1;
  3004. sgs->group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
  3005. }
  3006. /**
  3007. * update_sd_lb_stats - Update sched_group's statistics for load balancing.
  3008. * @sd: sched_domain whose statistics are to be updated.
  3009. * @this_cpu: Cpu for which load balance is currently performed.
  3010. * @idle: Idle status of this_cpu
  3011. * @sd_idle: Idle status of the sched_domain containing group.
  3012. * @cpus: Set of cpus considered for load balancing.
  3013. * @balance: Should we balance.
  3014. * @sds: variable to hold the statistics for this sched_domain.
  3015. */
  3016. static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
  3017. enum cpu_idle_type idle, int *sd_idle,
  3018. const struct cpumask *cpus, int *balance,
  3019. struct sd_lb_stats *sds)
  3020. {
  3021. struct sched_group *group = sd->groups;
  3022. struct sg_lb_stats sgs;
  3023. int load_idx;
  3024. init_sd_power_savings_stats(sd, sds, idle);
  3025. load_idx = get_sd_load_idx(sd, idle);
  3026. do {
  3027. int local_group;
  3028. local_group = cpumask_test_cpu(this_cpu,
  3029. sched_group_cpus(group));
  3030. memset(&sgs, 0, sizeof(sgs));
  3031. update_sg_lb_stats(group, this_cpu, idle, load_idx, sd_idle,
  3032. local_group, cpus, balance, &sgs);
  3033. if (local_group && balance && !(*balance))
  3034. return;
  3035. sds->total_load += sgs.group_load;
  3036. sds->total_pwr += group->__cpu_power;
  3037. if (local_group) {
  3038. sds->this_load = sgs.avg_load;
  3039. sds->this = group;
  3040. sds->this_nr_running = sgs.sum_nr_running;
  3041. sds->this_load_per_task = sgs.sum_weighted_load;
  3042. } else if (sgs.avg_load > sds->max_load &&
  3043. (sgs.sum_nr_running > sgs.group_capacity ||
  3044. sgs.group_imb)) {
  3045. sds->max_load = sgs.avg_load;
  3046. sds->busiest = group;
  3047. sds->busiest_nr_running = sgs.sum_nr_running;
  3048. sds->busiest_load_per_task = sgs.sum_weighted_load;
  3049. sds->group_imb = sgs.group_imb;
  3050. }
  3051. update_sd_power_savings_stats(group, sds, local_group, &sgs);
  3052. group = group->next;
  3053. } while (group != sd->groups);
  3054. }
  3055. /**
  3056. * fix_small_imbalance - Calculate the minor imbalance that exists
  3057. * amongst the groups of a sched_domain, during
  3058. * load balancing.
  3059. * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
  3060. * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
  3061. * @imbalance: Variable to store the imbalance.
  3062. */
  3063. static inline void fix_small_imbalance(struct sd_lb_stats *sds,
  3064. int this_cpu, unsigned long *imbalance)
  3065. {
  3066. unsigned long tmp, pwr_now = 0, pwr_move = 0;
  3067. unsigned int imbn = 2;
  3068. if (sds->this_nr_running) {
  3069. sds->this_load_per_task /= sds->this_nr_running;
  3070. if (sds->busiest_load_per_task >
  3071. sds->this_load_per_task)
  3072. imbn = 1;
  3073. } else
  3074. sds->this_load_per_task =
  3075. cpu_avg_load_per_task(this_cpu);
  3076. if (sds->max_load - sds->this_load + sds->busiest_load_per_task >=
  3077. sds->busiest_load_per_task * imbn) {
  3078. *imbalance = sds->busiest_load_per_task;
  3079. return;
  3080. }
  3081. /*
  3082. * OK, we don't have enough imbalance to justify moving tasks,
  3083. * however we may be able to increase total CPU power used by
  3084. * moving them.
  3085. */
  3086. pwr_now += sds->busiest->__cpu_power *
  3087. min(sds->busiest_load_per_task, sds->max_load);
  3088. pwr_now += sds->this->__cpu_power *
  3089. min(sds->this_load_per_task, sds->this_load);
  3090. pwr_now /= SCHED_LOAD_SCALE;
  3091. /* Amount of load we'd subtract */
  3092. tmp = sg_div_cpu_power(sds->busiest,
  3093. sds->busiest_load_per_task * SCHED_LOAD_SCALE);
  3094. if (sds->max_load > tmp)
  3095. pwr_move += sds->busiest->__cpu_power *
  3096. min(sds->busiest_load_per_task, sds->max_load - tmp);
  3097. /* Amount of load we'd add */
  3098. if (sds->max_load * sds->busiest->__cpu_power <
  3099. sds->busiest_load_per_task * SCHED_LOAD_SCALE)
  3100. tmp = sg_div_cpu_power(sds->this,
  3101. sds->max_load * sds->busiest->__cpu_power);
  3102. else
  3103. tmp = sg_div_cpu_power(sds->this,
  3104. sds->busiest_load_per_task * SCHED_LOAD_SCALE);
  3105. pwr_move += sds->this->__cpu_power *
  3106. min(sds->this_load_per_task, sds->this_load + tmp);
  3107. pwr_move /= SCHED_LOAD_SCALE;
  3108. /* Move if we gain throughput */
  3109. if (pwr_move > pwr_now)
  3110. *imbalance = sds->busiest_load_per_task;
  3111. }
  3112. /**
  3113. * calculate_imbalance - Calculate the amount of imbalance present within the
  3114. * groups of a given sched_domain during load balance.
  3115. * @sds: statistics of the sched_domain whose imbalance is to be calculated.
  3116. * @this_cpu: Cpu for which currently load balance is being performed.
  3117. * @imbalance: The variable to store the imbalance.
  3118. */
  3119. static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
  3120. unsigned long *imbalance)
  3121. {
  3122. unsigned long max_pull;
  3123. /*
  3124. * In the presence of smp nice balancing, certain scenarios can have
  3125. * max load less than avg load(as we skip the groups at or below
  3126. * its cpu_power, while calculating max_load..)
  3127. */
  3128. if (sds->max_load < sds->avg_load) {
  3129. *imbalance = 0;
  3130. return fix_small_imbalance(sds, this_cpu, imbalance);
  3131. }
  3132. /* Don't want to pull so many tasks that a group would go idle */
  3133. max_pull = min(sds->max_load - sds->avg_load,
  3134. sds->max_load - sds->busiest_load_per_task);
  3135. /* How much load to actually move to equalise the imbalance */
  3136. *imbalance = min(max_pull * sds->busiest->__cpu_power,
  3137. (sds->avg_load - sds->this_load) * sds->this->__cpu_power)
  3138. / SCHED_LOAD_SCALE;
  3139. /*
  3140. * if *imbalance is less than the average load per runnable task
  3141. * there is no gaurantee that any tasks will be moved so we'll have
  3142. * a think about bumping its value to force at least one task to be
  3143. * moved
  3144. */
  3145. if (*imbalance < sds->busiest_load_per_task)
  3146. return fix_small_imbalance(sds, this_cpu, imbalance);
  3147. }
  3148. /******* find_busiest_group() helpers end here *********************/
  3149. /**
  3150. * find_busiest_group - Returns the busiest group within the sched_domain
  3151. * if there is an imbalance. If there isn't an imbalance, and
  3152. * the user has opted for power-savings, it returns a group whose
  3153. * CPUs can be put to idle by rebalancing those tasks elsewhere, if
  3154. * such a group exists.
  3155. *
  3156. * Also calculates the amount of weighted load which should be moved
  3157. * to restore balance.
  3158. *
  3159. * @sd: The sched_domain whose busiest group is to be returned.
  3160. * @this_cpu: The cpu for which load balancing is currently being performed.
  3161. * @imbalance: Variable which stores amount of weighted load which should
  3162. * be moved to restore balance/put a group to idle.
  3163. * @idle: The idle status of this_cpu.
  3164. * @sd_idle: The idleness of sd
  3165. * @cpus: The set of CPUs under consideration for load-balancing.
  3166. * @balance: Pointer to a variable indicating if this_cpu
  3167. * is the appropriate cpu to perform load balancing at this_level.
  3168. *
  3169. * Returns: - the busiest group if imbalance exists.
  3170. * - If no imbalance and user has opted for power-savings balance,
  3171. * return the least loaded group whose CPUs can be
  3172. * put to idle by rebalancing its tasks onto our group.
  3173. */
  3174. static struct sched_group *
  3175. find_busiest_group(struct sched_domain *sd, int this_cpu,
  3176. unsigned long *imbalance, enum cpu_idle_type idle,
  3177. int *sd_idle, const struct cpumask *cpus, int *balance)
  3178. {
  3179. struct sd_lb_stats sds;
  3180. memset(&sds, 0, sizeof(sds));
  3181. /*
  3182. * Compute the various statistics relavent for load balancing at
  3183. * this level.
  3184. */
  3185. update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
  3186. balance, &sds);
  3187. /* Cases where imbalance does not exist from POV of this_cpu */
  3188. /* 1) this_cpu is not the appropriate cpu to perform load balancing
  3189. * at this level.
  3190. * 2) There is no busy sibling group to pull from.
  3191. * 3) This group is the busiest group.
  3192. * 4) This group is more busy than the avg busieness at this
  3193. * sched_domain.
  3194. * 5) The imbalance is within the specified limit.
  3195. * 6) Any rebalance would lead to ping-pong
  3196. */
  3197. if (balance && !(*balance))
  3198. goto ret;
  3199. if (!sds.busiest || sds.busiest_nr_running == 0)
  3200. goto out_balanced;
  3201. if (sds.this_load >= sds.max_load)
  3202. goto out_balanced;
  3203. sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
  3204. if (sds.this_load >= sds.avg_load)
  3205. goto out_balanced;
  3206. if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
  3207. goto out_balanced;
  3208. sds.busiest_load_per_task /= sds.busiest_nr_running;
  3209. if (sds.group_imb)
  3210. sds.busiest_load_per_task =
  3211. min(sds.busiest_load_per_task, sds.avg_load);
  3212. /*
  3213. * We're trying to get all the cpus to the average_load, so we don't
  3214. * want to push ourselves above the average load, nor do we wish to
  3215. * reduce the max loaded cpu below the average load, as either of these
  3216. * actions would just result in more rebalancing later, and ping-pong
  3217. * tasks around. Thus we look for the minimum possible imbalance.
  3218. * Negative imbalances (*we* are more loaded than anyone else) will
  3219. * be counted as no imbalance for these purposes -- we can't fix that
  3220. * by pulling tasks to us. Be careful of negative numbers as they'll
  3221. * appear as very large values with unsigned longs.
  3222. */
  3223. if (sds.max_load <= sds.busiest_load_per_task)
  3224. goto out_balanced;
  3225. /* Looks like there is an imbalance. Compute it */
  3226. calculate_imbalance(&sds, this_cpu, imbalance);
  3227. return sds.busiest;
  3228. out_balanced:
  3229. /*
  3230. * There is no obvious imbalance. But check if we can do some balancing
  3231. * to save power.
  3232. */
  3233. if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
  3234. return sds.busiest;
  3235. ret:
  3236. *imbalance = 0;
  3237. return NULL;
  3238. }
  3239. /*
  3240. * find_busiest_queue - find the busiest runqueue among the cpus in group.
  3241. */
  3242. static struct rq *
  3243. find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
  3244. unsigned long imbalance, const struct cpumask *cpus)
  3245. {
  3246. struct rq *busiest = NULL, *rq;
  3247. unsigned long max_load = 0;
  3248. int i;
  3249. for_each_cpu(i, sched_group_cpus(group)) {
  3250. unsigned long wl;
  3251. if (!cpumask_test_cpu(i, cpus))
  3252. continue;
  3253. rq = cpu_rq(i);
  3254. wl = weighted_cpuload(i);
  3255. if (rq->nr_running == 1 && wl > imbalance)
  3256. continue;
  3257. if (wl > max_load) {
  3258. max_load = wl;
  3259. busiest = rq;
  3260. }
  3261. }
  3262. return busiest;
  3263. }
  3264. /*
  3265. * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
  3266. * so long as it is large enough.
  3267. */
  3268. #define MAX_PINNED_INTERVAL 512
  3269. /* Working cpumask for load_balance and load_balance_newidle. */
  3270. static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
  3271. /*
  3272. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  3273. * tasks if there is an imbalance.
  3274. */
  3275. static int load_balance(int this_cpu, struct rq *this_rq,
  3276. struct sched_domain *sd, enum cpu_idle_type idle,
  3277. int *balance)
  3278. {
  3279. int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
  3280. struct sched_group *group;
  3281. unsigned long imbalance;
  3282. struct rq *busiest;
  3283. unsigned long flags;
  3284. struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
  3285. cpumask_setall(cpus);
  3286. /*
  3287. * When power savings policy is enabled for the parent domain, idle
  3288. * sibling can pick up load irrespective of busy siblings. In this case,
  3289. * let the state of idle sibling percolate up as CPU_IDLE, instead of
  3290. * portraying it as CPU_NOT_IDLE.
  3291. */
  3292. if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
  3293. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3294. sd_idle = 1;
  3295. schedstat_inc(sd, lb_count[idle]);
  3296. redo:
  3297. update_shares(sd);
  3298. group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
  3299. cpus, balance);
  3300. if (*balance == 0)
  3301. goto out_balanced;
  3302. if (!group) {
  3303. schedstat_inc(sd, lb_nobusyg[idle]);
  3304. goto out_balanced;
  3305. }
  3306. busiest = find_busiest_queue(group, idle, imbalance, cpus);
  3307. if (!busiest) {
  3308. schedstat_inc(sd, lb_nobusyq[idle]);
  3309. goto out_balanced;
  3310. }
  3311. BUG_ON(busiest == this_rq);
  3312. schedstat_add(sd, lb_imbalance[idle], imbalance);
  3313. ld_moved = 0;
  3314. if (busiest->nr_running > 1) {
  3315. /*
  3316. * Attempt to move tasks. If find_busiest_group has found
  3317. * an imbalance but busiest->nr_running <= 1, the group is
  3318. * still unbalanced. ld_moved simply stays zero, so it is
  3319. * correctly treated as an imbalance.
  3320. */
  3321. local_irq_save(flags);
  3322. double_rq_lock(this_rq, busiest);
  3323. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  3324. imbalance, sd, idle, &all_pinned);
  3325. double_rq_unlock(this_rq, busiest);
  3326. local_irq_restore(flags);
  3327. /*
  3328. * some other cpu did the load balance for us.
  3329. */
  3330. if (ld_moved && this_cpu != smp_processor_id())
  3331. resched_cpu(this_cpu);
  3332. /* All tasks on this runqueue were pinned by CPU affinity */
  3333. if (unlikely(all_pinned)) {
  3334. cpumask_clear_cpu(cpu_of(busiest), cpus);
  3335. if (!cpumask_empty(cpus))
  3336. goto redo;
  3337. goto out_balanced;
  3338. }
  3339. }
  3340. if (!ld_moved) {
  3341. schedstat_inc(sd, lb_failed[idle]);
  3342. sd->nr_balance_failed++;
  3343. if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
  3344. spin_lock_irqsave(&busiest->lock, flags);
  3345. /* don't kick the migration_thread, if the curr
  3346. * task on busiest cpu can't be moved to this_cpu
  3347. */
  3348. if (!cpumask_test_cpu(this_cpu,
  3349. &busiest->curr->cpus_allowed)) {
  3350. spin_unlock_irqrestore(&busiest->lock, flags);
  3351. all_pinned = 1;
  3352. goto out_one_pinned;
  3353. }
  3354. if (!busiest->active_balance) {
  3355. busiest->active_balance = 1;
  3356. busiest->push_cpu = this_cpu;
  3357. active_balance = 1;
  3358. }
  3359. spin_unlock_irqrestore(&busiest->lock, flags);
  3360. if (active_balance)
  3361. wake_up_process(busiest->migration_thread);
  3362. /*
  3363. * We've kicked active balancing, reset the failure
  3364. * counter.
  3365. */
  3366. sd->nr_balance_failed = sd->cache_nice_tries+1;
  3367. }
  3368. } else
  3369. sd->nr_balance_failed = 0;
  3370. if (likely(!active_balance)) {
  3371. /* We were unbalanced, so reset the balancing interval */
  3372. sd->balance_interval = sd->min_interval;
  3373. } else {
  3374. /*
  3375. * If we've begun active balancing, start to back off. This
  3376. * case may not be covered by the all_pinned logic if there
  3377. * is only 1 task on the busy runqueue (because we don't call
  3378. * move_tasks).
  3379. */
  3380. if (sd->balance_interval < sd->max_interval)
  3381. sd->balance_interval *= 2;
  3382. }
  3383. if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3384. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3385. ld_moved = -1;
  3386. goto out;
  3387. out_balanced:
  3388. schedstat_inc(sd, lb_balanced[idle]);
  3389. sd->nr_balance_failed = 0;
  3390. out_one_pinned:
  3391. /* tune up the balancing interval */
  3392. if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
  3393. (sd->balance_interval < sd->max_interval))
  3394. sd->balance_interval *= 2;
  3395. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3396. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3397. ld_moved = -1;
  3398. else
  3399. ld_moved = 0;
  3400. out:
  3401. if (ld_moved)
  3402. update_shares(sd);
  3403. return ld_moved;
  3404. }
  3405. /*
  3406. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  3407. * tasks if there is an imbalance.
  3408. *
  3409. * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
  3410. * this_rq is locked.
  3411. */
  3412. static int
  3413. load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
  3414. {
  3415. struct sched_group *group;
  3416. struct rq *busiest = NULL;
  3417. unsigned long imbalance;
  3418. int ld_moved = 0;
  3419. int sd_idle = 0;
  3420. int all_pinned = 0;
  3421. struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
  3422. cpumask_setall(cpus);
  3423. /*
  3424. * When power savings policy is enabled for the parent domain, idle
  3425. * sibling can pick up load irrespective of busy siblings. In this case,
  3426. * let the state of idle sibling percolate up as IDLE, instead of
  3427. * portraying it as CPU_NOT_IDLE.
  3428. */
  3429. if (sd->flags & SD_SHARE_CPUPOWER &&
  3430. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3431. sd_idle = 1;
  3432. schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
  3433. redo:
  3434. update_shares_locked(this_rq, sd);
  3435. group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
  3436. &sd_idle, cpus, NULL);
  3437. if (!group) {
  3438. schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
  3439. goto out_balanced;
  3440. }
  3441. busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
  3442. if (!busiest) {
  3443. schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
  3444. goto out_balanced;
  3445. }
  3446. BUG_ON(busiest == this_rq);
  3447. schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
  3448. ld_moved = 0;
  3449. if (busiest->nr_running > 1) {
  3450. /* Attempt to move tasks */
  3451. double_lock_balance(this_rq, busiest);
  3452. /* this_rq->clock is already updated */
  3453. update_rq_clock(busiest);
  3454. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  3455. imbalance, sd, CPU_NEWLY_IDLE,
  3456. &all_pinned);
  3457. double_unlock_balance(this_rq, busiest);
  3458. if (unlikely(all_pinned)) {
  3459. cpumask_clear_cpu(cpu_of(busiest), cpus);
  3460. if (!cpumask_empty(cpus))
  3461. goto redo;
  3462. }
  3463. }
  3464. if (!ld_moved) {
  3465. int active_balance = 0;
  3466. schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
  3467. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3468. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3469. return -1;
  3470. if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
  3471. return -1;
  3472. if (sd->nr_balance_failed++ < 2)
  3473. return -1;
  3474. /*
  3475. * The only task running in a non-idle cpu can be moved to this
  3476. * cpu in an attempt to completely freeup the other CPU
  3477. * package. The same method used to move task in load_balance()
  3478. * have been extended for load_balance_newidle() to speedup
  3479. * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
  3480. *
  3481. * The package power saving logic comes from
  3482. * find_busiest_group(). If there are no imbalance, then
  3483. * f_b_g() will return NULL. However when sched_mc={1,2} then
  3484. * f_b_g() will select a group from which a running task may be
  3485. * pulled to this cpu in order to make the other package idle.
  3486. * If there is no opportunity to make a package idle and if
  3487. * there are no imbalance, then f_b_g() will return NULL and no
  3488. * action will be taken in load_balance_newidle().
  3489. *
  3490. * Under normal task pull operation due to imbalance, there
  3491. * will be more than one task in the source run queue and
  3492. * move_tasks() will succeed. ld_moved will be true and this
  3493. * active balance code will not be triggered.
  3494. */
  3495. /* Lock busiest in correct order while this_rq is held */
  3496. double_lock_balance(this_rq, busiest);
  3497. /*
  3498. * don't kick the migration_thread, if the curr
  3499. * task on busiest cpu can't be moved to this_cpu
  3500. */
  3501. if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
  3502. double_unlock_balance(this_rq, busiest);
  3503. all_pinned = 1;
  3504. return ld_moved;
  3505. }
  3506. if (!busiest->active_balance) {
  3507. busiest->active_balance = 1;
  3508. busiest->push_cpu = this_cpu;
  3509. active_balance = 1;
  3510. }
  3511. double_unlock_balance(this_rq, busiest);
  3512. /*
  3513. * Should not call ttwu while holding a rq->lock
  3514. */
  3515. spin_unlock(&this_rq->lock);
  3516. if (active_balance)
  3517. wake_up_process(busiest->migration_thread);
  3518. spin_lock(&this_rq->lock);
  3519. } else
  3520. sd->nr_balance_failed = 0;
  3521. update_shares_locked(this_rq, sd);
  3522. return ld_moved;
  3523. out_balanced:
  3524. schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
  3525. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3526. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3527. return -1;
  3528. sd->nr_balance_failed = 0;
  3529. return 0;
  3530. }
  3531. /*
  3532. * idle_balance is called by schedule() if this_cpu is about to become
  3533. * idle. Attempts to pull tasks from other CPUs.
  3534. */
  3535. static void idle_balance(int this_cpu, struct rq *this_rq)
  3536. {
  3537. struct sched_domain *sd;
  3538. int pulled_task = 0;
  3539. unsigned long next_balance = jiffies + HZ;
  3540. for_each_domain(this_cpu, sd) {
  3541. unsigned long interval;
  3542. if (!(sd->flags & SD_LOAD_BALANCE))
  3543. continue;
  3544. if (sd->flags & SD_BALANCE_NEWIDLE)
  3545. /* If we've pulled tasks over stop searching: */
  3546. pulled_task = load_balance_newidle(this_cpu, this_rq,
  3547. sd);
  3548. interval = msecs_to_jiffies(sd->balance_interval);
  3549. if (time_after(next_balance, sd->last_balance + interval))
  3550. next_balance = sd->last_balance + interval;
  3551. if (pulled_task)
  3552. break;
  3553. }
  3554. if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
  3555. /*
  3556. * We are going idle. next_balance may be set based on
  3557. * a busy processor. So reset next_balance.
  3558. */
  3559. this_rq->next_balance = next_balance;
  3560. }
  3561. }
  3562. /*
  3563. * active_load_balance is run by migration threads. It pushes running tasks
  3564. * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
  3565. * running on each physical CPU where possible, and avoids physical /
  3566. * logical imbalances.
  3567. *
  3568. * Called with busiest_rq locked.
  3569. */
  3570. static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
  3571. {
  3572. int target_cpu = busiest_rq->push_cpu;
  3573. struct sched_domain *sd;
  3574. struct rq *target_rq;
  3575. /* Is there any task to move? */
  3576. if (busiest_rq->nr_running <= 1)
  3577. return;
  3578. target_rq = cpu_rq(target_cpu);
  3579. /*
  3580. * This condition is "impossible", if it occurs
  3581. * we need to fix it. Originally reported by
  3582. * Bjorn Helgaas on a 128-cpu setup.
  3583. */
  3584. BUG_ON(busiest_rq == target_rq);
  3585. /* move a task from busiest_rq to target_rq */
  3586. double_lock_balance(busiest_rq, target_rq);
  3587. update_rq_clock(busiest_rq);
  3588. update_rq_clock(target_rq);
  3589. /* Search for an sd spanning us and the target CPU. */
  3590. for_each_domain(target_cpu, sd) {
  3591. if ((sd->flags & SD_LOAD_BALANCE) &&
  3592. cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
  3593. break;
  3594. }
  3595. if (likely(sd)) {
  3596. schedstat_inc(sd, alb_count);
  3597. if (move_one_task(target_rq, target_cpu, busiest_rq,
  3598. sd, CPU_IDLE))
  3599. schedstat_inc(sd, alb_pushed);
  3600. else
  3601. schedstat_inc(sd, alb_failed);
  3602. }
  3603. double_unlock_balance(busiest_rq, target_rq);
  3604. }
  3605. #ifdef CONFIG_NO_HZ
  3606. static struct {
  3607. atomic_t load_balancer;
  3608. cpumask_var_t cpu_mask;
  3609. cpumask_var_t ilb_grp_nohz_mask;
  3610. } nohz ____cacheline_aligned = {
  3611. .load_balancer = ATOMIC_INIT(-1),
  3612. };
  3613. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  3614. /**
  3615. * lowest_flag_domain - Return lowest sched_domain containing flag.
  3616. * @cpu: The cpu whose lowest level of sched domain is to
  3617. * be returned.
  3618. * @flag: The flag to check for the lowest sched_domain
  3619. * for the given cpu.
  3620. *
  3621. * Returns the lowest sched_domain of a cpu which contains the given flag.
  3622. */
  3623. static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
  3624. {
  3625. struct sched_domain *sd;
  3626. for_each_domain(cpu, sd)
  3627. if (sd && (sd->flags & flag))
  3628. break;
  3629. return sd;
  3630. }
  3631. /**
  3632. * for_each_flag_domain - Iterates over sched_domains containing the flag.
  3633. * @cpu: The cpu whose domains we're iterating over.
  3634. * @sd: variable holding the value of the power_savings_sd
  3635. * for cpu.
  3636. * @flag: The flag to filter the sched_domains to be iterated.
  3637. *
  3638. * Iterates over all the scheduler domains for a given cpu that has the 'flag'
  3639. * set, starting from the lowest sched_domain to the highest.
  3640. */
  3641. #define for_each_flag_domain(cpu, sd, flag) \
  3642. for (sd = lowest_flag_domain(cpu, flag); \
  3643. (sd && (sd->flags & flag)); sd = sd->parent)
  3644. /**
  3645. * is_semi_idle_group - Checks if the given sched_group is semi-idle.
  3646. * @ilb_group: group to be checked for semi-idleness
  3647. *
  3648. * Returns: 1 if the group is semi-idle. 0 otherwise.
  3649. *
  3650. * We define a sched_group to be semi idle if it has atleast one idle-CPU
  3651. * and atleast one non-idle CPU. This helper function checks if the given
  3652. * sched_group is semi-idle or not.
  3653. */
  3654. static inline int is_semi_idle_group(struct sched_group *ilb_group)
  3655. {
  3656. cpumask_and(nohz.ilb_grp_nohz_mask, nohz.cpu_mask,
  3657. sched_group_cpus(ilb_group));
  3658. /*
  3659. * A sched_group is semi-idle when it has atleast one busy cpu
  3660. * and atleast one idle cpu.
  3661. */
  3662. if (cpumask_empty(nohz.ilb_grp_nohz_mask))
  3663. return 0;
  3664. if (cpumask_equal(nohz.ilb_grp_nohz_mask, sched_group_cpus(ilb_group)))
  3665. return 0;
  3666. return 1;
  3667. }
  3668. /**
  3669. * find_new_ilb - Finds the optimum idle load balancer for nomination.
  3670. * @cpu: The cpu which is nominating a new idle_load_balancer.
  3671. *
  3672. * Returns: Returns the id of the idle load balancer if it exists,
  3673. * Else, returns >= nr_cpu_ids.
  3674. *
  3675. * This algorithm picks the idle load balancer such that it belongs to a
  3676. * semi-idle powersavings sched_domain. The idea is to try and avoid
  3677. * completely idle packages/cores just for the purpose of idle load balancing
  3678. * when there are other idle cpu's which are better suited for that job.
  3679. */
  3680. static int find_new_ilb(int cpu)
  3681. {
  3682. struct sched_domain *sd;
  3683. struct sched_group *ilb_group;
  3684. /*
  3685. * Have idle load balancer selection from semi-idle packages only
  3686. * when power-aware load balancing is enabled
  3687. */
  3688. if (!(sched_smt_power_savings || sched_mc_power_savings))
  3689. goto out_done;
  3690. /*
  3691. * Optimize for the case when we have no idle CPUs or only one
  3692. * idle CPU. Don't walk the sched_domain hierarchy in such cases
  3693. */
  3694. if (cpumask_weight(nohz.cpu_mask) < 2)
  3695. goto out_done;
  3696. for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
  3697. ilb_group = sd->groups;
  3698. do {
  3699. if (is_semi_idle_group(ilb_group))
  3700. return cpumask_first(nohz.ilb_grp_nohz_mask);
  3701. ilb_group = ilb_group->next;
  3702. } while (ilb_group != sd->groups);
  3703. }
  3704. out_done:
  3705. return cpumask_first(nohz.cpu_mask);
  3706. }
  3707. #else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
  3708. static inline int find_new_ilb(int call_cpu)
  3709. {
  3710. return first_cpu(nohz.cpu_mask);
  3711. }
  3712. #endif
  3713. /*
  3714. * This routine will try to nominate the ilb (idle load balancing)
  3715. * owner among the cpus whose ticks are stopped. ilb owner will do the idle
  3716. * load balancing on behalf of all those cpus. If all the cpus in the system
  3717. * go into this tickless mode, then there will be no ilb owner (as there is
  3718. * no need for one) and all the cpus will sleep till the next wakeup event
  3719. * arrives...
  3720. *
  3721. * For the ilb owner, tick is not stopped. And this tick will be used
  3722. * for idle load balancing. ilb owner will still be part of
  3723. * nohz.cpu_mask..
  3724. *
  3725. * While stopping the tick, this cpu will become the ilb owner if there
  3726. * is no other owner. And will be the owner till that cpu becomes busy
  3727. * or if all cpus in the system stop their ticks at which point
  3728. * there is no need for ilb owner.
  3729. *
  3730. * When the ilb owner becomes busy, it nominates another owner, during the
  3731. * next busy scheduler_tick()
  3732. */
  3733. int select_nohz_load_balancer(int stop_tick)
  3734. {
  3735. int cpu = smp_processor_id();
  3736. if (stop_tick) {
  3737. cpu_rq(cpu)->in_nohz_recently = 1;
  3738. if (!cpu_active(cpu)) {
  3739. if (atomic_read(&nohz.load_balancer) != cpu)
  3740. return 0;
  3741. /*
  3742. * If we are going offline and still the leader,
  3743. * give up!
  3744. */
  3745. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  3746. BUG();
  3747. return 0;
  3748. }
  3749. cpumask_set_cpu(cpu, nohz.cpu_mask);
  3750. /* time for ilb owner also to sleep */
  3751. if (cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
  3752. if (atomic_read(&nohz.load_balancer) == cpu)
  3753. atomic_set(&nohz.load_balancer, -1);
  3754. return 0;
  3755. }
  3756. if (atomic_read(&nohz.load_balancer) == -1) {
  3757. /* make me the ilb owner */
  3758. if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
  3759. return 1;
  3760. } else if (atomic_read(&nohz.load_balancer) == cpu)
  3761. return 1;
  3762. } else {
  3763. if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
  3764. return 0;
  3765. cpumask_clear_cpu(cpu, nohz.cpu_mask);
  3766. if (atomic_read(&nohz.load_balancer) == cpu)
  3767. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  3768. BUG();
  3769. }
  3770. return 0;
  3771. }
  3772. #endif
  3773. static DEFINE_SPINLOCK(balancing);
  3774. /*
  3775. * It checks each scheduling domain to see if it is due to be balanced,
  3776. * and initiates a balancing operation if so.
  3777. *
  3778. * Balancing parameters are set up in arch_init_sched_domains.
  3779. */
  3780. static void rebalance_domains(int cpu, enum cpu_idle_type idle)
  3781. {
  3782. int balance = 1;
  3783. struct rq *rq = cpu_rq(cpu);
  3784. unsigned long interval;
  3785. struct sched_domain *sd;
  3786. /* Earliest time when we have to do rebalance again */
  3787. unsigned long next_balance = jiffies + 60*HZ;
  3788. int update_next_balance = 0;
  3789. int need_serialize;
  3790. for_each_domain(cpu, sd) {
  3791. if (!(sd->flags & SD_LOAD_BALANCE))
  3792. continue;
  3793. interval = sd->balance_interval;
  3794. if (idle != CPU_IDLE)
  3795. interval *= sd->busy_factor;
  3796. /* scale ms to jiffies */
  3797. interval = msecs_to_jiffies(interval);
  3798. if (unlikely(!interval))
  3799. interval = 1;
  3800. if (interval > HZ*NR_CPUS/10)
  3801. interval = HZ*NR_CPUS/10;
  3802. need_serialize = sd->flags & SD_SERIALIZE;
  3803. if (need_serialize) {
  3804. if (!spin_trylock(&balancing))
  3805. goto out;
  3806. }
  3807. if (time_after_eq(jiffies, sd->last_balance + interval)) {
  3808. if (load_balance(cpu, rq, sd, idle, &balance)) {
  3809. /*
  3810. * We've pulled tasks over so either we're no
  3811. * longer idle, or one of our SMT siblings is
  3812. * not idle.
  3813. */
  3814. idle = CPU_NOT_IDLE;
  3815. }
  3816. sd->last_balance = jiffies;
  3817. }
  3818. if (need_serialize)
  3819. spin_unlock(&balancing);
  3820. out:
  3821. if (time_after(next_balance, sd->last_balance + interval)) {
  3822. next_balance = sd->last_balance + interval;
  3823. update_next_balance = 1;
  3824. }
  3825. /*
  3826. * Stop the load balance at this level. There is another
  3827. * CPU in our sched group which is doing load balancing more
  3828. * actively.
  3829. */
  3830. if (!balance)
  3831. break;
  3832. }
  3833. /*
  3834. * next_balance will be updated only when there is a need.
  3835. * When the cpu is attached to null domain for ex, it will not be
  3836. * updated.
  3837. */
  3838. if (likely(update_next_balance))
  3839. rq->next_balance = next_balance;
  3840. }
  3841. /*
  3842. * run_rebalance_domains is triggered when needed from the scheduler tick.
  3843. * In CONFIG_NO_HZ case, the idle load balance owner will do the
  3844. * rebalancing for all the cpus for whom scheduler ticks are stopped.
  3845. */
  3846. static void run_rebalance_domains(struct softirq_action *h)
  3847. {
  3848. int this_cpu = smp_processor_id();
  3849. struct rq *this_rq = cpu_rq(this_cpu);
  3850. enum cpu_idle_type idle = this_rq->idle_at_tick ?
  3851. CPU_IDLE : CPU_NOT_IDLE;
  3852. rebalance_domains(this_cpu, idle);
  3853. #ifdef CONFIG_NO_HZ
  3854. /*
  3855. * If this cpu is the owner for idle load balancing, then do the
  3856. * balancing on behalf of the other idle cpus whose ticks are
  3857. * stopped.
  3858. */
  3859. if (this_rq->idle_at_tick &&
  3860. atomic_read(&nohz.load_balancer) == this_cpu) {
  3861. struct rq *rq;
  3862. int balance_cpu;
  3863. for_each_cpu(balance_cpu, nohz.cpu_mask) {
  3864. if (balance_cpu == this_cpu)
  3865. continue;
  3866. /*
  3867. * If this cpu gets work to do, stop the load balancing
  3868. * work being done for other cpus. Next load
  3869. * balancing owner will pick it up.
  3870. */
  3871. if (need_resched())
  3872. break;
  3873. rebalance_domains(balance_cpu, CPU_IDLE);
  3874. rq = cpu_rq(balance_cpu);
  3875. if (time_after(this_rq->next_balance, rq->next_balance))
  3876. this_rq->next_balance = rq->next_balance;
  3877. }
  3878. }
  3879. #endif
  3880. }
  3881. static inline int on_null_domain(int cpu)
  3882. {
  3883. return !rcu_dereference(cpu_rq(cpu)->sd);
  3884. }
  3885. /*
  3886. * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
  3887. *
  3888. * In case of CONFIG_NO_HZ, this is the place where we nominate a new
  3889. * idle load balancing owner or decide to stop the periodic load balancing,
  3890. * if the whole system is idle.
  3891. */
  3892. static inline void trigger_load_balance(struct rq *rq, int cpu)
  3893. {
  3894. #ifdef CONFIG_NO_HZ
  3895. /*
  3896. * If we were in the nohz mode recently and busy at the current
  3897. * scheduler tick, then check if we need to nominate new idle
  3898. * load balancer.
  3899. */
  3900. if (rq->in_nohz_recently && !rq->idle_at_tick) {
  3901. rq->in_nohz_recently = 0;
  3902. if (atomic_read(&nohz.load_balancer) == cpu) {
  3903. cpumask_clear_cpu(cpu, nohz.cpu_mask);
  3904. atomic_set(&nohz.load_balancer, -1);
  3905. }
  3906. if (atomic_read(&nohz.load_balancer) == -1) {
  3907. int ilb = find_new_ilb(cpu);
  3908. if (ilb < nr_cpu_ids)
  3909. resched_cpu(ilb);
  3910. }
  3911. }
  3912. /*
  3913. * If this cpu is idle and doing idle load balancing for all the
  3914. * cpus with ticks stopped, is it time for that to stop?
  3915. */
  3916. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
  3917. cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
  3918. resched_cpu(cpu);
  3919. return;
  3920. }
  3921. /*
  3922. * If this cpu is idle and the idle load balancing is done by
  3923. * someone else, then no need raise the SCHED_SOFTIRQ
  3924. */
  3925. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
  3926. cpumask_test_cpu(cpu, nohz.cpu_mask))
  3927. return;
  3928. #endif
  3929. /* Don't need to rebalance while attached to NULL domain */
  3930. if (time_after_eq(jiffies, rq->next_balance) &&
  3931. likely(!on_null_domain(cpu)))
  3932. raise_softirq(SCHED_SOFTIRQ);
  3933. }
  3934. #else /* CONFIG_SMP */
  3935. /*
  3936. * on UP we do not need to balance between CPUs:
  3937. */
  3938. static inline void idle_balance(int cpu, struct rq *rq)
  3939. {
  3940. }
  3941. #endif
  3942. DEFINE_PER_CPU(struct kernel_stat, kstat);
  3943. EXPORT_PER_CPU_SYMBOL(kstat);
  3944. /*
  3945. * Return any ns on the sched_clock that have not yet been accounted in
  3946. * @p in case that task is currently running.
  3947. *
  3948. * Called with task_rq_lock() held on @rq.
  3949. */
  3950. static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
  3951. {
  3952. u64 ns = 0;
  3953. if (task_current(rq, p)) {
  3954. update_rq_clock(rq);
  3955. ns = rq->clock - p->se.exec_start;
  3956. if ((s64)ns < 0)
  3957. ns = 0;
  3958. }
  3959. return ns;
  3960. }
  3961. unsigned long long task_delta_exec(struct task_struct *p)
  3962. {
  3963. unsigned long flags;
  3964. struct rq *rq;
  3965. u64 ns = 0;
  3966. rq = task_rq_lock(p, &flags);
  3967. ns = do_task_delta_exec(p, rq);
  3968. task_rq_unlock(rq, &flags);
  3969. return ns;
  3970. }
  3971. /*
  3972. * Return accounted runtime for the task.
  3973. * In case the task is currently running, return the runtime plus current's
  3974. * pending runtime that have not been accounted yet.
  3975. */
  3976. unsigned long long task_sched_runtime(struct task_struct *p)
  3977. {
  3978. unsigned long flags;
  3979. struct rq *rq;
  3980. u64 ns = 0;
  3981. rq = task_rq_lock(p, &flags);
  3982. ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
  3983. task_rq_unlock(rq, &flags);
  3984. return ns;
  3985. }
  3986. /*
  3987. * Return sum_exec_runtime for the thread group.
  3988. * In case the task is currently running, return the sum plus current's
  3989. * pending runtime that have not been accounted yet.
  3990. *
  3991. * Note that the thread group might have other running tasks as well,
  3992. * so the return value not includes other pending runtime that other
  3993. * running tasks might have.
  3994. */
  3995. unsigned long long thread_group_sched_runtime(struct task_struct *p)
  3996. {
  3997. struct task_cputime totals;
  3998. unsigned long flags;
  3999. struct rq *rq;
  4000. u64 ns;
  4001. rq = task_rq_lock(p, &flags);
  4002. thread_group_cputime(p, &totals);
  4003. ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
  4004. task_rq_unlock(rq, &flags);
  4005. return ns;
  4006. }
  4007. /*
  4008. * Account user cpu time to a process.
  4009. * @p: the process that the cpu time gets accounted to
  4010. * @cputime: the cpu time spent in user space since the last update
  4011. * @cputime_scaled: cputime scaled by cpu frequency
  4012. */
  4013. void account_user_time(struct task_struct *p, cputime_t cputime,
  4014. cputime_t cputime_scaled)
  4015. {
  4016. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  4017. cputime64_t tmp;
  4018. /* Add user time to process. */
  4019. p->utime = cputime_add(p->utime, cputime);
  4020. p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
  4021. account_group_user_time(p, cputime);
  4022. /* Add user time to cpustat. */
  4023. tmp = cputime_to_cputime64(cputime);
  4024. if (TASK_NICE(p) > 0)
  4025. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  4026. else
  4027. cpustat->user = cputime64_add(cpustat->user, tmp);
  4028. cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
  4029. /* Account for user time used */
  4030. acct_update_integrals(p);
  4031. }
  4032. /*
  4033. * Account guest cpu time to a process.
  4034. * @p: the process that the cpu time gets accounted to
  4035. * @cputime: the cpu time spent in virtual machine since the last update
  4036. * @cputime_scaled: cputime scaled by cpu frequency
  4037. */
  4038. static void account_guest_time(struct task_struct *p, cputime_t cputime,
  4039. cputime_t cputime_scaled)
  4040. {
  4041. cputime64_t tmp;
  4042. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  4043. tmp = cputime_to_cputime64(cputime);
  4044. /* Add guest time to process. */
  4045. p->utime = cputime_add(p->utime, cputime);
  4046. p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
  4047. account_group_user_time(p, cputime);
  4048. p->gtime = cputime_add(p->gtime, cputime);
  4049. /* Add guest time to cpustat. */
  4050. cpustat->user = cputime64_add(cpustat->user, tmp);
  4051. cpustat->guest = cputime64_add(cpustat->guest, tmp);
  4052. }
  4053. /*
  4054. * Account system cpu time to a process.
  4055. * @p: the process that the cpu time gets accounted to
  4056. * @hardirq_offset: the offset to subtract from hardirq_count()
  4057. * @cputime: the cpu time spent in kernel space since the last update
  4058. * @cputime_scaled: cputime scaled by cpu frequency
  4059. */
  4060. void account_system_time(struct task_struct *p, int hardirq_offset,
  4061. cputime_t cputime, cputime_t cputime_scaled)
  4062. {
  4063. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  4064. cputime64_t tmp;
  4065. if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
  4066. account_guest_time(p, cputime, cputime_scaled);
  4067. return;
  4068. }
  4069. /* Add system time to process. */
  4070. p->stime = cputime_add(p->stime, cputime);
  4071. p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
  4072. account_group_system_time(p, cputime);
  4073. /* Add system time to cpustat. */
  4074. tmp = cputime_to_cputime64(cputime);
  4075. if (hardirq_count() - hardirq_offset)
  4076. cpustat->irq = cputime64_add(cpustat->irq, tmp);
  4077. else if (softirq_count())
  4078. cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
  4079. else
  4080. cpustat->system = cputime64_add(cpustat->system, tmp);
  4081. cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
  4082. /* Account for system time used */
  4083. acct_update_integrals(p);
  4084. }
  4085. /*
  4086. * Account for involuntary wait time.
  4087. * @steal: the cpu time spent in involuntary wait
  4088. */
  4089. void account_steal_time(cputime_t cputime)
  4090. {
  4091. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  4092. cputime64_t cputime64 = cputime_to_cputime64(cputime);
  4093. cpustat->steal = cputime64_add(cpustat->steal, cputime64);
  4094. }
  4095. /*
  4096. * Account for idle time.
  4097. * @cputime: the cpu time spent in idle wait
  4098. */
  4099. void account_idle_time(cputime_t cputime)
  4100. {
  4101. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  4102. cputime64_t cputime64 = cputime_to_cputime64(cputime);
  4103. struct rq *rq = this_rq();
  4104. if (atomic_read(&rq->nr_iowait) > 0)
  4105. cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
  4106. else
  4107. cpustat->idle = cputime64_add(cpustat->idle, cputime64);
  4108. }
  4109. #ifndef CONFIG_VIRT_CPU_ACCOUNTING
  4110. /*
  4111. * Account a single tick of cpu time.
  4112. * @p: the process that the cpu time gets accounted to
  4113. * @user_tick: indicates if the tick is a user or a system tick
  4114. */
  4115. void account_process_tick(struct task_struct *p, int user_tick)
  4116. {
  4117. cputime_t one_jiffy = jiffies_to_cputime(1);
  4118. cputime_t one_jiffy_scaled = cputime_to_scaled(one_jiffy);
  4119. struct rq *rq = this_rq();
  4120. if (user_tick)
  4121. account_user_time(p, one_jiffy, one_jiffy_scaled);
  4122. else if (p != rq->idle)
  4123. account_system_time(p, HARDIRQ_OFFSET, one_jiffy,
  4124. one_jiffy_scaled);
  4125. else
  4126. account_idle_time(one_jiffy);
  4127. }
  4128. /*
  4129. * Account multiple ticks of steal time.
  4130. * @p: the process from which the cpu time has been stolen
  4131. * @ticks: number of stolen ticks
  4132. */
  4133. void account_steal_ticks(unsigned long ticks)
  4134. {
  4135. account_steal_time(jiffies_to_cputime(ticks));
  4136. }
  4137. /*
  4138. * Account multiple ticks of idle time.
  4139. * @ticks: number of stolen ticks
  4140. */
  4141. void account_idle_ticks(unsigned long ticks)
  4142. {
  4143. account_idle_time(jiffies_to_cputime(ticks));
  4144. }
  4145. #endif
  4146. /*
  4147. * Use precise platform statistics if available:
  4148. */
  4149. #ifdef CONFIG_VIRT_CPU_ACCOUNTING
  4150. cputime_t task_utime(struct task_struct *p)
  4151. {
  4152. return p->utime;
  4153. }
  4154. cputime_t task_stime(struct task_struct *p)
  4155. {
  4156. return p->stime;
  4157. }
  4158. #else
  4159. cputime_t task_utime(struct task_struct *p)
  4160. {
  4161. clock_t utime = cputime_to_clock_t(p->utime),
  4162. total = utime + cputime_to_clock_t(p->stime);
  4163. u64 temp;
  4164. /*
  4165. * Use CFS's precise accounting:
  4166. */
  4167. temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);
  4168. if (total) {
  4169. temp *= utime;
  4170. do_div(temp, total);
  4171. }
  4172. utime = (clock_t)temp;
  4173. p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
  4174. return p->prev_utime;
  4175. }
  4176. cputime_t task_stime(struct task_struct *p)
  4177. {
  4178. clock_t stime;
  4179. /*
  4180. * Use CFS's precise accounting. (we subtract utime from
  4181. * the total, to make sure the total observed by userspace
  4182. * grows monotonically - apps rely on that):
  4183. */
  4184. stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
  4185. cputime_to_clock_t(task_utime(p));
  4186. if (stime >= 0)
  4187. p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));
  4188. return p->prev_stime;
  4189. }
  4190. #endif
  4191. inline cputime_t task_gtime(struct task_struct *p)
  4192. {
  4193. return p->gtime;
  4194. }
  4195. /*
  4196. * This function gets called by the timer code, with HZ frequency.
  4197. * We call it with interrupts disabled.
  4198. *
  4199. * It also gets called by the fork code, when changing the parent's
  4200. * timeslices.
  4201. */
  4202. void scheduler_tick(void)
  4203. {
  4204. int cpu = smp_processor_id();
  4205. struct rq *rq = cpu_rq(cpu);
  4206. struct task_struct *curr = rq->curr;
  4207. sched_clock_tick();
  4208. spin_lock(&rq->lock);
  4209. update_rq_clock(rq);
  4210. update_cpu_load(rq);
  4211. curr->sched_class->task_tick(rq, curr, 0);
  4212. spin_unlock(&rq->lock);
  4213. #ifdef CONFIG_SMP
  4214. rq->idle_at_tick = idle_cpu(cpu);
  4215. trigger_load_balance(rq, cpu);
  4216. #endif
  4217. }
  4218. unsigned long get_parent_ip(unsigned long addr)
  4219. {
  4220. if (in_lock_functions(addr)) {
  4221. addr = CALLER_ADDR2;
  4222. if (in_lock_functions(addr))
  4223. addr = CALLER_ADDR3;
  4224. }
  4225. return addr;
  4226. }
  4227. #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
  4228. defined(CONFIG_PREEMPT_TRACER))
  4229. void __kprobes add_preempt_count(int val)
  4230. {
  4231. #ifdef CONFIG_DEBUG_PREEMPT
  4232. /*
  4233. * Underflow?
  4234. */
  4235. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  4236. return;
  4237. #endif
  4238. preempt_count() += val;
  4239. #ifdef CONFIG_DEBUG_PREEMPT
  4240. /*
  4241. * Spinlock count overflowing soon?
  4242. */
  4243. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  4244. PREEMPT_MASK - 10);
  4245. #endif
  4246. if (preempt_count() == val)
  4247. trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  4248. }
  4249. EXPORT_SYMBOL(add_preempt_count);
  4250. void __kprobes sub_preempt_count(int val)
  4251. {
  4252. #ifdef CONFIG_DEBUG_PREEMPT
  4253. /*
  4254. * Underflow?
  4255. */
  4256. if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
  4257. return;
  4258. /*
  4259. * Is the spinlock portion underflowing?
  4260. */
  4261. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  4262. !(preempt_count() & PREEMPT_MASK)))
  4263. return;
  4264. #endif
  4265. if (preempt_count() == val)
  4266. trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  4267. preempt_count() -= val;
  4268. }
  4269. EXPORT_SYMBOL(sub_preempt_count);
  4270. #endif
  4271. /*
  4272. * Print scheduling while atomic bug:
  4273. */
  4274. static noinline void __schedule_bug(struct task_struct *prev)
  4275. {
  4276. struct pt_regs *regs = get_irq_regs();
  4277. printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
  4278. prev->comm, prev->pid, preempt_count());
  4279. debug_show_held_locks(prev);
  4280. print_modules();
  4281. if (irqs_disabled())
  4282. print_irqtrace_events(prev);
  4283. if (regs)
  4284. show_regs(regs);
  4285. else
  4286. dump_stack();
  4287. }
  4288. /*
  4289. * Various schedule()-time debugging checks and statistics:
  4290. */
  4291. static inline void schedule_debug(struct task_struct *prev)
  4292. {
  4293. /*
  4294. * Test if we are atomic. Since do_exit() needs to call into
  4295. * schedule() atomically, we ignore that path for now.
  4296. * Otherwise, whine if we are scheduling when we should not be.
  4297. */
  4298. if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
  4299. __schedule_bug(prev);
  4300. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  4301. schedstat_inc(this_rq(), sched_count);
  4302. #ifdef CONFIG_SCHEDSTATS
  4303. if (unlikely(prev->lock_depth >= 0)) {
  4304. schedstat_inc(this_rq(), bkl_count);
  4305. schedstat_inc(prev, sched_info.bkl_count);
  4306. }
  4307. #endif
  4308. }
  4309. static void put_prev_task(struct rq *rq, struct task_struct *prev)
  4310. {
  4311. if (prev->state == TASK_RUNNING) {
  4312. u64 runtime = prev->se.sum_exec_runtime;
  4313. runtime -= prev->se.prev_sum_exec_runtime;
  4314. runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost);
  4315. /*
  4316. * In order to avoid avg_overlap growing stale when we are
  4317. * indeed overlapping and hence not getting put to sleep, grow
  4318. * the avg_overlap on preemption.
  4319. *
  4320. * We use the average preemption runtime because that
  4321. * correlates to the amount of cache footprint a task can
  4322. * build up.
  4323. */
  4324. update_avg(&prev->se.avg_overlap, runtime);
  4325. }
  4326. prev->sched_class->put_prev_task(rq, prev);
  4327. }
  4328. /*
  4329. * Pick up the highest-prio task:
  4330. */
  4331. static inline struct task_struct *
  4332. pick_next_task(struct rq *rq)
  4333. {
  4334. const struct sched_class *class;
  4335. struct task_struct *p;
  4336. /*
  4337. * Optimization: we know that if all tasks are in
  4338. * the fair class we can call that function directly:
  4339. */
  4340. if (likely(rq->nr_running == rq->cfs.nr_running)) {
  4341. p = fair_sched_class.pick_next_task(rq);
  4342. if (likely(p))
  4343. return p;
  4344. }
  4345. class = sched_class_highest;
  4346. for ( ; ; ) {
  4347. p = class->pick_next_task(rq);
  4348. if (p)
  4349. return p;
  4350. /*
  4351. * Will never be NULL as the idle class always
  4352. * returns a non-NULL p:
  4353. */
  4354. class = class->next;
  4355. }
  4356. }
  4357. /*
  4358. * schedule() is the main scheduler function.
  4359. */
  4360. asmlinkage void __sched __schedule(void)
  4361. {
  4362. struct task_struct *prev, *next;
  4363. unsigned long *switch_count;
  4364. struct rq *rq;
  4365. int cpu;
  4366. cpu = smp_processor_id();
  4367. rq = cpu_rq(cpu);
  4368. rcu_qsctr_inc(cpu);
  4369. prev = rq->curr;
  4370. switch_count = &prev->nivcsw;
  4371. release_kernel_lock(prev);
  4372. need_resched_nonpreemptible:
  4373. schedule_debug(prev);
  4374. if (sched_feat(HRTICK))
  4375. hrtick_clear(rq);
  4376. spin_lock_irq(&rq->lock);
  4377. update_rq_clock(rq);
  4378. clear_tsk_need_resched(prev);
  4379. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  4380. if (unlikely(signal_pending_state(prev->state, prev)))
  4381. prev->state = TASK_RUNNING;
  4382. else
  4383. deactivate_task(rq, prev, 1);
  4384. switch_count = &prev->nvcsw;
  4385. }
  4386. #ifdef CONFIG_SMP
  4387. if (prev->sched_class->pre_schedule)
  4388. prev->sched_class->pre_schedule(rq, prev);
  4389. #endif
  4390. if (unlikely(!rq->nr_running))
  4391. idle_balance(cpu, rq);
  4392. put_prev_task(rq, prev);
  4393. next = pick_next_task(rq);
  4394. if (likely(prev != next)) {
  4395. sched_info_switch(prev, next);
  4396. rq->nr_switches++;
  4397. rq->curr = next;
  4398. ++*switch_count;
  4399. context_switch(rq, prev, next); /* unlocks the rq */
  4400. /*
  4401. * the context switch might have flipped the stack from under
  4402. * us, hence refresh the local variables.
  4403. */
  4404. cpu = smp_processor_id();
  4405. rq = cpu_rq(cpu);
  4406. } else
  4407. spin_unlock_irq(&rq->lock);
  4408. if (unlikely(reacquire_kernel_lock(current) < 0))
  4409. goto need_resched_nonpreemptible;
  4410. }
  4411. asmlinkage void __sched schedule(void)
  4412. {
  4413. need_resched:
  4414. preempt_disable();
  4415. __schedule();
  4416. preempt_enable_no_resched();
  4417. if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
  4418. goto need_resched;
  4419. }
  4420. EXPORT_SYMBOL(schedule);
  4421. #ifdef CONFIG_SMP
  4422. /*
  4423. * Look out! "owner" is an entirely speculative pointer
  4424. * access and not reliable.
  4425. */
  4426. int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
  4427. {
  4428. unsigned int cpu;
  4429. struct rq *rq;
  4430. if (!sched_feat(OWNER_SPIN))
  4431. return 0;
  4432. #ifdef CONFIG_DEBUG_PAGEALLOC
  4433. /*
  4434. * Need to access the cpu field knowing that
  4435. * DEBUG_PAGEALLOC could have unmapped it if
  4436. * the mutex owner just released it and exited.
  4437. */
  4438. if (probe_kernel_address(&owner->cpu, cpu))
  4439. goto out;
  4440. #else
  4441. cpu = owner->cpu;
  4442. #endif
  4443. /*
  4444. * Even if the access succeeded (likely case),
  4445. * the cpu field may no longer be valid.
  4446. */
  4447. if (cpu >= nr_cpumask_bits)
  4448. goto out;
  4449. /*
  4450. * We need to validate that we can do a
  4451. * get_cpu() and that we have the percpu area.
  4452. */
  4453. if (!cpu_online(cpu))
  4454. goto out;
  4455. rq = cpu_rq(cpu);
  4456. for (;;) {
  4457. /*
  4458. * Owner changed, break to re-assess state.
  4459. */
  4460. if (lock->owner != owner)
  4461. break;
  4462. /*
  4463. * Is that owner really running on that cpu?
  4464. */
  4465. if (task_thread_info(rq->curr) != owner || need_resched())
  4466. return 0;
  4467. cpu_relax();
  4468. }
  4469. out:
  4470. return 1;
  4471. }
  4472. #endif
  4473. #ifdef CONFIG_PREEMPT
  4474. /*
  4475. * this is the entry point to schedule() from in-kernel preemption
  4476. * off of preempt_enable. Kernel preemptions off return from interrupt
  4477. * occur there and call schedule directly.
  4478. */
  4479. asmlinkage void __sched preempt_schedule(void)
  4480. {
  4481. struct thread_info *ti = current_thread_info();
  4482. /*
  4483. * If there is a non-zero preempt_count or interrupts are disabled,
  4484. * we do not want to preempt the current task. Just return..
  4485. */
  4486. if (likely(ti->preempt_count || irqs_disabled()))
  4487. return;
  4488. do {
  4489. add_preempt_count(PREEMPT_ACTIVE);
  4490. schedule();
  4491. sub_preempt_count(PREEMPT_ACTIVE);
  4492. /*
  4493. * Check again in case we missed a preemption opportunity
  4494. * between schedule and now.
  4495. */
  4496. barrier();
  4497. } while (need_resched());
  4498. }
  4499. EXPORT_SYMBOL(preempt_schedule);
  4500. /*
  4501. * this is the entry point to schedule() from kernel preemption
  4502. * off of irq context.
  4503. * Note, that this is called and return with irqs disabled. This will
  4504. * protect us against recursive calling from irq.
  4505. */
  4506. asmlinkage void __sched preempt_schedule_irq(void)
  4507. {
  4508. struct thread_info *ti = current_thread_info();
  4509. /* Catch callers which need to be fixed */
  4510. BUG_ON(ti->preempt_count || !irqs_disabled());
  4511. do {
  4512. add_preempt_count(PREEMPT_ACTIVE);
  4513. local_irq_enable();
  4514. schedule();
  4515. local_irq_disable();
  4516. sub_preempt_count(PREEMPT_ACTIVE);
  4517. /*
  4518. * Check again in case we missed a preemption opportunity
  4519. * between schedule and now.
  4520. */
  4521. barrier();
  4522. } while (need_resched());
  4523. }
  4524. #endif /* CONFIG_PREEMPT */
  4525. int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
  4526. void *key)
  4527. {
  4528. return try_to_wake_up(curr->private, mode, sync);
  4529. }
  4530. EXPORT_SYMBOL(default_wake_function);
  4531. /*
  4532. * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
  4533. * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
  4534. * number) then we wake all the non-exclusive tasks and one exclusive task.
  4535. *
  4536. * There are circumstances in which we can try to wake a task which has already
  4537. * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
  4538. * zero in this (rare) case, and we handle it by continuing to scan the queue.
  4539. */
  4540. void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
  4541. int nr_exclusive, int sync, void *key)
  4542. {
  4543. wait_queue_t *curr, *next;
  4544. list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
  4545. unsigned flags = curr->flags;
  4546. if (curr->func(curr, mode, sync, key) &&
  4547. (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
  4548. break;
  4549. }
  4550. }
  4551. /**
  4552. * __wake_up - wake up threads blocked on a waitqueue.
  4553. * @q: the waitqueue
  4554. * @mode: which threads
  4555. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  4556. * @key: is directly passed to the wakeup function
  4557. */
  4558. void __wake_up(wait_queue_head_t *q, unsigned int mode,
  4559. int nr_exclusive, void *key)
  4560. {
  4561. unsigned long flags;
  4562. spin_lock_irqsave(&q->lock, flags);
  4563. __wake_up_common(q, mode, nr_exclusive, 0, key);
  4564. spin_unlock_irqrestore(&q->lock, flags);
  4565. }
  4566. EXPORT_SYMBOL(__wake_up);
  4567. /*
  4568. * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
  4569. */
  4570. void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
  4571. {
  4572. __wake_up_common(q, mode, 1, 0, NULL);
  4573. }
  4574. void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
  4575. {
  4576. __wake_up_common(q, mode, 1, 0, key);
  4577. }
  4578. /**
  4579. * __wake_up_sync_key - wake up threads blocked on a waitqueue.
  4580. * @q: the waitqueue
  4581. * @mode: which threads
  4582. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  4583. * @key: opaque value to be passed to wakeup targets
  4584. *
  4585. * The sync wakeup differs that the waker knows that it will schedule
  4586. * away soon, so while the target thread will be woken up, it will not
  4587. * be migrated to another CPU - ie. the two threads are 'synchronized'
  4588. * with each other. This can prevent needless bouncing between CPUs.
  4589. *
  4590. * On UP it can prevent extra preemption.
  4591. */
  4592. void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
  4593. int nr_exclusive, void *key)
  4594. {
  4595. unsigned long flags;
  4596. int sync = 1;
  4597. if (unlikely(!q))
  4598. return;
  4599. if (unlikely(!nr_exclusive))
  4600. sync = 0;
  4601. spin_lock_irqsave(&q->lock, flags);
  4602. __wake_up_common(q, mode, nr_exclusive, sync, key);
  4603. spin_unlock_irqrestore(&q->lock, flags);
  4604. }
  4605. EXPORT_SYMBOL_GPL(__wake_up_sync_key);
  4606. /*
  4607. * __wake_up_sync - see __wake_up_sync_key()
  4608. */
  4609. void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
  4610. {
  4611. __wake_up_sync_key(q, mode, nr_exclusive, NULL);
  4612. }
  4613. EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
  4614. /**
  4615. * complete: - signals a single thread waiting on this completion
  4616. * @x: holds the state of this particular completion
  4617. *
  4618. * This will wake up a single thread waiting on this completion. Threads will be
  4619. * awakened in the same order in which they were queued.
  4620. *
  4621. * See also complete_all(), wait_for_completion() and related routines.
  4622. */
  4623. void complete(struct completion *x)
  4624. {
  4625. unsigned long flags;
  4626. spin_lock_irqsave(&x->wait.lock, flags);
  4627. x->done++;
  4628. __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
  4629. spin_unlock_irqrestore(&x->wait.lock, flags);
  4630. }
  4631. EXPORT_SYMBOL(complete);
  4632. /**
  4633. * complete_all: - signals all threads waiting on this completion
  4634. * @x: holds the state of this particular completion
  4635. *
  4636. * This will wake up all threads waiting on this particular completion event.
  4637. */
  4638. void complete_all(struct completion *x)
  4639. {
  4640. unsigned long flags;
  4641. spin_lock_irqsave(&x->wait.lock, flags);
  4642. x->done += UINT_MAX/2;
  4643. __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
  4644. spin_unlock_irqrestore(&x->wait.lock, flags);
  4645. }
  4646. EXPORT_SYMBOL(complete_all);
  4647. static inline long __sched
  4648. do_wait_for_common(struct completion *x, long timeout, int state)
  4649. {
  4650. if (!x->done) {
  4651. DECLARE_WAITQUEUE(wait, current);
  4652. wait.flags |= WQ_FLAG_EXCLUSIVE;
  4653. __add_wait_queue_tail(&x->wait, &wait);
  4654. do {
  4655. if (signal_pending_state(state, current)) {
  4656. timeout = -ERESTARTSYS;
  4657. break;
  4658. }
  4659. __set_current_state(state);
  4660. spin_unlock_irq(&x->wait.lock);
  4661. timeout = schedule_timeout(timeout);
  4662. spin_lock_irq(&x->wait.lock);
  4663. } while (!x->done && timeout);
  4664. __remove_wait_queue(&x->wait, &wait);
  4665. if (!x->done)
  4666. return timeout;
  4667. }
  4668. x->done--;
  4669. return timeout ?: 1;
  4670. }
  4671. static long __sched
  4672. wait_for_common(struct completion *x, long timeout, int state)
  4673. {
  4674. might_sleep();
  4675. spin_lock_irq(&x->wait.lock);
  4676. timeout = do_wait_for_common(x, timeout, state);
  4677. spin_unlock_irq(&x->wait.lock);
  4678. return timeout;
  4679. }
  4680. /**
  4681. * wait_for_completion: - waits for completion of a task
  4682. * @x: holds the state of this particular completion
  4683. *
  4684. * This waits to be signaled for completion of a specific task. It is NOT
  4685. * interruptible and there is no timeout.
  4686. *
  4687. * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
  4688. * and interrupt capability. Also see complete().
  4689. */
  4690. void __sched wait_for_completion(struct completion *x)
  4691. {
  4692. wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
  4693. }
  4694. EXPORT_SYMBOL(wait_for_completion);
  4695. /**
  4696. * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
  4697. * @x: holds the state of this particular completion
  4698. * @timeout: timeout value in jiffies
  4699. *
  4700. * This waits for either a completion of a specific task to be signaled or for a
  4701. * specified timeout to expire. The timeout is in jiffies. It is not
  4702. * interruptible.
  4703. */
  4704. unsigned long __sched
  4705. wait_for_completion_timeout(struct completion *x, unsigned long timeout)
  4706. {
  4707. return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
  4708. }
  4709. EXPORT_SYMBOL(wait_for_completion_timeout);
  4710. /**
  4711. * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
  4712. * @x: holds the state of this particular completion
  4713. *
  4714. * This waits for completion of a specific task to be signaled. It is
  4715. * interruptible.
  4716. */
  4717. int __sched wait_for_completion_interruptible(struct completion *x)
  4718. {
  4719. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
  4720. if (t == -ERESTARTSYS)
  4721. return t;
  4722. return 0;
  4723. }
  4724. EXPORT_SYMBOL(wait_for_completion_interruptible);
  4725. /**
  4726. * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
  4727. * @x: holds the state of this particular completion
  4728. * @timeout: timeout value in jiffies
  4729. *
  4730. * This waits for either a completion of a specific task to be signaled or for a
  4731. * specified timeout to expire. It is interruptible. The timeout is in jiffies.
  4732. */
  4733. unsigned long __sched
  4734. wait_for_completion_interruptible_timeout(struct completion *x,
  4735. unsigned long timeout)
  4736. {
  4737. return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
  4738. }
  4739. EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
  4740. /**
  4741. * wait_for_completion_killable: - waits for completion of a task (killable)
  4742. * @x: holds the state of this particular completion
  4743. *
  4744. * This waits to be signaled for completion of a specific task. It can be
  4745. * interrupted by a kill signal.
  4746. */
  4747. int __sched wait_for_completion_killable(struct completion *x)
  4748. {
  4749. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
  4750. if (t == -ERESTARTSYS)
  4751. return t;
  4752. return 0;
  4753. }
  4754. EXPORT_SYMBOL(wait_for_completion_killable);
  4755. /**
  4756. * try_wait_for_completion - try to decrement a completion without blocking
  4757. * @x: completion structure
  4758. *
  4759. * Returns: 0 if a decrement cannot be done without blocking
  4760. * 1 if a decrement succeeded.
  4761. *
  4762. * If a completion is being used as a counting completion,
  4763. * attempt to decrement the counter without blocking. This
  4764. * enables us to avoid waiting if the resource the completion
  4765. * is protecting is not available.
  4766. */
  4767. bool try_wait_for_completion(struct completion *x)
  4768. {
  4769. int ret = 1;
  4770. spin_lock_irq(&x->wait.lock);
  4771. if (!x->done)
  4772. ret = 0;
  4773. else
  4774. x->done--;
  4775. spin_unlock_irq(&x->wait.lock);
  4776. return ret;
  4777. }
  4778. EXPORT_SYMBOL(try_wait_for_completion);
  4779. /**
  4780. * completion_done - Test to see if a completion has any waiters
  4781. * @x: completion structure
  4782. *
  4783. * Returns: 0 if there are waiters (wait_for_completion() in progress)
  4784. * 1 if there are no waiters.
  4785. *
  4786. */
  4787. bool completion_done(struct completion *x)
  4788. {
  4789. int ret = 1;
  4790. spin_lock_irq(&x->wait.lock);
  4791. if (!x->done)
  4792. ret = 0;
  4793. spin_unlock_irq(&x->wait.lock);
  4794. return ret;
  4795. }
  4796. EXPORT_SYMBOL(completion_done);
  4797. static long __sched
  4798. sleep_on_common(wait_queue_head_t *q, int state, long timeout)
  4799. {
  4800. unsigned long flags;
  4801. wait_queue_t wait;
  4802. init_waitqueue_entry(&wait, current);
  4803. __set_current_state(state);
  4804. spin_lock_irqsave(&q->lock, flags);
  4805. __add_wait_queue(q, &wait);
  4806. spin_unlock(&q->lock);
  4807. timeout = schedule_timeout(timeout);
  4808. spin_lock_irq(&q->lock);
  4809. __remove_wait_queue(q, &wait);
  4810. spin_unlock_irqrestore(&q->lock, flags);
  4811. return timeout;
  4812. }
  4813. void __sched interruptible_sleep_on(wait_queue_head_t *q)
  4814. {
  4815. sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  4816. }
  4817. EXPORT_SYMBOL(interruptible_sleep_on);
  4818. long __sched
  4819. interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
  4820. {
  4821. return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
  4822. }
  4823. EXPORT_SYMBOL(interruptible_sleep_on_timeout);
  4824. void __sched sleep_on(wait_queue_head_t *q)
  4825. {
  4826. sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  4827. }
  4828. EXPORT_SYMBOL(sleep_on);
  4829. long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
  4830. {
  4831. return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
  4832. }
  4833. EXPORT_SYMBOL(sleep_on_timeout);
  4834. #ifdef CONFIG_RT_MUTEXES
  4835. /*
  4836. * rt_mutex_setprio - set the current priority of a task
  4837. * @p: task
  4838. * @prio: prio value (kernel-internal form)
  4839. *
  4840. * This function changes the 'effective' priority of a task. It does
  4841. * not touch ->normal_prio like __setscheduler().
  4842. *
  4843. * Used by the rt_mutex code to implement priority inheritance logic.
  4844. */
  4845. void rt_mutex_setprio(struct task_struct *p, int prio)
  4846. {
  4847. unsigned long flags;
  4848. int oldprio, on_rq, running;
  4849. struct rq *rq;
  4850. const struct sched_class *prev_class = p->sched_class;
  4851. BUG_ON(prio < 0 || prio > MAX_PRIO);
  4852. rq = task_rq_lock(p, &flags);
  4853. update_rq_clock(rq);
  4854. oldprio = p->prio;
  4855. on_rq = p->se.on_rq;
  4856. running = task_current(rq, p);
  4857. if (on_rq)
  4858. dequeue_task(rq, p, 0);
  4859. if (running)
  4860. p->sched_class->put_prev_task(rq, p);
  4861. if (rt_prio(prio))
  4862. p->sched_class = &rt_sched_class;
  4863. else
  4864. p->sched_class = &fair_sched_class;
  4865. p->prio = prio;
  4866. if (running)
  4867. p->sched_class->set_curr_task(rq);
  4868. if (on_rq) {
  4869. enqueue_task(rq, p, 0);
  4870. check_class_changed(rq, p, prev_class, oldprio, running);
  4871. }
  4872. task_rq_unlock(rq, &flags);
  4873. }
  4874. #endif
  4875. void set_user_nice(struct task_struct *p, long nice)
  4876. {
  4877. int old_prio, delta, on_rq;
  4878. unsigned long flags;
  4879. struct rq *rq;
  4880. if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
  4881. return;
  4882. /*
  4883. * We have to be careful, if called from sys_setpriority(),
  4884. * the task might be in the middle of scheduling on another CPU.
  4885. */
  4886. rq = task_rq_lock(p, &flags);
  4887. update_rq_clock(rq);
  4888. /*
  4889. * The RT priorities are set via sched_setscheduler(), but we still
  4890. * allow the 'normal' nice value to be set - but as expected
  4891. * it wont have any effect on scheduling until the task is
  4892. * SCHED_FIFO/SCHED_RR:
  4893. */
  4894. if (task_has_rt_policy(p)) {
  4895. p->static_prio = NICE_TO_PRIO(nice);
  4896. goto out_unlock;
  4897. }
  4898. on_rq = p->se.on_rq;
  4899. if (on_rq)
  4900. dequeue_task(rq, p, 0);
  4901. p->static_prio = NICE_TO_PRIO(nice);
  4902. set_load_weight(p);
  4903. old_prio = p->prio;
  4904. p->prio = effective_prio(p);
  4905. delta = p->prio - old_prio;
  4906. if (on_rq) {
  4907. enqueue_task(rq, p, 0);
  4908. /*
  4909. * If the task increased its priority or is running and
  4910. * lowered its priority, then reschedule its CPU:
  4911. */
  4912. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  4913. resched_task(rq->curr);
  4914. }
  4915. out_unlock:
  4916. task_rq_unlock(rq, &flags);
  4917. }
  4918. EXPORT_SYMBOL(set_user_nice);
  4919. /*
  4920. * can_nice - check if a task can reduce its nice value
  4921. * @p: task
  4922. * @nice: nice value
  4923. */
  4924. int can_nice(const struct task_struct *p, const int nice)
  4925. {
  4926. /* convert nice value [19,-20] to rlimit style value [1,40] */
  4927. int nice_rlim = 20 - nice;
  4928. return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
  4929. capable(CAP_SYS_NICE));
  4930. }
  4931. #ifdef __ARCH_WANT_SYS_NICE
  4932. /*
  4933. * sys_nice - change the priority of the current process.
  4934. * @increment: priority increment
  4935. *
  4936. * sys_setpriority is a more generic, but much slower function that
  4937. * does similar things.
  4938. */
  4939. SYSCALL_DEFINE1(nice, int, increment)
  4940. {
  4941. long nice, retval;
  4942. /*
  4943. * Setpriority might change our priority at the same moment.
  4944. * We don't have to worry. Conceptually one call occurs first
  4945. * and we have a single winner.
  4946. */
  4947. if (increment < -40)
  4948. increment = -40;
  4949. if (increment > 40)
  4950. increment = 40;
  4951. nice = TASK_NICE(current) + increment;
  4952. if (nice < -20)
  4953. nice = -20;
  4954. if (nice > 19)
  4955. nice = 19;
  4956. if (increment < 0 && !can_nice(current, nice))
  4957. return -EPERM;
  4958. retval = security_task_setnice(current, nice);
  4959. if (retval)
  4960. return retval;
  4961. set_user_nice(current, nice);
  4962. return 0;
  4963. }
  4964. #endif
  4965. /**
  4966. * task_prio - return the priority value of a given task.
  4967. * @p: the task in question.
  4968. *
  4969. * This is the priority value as seen by users in /proc.
  4970. * RT tasks are offset by -200. Normal tasks are centered
  4971. * around 0, value goes from -16 to +15.
  4972. */
  4973. int task_prio(const struct task_struct *p)
  4974. {
  4975. return p->prio - MAX_RT_PRIO;
  4976. }
  4977. /**
  4978. * task_nice - return the nice value of a given task.
  4979. * @p: the task in question.
  4980. */
  4981. int task_nice(const struct task_struct *p)
  4982. {
  4983. return TASK_NICE(p);
  4984. }
  4985. EXPORT_SYMBOL(task_nice);
  4986. /**
  4987. * idle_cpu - is a given cpu idle currently?
  4988. * @cpu: the processor in question.
  4989. */
  4990. int idle_cpu(int cpu)
  4991. {
  4992. return cpu_curr(cpu) == cpu_rq(cpu)->idle;
  4993. }
  4994. /**
  4995. * idle_task - return the idle task for a given cpu.
  4996. * @cpu: the processor in question.
  4997. */
  4998. struct task_struct *idle_task(int cpu)
  4999. {
  5000. return cpu_rq(cpu)->idle;
  5001. }
  5002. /**
  5003. * find_process_by_pid - find a process with a matching PID value.
  5004. * @pid: the pid in question.
  5005. */
  5006. static struct task_struct *find_process_by_pid(pid_t pid)
  5007. {
  5008. return pid ? find_task_by_vpid(pid) : current;
  5009. }
  5010. /* Actually do priority change: must hold rq lock. */
  5011. static void
  5012. __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
  5013. {
  5014. BUG_ON(p->se.on_rq);
  5015. p->policy = policy;
  5016. switch (p->policy) {
  5017. case SCHED_NORMAL:
  5018. case SCHED_BATCH:
  5019. case SCHED_IDLE:
  5020. p->sched_class = &fair_sched_class;
  5021. break;
  5022. case SCHED_FIFO:
  5023. case SCHED_RR:
  5024. p->sched_class = &rt_sched_class;
  5025. break;
  5026. }
  5027. p->rt_priority = prio;
  5028. p->normal_prio = normal_prio(p);
  5029. /* we are holding p->pi_lock already */
  5030. p->prio = rt_mutex_getprio(p);
  5031. set_load_weight(p);
  5032. }
  5033. /*
  5034. * check the target process has a UID that matches the current process's
  5035. */
  5036. static bool check_same_owner(struct task_struct *p)
  5037. {
  5038. const struct cred *cred = current_cred(), *pcred;
  5039. bool match;
  5040. rcu_read_lock();
  5041. pcred = __task_cred(p);
  5042. match = (cred->euid == pcred->euid ||
  5043. cred->euid == pcred->uid);
  5044. rcu_read_unlock();
  5045. return match;
  5046. }
  5047. static int __sched_setscheduler(struct task_struct *p, int policy,
  5048. struct sched_param *param, bool user)
  5049. {
  5050. int retval, oldprio, oldpolicy = -1, on_rq, running;
  5051. unsigned long flags;
  5052. const struct sched_class *prev_class = p->sched_class;
  5053. struct rq *rq;
  5054. /* may grab non-irq protected spin_locks */
  5055. BUG_ON(in_interrupt());
  5056. recheck:
  5057. /* double check policy once rq lock held */
  5058. if (policy < 0)
  5059. policy = oldpolicy = p->policy;
  5060. else if (policy != SCHED_FIFO && policy != SCHED_RR &&
  5061. policy != SCHED_NORMAL && policy != SCHED_BATCH &&
  5062. policy != SCHED_IDLE)
  5063. return -EINVAL;
  5064. /*
  5065. * Valid priorities for SCHED_FIFO and SCHED_RR are
  5066. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
  5067. * SCHED_BATCH and SCHED_IDLE is 0.
  5068. */
  5069. if (param->sched_priority < 0 ||
  5070. (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
  5071. (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
  5072. return -EINVAL;
  5073. if (rt_policy(policy) != (param->sched_priority != 0))
  5074. return -EINVAL;
  5075. /*
  5076. * Allow unprivileged RT tasks to decrease priority:
  5077. */
  5078. if (user && !capable(CAP_SYS_NICE)) {
  5079. if (rt_policy(policy)) {
  5080. unsigned long rlim_rtprio;
  5081. if (!lock_task_sighand(p, &flags))
  5082. return -ESRCH;
  5083. rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
  5084. unlock_task_sighand(p, &flags);
  5085. /* can't set/change the rt policy */
  5086. if (policy != p->policy && !rlim_rtprio)
  5087. return -EPERM;
  5088. /* can't increase priority */
  5089. if (param->sched_priority > p->rt_priority &&
  5090. param->sched_priority > rlim_rtprio)
  5091. return -EPERM;
  5092. }
  5093. /*
  5094. * Like positive nice levels, dont allow tasks to
  5095. * move out of SCHED_IDLE either:
  5096. */
  5097. if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
  5098. return -EPERM;
  5099. /* can't change other user's priorities */
  5100. if (!check_same_owner(p))
  5101. return -EPERM;
  5102. }
  5103. if (user) {
  5104. #ifdef CONFIG_RT_GROUP_SCHED
  5105. /*
  5106. * Do not allow realtime tasks into groups that have no runtime
  5107. * assigned.
  5108. */
  5109. if (rt_bandwidth_enabled() && rt_policy(policy) &&
  5110. task_group(p)->rt_bandwidth.rt_runtime == 0)
  5111. return -EPERM;
  5112. #endif
  5113. retval = security_task_setscheduler(p, policy, param);
  5114. if (retval)
  5115. return retval;
  5116. }
  5117. /*
  5118. * make sure no PI-waiters arrive (or leave) while we are
  5119. * changing the priority of the task:
  5120. */
  5121. spin_lock_irqsave(&p->pi_lock, flags);
  5122. /*
  5123. * To be able to change p->policy safely, the apropriate
  5124. * runqueue lock must be held.
  5125. */
  5126. rq = __task_rq_lock(p);
  5127. /* recheck policy now with rq lock held */
  5128. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  5129. policy = oldpolicy = -1;
  5130. __task_rq_unlock(rq);
  5131. spin_unlock_irqrestore(&p->pi_lock, flags);
  5132. goto recheck;
  5133. }
  5134. update_rq_clock(rq);
  5135. on_rq = p->se.on_rq;
  5136. running = task_current(rq, p);
  5137. if (on_rq)
  5138. deactivate_task(rq, p, 0);
  5139. if (running)
  5140. p->sched_class->put_prev_task(rq, p);
  5141. oldprio = p->prio;
  5142. __setscheduler(rq, p, policy, param->sched_priority);
  5143. if (running)
  5144. p->sched_class->set_curr_task(rq);
  5145. if (on_rq) {
  5146. activate_task(rq, p, 0);
  5147. check_class_changed(rq, p, prev_class, oldprio, running);
  5148. }
  5149. __task_rq_unlock(rq);
  5150. spin_unlock_irqrestore(&p->pi_lock, flags);
  5151. rt_mutex_adjust_pi(p);
  5152. return 0;
  5153. }
  5154. /**
  5155. * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
  5156. * @p: the task in question.
  5157. * @policy: new policy.
  5158. * @param: structure containing the new RT priority.
  5159. *
  5160. * NOTE that the task may be already dead.
  5161. */
  5162. int sched_setscheduler(struct task_struct *p, int policy,
  5163. struct sched_param *param)
  5164. {
  5165. return __sched_setscheduler(p, policy, param, true);
  5166. }
  5167. EXPORT_SYMBOL_GPL(sched_setscheduler);
  5168. /**
  5169. * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
  5170. * @p: the task in question.
  5171. * @policy: new policy.
  5172. * @param: structure containing the new RT priority.
  5173. *
  5174. * Just like sched_setscheduler, only don't bother checking if the
  5175. * current context has permission. For example, this is needed in
  5176. * stop_machine(): we create temporary high priority worker threads,
  5177. * but our caller might not have that capability.
  5178. */
  5179. int sched_setscheduler_nocheck(struct task_struct *p, int policy,
  5180. struct sched_param *param)
  5181. {
  5182. return __sched_setscheduler(p, policy, param, false);
  5183. }
  5184. static int
  5185. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  5186. {
  5187. struct sched_param lparam;
  5188. struct task_struct *p;
  5189. int retval;
  5190. if (!param || pid < 0)
  5191. return -EINVAL;
  5192. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  5193. return -EFAULT;
  5194. rcu_read_lock();
  5195. retval = -ESRCH;
  5196. p = find_process_by_pid(pid);
  5197. if (p != NULL)
  5198. retval = sched_setscheduler(p, policy, &lparam);
  5199. rcu_read_unlock();
  5200. return retval;
  5201. }
  5202. /**
  5203. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  5204. * @pid: the pid in question.
  5205. * @policy: new policy.
  5206. * @param: structure containing the new RT priority.
  5207. */
  5208. SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
  5209. struct sched_param __user *, param)
  5210. {
  5211. /* negative values for policy are not valid */
  5212. if (policy < 0)
  5213. return -EINVAL;
  5214. return do_sched_setscheduler(pid, policy, param);
  5215. }
  5216. /**
  5217. * sys_sched_setparam - set/change the RT priority of a thread
  5218. * @pid: the pid in question.
  5219. * @param: structure containing the new RT priority.
  5220. */
  5221. SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
  5222. {
  5223. return do_sched_setscheduler(pid, -1, param);
  5224. }
  5225. /**
  5226. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  5227. * @pid: the pid in question.
  5228. */
  5229. SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
  5230. {
  5231. struct task_struct *p;
  5232. int retval;
  5233. if (pid < 0)
  5234. return -EINVAL;
  5235. retval = -ESRCH;
  5236. read_lock(&tasklist_lock);
  5237. p = find_process_by_pid(pid);
  5238. if (p) {
  5239. retval = security_task_getscheduler(p);
  5240. if (!retval)
  5241. retval = p->policy;
  5242. }
  5243. read_unlock(&tasklist_lock);
  5244. return retval;
  5245. }
  5246. /**
  5247. * sys_sched_getscheduler - get the RT priority of a thread
  5248. * @pid: the pid in question.
  5249. * @param: structure containing the RT priority.
  5250. */
  5251. SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
  5252. {
  5253. struct sched_param lp;
  5254. struct task_struct *p;
  5255. int retval;
  5256. if (!param || pid < 0)
  5257. return -EINVAL;
  5258. read_lock(&tasklist_lock);
  5259. p = find_process_by_pid(pid);
  5260. retval = -ESRCH;
  5261. if (!p)
  5262. goto out_unlock;
  5263. retval = security_task_getscheduler(p);
  5264. if (retval)
  5265. goto out_unlock;
  5266. lp.sched_priority = p->rt_priority;
  5267. read_unlock(&tasklist_lock);
  5268. /*
  5269. * This one might sleep, we cannot do it with a spinlock held ...
  5270. */
  5271. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  5272. return retval;
  5273. out_unlock:
  5274. read_unlock(&tasklist_lock);
  5275. return retval;
  5276. }
  5277. long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
  5278. {
  5279. cpumask_var_t cpus_allowed, new_mask;
  5280. struct task_struct *p;
  5281. int retval;
  5282. get_online_cpus();
  5283. read_lock(&tasklist_lock);
  5284. p = find_process_by_pid(pid);
  5285. if (!p) {
  5286. read_unlock(&tasklist_lock);
  5287. put_online_cpus();
  5288. return -ESRCH;
  5289. }
  5290. /*
  5291. * It is not safe to call set_cpus_allowed with the
  5292. * tasklist_lock held. We will bump the task_struct's
  5293. * usage count and then drop tasklist_lock.
  5294. */
  5295. get_task_struct(p);
  5296. read_unlock(&tasklist_lock);
  5297. if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
  5298. retval = -ENOMEM;
  5299. goto out_put_task;
  5300. }
  5301. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
  5302. retval = -ENOMEM;
  5303. goto out_free_cpus_allowed;
  5304. }
  5305. retval = -EPERM;
  5306. if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
  5307. goto out_unlock;
  5308. retval = security_task_setscheduler(p, 0, NULL);
  5309. if (retval)
  5310. goto out_unlock;
  5311. cpuset_cpus_allowed(p, cpus_allowed);
  5312. cpumask_and(new_mask, in_mask, cpus_allowed);
  5313. again:
  5314. retval = set_cpus_allowed_ptr(p, new_mask);
  5315. if (!retval) {
  5316. cpuset_cpus_allowed(p, cpus_allowed);
  5317. if (!cpumask_subset(new_mask, cpus_allowed)) {
  5318. /*
  5319. * We must have raced with a concurrent cpuset
  5320. * update. Just reset the cpus_allowed to the
  5321. * cpuset's cpus_allowed
  5322. */
  5323. cpumask_copy(new_mask, cpus_allowed);
  5324. goto again;
  5325. }
  5326. }
  5327. out_unlock:
  5328. free_cpumask_var(new_mask);
  5329. out_free_cpus_allowed:
  5330. free_cpumask_var(cpus_allowed);
  5331. out_put_task:
  5332. put_task_struct(p);
  5333. put_online_cpus();
  5334. return retval;
  5335. }
  5336. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  5337. struct cpumask *new_mask)
  5338. {
  5339. if (len < cpumask_size())
  5340. cpumask_clear(new_mask);
  5341. else if (len > cpumask_size())
  5342. len = cpumask_size();
  5343. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  5344. }
  5345. /**
  5346. * sys_sched_setaffinity - set the cpu affinity of a process
  5347. * @pid: pid of the process
  5348. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  5349. * @user_mask_ptr: user-space pointer to the new cpu mask
  5350. */
  5351. SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
  5352. unsigned long __user *, user_mask_ptr)
  5353. {
  5354. cpumask_var_t new_mask;
  5355. int retval;
  5356. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
  5357. return -ENOMEM;
  5358. retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
  5359. if (retval == 0)
  5360. retval = sched_setaffinity(pid, new_mask);
  5361. free_cpumask_var(new_mask);
  5362. return retval;
  5363. }
  5364. long sched_getaffinity(pid_t pid, struct cpumask *mask)
  5365. {
  5366. struct task_struct *p;
  5367. int retval;
  5368. get_online_cpus();
  5369. read_lock(&tasklist_lock);
  5370. retval = -ESRCH;
  5371. p = find_process_by_pid(pid);
  5372. if (!p)
  5373. goto out_unlock;
  5374. retval = security_task_getscheduler(p);
  5375. if (retval)
  5376. goto out_unlock;
  5377. cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
  5378. out_unlock:
  5379. read_unlock(&tasklist_lock);
  5380. put_online_cpus();
  5381. return retval;
  5382. }
  5383. /**
  5384. * sys_sched_getaffinity - get the cpu affinity of a process
  5385. * @pid: pid of the process
  5386. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  5387. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  5388. */
  5389. SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
  5390. unsigned long __user *, user_mask_ptr)
  5391. {
  5392. int ret;
  5393. cpumask_var_t mask;
  5394. if (len < cpumask_size())
  5395. return -EINVAL;
  5396. if (!alloc_cpumask_var(&mask, GFP_KERNEL))
  5397. return -ENOMEM;
  5398. ret = sched_getaffinity(pid, mask);
  5399. if (ret == 0) {
  5400. if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
  5401. ret = -EFAULT;
  5402. else
  5403. ret = cpumask_size();
  5404. }
  5405. free_cpumask_var(mask);
  5406. return ret;
  5407. }
  5408. /**
  5409. * sys_sched_yield - yield the current processor to other threads.
  5410. *
  5411. * This function yields the current CPU to other tasks. If there are no
  5412. * other threads running on this CPU then this function will return.
  5413. */
  5414. SYSCALL_DEFINE0(sched_yield)
  5415. {
  5416. struct rq *rq = this_rq_lock();
  5417. schedstat_inc(rq, yld_count);
  5418. current->sched_class->yield_task(rq);
  5419. /*
  5420. * Since we are going to call schedule() anyway, there's
  5421. * no need to preempt or enable interrupts:
  5422. */
  5423. __release(rq->lock);
  5424. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  5425. _raw_spin_unlock(&rq->lock);
  5426. preempt_enable_no_resched();
  5427. schedule();
  5428. return 0;
  5429. }
  5430. static void __cond_resched(void)
  5431. {
  5432. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  5433. __might_sleep(__FILE__, __LINE__);
  5434. #endif
  5435. /*
  5436. * The BKS might be reacquired before we have dropped
  5437. * PREEMPT_ACTIVE, which could trigger a second
  5438. * cond_resched() call.
  5439. */
  5440. do {
  5441. add_preempt_count(PREEMPT_ACTIVE);
  5442. schedule();
  5443. sub_preempt_count(PREEMPT_ACTIVE);
  5444. } while (need_resched());
  5445. }
  5446. int __sched _cond_resched(void)
  5447. {
  5448. if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
  5449. system_state == SYSTEM_RUNNING) {
  5450. __cond_resched();
  5451. return 1;
  5452. }
  5453. return 0;
  5454. }
  5455. EXPORT_SYMBOL(_cond_resched);
  5456. /*
  5457. * cond_resched_lock() - if a reschedule is pending, drop the given lock,
  5458. * call schedule, and on return reacquire the lock.
  5459. *
  5460. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  5461. * operations here to prevent schedule() from being called twice (once via
  5462. * spin_unlock(), once by hand).
  5463. */
  5464. int cond_resched_lock(spinlock_t *lock)
  5465. {
  5466. int resched = need_resched() && system_state == SYSTEM_RUNNING;
  5467. int ret = 0;
  5468. if (spin_needbreak(lock) || resched) {
  5469. spin_unlock(lock);
  5470. if (resched && need_resched())
  5471. __cond_resched();
  5472. else
  5473. cpu_relax();
  5474. ret = 1;
  5475. spin_lock(lock);
  5476. }
  5477. return ret;
  5478. }
  5479. EXPORT_SYMBOL(cond_resched_lock);
  5480. int __sched cond_resched_softirq(void)
  5481. {
  5482. BUG_ON(!in_softirq());
  5483. if (need_resched() && system_state == SYSTEM_RUNNING) {
  5484. local_bh_enable();
  5485. __cond_resched();
  5486. local_bh_disable();
  5487. return 1;
  5488. }
  5489. return 0;
  5490. }
  5491. EXPORT_SYMBOL(cond_resched_softirq);
  5492. /**
  5493. * yield - yield the current processor to other threads.
  5494. *
  5495. * This is a shortcut for kernel-space yielding - it marks the
  5496. * thread runnable and calls sys_sched_yield().
  5497. */
  5498. void __sched yield(void)
  5499. {
  5500. set_current_state(TASK_RUNNING);
  5501. sys_sched_yield();
  5502. }
  5503. EXPORT_SYMBOL(yield);
  5504. /*
  5505. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  5506. * that process accounting knows that this is a task in IO wait state.
  5507. *
  5508. * But don't do that if it is a deliberate, throttling IO wait (this task
  5509. * has set its backing_dev_info: the queue against which it should throttle)
  5510. */
  5511. void __sched io_schedule(void)
  5512. {
  5513. struct rq *rq = &__raw_get_cpu_var(runqueues);
  5514. delayacct_blkio_start();
  5515. atomic_inc(&rq->nr_iowait);
  5516. schedule();
  5517. atomic_dec(&rq->nr_iowait);
  5518. delayacct_blkio_end();
  5519. }
  5520. EXPORT_SYMBOL(io_schedule);
  5521. long __sched io_schedule_timeout(long timeout)
  5522. {
  5523. struct rq *rq = &__raw_get_cpu_var(runqueues);
  5524. long ret;
  5525. delayacct_blkio_start();
  5526. atomic_inc(&rq->nr_iowait);
  5527. ret = schedule_timeout(timeout);
  5528. atomic_dec(&rq->nr_iowait);
  5529. delayacct_blkio_end();
  5530. return ret;
  5531. }
  5532. /**
  5533. * sys_sched_get_priority_max - return maximum RT priority.
  5534. * @policy: scheduling class.
  5535. *
  5536. * this syscall returns the maximum rt_priority that can be used
  5537. * by a given scheduling class.
  5538. */
  5539. SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
  5540. {
  5541. int ret = -EINVAL;
  5542. switch (policy) {
  5543. case SCHED_FIFO:
  5544. case SCHED_RR:
  5545. ret = MAX_USER_RT_PRIO-1;
  5546. break;
  5547. case SCHED_NORMAL:
  5548. case SCHED_BATCH:
  5549. case SCHED_IDLE:
  5550. ret = 0;
  5551. break;
  5552. }
  5553. return ret;
  5554. }
  5555. /**
  5556. * sys_sched_get_priority_min - return minimum RT priority.
  5557. * @policy: scheduling class.
  5558. *
  5559. * this syscall returns the minimum rt_priority that can be used
  5560. * by a given scheduling class.
  5561. */
  5562. SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
  5563. {
  5564. int ret = -EINVAL;
  5565. switch (policy) {
  5566. case SCHED_FIFO:
  5567. case SCHED_RR:
  5568. ret = 1;
  5569. break;
  5570. case SCHED_NORMAL:
  5571. case SCHED_BATCH:
  5572. case SCHED_IDLE:
  5573. ret = 0;
  5574. }
  5575. return ret;
  5576. }
  5577. /**
  5578. * sys_sched_rr_get_interval - return the default timeslice of a process.
  5579. * @pid: pid of the process.
  5580. * @interval: userspace pointer to the timeslice value.
  5581. *
  5582. * this syscall writes the default timeslice value of a given process
  5583. * into the user-space timespec buffer. A value of '0' means infinity.
  5584. */
  5585. SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
  5586. struct timespec __user *, interval)
  5587. {
  5588. struct task_struct *p;
  5589. unsigned int time_slice;
  5590. int retval;
  5591. struct timespec t;
  5592. if (pid < 0)
  5593. return -EINVAL;
  5594. retval = -ESRCH;
  5595. read_lock(&tasklist_lock);
  5596. p = find_process_by_pid(pid);
  5597. if (!p)
  5598. goto out_unlock;
  5599. retval = security_task_getscheduler(p);
  5600. if (retval)
  5601. goto out_unlock;
  5602. /*
  5603. * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
  5604. * tasks that are on an otherwise idle runqueue:
  5605. */
  5606. time_slice = 0;
  5607. if (p->policy == SCHED_RR) {
  5608. time_slice = DEF_TIMESLICE;
  5609. } else if (p->policy != SCHED_FIFO) {
  5610. struct sched_entity *se = &p->se;
  5611. unsigned long flags;
  5612. struct rq *rq;
  5613. rq = task_rq_lock(p, &flags);
  5614. if (rq->cfs.load.weight)
  5615. time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
  5616. task_rq_unlock(rq, &flags);
  5617. }
  5618. read_unlock(&tasklist_lock);
  5619. jiffies_to_timespec(time_slice, &t);
  5620. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  5621. return retval;
  5622. out_unlock:
  5623. read_unlock(&tasklist_lock);
  5624. return retval;
  5625. }
  5626. static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
  5627. void sched_show_task(struct task_struct *p)
  5628. {
  5629. unsigned long free = 0;
  5630. unsigned state;
  5631. state = p->state ? __ffs(p->state) + 1 : 0;
  5632. printk(KERN_INFO "%-13.13s %c", p->comm,
  5633. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  5634. #if BITS_PER_LONG == 32
  5635. if (state == TASK_RUNNING)
  5636. printk(KERN_CONT " running ");
  5637. else
  5638. printk(KERN_CONT " %08lx ", thread_saved_pc(p));
  5639. #else
  5640. if (state == TASK_RUNNING)
  5641. printk(KERN_CONT " running task ");
  5642. else
  5643. printk(KERN_CONT " %016lx ", thread_saved_pc(p));
  5644. #endif
  5645. #ifdef CONFIG_DEBUG_STACK_USAGE
  5646. free = stack_not_used(p);
  5647. #endif
  5648. printk(KERN_CONT "%5lu %5d %6d\n", free,
  5649. task_pid_nr(p), task_pid_nr(p->real_parent));
  5650. show_stack(p, NULL);
  5651. }
  5652. void show_state_filter(unsigned long state_filter)
  5653. {
  5654. struct task_struct *g, *p;
  5655. #if BITS_PER_LONG == 32
  5656. printk(KERN_INFO
  5657. " task PC stack pid father\n");
  5658. #else
  5659. printk(KERN_INFO
  5660. " task PC stack pid father\n");
  5661. #endif
  5662. read_lock(&tasklist_lock);
  5663. do_each_thread(g, p) {
  5664. /*
  5665. * reset the NMI-timeout, listing all files on a slow
  5666. * console might take alot of time:
  5667. */
  5668. touch_nmi_watchdog();
  5669. if (!state_filter || (p->state & state_filter))
  5670. sched_show_task(p);
  5671. } while_each_thread(g, p);
  5672. touch_all_softlockup_watchdogs();
  5673. #ifdef CONFIG_SCHED_DEBUG
  5674. sysrq_sched_debug_show();
  5675. #endif
  5676. read_unlock(&tasklist_lock);
  5677. /*
  5678. * Only show locks if all tasks are dumped:
  5679. */
  5680. if (state_filter == -1)
  5681. debug_show_all_locks();
  5682. }
  5683. void __cpuinit init_idle_bootup_task(struct task_struct *idle)
  5684. {
  5685. idle->sched_class = &idle_sched_class;
  5686. }
  5687. /**
  5688. * init_idle - set up an idle thread for a given CPU
  5689. * @idle: task in question
  5690. * @cpu: cpu the idle task belongs to
  5691. *
  5692. * NOTE: this function does not set the idle thread's NEED_RESCHED
  5693. * flag, to make booting more robust.
  5694. */
  5695. void __cpuinit init_idle(struct task_struct *idle, int cpu)
  5696. {
  5697. struct rq *rq = cpu_rq(cpu);
  5698. unsigned long flags;
  5699. spin_lock_irqsave(&rq->lock, flags);
  5700. __sched_fork(idle);
  5701. idle->se.exec_start = sched_clock();
  5702. idle->prio = idle->normal_prio = MAX_PRIO;
  5703. cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
  5704. __set_task_cpu(idle, cpu);
  5705. rq->curr = rq->idle = idle;
  5706. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  5707. idle->oncpu = 1;
  5708. #endif
  5709. spin_unlock_irqrestore(&rq->lock, flags);
  5710. /* Set the preempt count _outside_ the spinlocks! */
  5711. #if defined(CONFIG_PREEMPT)
  5712. task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
  5713. #else
  5714. task_thread_info(idle)->preempt_count = 0;
  5715. #endif
  5716. /*
  5717. * The idle tasks have their own, simple scheduling class:
  5718. */
  5719. idle->sched_class = &idle_sched_class;
  5720. ftrace_graph_init_task(idle);
  5721. }
  5722. /*
  5723. * In a system that switches off the HZ timer nohz_cpu_mask
  5724. * indicates which cpus entered this state. This is used
  5725. * in the rcu update to wait only for active cpus. For system
  5726. * which do not switch off the HZ timer nohz_cpu_mask should
  5727. * always be CPU_BITS_NONE.
  5728. */
  5729. cpumask_var_t nohz_cpu_mask;
  5730. /*
  5731. * Increase the granularity value when there are more CPUs,
  5732. * because with more CPUs the 'effective latency' as visible
  5733. * to users decreases. But the relationship is not linear,
  5734. * so pick a second-best guess by going with the log2 of the
  5735. * number of CPUs.
  5736. *
  5737. * This idea comes from the SD scheduler of Con Kolivas:
  5738. */
  5739. static inline void sched_init_granularity(void)
  5740. {
  5741. unsigned int factor = 1 + ilog2(num_online_cpus());
  5742. const unsigned long limit = 200000000;
  5743. sysctl_sched_min_granularity *= factor;
  5744. if (sysctl_sched_min_granularity > limit)
  5745. sysctl_sched_min_granularity = limit;
  5746. sysctl_sched_latency *= factor;
  5747. if (sysctl_sched_latency > limit)
  5748. sysctl_sched_latency = limit;
  5749. sysctl_sched_wakeup_granularity *= factor;
  5750. sysctl_sched_shares_ratelimit *= factor;
  5751. }
  5752. #ifdef CONFIG_SMP
  5753. /*
  5754. * This is how migration works:
  5755. *
  5756. * 1) we queue a struct migration_req structure in the source CPU's
  5757. * runqueue and wake up that CPU's migration thread.
  5758. * 2) we down() the locked semaphore => thread blocks.
  5759. * 3) migration thread wakes up (implicitly it forces the migrated
  5760. * thread off the CPU)
  5761. * 4) it gets the migration request and checks whether the migrated
  5762. * task is still in the wrong runqueue.
  5763. * 5) if it's in the wrong runqueue then the migration thread removes
  5764. * it and puts it into the right queue.
  5765. * 6) migration thread up()s the semaphore.
  5766. * 7) we wake up and the migration is done.
  5767. */
  5768. /*
  5769. * Change a given task's CPU affinity. Migrate the thread to a
  5770. * proper CPU and schedule it away if the CPU it's executing on
  5771. * is removed from the allowed bitmask.
  5772. *
  5773. * NOTE: the caller must have a valid reference to the task, the
  5774. * task must not exit() & deallocate itself prematurely. The
  5775. * call is not atomic; no spinlocks may be held.
  5776. */
  5777. int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
  5778. {
  5779. struct migration_req req;
  5780. unsigned long flags;
  5781. struct rq *rq;
  5782. int ret = 0;
  5783. rq = task_rq_lock(p, &flags);
  5784. if (!cpumask_intersects(new_mask, cpu_online_mask)) {
  5785. ret = -EINVAL;
  5786. goto out;
  5787. }
  5788. if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
  5789. !cpumask_equal(&p->cpus_allowed, new_mask))) {
  5790. ret = -EINVAL;
  5791. goto out;
  5792. }
  5793. if (p->sched_class->set_cpus_allowed)
  5794. p->sched_class->set_cpus_allowed(p, new_mask);
  5795. else {
  5796. cpumask_copy(&p->cpus_allowed, new_mask);
  5797. p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
  5798. }
  5799. /* Can the task run on the task's current CPU? If so, we're done */
  5800. if (cpumask_test_cpu(task_cpu(p), new_mask))
  5801. goto out;
  5802. if (migrate_task(p, cpumask_any_and(cpu_online_mask, new_mask), &req)) {
  5803. /* Need help from migration thread: drop lock and wait. */
  5804. task_rq_unlock(rq, &flags);
  5805. wake_up_process(rq->migration_thread);
  5806. wait_for_completion(&req.done);
  5807. tlb_migrate_finish(p->mm);
  5808. return 0;
  5809. }
  5810. out:
  5811. task_rq_unlock(rq, &flags);
  5812. return ret;
  5813. }
  5814. EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
  5815. /*
  5816. * Move (not current) task off this cpu, onto dest cpu. We're doing
  5817. * this because either it can't run here any more (set_cpus_allowed()
  5818. * away from this CPU, or CPU going down), or because we're
  5819. * attempting to rebalance this task on exec (sched_exec).
  5820. *
  5821. * So we race with normal scheduler movements, but that's OK, as long
  5822. * as the task is no longer on this CPU.
  5823. *
  5824. * Returns non-zero if task was successfully migrated.
  5825. */
  5826. static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
  5827. {
  5828. struct rq *rq_dest, *rq_src;
  5829. int ret = 0, on_rq;
  5830. if (unlikely(!cpu_active(dest_cpu)))
  5831. return ret;
  5832. rq_src = cpu_rq(src_cpu);
  5833. rq_dest = cpu_rq(dest_cpu);
  5834. double_rq_lock(rq_src, rq_dest);
  5835. /* Already moved. */
  5836. if (task_cpu(p) != src_cpu)
  5837. goto done;
  5838. /* Affinity changed (again). */
  5839. if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
  5840. goto fail;
  5841. on_rq = p->se.on_rq;
  5842. if (on_rq)
  5843. deactivate_task(rq_src, p, 0);
  5844. set_task_cpu(p, dest_cpu);
  5845. if (on_rq) {
  5846. activate_task(rq_dest, p, 0);
  5847. check_preempt_curr(rq_dest, p, 0);
  5848. }
  5849. done:
  5850. ret = 1;
  5851. fail:
  5852. double_rq_unlock(rq_src, rq_dest);
  5853. return ret;
  5854. }
  5855. /*
  5856. * migration_thread - this is a highprio system thread that performs
  5857. * thread migration by bumping thread off CPU then 'pushing' onto
  5858. * another runqueue.
  5859. */
  5860. static int migration_thread(void *data)
  5861. {
  5862. int cpu = (long)data;
  5863. struct rq *rq;
  5864. rq = cpu_rq(cpu);
  5865. BUG_ON(rq->migration_thread != current);
  5866. set_current_state(TASK_INTERRUPTIBLE);
  5867. while (!kthread_should_stop()) {
  5868. struct migration_req *req;
  5869. struct list_head *head;
  5870. spin_lock_irq(&rq->lock);
  5871. if (cpu_is_offline(cpu)) {
  5872. spin_unlock_irq(&rq->lock);
  5873. goto wait_to_die;
  5874. }
  5875. if (rq->active_balance) {
  5876. active_load_balance(rq, cpu);
  5877. rq->active_balance = 0;
  5878. }
  5879. head = &rq->migration_queue;
  5880. if (list_empty(head)) {
  5881. spin_unlock_irq(&rq->lock);
  5882. schedule();
  5883. set_current_state(TASK_INTERRUPTIBLE);
  5884. continue;
  5885. }
  5886. req = list_entry(head->next, struct migration_req, list);
  5887. list_del_init(head->next);
  5888. spin_unlock(&rq->lock);
  5889. __migrate_task(req->task, cpu, req->dest_cpu);
  5890. local_irq_enable();
  5891. complete(&req->done);
  5892. }
  5893. __set_current_state(TASK_RUNNING);
  5894. return 0;
  5895. wait_to_die:
  5896. /* Wait for kthread_stop */
  5897. set_current_state(TASK_INTERRUPTIBLE);
  5898. while (!kthread_should_stop()) {
  5899. schedule();
  5900. set_current_state(TASK_INTERRUPTIBLE);
  5901. }
  5902. __set_current_state(TASK_RUNNING);
  5903. return 0;
  5904. }
  5905. #ifdef CONFIG_HOTPLUG_CPU
  5906. static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
  5907. {
  5908. int ret;
  5909. local_irq_disable();
  5910. ret = __migrate_task(p, src_cpu, dest_cpu);
  5911. local_irq_enable();
  5912. return ret;
  5913. }
  5914. /*
  5915. * Figure out where task on dead CPU should go, use force if necessary.
  5916. */
  5917. static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
  5918. {
  5919. int dest_cpu;
  5920. const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(dead_cpu));
  5921. again:
  5922. /* Look for allowed, online CPU in same node. */
  5923. for_each_cpu_and(dest_cpu, nodemask, cpu_online_mask)
  5924. if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
  5925. goto move;
  5926. /* Any allowed, online CPU? */
  5927. dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_online_mask);
  5928. if (dest_cpu < nr_cpu_ids)
  5929. goto move;
  5930. /* No more Mr. Nice Guy. */
  5931. if (dest_cpu >= nr_cpu_ids) {
  5932. cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
  5933. dest_cpu = cpumask_any_and(cpu_online_mask, &p->cpus_allowed);
  5934. /*
  5935. * Don't tell them about moving exiting tasks or
  5936. * kernel threads (both mm NULL), since they never
  5937. * leave kernel.
  5938. */
  5939. if (p->mm && printk_ratelimit()) {
  5940. printk(KERN_INFO "process %d (%s) no "
  5941. "longer affine to cpu%d\n",
  5942. task_pid_nr(p), p->comm, dead_cpu);
  5943. }
  5944. }
  5945. move:
  5946. /* It can have affinity changed while we were choosing. */
  5947. if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
  5948. goto again;
  5949. }
  5950. /*
  5951. * While a dead CPU has no uninterruptible tasks queued at this point,
  5952. * it might still have a nonzero ->nr_uninterruptible counter, because
  5953. * for performance reasons the counter is not stricly tracking tasks to
  5954. * their home CPUs. So we just add the counter to another CPU's counter,
  5955. * to keep the global sum constant after CPU-down:
  5956. */
  5957. static void migrate_nr_uninterruptible(struct rq *rq_src)
  5958. {
  5959. struct rq *rq_dest = cpu_rq(cpumask_any(cpu_online_mask));
  5960. unsigned long flags;
  5961. local_irq_save(flags);
  5962. double_rq_lock(rq_src, rq_dest);
  5963. rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
  5964. rq_src->nr_uninterruptible = 0;
  5965. double_rq_unlock(rq_src, rq_dest);
  5966. local_irq_restore(flags);
  5967. }
  5968. /* Run through task list and migrate tasks from the dead cpu. */
  5969. static void migrate_live_tasks(int src_cpu)
  5970. {
  5971. struct task_struct *p, *t;
  5972. read_lock(&tasklist_lock);
  5973. do_each_thread(t, p) {
  5974. if (p == current)
  5975. continue;
  5976. if (task_cpu(p) == src_cpu)
  5977. move_task_off_dead_cpu(src_cpu, p);
  5978. } while_each_thread(t, p);
  5979. read_unlock(&tasklist_lock);
  5980. }
  5981. /*
  5982. * Schedules idle task to be the next runnable task on current CPU.
  5983. * It does so by boosting its priority to highest possible.
  5984. * Used by CPU offline code.
  5985. */
  5986. void sched_idle_next(void)
  5987. {
  5988. int this_cpu = smp_processor_id();
  5989. struct rq *rq = cpu_rq(this_cpu);
  5990. struct task_struct *p = rq->idle;
  5991. unsigned long flags;
  5992. /* cpu has to be offline */
  5993. BUG_ON(cpu_online(this_cpu));
  5994. /*
  5995. * Strictly not necessary since rest of the CPUs are stopped by now
  5996. * and interrupts disabled on the current cpu.
  5997. */
  5998. spin_lock_irqsave(&rq->lock, flags);
  5999. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  6000. update_rq_clock(rq);
  6001. activate_task(rq, p, 0);
  6002. spin_unlock_irqrestore(&rq->lock, flags);
  6003. }
  6004. /*
  6005. * Ensures that the idle task is using init_mm right before its cpu goes
  6006. * offline.
  6007. */
  6008. void idle_task_exit(void)
  6009. {
  6010. struct mm_struct *mm = current->active_mm;
  6011. BUG_ON(cpu_online(smp_processor_id()));
  6012. if (mm != &init_mm)
  6013. switch_mm(mm, &init_mm, current);
  6014. mmdrop(mm);
  6015. }
  6016. /* called under rq->lock with disabled interrupts */
  6017. static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
  6018. {
  6019. struct rq *rq = cpu_rq(dead_cpu);
  6020. /* Must be exiting, otherwise would be on tasklist. */
  6021. BUG_ON(!p->exit_state);
  6022. /* Cannot have done final schedule yet: would have vanished. */
  6023. BUG_ON(p->state == TASK_DEAD);
  6024. get_task_struct(p);
  6025. /*
  6026. * Drop lock around migration; if someone else moves it,
  6027. * that's OK. No task can be added to this CPU, so iteration is
  6028. * fine.
  6029. */
  6030. spin_unlock_irq(&rq->lock);
  6031. move_task_off_dead_cpu(dead_cpu, p);
  6032. spin_lock_irq(&rq->lock);
  6033. put_task_struct(p);
  6034. }
  6035. /* release_task() removes task from tasklist, so we won't find dead tasks. */
  6036. static void migrate_dead_tasks(unsigned int dead_cpu)
  6037. {
  6038. struct rq *rq = cpu_rq(dead_cpu);
  6039. struct task_struct *next;
  6040. for ( ; ; ) {
  6041. if (!rq->nr_running)
  6042. break;
  6043. update_rq_clock(rq);
  6044. next = pick_next_task(rq);
  6045. if (!next)
  6046. break;
  6047. next->sched_class->put_prev_task(rq, next);
  6048. migrate_dead(dead_cpu, next);
  6049. }
  6050. }
  6051. #endif /* CONFIG_HOTPLUG_CPU */
  6052. #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
  6053. static struct ctl_table sd_ctl_dir[] = {
  6054. {
  6055. .procname = "sched_domain",
  6056. .mode = 0555,
  6057. },
  6058. {0, },
  6059. };
  6060. static struct ctl_table sd_ctl_root[] = {
  6061. {
  6062. .ctl_name = CTL_KERN,
  6063. .procname = "kernel",
  6064. .mode = 0555,
  6065. .child = sd_ctl_dir,
  6066. },
  6067. {0, },
  6068. };
  6069. static struct ctl_table *sd_alloc_ctl_entry(int n)
  6070. {
  6071. struct ctl_table *entry =
  6072. kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
  6073. return entry;
  6074. }
  6075. static void sd_free_ctl_entry(struct ctl_table **tablep)
  6076. {
  6077. struct ctl_table *entry;
  6078. /*
  6079. * In the intermediate directories, both the child directory and
  6080. * procname are dynamically allocated and could fail but the mode
  6081. * will always be set. In the lowest directory the names are
  6082. * static strings and all have proc handlers.
  6083. */
  6084. for (entry = *tablep; entry->mode; entry++) {
  6085. if (entry->child)
  6086. sd_free_ctl_entry(&entry->child);
  6087. if (entry->proc_handler == NULL)
  6088. kfree(entry->procname);
  6089. }
  6090. kfree(*tablep);
  6091. *tablep = NULL;
  6092. }
  6093. static void
  6094. set_table_entry(struct ctl_table *entry,
  6095. const char *procname, void *data, int maxlen,
  6096. mode_t mode, proc_handler *proc_handler)
  6097. {
  6098. entry->procname = procname;
  6099. entry->data = data;
  6100. entry->maxlen = maxlen;
  6101. entry->mode = mode;
  6102. entry->proc_handler = proc_handler;
  6103. }
  6104. static struct ctl_table *
  6105. sd_alloc_ctl_domain_table(struct sched_domain *sd)
  6106. {
  6107. struct ctl_table *table = sd_alloc_ctl_entry(13);
  6108. if (table == NULL)
  6109. return NULL;
  6110. set_table_entry(&table[0], "min_interval", &sd->min_interval,
  6111. sizeof(long), 0644, proc_doulongvec_minmax);
  6112. set_table_entry(&table[1], "max_interval", &sd->max_interval,
  6113. sizeof(long), 0644, proc_doulongvec_minmax);
  6114. set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
  6115. sizeof(int), 0644, proc_dointvec_minmax);
  6116. set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
  6117. sizeof(int), 0644, proc_dointvec_minmax);
  6118. set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
  6119. sizeof(int), 0644, proc_dointvec_minmax);
  6120. set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
  6121. sizeof(int), 0644, proc_dointvec_minmax);
  6122. set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
  6123. sizeof(int), 0644, proc_dointvec_minmax);
  6124. set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
  6125. sizeof(int), 0644, proc_dointvec_minmax);
  6126. set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
  6127. sizeof(int), 0644, proc_dointvec_minmax);
  6128. set_table_entry(&table[9], "cache_nice_tries",
  6129. &sd->cache_nice_tries,
  6130. sizeof(int), 0644, proc_dointvec_minmax);
  6131. set_table_entry(&table[10], "flags", &sd->flags,
  6132. sizeof(int), 0644, proc_dointvec_minmax);
  6133. set_table_entry(&table[11], "name", sd->name,
  6134. CORENAME_MAX_SIZE, 0444, proc_dostring);
  6135. /* &table[12] is terminator */
  6136. return table;
  6137. }
  6138. static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
  6139. {
  6140. struct ctl_table *entry, *table;
  6141. struct sched_domain *sd;
  6142. int domain_num = 0, i;
  6143. char buf[32];
  6144. for_each_domain(cpu, sd)
  6145. domain_num++;
  6146. entry = table = sd_alloc_ctl_entry(domain_num + 1);
  6147. if (table == NULL)
  6148. return NULL;
  6149. i = 0;
  6150. for_each_domain(cpu, sd) {
  6151. snprintf(buf, 32, "domain%d", i);
  6152. entry->procname = kstrdup(buf, GFP_KERNEL);
  6153. entry->mode = 0555;
  6154. entry->child = sd_alloc_ctl_domain_table(sd);
  6155. entry++;
  6156. i++;
  6157. }
  6158. return table;
  6159. }
  6160. static struct ctl_table_header *sd_sysctl_header;
  6161. static void register_sched_domain_sysctl(void)
  6162. {
  6163. int i, cpu_num = num_online_cpus();
  6164. struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
  6165. char buf[32];
  6166. WARN_ON(sd_ctl_dir[0].child);
  6167. sd_ctl_dir[0].child = entry;
  6168. if (entry == NULL)
  6169. return;
  6170. for_each_online_cpu(i) {
  6171. snprintf(buf, 32, "cpu%d", i);
  6172. entry->procname = kstrdup(buf, GFP_KERNEL);
  6173. entry->mode = 0555;
  6174. entry->child = sd_alloc_ctl_cpu_table(i);
  6175. entry++;
  6176. }
  6177. WARN_ON(sd_sysctl_header);
  6178. sd_sysctl_header = register_sysctl_table(sd_ctl_root);
  6179. }
  6180. /* may be called multiple times per register */
  6181. static void unregister_sched_domain_sysctl(void)
  6182. {
  6183. if (sd_sysctl_header)
  6184. unregister_sysctl_table(sd_sysctl_header);
  6185. sd_sysctl_header = NULL;
  6186. if (sd_ctl_dir[0].child)
  6187. sd_free_ctl_entry(&sd_ctl_dir[0].child);
  6188. }
  6189. #else
  6190. static void register_sched_domain_sysctl(void)
  6191. {
  6192. }
  6193. static void unregister_sched_domain_sysctl(void)
  6194. {
  6195. }
  6196. #endif
  6197. static void set_rq_online(struct rq *rq)
  6198. {
  6199. if (!rq->online) {
  6200. const struct sched_class *class;
  6201. cpumask_set_cpu(rq->cpu, rq->rd->online);
  6202. rq->online = 1;
  6203. for_each_class(class) {
  6204. if (class->rq_online)
  6205. class->rq_online(rq);
  6206. }
  6207. }
  6208. }
  6209. static void set_rq_offline(struct rq *rq)
  6210. {
  6211. if (rq->online) {
  6212. const struct sched_class *class;
  6213. for_each_class(class) {
  6214. if (class->rq_offline)
  6215. class->rq_offline(rq);
  6216. }
  6217. cpumask_clear_cpu(rq->cpu, rq->rd->online);
  6218. rq->online = 0;
  6219. }
  6220. }
  6221. /*
  6222. * migration_call - callback that gets triggered when a CPU is added.
  6223. * Here we can start up the necessary migration thread for the new CPU.
  6224. */
  6225. static int __cpuinit
  6226. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  6227. {
  6228. struct task_struct *p;
  6229. int cpu = (long)hcpu;
  6230. unsigned long flags;
  6231. struct rq *rq;
  6232. switch (action) {
  6233. case CPU_UP_PREPARE:
  6234. case CPU_UP_PREPARE_FROZEN:
  6235. p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
  6236. if (IS_ERR(p))
  6237. return NOTIFY_BAD;
  6238. kthread_bind(p, cpu);
  6239. /* Must be high prio: stop_machine expects to yield to it. */
  6240. rq = task_rq_lock(p, &flags);
  6241. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  6242. task_rq_unlock(rq, &flags);
  6243. cpu_rq(cpu)->migration_thread = p;
  6244. break;
  6245. case CPU_ONLINE:
  6246. case CPU_ONLINE_FROZEN:
  6247. /* Strictly unnecessary, as first user will wake it. */
  6248. wake_up_process(cpu_rq(cpu)->migration_thread);
  6249. /* Update our root-domain */
  6250. rq = cpu_rq(cpu);
  6251. spin_lock_irqsave(&rq->lock, flags);
  6252. if (rq->rd) {
  6253. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  6254. set_rq_online(rq);
  6255. }
  6256. spin_unlock_irqrestore(&rq->lock, flags);
  6257. break;
  6258. #ifdef CONFIG_HOTPLUG_CPU
  6259. case CPU_UP_CANCELED:
  6260. case CPU_UP_CANCELED_FROZEN:
  6261. if (!cpu_rq(cpu)->migration_thread)
  6262. break;
  6263. /* Unbind it from offline cpu so it can run. Fall thru. */
  6264. kthread_bind(cpu_rq(cpu)->migration_thread,
  6265. cpumask_any(cpu_online_mask));
  6266. kthread_stop(cpu_rq(cpu)->migration_thread);
  6267. cpu_rq(cpu)->migration_thread = NULL;
  6268. break;
  6269. case CPU_DEAD:
  6270. case CPU_DEAD_FROZEN:
  6271. cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
  6272. migrate_live_tasks(cpu);
  6273. rq = cpu_rq(cpu);
  6274. kthread_stop(rq->migration_thread);
  6275. rq->migration_thread = NULL;
  6276. /* Idle task back to normal (off runqueue, low prio) */
  6277. spin_lock_irq(&rq->lock);
  6278. update_rq_clock(rq);
  6279. deactivate_task(rq, rq->idle, 0);
  6280. rq->idle->static_prio = MAX_PRIO;
  6281. __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
  6282. rq->idle->sched_class = &idle_sched_class;
  6283. migrate_dead_tasks(cpu);
  6284. spin_unlock_irq(&rq->lock);
  6285. cpuset_unlock();
  6286. migrate_nr_uninterruptible(rq);
  6287. BUG_ON(rq->nr_running != 0);
  6288. /*
  6289. * No need to migrate the tasks: it was best-effort if
  6290. * they didn't take sched_hotcpu_mutex. Just wake up
  6291. * the requestors.
  6292. */
  6293. spin_lock_irq(&rq->lock);
  6294. while (!list_empty(&rq->migration_queue)) {
  6295. struct migration_req *req;
  6296. req = list_entry(rq->migration_queue.next,
  6297. struct migration_req, list);
  6298. list_del_init(&req->list);
  6299. spin_unlock_irq(&rq->lock);
  6300. complete(&req->done);
  6301. spin_lock_irq(&rq->lock);
  6302. }
  6303. spin_unlock_irq(&rq->lock);
  6304. break;
  6305. case CPU_DYING:
  6306. case CPU_DYING_FROZEN:
  6307. /* Update our root-domain */
  6308. rq = cpu_rq(cpu);
  6309. spin_lock_irqsave(&rq->lock, flags);
  6310. if (rq->rd) {
  6311. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  6312. set_rq_offline(rq);
  6313. }
  6314. spin_unlock_irqrestore(&rq->lock, flags);
  6315. break;
  6316. #endif
  6317. }
  6318. return NOTIFY_OK;
  6319. }
  6320. /* Register at highest priority so that task migration (migrate_all_tasks)
  6321. * happens before everything else.
  6322. */
  6323. static struct notifier_block __cpuinitdata migration_notifier = {
  6324. .notifier_call = migration_call,
  6325. .priority = 10
  6326. };
  6327. static int __init migration_init(void)
  6328. {
  6329. void *cpu = (void *)(long)smp_processor_id();
  6330. int err;
  6331. /* Start one for the boot CPU: */
  6332. err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  6333. BUG_ON(err == NOTIFY_BAD);
  6334. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  6335. register_cpu_notifier(&migration_notifier);
  6336. return err;
  6337. }
  6338. early_initcall(migration_init);
  6339. #endif
  6340. #ifdef CONFIG_SMP
  6341. #ifdef CONFIG_SCHED_DEBUG
  6342. static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
  6343. struct cpumask *groupmask)
  6344. {
  6345. struct sched_group *group = sd->groups;
  6346. char str[256];
  6347. cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
  6348. cpumask_clear(groupmask);
  6349. printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
  6350. if (!(sd->flags & SD_LOAD_BALANCE)) {
  6351. printk("does not load-balance\n");
  6352. if (sd->parent)
  6353. printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
  6354. " has parent");
  6355. return -1;
  6356. }
  6357. printk(KERN_CONT "span %s level %s\n", str, sd->name);
  6358. if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  6359. printk(KERN_ERR "ERROR: domain->span does not contain "
  6360. "CPU%d\n", cpu);
  6361. }
  6362. if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
  6363. printk(KERN_ERR "ERROR: domain->groups does not contain"
  6364. " CPU%d\n", cpu);
  6365. }
  6366. printk(KERN_DEBUG "%*s groups:", level + 1, "");
  6367. do {
  6368. if (!group) {
  6369. printk("\n");
  6370. printk(KERN_ERR "ERROR: group is NULL\n");
  6371. break;
  6372. }
  6373. if (!group->__cpu_power) {
  6374. printk(KERN_CONT "\n");
  6375. printk(KERN_ERR "ERROR: domain->cpu_power not "
  6376. "set\n");
  6377. break;
  6378. }
  6379. if (!cpumask_weight(sched_group_cpus(group))) {
  6380. printk(KERN_CONT "\n");
  6381. printk(KERN_ERR "ERROR: empty group\n");
  6382. break;
  6383. }
  6384. if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
  6385. printk(KERN_CONT "\n");
  6386. printk(KERN_ERR "ERROR: repeated CPUs\n");
  6387. break;
  6388. }
  6389. cpumask_or(groupmask, groupmask, sched_group_cpus(group));
  6390. cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
  6391. printk(KERN_CONT " %s (__cpu_power = %d)", str,
  6392. group->__cpu_power);
  6393. group = group->next;
  6394. } while (group != sd->groups);
  6395. printk(KERN_CONT "\n");
  6396. if (!cpumask_equal(sched_domain_span(sd), groupmask))
  6397. printk(KERN_ERR "ERROR: groups don't span domain->span\n");
  6398. if (sd->parent &&
  6399. !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
  6400. printk(KERN_ERR "ERROR: parent span is not a superset "
  6401. "of domain->span\n");
  6402. return 0;
  6403. }
  6404. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  6405. {
  6406. cpumask_var_t groupmask;
  6407. int level = 0;
  6408. if (!sd) {
  6409. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  6410. return;
  6411. }
  6412. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  6413. if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
  6414. printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
  6415. return;
  6416. }
  6417. for (;;) {
  6418. if (sched_domain_debug_one(sd, cpu, level, groupmask))
  6419. break;
  6420. level++;
  6421. sd = sd->parent;
  6422. if (!sd)
  6423. break;
  6424. }
  6425. free_cpumask_var(groupmask);
  6426. }
  6427. #else /* !CONFIG_SCHED_DEBUG */
  6428. # define sched_domain_debug(sd, cpu) do { } while (0)
  6429. #endif /* CONFIG_SCHED_DEBUG */
  6430. static int sd_degenerate(struct sched_domain *sd)
  6431. {
  6432. if (cpumask_weight(sched_domain_span(sd)) == 1)
  6433. return 1;
  6434. /* Following flags need at least 2 groups */
  6435. if (sd->flags & (SD_LOAD_BALANCE |
  6436. SD_BALANCE_NEWIDLE |
  6437. SD_BALANCE_FORK |
  6438. SD_BALANCE_EXEC |
  6439. SD_SHARE_CPUPOWER |
  6440. SD_SHARE_PKG_RESOURCES)) {
  6441. if (sd->groups != sd->groups->next)
  6442. return 0;
  6443. }
  6444. /* Following flags don't use groups */
  6445. if (sd->flags & (SD_WAKE_IDLE |
  6446. SD_WAKE_AFFINE |
  6447. SD_WAKE_BALANCE))
  6448. return 0;
  6449. return 1;
  6450. }
  6451. static int
  6452. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  6453. {
  6454. unsigned long cflags = sd->flags, pflags = parent->flags;
  6455. if (sd_degenerate(parent))
  6456. return 1;
  6457. if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
  6458. return 0;
  6459. /* Does parent contain flags not in child? */
  6460. /* WAKE_BALANCE is a subset of WAKE_AFFINE */
  6461. if (cflags & SD_WAKE_AFFINE)
  6462. pflags &= ~SD_WAKE_BALANCE;
  6463. /* Flags needing groups don't count if only 1 group in parent */
  6464. if (parent->groups == parent->groups->next) {
  6465. pflags &= ~(SD_LOAD_BALANCE |
  6466. SD_BALANCE_NEWIDLE |
  6467. SD_BALANCE_FORK |
  6468. SD_BALANCE_EXEC |
  6469. SD_SHARE_CPUPOWER |
  6470. SD_SHARE_PKG_RESOURCES);
  6471. if (nr_node_ids == 1)
  6472. pflags &= ~SD_SERIALIZE;
  6473. }
  6474. if (~cflags & pflags)
  6475. return 0;
  6476. return 1;
  6477. }
  6478. static void free_rootdomain(struct root_domain *rd)
  6479. {
  6480. cpupri_cleanup(&rd->cpupri);
  6481. free_cpumask_var(rd->rto_mask);
  6482. free_cpumask_var(rd->online);
  6483. free_cpumask_var(rd->span);
  6484. kfree(rd);
  6485. }
  6486. static void rq_attach_root(struct rq *rq, struct root_domain *rd)
  6487. {
  6488. struct root_domain *old_rd = NULL;
  6489. unsigned long flags;
  6490. spin_lock_irqsave(&rq->lock, flags);
  6491. if (rq->rd) {
  6492. old_rd = rq->rd;
  6493. if (cpumask_test_cpu(rq->cpu, old_rd->online))
  6494. set_rq_offline(rq);
  6495. cpumask_clear_cpu(rq->cpu, old_rd->span);
  6496. /*
  6497. * If we dont want to free the old_rt yet then
  6498. * set old_rd to NULL to skip the freeing later
  6499. * in this function:
  6500. */
  6501. if (!atomic_dec_and_test(&old_rd->refcount))
  6502. old_rd = NULL;
  6503. }
  6504. atomic_inc(&rd->refcount);
  6505. rq->rd = rd;
  6506. cpumask_set_cpu(rq->cpu, rd->span);
  6507. if (cpumask_test_cpu(rq->cpu, cpu_online_mask))
  6508. set_rq_online(rq);
  6509. spin_unlock_irqrestore(&rq->lock, flags);
  6510. if (old_rd)
  6511. free_rootdomain(old_rd);
  6512. }
  6513. static int __init_refok init_rootdomain(struct root_domain *rd, bool bootmem)
  6514. {
  6515. memset(rd, 0, sizeof(*rd));
  6516. if (bootmem) {
  6517. alloc_bootmem_cpumask_var(&def_root_domain.span);
  6518. alloc_bootmem_cpumask_var(&def_root_domain.online);
  6519. alloc_bootmem_cpumask_var(&def_root_domain.rto_mask);
  6520. cpupri_init(&rd->cpupri, true);
  6521. return 0;
  6522. }
  6523. if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
  6524. goto out;
  6525. if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
  6526. goto free_span;
  6527. if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
  6528. goto free_online;
  6529. if (cpupri_init(&rd->cpupri, false) != 0)
  6530. goto free_rto_mask;
  6531. return 0;
  6532. free_rto_mask:
  6533. free_cpumask_var(rd->rto_mask);
  6534. free_online:
  6535. free_cpumask_var(rd->online);
  6536. free_span:
  6537. free_cpumask_var(rd->span);
  6538. out:
  6539. return -ENOMEM;
  6540. }
  6541. static void init_defrootdomain(void)
  6542. {
  6543. init_rootdomain(&def_root_domain, true);
  6544. atomic_set(&def_root_domain.refcount, 1);
  6545. }
  6546. static struct root_domain *alloc_rootdomain(void)
  6547. {
  6548. struct root_domain *rd;
  6549. rd = kmalloc(sizeof(*rd), GFP_KERNEL);
  6550. if (!rd)
  6551. return NULL;
  6552. if (init_rootdomain(rd, false) != 0) {
  6553. kfree(rd);
  6554. return NULL;
  6555. }
  6556. return rd;
  6557. }
  6558. /*
  6559. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  6560. * hold the hotplug lock.
  6561. */
  6562. static void
  6563. cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
  6564. {
  6565. struct rq *rq = cpu_rq(cpu);
  6566. struct sched_domain *tmp;
  6567. /* Remove the sched domains which do not contribute to scheduling. */
  6568. for (tmp = sd; tmp; ) {
  6569. struct sched_domain *parent = tmp->parent;
  6570. if (!parent)
  6571. break;
  6572. if (sd_parent_degenerate(tmp, parent)) {
  6573. tmp->parent = parent->parent;
  6574. if (parent->parent)
  6575. parent->parent->child = tmp;
  6576. } else
  6577. tmp = tmp->parent;
  6578. }
  6579. if (sd && sd_degenerate(sd)) {
  6580. sd = sd->parent;
  6581. if (sd)
  6582. sd->child = NULL;
  6583. }
  6584. sched_domain_debug(sd, cpu);
  6585. rq_attach_root(rq, rd);
  6586. rcu_assign_pointer(rq->sd, sd);
  6587. }
  6588. /* cpus with isolated domains */
  6589. static cpumask_var_t cpu_isolated_map;
  6590. /* Setup the mask of cpus configured for isolated domains */
  6591. static int __init isolated_cpu_setup(char *str)
  6592. {
  6593. cpulist_parse(str, cpu_isolated_map);
  6594. return 1;
  6595. }
  6596. __setup("isolcpus=", isolated_cpu_setup);
  6597. /*
  6598. * init_sched_build_groups takes the cpumask we wish to span, and a pointer
  6599. * to a function which identifies what group(along with sched group) a CPU
  6600. * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
  6601. * (due to the fact that we keep track of groups covered with a struct cpumask).
  6602. *
  6603. * init_sched_build_groups will build a circular linked list of the groups
  6604. * covered by the given span, and will set each group's ->cpumask correctly,
  6605. * and ->cpu_power to 0.
  6606. */
  6607. static void
  6608. init_sched_build_groups(const struct cpumask *span,
  6609. const struct cpumask *cpu_map,
  6610. int (*group_fn)(int cpu, const struct cpumask *cpu_map,
  6611. struct sched_group **sg,
  6612. struct cpumask *tmpmask),
  6613. struct cpumask *covered, struct cpumask *tmpmask)
  6614. {
  6615. struct sched_group *first = NULL, *last = NULL;
  6616. int i;
  6617. cpumask_clear(covered);
  6618. for_each_cpu(i, span) {
  6619. struct sched_group *sg;
  6620. int group = group_fn(i, cpu_map, &sg, tmpmask);
  6621. int j;
  6622. if (cpumask_test_cpu(i, covered))
  6623. continue;
  6624. cpumask_clear(sched_group_cpus(sg));
  6625. sg->__cpu_power = 0;
  6626. for_each_cpu(j, span) {
  6627. if (group_fn(j, cpu_map, NULL, tmpmask) != group)
  6628. continue;
  6629. cpumask_set_cpu(j, covered);
  6630. cpumask_set_cpu(j, sched_group_cpus(sg));
  6631. }
  6632. if (!first)
  6633. first = sg;
  6634. if (last)
  6635. last->next = sg;
  6636. last = sg;
  6637. }
  6638. last->next = first;
  6639. }
  6640. #define SD_NODES_PER_DOMAIN 16
  6641. #ifdef CONFIG_NUMA
  6642. /**
  6643. * find_next_best_node - find the next node to include in a sched_domain
  6644. * @node: node whose sched_domain we're building
  6645. * @used_nodes: nodes already in the sched_domain
  6646. *
  6647. * Find the next node to include in a given scheduling domain. Simply
  6648. * finds the closest node not already in the @used_nodes map.
  6649. *
  6650. * Should use nodemask_t.
  6651. */
  6652. static int find_next_best_node(int node, nodemask_t *used_nodes)
  6653. {
  6654. int i, n, val, min_val, best_node = 0;
  6655. min_val = INT_MAX;
  6656. for (i = 0; i < nr_node_ids; i++) {
  6657. /* Start at @node */
  6658. n = (node + i) % nr_node_ids;
  6659. if (!nr_cpus_node(n))
  6660. continue;
  6661. /* Skip already used nodes */
  6662. if (node_isset(n, *used_nodes))
  6663. continue;
  6664. /* Simple min distance search */
  6665. val = node_distance(node, n);
  6666. if (val < min_val) {
  6667. min_val = val;
  6668. best_node = n;
  6669. }
  6670. }
  6671. node_set(best_node, *used_nodes);
  6672. return best_node;
  6673. }
  6674. /**
  6675. * sched_domain_node_span - get a cpumask for a node's sched_domain
  6676. * @node: node whose cpumask we're constructing
  6677. * @span: resulting cpumask
  6678. *
  6679. * Given a node, construct a good cpumask for its sched_domain to span. It
  6680. * should be one that prevents unnecessary balancing, but also spreads tasks
  6681. * out optimally.
  6682. */
  6683. static void sched_domain_node_span(int node, struct cpumask *span)
  6684. {
  6685. nodemask_t used_nodes;
  6686. int i;
  6687. cpumask_clear(span);
  6688. nodes_clear(used_nodes);
  6689. cpumask_or(span, span, cpumask_of_node(node));
  6690. node_set(node, used_nodes);
  6691. for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
  6692. int next_node = find_next_best_node(node, &used_nodes);
  6693. cpumask_or(span, span, cpumask_of_node(next_node));
  6694. }
  6695. }
  6696. #endif /* CONFIG_NUMA */
  6697. int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
  6698. /*
  6699. * The cpus mask in sched_group and sched_domain hangs off the end.
  6700. * FIXME: use cpumask_var_t or dynamic percpu alloc to avoid wasting space
  6701. * for nr_cpu_ids < CONFIG_NR_CPUS.
  6702. */
  6703. struct static_sched_group {
  6704. struct sched_group sg;
  6705. DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
  6706. };
  6707. struct static_sched_domain {
  6708. struct sched_domain sd;
  6709. DECLARE_BITMAP(span, CONFIG_NR_CPUS);
  6710. };
  6711. /*
  6712. * SMT sched-domains:
  6713. */
  6714. #ifdef CONFIG_SCHED_SMT
  6715. static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
  6716. static DEFINE_PER_CPU(struct static_sched_group, sched_group_cpus);
  6717. static int
  6718. cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
  6719. struct sched_group **sg, struct cpumask *unused)
  6720. {
  6721. if (sg)
  6722. *sg = &per_cpu(sched_group_cpus, cpu).sg;
  6723. return cpu;
  6724. }
  6725. #endif /* CONFIG_SCHED_SMT */
  6726. /*
  6727. * multi-core sched-domains:
  6728. */
  6729. #ifdef CONFIG_SCHED_MC
  6730. static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
  6731. static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
  6732. #endif /* CONFIG_SCHED_MC */
  6733. #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
  6734. static int
  6735. cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
  6736. struct sched_group **sg, struct cpumask *mask)
  6737. {
  6738. int group;
  6739. cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
  6740. group = cpumask_first(mask);
  6741. if (sg)
  6742. *sg = &per_cpu(sched_group_core, group).sg;
  6743. return group;
  6744. }
  6745. #elif defined(CONFIG_SCHED_MC)
  6746. static int
  6747. cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
  6748. struct sched_group **sg, struct cpumask *unused)
  6749. {
  6750. if (sg)
  6751. *sg = &per_cpu(sched_group_core, cpu).sg;
  6752. return cpu;
  6753. }
  6754. #endif
  6755. static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
  6756. static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
  6757. static int
  6758. cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
  6759. struct sched_group **sg, struct cpumask *mask)
  6760. {
  6761. int group;
  6762. #ifdef CONFIG_SCHED_MC
  6763. cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
  6764. group = cpumask_first(mask);
  6765. #elif defined(CONFIG_SCHED_SMT)
  6766. cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
  6767. group = cpumask_first(mask);
  6768. #else
  6769. group = cpu;
  6770. #endif
  6771. if (sg)
  6772. *sg = &per_cpu(sched_group_phys, group).sg;
  6773. return group;
  6774. }
  6775. #ifdef CONFIG_NUMA
  6776. /*
  6777. * The init_sched_build_groups can't handle what we want to do with node
  6778. * groups, so roll our own. Now each node has its own list of groups which
  6779. * gets dynamically allocated.
  6780. */
  6781. static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
  6782. static struct sched_group ***sched_group_nodes_bycpu;
  6783. static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
  6784. static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
  6785. static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
  6786. struct sched_group **sg,
  6787. struct cpumask *nodemask)
  6788. {
  6789. int group;
  6790. cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
  6791. group = cpumask_first(nodemask);
  6792. if (sg)
  6793. *sg = &per_cpu(sched_group_allnodes, group).sg;
  6794. return group;
  6795. }
  6796. static void init_numa_sched_groups_power(struct sched_group *group_head)
  6797. {
  6798. struct sched_group *sg = group_head;
  6799. int j;
  6800. if (!sg)
  6801. return;
  6802. do {
  6803. for_each_cpu(j, sched_group_cpus(sg)) {
  6804. struct sched_domain *sd;
  6805. sd = &per_cpu(phys_domains, j).sd;
  6806. if (j != cpumask_first(sched_group_cpus(sd->groups))) {
  6807. /*
  6808. * Only add "power" once for each
  6809. * physical package.
  6810. */
  6811. continue;
  6812. }
  6813. sg_inc_cpu_power(sg, sd->groups->__cpu_power);
  6814. }
  6815. sg = sg->next;
  6816. } while (sg != group_head);
  6817. }
  6818. #endif /* CONFIG_NUMA */
  6819. #ifdef CONFIG_NUMA
  6820. /* Free memory allocated for various sched_group structures */
  6821. static void free_sched_groups(const struct cpumask *cpu_map,
  6822. struct cpumask *nodemask)
  6823. {
  6824. int cpu, i;
  6825. for_each_cpu(cpu, cpu_map) {
  6826. struct sched_group **sched_group_nodes
  6827. = sched_group_nodes_bycpu[cpu];
  6828. if (!sched_group_nodes)
  6829. continue;
  6830. for (i = 0; i < nr_node_ids; i++) {
  6831. struct sched_group *oldsg, *sg = sched_group_nodes[i];
  6832. cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
  6833. if (cpumask_empty(nodemask))
  6834. continue;
  6835. if (sg == NULL)
  6836. continue;
  6837. sg = sg->next;
  6838. next_sg:
  6839. oldsg = sg;
  6840. sg = sg->next;
  6841. kfree(oldsg);
  6842. if (oldsg != sched_group_nodes[i])
  6843. goto next_sg;
  6844. }
  6845. kfree(sched_group_nodes);
  6846. sched_group_nodes_bycpu[cpu] = NULL;
  6847. }
  6848. }
  6849. #else /* !CONFIG_NUMA */
  6850. static void free_sched_groups(const struct cpumask *cpu_map,
  6851. struct cpumask *nodemask)
  6852. {
  6853. }
  6854. #endif /* CONFIG_NUMA */
  6855. /*
  6856. * Initialize sched groups cpu_power.
  6857. *
  6858. * cpu_power indicates the capacity of sched group, which is used while
  6859. * distributing the load between different sched groups in a sched domain.
  6860. * Typically cpu_power for all the groups in a sched domain will be same unless
  6861. * there are asymmetries in the topology. If there are asymmetries, group
  6862. * having more cpu_power will pickup more load compared to the group having
  6863. * less cpu_power.
  6864. *
  6865. * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
  6866. * the maximum number of tasks a group can handle in the presence of other idle
  6867. * or lightly loaded groups in the same sched domain.
  6868. */
  6869. static void init_sched_groups_power(int cpu, struct sched_domain *sd)
  6870. {
  6871. struct sched_domain *child;
  6872. struct sched_group *group;
  6873. WARN_ON(!sd || !sd->groups);
  6874. if (cpu != cpumask_first(sched_group_cpus(sd->groups)))
  6875. return;
  6876. child = sd->child;
  6877. sd->groups->__cpu_power = 0;
  6878. /*
  6879. * For perf policy, if the groups in child domain share resources
  6880. * (for example cores sharing some portions of the cache hierarchy
  6881. * or SMT), then set this domain groups cpu_power such that each group
  6882. * can handle only one task, when there are other idle groups in the
  6883. * same sched domain.
  6884. */
  6885. if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
  6886. (child->flags &
  6887. (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
  6888. sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
  6889. return;
  6890. }
  6891. /*
  6892. * add cpu_power of each child group to this groups cpu_power
  6893. */
  6894. group = child->groups;
  6895. do {
  6896. sg_inc_cpu_power(sd->groups, group->__cpu_power);
  6897. group = group->next;
  6898. } while (group != child->groups);
  6899. }
  6900. /*
  6901. * Initializers for schedule domains
  6902. * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
  6903. */
  6904. #ifdef CONFIG_SCHED_DEBUG
  6905. # define SD_INIT_NAME(sd, type) sd->name = #type
  6906. #else
  6907. # define SD_INIT_NAME(sd, type) do { } while (0)
  6908. #endif
  6909. #define SD_INIT(sd, type) sd_init_##type(sd)
  6910. #define SD_INIT_FUNC(type) \
  6911. static noinline void sd_init_##type(struct sched_domain *sd) \
  6912. { \
  6913. memset(sd, 0, sizeof(*sd)); \
  6914. *sd = SD_##type##_INIT; \
  6915. sd->level = SD_LV_##type; \
  6916. SD_INIT_NAME(sd, type); \
  6917. }
  6918. SD_INIT_FUNC(CPU)
  6919. #ifdef CONFIG_NUMA
  6920. SD_INIT_FUNC(ALLNODES)
  6921. SD_INIT_FUNC(NODE)
  6922. #endif
  6923. #ifdef CONFIG_SCHED_SMT
  6924. SD_INIT_FUNC(SIBLING)
  6925. #endif
  6926. #ifdef CONFIG_SCHED_MC
  6927. SD_INIT_FUNC(MC)
  6928. #endif
  6929. static int default_relax_domain_level = -1;
  6930. static int __init setup_relax_domain_level(char *str)
  6931. {
  6932. unsigned long val;
  6933. val = simple_strtoul(str, NULL, 0);
  6934. if (val < SD_LV_MAX)
  6935. default_relax_domain_level = val;
  6936. return 1;
  6937. }
  6938. __setup("relax_domain_level=", setup_relax_domain_level);
  6939. static void set_domain_attribute(struct sched_domain *sd,
  6940. struct sched_domain_attr *attr)
  6941. {
  6942. int request;
  6943. if (!attr || attr->relax_domain_level < 0) {
  6944. if (default_relax_domain_level < 0)
  6945. return;
  6946. else
  6947. request = default_relax_domain_level;
  6948. } else
  6949. request = attr->relax_domain_level;
  6950. if (request < sd->level) {
  6951. /* turn off idle balance on this domain */
  6952. sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
  6953. } else {
  6954. /* turn on idle balance on this domain */
  6955. sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
  6956. }
  6957. }
  6958. /*
  6959. * Build sched domains for a given set of cpus and attach the sched domains
  6960. * to the individual cpus
  6961. */
  6962. static int __build_sched_domains(const struct cpumask *cpu_map,
  6963. struct sched_domain_attr *attr)
  6964. {
  6965. int i, err = -ENOMEM;
  6966. struct root_domain *rd;
  6967. cpumask_var_t nodemask, this_sibling_map, this_core_map, send_covered,
  6968. tmpmask;
  6969. #ifdef CONFIG_NUMA
  6970. cpumask_var_t domainspan, covered, notcovered;
  6971. struct sched_group **sched_group_nodes = NULL;
  6972. int sd_allnodes = 0;
  6973. if (!alloc_cpumask_var(&domainspan, GFP_KERNEL))
  6974. goto out;
  6975. if (!alloc_cpumask_var(&covered, GFP_KERNEL))
  6976. goto free_domainspan;
  6977. if (!alloc_cpumask_var(&notcovered, GFP_KERNEL))
  6978. goto free_covered;
  6979. #endif
  6980. if (!alloc_cpumask_var(&nodemask, GFP_KERNEL))
  6981. goto free_notcovered;
  6982. if (!alloc_cpumask_var(&this_sibling_map, GFP_KERNEL))
  6983. goto free_nodemask;
  6984. if (!alloc_cpumask_var(&this_core_map, GFP_KERNEL))
  6985. goto free_this_sibling_map;
  6986. if (!alloc_cpumask_var(&send_covered, GFP_KERNEL))
  6987. goto free_this_core_map;
  6988. if (!alloc_cpumask_var(&tmpmask, GFP_KERNEL))
  6989. goto free_send_covered;
  6990. #ifdef CONFIG_NUMA
  6991. /*
  6992. * Allocate the per-node list of sched groups
  6993. */
  6994. sched_group_nodes = kcalloc(nr_node_ids, sizeof(struct sched_group *),
  6995. GFP_KERNEL);
  6996. if (!sched_group_nodes) {
  6997. printk(KERN_WARNING "Can not alloc sched group node list\n");
  6998. goto free_tmpmask;
  6999. }
  7000. #endif
  7001. rd = alloc_rootdomain();
  7002. if (!rd) {
  7003. printk(KERN_WARNING "Cannot alloc root domain\n");
  7004. goto free_sched_groups;
  7005. }
  7006. #ifdef CONFIG_NUMA
  7007. sched_group_nodes_bycpu[cpumask_first(cpu_map)] = sched_group_nodes;
  7008. #endif
  7009. /*
  7010. * Set up domains for cpus specified by the cpu_map.
  7011. */
  7012. for_each_cpu(i, cpu_map) {
  7013. struct sched_domain *sd = NULL, *p;
  7014. cpumask_and(nodemask, cpumask_of_node(cpu_to_node(i)), cpu_map);
  7015. #ifdef CONFIG_NUMA
  7016. if (cpumask_weight(cpu_map) >
  7017. SD_NODES_PER_DOMAIN*cpumask_weight(nodemask)) {
  7018. sd = &per_cpu(allnodes_domains, i).sd;
  7019. SD_INIT(sd, ALLNODES);
  7020. set_domain_attribute(sd, attr);
  7021. cpumask_copy(sched_domain_span(sd), cpu_map);
  7022. cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
  7023. p = sd;
  7024. sd_allnodes = 1;
  7025. } else
  7026. p = NULL;
  7027. sd = &per_cpu(node_domains, i).sd;
  7028. SD_INIT(sd, NODE);
  7029. set_domain_attribute(sd, attr);
  7030. sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
  7031. sd->parent = p;
  7032. if (p)
  7033. p->child = sd;
  7034. cpumask_and(sched_domain_span(sd),
  7035. sched_domain_span(sd), cpu_map);
  7036. #endif
  7037. p = sd;
  7038. sd = &per_cpu(phys_domains, i).sd;
  7039. SD_INIT(sd, CPU);
  7040. set_domain_attribute(sd, attr);
  7041. cpumask_copy(sched_domain_span(sd), nodemask);
  7042. sd->parent = p;
  7043. if (p)
  7044. p->child = sd;
  7045. cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
  7046. #ifdef CONFIG_SCHED_MC
  7047. p = sd;
  7048. sd = &per_cpu(core_domains, i).sd;
  7049. SD_INIT(sd, MC);
  7050. set_domain_attribute(sd, attr);
  7051. cpumask_and(sched_domain_span(sd), cpu_map,
  7052. cpu_coregroup_mask(i));
  7053. sd->parent = p;
  7054. p->child = sd;
  7055. cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
  7056. #endif
  7057. #ifdef CONFIG_SCHED_SMT
  7058. p = sd;
  7059. sd = &per_cpu(cpu_domains, i).sd;
  7060. SD_INIT(sd, SIBLING);
  7061. set_domain_attribute(sd, attr);
  7062. cpumask_and(sched_domain_span(sd),
  7063. topology_thread_cpumask(i), cpu_map);
  7064. sd->parent = p;
  7065. p->child = sd;
  7066. cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
  7067. #endif
  7068. }
  7069. #ifdef CONFIG_SCHED_SMT
  7070. /* Set up CPU (sibling) groups */
  7071. for_each_cpu(i, cpu_map) {
  7072. cpumask_and(this_sibling_map,
  7073. topology_thread_cpumask(i), cpu_map);
  7074. if (i != cpumask_first(this_sibling_map))
  7075. continue;
  7076. init_sched_build_groups(this_sibling_map, cpu_map,
  7077. &cpu_to_cpu_group,
  7078. send_covered, tmpmask);
  7079. }
  7080. #endif
  7081. #ifdef CONFIG_SCHED_MC
  7082. /* Set up multi-core groups */
  7083. for_each_cpu(i, cpu_map) {
  7084. cpumask_and(this_core_map, cpu_coregroup_mask(i), cpu_map);
  7085. if (i != cpumask_first(this_core_map))
  7086. continue;
  7087. init_sched_build_groups(this_core_map, cpu_map,
  7088. &cpu_to_core_group,
  7089. send_covered, tmpmask);
  7090. }
  7091. #endif
  7092. /* Set up physical groups */
  7093. for (i = 0; i < nr_node_ids; i++) {
  7094. cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
  7095. if (cpumask_empty(nodemask))
  7096. continue;
  7097. init_sched_build_groups(nodemask, cpu_map,
  7098. &cpu_to_phys_group,
  7099. send_covered, tmpmask);
  7100. }
  7101. #ifdef CONFIG_NUMA
  7102. /* Set up node groups */
  7103. if (sd_allnodes) {
  7104. init_sched_build_groups(cpu_map, cpu_map,
  7105. &cpu_to_allnodes_group,
  7106. send_covered, tmpmask);
  7107. }
  7108. for (i = 0; i < nr_node_ids; i++) {
  7109. /* Set up node groups */
  7110. struct sched_group *sg, *prev;
  7111. int j;
  7112. cpumask_clear(covered);
  7113. cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
  7114. if (cpumask_empty(nodemask)) {
  7115. sched_group_nodes[i] = NULL;
  7116. continue;
  7117. }
  7118. sched_domain_node_span(i, domainspan);
  7119. cpumask_and(domainspan, domainspan, cpu_map);
  7120. sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
  7121. GFP_KERNEL, i);
  7122. if (!sg) {
  7123. printk(KERN_WARNING "Can not alloc domain group for "
  7124. "node %d\n", i);
  7125. goto error;
  7126. }
  7127. sched_group_nodes[i] = sg;
  7128. for_each_cpu(j, nodemask) {
  7129. struct sched_domain *sd;
  7130. sd = &per_cpu(node_domains, j).sd;
  7131. sd->groups = sg;
  7132. }
  7133. sg->__cpu_power = 0;
  7134. cpumask_copy(sched_group_cpus(sg), nodemask);
  7135. sg->next = sg;
  7136. cpumask_or(covered, covered, nodemask);
  7137. prev = sg;
  7138. for (j = 0; j < nr_node_ids; j++) {
  7139. int n = (i + j) % nr_node_ids;
  7140. cpumask_complement(notcovered, covered);
  7141. cpumask_and(tmpmask, notcovered, cpu_map);
  7142. cpumask_and(tmpmask, tmpmask, domainspan);
  7143. if (cpumask_empty(tmpmask))
  7144. break;
  7145. cpumask_and(tmpmask, tmpmask, cpumask_of_node(n));
  7146. if (cpumask_empty(tmpmask))
  7147. continue;
  7148. sg = kmalloc_node(sizeof(struct sched_group) +
  7149. cpumask_size(),
  7150. GFP_KERNEL, i);
  7151. if (!sg) {
  7152. printk(KERN_WARNING
  7153. "Can not alloc domain group for node %d\n", j);
  7154. goto error;
  7155. }
  7156. sg->__cpu_power = 0;
  7157. cpumask_copy(sched_group_cpus(sg), tmpmask);
  7158. sg->next = prev->next;
  7159. cpumask_or(covered, covered, tmpmask);
  7160. prev->next = sg;
  7161. prev = sg;
  7162. }
  7163. }
  7164. #endif
  7165. /* Calculate CPU power for physical packages and nodes */
  7166. #ifdef CONFIG_SCHED_SMT
  7167. for_each_cpu(i, cpu_map) {
  7168. struct sched_domain *sd = &per_cpu(cpu_domains, i).sd;
  7169. init_sched_groups_power(i, sd);
  7170. }
  7171. #endif
  7172. #ifdef CONFIG_SCHED_MC
  7173. for_each_cpu(i, cpu_map) {
  7174. struct sched_domain *sd = &per_cpu(core_domains, i).sd;
  7175. init_sched_groups_power(i, sd);
  7176. }
  7177. #endif
  7178. for_each_cpu(i, cpu_map) {
  7179. struct sched_domain *sd = &per_cpu(phys_domains, i).sd;
  7180. init_sched_groups_power(i, sd);
  7181. }
  7182. #ifdef CONFIG_NUMA
  7183. for (i = 0; i < nr_node_ids; i++)
  7184. init_numa_sched_groups_power(sched_group_nodes[i]);
  7185. if (sd_allnodes) {
  7186. struct sched_group *sg;
  7187. cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
  7188. tmpmask);
  7189. init_numa_sched_groups_power(sg);
  7190. }
  7191. #endif
  7192. /* Attach the domains */
  7193. for_each_cpu(i, cpu_map) {
  7194. struct sched_domain *sd;
  7195. #ifdef CONFIG_SCHED_SMT
  7196. sd = &per_cpu(cpu_domains, i).sd;
  7197. #elif defined(CONFIG_SCHED_MC)
  7198. sd = &per_cpu(core_domains, i).sd;
  7199. #else
  7200. sd = &per_cpu(phys_domains, i).sd;
  7201. #endif
  7202. cpu_attach_domain(sd, rd, i);
  7203. }
  7204. err = 0;
  7205. free_tmpmask:
  7206. free_cpumask_var(tmpmask);
  7207. free_send_covered:
  7208. free_cpumask_var(send_covered);
  7209. free_this_core_map:
  7210. free_cpumask_var(this_core_map);
  7211. free_this_sibling_map:
  7212. free_cpumask_var(this_sibling_map);
  7213. free_nodemask:
  7214. free_cpumask_var(nodemask);
  7215. free_notcovered:
  7216. #ifdef CONFIG_NUMA
  7217. free_cpumask_var(notcovered);
  7218. free_covered:
  7219. free_cpumask_var(covered);
  7220. free_domainspan:
  7221. free_cpumask_var(domainspan);
  7222. out:
  7223. #endif
  7224. return err;
  7225. free_sched_groups:
  7226. #ifdef CONFIG_NUMA
  7227. kfree(sched_group_nodes);
  7228. #endif
  7229. goto free_tmpmask;
  7230. #ifdef CONFIG_NUMA
  7231. error:
  7232. free_sched_groups(cpu_map, tmpmask);
  7233. free_rootdomain(rd);
  7234. goto free_tmpmask;
  7235. #endif
  7236. }
  7237. static int build_sched_domains(const struct cpumask *cpu_map)
  7238. {
  7239. return __build_sched_domains(cpu_map, NULL);
  7240. }
  7241. static struct cpumask *doms_cur; /* current sched domains */
  7242. static int ndoms_cur; /* number of sched domains in 'doms_cur' */
  7243. static struct sched_domain_attr *dattr_cur;
  7244. /* attribues of custom domains in 'doms_cur' */
  7245. /*
  7246. * Special case: If a kmalloc of a doms_cur partition (array of
  7247. * cpumask) fails, then fallback to a single sched domain,
  7248. * as determined by the single cpumask fallback_doms.
  7249. */
  7250. static cpumask_var_t fallback_doms;
  7251. /*
  7252. * arch_update_cpu_topology lets virtualized architectures update the
  7253. * cpu core maps. It is supposed to return 1 if the topology changed
  7254. * or 0 if it stayed the same.
  7255. */
  7256. int __attribute__((weak)) arch_update_cpu_topology(void)
  7257. {
  7258. return 0;
  7259. }
  7260. /*
  7261. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  7262. * For now this just excludes isolated cpus, but could be used to
  7263. * exclude other special cases in the future.
  7264. */
  7265. static int arch_init_sched_domains(const struct cpumask *cpu_map)
  7266. {
  7267. int err;
  7268. arch_update_cpu_topology();
  7269. ndoms_cur = 1;
  7270. doms_cur = kmalloc(cpumask_size(), GFP_KERNEL);
  7271. if (!doms_cur)
  7272. doms_cur = fallback_doms;
  7273. cpumask_andnot(doms_cur, cpu_map, cpu_isolated_map);
  7274. dattr_cur = NULL;
  7275. err = build_sched_domains(doms_cur);
  7276. register_sched_domain_sysctl();
  7277. return err;
  7278. }
  7279. static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
  7280. struct cpumask *tmpmask)
  7281. {
  7282. free_sched_groups(cpu_map, tmpmask);
  7283. }
  7284. /*
  7285. * Detach sched domains from a group of cpus specified in cpu_map
  7286. * These cpus will now be attached to the NULL domain
  7287. */
  7288. static void detach_destroy_domains(const struct cpumask *cpu_map)
  7289. {
  7290. /* Save because hotplug lock held. */
  7291. static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
  7292. int i;
  7293. for_each_cpu(i, cpu_map)
  7294. cpu_attach_domain(NULL, &def_root_domain, i);
  7295. synchronize_sched();
  7296. arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
  7297. }
  7298. /* handle null as "default" */
  7299. static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
  7300. struct sched_domain_attr *new, int idx_new)
  7301. {
  7302. struct sched_domain_attr tmp;
  7303. /* fast path */
  7304. if (!new && !cur)
  7305. return 1;
  7306. tmp = SD_ATTR_INIT;
  7307. return !memcmp(cur ? (cur + idx_cur) : &tmp,
  7308. new ? (new + idx_new) : &tmp,
  7309. sizeof(struct sched_domain_attr));
  7310. }
  7311. /*
  7312. * Partition sched domains as specified by the 'ndoms_new'
  7313. * cpumasks in the array doms_new[] of cpumasks. This compares
  7314. * doms_new[] to the current sched domain partitioning, doms_cur[].
  7315. * It destroys each deleted domain and builds each new domain.
  7316. *
  7317. * 'doms_new' is an array of cpumask's of length 'ndoms_new'.
  7318. * The masks don't intersect (don't overlap.) We should setup one
  7319. * sched domain for each mask. CPUs not in any of the cpumasks will
  7320. * not be load balanced. If the same cpumask appears both in the
  7321. * current 'doms_cur' domains and in the new 'doms_new', we can leave
  7322. * it as it is.
  7323. *
  7324. * The passed in 'doms_new' should be kmalloc'd. This routine takes
  7325. * ownership of it and will kfree it when done with it. If the caller
  7326. * failed the kmalloc call, then it can pass in doms_new == NULL &&
  7327. * ndoms_new == 1, and partition_sched_domains() will fallback to
  7328. * the single partition 'fallback_doms', it also forces the domains
  7329. * to be rebuilt.
  7330. *
  7331. * If doms_new == NULL it will be replaced with cpu_online_mask.
  7332. * ndoms_new == 0 is a special case for destroying existing domains,
  7333. * and it will not create the default domain.
  7334. *
  7335. * Call with hotplug lock held
  7336. */
  7337. /* FIXME: Change to struct cpumask *doms_new[] */
  7338. void partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
  7339. struct sched_domain_attr *dattr_new)
  7340. {
  7341. int i, j, n;
  7342. int new_topology;
  7343. mutex_lock(&sched_domains_mutex);
  7344. /* always unregister in case we don't destroy any domains */
  7345. unregister_sched_domain_sysctl();
  7346. /* Let architecture update cpu core mappings. */
  7347. new_topology = arch_update_cpu_topology();
  7348. n = doms_new ? ndoms_new : 0;
  7349. /* Destroy deleted domains */
  7350. for (i = 0; i < ndoms_cur; i++) {
  7351. for (j = 0; j < n && !new_topology; j++) {
  7352. if (cpumask_equal(&doms_cur[i], &doms_new[j])
  7353. && dattrs_equal(dattr_cur, i, dattr_new, j))
  7354. goto match1;
  7355. }
  7356. /* no match - a current sched domain not in new doms_new[] */
  7357. detach_destroy_domains(doms_cur + i);
  7358. match1:
  7359. ;
  7360. }
  7361. if (doms_new == NULL) {
  7362. ndoms_cur = 0;
  7363. doms_new = fallback_doms;
  7364. cpumask_andnot(&doms_new[0], cpu_online_mask, cpu_isolated_map);
  7365. WARN_ON_ONCE(dattr_new);
  7366. }
  7367. /* Build new domains */
  7368. for (i = 0; i < ndoms_new; i++) {
  7369. for (j = 0; j < ndoms_cur && !new_topology; j++) {
  7370. if (cpumask_equal(&doms_new[i], &doms_cur[j])
  7371. && dattrs_equal(dattr_new, i, dattr_cur, j))
  7372. goto match2;
  7373. }
  7374. /* no match - add a new doms_new */
  7375. __build_sched_domains(doms_new + i,
  7376. dattr_new ? dattr_new + i : NULL);
  7377. match2:
  7378. ;
  7379. }
  7380. /* Remember the new sched domains */
  7381. if (doms_cur != fallback_doms)
  7382. kfree(doms_cur);
  7383. kfree(dattr_cur); /* kfree(NULL) is safe */
  7384. doms_cur = doms_new;
  7385. dattr_cur = dattr_new;
  7386. ndoms_cur = ndoms_new;
  7387. register_sched_domain_sysctl();
  7388. mutex_unlock(&sched_domains_mutex);
  7389. }
  7390. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  7391. static void arch_reinit_sched_domains(void)
  7392. {
  7393. get_online_cpus();
  7394. /* Destroy domains first to force the rebuild */
  7395. partition_sched_domains(0, NULL, NULL);
  7396. rebuild_sched_domains();
  7397. put_online_cpus();
  7398. }
  7399. static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
  7400. {
  7401. unsigned int level = 0;
  7402. if (sscanf(buf, "%u", &level) != 1)
  7403. return -EINVAL;
  7404. /*
  7405. * level is always be positive so don't check for
  7406. * level < POWERSAVINGS_BALANCE_NONE which is 0
  7407. * What happens on 0 or 1 byte write,
  7408. * need to check for count as well?
  7409. */
  7410. if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
  7411. return -EINVAL;
  7412. if (smt)
  7413. sched_smt_power_savings = level;
  7414. else
  7415. sched_mc_power_savings = level;
  7416. arch_reinit_sched_domains();
  7417. return count;
  7418. }
  7419. #ifdef CONFIG_SCHED_MC
  7420. static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
  7421. char *page)
  7422. {
  7423. return sprintf(page, "%u\n", sched_mc_power_savings);
  7424. }
  7425. static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
  7426. const char *buf, size_t count)
  7427. {
  7428. return sched_power_savings_store(buf, count, 0);
  7429. }
  7430. static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
  7431. sched_mc_power_savings_show,
  7432. sched_mc_power_savings_store);
  7433. #endif
  7434. #ifdef CONFIG_SCHED_SMT
  7435. static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
  7436. char *page)
  7437. {
  7438. return sprintf(page, "%u\n", sched_smt_power_savings);
  7439. }
  7440. static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
  7441. const char *buf, size_t count)
  7442. {
  7443. return sched_power_savings_store(buf, count, 1);
  7444. }
  7445. static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
  7446. sched_smt_power_savings_show,
  7447. sched_smt_power_savings_store);
  7448. #endif
  7449. int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
  7450. {
  7451. int err = 0;
  7452. #ifdef CONFIG_SCHED_SMT
  7453. if (smt_capable())
  7454. err = sysfs_create_file(&cls->kset.kobj,
  7455. &attr_sched_smt_power_savings.attr);
  7456. #endif
  7457. #ifdef CONFIG_SCHED_MC
  7458. if (!err && mc_capable())
  7459. err = sysfs_create_file(&cls->kset.kobj,
  7460. &attr_sched_mc_power_savings.attr);
  7461. #endif
  7462. return err;
  7463. }
  7464. #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  7465. #ifndef CONFIG_CPUSETS
  7466. /*
  7467. * Add online and remove offline CPUs from the scheduler domains.
  7468. * When cpusets are enabled they take over this function.
  7469. */
  7470. static int update_sched_domains(struct notifier_block *nfb,
  7471. unsigned long action, void *hcpu)
  7472. {
  7473. switch (action) {
  7474. case CPU_ONLINE:
  7475. case CPU_ONLINE_FROZEN:
  7476. case CPU_DEAD:
  7477. case CPU_DEAD_FROZEN:
  7478. partition_sched_domains(1, NULL, NULL);
  7479. return NOTIFY_OK;
  7480. default:
  7481. return NOTIFY_DONE;
  7482. }
  7483. }
  7484. #endif
  7485. static int update_runtime(struct notifier_block *nfb,
  7486. unsigned long action, void *hcpu)
  7487. {
  7488. int cpu = (int)(long)hcpu;
  7489. switch (action) {
  7490. case CPU_DOWN_PREPARE:
  7491. case CPU_DOWN_PREPARE_FROZEN:
  7492. disable_runtime(cpu_rq(cpu));
  7493. return NOTIFY_OK;
  7494. case CPU_DOWN_FAILED:
  7495. case CPU_DOWN_FAILED_FROZEN:
  7496. case CPU_ONLINE:
  7497. case CPU_ONLINE_FROZEN:
  7498. enable_runtime(cpu_rq(cpu));
  7499. return NOTIFY_OK;
  7500. default:
  7501. return NOTIFY_DONE;
  7502. }
  7503. }
  7504. void __init sched_init_smp(void)
  7505. {
  7506. cpumask_var_t non_isolated_cpus;
  7507. alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
  7508. #if defined(CONFIG_NUMA)
  7509. sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
  7510. GFP_KERNEL);
  7511. BUG_ON(sched_group_nodes_bycpu == NULL);
  7512. #endif
  7513. get_online_cpus();
  7514. mutex_lock(&sched_domains_mutex);
  7515. arch_init_sched_domains(cpu_online_mask);
  7516. cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
  7517. if (cpumask_empty(non_isolated_cpus))
  7518. cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
  7519. mutex_unlock(&sched_domains_mutex);
  7520. put_online_cpus();
  7521. #ifndef CONFIG_CPUSETS
  7522. /* XXX: Theoretical race here - CPU may be hotplugged now */
  7523. hotcpu_notifier(update_sched_domains, 0);
  7524. #endif
  7525. /* RT runtime code needs to handle some hotplug events */
  7526. hotcpu_notifier(update_runtime, 0);
  7527. init_hrtick();
  7528. /* Move init over to a non-isolated CPU */
  7529. if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
  7530. BUG();
  7531. sched_init_granularity();
  7532. free_cpumask_var(non_isolated_cpus);
  7533. alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
  7534. init_sched_rt_class();
  7535. }
  7536. #else
  7537. void __init sched_init_smp(void)
  7538. {
  7539. sched_init_granularity();
  7540. }
  7541. #endif /* CONFIG_SMP */
  7542. int in_sched_functions(unsigned long addr)
  7543. {
  7544. return in_lock_functions(addr) ||
  7545. (addr >= (unsigned long)__sched_text_start
  7546. && addr < (unsigned long)__sched_text_end);
  7547. }
  7548. static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
  7549. {
  7550. cfs_rq->tasks_timeline = RB_ROOT;
  7551. INIT_LIST_HEAD(&cfs_rq->tasks);
  7552. #ifdef CONFIG_FAIR_GROUP_SCHED
  7553. cfs_rq->rq = rq;
  7554. #endif
  7555. cfs_rq->min_vruntime = (u64)(-(1LL << 20));
  7556. }
  7557. static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
  7558. {
  7559. struct rt_prio_array *array;
  7560. int i;
  7561. array = &rt_rq->active;
  7562. for (i = 0; i < MAX_RT_PRIO; i++) {
  7563. INIT_LIST_HEAD(array->queue + i);
  7564. __clear_bit(i, array->bitmap);
  7565. }
  7566. /* delimiter for bitsearch: */
  7567. __set_bit(MAX_RT_PRIO, array->bitmap);
  7568. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  7569. rt_rq->highest_prio.curr = MAX_RT_PRIO;
  7570. #ifdef CONFIG_SMP
  7571. rt_rq->highest_prio.next = MAX_RT_PRIO;
  7572. #endif
  7573. #endif
  7574. #ifdef CONFIG_SMP
  7575. rt_rq->rt_nr_migratory = 0;
  7576. rt_rq->overloaded = 0;
  7577. plist_head_init(&rq->rt.pushable_tasks, &rq->lock);
  7578. #endif
  7579. rt_rq->rt_time = 0;
  7580. rt_rq->rt_throttled = 0;
  7581. rt_rq->rt_runtime = 0;
  7582. spin_lock_init(&rt_rq->rt_runtime_lock);
  7583. #ifdef CONFIG_RT_GROUP_SCHED
  7584. rt_rq->rt_nr_boosted = 0;
  7585. rt_rq->rq = rq;
  7586. #endif
  7587. }
  7588. #ifdef CONFIG_FAIR_GROUP_SCHED
  7589. static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
  7590. struct sched_entity *se, int cpu, int add,
  7591. struct sched_entity *parent)
  7592. {
  7593. struct rq *rq = cpu_rq(cpu);
  7594. tg->cfs_rq[cpu] = cfs_rq;
  7595. init_cfs_rq(cfs_rq, rq);
  7596. cfs_rq->tg = tg;
  7597. if (add)
  7598. list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
  7599. tg->se[cpu] = se;
  7600. /* se could be NULL for init_task_group */
  7601. if (!se)
  7602. return;
  7603. if (!parent)
  7604. se->cfs_rq = &rq->cfs;
  7605. else
  7606. se->cfs_rq = parent->my_q;
  7607. se->my_q = cfs_rq;
  7608. se->load.weight = tg->shares;
  7609. se->load.inv_weight = 0;
  7610. se->parent = parent;
  7611. }
  7612. #endif
  7613. #ifdef CONFIG_RT_GROUP_SCHED
  7614. static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
  7615. struct sched_rt_entity *rt_se, int cpu, int add,
  7616. struct sched_rt_entity *parent)
  7617. {
  7618. struct rq *rq = cpu_rq(cpu);
  7619. tg->rt_rq[cpu] = rt_rq;
  7620. init_rt_rq(rt_rq, rq);
  7621. rt_rq->tg = tg;
  7622. rt_rq->rt_se = rt_se;
  7623. rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
  7624. if (add)
  7625. list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
  7626. tg->rt_se[cpu] = rt_se;
  7627. if (!rt_se)
  7628. return;
  7629. if (!parent)
  7630. rt_se->rt_rq = &rq->rt;
  7631. else
  7632. rt_se->rt_rq = parent->my_q;
  7633. rt_se->my_q = rt_rq;
  7634. rt_se->parent = parent;
  7635. INIT_LIST_HEAD(&rt_se->run_list);
  7636. }
  7637. #endif
  7638. void __init sched_init(void)
  7639. {
  7640. int i, j;
  7641. unsigned long alloc_size = 0, ptr;
  7642. #ifdef CONFIG_FAIR_GROUP_SCHED
  7643. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  7644. #endif
  7645. #ifdef CONFIG_RT_GROUP_SCHED
  7646. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  7647. #endif
  7648. #ifdef CONFIG_USER_SCHED
  7649. alloc_size *= 2;
  7650. #endif
  7651. #ifdef CONFIG_CPUMASK_OFFSTACK
  7652. alloc_size += num_possible_cpus() * cpumask_size();
  7653. #endif
  7654. /*
  7655. * As sched_init() is called before page_alloc is setup,
  7656. * we use alloc_bootmem().
  7657. */
  7658. if (alloc_size) {
  7659. ptr = (unsigned long)alloc_bootmem(alloc_size);
  7660. #ifdef CONFIG_FAIR_GROUP_SCHED
  7661. init_task_group.se = (struct sched_entity **)ptr;
  7662. ptr += nr_cpu_ids * sizeof(void **);
  7663. init_task_group.cfs_rq = (struct cfs_rq **)ptr;
  7664. ptr += nr_cpu_ids * sizeof(void **);
  7665. #ifdef CONFIG_USER_SCHED
  7666. root_task_group.se = (struct sched_entity **)ptr;
  7667. ptr += nr_cpu_ids * sizeof(void **);
  7668. root_task_group.cfs_rq = (struct cfs_rq **)ptr;
  7669. ptr += nr_cpu_ids * sizeof(void **);
  7670. #endif /* CONFIG_USER_SCHED */
  7671. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7672. #ifdef CONFIG_RT_GROUP_SCHED
  7673. init_task_group.rt_se = (struct sched_rt_entity **)ptr;
  7674. ptr += nr_cpu_ids * sizeof(void **);
  7675. init_task_group.rt_rq = (struct rt_rq **)ptr;
  7676. ptr += nr_cpu_ids * sizeof(void **);
  7677. #ifdef CONFIG_USER_SCHED
  7678. root_task_group.rt_se = (struct sched_rt_entity **)ptr;
  7679. ptr += nr_cpu_ids * sizeof(void **);
  7680. root_task_group.rt_rq = (struct rt_rq **)ptr;
  7681. ptr += nr_cpu_ids * sizeof(void **);
  7682. #endif /* CONFIG_USER_SCHED */
  7683. #endif /* CONFIG_RT_GROUP_SCHED */
  7684. #ifdef CONFIG_CPUMASK_OFFSTACK
  7685. for_each_possible_cpu(i) {
  7686. per_cpu(load_balance_tmpmask, i) = (void *)ptr;
  7687. ptr += cpumask_size();
  7688. }
  7689. #endif /* CONFIG_CPUMASK_OFFSTACK */
  7690. }
  7691. #ifdef CONFIG_SMP
  7692. init_defrootdomain();
  7693. #endif
  7694. init_rt_bandwidth(&def_rt_bandwidth,
  7695. global_rt_period(), global_rt_runtime());
  7696. #ifdef CONFIG_RT_GROUP_SCHED
  7697. init_rt_bandwidth(&init_task_group.rt_bandwidth,
  7698. global_rt_period(), global_rt_runtime());
  7699. #ifdef CONFIG_USER_SCHED
  7700. init_rt_bandwidth(&root_task_group.rt_bandwidth,
  7701. global_rt_period(), RUNTIME_INF);
  7702. #endif /* CONFIG_USER_SCHED */
  7703. #endif /* CONFIG_RT_GROUP_SCHED */
  7704. #ifdef CONFIG_GROUP_SCHED
  7705. list_add(&init_task_group.list, &task_groups);
  7706. INIT_LIST_HEAD(&init_task_group.children);
  7707. #ifdef CONFIG_USER_SCHED
  7708. INIT_LIST_HEAD(&root_task_group.children);
  7709. init_task_group.parent = &root_task_group;
  7710. list_add(&init_task_group.siblings, &root_task_group.children);
  7711. #endif /* CONFIG_USER_SCHED */
  7712. #endif /* CONFIG_GROUP_SCHED */
  7713. for_each_possible_cpu(i) {
  7714. struct rq *rq;
  7715. rq = cpu_rq(i);
  7716. spin_lock_init(&rq->lock);
  7717. rq->nr_running = 0;
  7718. init_cfs_rq(&rq->cfs, rq);
  7719. init_rt_rq(&rq->rt, rq);
  7720. #ifdef CONFIG_FAIR_GROUP_SCHED
  7721. init_task_group.shares = init_task_group_load;
  7722. INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
  7723. #ifdef CONFIG_CGROUP_SCHED
  7724. /*
  7725. * How much cpu bandwidth does init_task_group get?
  7726. *
  7727. * In case of task-groups formed thr' the cgroup filesystem, it
  7728. * gets 100% of the cpu resources in the system. This overall
  7729. * system cpu resource is divided among the tasks of
  7730. * init_task_group and its child task-groups in a fair manner,
  7731. * based on each entity's (task or task-group's) weight
  7732. * (se->load.weight).
  7733. *
  7734. * In other words, if init_task_group has 10 tasks of weight
  7735. * 1024) and two child groups A0 and A1 (of weight 1024 each),
  7736. * then A0's share of the cpu resource is:
  7737. *
  7738. * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
  7739. *
  7740. * We achieve this by letting init_task_group's tasks sit
  7741. * directly in rq->cfs (i.e init_task_group->se[] = NULL).
  7742. */
  7743. init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
  7744. #elif defined CONFIG_USER_SCHED
  7745. root_task_group.shares = NICE_0_LOAD;
  7746. init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
  7747. /*
  7748. * In case of task-groups formed thr' the user id of tasks,
  7749. * init_task_group represents tasks belonging to root user.
  7750. * Hence it forms a sibling of all subsequent groups formed.
  7751. * In this case, init_task_group gets only a fraction of overall
  7752. * system cpu resource, based on the weight assigned to root
  7753. * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
  7754. * by letting tasks of init_task_group sit in a separate cfs_rq
  7755. * (init_cfs_rq) and having one entity represent this group of
  7756. * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
  7757. */
  7758. init_tg_cfs_entry(&init_task_group,
  7759. &per_cpu(init_cfs_rq, i),
  7760. &per_cpu(init_sched_entity, i), i, 1,
  7761. root_task_group.se[i]);
  7762. #endif
  7763. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7764. rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
  7765. #ifdef CONFIG_RT_GROUP_SCHED
  7766. INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
  7767. #ifdef CONFIG_CGROUP_SCHED
  7768. init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
  7769. #elif defined CONFIG_USER_SCHED
  7770. init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
  7771. init_tg_rt_entry(&init_task_group,
  7772. &per_cpu(init_rt_rq, i),
  7773. &per_cpu(init_sched_rt_entity, i), i, 1,
  7774. root_task_group.rt_se[i]);
  7775. #endif
  7776. #endif
  7777. for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
  7778. rq->cpu_load[j] = 0;
  7779. #ifdef CONFIG_SMP
  7780. rq->sd = NULL;
  7781. rq->rd = NULL;
  7782. rq->active_balance = 0;
  7783. rq->next_balance = jiffies;
  7784. rq->push_cpu = 0;
  7785. rq->cpu = i;
  7786. rq->online = 0;
  7787. rq->migration_thread = NULL;
  7788. INIT_LIST_HEAD(&rq->migration_queue);
  7789. rq_attach_root(rq, &def_root_domain);
  7790. #endif
  7791. init_rq_hrtick(rq);
  7792. atomic_set(&rq->nr_iowait, 0);
  7793. }
  7794. set_load_weight(&init_task);
  7795. #ifdef CONFIG_PREEMPT_NOTIFIERS
  7796. INIT_HLIST_HEAD(&init_task.preempt_notifiers);
  7797. #endif
  7798. #ifdef CONFIG_SMP
  7799. open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
  7800. #endif
  7801. #ifdef CONFIG_RT_MUTEXES
  7802. plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
  7803. #endif
  7804. /*
  7805. * The boot idle thread does lazy MMU switching as well:
  7806. */
  7807. atomic_inc(&init_mm.mm_count);
  7808. enter_lazy_tlb(&init_mm, current);
  7809. /*
  7810. * Make us the idle thread. Technically, schedule() should not be
  7811. * called from this thread, however somewhere below it might be,
  7812. * but because we are the idle thread, we just pick up running again
  7813. * when this runqueue becomes "idle".
  7814. */
  7815. init_idle(current, smp_processor_id());
  7816. /*
  7817. * During early bootup we pretend to be a normal task:
  7818. */
  7819. current->sched_class = &fair_sched_class;
  7820. /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
  7821. alloc_bootmem_cpumask_var(&nohz_cpu_mask);
  7822. #ifdef CONFIG_SMP
  7823. #ifdef CONFIG_NO_HZ
  7824. alloc_bootmem_cpumask_var(&nohz.cpu_mask);
  7825. alloc_bootmem_cpumask_var(&nohz.ilb_grp_nohz_mask);
  7826. #endif
  7827. alloc_bootmem_cpumask_var(&cpu_isolated_map);
  7828. #endif /* SMP */
  7829. scheduler_running = 1;
  7830. }
  7831. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  7832. void __might_sleep(char *file, int line)
  7833. {
  7834. #ifdef in_atomic
  7835. static unsigned long prev_jiffy; /* ratelimiting */
  7836. if ((!in_atomic() && !irqs_disabled()) ||
  7837. system_state != SYSTEM_RUNNING || oops_in_progress)
  7838. return;
  7839. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  7840. return;
  7841. prev_jiffy = jiffies;
  7842. printk(KERN_ERR
  7843. "BUG: sleeping function called from invalid context at %s:%d\n",
  7844. file, line);
  7845. printk(KERN_ERR
  7846. "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
  7847. in_atomic(), irqs_disabled(),
  7848. current->pid, current->comm);
  7849. debug_show_held_locks(current);
  7850. if (irqs_disabled())
  7851. print_irqtrace_events(current);
  7852. dump_stack();
  7853. #endif
  7854. }
  7855. EXPORT_SYMBOL(__might_sleep);
  7856. #endif
  7857. #ifdef CONFIG_MAGIC_SYSRQ
  7858. static void normalize_task(struct rq *rq, struct task_struct *p)
  7859. {
  7860. int on_rq;
  7861. update_rq_clock(rq);
  7862. on_rq = p->se.on_rq;
  7863. if (on_rq)
  7864. deactivate_task(rq, p, 0);
  7865. __setscheduler(rq, p, SCHED_NORMAL, 0);
  7866. if (on_rq) {
  7867. activate_task(rq, p, 0);
  7868. resched_task(rq->curr);
  7869. }
  7870. }
  7871. void normalize_rt_tasks(void)
  7872. {
  7873. struct task_struct *g, *p;
  7874. unsigned long flags;
  7875. struct rq *rq;
  7876. read_lock_irqsave(&tasklist_lock, flags);
  7877. do_each_thread(g, p) {
  7878. /*
  7879. * Only normalize user tasks:
  7880. */
  7881. if (!p->mm)
  7882. continue;
  7883. p->se.exec_start = 0;
  7884. #ifdef CONFIG_SCHEDSTATS
  7885. p->se.wait_start = 0;
  7886. p->se.sleep_start = 0;
  7887. p->se.block_start = 0;
  7888. #endif
  7889. if (!rt_task(p)) {
  7890. /*
  7891. * Renice negative nice level userspace
  7892. * tasks back to 0:
  7893. */
  7894. if (TASK_NICE(p) < 0 && p->mm)
  7895. set_user_nice(p, 0);
  7896. continue;
  7897. }
  7898. spin_lock(&p->pi_lock);
  7899. rq = __task_rq_lock(p);
  7900. normalize_task(rq, p);
  7901. __task_rq_unlock(rq);
  7902. spin_unlock(&p->pi_lock);
  7903. } while_each_thread(g, p);
  7904. read_unlock_irqrestore(&tasklist_lock, flags);
  7905. }
  7906. #endif /* CONFIG_MAGIC_SYSRQ */
  7907. #ifdef CONFIG_IA64
  7908. /*
  7909. * These functions are only useful for the IA64 MCA handling.
  7910. *
  7911. * They can only be called when the whole system has been
  7912. * stopped - every CPU needs to be quiescent, and no scheduling
  7913. * activity can take place. Using them for anything else would
  7914. * be a serious bug, and as a result, they aren't even visible
  7915. * under any other configuration.
  7916. */
  7917. /**
  7918. * curr_task - return the current task for a given cpu.
  7919. * @cpu: the processor in question.
  7920. *
  7921. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  7922. */
  7923. struct task_struct *curr_task(int cpu)
  7924. {
  7925. return cpu_curr(cpu);
  7926. }
  7927. /**
  7928. * set_curr_task - set the current task for a given cpu.
  7929. * @cpu: the processor in question.
  7930. * @p: the task pointer to set.
  7931. *
  7932. * Description: This function must only be used when non-maskable interrupts
  7933. * are serviced on a separate stack. It allows the architecture to switch the
  7934. * notion of the current task on a cpu in a non-blocking manner. This function
  7935. * must be called with all CPU's synchronized, and interrupts disabled, the
  7936. * and caller must save the original value of the current task (see
  7937. * curr_task() above) and restore that value before reenabling interrupts and
  7938. * re-starting the system.
  7939. *
  7940. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  7941. */
  7942. void set_curr_task(int cpu, struct task_struct *p)
  7943. {
  7944. cpu_curr(cpu) = p;
  7945. }
  7946. #endif
  7947. #ifdef CONFIG_FAIR_GROUP_SCHED
  7948. static void free_fair_sched_group(struct task_group *tg)
  7949. {
  7950. int i;
  7951. for_each_possible_cpu(i) {
  7952. if (tg->cfs_rq)
  7953. kfree(tg->cfs_rq[i]);
  7954. if (tg->se)
  7955. kfree(tg->se[i]);
  7956. }
  7957. kfree(tg->cfs_rq);
  7958. kfree(tg->se);
  7959. }
  7960. static
  7961. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  7962. {
  7963. struct cfs_rq *cfs_rq;
  7964. struct sched_entity *se;
  7965. struct rq *rq;
  7966. int i;
  7967. tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
  7968. if (!tg->cfs_rq)
  7969. goto err;
  7970. tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
  7971. if (!tg->se)
  7972. goto err;
  7973. tg->shares = NICE_0_LOAD;
  7974. for_each_possible_cpu(i) {
  7975. rq = cpu_rq(i);
  7976. cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
  7977. GFP_KERNEL, cpu_to_node(i));
  7978. if (!cfs_rq)
  7979. goto err;
  7980. se = kzalloc_node(sizeof(struct sched_entity),
  7981. GFP_KERNEL, cpu_to_node(i));
  7982. if (!se)
  7983. goto err;
  7984. init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
  7985. }
  7986. return 1;
  7987. err:
  7988. return 0;
  7989. }
  7990. static inline void register_fair_sched_group(struct task_group *tg, int cpu)
  7991. {
  7992. list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
  7993. &cpu_rq(cpu)->leaf_cfs_rq_list);
  7994. }
  7995. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  7996. {
  7997. list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
  7998. }
  7999. #else /* !CONFG_FAIR_GROUP_SCHED */
  8000. static inline void free_fair_sched_group(struct task_group *tg)
  8001. {
  8002. }
  8003. static inline
  8004. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  8005. {
  8006. return 1;
  8007. }
  8008. static inline void register_fair_sched_group(struct task_group *tg, int cpu)
  8009. {
  8010. }
  8011. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  8012. {
  8013. }
  8014. #endif /* CONFIG_FAIR_GROUP_SCHED */
  8015. #ifdef CONFIG_RT_GROUP_SCHED
  8016. static void free_rt_sched_group(struct task_group *tg)
  8017. {
  8018. int i;
  8019. destroy_rt_bandwidth(&tg->rt_bandwidth);
  8020. for_each_possible_cpu(i) {
  8021. if (tg->rt_rq)
  8022. kfree(tg->rt_rq[i]);
  8023. if (tg->rt_se)
  8024. kfree(tg->rt_se[i]);
  8025. }
  8026. kfree(tg->rt_rq);
  8027. kfree(tg->rt_se);
  8028. }
  8029. static
  8030. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  8031. {
  8032. struct rt_rq *rt_rq;
  8033. struct sched_rt_entity *rt_se;
  8034. struct rq *rq;
  8035. int i;
  8036. tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
  8037. if (!tg->rt_rq)
  8038. goto err;
  8039. tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
  8040. if (!tg->rt_se)
  8041. goto err;
  8042. init_rt_bandwidth(&tg->rt_bandwidth,
  8043. ktime_to_ns(def_rt_bandwidth.rt_period), 0);
  8044. for_each_possible_cpu(i) {
  8045. rq = cpu_rq(i);
  8046. rt_rq = kzalloc_node(sizeof(struct rt_rq),
  8047. GFP_KERNEL, cpu_to_node(i));
  8048. if (!rt_rq)
  8049. goto err;
  8050. rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
  8051. GFP_KERNEL, cpu_to_node(i));
  8052. if (!rt_se)
  8053. goto err;
  8054. init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
  8055. }
  8056. return 1;
  8057. err:
  8058. return 0;
  8059. }
  8060. static inline void register_rt_sched_group(struct task_group *tg, int cpu)
  8061. {
  8062. list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
  8063. &cpu_rq(cpu)->leaf_rt_rq_list);
  8064. }
  8065. static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
  8066. {
  8067. list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
  8068. }
  8069. #else /* !CONFIG_RT_GROUP_SCHED */
  8070. static inline void free_rt_sched_group(struct task_group *tg)
  8071. {
  8072. }
  8073. static inline
  8074. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  8075. {
  8076. return 1;
  8077. }
  8078. static inline void register_rt_sched_group(struct task_group *tg, int cpu)
  8079. {
  8080. }
  8081. static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
  8082. {
  8083. }
  8084. #endif /* CONFIG_RT_GROUP_SCHED */
  8085. #ifdef CONFIG_GROUP_SCHED
  8086. static void free_sched_group(struct task_group *tg)
  8087. {
  8088. free_fair_sched_group(tg);
  8089. free_rt_sched_group(tg);
  8090. kfree(tg);
  8091. }
  8092. /* allocate runqueue etc for a new task group */
  8093. struct task_group *sched_create_group(struct task_group *parent)
  8094. {
  8095. struct task_group *tg;
  8096. unsigned long flags;
  8097. int i;
  8098. tg = kzalloc(sizeof(*tg), GFP_KERNEL);
  8099. if (!tg)
  8100. return ERR_PTR(-ENOMEM);
  8101. if (!alloc_fair_sched_group(tg, parent))
  8102. goto err;
  8103. if (!alloc_rt_sched_group(tg, parent))
  8104. goto err;
  8105. spin_lock_irqsave(&task_group_lock, flags);
  8106. for_each_possible_cpu(i) {
  8107. register_fair_sched_group(tg, i);
  8108. register_rt_sched_group(tg, i);
  8109. }
  8110. list_add_rcu(&tg->list, &task_groups);
  8111. WARN_ON(!parent); /* root should already exist */
  8112. tg->parent = parent;
  8113. INIT_LIST_HEAD(&tg->children);
  8114. list_add_rcu(&tg->siblings, &parent->children);
  8115. spin_unlock_irqrestore(&task_group_lock, flags);
  8116. return tg;
  8117. err:
  8118. free_sched_group(tg);
  8119. return ERR_PTR(-ENOMEM);
  8120. }
  8121. /* rcu callback to free various structures associated with a task group */
  8122. static void free_sched_group_rcu(struct rcu_head *rhp)
  8123. {
  8124. /* now it should be safe to free those cfs_rqs */
  8125. free_sched_group(container_of(rhp, struct task_group, rcu));
  8126. }
  8127. /* Destroy runqueue etc associated with a task group */
  8128. void sched_destroy_group(struct task_group *tg)
  8129. {
  8130. unsigned long flags;
  8131. int i;
  8132. spin_lock_irqsave(&task_group_lock, flags);
  8133. for_each_possible_cpu(i) {
  8134. unregister_fair_sched_group(tg, i);
  8135. unregister_rt_sched_group(tg, i);
  8136. }
  8137. list_del_rcu(&tg->list);
  8138. list_del_rcu(&tg->siblings);
  8139. spin_unlock_irqrestore(&task_group_lock, flags);
  8140. /* wait for possible concurrent references to cfs_rqs complete */
  8141. call_rcu(&tg->rcu, free_sched_group_rcu);
  8142. }
  8143. /* change task's runqueue when it moves between groups.
  8144. * The caller of this function should have put the task in its new group
  8145. * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
  8146. * reflect its new group.
  8147. */
  8148. void sched_move_task(struct task_struct *tsk)
  8149. {
  8150. int on_rq, running;
  8151. unsigned long flags;
  8152. struct rq *rq;
  8153. rq = task_rq_lock(tsk, &flags);
  8154. update_rq_clock(rq);
  8155. running = task_current(rq, tsk);
  8156. on_rq = tsk->se.on_rq;
  8157. if (on_rq)
  8158. dequeue_task(rq, tsk, 0);
  8159. if (unlikely(running))
  8160. tsk->sched_class->put_prev_task(rq, tsk);
  8161. set_task_rq(tsk, task_cpu(tsk));
  8162. #ifdef CONFIG_FAIR_GROUP_SCHED
  8163. if (tsk->sched_class->moved_group)
  8164. tsk->sched_class->moved_group(tsk);
  8165. #endif
  8166. if (unlikely(running))
  8167. tsk->sched_class->set_curr_task(rq);
  8168. if (on_rq)
  8169. enqueue_task(rq, tsk, 0);
  8170. task_rq_unlock(rq, &flags);
  8171. }
  8172. #endif /* CONFIG_GROUP_SCHED */
  8173. #ifdef CONFIG_FAIR_GROUP_SCHED
  8174. static void __set_se_shares(struct sched_entity *se, unsigned long shares)
  8175. {
  8176. struct cfs_rq *cfs_rq = se->cfs_rq;
  8177. int on_rq;
  8178. on_rq = se->on_rq;
  8179. if (on_rq)
  8180. dequeue_entity(cfs_rq, se, 0);
  8181. se->load.weight = shares;
  8182. se->load.inv_weight = 0;
  8183. if (on_rq)
  8184. enqueue_entity(cfs_rq, se, 0);
  8185. }
  8186. static void set_se_shares(struct sched_entity *se, unsigned long shares)
  8187. {
  8188. struct cfs_rq *cfs_rq = se->cfs_rq;
  8189. struct rq *rq = cfs_rq->rq;
  8190. unsigned long flags;
  8191. spin_lock_irqsave(&rq->lock, flags);
  8192. __set_se_shares(se, shares);
  8193. spin_unlock_irqrestore(&rq->lock, flags);
  8194. }
  8195. static DEFINE_MUTEX(shares_mutex);
  8196. int sched_group_set_shares(struct task_group *tg, unsigned long shares)
  8197. {
  8198. int i;
  8199. unsigned long flags;
  8200. /*
  8201. * We can't change the weight of the root cgroup.
  8202. */
  8203. if (!tg->se[0])
  8204. return -EINVAL;
  8205. if (shares < MIN_SHARES)
  8206. shares = MIN_SHARES;
  8207. else if (shares > MAX_SHARES)
  8208. shares = MAX_SHARES;
  8209. mutex_lock(&shares_mutex);
  8210. if (tg->shares == shares)
  8211. goto done;
  8212. spin_lock_irqsave(&task_group_lock, flags);
  8213. for_each_possible_cpu(i)
  8214. unregister_fair_sched_group(tg, i);
  8215. list_del_rcu(&tg->siblings);
  8216. spin_unlock_irqrestore(&task_group_lock, flags);
  8217. /* wait for any ongoing reference to this group to finish */
  8218. synchronize_sched();
  8219. /*
  8220. * Now we are free to modify the group's share on each cpu
  8221. * w/o tripping rebalance_share or load_balance_fair.
  8222. */
  8223. tg->shares = shares;
  8224. for_each_possible_cpu(i) {
  8225. /*
  8226. * force a rebalance
  8227. */
  8228. cfs_rq_set_shares(tg->cfs_rq[i], 0);
  8229. set_se_shares(tg->se[i], shares);
  8230. }
  8231. /*
  8232. * Enable load balance activity on this group, by inserting it back on
  8233. * each cpu's rq->leaf_cfs_rq_list.
  8234. */
  8235. spin_lock_irqsave(&task_group_lock, flags);
  8236. for_each_possible_cpu(i)
  8237. register_fair_sched_group(tg, i);
  8238. list_add_rcu(&tg->siblings, &tg->parent->children);
  8239. spin_unlock_irqrestore(&task_group_lock, flags);
  8240. done:
  8241. mutex_unlock(&shares_mutex);
  8242. return 0;
  8243. }
  8244. unsigned long sched_group_shares(struct task_group *tg)
  8245. {
  8246. return tg->shares;
  8247. }
  8248. #endif
  8249. #ifdef CONFIG_RT_GROUP_SCHED
  8250. /*
  8251. * Ensure that the real time constraints are schedulable.
  8252. */
  8253. static DEFINE_MUTEX(rt_constraints_mutex);
  8254. static unsigned long to_ratio(u64 period, u64 runtime)
  8255. {
  8256. if (runtime == RUNTIME_INF)
  8257. return 1ULL << 20;
  8258. return div64_u64(runtime << 20, period);
  8259. }
  8260. /* Must be called with tasklist_lock held */
  8261. static inline int tg_has_rt_tasks(struct task_group *tg)
  8262. {
  8263. struct task_struct *g, *p;
  8264. do_each_thread(g, p) {
  8265. if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
  8266. return 1;
  8267. } while_each_thread(g, p);
  8268. return 0;
  8269. }
  8270. struct rt_schedulable_data {
  8271. struct task_group *tg;
  8272. u64 rt_period;
  8273. u64 rt_runtime;
  8274. };
  8275. static int tg_schedulable(struct task_group *tg, void *data)
  8276. {
  8277. struct rt_schedulable_data *d = data;
  8278. struct task_group *child;
  8279. unsigned long total, sum = 0;
  8280. u64 period, runtime;
  8281. period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  8282. runtime = tg->rt_bandwidth.rt_runtime;
  8283. if (tg == d->tg) {
  8284. period = d->rt_period;
  8285. runtime = d->rt_runtime;
  8286. }
  8287. #ifdef CONFIG_USER_SCHED
  8288. if (tg == &root_task_group) {
  8289. period = global_rt_period();
  8290. runtime = global_rt_runtime();
  8291. }
  8292. #endif
  8293. /*
  8294. * Cannot have more runtime than the period.
  8295. */
  8296. if (runtime > period && runtime != RUNTIME_INF)
  8297. return -EINVAL;
  8298. /*
  8299. * Ensure we don't starve existing RT tasks.
  8300. */
  8301. if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
  8302. return -EBUSY;
  8303. total = to_ratio(period, runtime);
  8304. /*
  8305. * Nobody can have more than the global setting allows.
  8306. */
  8307. if (total > to_ratio(global_rt_period(), global_rt_runtime()))
  8308. return -EINVAL;
  8309. /*
  8310. * The sum of our children's runtime should not exceed our own.
  8311. */
  8312. list_for_each_entry_rcu(child, &tg->children, siblings) {
  8313. period = ktime_to_ns(child->rt_bandwidth.rt_period);
  8314. runtime = child->rt_bandwidth.rt_runtime;
  8315. if (child == d->tg) {
  8316. period = d->rt_period;
  8317. runtime = d->rt_runtime;
  8318. }
  8319. sum += to_ratio(period, runtime);
  8320. }
  8321. if (sum > total)
  8322. return -EINVAL;
  8323. return 0;
  8324. }
  8325. static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
  8326. {
  8327. struct rt_schedulable_data data = {
  8328. .tg = tg,
  8329. .rt_period = period,
  8330. .rt_runtime = runtime,
  8331. };
  8332. return walk_tg_tree(tg_schedulable, tg_nop, &data);
  8333. }
  8334. static int tg_set_bandwidth(struct task_group *tg,
  8335. u64 rt_period, u64 rt_runtime)
  8336. {
  8337. int i, err = 0;
  8338. mutex_lock(&rt_constraints_mutex);
  8339. read_lock(&tasklist_lock);
  8340. err = __rt_schedulable(tg, rt_period, rt_runtime);
  8341. if (err)
  8342. goto unlock;
  8343. spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  8344. tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
  8345. tg->rt_bandwidth.rt_runtime = rt_runtime;
  8346. for_each_possible_cpu(i) {
  8347. struct rt_rq *rt_rq = tg->rt_rq[i];
  8348. spin_lock(&rt_rq->rt_runtime_lock);
  8349. rt_rq->rt_runtime = rt_runtime;
  8350. spin_unlock(&rt_rq->rt_runtime_lock);
  8351. }
  8352. spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  8353. unlock:
  8354. read_unlock(&tasklist_lock);
  8355. mutex_unlock(&rt_constraints_mutex);
  8356. return err;
  8357. }
  8358. int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
  8359. {
  8360. u64 rt_runtime, rt_period;
  8361. rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  8362. rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
  8363. if (rt_runtime_us < 0)
  8364. rt_runtime = RUNTIME_INF;
  8365. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  8366. }
  8367. long sched_group_rt_runtime(struct task_group *tg)
  8368. {
  8369. u64 rt_runtime_us;
  8370. if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
  8371. return -1;
  8372. rt_runtime_us = tg->rt_bandwidth.rt_runtime;
  8373. do_div(rt_runtime_us, NSEC_PER_USEC);
  8374. return rt_runtime_us;
  8375. }
  8376. int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
  8377. {
  8378. u64 rt_runtime, rt_period;
  8379. rt_period = (u64)rt_period_us * NSEC_PER_USEC;
  8380. rt_runtime = tg->rt_bandwidth.rt_runtime;
  8381. if (rt_period == 0)
  8382. return -EINVAL;
  8383. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  8384. }
  8385. long sched_group_rt_period(struct task_group *tg)
  8386. {
  8387. u64 rt_period_us;
  8388. rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
  8389. do_div(rt_period_us, NSEC_PER_USEC);
  8390. return rt_period_us;
  8391. }
  8392. static int sched_rt_global_constraints(void)
  8393. {
  8394. u64 runtime, period;
  8395. int ret = 0;
  8396. if (sysctl_sched_rt_period <= 0)
  8397. return -EINVAL;
  8398. runtime = global_rt_runtime();
  8399. period = global_rt_period();
  8400. /*
  8401. * Sanity check on the sysctl variables.
  8402. */
  8403. if (runtime > period && runtime != RUNTIME_INF)
  8404. return -EINVAL;
  8405. mutex_lock(&rt_constraints_mutex);
  8406. read_lock(&tasklist_lock);
  8407. ret = __rt_schedulable(NULL, 0, 0);
  8408. read_unlock(&tasklist_lock);
  8409. mutex_unlock(&rt_constraints_mutex);
  8410. return ret;
  8411. }
  8412. int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
  8413. {
  8414. /* Don't accept realtime tasks when there is no way for them to run */
  8415. if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
  8416. return 0;
  8417. return 1;
  8418. }
  8419. #else /* !CONFIG_RT_GROUP_SCHED */
  8420. static int sched_rt_global_constraints(void)
  8421. {
  8422. unsigned long flags;
  8423. int i;
  8424. if (sysctl_sched_rt_period <= 0)
  8425. return -EINVAL;
  8426. spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
  8427. for_each_possible_cpu(i) {
  8428. struct rt_rq *rt_rq = &cpu_rq(i)->rt;
  8429. spin_lock(&rt_rq->rt_runtime_lock);
  8430. rt_rq->rt_runtime = global_rt_runtime();
  8431. spin_unlock(&rt_rq->rt_runtime_lock);
  8432. }
  8433. spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
  8434. return 0;
  8435. }
  8436. #endif /* CONFIG_RT_GROUP_SCHED */
  8437. int sched_rt_handler(struct ctl_table *table, int write,
  8438. struct file *filp, void __user *buffer, size_t *lenp,
  8439. loff_t *ppos)
  8440. {
  8441. int ret;
  8442. int old_period, old_runtime;
  8443. static DEFINE_MUTEX(mutex);
  8444. mutex_lock(&mutex);
  8445. old_period = sysctl_sched_rt_period;
  8446. old_runtime = sysctl_sched_rt_runtime;
  8447. ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
  8448. if (!ret && write) {
  8449. ret = sched_rt_global_constraints();
  8450. if (ret) {
  8451. sysctl_sched_rt_period = old_period;
  8452. sysctl_sched_rt_runtime = old_runtime;
  8453. } else {
  8454. def_rt_bandwidth.rt_runtime = global_rt_runtime();
  8455. def_rt_bandwidth.rt_period =
  8456. ns_to_ktime(global_rt_period());
  8457. }
  8458. }
  8459. mutex_unlock(&mutex);
  8460. return ret;
  8461. }
  8462. #ifdef CONFIG_CGROUP_SCHED
  8463. /* return corresponding task_group object of a cgroup */
  8464. static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
  8465. {
  8466. return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
  8467. struct task_group, css);
  8468. }
  8469. static struct cgroup_subsys_state *
  8470. cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
  8471. {
  8472. struct task_group *tg, *parent;
  8473. if (!cgrp->parent) {
  8474. /* This is early initialization for the top cgroup */
  8475. return &init_task_group.css;
  8476. }
  8477. parent = cgroup_tg(cgrp->parent);
  8478. tg = sched_create_group(parent);
  8479. if (IS_ERR(tg))
  8480. return ERR_PTR(-ENOMEM);
  8481. return &tg->css;
  8482. }
  8483. static void
  8484. cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  8485. {
  8486. struct task_group *tg = cgroup_tg(cgrp);
  8487. sched_destroy_group(tg);
  8488. }
  8489. static int
  8490. cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  8491. struct task_struct *tsk)
  8492. {
  8493. #ifdef CONFIG_RT_GROUP_SCHED
  8494. if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
  8495. return -EINVAL;
  8496. #else
  8497. /* We don't support RT-tasks being in separate groups */
  8498. if (tsk->sched_class != &fair_sched_class)
  8499. return -EINVAL;
  8500. #endif
  8501. return 0;
  8502. }
  8503. static void
  8504. cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  8505. struct cgroup *old_cont, struct task_struct *tsk)
  8506. {
  8507. sched_move_task(tsk);
  8508. }
  8509. #ifdef CONFIG_FAIR_GROUP_SCHED
  8510. static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
  8511. u64 shareval)
  8512. {
  8513. return sched_group_set_shares(cgroup_tg(cgrp), shareval);
  8514. }
  8515. static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
  8516. {
  8517. struct task_group *tg = cgroup_tg(cgrp);
  8518. return (u64) tg->shares;
  8519. }
  8520. #endif /* CONFIG_FAIR_GROUP_SCHED */
  8521. #ifdef CONFIG_RT_GROUP_SCHED
  8522. static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
  8523. s64 val)
  8524. {
  8525. return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
  8526. }
  8527. static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
  8528. {
  8529. return sched_group_rt_runtime(cgroup_tg(cgrp));
  8530. }
  8531. static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
  8532. u64 rt_period_us)
  8533. {
  8534. return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
  8535. }
  8536. static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
  8537. {
  8538. return sched_group_rt_period(cgroup_tg(cgrp));
  8539. }
  8540. #endif /* CONFIG_RT_GROUP_SCHED */
  8541. static struct cftype cpu_files[] = {
  8542. #ifdef CONFIG_FAIR_GROUP_SCHED
  8543. {
  8544. .name = "shares",
  8545. .read_u64 = cpu_shares_read_u64,
  8546. .write_u64 = cpu_shares_write_u64,
  8547. },
  8548. #endif
  8549. #ifdef CONFIG_RT_GROUP_SCHED
  8550. {
  8551. .name = "rt_runtime_us",
  8552. .read_s64 = cpu_rt_runtime_read,
  8553. .write_s64 = cpu_rt_runtime_write,
  8554. },
  8555. {
  8556. .name = "rt_period_us",
  8557. .read_u64 = cpu_rt_period_read_uint,
  8558. .write_u64 = cpu_rt_period_write_uint,
  8559. },
  8560. #endif
  8561. };
  8562. static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
  8563. {
  8564. return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
  8565. }
  8566. struct cgroup_subsys cpu_cgroup_subsys = {
  8567. .name = "cpu",
  8568. .create = cpu_cgroup_create,
  8569. .destroy = cpu_cgroup_destroy,
  8570. .can_attach = cpu_cgroup_can_attach,
  8571. .attach = cpu_cgroup_attach,
  8572. .populate = cpu_cgroup_populate,
  8573. .subsys_id = cpu_cgroup_subsys_id,
  8574. .early_init = 1,
  8575. };
  8576. #endif /* CONFIG_CGROUP_SCHED */
  8577. #ifdef CONFIG_CGROUP_CPUACCT
  8578. /*
  8579. * CPU accounting code for task groups.
  8580. *
  8581. * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
  8582. * (balbir@in.ibm.com).
  8583. */
  8584. /* track cpu usage of a group of tasks and its child groups */
  8585. struct cpuacct {
  8586. struct cgroup_subsys_state css;
  8587. /* cpuusage holds pointer to a u64-type object on every cpu */
  8588. u64 *cpuusage;
  8589. struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
  8590. struct cpuacct *parent;
  8591. };
  8592. struct cgroup_subsys cpuacct_subsys;
  8593. /* return cpu accounting group corresponding to this container */
  8594. static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
  8595. {
  8596. return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
  8597. struct cpuacct, css);
  8598. }
  8599. /* return cpu accounting group to which this task belongs */
  8600. static inline struct cpuacct *task_ca(struct task_struct *tsk)
  8601. {
  8602. return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
  8603. struct cpuacct, css);
  8604. }
  8605. /* create a new cpu accounting group */
  8606. static struct cgroup_subsys_state *cpuacct_create(
  8607. struct cgroup_subsys *ss, struct cgroup *cgrp)
  8608. {
  8609. struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
  8610. int i;
  8611. if (!ca)
  8612. goto out;
  8613. ca->cpuusage = alloc_percpu(u64);
  8614. if (!ca->cpuusage)
  8615. goto out_free_ca;
  8616. for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
  8617. if (percpu_counter_init(&ca->cpustat[i], 0))
  8618. goto out_free_counters;
  8619. if (cgrp->parent)
  8620. ca->parent = cgroup_ca(cgrp->parent);
  8621. return &ca->css;
  8622. out_free_counters:
  8623. while (--i >= 0)
  8624. percpu_counter_destroy(&ca->cpustat[i]);
  8625. free_percpu(ca->cpuusage);
  8626. out_free_ca:
  8627. kfree(ca);
  8628. out:
  8629. return ERR_PTR(-ENOMEM);
  8630. }
  8631. /* destroy an existing cpu accounting group */
  8632. static void
  8633. cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  8634. {
  8635. struct cpuacct *ca = cgroup_ca(cgrp);
  8636. int i;
  8637. for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
  8638. percpu_counter_destroy(&ca->cpustat[i]);
  8639. free_percpu(ca->cpuusage);
  8640. kfree(ca);
  8641. }
  8642. static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
  8643. {
  8644. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  8645. u64 data;
  8646. #ifndef CONFIG_64BIT
  8647. /*
  8648. * Take rq->lock to make 64-bit read safe on 32-bit platforms.
  8649. */
  8650. spin_lock_irq(&cpu_rq(cpu)->lock);
  8651. data = *cpuusage;
  8652. spin_unlock_irq(&cpu_rq(cpu)->lock);
  8653. #else
  8654. data = *cpuusage;
  8655. #endif
  8656. return data;
  8657. }
  8658. static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
  8659. {
  8660. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  8661. #ifndef CONFIG_64BIT
  8662. /*
  8663. * Take rq->lock to make 64-bit write safe on 32-bit platforms.
  8664. */
  8665. spin_lock_irq(&cpu_rq(cpu)->lock);
  8666. *cpuusage = val;
  8667. spin_unlock_irq(&cpu_rq(cpu)->lock);
  8668. #else
  8669. *cpuusage = val;
  8670. #endif
  8671. }
  8672. /* return total cpu usage (in nanoseconds) of a group */
  8673. static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
  8674. {
  8675. struct cpuacct *ca = cgroup_ca(cgrp);
  8676. u64 totalcpuusage = 0;
  8677. int i;
  8678. for_each_present_cpu(i)
  8679. totalcpuusage += cpuacct_cpuusage_read(ca, i);
  8680. return totalcpuusage;
  8681. }
  8682. static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
  8683. u64 reset)
  8684. {
  8685. struct cpuacct *ca = cgroup_ca(cgrp);
  8686. int err = 0;
  8687. int i;
  8688. if (reset) {
  8689. err = -EINVAL;
  8690. goto out;
  8691. }
  8692. for_each_present_cpu(i)
  8693. cpuacct_cpuusage_write(ca, i, 0);
  8694. out:
  8695. return err;
  8696. }
  8697. static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
  8698. struct seq_file *m)
  8699. {
  8700. struct cpuacct *ca = cgroup_ca(cgroup);
  8701. u64 percpu;
  8702. int i;
  8703. for_each_present_cpu(i) {
  8704. percpu = cpuacct_cpuusage_read(ca, i);
  8705. seq_printf(m, "%llu ", (unsigned long long) percpu);
  8706. }
  8707. seq_printf(m, "\n");
  8708. return 0;
  8709. }
  8710. static const char *cpuacct_stat_desc[] = {
  8711. [CPUACCT_STAT_USER] = "user",
  8712. [CPUACCT_STAT_SYSTEM] = "system",
  8713. };
  8714. static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
  8715. struct cgroup_map_cb *cb)
  8716. {
  8717. struct cpuacct *ca = cgroup_ca(cgrp);
  8718. int i;
  8719. for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
  8720. s64 val = percpu_counter_read(&ca->cpustat[i]);
  8721. val = cputime64_to_clock_t(val);
  8722. cb->fill(cb, cpuacct_stat_desc[i], val);
  8723. }
  8724. return 0;
  8725. }
  8726. static struct cftype files[] = {
  8727. {
  8728. .name = "usage",
  8729. .read_u64 = cpuusage_read,
  8730. .write_u64 = cpuusage_write,
  8731. },
  8732. {
  8733. .name = "usage_percpu",
  8734. .read_seq_string = cpuacct_percpu_seq_read,
  8735. },
  8736. {
  8737. .name = "stat",
  8738. .read_map = cpuacct_stats_show,
  8739. },
  8740. };
  8741. static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
  8742. {
  8743. return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
  8744. }
  8745. /*
  8746. * charge this task's execution time to its accounting group.
  8747. *
  8748. * called with rq->lock held.
  8749. */
  8750. static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
  8751. {
  8752. struct cpuacct *ca;
  8753. int cpu;
  8754. if (unlikely(!cpuacct_subsys.active))
  8755. return;
  8756. cpu = task_cpu(tsk);
  8757. rcu_read_lock();
  8758. ca = task_ca(tsk);
  8759. for (; ca; ca = ca->parent) {
  8760. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  8761. *cpuusage += cputime;
  8762. }
  8763. rcu_read_unlock();
  8764. }
  8765. /*
  8766. * Charge the system/user time to the task's accounting group.
  8767. */
  8768. static void cpuacct_update_stats(struct task_struct *tsk,
  8769. enum cpuacct_stat_index idx, cputime_t val)
  8770. {
  8771. struct cpuacct *ca;
  8772. if (unlikely(!cpuacct_subsys.active))
  8773. return;
  8774. rcu_read_lock();
  8775. ca = task_ca(tsk);
  8776. do {
  8777. percpu_counter_add(&ca->cpustat[idx], val);
  8778. ca = ca->parent;
  8779. } while (ca);
  8780. rcu_read_unlock();
  8781. }
  8782. struct cgroup_subsys cpuacct_subsys = {
  8783. .name = "cpuacct",
  8784. .create = cpuacct_create,
  8785. .destroy = cpuacct_destroy,
  8786. .populate = cpuacct_populate,
  8787. .subsys_id = cpuacct_subsys_id,
  8788. };
  8789. #endif /* CONFIG_CGROUP_CPUACCT */