page-writeback.c 37 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358
  1. /*
  2. * mm/page-writeback.c
  3. *
  4. * Copyright (C) 2002, Linus Torvalds.
  5. * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
  6. *
  7. * Contains functions related to writing back dirty pages at the
  8. * address_space level.
  9. *
  10. * 10Apr2002 Andrew Morton
  11. * Initial version
  12. */
  13. #include <linux/kernel.h>
  14. #include <linux/module.h>
  15. #include <linux/spinlock.h>
  16. #include <linux/fs.h>
  17. #include <linux/mm.h>
  18. #include <linux/swap.h>
  19. #include <linux/slab.h>
  20. #include <linux/pagemap.h>
  21. #include <linux/writeback.h>
  22. #include <linux/init.h>
  23. #include <linux/backing-dev.h>
  24. #include <linux/task_io_accounting_ops.h>
  25. #include <linux/blkdev.h>
  26. #include <linux/mpage.h>
  27. #include <linux/rmap.h>
  28. #include <linux/percpu.h>
  29. #include <linux/notifier.h>
  30. #include <linux/smp.h>
  31. #include <linux/sysctl.h>
  32. #include <linux/cpu.h>
  33. #include <linux/syscalls.h>
  34. #include <linux/buffer_head.h>
  35. #include <linux/pagevec.h>
  36. #include <trace/events/writeback.h>
  37. /*
  38. * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
  39. * will look to see if it needs to force writeback or throttling.
  40. */
  41. static long ratelimit_pages = 32;
  42. /*
  43. * When balance_dirty_pages decides that the caller needs to perform some
  44. * non-background writeback, this is how many pages it will attempt to write.
  45. * It should be somewhat larger than dirtied pages to ensure that reasonably
  46. * large amounts of I/O are submitted.
  47. */
  48. static inline long sync_writeback_pages(unsigned long dirtied)
  49. {
  50. if (dirtied < ratelimit_pages)
  51. dirtied = ratelimit_pages;
  52. return dirtied + dirtied / 2;
  53. }
  54. /* The following parameters are exported via /proc/sys/vm */
  55. /*
  56. * Start background writeback (via writeback threads) at this percentage
  57. */
  58. int dirty_background_ratio = 10;
  59. /*
  60. * dirty_background_bytes starts at 0 (disabled) so that it is a function of
  61. * dirty_background_ratio * the amount of dirtyable memory
  62. */
  63. unsigned long dirty_background_bytes;
  64. /*
  65. * free highmem will not be subtracted from the total free memory
  66. * for calculating free ratios if vm_highmem_is_dirtyable is true
  67. */
  68. int vm_highmem_is_dirtyable;
  69. /*
  70. * The generator of dirty data starts writeback at this percentage
  71. */
  72. int vm_dirty_ratio = 20;
  73. /*
  74. * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
  75. * vm_dirty_ratio * the amount of dirtyable memory
  76. */
  77. unsigned long vm_dirty_bytes;
  78. /*
  79. * The interval between `kupdate'-style writebacks
  80. */
  81. unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
  82. /*
  83. * The longest time for which data is allowed to remain dirty
  84. */
  85. unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
  86. /*
  87. * Flag that makes the machine dump writes/reads and block dirtyings.
  88. */
  89. int block_dump;
  90. /*
  91. * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
  92. * a full sync is triggered after this time elapses without any disk activity.
  93. */
  94. int laptop_mode;
  95. EXPORT_SYMBOL(laptop_mode);
  96. /* End of sysctl-exported parameters */
  97. /*
  98. * Scale the writeback cache size proportional to the relative writeout speeds.
  99. *
  100. * We do this by keeping a floating proportion between BDIs, based on page
  101. * writeback completions [end_page_writeback()]. Those devices that write out
  102. * pages fastest will get the larger share, while the slower will get a smaller
  103. * share.
  104. *
  105. * We use page writeout completions because we are interested in getting rid of
  106. * dirty pages. Having them written out is the primary goal.
  107. *
  108. * We introduce a concept of time, a period over which we measure these events,
  109. * because demand can/will vary over time. The length of this period itself is
  110. * measured in page writeback completions.
  111. *
  112. */
  113. static struct prop_descriptor vm_completions;
  114. static struct prop_descriptor vm_dirties;
  115. /*
  116. * couple the period to the dirty_ratio:
  117. *
  118. * period/2 ~ roundup_pow_of_two(dirty limit)
  119. */
  120. static int calc_period_shift(void)
  121. {
  122. unsigned long dirty_total;
  123. if (vm_dirty_bytes)
  124. dirty_total = vm_dirty_bytes / PAGE_SIZE;
  125. else
  126. dirty_total = (vm_dirty_ratio * determine_dirtyable_memory()) /
  127. 100;
  128. return 2 + ilog2(dirty_total - 1);
  129. }
  130. /*
  131. * update the period when the dirty threshold changes.
  132. */
  133. static void update_completion_period(void)
  134. {
  135. int shift = calc_period_shift();
  136. prop_change_shift(&vm_completions, shift);
  137. prop_change_shift(&vm_dirties, shift);
  138. }
  139. int dirty_background_ratio_handler(struct ctl_table *table, int write,
  140. void __user *buffer, size_t *lenp,
  141. loff_t *ppos)
  142. {
  143. int ret;
  144. ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
  145. if (ret == 0 && write)
  146. dirty_background_bytes = 0;
  147. return ret;
  148. }
  149. int dirty_background_bytes_handler(struct ctl_table *table, int write,
  150. void __user *buffer, size_t *lenp,
  151. loff_t *ppos)
  152. {
  153. int ret;
  154. ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
  155. if (ret == 0 && write)
  156. dirty_background_ratio = 0;
  157. return ret;
  158. }
  159. int dirty_ratio_handler(struct ctl_table *table, int write,
  160. void __user *buffer, size_t *lenp,
  161. loff_t *ppos)
  162. {
  163. int old_ratio = vm_dirty_ratio;
  164. int ret;
  165. ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
  166. if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
  167. update_completion_period();
  168. vm_dirty_bytes = 0;
  169. }
  170. return ret;
  171. }
  172. int dirty_bytes_handler(struct ctl_table *table, int write,
  173. void __user *buffer, size_t *lenp,
  174. loff_t *ppos)
  175. {
  176. unsigned long old_bytes = vm_dirty_bytes;
  177. int ret;
  178. ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
  179. if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
  180. update_completion_period();
  181. vm_dirty_ratio = 0;
  182. }
  183. return ret;
  184. }
  185. /*
  186. * Increment the BDI's writeout completion count and the global writeout
  187. * completion count. Called from test_clear_page_writeback().
  188. */
  189. static inline void __bdi_writeout_inc(struct backing_dev_info *bdi)
  190. {
  191. __prop_inc_percpu_max(&vm_completions, &bdi->completions,
  192. bdi->max_prop_frac);
  193. }
  194. void bdi_writeout_inc(struct backing_dev_info *bdi)
  195. {
  196. unsigned long flags;
  197. local_irq_save(flags);
  198. __bdi_writeout_inc(bdi);
  199. local_irq_restore(flags);
  200. }
  201. EXPORT_SYMBOL_GPL(bdi_writeout_inc);
  202. void task_dirty_inc(struct task_struct *tsk)
  203. {
  204. prop_inc_single(&vm_dirties, &tsk->dirties);
  205. }
  206. /*
  207. * Obtain an accurate fraction of the BDI's portion.
  208. */
  209. static void bdi_writeout_fraction(struct backing_dev_info *bdi,
  210. long *numerator, long *denominator)
  211. {
  212. if (bdi_cap_writeback_dirty(bdi)) {
  213. prop_fraction_percpu(&vm_completions, &bdi->completions,
  214. numerator, denominator);
  215. } else {
  216. *numerator = 0;
  217. *denominator = 1;
  218. }
  219. }
  220. /*
  221. * Clip the earned share of dirty pages to that which is actually available.
  222. * This avoids exceeding the total dirty_limit when the floating averages
  223. * fluctuate too quickly.
  224. */
  225. static void clip_bdi_dirty_limit(struct backing_dev_info *bdi,
  226. unsigned long dirty, unsigned long *pbdi_dirty)
  227. {
  228. unsigned long avail_dirty;
  229. avail_dirty = global_page_state(NR_FILE_DIRTY) +
  230. global_page_state(NR_WRITEBACK) +
  231. global_page_state(NR_UNSTABLE_NFS) +
  232. global_page_state(NR_WRITEBACK_TEMP);
  233. if (avail_dirty < dirty)
  234. avail_dirty = dirty - avail_dirty;
  235. else
  236. avail_dirty = 0;
  237. avail_dirty += bdi_stat(bdi, BDI_RECLAIMABLE) +
  238. bdi_stat(bdi, BDI_WRITEBACK);
  239. *pbdi_dirty = min(*pbdi_dirty, avail_dirty);
  240. }
  241. static inline void task_dirties_fraction(struct task_struct *tsk,
  242. long *numerator, long *denominator)
  243. {
  244. prop_fraction_single(&vm_dirties, &tsk->dirties,
  245. numerator, denominator);
  246. }
  247. /*
  248. * scale the dirty limit
  249. *
  250. * task specific dirty limit:
  251. *
  252. * dirty -= (dirty/8) * p_{t}
  253. */
  254. static void task_dirty_limit(struct task_struct *tsk, unsigned long *pdirty)
  255. {
  256. long numerator, denominator;
  257. unsigned long dirty = *pdirty;
  258. u64 inv = dirty >> 3;
  259. task_dirties_fraction(tsk, &numerator, &denominator);
  260. inv *= numerator;
  261. do_div(inv, denominator);
  262. dirty -= inv;
  263. if (dirty < *pdirty/2)
  264. dirty = *pdirty/2;
  265. *pdirty = dirty;
  266. }
  267. /*
  268. *
  269. */
  270. static unsigned int bdi_min_ratio;
  271. int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
  272. {
  273. int ret = 0;
  274. spin_lock_bh(&bdi_lock);
  275. if (min_ratio > bdi->max_ratio) {
  276. ret = -EINVAL;
  277. } else {
  278. min_ratio -= bdi->min_ratio;
  279. if (bdi_min_ratio + min_ratio < 100) {
  280. bdi_min_ratio += min_ratio;
  281. bdi->min_ratio += min_ratio;
  282. } else {
  283. ret = -EINVAL;
  284. }
  285. }
  286. spin_unlock_bh(&bdi_lock);
  287. return ret;
  288. }
  289. int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
  290. {
  291. int ret = 0;
  292. if (max_ratio > 100)
  293. return -EINVAL;
  294. spin_lock_bh(&bdi_lock);
  295. if (bdi->min_ratio > max_ratio) {
  296. ret = -EINVAL;
  297. } else {
  298. bdi->max_ratio = max_ratio;
  299. bdi->max_prop_frac = (PROP_FRAC_BASE * max_ratio) / 100;
  300. }
  301. spin_unlock_bh(&bdi_lock);
  302. return ret;
  303. }
  304. EXPORT_SYMBOL(bdi_set_max_ratio);
  305. /*
  306. * Work out the current dirty-memory clamping and background writeout
  307. * thresholds.
  308. *
  309. * The main aim here is to lower them aggressively if there is a lot of mapped
  310. * memory around. To avoid stressing page reclaim with lots of unreclaimable
  311. * pages. It is better to clamp down on writers than to start swapping, and
  312. * performing lots of scanning.
  313. *
  314. * We only allow 1/2 of the currently-unmapped memory to be dirtied.
  315. *
  316. * We don't permit the clamping level to fall below 5% - that is getting rather
  317. * excessive.
  318. *
  319. * We make sure that the background writeout level is below the adjusted
  320. * clamping level.
  321. */
  322. static unsigned long highmem_dirtyable_memory(unsigned long total)
  323. {
  324. #ifdef CONFIG_HIGHMEM
  325. int node;
  326. unsigned long x = 0;
  327. for_each_node_state(node, N_HIGH_MEMORY) {
  328. struct zone *z =
  329. &NODE_DATA(node)->node_zones[ZONE_HIGHMEM];
  330. x += zone_page_state(z, NR_FREE_PAGES) +
  331. zone_reclaimable_pages(z);
  332. }
  333. /*
  334. * Make sure that the number of highmem pages is never larger
  335. * than the number of the total dirtyable memory. This can only
  336. * occur in very strange VM situations but we want to make sure
  337. * that this does not occur.
  338. */
  339. return min(x, total);
  340. #else
  341. return 0;
  342. #endif
  343. }
  344. /**
  345. * determine_dirtyable_memory - amount of memory that may be used
  346. *
  347. * Returns the numebr of pages that can currently be freed and used
  348. * by the kernel for direct mappings.
  349. */
  350. unsigned long determine_dirtyable_memory(void)
  351. {
  352. unsigned long x;
  353. x = global_page_state(NR_FREE_PAGES) + global_reclaimable_pages();
  354. if (!vm_highmem_is_dirtyable)
  355. x -= highmem_dirtyable_memory(x);
  356. return x + 1; /* Ensure that we never return 0 */
  357. }
  358. void
  359. get_dirty_limits(unsigned long *pbackground, unsigned long *pdirty,
  360. unsigned long *pbdi_dirty, struct backing_dev_info *bdi)
  361. {
  362. unsigned long background;
  363. unsigned long dirty;
  364. unsigned long available_memory = determine_dirtyable_memory();
  365. struct task_struct *tsk;
  366. if (vm_dirty_bytes)
  367. dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE);
  368. else {
  369. int dirty_ratio;
  370. dirty_ratio = vm_dirty_ratio;
  371. if (dirty_ratio < 5)
  372. dirty_ratio = 5;
  373. dirty = (dirty_ratio * available_memory) / 100;
  374. }
  375. if (dirty_background_bytes)
  376. background = DIV_ROUND_UP(dirty_background_bytes, PAGE_SIZE);
  377. else
  378. background = (dirty_background_ratio * available_memory) / 100;
  379. if (background >= dirty)
  380. background = dirty / 2;
  381. tsk = current;
  382. if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
  383. background += background / 4;
  384. dirty += dirty / 4;
  385. }
  386. *pbackground = background;
  387. *pdirty = dirty;
  388. if (bdi) {
  389. u64 bdi_dirty;
  390. long numerator, denominator;
  391. /*
  392. * Calculate this BDI's share of the dirty ratio.
  393. */
  394. bdi_writeout_fraction(bdi, &numerator, &denominator);
  395. bdi_dirty = (dirty * (100 - bdi_min_ratio)) / 100;
  396. bdi_dirty *= numerator;
  397. do_div(bdi_dirty, denominator);
  398. bdi_dirty += (dirty * bdi->min_ratio) / 100;
  399. if (bdi_dirty > (dirty * bdi->max_ratio) / 100)
  400. bdi_dirty = dirty * bdi->max_ratio / 100;
  401. *pbdi_dirty = bdi_dirty;
  402. clip_bdi_dirty_limit(bdi, dirty, pbdi_dirty);
  403. task_dirty_limit(current, pbdi_dirty);
  404. }
  405. }
  406. /*
  407. * balance_dirty_pages() must be called by processes which are generating dirty
  408. * data. It looks at the number of dirty pages in the machine and will force
  409. * the caller to perform writeback if the system is over `vm_dirty_ratio'.
  410. * If we're over `background_thresh' then the writeback threads are woken to
  411. * perform some writeout.
  412. */
  413. static void balance_dirty_pages(struct address_space *mapping,
  414. unsigned long write_chunk)
  415. {
  416. long nr_reclaimable, bdi_nr_reclaimable;
  417. long nr_writeback, bdi_nr_writeback;
  418. unsigned long background_thresh;
  419. unsigned long dirty_thresh;
  420. unsigned long bdi_thresh;
  421. unsigned long pages_written = 0;
  422. unsigned long pause = 1;
  423. struct backing_dev_info *bdi = mapping->backing_dev_info;
  424. for (;;) {
  425. struct writeback_control wbc = {
  426. .sync_mode = WB_SYNC_NONE,
  427. .older_than_this = NULL,
  428. .nr_to_write = write_chunk,
  429. .range_cyclic = 1,
  430. };
  431. get_dirty_limits(&background_thresh, &dirty_thresh,
  432. &bdi_thresh, bdi);
  433. nr_reclaimable = global_page_state(NR_FILE_DIRTY) +
  434. global_page_state(NR_UNSTABLE_NFS);
  435. nr_writeback = global_page_state(NR_WRITEBACK);
  436. bdi_nr_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE);
  437. bdi_nr_writeback = bdi_stat(bdi, BDI_WRITEBACK);
  438. if (bdi_nr_reclaimable + bdi_nr_writeback <= bdi_thresh)
  439. break;
  440. /*
  441. * Throttle it only when the background writeback cannot
  442. * catch-up. This avoids (excessively) small writeouts
  443. * when the bdi limits are ramping up.
  444. */
  445. if (nr_reclaimable + nr_writeback <
  446. (background_thresh + dirty_thresh) / 2)
  447. break;
  448. if (!bdi->dirty_exceeded)
  449. bdi->dirty_exceeded = 1;
  450. /* Note: nr_reclaimable denotes nr_dirty + nr_unstable.
  451. * Unstable writes are a feature of certain networked
  452. * filesystems (i.e. NFS) in which data may have been
  453. * written to the server's write cache, but has not yet
  454. * been flushed to permanent storage.
  455. * Only move pages to writeback if this bdi is over its
  456. * threshold otherwise wait until the disk writes catch
  457. * up.
  458. */
  459. trace_wbc_balance_dirty_start(&wbc, bdi);
  460. if (bdi_nr_reclaimable > bdi_thresh) {
  461. writeback_inodes_wb(&bdi->wb, &wbc);
  462. pages_written += write_chunk - wbc.nr_to_write;
  463. get_dirty_limits(&background_thresh, &dirty_thresh,
  464. &bdi_thresh, bdi);
  465. trace_wbc_balance_dirty_written(&wbc, bdi);
  466. }
  467. /*
  468. * In order to avoid the stacked BDI deadlock we need
  469. * to ensure we accurately count the 'dirty' pages when
  470. * the threshold is low.
  471. *
  472. * Otherwise it would be possible to get thresh+n pages
  473. * reported dirty, even though there are thresh-m pages
  474. * actually dirty; with m+n sitting in the percpu
  475. * deltas.
  476. */
  477. if (bdi_thresh < 2*bdi_stat_error(bdi)) {
  478. bdi_nr_reclaimable = bdi_stat_sum(bdi, BDI_RECLAIMABLE);
  479. bdi_nr_writeback = bdi_stat_sum(bdi, BDI_WRITEBACK);
  480. } else if (bdi_nr_reclaimable) {
  481. bdi_nr_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE);
  482. bdi_nr_writeback = bdi_stat(bdi, BDI_WRITEBACK);
  483. }
  484. if (bdi_nr_reclaimable + bdi_nr_writeback <= bdi_thresh)
  485. break;
  486. if (pages_written >= write_chunk)
  487. break; /* We've done our duty */
  488. trace_wbc_balance_dirty_wait(&wbc, bdi);
  489. __set_current_state(TASK_INTERRUPTIBLE);
  490. io_schedule_timeout(pause);
  491. /*
  492. * Increase the delay for each loop, up to our previous
  493. * default of taking a 100ms nap.
  494. */
  495. pause <<= 1;
  496. if (pause > HZ / 10)
  497. pause = HZ / 10;
  498. }
  499. if (bdi_nr_reclaimable + bdi_nr_writeback < bdi_thresh &&
  500. bdi->dirty_exceeded)
  501. bdi->dirty_exceeded = 0;
  502. if (writeback_in_progress(bdi))
  503. return;
  504. /*
  505. * In laptop mode, we wait until hitting the higher threshold before
  506. * starting background writeout, and then write out all the way down
  507. * to the lower threshold. So slow writers cause minimal disk activity.
  508. *
  509. * In normal mode, we start background writeout at the lower
  510. * background_thresh, to keep the amount of dirty memory low.
  511. */
  512. if ((laptop_mode && pages_written) ||
  513. (!laptop_mode && ((global_page_state(NR_FILE_DIRTY)
  514. + global_page_state(NR_UNSTABLE_NFS))
  515. > background_thresh)))
  516. bdi_start_background_writeback(bdi);
  517. }
  518. void set_page_dirty_balance(struct page *page, int page_mkwrite)
  519. {
  520. if (set_page_dirty(page) || page_mkwrite) {
  521. struct address_space *mapping = page_mapping(page);
  522. if (mapping)
  523. balance_dirty_pages_ratelimited(mapping);
  524. }
  525. }
  526. static DEFINE_PER_CPU(unsigned long, bdp_ratelimits) = 0;
  527. /**
  528. * balance_dirty_pages_ratelimited_nr - balance dirty memory state
  529. * @mapping: address_space which was dirtied
  530. * @nr_pages_dirtied: number of pages which the caller has just dirtied
  531. *
  532. * Processes which are dirtying memory should call in here once for each page
  533. * which was newly dirtied. The function will periodically check the system's
  534. * dirty state and will initiate writeback if needed.
  535. *
  536. * On really big machines, get_writeback_state is expensive, so try to avoid
  537. * calling it too often (ratelimiting). But once we're over the dirty memory
  538. * limit we decrease the ratelimiting by a lot, to prevent individual processes
  539. * from overshooting the limit by (ratelimit_pages) each.
  540. */
  541. void balance_dirty_pages_ratelimited_nr(struct address_space *mapping,
  542. unsigned long nr_pages_dirtied)
  543. {
  544. unsigned long ratelimit;
  545. unsigned long *p;
  546. ratelimit = ratelimit_pages;
  547. if (mapping->backing_dev_info->dirty_exceeded)
  548. ratelimit = 8;
  549. /*
  550. * Check the rate limiting. Also, we do not want to throttle real-time
  551. * tasks in balance_dirty_pages(). Period.
  552. */
  553. preempt_disable();
  554. p = &__get_cpu_var(bdp_ratelimits);
  555. *p += nr_pages_dirtied;
  556. if (unlikely(*p >= ratelimit)) {
  557. ratelimit = sync_writeback_pages(*p);
  558. *p = 0;
  559. preempt_enable();
  560. balance_dirty_pages(mapping, ratelimit);
  561. return;
  562. }
  563. preempt_enable();
  564. }
  565. EXPORT_SYMBOL(balance_dirty_pages_ratelimited_nr);
  566. void throttle_vm_writeout(gfp_t gfp_mask)
  567. {
  568. unsigned long background_thresh;
  569. unsigned long dirty_thresh;
  570. for ( ; ; ) {
  571. get_dirty_limits(&background_thresh, &dirty_thresh, NULL, NULL);
  572. /*
  573. * Boost the allowable dirty threshold a bit for page
  574. * allocators so they don't get DoS'ed by heavy writers
  575. */
  576. dirty_thresh += dirty_thresh / 10; /* wheeee... */
  577. if (global_page_state(NR_UNSTABLE_NFS) +
  578. global_page_state(NR_WRITEBACK) <= dirty_thresh)
  579. break;
  580. congestion_wait(BLK_RW_ASYNC, HZ/10);
  581. /*
  582. * The caller might hold locks which can prevent IO completion
  583. * or progress in the filesystem. So we cannot just sit here
  584. * waiting for IO to complete.
  585. */
  586. if ((gfp_mask & (__GFP_FS|__GFP_IO)) != (__GFP_FS|__GFP_IO))
  587. break;
  588. }
  589. }
  590. /*
  591. * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
  592. */
  593. int dirty_writeback_centisecs_handler(ctl_table *table, int write,
  594. void __user *buffer, size_t *length, loff_t *ppos)
  595. {
  596. proc_dointvec(table, write, buffer, length, ppos);
  597. bdi_arm_supers_timer();
  598. return 0;
  599. }
  600. #ifdef CONFIG_BLOCK
  601. void laptop_mode_timer_fn(unsigned long data)
  602. {
  603. struct request_queue *q = (struct request_queue *)data;
  604. int nr_pages = global_page_state(NR_FILE_DIRTY) +
  605. global_page_state(NR_UNSTABLE_NFS);
  606. /*
  607. * We want to write everything out, not just down to the dirty
  608. * threshold
  609. */
  610. if (bdi_has_dirty_io(&q->backing_dev_info))
  611. bdi_start_writeback(&q->backing_dev_info, nr_pages);
  612. }
  613. /*
  614. * We've spun up the disk and we're in laptop mode: schedule writeback
  615. * of all dirty data a few seconds from now. If the flush is already scheduled
  616. * then push it back - the user is still using the disk.
  617. */
  618. void laptop_io_completion(struct backing_dev_info *info)
  619. {
  620. mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
  621. }
  622. /*
  623. * We're in laptop mode and we've just synced. The sync's writes will have
  624. * caused another writeback to be scheduled by laptop_io_completion.
  625. * Nothing needs to be written back anymore, so we unschedule the writeback.
  626. */
  627. void laptop_sync_completion(void)
  628. {
  629. struct backing_dev_info *bdi;
  630. rcu_read_lock();
  631. list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
  632. del_timer(&bdi->laptop_mode_wb_timer);
  633. rcu_read_unlock();
  634. }
  635. #endif
  636. /*
  637. * If ratelimit_pages is too high then we can get into dirty-data overload
  638. * if a large number of processes all perform writes at the same time.
  639. * If it is too low then SMP machines will call the (expensive)
  640. * get_writeback_state too often.
  641. *
  642. * Here we set ratelimit_pages to a level which ensures that when all CPUs are
  643. * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
  644. * thresholds before writeback cuts in.
  645. *
  646. * But the limit should not be set too high. Because it also controls the
  647. * amount of memory which the balance_dirty_pages() caller has to write back.
  648. * If this is too large then the caller will block on the IO queue all the
  649. * time. So limit it to four megabytes - the balance_dirty_pages() caller
  650. * will write six megabyte chunks, max.
  651. */
  652. void writeback_set_ratelimit(void)
  653. {
  654. ratelimit_pages = vm_total_pages / (num_online_cpus() * 32);
  655. if (ratelimit_pages < 16)
  656. ratelimit_pages = 16;
  657. if (ratelimit_pages * PAGE_CACHE_SIZE > 4096 * 1024)
  658. ratelimit_pages = (4096 * 1024) / PAGE_CACHE_SIZE;
  659. }
  660. static int __cpuinit
  661. ratelimit_handler(struct notifier_block *self, unsigned long u, void *v)
  662. {
  663. writeback_set_ratelimit();
  664. return NOTIFY_DONE;
  665. }
  666. static struct notifier_block __cpuinitdata ratelimit_nb = {
  667. .notifier_call = ratelimit_handler,
  668. .next = NULL,
  669. };
  670. /*
  671. * Called early on to tune the page writeback dirty limits.
  672. *
  673. * We used to scale dirty pages according to how total memory
  674. * related to pages that could be allocated for buffers (by
  675. * comparing nr_free_buffer_pages() to vm_total_pages.
  676. *
  677. * However, that was when we used "dirty_ratio" to scale with
  678. * all memory, and we don't do that any more. "dirty_ratio"
  679. * is now applied to total non-HIGHPAGE memory (by subtracting
  680. * totalhigh_pages from vm_total_pages), and as such we can't
  681. * get into the old insane situation any more where we had
  682. * large amounts of dirty pages compared to a small amount of
  683. * non-HIGHMEM memory.
  684. *
  685. * But we might still want to scale the dirty_ratio by how
  686. * much memory the box has..
  687. */
  688. void __init page_writeback_init(void)
  689. {
  690. int shift;
  691. writeback_set_ratelimit();
  692. register_cpu_notifier(&ratelimit_nb);
  693. shift = calc_period_shift();
  694. prop_descriptor_init(&vm_completions, shift);
  695. prop_descriptor_init(&vm_dirties, shift);
  696. }
  697. /**
  698. * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
  699. * @mapping: address space structure to write
  700. * @wbc: subtract the number of written pages from *@wbc->nr_to_write
  701. * @writepage: function called for each page
  702. * @data: data passed to writepage function
  703. *
  704. * If a page is already under I/O, write_cache_pages() skips it, even
  705. * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
  706. * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
  707. * and msync() need to guarantee that all the data which was dirty at the time
  708. * the call was made get new I/O started against them. If wbc->sync_mode is
  709. * WB_SYNC_ALL then we were called for data integrity and we must wait for
  710. * existing IO to complete.
  711. */
  712. int write_cache_pages(struct address_space *mapping,
  713. struct writeback_control *wbc, writepage_t writepage,
  714. void *data)
  715. {
  716. int ret = 0;
  717. int done = 0;
  718. struct pagevec pvec;
  719. int nr_pages;
  720. pgoff_t uninitialized_var(writeback_index);
  721. pgoff_t index;
  722. pgoff_t end; /* Inclusive */
  723. pgoff_t done_index;
  724. int cycled;
  725. int range_whole = 0;
  726. pagevec_init(&pvec, 0);
  727. if (wbc->range_cyclic) {
  728. writeback_index = mapping->writeback_index; /* prev offset */
  729. index = writeback_index;
  730. if (index == 0)
  731. cycled = 1;
  732. else
  733. cycled = 0;
  734. end = -1;
  735. } else {
  736. index = wbc->range_start >> PAGE_CACHE_SHIFT;
  737. end = wbc->range_end >> PAGE_CACHE_SHIFT;
  738. if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
  739. range_whole = 1;
  740. cycled = 1; /* ignore range_cyclic tests */
  741. /*
  742. * If this is a data integrity sync, cap the writeback to the
  743. * current end of file. Any extension to the file that occurs
  744. * after this is a new write and we don't need to write those
  745. * pages out to fulfil our data integrity requirements. If we
  746. * try to write them out, we can get stuck in this scan until
  747. * the concurrent writer stops adding dirty pages and extending
  748. * EOF.
  749. */
  750. if (wbc->sync_mode == WB_SYNC_ALL &&
  751. wbc->range_end == LLONG_MAX) {
  752. end = i_size_read(mapping->host) >> PAGE_CACHE_SHIFT;
  753. }
  754. }
  755. retry:
  756. done_index = index;
  757. while (!done && (index <= end)) {
  758. int i;
  759. nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
  760. PAGECACHE_TAG_DIRTY,
  761. min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
  762. if (nr_pages == 0)
  763. break;
  764. for (i = 0; i < nr_pages; i++) {
  765. struct page *page = pvec.pages[i];
  766. /*
  767. * At this point, the page may be truncated or
  768. * invalidated (changing page->mapping to NULL), or
  769. * even swizzled back from swapper_space to tmpfs file
  770. * mapping. However, page->index will not change
  771. * because we have a reference on the page.
  772. */
  773. if (page->index > end) {
  774. /*
  775. * can't be range_cyclic (1st pass) because
  776. * end == -1 in that case.
  777. */
  778. done = 1;
  779. break;
  780. }
  781. done_index = page->index + 1;
  782. lock_page(page);
  783. /*
  784. * Page truncated or invalidated. We can freely skip it
  785. * then, even for data integrity operations: the page
  786. * has disappeared concurrently, so there could be no
  787. * real expectation of this data interity operation
  788. * even if there is now a new, dirty page at the same
  789. * pagecache address.
  790. */
  791. if (unlikely(page->mapping != mapping)) {
  792. continue_unlock:
  793. unlock_page(page);
  794. continue;
  795. }
  796. if (!PageDirty(page)) {
  797. /* someone wrote it for us */
  798. goto continue_unlock;
  799. }
  800. if (PageWriteback(page)) {
  801. if (wbc->sync_mode != WB_SYNC_NONE)
  802. wait_on_page_writeback(page);
  803. else
  804. goto continue_unlock;
  805. }
  806. BUG_ON(PageWriteback(page));
  807. if (!clear_page_dirty_for_io(page))
  808. goto continue_unlock;
  809. trace_wbc_writepage(wbc, mapping->backing_dev_info);
  810. ret = (*writepage)(page, wbc, data);
  811. if (unlikely(ret)) {
  812. if (ret == AOP_WRITEPAGE_ACTIVATE) {
  813. unlock_page(page);
  814. ret = 0;
  815. } else {
  816. /*
  817. * done_index is set past this page,
  818. * so media errors will not choke
  819. * background writeout for the entire
  820. * file. This has consequences for
  821. * range_cyclic semantics (ie. it may
  822. * not be suitable for data integrity
  823. * writeout).
  824. */
  825. done = 1;
  826. break;
  827. }
  828. }
  829. if (wbc->nr_to_write > 0) {
  830. if (--wbc->nr_to_write == 0 &&
  831. wbc->sync_mode == WB_SYNC_NONE) {
  832. /*
  833. * We stop writing back only if we are
  834. * not doing integrity sync. In case of
  835. * integrity sync we have to keep going
  836. * because someone may be concurrently
  837. * dirtying pages, and we might have
  838. * synced a lot of newly appeared dirty
  839. * pages, but have not synced all of the
  840. * old dirty pages.
  841. */
  842. done = 1;
  843. break;
  844. }
  845. }
  846. }
  847. pagevec_release(&pvec);
  848. cond_resched();
  849. }
  850. if (!cycled && !done) {
  851. /*
  852. * range_cyclic:
  853. * We hit the last page and there is more work to be done: wrap
  854. * back to the start of the file
  855. */
  856. cycled = 1;
  857. index = 0;
  858. end = writeback_index - 1;
  859. goto retry;
  860. }
  861. if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
  862. mapping->writeback_index = done_index;
  863. return ret;
  864. }
  865. EXPORT_SYMBOL(write_cache_pages);
  866. /*
  867. * Function used by generic_writepages to call the real writepage
  868. * function and set the mapping flags on error
  869. */
  870. static int __writepage(struct page *page, struct writeback_control *wbc,
  871. void *data)
  872. {
  873. struct address_space *mapping = data;
  874. int ret = mapping->a_ops->writepage(page, wbc);
  875. mapping_set_error(mapping, ret);
  876. return ret;
  877. }
  878. /**
  879. * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
  880. * @mapping: address space structure to write
  881. * @wbc: subtract the number of written pages from *@wbc->nr_to_write
  882. *
  883. * This is a library function, which implements the writepages()
  884. * address_space_operation.
  885. */
  886. int generic_writepages(struct address_space *mapping,
  887. struct writeback_control *wbc)
  888. {
  889. /* deal with chardevs and other special file */
  890. if (!mapping->a_ops->writepage)
  891. return 0;
  892. return write_cache_pages(mapping, wbc, __writepage, mapping);
  893. }
  894. EXPORT_SYMBOL(generic_writepages);
  895. int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
  896. {
  897. int ret;
  898. if (wbc->nr_to_write <= 0)
  899. return 0;
  900. if (mapping->a_ops->writepages)
  901. ret = mapping->a_ops->writepages(mapping, wbc);
  902. else
  903. ret = generic_writepages(mapping, wbc);
  904. return ret;
  905. }
  906. /**
  907. * write_one_page - write out a single page and optionally wait on I/O
  908. * @page: the page to write
  909. * @wait: if true, wait on writeout
  910. *
  911. * The page must be locked by the caller and will be unlocked upon return.
  912. *
  913. * write_one_page() returns a negative error code if I/O failed.
  914. */
  915. int write_one_page(struct page *page, int wait)
  916. {
  917. struct address_space *mapping = page->mapping;
  918. int ret = 0;
  919. struct writeback_control wbc = {
  920. .sync_mode = WB_SYNC_ALL,
  921. .nr_to_write = 1,
  922. };
  923. BUG_ON(!PageLocked(page));
  924. if (wait)
  925. wait_on_page_writeback(page);
  926. if (clear_page_dirty_for_io(page)) {
  927. page_cache_get(page);
  928. ret = mapping->a_ops->writepage(page, &wbc);
  929. if (ret == 0 && wait) {
  930. wait_on_page_writeback(page);
  931. if (PageError(page))
  932. ret = -EIO;
  933. }
  934. page_cache_release(page);
  935. } else {
  936. unlock_page(page);
  937. }
  938. return ret;
  939. }
  940. EXPORT_SYMBOL(write_one_page);
  941. /*
  942. * For address_spaces which do not use buffers nor write back.
  943. */
  944. int __set_page_dirty_no_writeback(struct page *page)
  945. {
  946. if (!PageDirty(page))
  947. SetPageDirty(page);
  948. return 0;
  949. }
  950. /*
  951. * Helper function for set_page_dirty family.
  952. * NOTE: This relies on being atomic wrt interrupts.
  953. */
  954. void account_page_dirtied(struct page *page, struct address_space *mapping)
  955. {
  956. if (mapping_cap_account_dirty(mapping)) {
  957. __inc_zone_page_state(page, NR_FILE_DIRTY);
  958. __inc_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
  959. task_dirty_inc(current);
  960. task_io_account_write(PAGE_CACHE_SIZE);
  961. }
  962. }
  963. /*
  964. * For address_spaces which do not use buffers. Just tag the page as dirty in
  965. * its radix tree.
  966. *
  967. * This is also used when a single buffer is being dirtied: we want to set the
  968. * page dirty in that case, but not all the buffers. This is a "bottom-up"
  969. * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
  970. *
  971. * Most callers have locked the page, which pins the address_space in memory.
  972. * But zap_pte_range() does not lock the page, however in that case the
  973. * mapping is pinned by the vma's ->vm_file reference.
  974. *
  975. * We take care to handle the case where the page was truncated from the
  976. * mapping by re-checking page_mapping() inside tree_lock.
  977. */
  978. int __set_page_dirty_nobuffers(struct page *page)
  979. {
  980. if (!TestSetPageDirty(page)) {
  981. struct address_space *mapping = page_mapping(page);
  982. struct address_space *mapping2;
  983. if (!mapping)
  984. return 1;
  985. spin_lock_irq(&mapping->tree_lock);
  986. mapping2 = page_mapping(page);
  987. if (mapping2) { /* Race with truncate? */
  988. BUG_ON(mapping2 != mapping);
  989. WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
  990. account_page_dirtied(page, mapping);
  991. radix_tree_tag_set(&mapping->page_tree,
  992. page_index(page), PAGECACHE_TAG_DIRTY);
  993. }
  994. spin_unlock_irq(&mapping->tree_lock);
  995. if (mapping->host) {
  996. /* !PageAnon && !swapper_space */
  997. __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
  998. }
  999. return 1;
  1000. }
  1001. return 0;
  1002. }
  1003. EXPORT_SYMBOL(__set_page_dirty_nobuffers);
  1004. /*
  1005. * When a writepage implementation decides that it doesn't want to write this
  1006. * page for some reason, it should redirty the locked page via
  1007. * redirty_page_for_writepage() and it should then unlock the page and return 0
  1008. */
  1009. int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
  1010. {
  1011. wbc->pages_skipped++;
  1012. return __set_page_dirty_nobuffers(page);
  1013. }
  1014. EXPORT_SYMBOL(redirty_page_for_writepage);
  1015. /*
  1016. * Dirty a page.
  1017. *
  1018. * For pages with a mapping this should be done under the page lock
  1019. * for the benefit of asynchronous memory errors who prefer a consistent
  1020. * dirty state. This rule can be broken in some special cases,
  1021. * but should be better not to.
  1022. *
  1023. * If the mapping doesn't provide a set_page_dirty a_op, then
  1024. * just fall through and assume that it wants buffer_heads.
  1025. */
  1026. int set_page_dirty(struct page *page)
  1027. {
  1028. struct address_space *mapping = page_mapping(page);
  1029. if (likely(mapping)) {
  1030. int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
  1031. #ifdef CONFIG_BLOCK
  1032. if (!spd)
  1033. spd = __set_page_dirty_buffers;
  1034. #endif
  1035. return (*spd)(page);
  1036. }
  1037. if (!PageDirty(page)) {
  1038. if (!TestSetPageDirty(page))
  1039. return 1;
  1040. }
  1041. return 0;
  1042. }
  1043. EXPORT_SYMBOL(set_page_dirty);
  1044. /*
  1045. * set_page_dirty() is racy if the caller has no reference against
  1046. * page->mapping->host, and if the page is unlocked. This is because another
  1047. * CPU could truncate the page off the mapping and then free the mapping.
  1048. *
  1049. * Usually, the page _is_ locked, or the caller is a user-space process which
  1050. * holds a reference on the inode by having an open file.
  1051. *
  1052. * In other cases, the page should be locked before running set_page_dirty().
  1053. */
  1054. int set_page_dirty_lock(struct page *page)
  1055. {
  1056. int ret;
  1057. lock_page_nosync(page);
  1058. ret = set_page_dirty(page);
  1059. unlock_page(page);
  1060. return ret;
  1061. }
  1062. EXPORT_SYMBOL(set_page_dirty_lock);
  1063. /*
  1064. * Clear a page's dirty flag, while caring for dirty memory accounting.
  1065. * Returns true if the page was previously dirty.
  1066. *
  1067. * This is for preparing to put the page under writeout. We leave the page
  1068. * tagged as dirty in the radix tree so that a concurrent write-for-sync
  1069. * can discover it via a PAGECACHE_TAG_DIRTY walk. The ->writepage
  1070. * implementation will run either set_page_writeback() or set_page_dirty(),
  1071. * at which stage we bring the page's dirty flag and radix-tree dirty tag
  1072. * back into sync.
  1073. *
  1074. * This incoherency between the page's dirty flag and radix-tree tag is
  1075. * unfortunate, but it only exists while the page is locked.
  1076. */
  1077. int clear_page_dirty_for_io(struct page *page)
  1078. {
  1079. struct address_space *mapping = page_mapping(page);
  1080. BUG_ON(!PageLocked(page));
  1081. ClearPageReclaim(page);
  1082. if (mapping && mapping_cap_account_dirty(mapping)) {
  1083. /*
  1084. * Yes, Virginia, this is indeed insane.
  1085. *
  1086. * We use this sequence to make sure that
  1087. * (a) we account for dirty stats properly
  1088. * (b) we tell the low-level filesystem to
  1089. * mark the whole page dirty if it was
  1090. * dirty in a pagetable. Only to then
  1091. * (c) clean the page again and return 1 to
  1092. * cause the writeback.
  1093. *
  1094. * This way we avoid all nasty races with the
  1095. * dirty bit in multiple places and clearing
  1096. * them concurrently from different threads.
  1097. *
  1098. * Note! Normally the "set_page_dirty(page)"
  1099. * has no effect on the actual dirty bit - since
  1100. * that will already usually be set. But we
  1101. * need the side effects, and it can help us
  1102. * avoid races.
  1103. *
  1104. * We basically use the page "master dirty bit"
  1105. * as a serialization point for all the different
  1106. * threads doing their things.
  1107. */
  1108. if (page_mkclean(page))
  1109. set_page_dirty(page);
  1110. /*
  1111. * We carefully synchronise fault handlers against
  1112. * installing a dirty pte and marking the page dirty
  1113. * at this point. We do this by having them hold the
  1114. * page lock at some point after installing their
  1115. * pte, but before marking the page dirty.
  1116. * Pages are always locked coming in here, so we get
  1117. * the desired exclusion. See mm/memory.c:do_wp_page()
  1118. * for more comments.
  1119. */
  1120. if (TestClearPageDirty(page)) {
  1121. dec_zone_page_state(page, NR_FILE_DIRTY);
  1122. dec_bdi_stat(mapping->backing_dev_info,
  1123. BDI_RECLAIMABLE);
  1124. return 1;
  1125. }
  1126. return 0;
  1127. }
  1128. return TestClearPageDirty(page);
  1129. }
  1130. EXPORT_SYMBOL(clear_page_dirty_for_io);
  1131. int test_clear_page_writeback(struct page *page)
  1132. {
  1133. struct address_space *mapping = page_mapping(page);
  1134. int ret;
  1135. if (mapping) {
  1136. struct backing_dev_info *bdi = mapping->backing_dev_info;
  1137. unsigned long flags;
  1138. spin_lock_irqsave(&mapping->tree_lock, flags);
  1139. ret = TestClearPageWriteback(page);
  1140. if (ret) {
  1141. radix_tree_tag_clear(&mapping->page_tree,
  1142. page_index(page),
  1143. PAGECACHE_TAG_WRITEBACK);
  1144. if (bdi_cap_account_writeback(bdi)) {
  1145. __dec_bdi_stat(bdi, BDI_WRITEBACK);
  1146. __bdi_writeout_inc(bdi);
  1147. }
  1148. }
  1149. spin_unlock_irqrestore(&mapping->tree_lock, flags);
  1150. } else {
  1151. ret = TestClearPageWriteback(page);
  1152. }
  1153. if (ret)
  1154. dec_zone_page_state(page, NR_WRITEBACK);
  1155. return ret;
  1156. }
  1157. int test_set_page_writeback(struct page *page)
  1158. {
  1159. struct address_space *mapping = page_mapping(page);
  1160. int ret;
  1161. if (mapping) {
  1162. struct backing_dev_info *bdi = mapping->backing_dev_info;
  1163. unsigned long flags;
  1164. spin_lock_irqsave(&mapping->tree_lock, flags);
  1165. ret = TestSetPageWriteback(page);
  1166. if (!ret) {
  1167. radix_tree_tag_set(&mapping->page_tree,
  1168. page_index(page),
  1169. PAGECACHE_TAG_WRITEBACK);
  1170. if (bdi_cap_account_writeback(bdi))
  1171. __inc_bdi_stat(bdi, BDI_WRITEBACK);
  1172. }
  1173. if (!PageDirty(page))
  1174. radix_tree_tag_clear(&mapping->page_tree,
  1175. page_index(page),
  1176. PAGECACHE_TAG_DIRTY);
  1177. spin_unlock_irqrestore(&mapping->tree_lock, flags);
  1178. } else {
  1179. ret = TestSetPageWriteback(page);
  1180. }
  1181. if (!ret)
  1182. inc_zone_page_state(page, NR_WRITEBACK);
  1183. return ret;
  1184. }
  1185. EXPORT_SYMBOL(test_set_page_writeback);
  1186. /*
  1187. * Return true if any of the pages in the mapping are marked with the
  1188. * passed tag.
  1189. */
  1190. int mapping_tagged(struct address_space *mapping, int tag)
  1191. {
  1192. int ret;
  1193. rcu_read_lock();
  1194. ret = radix_tree_tagged(&mapping->page_tree, tag);
  1195. rcu_read_unlock();
  1196. return ret;
  1197. }
  1198. EXPORT_SYMBOL(mapping_tagged);