pci_sun4v.c 29 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251
  1. /* pci_sun4v.c: SUN4V specific PCI controller support.
  2. *
  3. * Copyright (C) 2006, 2007 David S. Miller (davem@davemloft.net)
  4. */
  5. #include <linux/kernel.h>
  6. #include <linux/types.h>
  7. #include <linux/pci.h>
  8. #include <linux/init.h>
  9. #include <linux/slab.h>
  10. #include <linux/interrupt.h>
  11. #include <linux/percpu.h>
  12. #include <linux/irq.h>
  13. #include <linux/msi.h>
  14. #include <linux/log2.h>
  15. #include <asm/iommu.h>
  16. #include <asm/irq.h>
  17. #include <asm/upa.h>
  18. #include <asm/pstate.h>
  19. #include <asm/oplib.h>
  20. #include <asm/hypervisor.h>
  21. #include <asm/prom.h>
  22. #include "pci_impl.h"
  23. #include "iommu_common.h"
  24. #include "pci_sun4v.h"
  25. static unsigned long vpci_major = 1;
  26. static unsigned long vpci_minor = 1;
  27. #define PGLIST_NENTS (PAGE_SIZE / sizeof(u64))
  28. struct iommu_batch {
  29. struct device *dev; /* Device mapping is for. */
  30. unsigned long prot; /* IOMMU page protections */
  31. unsigned long entry; /* Index into IOTSB. */
  32. u64 *pglist; /* List of physical pages */
  33. unsigned long npages; /* Number of pages in list. */
  34. };
  35. static DEFINE_PER_CPU(struct iommu_batch, iommu_batch);
  36. /* Interrupts must be disabled. */
  37. static inline void iommu_batch_start(struct device *dev, unsigned long prot, unsigned long entry)
  38. {
  39. struct iommu_batch *p = &__get_cpu_var(iommu_batch);
  40. p->dev = dev;
  41. p->prot = prot;
  42. p->entry = entry;
  43. p->npages = 0;
  44. }
  45. /* Interrupts must be disabled. */
  46. static long iommu_batch_flush(struct iommu_batch *p)
  47. {
  48. struct pci_pbm_info *pbm = p->dev->archdata.host_controller;
  49. unsigned long devhandle = pbm->devhandle;
  50. unsigned long prot = p->prot;
  51. unsigned long entry = p->entry;
  52. u64 *pglist = p->pglist;
  53. unsigned long npages = p->npages;
  54. while (npages != 0) {
  55. long num;
  56. num = pci_sun4v_iommu_map(devhandle, HV_PCI_TSBID(0, entry),
  57. npages, prot, __pa(pglist));
  58. if (unlikely(num < 0)) {
  59. if (printk_ratelimit())
  60. printk("iommu_batch_flush: IOMMU map of "
  61. "[%08lx:%08lx:%lx:%lx:%lx] failed with "
  62. "status %ld\n",
  63. devhandle, HV_PCI_TSBID(0, entry),
  64. npages, prot, __pa(pglist), num);
  65. return -1;
  66. }
  67. entry += num;
  68. npages -= num;
  69. pglist += num;
  70. }
  71. p->entry = entry;
  72. p->npages = 0;
  73. return 0;
  74. }
  75. /* Interrupts must be disabled. */
  76. static inline long iommu_batch_add(u64 phys_page)
  77. {
  78. struct iommu_batch *p = &__get_cpu_var(iommu_batch);
  79. BUG_ON(p->npages >= PGLIST_NENTS);
  80. p->pglist[p->npages++] = phys_page;
  81. if (p->npages == PGLIST_NENTS)
  82. return iommu_batch_flush(p);
  83. return 0;
  84. }
  85. /* Interrupts must be disabled. */
  86. static inline long iommu_batch_end(void)
  87. {
  88. struct iommu_batch *p = &__get_cpu_var(iommu_batch);
  89. BUG_ON(p->npages >= PGLIST_NENTS);
  90. return iommu_batch_flush(p);
  91. }
  92. static long arena_alloc(struct iommu_arena *arena, unsigned long npages)
  93. {
  94. unsigned long n, i, start, end, limit;
  95. int pass;
  96. limit = arena->limit;
  97. start = arena->hint;
  98. pass = 0;
  99. again:
  100. n = find_next_zero_bit(arena->map, limit, start);
  101. end = n + npages;
  102. if (unlikely(end >= limit)) {
  103. if (likely(pass < 1)) {
  104. limit = start;
  105. start = 0;
  106. pass++;
  107. goto again;
  108. } else {
  109. /* Scanned the whole thing, give up. */
  110. return -1;
  111. }
  112. }
  113. for (i = n; i < end; i++) {
  114. if (test_bit(i, arena->map)) {
  115. start = i + 1;
  116. goto again;
  117. }
  118. }
  119. for (i = n; i < end; i++)
  120. __set_bit(i, arena->map);
  121. arena->hint = end;
  122. return n;
  123. }
  124. static void arena_free(struct iommu_arena *arena, unsigned long base,
  125. unsigned long npages)
  126. {
  127. unsigned long i;
  128. for (i = base; i < (base + npages); i++)
  129. __clear_bit(i, arena->map);
  130. }
  131. static void *dma_4v_alloc_coherent(struct device *dev, size_t size,
  132. dma_addr_t *dma_addrp, gfp_t gfp)
  133. {
  134. struct iommu *iommu;
  135. unsigned long flags, order, first_page, npages, n;
  136. void *ret;
  137. long entry;
  138. size = IO_PAGE_ALIGN(size);
  139. order = get_order(size);
  140. if (unlikely(order >= MAX_ORDER))
  141. return NULL;
  142. npages = size >> IO_PAGE_SHIFT;
  143. first_page = __get_free_pages(gfp, order);
  144. if (unlikely(first_page == 0UL))
  145. return NULL;
  146. memset((char *)first_page, 0, PAGE_SIZE << order);
  147. iommu = dev->archdata.iommu;
  148. spin_lock_irqsave(&iommu->lock, flags);
  149. entry = arena_alloc(&iommu->arena, npages);
  150. spin_unlock_irqrestore(&iommu->lock, flags);
  151. if (unlikely(entry < 0L))
  152. goto arena_alloc_fail;
  153. *dma_addrp = (iommu->page_table_map_base +
  154. (entry << IO_PAGE_SHIFT));
  155. ret = (void *) first_page;
  156. first_page = __pa(first_page);
  157. local_irq_save(flags);
  158. iommu_batch_start(dev,
  159. (HV_PCI_MAP_ATTR_READ |
  160. HV_PCI_MAP_ATTR_WRITE),
  161. entry);
  162. for (n = 0; n < npages; n++) {
  163. long err = iommu_batch_add(first_page + (n * PAGE_SIZE));
  164. if (unlikely(err < 0L))
  165. goto iommu_map_fail;
  166. }
  167. if (unlikely(iommu_batch_end() < 0L))
  168. goto iommu_map_fail;
  169. local_irq_restore(flags);
  170. return ret;
  171. iommu_map_fail:
  172. /* Interrupts are disabled. */
  173. spin_lock(&iommu->lock);
  174. arena_free(&iommu->arena, entry, npages);
  175. spin_unlock_irqrestore(&iommu->lock, flags);
  176. arena_alloc_fail:
  177. free_pages(first_page, order);
  178. return NULL;
  179. }
  180. static void dma_4v_free_coherent(struct device *dev, size_t size, void *cpu,
  181. dma_addr_t dvma)
  182. {
  183. struct pci_pbm_info *pbm;
  184. struct iommu *iommu;
  185. unsigned long flags, order, npages, entry;
  186. u32 devhandle;
  187. npages = IO_PAGE_ALIGN(size) >> IO_PAGE_SHIFT;
  188. iommu = dev->archdata.iommu;
  189. pbm = dev->archdata.host_controller;
  190. devhandle = pbm->devhandle;
  191. entry = ((dvma - iommu->page_table_map_base) >> IO_PAGE_SHIFT);
  192. spin_lock_irqsave(&iommu->lock, flags);
  193. arena_free(&iommu->arena, entry, npages);
  194. do {
  195. unsigned long num;
  196. num = pci_sun4v_iommu_demap(devhandle, HV_PCI_TSBID(0, entry),
  197. npages);
  198. entry += num;
  199. npages -= num;
  200. } while (npages != 0);
  201. spin_unlock_irqrestore(&iommu->lock, flags);
  202. order = get_order(size);
  203. if (order < 10)
  204. free_pages((unsigned long)cpu, order);
  205. }
  206. static dma_addr_t dma_4v_map_single(struct device *dev, void *ptr, size_t sz,
  207. enum dma_data_direction direction)
  208. {
  209. struct iommu *iommu;
  210. unsigned long flags, npages, oaddr;
  211. unsigned long i, base_paddr;
  212. u32 bus_addr, ret;
  213. unsigned long prot;
  214. long entry;
  215. iommu = dev->archdata.iommu;
  216. if (unlikely(direction == DMA_NONE))
  217. goto bad;
  218. oaddr = (unsigned long)ptr;
  219. npages = IO_PAGE_ALIGN(oaddr + sz) - (oaddr & IO_PAGE_MASK);
  220. npages >>= IO_PAGE_SHIFT;
  221. spin_lock_irqsave(&iommu->lock, flags);
  222. entry = arena_alloc(&iommu->arena, npages);
  223. spin_unlock_irqrestore(&iommu->lock, flags);
  224. if (unlikely(entry < 0L))
  225. goto bad;
  226. bus_addr = (iommu->page_table_map_base +
  227. (entry << IO_PAGE_SHIFT));
  228. ret = bus_addr | (oaddr & ~IO_PAGE_MASK);
  229. base_paddr = __pa(oaddr & IO_PAGE_MASK);
  230. prot = HV_PCI_MAP_ATTR_READ;
  231. if (direction != DMA_TO_DEVICE)
  232. prot |= HV_PCI_MAP_ATTR_WRITE;
  233. local_irq_save(flags);
  234. iommu_batch_start(dev, prot, entry);
  235. for (i = 0; i < npages; i++, base_paddr += IO_PAGE_SIZE) {
  236. long err = iommu_batch_add(base_paddr);
  237. if (unlikely(err < 0L))
  238. goto iommu_map_fail;
  239. }
  240. if (unlikely(iommu_batch_end() < 0L))
  241. goto iommu_map_fail;
  242. local_irq_restore(flags);
  243. return ret;
  244. bad:
  245. if (printk_ratelimit())
  246. WARN_ON(1);
  247. return DMA_ERROR_CODE;
  248. iommu_map_fail:
  249. /* Interrupts are disabled. */
  250. spin_lock(&iommu->lock);
  251. arena_free(&iommu->arena, entry, npages);
  252. spin_unlock_irqrestore(&iommu->lock, flags);
  253. return DMA_ERROR_CODE;
  254. }
  255. static void dma_4v_unmap_single(struct device *dev, dma_addr_t bus_addr,
  256. size_t sz, enum dma_data_direction direction)
  257. {
  258. struct pci_pbm_info *pbm;
  259. struct iommu *iommu;
  260. unsigned long flags, npages;
  261. long entry;
  262. u32 devhandle;
  263. if (unlikely(direction == DMA_NONE)) {
  264. if (printk_ratelimit())
  265. WARN_ON(1);
  266. return;
  267. }
  268. iommu = dev->archdata.iommu;
  269. pbm = dev->archdata.host_controller;
  270. devhandle = pbm->devhandle;
  271. npages = IO_PAGE_ALIGN(bus_addr + sz) - (bus_addr & IO_PAGE_MASK);
  272. npages >>= IO_PAGE_SHIFT;
  273. bus_addr &= IO_PAGE_MASK;
  274. spin_lock_irqsave(&iommu->lock, flags);
  275. entry = (bus_addr - iommu->page_table_map_base) >> IO_PAGE_SHIFT;
  276. arena_free(&iommu->arena, entry, npages);
  277. do {
  278. unsigned long num;
  279. num = pci_sun4v_iommu_demap(devhandle, HV_PCI_TSBID(0, entry),
  280. npages);
  281. entry += num;
  282. npages -= num;
  283. } while (npages != 0);
  284. spin_unlock_irqrestore(&iommu->lock, flags);
  285. }
  286. #define SG_ENT_PHYS_ADDRESS(SG) \
  287. (__pa(page_address((SG)->page)) + (SG)->offset)
  288. static inline long fill_sg(long entry, struct device *dev,
  289. struct scatterlist *sg,
  290. int nused, int nelems, unsigned long prot)
  291. {
  292. struct scatterlist *dma_sg = sg;
  293. struct scatterlist *sg_end = sg + nelems;
  294. unsigned long flags;
  295. int i;
  296. local_irq_save(flags);
  297. iommu_batch_start(dev, prot, entry);
  298. for (i = 0; i < nused; i++) {
  299. unsigned long pteval = ~0UL;
  300. u32 dma_npages;
  301. dma_npages = ((dma_sg->dma_address & (IO_PAGE_SIZE - 1UL)) +
  302. dma_sg->dma_length +
  303. ((IO_PAGE_SIZE - 1UL))) >> IO_PAGE_SHIFT;
  304. do {
  305. unsigned long offset;
  306. signed int len;
  307. /* If we are here, we know we have at least one
  308. * more page to map. So walk forward until we
  309. * hit a page crossing, and begin creating new
  310. * mappings from that spot.
  311. */
  312. for (;;) {
  313. unsigned long tmp;
  314. tmp = SG_ENT_PHYS_ADDRESS(sg);
  315. len = sg->length;
  316. if (((tmp ^ pteval) >> IO_PAGE_SHIFT) != 0UL) {
  317. pteval = tmp & IO_PAGE_MASK;
  318. offset = tmp & (IO_PAGE_SIZE - 1UL);
  319. break;
  320. }
  321. if (((tmp ^ (tmp + len - 1UL)) >> IO_PAGE_SHIFT) != 0UL) {
  322. pteval = (tmp + IO_PAGE_SIZE) & IO_PAGE_MASK;
  323. offset = 0UL;
  324. len -= (IO_PAGE_SIZE - (tmp & (IO_PAGE_SIZE - 1UL)));
  325. break;
  326. }
  327. sg++;
  328. }
  329. pteval = (pteval & IOPTE_PAGE);
  330. while (len > 0) {
  331. long err;
  332. err = iommu_batch_add(pteval);
  333. if (unlikely(err < 0L))
  334. goto iommu_map_failed;
  335. pteval += IO_PAGE_SIZE;
  336. len -= (IO_PAGE_SIZE - offset);
  337. offset = 0;
  338. dma_npages--;
  339. }
  340. pteval = (pteval & IOPTE_PAGE) + len;
  341. sg++;
  342. /* Skip over any tail mappings we've fully mapped,
  343. * adjusting pteval along the way. Stop when we
  344. * detect a page crossing event.
  345. */
  346. while (sg < sg_end &&
  347. (pteval << (64 - IO_PAGE_SHIFT)) != 0UL &&
  348. (pteval == SG_ENT_PHYS_ADDRESS(sg)) &&
  349. ((pteval ^
  350. (SG_ENT_PHYS_ADDRESS(sg) + sg->length - 1UL)) >> IO_PAGE_SHIFT) == 0UL) {
  351. pteval += sg->length;
  352. sg++;
  353. }
  354. if ((pteval << (64 - IO_PAGE_SHIFT)) == 0UL)
  355. pteval = ~0UL;
  356. } while (dma_npages != 0);
  357. dma_sg++;
  358. }
  359. if (unlikely(iommu_batch_end() < 0L))
  360. goto iommu_map_failed;
  361. local_irq_restore(flags);
  362. return 0;
  363. iommu_map_failed:
  364. local_irq_restore(flags);
  365. return -1L;
  366. }
  367. static int dma_4v_map_sg(struct device *dev, struct scatterlist *sglist,
  368. int nelems, enum dma_data_direction direction)
  369. {
  370. struct iommu *iommu;
  371. unsigned long flags, npages, prot;
  372. u32 dma_base;
  373. struct scatterlist *sgtmp;
  374. long entry, err;
  375. int used;
  376. /* Fast path single entry scatterlists. */
  377. if (nelems == 1) {
  378. sglist->dma_address =
  379. dma_4v_map_single(dev,
  380. (page_address(sglist->page) +
  381. sglist->offset),
  382. sglist->length, direction);
  383. if (unlikely(sglist->dma_address == DMA_ERROR_CODE))
  384. return 0;
  385. sglist->dma_length = sglist->length;
  386. return 1;
  387. }
  388. iommu = dev->archdata.iommu;
  389. if (unlikely(direction == DMA_NONE))
  390. goto bad;
  391. /* Step 1: Prepare scatter list. */
  392. npages = prepare_sg(sglist, nelems);
  393. /* Step 2: Allocate a cluster and context, if necessary. */
  394. spin_lock_irqsave(&iommu->lock, flags);
  395. entry = arena_alloc(&iommu->arena, npages);
  396. spin_unlock_irqrestore(&iommu->lock, flags);
  397. if (unlikely(entry < 0L))
  398. goto bad;
  399. dma_base = iommu->page_table_map_base +
  400. (entry << IO_PAGE_SHIFT);
  401. /* Step 3: Normalize DMA addresses. */
  402. used = nelems;
  403. sgtmp = sglist;
  404. while (used && sgtmp->dma_length) {
  405. sgtmp->dma_address += dma_base;
  406. sgtmp++;
  407. used--;
  408. }
  409. used = nelems - used;
  410. /* Step 4: Create the mappings. */
  411. prot = HV_PCI_MAP_ATTR_READ;
  412. if (direction != DMA_TO_DEVICE)
  413. prot |= HV_PCI_MAP_ATTR_WRITE;
  414. err = fill_sg(entry, dev, sglist, used, nelems, prot);
  415. if (unlikely(err < 0L))
  416. goto iommu_map_failed;
  417. return used;
  418. bad:
  419. if (printk_ratelimit())
  420. WARN_ON(1);
  421. return 0;
  422. iommu_map_failed:
  423. spin_lock_irqsave(&iommu->lock, flags);
  424. arena_free(&iommu->arena, entry, npages);
  425. spin_unlock_irqrestore(&iommu->lock, flags);
  426. return 0;
  427. }
  428. static void dma_4v_unmap_sg(struct device *dev, struct scatterlist *sglist,
  429. int nelems, enum dma_data_direction direction)
  430. {
  431. struct pci_pbm_info *pbm;
  432. struct iommu *iommu;
  433. unsigned long flags, i, npages;
  434. long entry;
  435. u32 devhandle, bus_addr;
  436. if (unlikely(direction == DMA_NONE)) {
  437. if (printk_ratelimit())
  438. WARN_ON(1);
  439. }
  440. iommu = dev->archdata.iommu;
  441. pbm = dev->archdata.host_controller;
  442. devhandle = pbm->devhandle;
  443. bus_addr = sglist->dma_address & IO_PAGE_MASK;
  444. for (i = 1; i < nelems; i++)
  445. if (sglist[i].dma_length == 0)
  446. break;
  447. i--;
  448. npages = (IO_PAGE_ALIGN(sglist[i].dma_address + sglist[i].dma_length) -
  449. bus_addr) >> IO_PAGE_SHIFT;
  450. entry = ((bus_addr - iommu->page_table_map_base) >> IO_PAGE_SHIFT);
  451. spin_lock_irqsave(&iommu->lock, flags);
  452. arena_free(&iommu->arena, entry, npages);
  453. do {
  454. unsigned long num;
  455. num = pci_sun4v_iommu_demap(devhandle, HV_PCI_TSBID(0, entry),
  456. npages);
  457. entry += num;
  458. npages -= num;
  459. } while (npages != 0);
  460. spin_unlock_irqrestore(&iommu->lock, flags);
  461. }
  462. static void dma_4v_sync_single_for_cpu(struct device *dev,
  463. dma_addr_t bus_addr, size_t sz,
  464. enum dma_data_direction direction)
  465. {
  466. /* Nothing to do... */
  467. }
  468. static void dma_4v_sync_sg_for_cpu(struct device *dev,
  469. struct scatterlist *sglist, int nelems,
  470. enum dma_data_direction direction)
  471. {
  472. /* Nothing to do... */
  473. }
  474. const struct dma_ops sun4v_dma_ops = {
  475. .alloc_coherent = dma_4v_alloc_coherent,
  476. .free_coherent = dma_4v_free_coherent,
  477. .map_single = dma_4v_map_single,
  478. .unmap_single = dma_4v_unmap_single,
  479. .map_sg = dma_4v_map_sg,
  480. .unmap_sg = dma_4v_unmap_sg,
  481. .sync_single_for_cpu = dma_4v_sync_single_for_cpu,
  482. .sync_sg_for_cpu = dma_4v_sync_sg_for_cpu,
  483. };
  484. static void pci_sun4v_scan_bus(struct pci_pbm_info *pbm)
  485. {
  486. struct property *prop;
  487. struct device_node *dp;
  488. dp = pbm->prom_node;
  489. prop = of_find_property(dp, "66mhz-capable", NULL);
  490. pbm->is_66mhz_capable = (prop != NULL);
  491. pbm->pci_bus = pci_scan_one_pbm(pbm);
  492. /* XXX register error interrupt handlers XXX */
  493. }
  494. static unsigned long probe_existing_entries(struct pci_pbm_info *pbm,
  495. struct iommu *iommu)
  496. {
  497. struct iommu_arena *arena = &iommu->arena;
  498. unsigned long i, cnt = 0;
  499. u32 devhandle;
  500. devhandle = pbm->devhandle;
  501. for (i = 0; i < arena->limit; i++) {
  502. unsigned long ret, io_attrs, ra;
  503. ret = pci_sun4v_iommu_getmap(devhandle,
  504. HV_PCI_TSBID(0, i),
  505. &io_attrs, &ra);
  506. if (ret == HV_EOK) {
  507. if (page_in_phys_avail(ra)) {
  508. pci_sun4v_iommu_demap(devhandle,
  509. HV_PCI_TSBID(0, i), 1);
  510. } else {
  511. cnt++;
  512. __set_bit(i, arena->map);
  513. }
  514. }
  515. }
  516. return cnt;
  517. }
  518. static void pci_sun4v_iommu_init(struct pci_pbm_info *pbm)
  519. {
  520. struct iommu *iommu = pbm->iommu;
  521. struct property *prop;
  522. unsigned long num_tsb_entries, sz, tsbsize;
  523. u32 vdma[2], dma_mask, dma_offset;
  524. prop = of_find_property(pbm->prom_node, "virtual-dma", NULL);
  525. if (prop) {
  526. u32 *val = prop->value;
  527. vdma[0] = val[0];
  528. vdma[1] = val[1];
  529. } else {
  530. /* No property, use default values. */
  531. vdma[0] = 0x80000000;
  532. vdma[1] = 0x80000000;
  533. }
  534. if ((vdma[0] | vdma[1]) & ~IO_PAGE_MASK) {
  535. prom_printf("PCI-SUN4V: strange virtual-dma[%08x:%08x].\n",
  536. vdma[0], vdma[1]);
  537. prom_halt();
  538. };
  539. dma_mask = (roundup_pow_of_two(vdma[1]) - 1UL);
  540. num_tsb_entries = vdma[1] / IO_PAGE_SIZE;
  541. tsbsize = num_tsb_entries * sizeof(iopte_t);
  542. dma_offset = vdma[0];
  543. /* Setup initial software IOMMU state. */
  544. spin_lock_init(&iommu->lock);
  545. iommu->ctx_lowest_free = 1;
  546. iommu->page_table_map_base = dma_offset;
  547. iommu->dma_addr_mask = dma_mask;
  548. /* Allocate and initialize the free area map. */
  549. sz = (num_tsb_entries + 7) / 8;
  550. sz = (sz + 7UL) & ~7UL;
  551. iommu->arena.map = kzalloc(sz, GFP_KERNEL);
  552. if (!iommu->arena.map) {
  553. prom_printf("PCI_IOMMU: Error, kmalloc(arena.map) failed.\n");
  554. prom_halt();
  555. }
  556. iommu->arena.limit = num_tsb_entries;
  557. sz = probe_existing_entries(pbm, iommu);
  558. if (sz)
  559. printk("%s: Imported %lu TSB entries from OBP\n",
  560. pbm->name, sz);
  561. }
  562. #ifdef CONFIG_PCI_MSI
  563. struct pci_sun4v_msiq_entry {
  564. u64 version_type;
  565. #define MSIQ_VERSION_MASK 0xffffffff00000000UL
  566. #define MSIQ_VERSION_SHIFT 32
  567. #define MSIQ_TYPE_MASK 0x00000000000000ffUL
  568. #define MSIQ_TYPE_SHIFT 0
  569. #define MSIQ_TYPE_NONE 0x00
  570. #define MSIQ_TYPE_MSG 0x01
  571. #define MSIQ_TYPE_MSI32 0x02
  572. #define MSIQ_TYPE_MSI64 0x03
  573. #define MSIQ_TYPE_INTX 0x08
  574. #define MSIQ_TYPE_NONE2 0xff
  575. u64 intx_sysino;
  576. u64 reserved1;
  577. u64 stick;
  578. u64 req_id; /* bus/device/func */
  579. #define MSIQ_REQID_BUS_MASK 0xff00UL
  580. #define MSIQ_REQID_BUS_SHIFT 8
  581. #define MSIQ_REQID_DEVICE_MASK 0x00f8UL
  582. #define MSIQ_REQID_DEVICE_SHIFT 3
  583. #define MSIQ_REQID_FUNC_MASK 0x0007UL
  584. #define MSIQ_REQID_FUNC_SHIFT 0
  585. u64 msi_address;
  586. /* The format of this value is message type dependent.
  587. * For MSI bits 15:0 are the data from the MSI packet.
  588. * For MSI-X bits 31:0 are the data from the MSI packet.
  589. * For MSG, the message code and message routing code where:
  590. * bits 39:32 is the bus/device/fn of the msg target-id
  591. * bits 18:16 is the message routing code
  592. * bits 7:0 is the message code
  593. * For INTx the low order 2-bits are:
  594. * 00 - INTA
  595. * 01 - INTB
  596. * 10 - INTC
  597. * 11 - INTD
  598. */
  599. u64 msi_data;
  600. u64 reserved2;
  601. };
  602. /* For now this just runs as a pre-handler for the real interrupt handler.
  603. * So we just walk through the queue and ACK all the entries, update the
  604. * head pointer, and return.
  605. *
  606. * In the longer term it would be nice to do something more integrated
  607. * wherein we can pass in some of this MSI info to the drivers. This
  608. * would be most useful for PCIe fabric error messages, although we could
  609. * invoke those directly from the loop here in order to pass the info around.
  610. */
  611. static void pci_sun4v_msi_prehandler(unsigned int ino, void *data1, void *data2)
  612. {
  613. struct pci_pbm_info *pbm = data1;
  614. struct pci_sun4v_msiq_entry *base, *ep;
  615. unsigned long msiqid, orig_head, head, type, err;
  616. msiqid = (unsigned long) data2;
  617. head = 0xdeadbeef;
  618. err = pci_sun4v_msiq_gethead(pbm->devhandle, msiqid, &head);
  619. if (unlikely(err))
  620. goto hv_error_get;
  621. if (unlikely(head >= (pbm->msiq_ent_count * sizeof(struct pci_sun4v_msiq_entry))))
  622. goto bad_offset;
  623. head /= sizeof(struct pci_sun4v_msiq_entry);
  624. orig_head = head;
  625. base = (pbm->msi_queues + ((msiqid - pbm->msiq_first) *
  626. (pbm->msiq_ent_count *
  627. sizeof(struct pci_sun4v_msiq_entry))));
  628. ep = &base[head];
  629. while ((ep->version_type & MSIQ_TYPE_MASK) != 0) {
  630. type = (ep->version_type & MSIQ_TYPE_MASK) >> MSIQ_TYPE_SHIFT;
  631. if (unlikely(type != MSIQ_TYPE_MSI32 &&
  632. type != MSIQ_TYPE_MSI64))
  633. goto bad_type;
  634. pci_sun4v_msi_setstate(pbm->devhandle,
  635. ep->msi_data /* msi_num */,
  636. HV_MSISTATE_IDLE);
  637. /* Clear the entry. */
  638. ep->version_type &= ~MSIQ_TYPE_MASK;
  639. /* Go to next entry in ring. */
  640. head++;
  641. if (head >= pbm->msiq_ent_count)
  642. head = 0;
  643. ep = &base[head];
  644. }
  645. if (likely(head != orig_head)) {
  646. /* ACK entries by updating head pointer. */
  647. head *= sizeof(struct pci_sun4v_msiq_entry);
  648. err = pci_sun4v_msiq_sethead(pbm->devhandle, msiqid, head);
  649. if (unlikely(err))
  650. goto hv_error_set;
  651. }
  652. return;
  653. hv_error_set:
  654. printk(KERN_EMERG "MSI: Hypervisor set head gives error %lu\n", err);
  655. goto hv_error_cont;
  656. hv_error_get:
  657. printk(KERN_EMERG "MSI: Hypervisor get head gives error %lu\n", err);
  658. hv_error_cont:
  659. printk(KERN_EMERG "MSI: devhandle[%x] msiqid[%lx] head[%lu]\n",
  660. pbm->devhandle, msiqid, head);
  661. return;
  662. bad_offset:
  663. printk(KERN_EMERG "MSI: Hypervisor gives bad offset %lx max(%lx)\n",
  664. head, pbm->msiq_ent_count * sizeof(struct pci_sun4v_msiq_entry));
  665. return;
  666. bad_type:
  667. printk(KERN_EMERG "MSI: Entry has bad type %lx\n", type);
  668. return;
  669. }
  670. static int msi_bitmap_alloc(struct pci_pbm_info *pbm)
  671. {
  672. unsigned long size, bits_per_ulong;
  673. bits_per_ulong = sizeof(unsigned long) * 8;
  674. size = (pbm->msi_num + (bits_per_ulong - 1)) & ~(bits_per_ulong - 1);
  675. size /= 8;
  676. BUG_ON(size % sizeof(unsigned long));
  677. pbm->msi_bitmap = kzalloc(size, GFP_KERNEL);
  678. if (!pbm->msi_bitmap)
  679. return -ENOMEM;
  680. return 0;
  681. }
  682. static void msi_bitmap_free(struct pci_pbm_info *pbm)
  683. {
  684. kfree(pbm->msi_bitmap);
  685. pbm->msi_bitmap = NULL;
  686. }
  687. static int msi_queue_alloc(struct pci_pbm_info *pbm)
  688. {
  689. unsigned long q_size, alloc_size, pages, order;
  690. int i;
  691. q_size = pbm->msiq_ent_count * sizeof(struct pci_sun4v_msiq_entry);
  692. alloc_size = (pbm->msiq_num * q_size);
  693. order = get_order(alloc_size);
  694. pages = __get_free_pages(GFP_KERNEL | __GFP_COMP, order);
  695. if (pages == 0UL) {
  696. printk(KERN_ERR "MSI: Cannot allocate MSI queues (o=%lu).\n",
  697. order);
  698. return -ENOMEM;
  699. }
  700. memset((char *)pages, 0, PAGE_SIZE << order);
  701. pbm->msi_queues = (void *) pages;
  702. for (i = 0; i < pbm->msiq_num; i++) {
  703. unsigned long err, base = __pa(pages + (i * q_size));
  704. unsigned long ret1, ret2;
  705. err = pci_sun4v_msiq_conf(pbm->devhandle,
  706. pbm->msiq_first + i,
  707. base, pbm->msiq_ent_count);
  708. if (err) {
  709. printk(KERN_ERR "MSI: msiq register fails (err=%lu)\n",
  710. err);
  711. goto h_error;
  712. }
  713. err = pci_sun4v_msiq_info(pbm->devhandle,
  714. pbm->msiq_first + i,
  715. &ret1, &ret2);
  716. if (err) {
  717. printk(KERN_ERR "MSI: Cannot read msiq (err=%lu)\n",
  718. err);
  719. goto h_error;
  720. }
  721. if (ret1 != base || ret2 != pbm->msiq_ent_count) {
  722. printk(KERN_ERR "MSI: Bogus qconf "
  723. "expected[%lx:%x] got[%lx:%lx]\n",
  724. base, pbm->msiq_ent_count,
  725. ret1, ret2);
  726. goto h_error;
  727. }
  728. }
  729. return 0;
  730. h_error:
  731. free_pages(pages, order);
  732. return -EINVAL;
  733. }
  734. static int alloc_msi(struct pci_pbm_info *pbm)
  735. {
  736. int i;
  737. for (i = 0; i < pbm->msi_num; i++) {
  738. if (!test_and_set_bit(i, pbm->msi_bitmap))
  739. return i + pbm->msi_first;
  740. }
  741. return -ENOENT;
  742. }
  743. static void free_msi(struct pci_pbm_info *pbm, int msi_num)
  744. {
  745. msi_num -= pbm->msi_first;
  746. clear_bit(msi_num, pbm->msi_bitmap);
  747. }
  748. static int pci_sun4v_setup_msi_irq(unsigned int *virt_irq_p,
  749. struct pci_dev *pdev,
  750. struct msi_desc *entry)
  751. {
  752. struct pci_pbm_info *pbm = pdev->dev.archdata.host_controller;
  753. unsigned long devino, msiqid;
  754. struct msi_msg msg;
  755. int msi_num, err;
  756. *virt_irq_p = 0;
  757. msi_num = alloc_msi(pbm);
  758. if (msi_num < 0)
  759. return msi_num;
  760. err = sun4v_build_msi(pbm->devhandle, virt_irq_p,
  761. pbm->msiq_first_devino,
  762. (pbm->msiq_first_devino +
  763. pbm->msiq_num));
  764. if (err < 0)
  765. goto out_err;
  766. devino = err;
  767. msiqid = ((devino - pbm->msiq_first_devino) +
  768. pbm->msiq_first);
  769. err = -EINVAL;
  770. if (pci_sun4v_msiq_setstate(pbm->devhandle, msiqid, HV_MSIQSTATE_IDLE))
  771. if (err)
  772. goto out_err;
  773. if (pci_sun4v_msiq_setvalid(pbm->devhandle, msiqid, HV_MSIQ_VALID))
  774. goto out_err;
  775. if (pci_sun4v_msi_setmsiq(pbm->devhandle,
  776. msi_num, msiqid,
  777. (entry->msi_attrib.is_64 ?
  778. HV_MSITYPE_MSI64 : HV_MSITYPE_MSI32)))
  779. goto out_err;
  780. if (pci_sun4v_msi_setstate(pbm->devhandle, msi_num, HV_MSISTATE_IDLE))
  781. goto out_err;
  782. if (pci_sun4v_msi_setvalid(pbm->devhandle, msi_num, HV_MSIVALID_VALID))
  783. goto out_err;
  784. sparc64_set_msi(*virt_irq_p, msi_num);
  785. if (entry->msi_attrib.is_64) {
  786. msg.address_hi = pbm->msi64_start >> 32;
  787. msg.address_lo = pbm->msi64_start & 0xffffffff;
  788. } else {
  789. msg.address_hi = 0;
  790. msg.address_lo = pbm->msi32_start;
  791. }
  792. msg.data = msi_num;
  793. set_irq_msi(*virt_irq_p, entry);
  794. write_msi_msg(*virt_irq_p, &msg);
  795. irq_install_pre_handler(*virt_irq_p,
  796. pci_sun4v_msi_prehandler,
  797. pbm, (void *) msiqid);
  798. return 0;
  799. out_err:
  800. free_msi(pbm, msi_num);
  801. return err;
  802. }
  803. static void pci_sun4v_teardown_msi_irq(unsigned int virt_irq,
  804. struct pci_dev *pdev)
  805. {
  806. struct pci_pbm_info *pbm = pdev->dev.archdata.host_controller;
  807. unsigned long msiqid, err;
  808. unsigned int msi_num;
  809. msi_num = sparc64_get_msi(virt_irq);
  810. err = pci_sun4v_msi_getmsiq(pbm->devhandle, msi_num, &msiqid);
  811. if (err) {
  812. printk(KERN_ERR "%s: getmsiq gives error %lu\n",
  813. pbm->name, err);
  814. return;
  815. }
  816. pci_sun4v_msi_setvalid(pbm->devhandle, msi_num, HV_MSIVALID_INVALID);
  817. pci_sun4v_msiq_setvalid(pbm->devhandle, msiqid, HV_MSIQ_INVALID);
  818. free_msi(pbm, msi_num);
  819. /* The sun4v_destroy_msi() will liberate the devino and thus the MSIQ
  820. * allocation.
  821. */
  822. sun4v_destroy_msi(virt_irq);
  823. }
  824. static void pci_sun4v_msi_init(struct pci_pbm_info *pbm)
  825. {
  826. const u32 *val;
  827. int len;
  828. val = of_get_property(pbm->prom_node, "#msi-eqs", &len);
  829. if (!val || len != 4)
  830. goto no_msi;
  831. pbm->msiq_num = *val;
  832. if (pbm->msiq_num) {
  833. const struct msiq_prop {
  834. u32 first_msiq;
  835. u32 num_msiq;
  836. u32 first_devino;
  837. } *mqp;
  838. const struct msi_range_prop {
  839. u32 first_msi;
  840. u32 num_msi;
  841. } *mrng;
  842. const struct addr_range_prop {
  843. u32 msi32_high;
  844. u32 msi32_low;
  845. u32 msi32_len;
  846. u32 msi64_high;
  847. u32 msi64_low;
  848. u32 msi64_len;
  849. } *arng;
  850. val = of_get_property(pbm->prom_node, "msi-eq-size", &len);
  851. if (!val || len != 4)
  852. goto no_msi;
  853. pbm->msiq_ent_count = *val;
  854. mqp = of_get_property(pbm->prom_node,
  855. "msi-eq-to-devino", &len);
  856. if (!mqp || len != sizeof(struct msiq_prop))
  857. goto no_msi;
  858. pbm->msiq_first = mqp->first_msiq;
  859. pbm->msiq_first_devino = mqp->first_devino;
  860. val = of_get_property(pbm->prom_node, "#msi", &len);
  861. if (!val || len != 4)
  862. goto no_msi;
  863. pbm->msi_num = *val;
  864. mrng = of_get_property(pbm->prom_node, "msi-ranges", &len);
  865. if (!mrng || len != sizeof(struct msi_range_prop))
  866. goto no_msi;
  867. pbm->msi_first = mrng->first_msi;
  868. val = of_get_property(pbm->prom_node, "msi-data-mask", &len);
  869. if (!val || len != 4)
  870. goto no_msi;
  871. pbm->msi_data_mask = *val;
  872. val = of_get_property(pbm->prom_node, "msix-data-width", &len);
  873. if (!val || len != 4)
  874. goto no_msi;
  875. pbm->msix_data_width = *val;
  876. arng = of_get_property(pbm->prom_node, "msi-address-ranges",
  877. &len);
  878. if (!arng || len != sizeof(struct addr_range_prop))
  879. goto no_msi;
  880. pbm->msi32_start = ((u64)arng->msi32_high << 32) |
  881. (u64) arng->msi32_low;
  882. pbm->msi64_start = ((u64)arng->msi64_high << 32) |
  883. (u64) arng->msi64_low;
  884. pbm->msi32_len = arng->msi32_len;
  885. pbm->msi64_len = arng->msi64_len;
  886. if (msi_bitmap_alloc(pbm))
  887. goto no_msi;
  888. if (msi_queue_alloc(pbm)) {
  889. msi_bitmap_free(pbm);
  890. goto no_msi;
  891. }
  892. printk(KERN_INFO "%s: MSI Queue first[%u] num[%u] count[%u] "
  893. "devino[0x%x]\n",
  894. pbm->name,
  895. pbm->msiq_first, pbm->msiq_num,
  896. pbm->msiq_ent_count,
  897. pbm->msiq_first_devino);
  898. printk(KERN_INFO "%s: MSI first[%u] num[%u] mask[0x%x] "
  899. "width[%u]\n",
  900. pbm->name,
  901. pbm->msi_first, pbm->msi_num, pbm->msi_data_mask,
  902. pbm->msix_data_width);
  903. printk(KERN_INFO "%s: MSI addr32[0x%lx:0x%x] "
  904. "addr64[0x%lx:0x%x]\n",
  905. pbm->name,
  906. pbm->msi32_start, pbm->msi32_len,
  907. pbm->msi64_start, pbm->msi64_len);
  908. printk(KERN_INFO "%s: MSI queues at RA [%p]\n",
  909. pbm->name,
  910. pbm->msi_queues);
  911. }
  912. pbm->setup_msi_irq = pci_sun4v_setup_msi_irq;
  913. pbm->teardown_msi_irq = pci_sun4v_teardown_msi_irq;
  914. return;
  915. no_msi:
  916. pbm->msiq_num = 0;
  917. printk(KERN_INFO "%s: No MSI support.\n", pbm->name);
  918. }
  919. #else /* CONFIG_PCI_MSI */
  920. static void pci_sun4v_msi_init(struct pci_pbm_info *pbm)
  921. {
  922. }
  923. #endif /* !(CONFIG_PCI_MSI) */
  924. static void __init pci_sun4v_pbm_init(struct pci_controller_info *p, struct device_node *dp, u32 devhandle)
  925. {
  926. struct pci_pbm_info *pbm;
  927. if (devhandle & 0x40)
  928. pbm = &p->pbm_B;
  929. else
  930. pbm = &p->pbm_A;
  931. pbm->next = pci_pbm_root;
  932. pci_pbm_root = pbm;
  933. pbm->scan_bus = pci_sun4v_scan_bus;
  934. pbm->pci_ops = &sun4v_pci_ops;
  935. pbm->config_space_reg_bits = 12;
  936. pbm->index = pci_num_pbms++;
  937. pbm->parent = p;
  938. pbm->prom_node = dp;
  939. pbm->devhandle = devhandle;
  940. pbm->name = dp->full_name;
  941. printk("%s: SUN4V PCI Bus Module\n", pbm->name);
  942. pci_determine_mem_io_space(pbm);
  943. pci_get_pbm_props(pbm);
  944. pci_sun4v_iommu_init(pbm);
  945. pci_sun4v_msi_init(pbm);
  946. }
  947. void __init sun4v_pci_init(struct device_node *dp, char *model_name)
  948. {
  949. static int hvapi_negotiated = 0;
  950. struct pci_controller_info *p;
  951. struct pci_pbm_info *pbm;
  952. struct iommu *iommu;
  953. struct property *prop;
  954. struct linux_prom64_registers *regs;
  955. u32 devhandle;
  956. int i;
  957. if (!hvapi_negotiated++) {
  958. int err = sun4v_hvapi_register(HV_GRP_PCI,
  959. vpci_major,
  960. &vpci_minor);
  961. if (err) {
  962. prom_printf("SUN4V_PCI: Could not register hvapi, "
  963. "err=%d\n", err);
  964. prom_halt();
  965. }
  966. printk("SUN4V_PCI: Registered hvapi major[%lu] minor[%lu]\n",
  967. vpci_major, vpci_minor);
  968. dma_ops = &sun4v_dma_ops;
  969. }
  970. prop = of_find_property(dp, "reg", NULL);
  971. regs = prop->value;
  972. devhandle = (regs->phys_addr >> 32UL) & 0x0fffffff;
  973. for (pbm = pci_pbm_root; pbm; pbm = pbm->next) {
  974. if (pbm->devhandle == (devhandle ^ 0x40)) {
  975. pci_sun4v_pbm_init(pbm->parent, dp, devhandle);
  976. return;
  977. }
  978. }
  979. for_each_possible_cpu(i) {
  980. unsigned long page = get_zeroed_page(GFP_ATOMIC);
  981. if (!page)
  982. goto fatal_memory_error;
  983. per_cpu(iommu_batch, i).pglist = (u64 *) page;
  984. }
  985. p = kzalloc(sizeof(struct pci_controller_info), GFP_ATOMIC);
  986. if (!p)
  987. goto fatal_memory_error;
  988. iommu = kzalloc(sizeof(struct iommu), GFP_ATOMIC);
  989. if (!iommu)
  990. goto fatal_memory_error;
  991. p->pbm_A.iommu = iommu;
  992. iommu = kzalloc(sizeof(struct iommu), GFP_ATOMIC);
  993. if (!iommu)
  994. goto fatal_memory_error;
  995. p->pbm_B.iommu = iommu;
  996. /* Like PSYCHO and SCHIZO we have a 2GB aligned area
  997. * for memory space.
  998. */
  999. pci_memspace_mask = 0x7fffffffUL;
  1000. pci_sun4v_pbm_init(p, dp, devhandle);
  1001. return;
  1002. fatal_memory_error:
  1003. prom_printf("SUN4V_PCI: Fatal memory allocation error.\n");
  1004. prom_halt();
  1005. }