sched.c 25 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976
  1. /* sched.c - SPU scheduler.
  2. *
  3. * Copyright (C) IBM 2005
  4. * Author: Mark Nutter <mnutter@us.ibm.com>
  5. *
  6. * 2006-03-31 NUMA domains added.
  7. *
  8. * This program is free software; you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation; either version 2, or (at your option)
  11. * any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program; if not, write to the Free Software
  20. * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  21. */
  22. #undef DEBUG
  23. #include <linux/module.h>
  24. #include <linux/errno.h>
  25. #include <linux/sched.h>
  26. #include <linux/kernel.h>
  27. #include <linux/mm.h>
  28. #include <linux/completion.h>
  29. #include <linux/vmalloc.h>
  30. #include <linux/smp.h>
  31. #include <linux/stddef.h>
  32. #include <linux/unistd.h>
  33. #include <linux/numa.h>
  34. #include <linux/mutex.h>
  35. #include <linux/notifier.h>
  36. #include <linux/kthread.h>
  37. #include <linux/pid_namespace.h>
  38. #include <linux/proc_fs.h>
  39. #include <linux/seq_file.h>
  40. #include <asm/io.h>
  41. #include <asm/mmu_context.h>
  42. #include <asm/spu.h>
  43. #include <asm/spu_csa.h>
  44. #include <asm/spu_priv1.h>
  45. #include "spufs.h"
  46. struct spu_prio_array {
  47. DECLARE_BITMAP(bitmap, MAX_PRIO);
  48. struct list_head runq[MAX_PRIO];
  49. spinlock_t runq_lock;
  50. int nr_waiting;
  51. };
  52. static unsigned long spu_avenrun[3];
  53. static struct spu_prio_array *spu_prio;
  54. static struct task_struct *spusched_task;
  55. static struct timer_list spusched_timer;
  56. /*
  57. * Priority of a normal, non-rt, non-niced'd process (aka nice level 0).
  58. */
  59. #define NORMAL_PRIO 120
  60. /*
  61. * Frequency of the spu scheduler tick. By default we do one SPU scheduler
  62. * tick for every 10 CPU scheduler ticks.
  63. */
  64. #define SPUSCHED_TICK (10)
  65. /*
  66. * These are the 'tuning knobs' of the scheduler:
  67. *
  68. * Minimum timeslice is 5 msecs (or 1 spu scheduler tick, whichever is
  69. * larger), default timeslice is 100 msecs, maximum timeslice is 800 msecs.
  70. */
  71. #define MIN_SPU_TIMESLICE max(5 * HZ / (1000 * SPUSCHED_TICK), 1)
  72. #define DEF_SPU_TIMESLICE (100 * HZ / (1000 * SPUSCHED_TICK))
  73. #define MAX_USER_PRIO (MAX_PRIO - MAX_RT_PRIO)
  74. #define SCALE_PRIO(x, prio) \
  75. max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO / 2), MIN_SPU_TIMESLICE)
  76. /*
  77. * scale user-nice values [ -20 ... 0 ... 19 ] to time slice values:
  78. * [800ms ... 100ms ... 5ms]
  79. *
  80. * The higher a thread's priority, the bigger timeslices
  81. * it gets during one round of execution. But even the lowest
  82. * priority thread gets MIN_TIMESLICE worth of execution time.
  83. */
  84. void spu_set_timeslice(struct spu_context *ctx)
  85. {
  86. if (ctx->prio < NORMAL_PRIO)
  87. ctx->time_slice = SCALE_PRIO(DEF_SPU_TIMESLICE * 4, ctx->prio);
  88. else
  89. ctx->time_slice = SCALE_PRIO(DEF_SPU_TIMESLICE, ctx->prio);
  90. }
  91. /*
  92. * Update scheduling information from the owning thread.
  93. */
  94. void __spu_update_sched_info(struct spu_context *ctx)
  95. {
  96. /*
  97. * 32-Bit assignment are atomic on powerpc, and we don't care about
  98. * memory ordering here because retriving the controlling thread is
  99. * per defintion racy.
  100. */
  101. ctx->tid = current->pid;
  102. /*
  103. * We do our own priority calculations, so we normally want
  104. * ->static_prio to start with. Unfortunately thies field
  105. * contains junk for threads with a realtime scheduling
  106. * policy so we have to look at ->prio in this case.
  107. */
  108. if (rt_prio(current->prio))
  109. ctx->prio = current->prio;
  110. else
  111. ctx->prio = current->static_prio;
  112. ctx->policy = current->policy;
  113. /*
  114. * A lot of places that don't hold list_mutex poke into
  115. * cpus_allowed, including grab_runnable_context which
  116. * already holds the runq_lock. So abuse runq_lock
  117. * to protect this field aswell.
  118. */
  119. spin_lock(&spu_prio->runq_lock);
  120. ctx->cpus_allowed = current->cpus_allowed;
  121. spin_unlock(&spu_prio->runq_lock);
  122. }
  123. void spu_update_sched_info(struct spu_context *ctx)
  124. {
  125. int node = ctx->spu->node;
  126. mutex_lock(&cbe_spu_info[node].list_mutex);
  127. __spu_update_sched_info(ctx);
  128. mutex_unlock(&cbe_spu_info[node].list_mutex);
  129. }
  130. static int __node_allowed(struct spu_context *ctx, int node)
  131. {
  132. if (nr_cpus_node(node)) {
  133. cpumask_t mask = node_to_cpumask(node);
  134. if (cpus_intersects(mask, ctx->cpus_allowed))
  135. return 1;
  136. }
  137. return 0;
  138. }
  139. static int node_allowed(struct spu_context *ctx, int node)
  140. {
  141. int rval;
  142. spin_lock(&spu_prio->runq_lock);
  143. rval = __node_allowed(ctx, node);
  144. spin_unlock(&spu_prio->runq_lock);
  145. return rval;
  146. }
  147. static BLOCKING_NOTIFIER_HEAD(spu_switch_notifier);
  148. void spu_switch_notify(struct spu *spu, struct spu_context *ctx)
  149. {
  150. blocking_notifier_call_chain(&spu_switch_notifier,
  151. ctx ? ctx->object_id : 0, spu);
  152. }
  153. static void notify_spus_active(void)
  154. {
  155. int node;
  156. /*
  157. * Wake up the active spu_contexts.
  158. *
  159. * When the awakened processes see their "notify_active" flag is set,
  160. * they will call spu_switch_notify();
  161. */
  162. for_each_online_node(node) {
  163. struct spu *spu;
  164. mutex_lock(&cbe_spu_info[node].list_mutex);
  165. list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) {
  166. if (spu->alloc_state != SPU_FREE) {
  167. struct spu_context *ctx = spu->ctx;
  168. set_bit(SPU_SCHED_NOTIFY_ACTIVE,
  169. &ctx->sched_flags);
  170. mb();
  171. wake_up_all(&ctx->stop_wq);
  172. }
  173. }
  174. mutex_unlock(&cbe_spu_info[node].list_mutex);
  175. }
  176. }
  177. int spu_switch_event_register(struct notifier_block * n)
  178. {
  179. int ret;
  180. ret = blocking_notifier_chain_register(&spu_switch_notifier, n);
  181. if (!ret)
  182. notify_spus_active();
  183. return ret;
  184. }
  185. EXPORT_SYMBOL_GPL(spu_switch_event_register);
  186. int spu_switch_event_unregister(struct notifier_block * n)
  187. {
  188. return blocking_notifier_chain_unregister(&spu_switch_notifier, n);
  189. }
  190. EXPORT_SYMBOL_GPL(spu_switch_event_unregister);
  191. /**
  192. * spu_bind_context - bind spu context to physical spu
  193. * @spu: physical spu to bind to
  194. * @ctx: context to bind
  195. */
  196. static void spu_bind_context(struct spu *spu, struct spu_context *ctx)
  197. {
  198. pr_debug("%s: pid=%d SPU=%d NODE=%d\n", __FUNCTION__, current->pid,
  199. spu->number, spu->node);
  200. spuctx_switch_state(ctx, SPU_UTIL_SYSTEM);
  201. if (ctx->flags & SPU_CREATE_NOSCHED)
  202. atomic_inc(&cbe_spu_info[spu->node].reserved_spus);
  203. if (!list_empty(&ctx->aff_list))
  204. atomic_inc(&ctx->gang->aff_sched_count);
  205. ctx->stats.slb_flt_base = spu->stats.slb_flt;
  206. ctx->stats.class2_intr_base = spu->stats.class2_intr;
  207. spu->ctx = ctx;
  208. spu->flags = 0;
  209. ctx->spu = spu;
  210. ctx->ops = &spu_hw_ops;
  211. spu->pid = current->pid;
  212. spu->tgid = current->tgid;
  213. spu_associate_mm(spu, ctx->owner);
  214. spu->ibox_callback = spufs_ibox_callback;
  215. spu->wbox_callback = spufs_wbox_callback;
  216. spu->stop_callback = spufs_stop_callback;
  217. spu->mfc_callback = spufs_mfc_callback;
  218. spu->dma_callback = spufs_dma_callback;
  219. mb();
  220. spu_unmap_mappings(ctx);
  221. spu_restore(&ctx->csa, spu);
  222. spu->timestamp = jiffies;
  223. spu_cpu_affinity_set(spu, raw_smp_processor_id());
  224. spu_switch_notify(spu, ctx);
  225. ctx->state = SPU_STATE_RUNNABLE;
  226. spuctx_switch_state(ctx, SPU_UTIL_IDLE_LOADED);
  227. }
  228. /*
  229. * Must be used with the list_mutex held.
  230. */
  231. static inline int sched_spu(struct spu *spu)
  232. {
  233. BUG_ON(!mutex_is_locked(&cbe_spu_info[spu->node].list_mutex));
  234. return (!spu->ctx || !(spu->ctx->flags & SPU_CREATE_NOSCHED));
  235. }
  236. static void aff_merge_remaining_ctxs(struct spu_gang *gang)
  237. {
  238. struct spu_context *ctx;
  239. list_for_each_entry(ctx, &gang->aff_list_head, aff_list) {
  240. if (list_empty(&ctx->aff_list))
  241. list_add(&ctx->aff_list, &gang->aff_list_head);
  242. }
  243. gang->aff_flags |= AFF_MERGED;
  244. }
  245. static void aff_set_offsets(struct spu_gang *gang)
  246. {
  247. struct spu_context *ctx;
  248. int offset;
  249. offset = -1;
  250. list_for_each_entry_reverse(ctx, &gang->aff_ref_ctx->aff_list,
  251. aff_list) {
  252. if (&ctx->aff_list == &gang->aff_list_head)
  253. break;
  254. ctx->aff_offset = offset--;
  255. }
  256. offset = 0;
  257. list_for_each_entry(ctx, gang->aff_ref_ctx->aff_list.prev, aff_list) {
  258. if (&ctx->aff_list == &gang->aff_list_head)
  259. break;
  260. ctx->aff_offset = offset++;
  261. }
  262. gang->aff_flags |= AFF_OFFSETS_SET;
  263. }
  264. static struct spu *aff_ref_location(struct spu_context *ctx, int mem_aff,
  265. int group_size, int lowest_offset)
  266. {
  267. struct spu *spu;
  268. int node, n;
  269. /*
  270. * TODO: A better algorithm could be used to find a good spu to be
  271. * used as reference location for the ctxs chain.
  272. */
  273. node = cpu_to_node(raw_smp_processor_id());
  274. for (n = 0; n < MAX_NUMNODES; n++, node++) {
  275. node = (node < MAX_NUMNODES) ? node : 0;
  276. if (!node_allowed(ctx, node))
  277. continue;
  278. mutex_lock(&cbe_spu_info[node].list_mutex);
  279. list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) {
  280. if ((!mem_aff || spu->has_mem_affinity) &&
  281. sched_spu(spu)) {
  282. mutex_unlock(&cbe_spu_info[node].list_mutex);
  283. return spu;
  284. }
  285. }
  286. mutex_unlock(&cbe_spu_info[node].list_mutex);
  287. }
  288. return NULL;
  289. }
  290. static void aff_set_ref_point_location(struct spu_gang *gang)
  291. {
  292. int mem_aff, gs, lowest_offset;
  293. struct spu_context *ctx;
  294. struct spu *tmp;
  295. mem_aff = gang->aff_ref_ctx->flags & SPU_CREATE_AFFINITY_MEM;
  296. lowest_offset = 0;
  297. gs = 0;
  298. list_for_each_entry(tmp, &gang->aff_list_head, aff_list)
  299. gs++;
  300. list_for_each_entry_reverse(ctx, &gang->aff_ref_ctx->aff_list,
  301. aff_list) {
  302. if (&ctx->aff_list == &gang->aff_list_head)
  303. break;
  304. lowest_offset = ctx->aff_offset;
  305. }
  306. gang->aff_ref_spu = aff_ref_location(gang->aff_ref_ctx, mem_aff, gs,
  307. lowest_offset);
  308. }
  309. static struct spu *ctx_location(struct spu *ref, int offset, int node)
  310. {
  311. struct spu *spu;
  312. spu = NULL;
  313. if (offset >= 0) {
  314. list_for_each_entry(spu, ref->aff_list.prev, aff_list) {
  315. BUG_ON(spu->node != node);
  316. if (offset == 0)
  317. break;
  318. if (sched_spu(spu))
  319. offset--;
  320. }
  321. } else {
  322. list_for_each_entry_reverse(spu, ref->aff_list.next, aff_list) {
  323. BUG_ON(spu->node != node);
  324. if (offset == 0)
  325. break;
  326. if (sched_spu(spu))
  327. offset++;
  328. }
  329. }
  330. return spu;
  331. }
  332. /*
  333. * affinity_check is called each time a context is going to be scheduled.
  334. * It returns the spu ptr on which the context must run.
  335. */
  336. static int has_affinity(struct spu_context *ctx)
  337. {
  338. struct spu_gang *gang = ctx->gang;
  339. if (list_empty(&ctx->aff_list))
  340. return 0;
  341. mutex_lock(&gang->aff_mutex);
  342. if (!gang->aff_ref_spu) {
  343. if (!(gang->aff_flags & AFF_MERGED))
  344. aff_merge_remaining_ctxs(gang);
  345. if (!(gang->aff_flags & AFF_OFFSETS_SET))
  346. aff_set_offsets(gang);
  347. aff_set_ref_point_location(gang);
  348. }
  349. mutex_unlock(&gang->aff_mutex);
  350. return gang->aff_ref_spu != NULL;
  351. }
  352. /**
  353. * spu_unbind_context - unbind spu context from physical spu
  354. * @spu: physical spu to unbind from
  355. * @ctx: context to unbind
  356. */
  357. static void spu_unbind_context(struct spu *spu, struct spu_context *ctx)
  358. {
  359. pr_debug("%s: unbind pid=%d SPU=%d NODE=%d\n", __FUNCTION__,
  360. spu->pid, spu->number, spu->node);
  361. spuctx_switch_state(ctx, SPU_UTIL_SYSTEM);
  362. if (spu->ctx->flags & SPU_CREATE_NOSCHED)
  363. atomic_dec(&cbe_spu_info[spu->node].reserved_spus);
  364. if (!list_empty(&ctx->aff_list))
  365. if (atomic_dec_and_test(&ctx->gang->aff_sched_count))
  366. ctx->gang->aff_ref_spu = NULL;
  367. spu_switch_notify(spu, NULL);
  368. spu_unmap_mappings(ctx);
  369. spu_save(&ctx->csa, spu);
  370. spu->timestamp = jiffies;
  371. ctx->state = SPU_STATE_SAVED;
  372. spu->ibox_callback = NULL;
  373. spu->wbox_callback = NULL;
  374. spu->stop_callback = NULL;
  375. spu->mfc_callback = NULL;
  376. spu->dma_callback = NULL;
  377. spu_associate_mm(spu, NULL);
  378. spu->pid = 0;
  379. spu->tgid = 0;
  380. ctx->ops = &spu_backing_ops;
  381. spu->flags = 0;
  382. spu->ctx = NULL;
  383. ctx->stats.slb_flt +=
  384. (spu->stats.slb_flt - ctx->stats.slb_flt_base);
  385. ctx->stats.class2_intr +=
  386. (spu->stats.class2_intr - ctx->stats.class2_intr_base);
  387. /* This maps the underlying spu state to idle */
  388. spuctx_switch_state(ctx, SPU_UTIL_IDLE_LOADED);
  389. ctx->spu = NULL;
  390. }
  391. /**
  392. * spu_add_to_rq - add a context to the runqueue
  393. * @ctx: context to add
  394. */
  395. static void __spu_add_to_rq(struct spu_context *ctx)
  396. {
  397. /*
  398. * Unfortunately this code path can be called from multiple threads
  399. * on behalf of a single context due to the way the problem state
  400. * mmap support works.
  401. *
  402. * Fortunately we need to wake up all these threads at the same time
  403. * and can simply skip the runqueue addition for every but the first
  404. * thread getting into this codepath.
  405. *
  406. * It's still quite hacky, and long-term we should proxy all other
  407. * threads through the owner thread so that spu_run is in control
  408. * of all the scheduling activity for a given context.
  409. */
  410. if (list_empty(&ctx->rq)) {
  411. list_add_tail(&ctx->rq, &spu_prio->runq[ctx->prio]);
  412. set_bit(ctx->prio, spu_prio->bitmap);
  413. if (!spu_prio->nr_waiting++)
  414. __mod_timer(&spusched_timer, jiffies + SPUSCHED_TICK);
  415. }
  416. }
  417. static void __spu_del_from_rq(struct spu_context *ctx)
  418. {
  419. int prio = ctx->prio;
  420. if (!list_empty(&ctx->rq)) {
  421. if (!--spu_prio->nr_waiting)
  422. del_timer(&spusched_timer);
  423. list_del_init(&ctx->rq);
  424. if (list_empty(&spu_prio->runq[prio]))
  425. clear_bit(prio, spu_prio->bitmap);
  426. }
  427. }
  428. static void spu_prio_wait(struct spu_context *ctx)
  429. {
  430. DEFINE_WAIT(wait);
  431. spin_lock(&spu_prio->runq_lock);
  432. prepare_to_wait_exclusive(&ctx->stop_wq, &wait, TASK_INTERRUPTIBLE);
  433. if (!signal_pending(current)) {
  434. __spu_add_to_rq(ctx);
  435. spin_unlock(&spu_prio->runq_lock);
  436. mutex_unlock(&ctx->state_mutex);
  437. schedule();
  438. mutex_lock(&ctx->state_mutex);
  439. spin_lock(&spu_prio->runq_lock);
  440. __spu_del_from_rq(ctx);
  441. }
  442. spin_unlock(&spu_prio->runq_lock);
  443. __set_current_state(TASK_RUNNING);
  444. remove_wait_queue(&ctx->stop_wq, &wait);
  445. }
  446. static struct spu *spu_get_idle(struct spu_context *ctx)
  447. {
  448. struct spu *spu;
  449. int node, n;
  450. if (has_affinity(ctx)) {
  451. node = ctx->gang->aff_ref_spu->node;
  452. mutex_lock(&cbe_spu_info[node].list_mutex);
  453. spu = ctx_location(ctx->gang->aff_ref_spu, ctx->aff_offset, node);
  454. if (spu && spu->alloc_state == SPU_FREE)
  455. goto found;
  456. mutex_unlock(&cbe_spu_info[node].list_mutex);
  457. return NULL;
  458. }
  459. node = cpu_to_node(raw_smp_processor_id());
  460. for (n = 0; n < MAX_NUMNODES; n++, node++) {
  461. node = (node < MAX_NUMNODES) ? node : 0;
  462. if (!node_allowed(ctx, node))
  463. continue;
  464. mutex_lock(&cbe_spu_info[node].list_mutex);
  465. list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) {
  466. if (spu->alloc_state == SPU_FREE)
  467. goto found;
  468. }
  469. mutex_unlock(&cbe_spu_info[node].list_mutex);
  470. }
  471. return NULL;
  472. found:
  473. spu->alloc_state = SPU_USED;
  474. mutex_unlock(&cbe_spu_info[node].list_mutex);
  475. pr_debug("Got SPU %d %d\n", spu->number, spu->node);
  476. spu_init_channels(spu);
  477. return spu;
  478. }
  479. /**
  480. * find_victim - find a lower priority context to preempt
  481. * @ctx: canidate context for running
  482. *
  483. * Returns the freed physical spu to run the new context on.
  484. */
  485. static struct spu *find_victim(struct spu_context *ctx)
  486. {
  487. struct spu_context *victim = NULL;
  488. struct spu *spu;
  489. int node, n;
  490. /*
  491. * Look for a possible preemption candidate on the local node first.
  492. * If there is no candidate look at the other nodes. This isn't
  493. * exactly fair, but so far the whole spu schedule tries to keep
  494. * a strong node affinity. We might want to fine-tune this in
  495. * the future.
  496. */
  497. restart:
  498. node = cpu_to_node(raw_smp_processor_id());
  499. for (n = 0; n < MAX_NUMNODES; n++, node++) {
  500. node = (node < MAX_NUMNODES) ? node : 0;
  501. if (!node_allowed(ctx, node))
  502. continue;
  503. mutex_lock(&cbe_spu_info[node].list_mutex);
  504. list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) {
  505. struct spu_context *tmp = spu->ctx;
  506. if (tmp && tmp->prio > ctx->prio &&
  507. (!victim || tmp->prio > victim->prio))
  508. victim = spu->ctx;
  509. }
  510. mutex_unlock(&cbe_spu_info[node].list_mutex);
  511. if (victim) {
  512. /*
  513. * This nests ctx->state_mutex, but we always lock
  514. * higher priority contexts before lower priority
  515. * ones, so this is safe until we introduce
  516. * priority inheritance schemes.
  517. */
  518. if (!mutex_trylock(&victim->state_mutex)) {
  519. victim = NULL;
  520. goto restart;
  521. }
  522. spu = victim->spu;
  523. if (!spu) {
  524. /*
  525. * This race can happen because we've dropped
  526. * the active list mutex. No a problem, just
  527. * restart the search.
  528. */
  529. mutex_unlock(&victim->state_mutex);
  530. victim = NULL;
  531. goto restart;
  532. }
  533. mutex_lock(&cbe_spu_info[node].list_mutex);
  534. cbe_spu_info[node].nr_active--;
  535. spu_unbind_context(spu, victim);
  536. mutex_unlock(&cbe_spu_info[node].list_mutex);
  537. victim->stats.invol_ctx_switch++;
  538. spu->stats.invol_ctx_switch++;
  539. mutex_unlock(&victim->state_mutex);
  540. /*
  541. * We need to break out of the wait loop in spu_run
  542. * manually to ensure this context gets put on the
  543. * runqueue again ASAP.
  544. */
  545. wake_up(&victim->stop_wq);
  546. return spu;
  547. }
  548. }
  549. return NULL;
  550. }
  551. /**
  552. * spu_activate - find a free spu for a context and execute it
  553. * @ctx: spu context to schedule
  554. * @flags: flags (currently ignored)
  555. *
  556. * Tries to find a free spu to run @ctx. If no free spu is available
  557. * add the context to the runqueue so it gets woken up once an spu
  558. * is available.
  559. */
  560. int spu_activate(struct spu_context *ctx, unsigned long flags)
  561. {
  562. do {
  563. struct spu *spu;
  564. /*
  565. * If there are multiple threads waiting for a single context
  566. * only one actually binds the context while the others will
  567. * only be able to acquire the state_mutex once the context
  568. * already is in runnable state.
  569. */
  570. if (ctx->spu)
  571. return 0;
  572. spu = spu_get_idle(ctx);
  573. /*
  574. * If this is a realtime thread we try to get it running by
  575. * preempting a lower priority thread.
  576. */
  577. if (!spu && rt_prio(ctx->prio))
  578. spu = find_victim(ctx);
  579. if (spu) {
  580. int node = spu->node;
  581. mutex_lock(&cbe_spu_info[node].list_mutex);
  582. spu_bind_context(spu, ctx);
  583. cbe_spu_info[node].nr_active++;
  584. mutex_unlock(&cbe_spu_info[node].list_mutex);
  585. return 0;
  586. }
  587. spu_prio_wait(ctx);
  588. } while (!signal_pending(current));
  589. return -ERESTARTSYS;
  590. }
  591. /**
  592. * grab_runnable_context - try to find a runnable context
  593. *
  594. * Remove the highest priority context on the runqueue and return it
  595. * to the caller. Returns %NULL if no runnable context was found.
  596. */
  597. static struct spu_context *grab_runnable_context(int prio, int node)
  598. {
  599. struct spu_context *ctx;
  600. int best;
  601. spin_lock(&spu_prio->runq_lock);
  602. best = find_first_bit(spu_prio->bitmap, prio);
  603. while (best < prio) {
  604. struct list_head *rq = &spu_prio->runq[best];
  605. list_for_each_entry(ctx, rq, rq) {
  606. /* XXX(hch): check for affinity here aswell */
  607. if (__node_allowed(ctx, node)) {
  608. __spu_del_from_rq(ctx);
  609. goto found;
  610. }
  611. }
  612. best++;
  613. }
  614. ctx = NULL;
  615. found:
  616. spin_unlock(&spu_prio->runq_lock);
  617. return ctx;
  618. }
  619. static int __spu_deactivate(struct spu_context *ctx, int force, int max_prio)
  620. {
  621. struct spu *spu = ctx->spu;
  622. struct spu_context *new = NULL;
  623. if (spu) {
  624. new = grab_runnable_context(max_prio, spu->node);
  625. if (new || force) {
  626. int node = spu->node;
  627. mutex_lock(&cbe_spu_info[node].list_mutex);
  628. spu_unbind_context(spu, ctx);
  629. spu->alloc_state = SPU_FREE;
  630. cbe_spu_info[node].nr_active--;
  631. mutex_unlock(&cbe_spu_info[node].list_mutex);
  632. ctx->stats.vol_ctx_switch++;
  633. spu->stats.vol_ctx_switch++;
  634. if (new)
  635. wake_up(&new->stop_wq);
  636. }
  637. }
  638. return new != NULL;
  639. }
  640. /**
  641. * spu_deactivate - unbind a context from it's physical spu
  642. * @ctx: spu context to unbind
  643. *
  644. * Unbind @ctx from the physical spu it is running on and schedule
  645. * the highest priority context to run on the freed physical spu.
  646. */
  647. void spu_deactivate(struct spu_context *ctx)
  648. {
  649. __spu_deactivate(ctx, 1, MAX_PRIO);
  650. }
  651. /**
  652. * spu_yield - yield a physical spu if others are waiting
  653. * @ctx: spu context to yield
  654. *
  655. * Check if there is a higher priority context waiting and if yes
  656. * unbind @ctx from the physical spu and schedule the highest
  657. * priority context to run on the freed physical spu instead.
  658. */
  659. void spu_yield(struct spu_context *ctx)
  660. {
  661. if (!(ctx->flags & SPU_CREATE_NOSCHED)) {
  662. mutex_lock(&ctx->state_mutex);
  663. __spu_deactivate(ctx, 0, MAX_PRIO);
  664. mutex_unlock(&ctx->state_mutex);
  665. }
  666. }
  667. static noinline void spusched_tick(struct spu_context *ctx)
  668. {
  669. if (ctx->flags & SPU_CREATE_NOSCHED)
  670. return;
  671. if (ctx->policy == SCHED_FIFO)
  672. return;
  673. if (--ctx->time_slice)
  674. return;
  675. /*
  676. * Unfortunately list_mutex ranks outside of state_mutex, so
  677. * we have to trylock here. If we fail give the context another
  678. * tick and try again.
  679. */
  680. if (mutex_trylock(&ctx->state_mutex)) {
  681. struct spu *spu = ctx->spu;
  682. struct spu_context *new;
  683. new = grab_runnable_context(ctx->prio + 1, spu->node);
  684. if (new) {
  685. spu_unbind_context(spu, ctx);
  686. ctx->stats.invol_ctx_switch++;
  687. spu->stats.invol_ctx_switch++;
  688. spu->alloc_state = SPU_FREE;
  689. cbe_spu_info[spu->node].nr_active--;
  690. wake_up(&new->stop_wq);
  691. /*
  692. * We need to break out of the wait loop in
  693. * spu_run manually to ensure this context
  694. * gets put on the runqueue again ASAP.
  695. */
  696. wake_up(&ctx->stop_wq);
  697. }
  698. spu_set_timeslice(ctx);
  699. mutex_unlock(&ctx->state_mutex);
  700. } else {
  701. ctx->time_slice++;
  702. }
  703. }
  704. /**
  705. * count_active_contexts - count nr of active tasks
  706. *
  707. * Return the number of tasks currently running or waiting to run.
  708. *
  709. * Note that we don't take runq_lock / list_mutex here. Reading
  710. * a single 32bit value is atomic on powerpc, and we don't care
  711. * about memory ordering issues here.
  712. */
  713. static unsigned long count_active_contexts(void)
  714. {
  715. int nr_active = 0, node;
  716. for (node = 0; node < MAX_NUMNODES; node++)
  717. nr_active += cbe_spu_info[node].nr_active;
  718. nr_active += spu_prio->nr_waiting;
  719. return nr_active;
  720. }
  721. /**
  722. * spu_calc_load - given tick count, update the avenrun load estimates.
  723. * @tick: tick count
  724. *
  725. * No locking against reading these values from userspace, as for
  726. * the CPU loadavg code.
  727. */
  728. static void spu_calc_load(unsigned long ticks)
  729. {
  730. unsigned long active_tasks; /* fixed-point */
  731. static int count = LOAD_FREQ;
  732. count -= ticks;
  733. if (unlikely(count < 0)) {
  734. active_tasks = count_active_contexts() * FIXED_1;
  735. do {
  736. CALC_LOAD(spu_avenrun[0], EXP_1, active_tasks);
  737. CALC_LOAD(spu_avenrun[1], EXP_5, active_tasks);
  738. CALC_LOAD(spu_avenrun[2], EXP_15, active_tasks);
  739. count += LOAD_FREQ;
  740. } while (count < 0);
  741. }
  742. }
  743. static void spusched_wake(unsigned long data)
  744. {
  745. mod_timer(&spusched_timer, jiffies + SPUSCHED_TICK);
  746. wake_up_process(spusched_task);
  747. spu_calc_load(SPUSCHED_TICK);
  748. }
  749. static int spusched_thread(void *unused)
  750. {
  751. struct spu *spu;
  752. int node;
  753. while (!kthread_should_stop()) {
  754. set_current_state(TASK_INTERRUPTIBLE);
  755. schedule();
  756. for (node = 0; node < MAX_NUMNODES; node++) {
  757. mutex_lock(&cbe_spu_info[node].list_mutex);
  758. list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list)
  759. if (spu->ctx)
  760. spusched_tick(spu->ctx);
  761. mutex_unlock(&cbe_spu_info[node].list_mutex);
  762. }
  763. }
  764. return 0;
  765. }
  766. #define LOAD_INT(x) ((x) >> FSHIFT)
  767. #define LOAD_FRAC(x) LOAD_INT(((x) & (FIXED_1-1)) * 100)
  768. static int show_spu_loadavg(struct seq_file *s, void *private)
  769. {
  770. int a, b, c;
  771. a = spu_avenrun[0] + (FIXED_1/200);
  772. b = spu_avenrun[1] + (FIXED_1/200);
  773. c = spu_avenrun[2] + (FIXED_1/200);
  774. /*
  775. * Note that last_pid doesn't really make much sense for the
  776. * SPU loadavg (it even seems very odd on the CPU side..),
  777. * but we include it here to have a 100% compatible interface.
  778. */
  779. seq_printf(s, "%d.%02d %d.%02d %d.%02d %ld/%d %d\n",
  780. LOAD_INT(a), LOAD_FRAC(a),
  781. LOAD_INT(b), LOAD_FRAC(b),
  782. LOAD_INT(c), LOAD_FRAC(c),
  783. count_active_contexts(),
  784. atomic_read(&nr_spu_contexts),
  785. current->nsproxy->pid_ns->last_pid);
  786. return 0;
  787. }
  788. static int spu_loadavg_open(struct inode *inode, struct file *file)
  789. {
  790. return single_open(file, show_spu_loadavg, NULL);
  791. }
  792. static const struct file_operations spu_loadavg_fops = {
  793. .open = spu_loadavg_open,
  794. .read = seq_read,
  795. .llseek = seq_lseek,
  796. .release = single_release,
  797. };
  798. int __init spu_sched_init(void)
  799. {
  800. struct proc_dir_entry *entry;
  801. int err = -ENOMEM, i;
  802. spu_prio = kzalloc(sizeof(struct spu_prio_array), GFP_KERNEL);
  803. if (!spu_prio)
  804. goto out;
  805. for (i = 0; i < MAX_PRIO; i++) {
  806. INIT_LIST_HEAD(&spu_prio->runq[i]);
  807. __clear_bit(i, spu_prio->bitmap);
  808. }
  809. spin_lock_init(&spu_prio->runq_lock);
  810. setup_timer(&spusched_timer, spusched_wake, 0);
  811. spusched_task = kthread_run(spusched_thread, NULL, "spusched");
  812. if (IS_ERR(spusched_task)) {
  813. err = PTR_ERR(spusched_task);
  814. goto out_free_spu_prio;
  815. }
  816. entry = create_proc_entry("spu_loadavg", 0, NULL);
  817. if (!entry)
  818. goto out_stop_kthread;
  819. entry->proc_fops = &spu_loadavg_fops;
  820. pr_debug("spusched: tick: %d, min ticks: %d, default ticks: %d\n",
  821. SPUSCHED_TICK, MIN_SPU_TIMESLICE, DEF_SPU_TIMESLICE);
  822. return 0;
  823. out_stop_kthread:
  824. kthread_stop(spusched_task);
  825. out_free_spu_prio:
  826. kfree(spu_prio);
  827. out:
  828. return err;
  829. }
  830. void spu_sched_exit(void)
  831. {
  832. struct spu *spu;
  833. int node;
  834. remove_proc_entry("spu_loadavg", NULL);
  835. del_timer_sync(&spusched_timer);
  836. kthread_stop(spusched_task);
  837. for (node = 0; node < MAX_NUMNODES; node++) {
  838. mutex_lock(&cbe_spu_info[node].list_mutex);
  839. list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list)
  840. if (spu->alloc_state != SPU_FREE)
  841. spu->alloc_state = SPU_FREE;
  842. mutex_unlock(&cbe_spu_info[node].list_mutex);
  843. }
  844. kfree(spu_prio);
  845. }