setup.c 27 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007
  1. /*
  2. * Architecture-specific setup.
  3. *
  4. * Copyright (C) 1998-2001, 2003-2004 Hewlett-Packard Co
  5. * David Mosberger-Tang <davidm@hpl.hp.com>
  6. * Stephane Eranian <eranian@hpl.hp.com>
  7. * Copyright (C) 2000, 2004 Intel Corp
  8. * Rohit Seth <rohit.seth@intel.com>
  9. * Suresh Siddha <suresh.b.siddha@intel.com>
  10. * Gordon Jin <gordon.jin@intel.com>
  11. * Copyright (C) 1999 VA Linux Systems
  12. * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
  13. *
  14. * 12/26/04 S.Siddha, G.Jin, R.Seth
  15. * Add multi-threading and multi-core detection
  16. * 11/12/01 D.Mosberger Convert get_cpuinfo() to seq_file based show_cpuinfo().
  17. * 04/04/00 D.Mosberger renamed cpu_initialized to cpu_online_map
  18. * 03/31/00 R.Seth cpu_initialized and current->processor fixes
  19. * 02/04/00 D.Mosberger some more get_cpuinfo fixes...
  20. * 02/01/00 R.Seth fixed get_cpuinfo for SMP
  21. * 01/07/99 S.Eranian added the support for command line argument
  22. * 06/24/99 W.Drummond added boot_cpu_data.
  23. * 05/28/05 Z. Menyhart Dynamic stride size for "flush_icache_range()"
  24. */
  25. #include <linux/module.h>
  26. #include <linux/init.h>
  27. #include <linux/acpi.h>
  28. #include <linux/bootmem.h>
  29. #include <linux/console.h>
  30. #include <linux/delay.h>
  31. #include <linux/kernel.h>
  32. #include <linux/reboot.h>
  33. #include <linux/sched.h>
  34. #include <linux/seq_file.h>
  35. #include <linux/string.h>
  36. #include <linux/threads.h>
  37. #include <linux/screen_info.h>
  38. #include <linux/dmi.h>
  39. #include <linux/serial.h>
  40. #include <linux/serial_core.h>
  41. #include <linux/efi.h>
  42. #include <linux/initrd.h>
  43. #include <linux/pm.h>
  44. #include <linux/cpufreq.h>
  45. #include <linux/kexec.h>
  46. #include <linux/crash_dump.h>
  47. #include <asm/ia32.h>
  48. #include <asm/machvec.h>
  49. #include <asm/mca.h>
  50. #include <asm/meminit.h>
  51. #include <asm/page.h>
  52. #include <asm/patch.h>
  53. #include <asm/pgtable.h>
  54. #include <asm/processor.h>
  55. #include <asm/sal.h>
  56. #include <asm/sections.h>
  57. #include <asm/setup.h>
  58. #include <asm/smp.h>
  59. #include <asm/system.h>
  60. #include <asm/unistd.h>
  61. #include <asm/hpsim.h>
  62. #if defined(CONFIG_SMP) && (IA64_CPU_SIZE > PAGE_SIZE)
  63. # error "struct cpuinfo_ia64 too big!"
  64. #endif
  65. #ifdef CONFIG_SMP
  66. unsigned long __per_cpu_offset[NR_CPUS];
  67. EXPORT_SYMBOL(__per_cpu_offset);
  68. #endif
  69. extern void ia64_setup_printk_clock(void);
  70. DEFINE_PER_CPU(struct cpuinfo_ia64, cpu_info);
  71. DEFINE_PER_CPU(unsigned long, local_per_cpu_offset);
  72. unsigned long ia64_cycles_per_usec;
  73. struct ia64_boot_param *ia64_boot_param;
  74. struct screen_info screen_info;
  75. unsigned long vga_console_iobase;
  76. unsigned long vga_console_membase;
  77. static struct resource data_resource = {
  78. .name = "Kernel data",
  79. .flags = IORESOURCE_BUSY | IORESOURCE_MEM
  80. };
  81. static struct resource code_resource = {
  82. .name = "Kernel code",
  83. .flags = IORESOURCE_BUSY | IORESOURCE_MEM
  84. };
  85. extern char _text[], _end[], _etext[];
  86. unsigned long ia64_max_cacheline_size;
  87. int dma_get_cache_alignment(void)
  88. {
  89. return ia64_max_cacheline_size;
  90. }
  91. EXPORT_SYMBOL(dma_get_cache_alignment);
  92. unsigned long ia64_iobase; /* virtual address for I/O accesses */
  93. EXPORT_SYMBOL(ia64_iobase);
  94. struct io_space io_space[MAX_IO_SPACES];
  95. EXPORT_SYMBOL(io_space);
  96. unsigned int num_io_spaces;
  97. /*
  98. * "flush_icache_range()" needs to know what processor dependent stride size to use
  99. * when it makes i-cache(s) coherent with d-caches.
  100. */
  101. #define I_CACHE_STRIDE_SHIFT 5 /* Safest way to go: 32 bytes by 32 bytes */
  102. unsigned long ia64_i_cache_stride_shift = ~0;
  103. /*
  104. * The merge_mask variable needs to be set to (max(iommu_page_size(iommu)) - 1). This
  105. * mask specifies a mask of address bits that must be 0 in order for two buffers to be
  106. * mergeable by the I/O MMU (i.e., the end address of the first buffer and the start
  107. * address of the second buffer must be aligned to (merge_mask+1) in order to be
  108. * mergeable). By default, we assume there is no I/O MMU which can merge physically
  109. * discontiguous buffers, so we set the merge_mask to ~0UL, which corresponds to a iommu
  110. * page-size of 2^64.
  111. */
  112. unsigned long ia64_max_iommu_merge_mask = ~0UL;
  113. EXPORT_SYMBOL(ia64_max_iommu_merge_mask);
  114. /*
  115. * We use a special marker for the end of memory and it uses the extra (+1) slot
  116. */
  117. struct rsvd_region rsvd_region[IA64_MAX_RSVD_REGIONS + 1] __initdata;
  118. int num_rsvd_regions __initdata;
  119. /*
  120. * Filter incoming memory segments based on the primitive map created from the boot
  121. * parameters. Segments contained in the map are removed from the memory ranges. A
  122. * caller-specified function is called with the memory ranges that remain after filtering.
  123. * This routine does not assume the incoming segments are sorted.
  124. */
  125. int __init
  126. filter_rsvd_memory (unsigned long start, unsigned long end, void *arg)
  127. {
  128. unsigned long range_start, range_end, prev_start;
  129. void (*func)(unsigned long, unsigned long, int);
  130. int i;
  131. #if IGNORE_PFN0
  132. if (start == PAGE_OFFSET) {
  133. printk(KERN_WARNING "warning: skipping physical page 0\n");
  134. start += PAGE_SIZE;
  135. if (start >= end) return 0;
  136. }
  137. #endif
  138. /*
  139. * lowest possible address(walker uses virtual)
  140. */
  141. prev_start = PAGE_OFFSET;
  142. func = arg;
  143. for (i = 0; i < num_rsvd_regions; ++i) {
  144. range_start = max(start, prev_start);
  145. range_end = min(end, rsvd_region[i].start);
  146. if (range_start < range_end)
  147. call_pernode_memory(__pa(range_start), range_end - range_start, func);
  148. /* nothing more available in this segment */
  149. if (range_end == end) return 0;
  150. prev_start = rsvd_region[i].end;
  151. }
  152. /* end of memory marker allows full processing inside loop body */
  153. return 0;
  154. }
  155. static void __init
  156. sort_regions (struct rsvd_region *rsvd_region, int max)
  157. {
  158. int j;
  159. /* simple bubble sorting */
  160. while (max--) {
  161. for (j = 0; j < max; ++j) {
  162. if (rsvd_region[j].start > rsvd_region[j+1].start) {
  163. struct rsvd_region tmp;
  164. tmp = rsvd_region[j];
  165. rsvd_region[j] = rsvd_region[j + 1];
  166. rsvd_region[j + 1] = tmp;
  167. }
  168. }
  169. }
  170. }
  171. /*
  172. * Request address space for all standard resources
  173. */
  174. static int __init register_memory(void)
  175. {
  176. code_resource.start = ia64_tpa(_text);
  177. code_resource.end = ia64_tpa(_etext) - 1;
  178. data_resource.start = ia64_tpa(_etext);
  179. data_resource.end = ia64_tpa(_end) - 1;
  180. efi_initialize_iomem_resources(&code_resource, &data_resource);
  181. return 0;
  182. }
  183. __initcall(register_memory);
  184. /**
  185. * reserve_memory - setup reserved memory areas
  186. *
  187. * Setup the reserved memory areas set aside for the boot parameters,
  188. * initrd, etc. There are currently %IA64_MAX_RSVD_REGIONS defined,
  189. * see include/asm-ia64/meminit.h if you need to define more.
  190. */
  191. void __init
  192. reserve_memory (void)
  193. {
  194. int n = 0;
  195. /*
  196. * none of the entries in this table overlap
  197. */
  198. rsvd_region[n].start = (unsigned long) ia64_boot_param;
  199. rsvd_region[n].end = rsvd_region[n].start + sizeof(*ia64_boot_param);
  200. n++;
  201. rsvd_region[n].start = (unsigned long) __va(ia64_boot_param->efi_memmap);
  202. rsvd_region[n].end = rsvd_region[n].start + ia64_boot_param->efi_memmap_size;
  203. n++;
  204. rsvd_region[n].start = (unsigned long) __va(ia64_boot_param->command_line);
  205. rsvd_region[n].end = (rsvd_region[n].start
  206. + strlen(__va(ia64_boot_param->command_line)) + 1);
  207. n++;
  208. rsvd_region[n].start = (unsigned long) ia64_imva((void *)KERNEL_START);
  209. rsvd_region[n].end = (unsigned long) ia64_imva(_end);
  210. n++;
  211. #ifdef CONFIG_BLK_DEV_INITRD
  212. if (ia64_boot_param->initrd_start) {
  213. rsvd_region[n].start = (unsigned long)__va(ia64_boot_param->initrd_start);
  214. rsvd_region[n].end = rsvd_region[n].start + ia64_boot_param->initrd_size;
  215. n++;
  216. }
  217. #endif
  218. #ifdef CONFIG_PROC_VMCORE
  219. if (reserve_elfcorehdr(&rsvd_region[n].start,
  220. &rsvd_region[n].end) == 0)
  221. n++;
  222. #endif
  223. efi_memmap_init(&rsvd_region[n].start, &rsvd_region[n].end);
  224. n++;
  225. #ifdef CONFIG_KEXEC
  226. /* crashkernel=size@offset specifies the size to reserve for a crash
  227. * kernel. If offset is 0, then it is determined automatically.
  228. * By reserving this memory we guarantee that linux never set's it
  229. * up as a DMA target.Useful for holding code to do something
  230. * appropriate after a kernel panic.
  231. */
  232. {
  233. char *from = strstr(boot_command_line, "crashkernel=");
  234. unsigned long base, size;
  235. if (from) {
  236. size = memparse(from + 12, &from);
  237. if (*from == '@')
  238. base = memparse(from+1, &from);
  239. else
  240. base = 0;
  241. if (size) {
  242. if (!base) {
  243. sort_regions(rsvd_region, n);
  244. base = kdump_find_rsvd_region(size,
  245. rsvd_region, n);
  246. }
  247. if (base != ~0UL) {
  248. rsvd_region[n].start =
  249. (unsigned long)__va(base);
  250. rsvd_region[n].end =
  251. (unsigned long)__va(base + size);
  252. n++;
  253. crashk_res.start = base;
  254. crashk_res.end = base + size - 1;
  255. }
  256. }
  257. }
  258. efi_memmap_res.start = ia64_boot_param->efi_memmap;
  259. efi_memmap_res.end = efi_memmap_res.start +
  260. ia64_boot_param->efi_memmap_size;
  261. boot_param_res.start = __pa(ia64_boot_param);
  262. boot_param_res.end = boot_param_res.start +
  263. sizeof(*ia64_boot_param);
  264. }
  265. #endif
  266. /* end of memory marker */
  267. rsvd_region[n].start = ~0UL;
  268. rsvd_region[n].end = ~0UL;
  269. n++;
  270. num_rsvd_regions = n;
  271. BUG_ON(IA64_MAX_RSVD_REGIONS + 1 < n);
  272. sort_regions(rsvd_region, num_rsvd_regions);
  273. }
  274. /**
  275. * find_initrd - get initrd parameters from the boot parameter structure
  276. *
  277. * Grab the initrd start and end from the boot parameter struct given us by
  278. * the boot loader.
  279. */
  280. void __init
  281. find_initrd (void)
  282. {
  283. #ifdef CONFIG_BLK_DEV_INITRD
  284. if (ia64_boot_param->initrd_start) {
  285. initrd_start = (unsigned long)__va(ia64_boot_param->initrd_start);
  286. initrd_end = initrd_start+ia64_boot_param->initrd_size;
  287. printk(KERN_INFO "Initial ramdisk at: 0x%lx (%lu bytes)\n",
  288. initrd_start, ia64_boot_param->initrd_size);
  289. }
  290. #endif
  291. }
  292. static void __init
  293. io_port_init (void)
  294. {
  295. unsigned long phys_iobase;
  296. /*
  297. * Set `iobase' based on the EFI memory map or, failing that, the
  298. * value firmware left in ar.k0.
  299. *
  300. * Note that in ia32 mode, IN/OUT instructions use ar.k0 to compute
  301. * the port's virtual address, so ia32_load_state() loads it with a
  302. * user virtual address. But in ia64 mode, glibc uses the
  303. * *physical* address in ar.k0 to mmap the appropriate area from
  304. * /dev/mem, and the inX()/outX() interfaces use MMIO. In both
  305. * cases, user-mode can only use the legacy 0-64K I/O port space.
  306. *
  307. * ar.k0 is not involved in kernel I/O port accesses, which can use
  308. * any of the I/O port spaces and are done via MMIO using the
  309. * virtual mmio_base from the appropriate io_space[].
  310. */
  311. phys_iobase = efi_get_iobase();
  312. if (!phys_iobase) {
  313. phys_iobase = ia64_get_kr(IA64_KR_IO_BASE);
  314. printk(KERN_INFO "No I/O port range found in EFI memory map, "
  315. "falling back to AR.KR0 (0x%lx)\n", phys_iobase);
  316. }
  317. ia64_iobase = (unsigned long) ioremap(phys_iobase, 0);
  318. ia64_set_kr(IA64_KR_IO_BASE, __pa(ia64_iobase));
  319. /* setup legacy IO port space */
  320. io_space[0].mmio_base = ia64_iobase;
  321. io_space[0].sparse = 1;
  322. num_io_spaces = 1;
  323. }
  324. /**
  325. * early_console_setup - setup debugging console
  326. *
  327. * Consoles started here require little enough setup that we can start using
  328. * them very early in the boot process, either right after the machine
  329. * vector initialization, or even before if the drivers can detect their hw.
  330. *
  331. * Returns non-zero if a console couldn't be setup.
  332. */
  333. static inline int __init
  334. early_console_setup (char *cmdline)
  335. {
  336. int earlycons = 0;
  337. #ifdef CONFIG_SERIAL_SGI_L1_CONSOLE
  338. {
  339. extern int sn_serial_console_early_setup(void);
  340. if (!sn_serial_console_early_setup())
  341. earlycons++;
  342. }
  343. #endif
  344. #ifdef CONFIG_EFI_PCDP
  345. if (!efi_setup_pcdp_console(cmdline))
  346. earlycons++;
  347. #endif
  348. if (!simcons_register())
  349. earlycons++;
  350. return (earlycons) ? 0 : -1;
  351. }
  352. static inline void
  353. mark_bsp_online (void)
  354. {
  355. #ifdef CONFIG_SMP
  356. /* If we register an early console, allow CPU 0 to printk */
  357. cpu_set(smp_processor_id(), cpu_online_map);
  358. #endif
  359. }
  360. #ifdef CONFIG_SMP
  361. static void __init
  362. check_for_logical_procs (void)
  363. {
  364. pal_logical_to_physical_t info;
  365. s64 status;
  366. status = ia64_pal_logical_to_phys(0, &info);
  367. if (status == -1) {
  368. printk(KERN_INFO "No logical to physical processor mapping "
  369. "available\n");
  370. return;
  371. }
  372. if (status) {
  373. printk(KERN_ERR "ia64_pal_logical_to_phys failed with %ld\n",
  374. status);
  375. return;
  376. }
  377. /*
  378. * Total number of siblings that BSP has. Though not all of them
  379. * may have booted successfully. The correct number of siblings
  380. * booted is in info.overview_num_log.
  381. */
  382. smp_num_siblings = info.overview_tpc;
  383. smp_num_cpucores = info.overview_cpp;
  384. }
  385. #endif
  386. static __initdata int nomca;
  387. static __init int setup_nomca(char *s)
  388. {
  389. nomca = 1;
  390. return 0;
  391. }
  392. early_param("nomca", setup_nomca);
  393. #ifdef CONFIG_PROC_VMCORE
  394. /* elfcorehdr= specifies the location of elf core header
  395. * stored by the crashed kernel.
  396. */
  397. static int __init parse_elfcorehdr(char *arg)
  398. {
  399. if (!arg)
  400. return -EINVAL;
  401. elfcorehdr_addr = memparse(arg, &arg);
  402. return 0;
  403. }
  404. early_param("elfcorehdr", parse_elfcorehdr);
  405. int __init reserve_elfcorehdr(unsigned long *start, unsigned long *end)
  406. {
  407. unsigned long length;
  408. /* We get the address using the kernel command line,
  409. * but the size is extracted from the EFI tables.
  410. * Both address and size are required for reservation
  411. * to work properly.
  412. */
  413. if (elfcorehdr_addr >= ELFCORE_ADDR_MAX)
  414. return -EINVAL;
  415. if ((length = vmcore_find_descriptor_size(elfcorehdr_addr)) == 0) {
  416. elfcorehdr_addr = ELFCORE_ADDR_MAX;
  417. return -EINVAL;
  418. }
  419. *start = (unsigned long)__va(elfcorehdr_addr);
  420. *end = *start + length;
  421. return 0;
  422. }
  423. #endif /* CONFIG_PROC_VMCORE */
  424. void __init
  425. setup_arch (char **cmdline_p)
  426. {
  427. unw_init();
  428. ia64_patch_vtop((u64) __start___vtop_patchlist, (u64) __end___vtop_patchlist);
  429. *cmdline_p = __va(ia64_boot_param->command_line);
  430. strlcpy(boot_command_line, *cmdline_p, COMMAND_LINE_SIZE);
  431. efi_init();
  432. io_port_init();
  433. #ifdef CONFIG_IA64_GENERIC
  434. /* machvec needs to be parsed from the command line
  435. * before parse_early_param() is called to ensure
  436. * that ia64_mv is initialised before any command line
  437. * settings may cause console setup to occur
  438. */
  439. machvec_init_from_cmdline(*cmdline_p);
  440. #endif
  441. parse_early_param();
  442. if (early_console_setup(*cmdline_p) == 0)
  443. mark_bsp_online();
  444. #ifdef CONFIG_ACPI
  445. /* Initialize the ACPI boot-time table parser */
  446. acpi_table_init();
  447. # ifdef CONFIG_ACPI_NUMA
  448. acpi_numa_init();
  449. # endif
  450. #else
  451. # ifdef CONFIG_SMP
  452. smp_build_cpu_map(); /* happens, e.g., with the Ski simulator */
  453. # endif
  454. #endif /* CONFIG_APCI_BOOT */
  455. find_memory();
  456. /* process SAL system table: */
  457. ia64_sal_init(__va(efi.sal_systab));
  458. ia64_setup_printk_clock();
  459. #ifdef CONFIG_SMP
  460. cpu_physical_id(0) = hard_smp_processor_id();
  461. cpu_set(0, cpu_sibling_map[0]);
  462. cpu_set(0, cpu_core_map[0]);
  463. check_for_logical_procs();
  464. if (smp_num_cpucores > 1)
  465. printk(KERN_INFO
  466. "cpu package is Multi-Core capable: number of cores=%d\n",
  467. smp_num_cpucores);
  468. if (smp_num_siblings > 1)
  469. printk(KERN_INFO
  470. "cpu package is Multi-Threading capable: number of siblings=%d\n",
  471. smp_num_siblings);
  472. #endif
  473. cpu_init(); /* initialize the bootstrap CPU */
  474. mmu_context_init(); /* initialize context_id bitmap */
  475. check_sal_cache_flush();
  476. #ifdef CONFIG_ACPI
  477. acpi_boot_init();
  478. #endif
  479. #ifdef CONFIG_VT
  480. if (!conswitchp) {
  481. # if defined(CONFIG_DUMMY_CONSOLE)
  482. conswitchp = &dummy_con;
  483. # endif
  484. # if defined(CONFIG_VGA_CONSOLE)
  485. /*
  486. * Non-legacy systems may route legacy VGA MMIO range to system
  487. * memory. vga_con probes the MMIO hole, so memory looks like
  488. * a VGA device to it. The EFI memory map can tell us if it's
  489. * memory so we can avoid this problem.
  490. */
  491. if (efi_mem_type(0xA0000) != EFI_CONVENTIONAL_MEMORY)
  492. conswitchp = &vga_con;
  493. # endif
  494. }
  495. #endif
  496. /* enable IA-64 Machine Check Abort Handling unless disabled */
  497. if (!nomca)
  498. ia64_mca_init();
  499. platform_setup(cmdline_p);
  500. paging_init();
  501. }
  502. /*
  503. * Display cpu info for all CPUs.
  504. */
  505. static int
  506. show_cpuinfo (struct seq_file *m, void *v)
  507. {
  508. #ifdef CONFIG_SMP
  509. # define lpj c->loops_per_jiffy
  510. # define cpunum c->cpu
  511. #else
  512. # define lpj loops_per_jiffy
  513. # define cpunum 0
  514. #endif
  515. static struct {
  516. unsigned long mask;
  517. const char *feature_name;
  518. } feature_bits[] = {
  519. { 1UL << 0, "branchlong" },
  520. { 1UL << 1, "spontaneous deferral"},
  521. { 1UL << 2, "16-byte atomic ops" }
  522. };
  523. char features[128], *cp, *sep;
  524. struct cpuinfo_ia64 *c = v;
  525. unsigned long mask;
  526. unsigned long proc_freq;
  527. int i, size;
  528. mask = c->features;
  529. /* build the feature string: */
  530. memcpy(features, "standard", 9);
  531. cp = features;
  532. size = sizeof(features);
  533. sep = "";
  534. for (i = 0; i < ARRAY_SIZE(feature_bits) && size > 1; ++i) {
  535. if (mask & feature_bits[i].mask) {
  536. cp += snprintf(cp, size, "%s%s", sep,
  537. feature_bits[i].feature_name),
  538. sep = ", ";
  539. mask &= ~feature_bits[i].mask;
  540. size = sizeof(features) - (cp - features);
  541. }
  542. }
  543. if (mask && size > 1) {
  544. /* print unknown features as a hex value */
  545. snprintf(cp, size, "%s0x%lx", sep, mask);
  546. }
  547. proc_freq = cpufreq_quick_get(cpunum);
  548. if (!proc_freq)
  549. proc_freq = c->proc_freq / 1000;
  550. seq_printf(m,
  551. "processor : %d\n"
  552. "vendor : %s\n"
  553. "arch : IA-64\n"
  554. "family : %u\n"
  555. "model : %u\n"
  556. "model name : %s\n"
  557. "revision : %u\n"
  558. "archrev : %u\n"
  559. "features : %s\n"
  560. "cpu number : %lu\n"
  561. "cpu regs : %u\n"
  562. "cpu MHz : %lu.%03lu\n"
  563. "itc MHz : %lu.%06lu\n"
  564. "BogoMIPS : %lu.%02lu\n",
  565. cpunum, c->vendor, c->family, c->model,
  566. c->model_name, c->revision, c->archrev,
  567. features, c->ppn, c->number,
  568. proc_freq / 1000, proc_freq % 1000,
  569. c->itc_freq / 1000000, c->itc_freq % 1000000,
  570. lpj*HZ/500000, (lpj*HZ/5000) % 100);
  571. #ifdef CONFIG_SMP
  572. seq_printf(m, "siblings : %u\n", cpus_weight(cpu_core_map[cpunum]));
  573. if (c->threads_per_core > 1 || c->cores_per_socket > 1)
  574. seq_printf(m,
  575. "physical id: %u\n"
  576. "core id : %u\n"
  577. "thread id : %u\n",
  578. c->socket_id, c->core_id, c->thread_id);
  579. #endif
  580. seq_printf(m,"\n");
  581. return 0;
  582. }
  583. static void *
  584. c_start (struct seq_file *m, loff_t *pos)
  585. {
  586. #ifdef CONFIG_SMP
  587. while (*pos < NR_CPUS && !cpu_isset(*pos, cpu_online_map))
  588. ++*pos;
  589. #endif
  590. return *pos < NR_CPUS ? cpu_data(*pos) : NULL;
  591. }
  592. static void *
  593. c_next (struct seq_file *m, void *v, loff_t *pos)
  594. {
  595. ++*pos;
  596. return c_start(m, pos);
  597. }
  598. static void
  599. c_stop (struct seq_file *m, void *v)
  600. {
  601. }
  602. struct seq_operations cpuinfo_op = {
  603. .start = c_start,
  604. .next = c_next,
  605. .stop = c_stop,
  606. .show = show_cpuinfo
  607. };
  608. #define MAX_BRANDS 8
  609. static char brandname[MAX_BRANDS][128];
  610. static char * __cpuinit
  611. get_model_name(__u8 family, __u8 model)
  612. {
  613. static int overflow;
  614. char brand[128];
  615. int i;
  616. memcpy(brand, "Unknown", 8);
  617. if (ia64_pal_get_brand_info(brand)) {
  618. if (family == 0x7)
  619. memcpy(brand, "Merced", 7);
  620. else if (family == 0x1f) switch (model) {
  621. case 0: memcpy(brand, "McKinley", 9); break;
  622. case 1: memcpy(brand, "Madison", 8); break;
  623. case 2: memcpy(brand, "Madison up to 9M cache", 23); break;
  624. }
  625. }
  626. for (i = 0; i < MAX_BRANDS; i++)
  627. if (strcmp(brandname[i], brand) == 0)
  628. return brandname[i];
  629. for (i = 0; i < MAX_BRANDS; i++)
  630. if (brandname[i][0] == '\0')
  631. return strcpy(brandname[i], brand);
  632. if (overflow++ == 0)
  633. printk(KERN_ERR
  634. "%s: Table overflow. Some processor model information will be missing\n",
  635. __FUNCTION__);
  636. return "Unknown";
  637. }
  638. static void __cpuinit
  639. identify_cpu (struct cpuinfo_ia64 *c)
  640. {
  641. union {
  642. unsigned long bits[5];
  643. struct {
  644. /* id 0 & 1: */
  645. char vendor[16];
  646. /* id 2 */
  647. u64 ppn; /* processor serial number */
  648. /* id 3: */
  649. unsigned number : 8;
  650. unsigned revision : 8;
  651. unsigned model : 8;
  652. unsigned family : 8;
  653. unsigned archrev : 8;
  654. unsigned reserved : 24;
  655. /* id 4: */
  656. u64 features;
  657. } field;
  658. } cpuid;
  659. pal_vm_info_1_u_t vm1;
  660. pal_vm_info_2_u_t vm2;
  661. pal_status_t status;
  662. unsigned long impl_va_msb = 50, phys_addr_size = 44; /* Itanium defaults */
  663. int i;
  664. for (i = 0; i < 5; ++i)
  665. cpuid.bits[i] = ia64_get_cpuid(i);
  666. memcpy(c->vendor, cpuid.field.vendor, 16);
  667. #ifdef CONFIG_SMP
  668. c->cpu = smp_processor_id();
  669. /* below default values will be overwritten by identify_siblings()
  670. * for Multi-Threading/Multi-Core capable CPUs
  671. */
  672. c->threads_per_core = c->cores_per_socket = c->num_log = 1;
  673. c->socket_id = -1;
  674. identify_siblings(c);
  675. #endif
  676. c->ppn = cpuid.field.ppn;
  677. c->number = cpuid.field.number;
  678. c->revision = cpuid.field.revision;
  679. c->model = cpuid.field.model;
  680. c->family = cpuid.field.family;
  681. c->archrev = cpuid.field.archrev;
  682. c->features = cpuid.field.features;
  683. c->model_name = get_model_name(c->family, c->model);
  684. status = ia64_pal_vm_summary(&vm1, &vm2);
  685. if (status == PAL_STATUS_SUCCESS) {
  686. impl_va_msb = vm2.pal_vm_info_2_s.impl_va_msb;
  687. phys_addr_size = vm1.pal_vm_info_1_s.phys_add_size;
  688. }
  689. c->unimpl_va_mask = ~((7L<<61) | ((1L << (impl_va_msb + 1)) - 1));
  690. c->unimpl_pa_mask = ~((1L<<63) | ((1L << phys_addr_size) - 1));
  691. }
  692. void __init
  693. setup_per_cpu_areas (void)
  694. {
  695. /* start_kernel() requires this... */
  696. #ifdef CONFIG_ACPI_HOTPLUG_CPU
  697. prefill_possible_map();
  698. #endif
  699. }
  700. /*
  701. * Calculate the max. cache line size.
  702. *
  703. * In addition, the minimum of the i-cache stride sizes is calculated for
  704. * "flush_icache_range()".
  705. */
  706. static void __cpuinit
  707. get_max_cacheline_size (void)
  708. {
  709. unsigned long line_size, max = 1;
  710. u64 l, levels, unique_caches;
  711. pal_cache_config_info_t cci;
  712. s64 status;
  713. status = ia64_pal_cache_summary(&levels, &unique_caches);
  714. if (status != 0) {
  715. printk(KERN_ERR "%s: ia64_pal_cache_summary() failed (status=%ld)\n",
  716. __FUNCTION__, status);
  717. max = SMP_CACHE_BYTES;
  718. /* Safest setup for "flush_icache_range()" */
  719. ia64_i_cache_stride_shift = I_CACHE_STRIDE_SHIFT;
  720. goto out;
  721. }
  722. for (l = 0; l < levels; ++l) {
  723. status = ia64_pal_cache_config_info(l, /* cache_type (data_or_unified)= */ 2,
  724. &cci);
  725. if (status != 0) {
  726. printk(KERN_ERR
  727. "%s: ia64_pal_cache_config_info(l=%lu, 2) failed (status=%ld)\n",
  728. __FUNCTION__, l, status);
  729. max = SMP_CACHE_BYTES;
  730. /* The safest setup for "flush_icache_range()" */
  731. cci.pcci_stride = I_CACHE_STRIDE_SHIFT;
  732. cci.pcci_unified = 1;
  733. }
  734. line_size = 1 << cci.pcci_line_size;
  735. if (line_size > max)
  736. max = line_size;
  737. if (!cci.pcci_unified) {
  738. status = ia64_pal_cache_config_info(l,
  739. /* cache_type (instruction)= */ 1,
  740. &cci);
  741. if (status != 0) {
  742. printk(KERN_ERR
  743. "%s: ia64_pal_cache_config_info(l=%lu, 1) failed (status=%ld)\n",
  744. __FUNCTION__, l, status);
  745. /* The safest setup for "flush_icache_range()" */
  746. cci.pcci_stride = I_CACHE_STRIDE_SHIFT;
  747. }
  748. }
  749. if (cci.pcci_stride < ia64_i_cache_stride_shift)
  750. ia64_i_cache_stride_shift = cci.pcci_stride;
  751. }
  752. out:
  753. if (max > ia64_max_cacheline_size)
  754. ia64_max_cacheline_size = max;
  755. }
  756. /*
  757. * cpu_init() initializes state that is per-CPU. This function acts
  758. * as a 'CPU state barrier', nothing should get across.
  759. */
  760. void __cpuinit
  761. cpu_init (void)
  762. {
  763. extern void __cpuinit ia64_mmu_init (void *);
  764. static unsigned long max_num_phys_stacked = IA64_NUM_PHYS_STACK_REG;
  765. unsigned long num_phys_stacked;
  766. pal_vm_info_2_u_t vmi;
  767. unsigned int max_ctx;
  768. struct cpuinfo_ia64 *cpu_info;
  769. void *cpu_data;
  770. cpu_data = per_cpu_init();
  771. /*
  772. * We set ar.k3 so that assembly code in MCA handler can compute
  773. * physical addresses of per cpu variables with a simple:
  774. * phys = ar.k3 + &per_cpu_var
  775. */
  776. ia64_set_kr(IA64_KR_PER_CPU_DATA,
  777. ia64_tpa(cpu_data) - (long) __per_cpu_start);
  778. get_max_cacheline_size();
  779. /*
  780. * We can't pass "local_cpu_data" to identify_cpu() because we haven't called
  781. * ia64_mmu_init() yet. And we can't call ia64_mmu_init() first because it
  782. * depends on the data returned by identify_cpu(). We break the dependency by
  783. * accessing cpu_data() through the canonical per-CPU address.
  784. */
  785. cpu_info = cpu_data + ((char *) &__ia64_per_cpu_var(cpu_info) - __per_cpu_start);
  786. identify_cpu(cpu_info);
  787. #ifdef CONFIG_MCKINLEY
  788. {
  789. # define FEATURE_SET 16
  790. struct ia64_pal_retval iprv;
  791. if (cpu_info->family == 0x1f) {
  792. PAL_CALL_PHYS(iprv, PAL_PROC_GET_FEATURES, 0, FEATURE_SET, 0);
  793. if ((iprv.status == 0) && (iprv.v0 & 0x80) && (iprv.v2 & 0x80))
  794. PAL_CALL_PHYS(iprv, PAL_PROC_SET_FEATURES,
  795. (iprv.v1 | 0x80), FEATURE_SET, 0);
  796. }
  797. }
  798. #endif
  799. /* Clear the stack memory reserved for pt_regs: */
  800. memset(task_pt_regs(current), 0, sizeof(struct pt_regs));
  801. ia64_set_kr(IA64_KR_FPU_OWNER, 0);
  802. /*
  803. * Initialize the page-table base register to a global
  804. * directory with all zeroes. This ensure that we can handle
  805. * TLB-misses to user address-space even before we created the
  806. * first user address-space. This may happen, e.g., due to
  807. * aggressive use of lfetch.fault.
  808. */
  809. ia64_set_kr(IA64_KR_PT_BASE, __pa(ia64_imva(empty_zero_page)));
  810. /*
  811. * Initialize default control register to defer speculative faults except
  812. * for those arising from TLB misses, which are not deferred. The
  813. * kernel MUST NOT depend on a particular setting of these bits (in other words,
  814. * the kernel must have recovery code for all speculative accesses). Turn on
  815. * dcr.lc as per recommendation by the architecture team. Most IA-32 apps
  816. * shouldn't be affected by this (moral: keep your ia32 locks aligned and you'll
  817. * be fine).
  818. */
  819. ia64_setreg(_IA64_REG_CR_DCR, ( IA64_DCR_DP | IA64_DCR_DK | IA64_DCR_DX | IA64_DCR_DR
  820. | IA64_DCR_DA | IA64_DCR_DD | IA64_DCR_LC));
  821. atomic_inc(&init_mm.mm_count);
  822. current->active_mm = &init_mm;
  823. if (current->mm)
  824. BUG();
  825. ia64_mmu_init(ia64_imva(cpu_data));
  826. ia64_mca_cpu_init(ia64_imva(cpu_data));
  827. #ifdef CONFIG_IA32_SUPPORT
  828. ia32_cpu_init();
  829. #endif
  830. /* Clear ITC to eliminate sched_clock() overflows in human time. */
  831. ia64_set_itc(0);
  832. /* disable all local interrupt sources: */
  833. ia64_set_itv(1 << 16);
  834. ia64_set_lrr0(1 << 16);
  835. ia64_set_lrr1(1 << 16);
  836. ia64_setreg(_IA64_REG_CR_PMV, 1 << 16);
  837. ia64_setreg(_IA64_REG_CR_CMCV, 1 << 16);
  838. /* clear TPR & XTP to enable all interrupt classes: */
  839. ia64_setreg(_IA64_REG_CR_TPR, 0);
  840. /* Clear any pending interrupts left by SAL/EFI */
  841. while (ia64_get_ivr() != IA64_SPURIOUS_INT_VECTOR)
  842. ia64_eoi();
  843. #ifdef CONFIG_SMP
  844. normal_xtp();
  845. #endif
  846. /* set ia64_ctx.max_rid to the maximum RID that is supported by all CPUs: */
  847. if (ia64_pal_vm_summary(NULL, &vmi) == 0)
  848. max_ctx = (1U << (vmi.pal_vm_info_2_s.rid_size - 3)) - 1;
  849. else {
  850. printk(KERN_WARNING "cpu_init: PAL VM summary failed, assuming 18 RID bits\n");
  851. max_ctx = (1U << 15) - 1; /* use architected minimum */
  852. }
  853. while (max_ctx < ia64_ctx.max_ctx) {
  854. unsigned int old = ia64_ctx.max_ctx;
  855. if (cmpxchg(&ia64_ctx.max_ctx, old, max_ctx) == old)
  856. break;
  857. }
  858. if (ia64_pal_rse_info(&num_phys_stacked, NULL) != 0) {
  859. printk(KERN_WARNING "cpu_init: PAL RSE info failed; assuming 96 physical "
  860. "stacked regs\n");
  861. num_phys_stacked = 96;
  862. }
  863. /* size of physical stacked register partition plus 8 bytes: */
  864. if (num_phys_stacked > max_num_phys_stacked) {
  865. ia64_patch_phys_stack_reg(num_phys_stacked*8 + 8);
  866. max_num_phys_stacked = num_phys_stacked;
  867. }
  868. platform_cpu_init();
  869. pm_idle = default_idle;
  870. }
  871. void __init
  872. check_bugs (void)
  873. {
  874. ia64_patch_mckinley_e9((unsigned long) __start___mckinley_e9_bundles,
  875. (unsigned long) __end___mckinley_e9_bundles);
  876. }
  877. static int __init run_dmi_scan(void)
  878. {
  879. dmi_scan_machine();
  880. return 0;
  881. }
  882. core_initcall(run_dmi_scan);