traps.c 32 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250
  1. /*
  2. * linux/arch/i386/traps.c
  3. *
  4. * Copyright (C) 1991, 1992 Linus Torvalds
  5. *
  6. * Pentium III FXSR, SSE support
  7. * Gareth Hughes <gareth@valinux.com>, May 2000
  8. */
  9. /*
  10. * 'Traps.c' handles hardware traps and faults after we have saved some
  11. * state in 'asm.s'.
  12. */
  13. #include <linux/sched.h>
  14. #include <linux/kernel.h>
  15. #include <linux/string.h>
  16. #include <linux/errno.h>
  17. #include <linux/timer.h>
  18. #include <linux/mm.h>
  19. #include <linux/init.h>
  20. #include <linux/delay.h>
  21. #include <linux/spinlock.h>
  22. #include <linux/interrupt.h>
  23. #include <linux/highmem.h>
  24. #include <linux/kallsyms.h>
  25. #include <linux/ptrace.h>
  26. #include <linux/utsname.h>
  27. #include <linux/kprobes.h>
  28. #include <linux/kexec.h>
  29. #include <linux/unwind.h>
  30. #include <linux/uaccess.h>
  31. #include <linux/nmi.h>
  32. #include <linux/bug.h>
  33. #ifdef CONFIG_EISA
  34. #include <linux/ioport.h>
  35. #include <linux/eisa.h>
  36. #endif
  37. #ifdef CONFIG_MCA
  38. #include <linux/mca.h>
  39. #endif
  40. #if defined(CONFIG_EDAC)
  41. #include <linux/edac.h>
  42. #endif
  43. #include <asm/processor.h>
  44. #include <asm/system.h>
  45. #include <asm/io.h>
  46. #include <asm/atomic.h>
  47. #include <asm/debugreg.h>
  48. #include <asm/desc.h>
  49. #include <asm/i387.h>
  50. #include <asm/nmi.h>
  51. #include <asm/unwind.h>
  52. #include <asm/smp.h>
  53. #include <asm/arch_hooks.h>
  54. #include <linux/kdebug.h>
  55. #include <asm/stacktrace.h>
  56. #include <linux/module.h>
  57. #include "mach_traps.h"
  58. int panic_on_unrecovered_nmi;
  59. asmlinkage int system_call(void);
  60. /* Do we ignore FPU interrupts ? */
  61. char ignore_fpu_irq = 0;
  62. /*
  63. * The IDT has to be page-aligned to simplify the Pentium
  64. * F0 0F bug workaround.. We have a special link segment
  65. * for this.
  66. */
  67. struct desc_struct idt_table[256] __attribute__((__section__(".data.idt"))) = { {0, 0}, };
  68. asmlinkage void divide_error(void);
  69. asmlinkage void debug(void);
  70. asmlinkage void nmi(void);
  71. asmlinkage void int3(void);
  72. asmlinkage void overflow(void);
  73. asmlinkage void bounds(void);
  74. asmlinkage void invalid_op(void);
  75. asmlinkage void device_not_available(void);
  76. asmlinkage void coprocessor_segment_overrun(void);
  77. asmlinkage void invalid_TSS(void);
  78. asmlinkage void segment_not_present(void);
  79. asmlinkage void stack_segment(void);
  80. asmlinkage void general_protection(void);
  81. asmlinkage void page_fault(void);
  82. asmlinkage void coprocessor_error(void);
  83. asmlinkage void simd_coprocessor_error(void);
  84. asmlinkage void alignment_check(void);
  85. asmlinkage void spurious_interrupt_bug(void);
  86. asmlinkage void machine_check(void);
  87. int kstack_depth_to_print = 24;
  88. static unsigned int code_bytes = 64;
  89. static inline int valid_stack_ptr(struct thread_info *tinfo, void *p, unsigned size)
  90. {
  91. return p > (void *)tinfo &&
  92. p <= (void *)tinfo + THREAD_SIZE - size;
  93. }
  94. /* The form of the top of the frame on the stack */
  95. struct stack_frame {
  96. struct stack_frame *next_frame;
  97. unsigned long return_address;
  98. };
  99. static inline unsigned long print_context_stack(struct thread_info *tinfo,
  100. unsigned long *stack, unsigned long ebp,
  101. struct stacktrace_ops *ops, void *data)
  102. {
  103. #ifdef CONFIG_FRAME_POINTER
  104. struct stack_frame *frame = (struct stack_frame *)ebp;
  105. while (valid_stack_ptr(tinfo, frame, sizeof(*frame))) {
  106. struct stack_frame *next;
  107. unsigned long addr;
  108. addr = frame->return_address;
  109. ops->address(data, addr);
  110. /*
  111. * break out of recursive entries (such as
  112. * end_of_stack_stop_unwind_function). Also,
  113. * we can never allow a frame pointer to
  114. * move downwards!
  115. */
  116. next = frame->next_frame;
  117. if (next <= frame)
  118. break;
  119. frame = next;
  120. }
  121. #else
  122. while (valid_stack_ptr(tinfo, stack, sizeof(*stack))) {
  123. unsigned long addr;
  124. addr = *stack++;
  125. if (__kernel_text_address(addr))
  126. ops->address(data, addr);
  127. }
  128. #endif
  129. return ebp;
  130. }
  131. #define MSG(msg) ops->warning(data, msg)
  132. void dump_trace(struct task_struct *task, struct pt_regs *regs,
  133. unsigned long *stack,
  134. struct stacktrace_ops *ops, void *data)
  135. {
  136. unsigned long ebp = 0;
  137. if (!task)
  138. task = current;
  139. if (!stack) {
  140. unsigned long dummy;
  141. stack = &dummy;
  142. if (task != current)
  143. stack = (unsigned long *)task->thread.esp;
  144. }
  145. #ifdef CONFIG_FRAME_POINTER
  146. if (!ebp) {
  147. if (task == current) {
  148. /* Grab ebp right from our regs */
  149. asm ("movl %%ebp, %0" : "=r" (ebp) : );
  150. } else {
  151. /* ebp is the last reg pushed by switch_to */
  152. ebp = *(unsigned long *) task->thread.esp;
  153. }
  154. }
  155. #endif
  156. while (1) {
  157. struct thread_info *context;
  158. context = (struct thread_info *)
  159. ((unsigned long)stack & (~(THREAD_SIZE - 1)));
  160. ebp = print_context_stack(context, stack, ebp, ops, data);
  161. /* Should be after the line below, but somewhere
  162. in early boot context comes out corrupted and we
  163. can't reference it -AK */
  164. if (ops->stack(data, "IRQ") < 0)
  165. break;
  166. stack = (unsigned long*)context->previous_esp;
  167. if (!stack)
  168. break;
  169. touch_nmi_watchdog();
  170. }
  171. }
  172. EXPORT_SYMBOL(dump_trace);
  173. static void
  174. print_trace_warning_symbol(void *data, char *msg, unsigned long symbol)
  175. {
  176. printk(data);
  177. print_symbol(msg, symbol);
  178. printk("\n");
  179. }
  180. static void print_trace_warning(void *data, char *msg)
  181. {
  182. printk("%s%s\n", (char *)data, msg);
  183. }
  184. static int print_trace_stack(void *data, char *name)
  185. {
  186. return 0;
  187. }
  188. /*
  189. * Print one address/symbol entries per line.
  190. */
  191. static void print_trace_address(void *data, unsigned long addr)
  192. {
  193. printk("%s [<%08lx>] ", (char *)data, addr);
  194. print_symbol("%s\n", addr);
  195. touch_nmi_watchdog();
  196. }
  197. static struct stacktrace_ops print_trace_ops = {
  198. .warning = print_trace_warning,
  199. .warning_symbol = print_trace_warning_symbol,
  200. .stack = print_trace_stack,
  201. .address = print_trace_address,
  202. };
  203. static void
  204. show_trace_log_lvl(struct task_struct *task, struct pt_regs *regs,
  205. unsigned long * stack, char *log_lvl)
  206. {
  207. dump_trace(task, regs, stack, &print_trace_ops, log_lvl);
  208. printk("%s =======================\n", log_lvl);
  209. }
  210. void show_trace(struct task_struct *task, struct pt_regs *regs,
  211. unsigned long * stack)
  212. {
  213. show_trace_log_lvl(task, regs, stack, "");
  214. }
  215. static void show_stack_log_lvl(struct task_struct *task, struct pt_regs *regs,
  216. unsigned long *esp, char *log_lvl)
  217. {
  218. unsigned long *stack;
  219. int i;
  220. if (esp == NULL) {
  221. if (task)
  222. esp = (unsigned long*)task->thread.esp;
  223. else
  224. esp = (unsigned long *)&esp;
  225. }
  226. stack = esp;
  227. for(i = 0; i < kstack_depth_to_print; i++) {
  228. if (kstack_end(stack))
  229. break;
  230. if (i && ((i % 8) == 0))
  231. printk("\n%s ", log_lvl);
  232. printk("%08lx ", *stack++);
  233. }
  234. printk("\n%sCall Trace:\n", log_lvl);
  235. show_trace_log_lvl(task, regs, esp, log_lvl);
  236. }
  237. void show_stack(struct task_struct *task, unsigned long *esp)
  238. {
  239. printk(" ");
  240. show_stack_log_lvl(task, NULL, esp, "");
  241. }
  242. /*
  243. * The architecture-independent dump_stack generator
  244. */
  245. void dump_stack(void)
  246. {
  247. unsigned long stack;
  248. show_trace(current, NULL, &stack);
  249. }
  250. EXPORT_SYMBOL(dump_stack);
  251. void show_registers(struct pt_regs *regs)
  252. {
  253. int i;
  254. int in_kernel = 1;
  255. unsigned long esp;
  256. unsigned short ss, gs;
  257. esp = (unsigned long) (&regs->esp);
  258. savesegment(ss, ss);
  259. savesegment(gs, gs);
  260. if (user_mode_vm(regs)) {
  261. in_kernel = 0;
  262. esp = regs->esp;
  263. ss = regs->xss & 0xffff;
  264. }
  265. print_modules();
  266. printk(KERN_EMERG "CPU: %d\n"
  267. KERN_EMERG "EIP: %04x:[<%08lx>] %s VLI\n"
  268. KERN_EMERG "EFLAGS: %08lx (%s %.*s)\n",
  269. smp_processor_id(), 0xffff & regs->xcs, regs->eip,
  270. print_tainted(), regs->eflags, init_utsname()->release,
  271. (int)strcspn(init_utsname()->version, " "),
  272. init_utsname()->version);
  273. print_symbol(KERN_EMERG "EIP is at %s\n", regs->eip);
  274. printk(KERN_EMERG "eax: %08lx ebx: %08lx ecx: %08lx edx: %08lx\n",
  275. regs->eax, regs->ebx, regs->ecx, regs->edx);
  276. printk(KERN_EMERG "esi: %08lx edi: %08lx ebp: %08lx esp: %08lx\n",
  277. regs->esi, regs->edi, regs->ebp, esp);
  278. printk(KERN_EMERG "ds: %04x es: %04x fs: %04x gs: %04x ss: %04x\n",
  279. regs->xds & 0xffff, regs->xes & 0xffff, regs->xfs & 0xffff, gs, ss);
  280. printk(KERN_EMERG "Process %.*s (pid: %d, ti=%p task=%p task.ti=%p)",
  281. TASK_COMM_LEN, current->comm, current->pid,
  282. current_thread_info(), current, task_thread_info(current));
  283. /*
  284. * When in-kernel, we also print out the stack and code at the
  285. * time of the fault..
  286. */
  287. if (in_kernel) {
  288. u8 *eip;
  289. unsigned int code_prologue = code_bytes * 43 / 64;
  290. unsigned int code_len = code_bytes;
  291. unsigned char c;
  292. printk("\n" KERN_EMERG "Stack: ");
  293. show_stack_log_lvl(NULL, regs, (unsigned long *)esp, KERN_EMERG);
  294. printk(KERN_EMERG "Code: ");
  295. eip = (u8 *)regs->eip - code_prologue;
  296. if (eip < (u8 *)PAGE_OFFSET ||
  297. probe_kernel_address(eip, c)) {
  298. /* try starting at EIP */
  299. eip = (u8 *)regs->eip;
  300. code_len = code_len - code_prologue + 1;
  301. }
  302. for (i = 0; i < code_len; i++, eip++) {
  303. if (eip < (u8 *)PAGE_OFFSET ||
  304. probe_kernel_address(eip, c)) {
  305. printk(" Bad EIP value.");
  306. break;
  307. }
  308. if (eip == (u8 *)regs->eip)
  309. printk("<%02x> ", c);
  310. else
  311. printk("%02x ", c);
  312. }
  313. }
  314. printk("\n");
  315. }
  316. int is_valid_bugaddr(unsigned long eip)
  317. {
  318. unsigned short ud2;
  319. if (eip < PAGE_OFFSET)
  320. return 0;
  321. if (probe_kernel_address((unsigned short *)eip, ud2))
  322. return 0;
  323. return ud2 == 0x0b0f;
  324. }
  325. /*
  326. * This is gone through when something in the kernel has done something bad and
  327. * is about to be terminated.
  328. */
  329. void die(const char * str, struct pt_regs * regs, long err)
  330. {
  331. static struct {
  332. spinlock_t lock;
  333. u32 lock_owner;
  334. int lock_owner_depth;
  335. } die = {
  336. .lock = __SPIN_LOCK_UNLOCKED(die.lock),
  337. .lock_owner = -1,
  338. .lock_owner_depth = 0
  339. };
  340. static int die_counter;
  341. unsigned long flags;
  342. oops_enter();
  343. if (die.lock_owner != raw_smp_processor_id()) {
  344. console_verbose();
  345. spin_lock_irqsave(&die.lock, flags);
  346. die.lock_owner = smp_processor_id();
  347. die.lock_owner_depth = 0;
  348. bust_spinlocks(1);
  349. }
  350. else
  351. local_save_flags(flags);
  352. if (++die.lock_owner_depth < 3) {
  353. int nl = 0;
  354. unsigned long esp;
  355. unsigned short ss;
  356. report_bug(regs->eip, regs);
  357. printk(KERN_EMERG "%s: %04lx [#%d]\n", str, err & 0xffff, ++die_counter);
  358. #ifdef CONFIG_PREEMPT
  359. printk(KERN_EMERG "PREEMPT ");
  360. nl = 1;
  361. #endif
  362. #ifdef CONFIG_SMP
  363. if (!nl)
  364. printk(KERN_EMERG);
  365. printk("SMP ");
  366. nl = 1;
  367. #endif
  368. #ifdef CONFIG_DEBUG_PAGEALLOC
  369. if (!nl)
  370. printk(KERN_EMERG);
  371. printk("DEBUG_PAGEALLOC");
  372. nl = 1;
  373. #endif
  374. if (nl)
  375. printk("\n");
  376. if (notify_die(DIE_OOPS, str, regs, err,
  377. current->thread.trap_no, SIGSEGV) !=
  378. NOTIFY_STOP) {
  379. show_registers(regs);
  380. /* Executive summary in case the oops scrolled away */
  381. esp = (unsigned long) (&regs->esp);
  382. savesegment(ss, ss);
  383. if (user_mode(regs)) {
  384. esp = regs->esp;
  385. ss = regs->xss & 0xffff;
  386. }
  387. printk(KERN_EMERG "EIP: [<%08lx>] ", regs->eip);
  388. print_symbol("%s", regs->eip);
  389. printk(" SS:ESP %04x:%08lx\n", ss, esp);
  390. }
  391. else
  392. regs = NULL;
  393. } else
  394. printk(KERN_EMERG "Recursive die() failure, output suppressed\n");
  395. bust_spinlocks(0);
  396. die.lock_owner = -1;
  397. add_taint(TAINT_DIE);
  398. spin_unlock_irqrestore(&die.lock, flags);
  399. if (!regs)
  400. return;
  401. if (kexec_should_crash(current))
  402. crash_kexec(regs);
  403. if (in_interrupt())
  404. panic("Fatal exception in interrupt");
  405. if (panic_on_oops)
  406. panic("Fatal exception");
  407. oops_exit();
  408. do_exit(SIGSEGV);
  409. }
  410. static inline void die_if_kernel(const char * str, struct pt_regs * regs, long err)
  411. {
  412. if (!user_mode_vm(regs))
  413. die(str, regs, err);
  414. }
  415. static void __kprobes do_trap(int trapnr, int signr, char *str, int vm86,
  416. struct pt_regs * regs, long error_code,
  417. siginfo_t *info)
  418. {
  419. struct task_struct *tsk = current;
  420. if (regs->eflags & VM_MASK) {
  421. if (vm86)
  422. goto vm86_trap;
  423. goto trap_signal;
  424. }
  425. if (!user_mode(regs))
  426. goto kernel_trap;
  427. trap_signal: {
  428. /*
  429. * We want error_code and trap_no set for userspace faults and
  430. * kernelspace faults which result in die(), but not
  431. * kernelspace faults which are fixed up. die() gives the
  432. * process no chance to handle the signal and notice the
  433. * kernel fault information, so that won't result in polluting
  434. * the information about previously queued, but not yet
  435. * delivered, faults. See also do_general_protection below.
  436. */
  437. tsk->thread.error_code = error_code;
  438. tsk->thread.trap_no = trapnr;
  439. if (info)
  440. force_sig_info(signr, info, tsk);
  441. else
  442. force_sig(signr, tsk);
  443. return;
  444. }
  445. kernel_trap: {
  446. if (!fixup_exception(regs)) {
  447. tsk->thread.error_code = error_code;
  448. tsk->thread.trap_no = trapnr;
  449. die(str, regs, error_code);
  450. }
  451. return;
  452. }
  453. vm86_trap: {
  454. int ret = handle_vm86_trap((struct kernel_vm86_regs *) regs, error_code, trapnr);
  455. if (ret) goto trap_signal;
  456. return;
  457. }
  458. }
  459. #define DO_ERROR(trapnr, signr, str, name) \
  460. fastcall void do_##name(struct pt_regs * regs, long error_code) \
  461. { \
  462. if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) \
  463. == NOTIFY_STOP) \
  464. return; \
  465. do_trap(trapnr, signr, str, 0, regs, error_code, NULL); \
  466. }
  467. #define DO_ERROR_INFO(trapnr, signr, str, name, sicode, siaddr, irq) \
  468. fastcall void do_##name(struct pt_regs * regs, long error_code) \
  469. { \
  470. siginfo_t info; \
  471. if (irq) \
  472. local_irq_enable(); \
  473. info.si_signo = signr; \
  474. info.si_errno = 0; \
  475. info.si_code = sicode; \
  476. info.si_addr = (void __user *)siaddr; \
  477. if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) \
  478. == NOTIFY_STOP) \
  479. return; \
  480. do_trap(trapnr, signr, str, 0, regs, error_code, &info); \
  481. }
  482. #define DO_VM86_ERROR(trapnr, signr, str, name) \
  483. fastcall void do_##name(struct pt_regs * regs, long error_code) \
  484. { \
  485. if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) \
  486. == NOTIFY_STOP) \
  487. return; \
  488. do_trap(trapnr, signr, str, 1, regs, error_code, NULL); \
  489. }
  490. #define DO_VM86_ERROR_INFO(trapnr, signr, str, name, sicode, siaddr) \
  491. fastcall void do_##name(struct pt_regs * regs, long error_code) \
  492. { \
  493. siginfo_t info; \
  494. info.si_signo = signr; \
  495. info.si_errno = 0; \
  496. info.si_code = sicode; \
  497. info.si_addr = (void __user *)siaddr; \
  498. if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) \
  499. == NOTIFY_STOP) \
  500. return; \
  501. do_trap(trapnr, signr, str, 1, regs, error_code, &info); \
  502. }
  503. DO_VM86_ERROR_INFO( 0, SIGFPE, "divide error", divide_error, FPE_INTDIV, regs->eip)
  504. #ifndef CONFIG_KPROBES
  505. DO_VM86_ERROR( 3, SIGTRAP, "int3", int3)
  506. #endif
  507. DO_VM86_ERROR( 4, SIGSEGV, "overflow", overflow)
  508. DO_VM86_ERROR( 5, SIGSEGV, "bounds", bounds)
  509. DO_ERROR_INFO( 6, SIGILL, "invalid opcode", invalid_op, ILL_ILLOPN, regs->eip, 0)
  510. DO_ERROR( 9, SIGFPE, "coprocessor segment overrun", coprocessor_segment_overrun)
  511. DO_ERROR(10, SIGSEGV, "invalid TSS", invalid_TSS)
  512. DO_ERROR(11, SIGBUS, "segment not present", segment_not_present)
  513. DO_ERROR(12, SIGBUS, "stack segment", stack_segment)
  514. DO_ERROR_INFO(17, SIGBUS, "alignment check", alignment_check, BUS_ADRALN, 0, 0)
  515. DO_ERROR_INFO(32, SIGSEGV, "iret exception", iret_error, ILL_BADSTK, 0, 1)
  516. fastcall void __kprobes do_general_protection(struct pt_regs * regs,
  517. long error_code)
  518. {
  519. int cpu = get_cpu();
  520. struct tss_struct *tss = &per_cpu(init_tss, cpu);
  521. struct thread_struct *thread = &current->thread;
  522. /*
  523. * Perform the lazy TSS's I/O bitmap copy. If the TSS has an
  524. * invalid offset set (the LAZY one) and the faulting thread has
  525. * a valid I/O bitmap pointer, we copy the I/O bitmap in the TSS
  526. * and we set the offset field correctly. Then we let the CPU to
  527. * restart the faulting instruction.
  528. */
  529. if (tss->x86_tss.io_bitmap_base == INVALID_IO_BITMAP_OFFSET_LAZY &&
  530. thread->io_bitmap_ptr) {
  531. memcpy(tss->io_bitmap, thread->io_bitmap_ptr,
  532. thread->io_bitmap_max);
  533. /*
  534. * If the previously set map was extending to higher ports
  535. * than the current one, pad extra space with 0xff (no access).
  536. */
  537. if (thread->io_bitmap_max < tss->io_bitmap_max)
  538. memset((char *) tss->io_bitmap +
  539. thread->io_bitmap_max, 0xff,
  540. tss->io_bitmap_max - thread->io_bitmap_max);
  541. tss->io_bitmap_max = thread->io_bitmap_max;
  542. tss->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET;
  543. tss->io_bitmap_owner = thread;
  544. put_cpu();
  545. return;
  546. }
  547. put_cpu();
  548. if (regs->eflags & VM_MASK)
  549. goto gp_in_vm86;
  550. if (!user_mode(regs))
  551. goto gp_in_kernel;
  552. current->thread.error_code = error_code;
  553. current->thread.trap_no = 13;
  554. if (show_unhandled_signals && unhandled_signal(current, SIGSEGV) &&
  555. printk_ratelimit())
  556. printk(KERN_INFO
  557. "%s[%d] general protection eip:%lx esp:%lx error:%lx\n",
  558. current->comm, current->pid,
  559. regs->eip, regs->esp, error_code);
  560. force_sig(SIGSEGV, current);
  561. return;
  562. gp_in_vm86:
  563. local_irq_enable();
  564. handle_vm86_fault((struct kernel_vm86_regs *) regs, error_code);
  565. return;
  566. gp_in_kernel:
  567. if (!fixup_exception(regs)) {
  568. current->thread.error_code = error_code;
  569. current->thread.trap_no = 13;
  570. if (notify_die(DIE_GPF, "general protection fault", regs,
  571. error_code, 13, SIGSEGV) == NOTIFY_STOP)
  572. return;
  573. die("general protection fault", regs, error_code);
  574. }
  575. }
  576. static __kprobes void
  577. mem_parity_error(unsigned char reason, struct pt_regs * regs)
  578. {
  579. printk(KERN_EMERG "Uhhuh. NMI received for unknown reason %02x on "
  580. "CPU %d.\n", reason, smp_processor_id());
  581. printk(KERN_EMERG "You have some hardware problem, likely on the PCI bus.\n");
  582. #if defined(CONFIG_EDAC)
  583. if(edac_handler_set()) {
  584. edac_atomic_assert_error();
  585. return;
  586. }
  587. #endif
  588. if (panic_on_unrecovered_nmi)
  589. panic("NMI: Not continuing");
  590. printk(KERN_EMERG "Dazed and confused, but trying to continue\n");
  591. /* Clear and disable the memory parity error line. */
  592. clear_mem_error(reason);
  593. }
  594. static __kprobes void
  595. io_check_error(unsigned char reason, struct pt_regs * regs)
  596. {
  597. unsigned long i;
  598. printk(KERN_EMERG "NMI: IOCK error (debug interrupt?)\n");
  599. show_registers(regs);
  600. /* Re-enable the IOCK line, wait for a few seconds */
  601. reason = (reason & 0xf) | 8;
  602. outb(reason, 0x61);
  603. i = 2000;
  604. while (--i) udelay(1000);
  605. reason &= ~8;
  606. outb(reason, 0x61);
  607. }
  608. static __kprobes void
  609. unknown_nmi_error(unsigned char reason, struct pt_regs * regs)
  610. {
  611. #ifdef CONFIG_MCA
  612. /* Might actually be able to figure out what the guilty party
  613. * is. */
  614. if( MCA_bus ) {
  615. mca_handle_nmi();
  616. return;
  617. }
  618. #endif
  619. printk(KERN_EMERG "Uhhuh. NMI received for unknown reason %02x on "
  620. "CPU %d.\n", reason, smp_processor_id());
  621. printk(KERN_EMERG "Do you have a strange power saving mode enabled?\n");
  622. if (panic_on_unrecovered_nmi)
  623. panic("NMI: Not continuing");
  624. printk(KERN_EMERG "Dazed and confused, but trying to continue\n");
  625. }
  626. static DEFINE_SPINLOCK(nmi_print_lock);
  627. void __kprobes die_nmi(struct pt_regs *regs, const char *msg)
  628. {
  629. if (notify_die(DIE_NMIWATCHDOG, msg, regs, 0, 2, SIGINT) ==
  630. NOTIFY_STOP)
  631. return;
  632. spin_lock(&nmi_print_lock);
  633. /*
  634. * We are in trouble anyway, lets at least try
  635. * to get a message out.
  636. */
  637. bust_spinlocks(1);
  638. printk(KERN_EMERG "%s", msg);
  639. printk(" on CPU%d, eip %08lx, registers:\n",
  640. smp_processor_id(), regs->eip);
  641. show_registers(regs);
  642. console_silent();
  643. spin_unlock(&nmi_print_lock);
  644. bust_spinlocks(0);
  645. /* If we are in kernel we are probably nested up pretty bad
  646. * and might aswell get out now while we still can.
  647. */
  648. if (!user_mode_vm(regs)) {
  649. current->thread.trap_no = 2;
  650. crash_kexec(regs);
  651. }
  652. do_exit(SIGSEGV);
  653. }
  654. static __kprobes void default_do_nmi(struct pt_regs * regs)
  655. {
  656. unsigned char reason = 0;
  657. /* Only the BSP gets external NMIs from the system. */
  658. if (!smp_processor_id())
  659. reason = get_nmi_reason();
  660. if (!(reason & 0xc0)) {
  661. if (notify_die(DIE_NMI_IPI, "nmi_ipi", regs, reason, 2, SIGINT)
  662. == NOTIFY_STOP)
  663. return;
  664. #ifdef CONFIG_X86_LOCAL_APIC
  665. /*
  666. * Ok, so this is none of the documented NMI sources,
  667. * so it must be the NMI watchdog.
  668. */
  669. if (nmi_watchdog_tick(regs, reason))
  670. return;
  671. if (!do_nmi_callback(regs, smp_processor_id()))
  672. #endif
  673. unknown_nmi_error(reason, regs);
  674. return;
  675. }
  676. if (notify_die(DIE_NMI, "nmi", regs, reason, 2, SIGINT) == NOTIFY_STOP)
  677. return;
  678. if (reason & 0x80)
  679. mem_parity_error(reason, regs);
  680. if (reason & 0x40)
  681. io_check_error(reason, regs);
  682. /*
  683. * Reassert NMI in case it became active meanwhile
  684. * as it's edge-triggered.
  685. */
  686. reassert_nmi();
  687. }
  688. static int ignore_nmis;
  689. fastcall __kprobes void do_nmi(struct pt_regs * regs, long error_code)
  690. {
  691. int cpu;
  692. nmi_enter();
  693. cpu = smp_processor_id();
  694. ++nmi_count(cpu);
  695. if (!ignore_nmis)
  696. default_do_nmi(regs);
  697. nmi_exit();
  698. }
  699. void stop_nmi(void)
  700. {
  701. acpi_nmi_disable();
  702. ignore_nmis++;
  703. }
  704. void restart_nmi(void)
  705. {
  706. ignore_nmis--;
  707. acpi_nmi_enable();
  708. }
  709. #ifdef CONFIG_KPROBES
  710. fastcall void __kprobes do_int3(struct pt_regs *regs, long error_code)
  711. {
  712. if (notify_die(DIE_INT3, "int3", regs, error_code, 3, SIGTRAP)
  713. == NOTIFY_STOP)
  714. return;
  715. /* This is an interrupt gate, because kprobes wants interrupts
  716. disabled. Normal trap handlers don't. */
  717. restore_interrupts(regs);
  718. do_trap(3, SIGTRAP, "int3", 1, regs, error_code, NULL);
  719. }
  720. #endif
  721. /*
  722. * Our handling of the processor debug registers is non-trivial.
  723. * We do not clear them on entry and exit from the kernel. Therefore
  724. * it is possible to get a watchpoint trap here from inside the kernel.
  725. * However, the code in ./ptrace.c has ensured that the user can
  726. * only set watchpoints on userspace addresses. Therefore the in-kernel
  727. * watchpoint trap can only occur in code which is reading/writing
  728. * from user space. Such code must not hold kernel locks (since it
  729. * can equally take a page fault), therefore it is safe to call
  730. * force_sig_info even though that claims and releases locks.
  731. *
  732. * Code in ./signal.c ensures that the debug control register
  733. * is restored before we deliver any signal, and therefore that
  734. * user code runs with the correct debug control register even though
  735. * we clear it here.
  736. *
  737. * Being careful here means that we don't have to be as careful in a
  738. * lot of more complicated places (task switching can be a bit lazy
  739. * about restoring all the debug state, and ptrace doesn't have to
  740. * find every occurrence of the TF bit that could be saved away even
  741. * by user code)
  742. */
  743. fastcall void __kprobes do_debug(struct pt_regs * regs, long error_code)
  744. {
  745. unsigned int condition;
  746. struct task_struct *tsk = current;
  747. get_debugreg(condition, 6);
  748. if (notify_die(DIE_DEBUG, "debug", regs, condition, error_code,
  749. SIGTRAP) == NOTIFY_STOP)
  750. return;
  751. /* It's safe to allow irq's after DR6 has been saved */
  752. if (regs->eflags & X86_EFLAGS_IF)
  753. local_irq_enable();
  754. /* Mask out spurious debug traps due to lazy DR7 setting */
  755. if (condition & (DR_TRAP0|DR_TRAP1|DR_TRAP2|DR_TRAP3)) {
  756. if (!tsk->thread.debugreg[7])
  757. goto clear_dr7;
  758. }
  759. if (regs->eflags & VM_MASK)
  760. goto debug_vm86;
  761. /* Save debug status register where ptrace can see it */
  762. tsk->thread.debugreg[6] = condition;
  763. /*
  764. * Single-stepping through TF: make sure we ignore any events in
  765. * kernel space (but re-enable TF when returning to user mode).
  766. */
  767. if (condition & DR_STEP) {
  768. /*
  769. * We already checked v86 mode above, so we can
  770. * check for kernel mode by just checking the CPL
  771. * of CS.
  772. */
  773. if (!user_mode(regs))
  774. goto clear_TF_reenable;
  775. }
  776. /* Ok, finally something we can handle */
  777. send_sigtrap(tsk, regs, error_code);
  778. /* Disable additional traps. They'll be re-enabled when
  779. * the signal is delivered.
  780. */
  781. clear_dr7:
  782. set_debugreg(0, 7);
  783. return;
  784. debug_vm86:
  785. handle_vm86_trap((struct kernel_vm86_regs *) regs, error_code, 1);
  786. return;
  787. clear_TF_reenable:
  788. set_tsk_thread_flag(tsk, TIF_SINGLESTEP);
  789. regs->eflags &= ~TF_MASK;
  790. return;
  791. }
  792. /*
  793. * Note that we play around with the 'TS' bit in an attempt to get
  794. * the correct behaviour even in the presence of the asynchronous
  795. * IRQ13 behaviour
  796. */
  797. void math_error(void __user *eip)
  798. {
  799. struct task_struct * task;
  800. siginfo_t info;
  801. unsigned short cwd, swd;
  802. /*
  803. * Save the info for the exception handler and clear the error.
  804. */
  805. task = current;
  806. save_init_fpu(task);
  807. task->thread.trap_no = 16;
  808. task->thread.error_code = 0;
  809. info.si_signo = SIGFPE;
  810. info.si_errno = 0;
  811. info.si_code = __SI_FAULT;
  812. info.si_addr = eip;
  813. /*
  814. * (~cwd & swd) will mask out exceptions that are not set to unmasked
  815. * status. 0x3f is the exception bits in these regs, 0x200 is the
  816. * C1 reg you need in case of a stack fault, 0x040 is the stack
  817. * fault bit. We should only be taking one exception at a time,
  818. * so if this combination doesn't produce any single exception,
  819. * then we have a bad program that isn't syncronizing its FPU usage
  820. * and it will suffer the consequences since we won't be able to
  821. * fully reproduce the context of the exception
  822. */
  823. cwd = get_fpu_cwd(task);
  824. swd = get_fpu_swd(task);
  825. switch (swd & ~cwd & 0x3f) {
  826. case 0x000: /* No unmasked exception */
  827. return;
  828. default: /* Multiple exceptions */
  829. break;
  830. case 0x001: /* Invalid Op */
  831. /*
  832. * swd & 0x240 == 0x040: Stack Underflow
  833. * swd & 0x240 == 0x240: Stack Overflow
  834. * User must clear the SF bit (0x40) if set
  835. */
  836. info.si_code = FPE_FLTINV;
  837. break;
  838. case 0x002: /* Denormalize */
  839. case 0x010: /* Underflow */
  840. info.si_code = FPE_FLTUND;
  841. break;
  842. case 0x004: /* Zero Divide */
  843. info.si_code = FPE_FLTDIV;
  844. break;
  845. case 0x008: /* Overflow */
  846. info.si_code = FPE_FLTOVF;
  847. break;
  848. case 0x020: /* Precision */
  849. info.si_code = FPE_FLTRES;
  850. break;
  851. }
  852. force_sig_info(SIGFPE, &info, task);
  853. }
  854. fastcall void do_coprocessor_error(struct pt_regs * regs, long error_code)
  855. {
  856. ignore_fpu_irq = 1;
  857. math_error((void __user *)regs->eip);
  858. }
  859. static void simd_math_error(void __user *eip)
  860. {
  861. struct task_struct * task;
  862. siginfo_t info;
  863. unsigned short mxcsr;
  864. /*
  865. * Save the info for the exception handler and clear the error.
  866. */
  867. task = current;
  868. save_init_fpu(task);
  869. task->thread.trap_no = 19;
  870. task->thread.error_code = 0;
  871. info.si_signo = SIGFPE;
  872. info.si_errno = 0;
  873. info.si_code = __SI_FAULT;
  874. info.si_addr = eip;
  875. /*
  876. * The SIMD FPU exceptions are handled a little differently, as there
  877. * is only a single status/control register. Thus, to determine which
  878. * unmasked exception was caught we must mask the exception mask bits
  879. * at 0x1f80, and then use these to mask the exception bits at 0x3f.
  880. */
  881. mxcsr = get_fpu_mxcsr(task);
  882. switch (~((mxcsr & 0x1f80) >> 7) & (mxcsr & 0x3f)) {
  883. case 0x000:
  884. default:
  885. break;
  886. case 0x001: /* Invalid Op */
  887. info.si_code = FPE_FLTINV;
  888. break;
  889. case 0x002: /* Denormalize */
  890. case 0x010: /* Underflow */
  891. info.si_code = FPE_FLTUND;
  892. break;
  893. case 0x004: /* Zero Divide */
  894. info.si_code = FPE_FLTDIV;
  895. break;
  896. case 0x008: /* Overflow */
  897. info.si_code = FPE_FLTOVF;
  898. break;
  899. case 0x020: /* Precision */
  900. info.si_code = FPE_FLTRES;
  901. break;
  902. }
  903. force_sig_info(SIGFPE, &info, task);
  904. }
  905. fastcall void do_simd_coprocessor_error(struct pt_regs * regs,
  906. long error_code)
  907. {
  908. if (cpu_has_xmm) {
  909. /* Handle SIMD FPU exceptions on PIII+ processors. */
  910. ignore_fpu_irq = 1;
  911. simd_math_error((void __user *)regs->eip);
  912. } else {
  913. /*
  914. * Handle strange cache flush from user space exception
  915. * in all other cases. This is undocumented behaviour.
  916. */
  917. if (regs->eflags & VM_MASK) {
  918. handle_vm86_fault((struct kernel_vm86_regs *)regs,
  919. error_code);
  920. return;
  921. }
  922. current->thread.trap_no = 19;
  923. current->thread.error_code = error_code;
  924. die_if_kernel("cache flush denied", regs, error_code);
  925. force_sig(SIGSEGV, current);
  926. }
  927. }
  928. fastcall void do_spurious_interrupt_bug(struct pt_regs * regs,
  929. long error_code)
  930. {
  931. #if 0
  932. /* No need to warn about this any longer. */
  933. printk("Ignoring P6 Local APIC Spurious Interrupt Bug...\n");
  934. #endif
  935. }
  936. fastcall unsigned long patch_espfix_desc(unsigned long uesp,
  937. unsigned long kesp)
  938. {
  939. struct desc_struct *gdt = __get_cpu_var(gdt_page).gdt;
  940. unsigned long base = (kesp - uesp) & -THREAD_SIZE;
  941. unsigned long new_kesp = kesp - base;
  942. unsigned long lim_pages = (new_kesp | (THREAD_SIZE - 1)) >> PAGE_SHIFT;
  943. __u64 desc = *(__u64 *)&gdt[GDT_ENTRY_ESPFIX_SS];
  944. /* Set up base for espfix segment */
  945. desc &= 0x00f0ff0000000000ULL;
  946. desc |= ((((__u64)base) << 16) & 0x000000ffffff0000ULL) |
  947. ((((__u64)base) << 32) & 0xff00000000000000ULL) |
  948. ((((__u64)lim_pages) << 32) & 0x000f000000000000ULL) |
  949. (lim_pages & 0xffff);
  950. *(__u64 *)&gdt[GDT_ENTRY_ESPFIX_SS] = desc;
  951. return new_kesp;
  952. }
  953. /*
  954. * 'math_state_restore()' saves the current math information in the
  955. * old math state array, and gets the new ones from the current task
  956. *
  957. * Careful.. There are problems with IBM-designed IRQ13 behaviour.
  958. * Don't touch unless you *really* know how it works.
  959. *
  960. * Must be called with kernel preemption disabled (in this case,
  961. * local interrupts are disabled at the call-site in entry.S).
  962. */
  963. asmlinkage void math_state_restore(void)
  964. {
  965. struct thread_info *thread = current_thread_info();
  966. struct task_struct *tsk = thread->task;
  967. clts(); /* Allow maths ops (or we recurse) */
  968. if (!tsk_used_math(tsk))
  969. init_fpu(tsk);
  970. restore_fpu(tsk);
  971. thread->status |= TS_USEDFPU; /* So we fnsave on switch_to() */
  972. tsk->fpu_counter++;
  973. }
  974. EXPORT_SYMBOL_GPL(math_state_restore);
  975. #ifndef CONFIG_MATH_EMULATION
  976. asmlinkage void math_emulate(long arg)
  977. {
  978. printk(KERN_EMERG "math-emulation not enabled and no coprocessor found.\n");
  979. printk(KERN_EMERG "killing %s.\n",current->comm);
  980. force_sig(SIGFPE,current);
  981. schedule();
  982. }
  983. #endif /* CONFIG_MATH_EMULATION */
  984. #ifdef CONFIG_X86_F00F_BUG
  985. void __init trap_init_f00f_bug(void)
  986. {
  987. __set_fixmap(FIX_F00F_IDT, __pa(&idt_table), PAGE_KERNEL_RO);
  988. /*
  989. * Update the IDT descriptor and reload the IDT so that
  990. * it uses the read-only mapped virtual address.
  991. */
  992. idt_descr.address = fix_to_virt(FIX_F00F_IDT);
  993. load_idt(&idt_descr);
  994. }
  995. #endif
  996. /*
  997. * This needs to use 'idt_table' rather than 'idt', and
  998. * thus use the _nonmapped_ version of the IDT, as the
  999. * Pentium F0 0F bugfix can have resulted in the mapped
  1000. * IDT being write-protected.
  1001. */
  1002. void set_intr_gate(unsigned int n, void *addr)
  1003. {
  1004. _set_gate(n, DESCTYPE_INT, addr, __KERNEL_CS);
  1005. }
  1006. /*
  1007. * This routine sets up an interrupt gate at directory privilege level 3.
  1008. */
  1009. static inline void set_system_intr_gate(unsigned int n, void *addr)
  1010. {
  1011. _set_gate(n, DESCTYPE_INT | DESCTYPE_DPL3, addr, __KERNEL_CS);
  1012. }
  1013. static void __init set_trap_gate(unsigned int n, void *addr)
  1014. {
  1015. _set_gate(n, DESCTYPE_TRAP, addr, __KERNEL_CS);
  1016. }
  1017. static void __init set_system_gate(unsigned int n, void *addr)
  1018. {
  1019. _set_gate(n, DESCTYPE_TRAP | DESCTYPE_DPL3, addr, __KERNEL_CS);
  1020. }
  1021. static void __init set_task_gate(unsigned int n, unsigned int gdt_entry)
  1022. {
  1023. _set_gate(n, DESCTYPE_TASK, (void *)0, (gdt_entry<<3));
  1024. }
  1025. void __init trap_init(void)
  1026. {
  1027. #ifdef CONFIG_EISA
  1028. void __iomem *p = ioremap(0x0FFFD9, 4);
  1029. if (readl(p) == 'E'+('I'<<8)+('S'<<16)+('A'<<24)) {
  1030. EISA_bus = 1;
  1031. }
  1032. iounmap(p);
  1033. #endif
  1034. #ifdef CONFIG_X86_LOCAL_APIC
  1035. init_apic_mappings();
  1036. #endif
  1037. set_trap_gate(0,&divide_error);
  1038. set_intr_gate(1,&debug);
  1039. set_intr_gate(2,&nmi);
  1040. set_system_intr_gate(3, &int3); /* int3/4 can be called from all */
  1041. set_system_gate(4,&overflow);
  1042. set_trap_gate(5,&bounds);
  1043. set_trap_gate(6,&invalid_op);
  1044. set_trap_gate(7,&device_not_available);
  1045. set_task_gate(8,GDT_ENTRY_DOUBLEFAULT_TSS);
  1046. set_trap_gate(9,&coprocessor_segment_overrun);
  1047. set_trap_gate(10,&invalid_TSS);
  1048. set_trap_gate(11,&segment_not_present);
  1049. set_trap_gate(12,&stack_segment);
  1050. set_trap_gate(13,&general_protection);
  1051. set_intr_gate(14,&page_fault);
  1052. set_trap_gate(15,&spurious_interrupt_bug);
  1053. set_trap_gate(16,&coprocessor_error);
  1054. set_trap_gate(17,&alignment_check);
  1055. #ifdef CONFIG_X86_MCE
  1056. set_trap_gate(18,&machine_check);
  1057. #endif
  1058. set_trap_gate(19,&simd_coprocessor_error);
  1059. if (cpu_has_fxsr) {
  1060. /*
  1061. * Verify that the FXSAVE/FXRSTOR data will be 16-byte aligned.
  1062. * Generates a compile-time "error: zero width for bit-field" if
  1063. * the alignment is wrong.
  1064. */
  1065. struct fxsrAlignAssert {
  1066. int _:!(offsetof(struct task_struct,
  1067. thread.i387.fxsave) & 15);
  1068. };
  1069. printk(KERN_INFO "Enabling fast FPU save and restore... ");
  1070. set_in_cr4(X86_CR4_OSFXSR);
  1071. printk("done.\n");
  1072. }
  1073. if (cpu_has_xmm) {
  1074. printk(KERN_INFO "Enabling unmasked SIMD FPU exception "
  1075. "support... ");
  1076. set_in_cr4(X86_CR4_OSXMMEXCPT);
  1077. printk("done.\n");
  1078. }
  1079. set_system_gate(SYSCALL_VECTOR,&system_call);
  1080. /*
  1081. * Should be a barrier for any external CPU state.
  1082. */
  1083. cpu_init();
  1084. trap_init_hook();
  1085. }
  1086. static int __init kstack_setup(char *s)
  1087. {
  1088. kstack_depth_to_print = simple_strtoul(s, NULL, 0);
  1089. return 1;
  1090. }
  1091. __setup("kstack=", kstack_setup);
  1092. static int __init code_bytes_setup(char *s)
  1093. {
  1094. code_bytes = simple_strtoul(s, NULL, 0);
  1095. if (code_bytes > 8192)
  1096. code_bytes = 8192;
  1097. return 1;
  1098. }
  1099. __setup("code_bytes=", code_bytes_setup);