lguest.c 63 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047
  1. /*P:100 This is the Launcher code, a simple program which lays out the
  2. * "physical" memory for the new Guest by mapping the kernel image and
  3. * the virtual devices, then opens /dev/lguest to tell the kernel
  4. * about the Guest and control it. :*/
  5. #define _LARGEFILE64_SOURCE
  6. #define _GNU_SOURCE
  7. #include <stdio.h>
  8. #include <string.h>
  9. #include <unistd.h>
  10. #include <err.h>
  11. #include <stdint.h>
  12. #include <stdlib.h>
  13. #include <elf.h>
  14. #include <sys/mman.h>
  15. #include <sys/param.h>
  16. #include <sys/types.h>
  17. #include <sys/stat.h>
  18. #include <sys/wait.h>
  19. #include <fcntl.h>
  20. #include <stdbool.h>
  21. #include <errno.h>
  22. #include <ctype.h>
  23. #include <sys/socket.h>
  24. #include <sys/ioctl.h>
  25. #include <sys/time.h>
  26. #include <time.h>
  27. #include <netinet/in.h>
  28. #include <net/if.h>
  29. #include <linux/sockios.h>
  30. #include <linux/if_tun.h>
  31. #include <sys/uio.h>
  32. #include <termios.h>
  33. #include <getopt.h>
  34. #include <zlib.h>
  35. #include <assert.h>
  36. #include <sched.h>
  37. #include <limits.h>
  38. #include <stddef.h>
  39. #include <signal.h>
  40. #include "linux/lguest_launcher.h"
  41. #include "linux/virtio_config.h"
  42. #include "linux/virtio_net.h"
  43. #include "linux/virtio_blk.h"
  44. #include "linux/virtio_console.h"
  45. #include "linux/virtio_rng.h"
  46. #include "linux/virtio_ring.h"
  47. #include "asm/bootparam.h"
  48. /*L:110 We can ignore the 39 include files we need for this program, but I do
  49. * want to draw attention to the use of kernel-style types.
  50. *
  51. * As Linus said, "C is a Spartan language, and so should your naming be." I
  52. * like these abbreviations, so we define them here. Note that u64 is always
  53. * unsigned long long, which works on all Linux systems: this means that we can
  54. * use %llu in printf for any u64. */
  55. typedef unsigned long long u64;
  56. typedef uint32_t u32;
  57. typedef uint16_t u16;
  58. typedef uint8_t u8;
  59. /*:*/
  60. #define PAGE_PRESENT 0x7 /* Present, RW, Execute */
  61. #define NET_PEERNUM 1
  62. #define BRIDGE_PFX "bridge:"
  63. #ifndef SIOCBRADDIF
  64. #define SIOCBRADDIF 0x89a2 /* add interface to bridge */
  65. #endif
  66. /* We can have up to 256 pages for devices. */
  67. #define DEVICE_PAGES 256
  68. /* This will occupy 3 pages: it must be a power of 2. */
  69. #define VIRTQUEUE_NUM 256
  70. /*L:120 verbose is both a global flag and a macro. The C preprocessor allows
  71. * this, and although I wouldn't recommend it, it works quite nicely here. */
  72. static bool verbose;
  73. #define verbose(args...) \
  74. do { if (verbose) printf(args); } while(0)
  75. /*:*/
  76. /* File descriptors for the Waker. */
  77. struct {
  78. int pipe[2];
  79. } waker_fds;
  80. /* The pointer to the start of guest memory. */
  81. static void *guest_base;
  82. /* The maximum guest physical address allowed, and maximum possible. */
  83. static unsigned long guest_limit, guest_max;
  84. /* The pipe for signal hander to write to. */
  85. static int timeoutpipe[2];
  86. static unsigned int timeout_usec = 500;
  87. /* The /dev/lguest file descriptor. */
  88. static int lguest_fd;
  89. /* a per-cpu variable indicating whose vcpu is currently running */
  90. static unsigned int __thread cpu_id;
  91. /* This is our list of devices. */
  92. struct device_list
  93. {
  94. /* Summary information about the devices in our list: ready to pass to
  95. * select() to ask which need servicing.*/
  96. fd_set infds;
  97. int max_infd;
  98. /* Counter to assign interrupt numbers. */
  99. unsigned int next_irq;
  100. /* Counter to print out convenient device numbers. */
  101. unsigned int device_num;
  102. /* The descriptor page for the devices. */
  103. u8 *descpage;
  104. /* A single linked list of devices. */
  105. struct device *dev;
  106. /* And a pointer to the last device for easy append and also for
  107. * configuration appending. */
  108. struct device *lastdev;
  109. };
  110. /* The list of Guest devices, based on command line arguments. */
  111. static struct device_list devices;
  112. /* The device structure describes a single device. */
  113. struct device
  114. {
  115. /* The linked-list pointer. */
  116. struct device *next;
  117. /* The device's descriptor, as mapped into the Guest. */
  118. struct lguest_device_desc *desc;
  119. /* We can't trust desc values once Guest has booted: we use these. */
  120. unsigned int feature_len;
  121. unsigned int num_vq;
  122. /* The name of this device, for --verbose. */
  123. const char *name;
  124. /* If handle_input is set, it wants to be called when this file
  125. * descriptor is ready. */
  126. int fd;
  127. bool (*handle_input)(struct device *me);
  128. /* Any queues attached to this device */
  129. struct virtqueue *vq;
  130. /* Handle status being finalized (ie. feature bits stable). */
  131. void (*ready)(struct device *me);
  132. /* Device-specific data. */
  133. void *priv;
  134. };
  135. /* The virtqueue structure describes a queue attached to a device. */
  136. struct virtqueue
  137. {
  138. struct virtqueue *next;
  139. /* Which device owns me. */
  140. struct device *dev;
  141. /* The configuration for this queue. */
  142. struct lguest_vqconfig config;
  143. /* The actual ring of buffers. */
  144. struct vring vring;
  145. /* Last available index we saw. */
  146. u16 last_avail_idx;
  147. /* The routine to call when the Guest pings us, or timeout. */
  148. void (*handle_output)(struct virtqueue *me, bool timeout);
  149. /* Outstanding buffers */
  150. unsigned int inflight;
  151. /* Is this blocked awaiting a timer? */
  152. bool blocked;
  153. };
  154. /* Remember the arguments to the program so we can "reboot" */
  155. static char **main_args;
  156. /* We have to be careful with barriers: our devices are all run in separate
  157. * threads and so we need to make sure that changes visible to the Guest happen
  158. * in precise order. */
  159. #define wmb() __asm__ __volatile__("" : : : "memory")
  160. /* Convert an iovec element to the given type.
  161. *
  162. * This is a fairly ugly trick: we need to know the size of the type and
  163. * alignment requirement to check the pointer is kosher. It's also nice to
  164. * have the name of the type in case we report failure.
  165. *
  166. * Typing those three things all the time is cumbersome and error prone, so we
  167. * have a macro which sets them all up and passes to the real function. */
  168. #define convert(iov, type) \
  169. ((type *)_convert((iov), sizeof(type), __alignof__(type), #type))
  170. static void *_convert(struct iovec *iov, size_t size, size_t align,
  171. const char *name)
  172. {
  173. if (iov->iov_len != size)
  174. errx(1, "Bad iovec size %zu for %s", iov->iov_len, name);
  175. if ((unsigned long)iov->iov_base % align != 0)
  176. errx(1, "Bad alignment %p for %s", iov->iov_base, name);
  177. return iov->iov_base;
  178. }
  179. /* Wrapper for the last available index. Makes it easier to change. */
  180. #define lg_last_avail(vq) ((vq)->last_avail_idx)
  181. /* The virtio configuration space is defined to be little-endian. x86 is
  182. * little-endian too, but it's nice to be explicit so we have these helpers. */
  183. #define cpu_to_le16(v16) (v16)
  184. #define cpu_to_le32(v32) (v32)
  185. #define cpu_to_le64(v64) (v64)
  186. #define le16_to_cpu(v16) (v16)
  187. #define le32_to_cpu(v32) (v32)
  188. #define le64_to_cpu(v64) (v64)
  189. /* Is this iovec empty? */
  190. static bool iov_empty(const struct iovec iov[], unsigned int num_iov)
  191. {
  192. unsigned int i;
  193. for (i = 0; i < num_iov; i++)
  194. if (iov[i].iov_len)
  195. return false;
  196. return true;
  197. }
  198. /* Take len bytes from the front of this iovec. */
  199. static void iov_consume(struct iovec iov[], unsigned num_iov, unsigned len)
  200. {
  201. unsigned int i;
  202. for (i = 0; i < num_iov; i++) {
  203. unsigned int used;
  204. used = iov[i].iov_len < len ? iov[i].iov_len : len;
  205. iov[i].iov_base += used;
  206. iov[i].iov_len -= used;
  207. len -= used;
  208. }
  209. assert(len == 0);
  210. }
  211. /* The device virtqueue descriptors are followed by feature bitmasks. */
  212. static u8 *get_feature_bits(struct device *dev)
  213. {
  214. return (u8 *)(dev->desc + 1)
  215. + dev->num_vq * sizeof(struct lguest_vqconfig);
  216. }
  217. /*L:100 The Launcher code itself takes us out into userspace, that scary place
  218. * where pointers run wild and free! Unfortunately, like most userspace
  219. * programs, it's quite boring (which is why everyone likes to hack on the
  220. * kernel!). Perhaps if you make up an Lguest Drinking Game at this point, it
  221. * will get you through this section. Or, maybe not.
  222. *
  223. * The Launcher sets up a big chunk of memory to be the Guest's "physical"
  224. * memory and stores it in "guest_base". In other words, Guest physical ==
  225. * Launcher virtual with an offset.
  226. *
  227. * This can be tough to get your head around, but usually it just means that we
  228. * use these trivial conversion functions when the Guest gives us it's
  229. * "physical" addresses: */
  230. static void *from_guest_phys(unsigned long addr)
  231. {
  232. return guest_base + addr;
  233. }
  234. static unsigned long to_guest_phys(const void *addr)
  235. {
  236. return (addr - guest_base);
  237. }
  238. /*L:130
  239. * Loading the Kernel.
  240. *
  241. * We start with couple of simple helper routines. open_or_die() avoids
  242. * error-checking code cluttering the callers: */
  243. static int open_or_die(const char *name, int flags)
  244. {
  245. int fd = open(name, flags);
  246. if (fd < 0)
  247. err(1, "Failed to open %s", name);
  248. return fd;
  249. }
  250. /* map_zeroed_pages() takes a number of pages. */
  251. static void *map_zeroed_pages(unsigned int num)
  252. {
  253. int fd = open_or_die("/dev/zero", O_RDONLY);
  254. void *addr;
  255. /* We use a private mapping (ie. if we write to the page, it will be
  256. * copied). */
  257. addr = mmap(NULL, getpagesize() * num,
  258. PROT_READ|PROT_WRITE|PROT_EXEC, MAP_PRIVATE, fd, 0);
  259. if (addr == MAP_FAILED)
  260. err(1, "Mmaping %u pages of /dev/zero", num);
  261. close(fd);
  262. return addr;
  263. }
  264. /* Get some more pages for a device. */
  265. static void *get_pages(unsigned int num)
  266. {
  267. void *addr = from_guest_phys(guest_limit);
  268. guest_limit += num * getpagesize();
  269. if (guest_limit > guest_max)
  270. errx(1, "Not enough memory for devices");
  271. return addr;
  272. }
  273. /* This routine is used to load the kernel or initrd. It tries mmap, but if
  274. * that fails (Plan 9's kernel file isn't nicely aligned on page boundaries),
  275. * it falls back to reading the memory in. */
  276. static void map_at(int fd, void *addr, unsigned long offset, unsigned long len)
  277. {
  278. ssize_t r;
  279. /* We map writable even though for some segments are marked read-only.
  280. * The kernel really wants to be writable: it patches its own
  281. * instructions.
  282. *
  283. * MAP_PRIVATE means that the page won't be copied until a write is
  284. * done to it. This allows us to share untouched memory between
  285. * Guests. */
  286. if (mmap(addr, len, PROT_READ|PROT_WRITE|PROT_EXEC,
  287. MAP_FIXED|MAP_PRIVATE, fd, offset) != MAP_FAILED)
  288. return;
  289. /* pread does a seek and a read in one shot: saves a few lines. */
  290. r = pread(fd, addr, len, offset);
  291. if (r != len)
  292. err(1, "Reading offset %lu len %lu gave %zi", offset, len, r);
  293. }
  294. /* This routine takes an open vmlinux image, which is in ELF, and maps it into
  295. * the Guest memory. ELF = Embedded Linking Format, which is the format used
  296. * by all modern binaries on Linux including the kernel.
  297. *
  298. * The ELF headers give *two* addresses: a physical address, and a virtual
  299. * address. We use the physical address; the Guest will map itself to the
  300. * virtual address.
  301. *
  302. * We return the starting address. */
  303. static unsigned long map_elf(int elf_fd, const Elf32_Ehdr *ehdr)
  304. {
  305. Elf32_Phdr phdr[ehdr->e_phnum];
  306. unsigned int i;
  307. /* Sanity checks on the main ELF header: an x86 executable with a
  308. * reasonable number of correctly-sized program headers. */
  309. if (ehdr->e_type != ET_EXEC
  310. || ehdr->e_machine != EM_386
  311. || ehdr->e_phentsize != sizeof(Elf32_Phdr)
  312. || ehdr->e_phnum < 1 || ehdr->e_phnum > 65536U/sizeof(Elf32_Phdr))
  313. errx(1, "Malformed elf header");
  314. /* An ELF executable contains an ELF header and a number of "program"
  315. * headers which indicate which parts ("segments") of the program to
  316. * load where. */
  317. /* We read in all the program headers at once: */
  318. if (lseek(elf_fd, ehdr->e_phoff, SEEK_SET) < 0)
  319. err(1, "Seeking to program headers");
  320. if (read(elf_fd, phdr, sizeof(phdr)) != sizeof(phdr))
  321. err(1, "Reading program headers");
  322. /* Try all the headers: there are usually only three. A read-only one,
  323. * a read-write one, and a "note" section which we don't load. */
  324. for (i = 0; i < ehdr->e_phnum; i++) {
  325. /* If this isn't a loadable segment, we ignore it */
  326. if (phdr[i].p_type != PT_LOAD)
  327. continue;
  328. verbose("Section %i: size %i addr %p\n",
  329. i, phdr[i].p_memsz, (void *)phdr[i].p_paddr);
  330. /* We map this section of the file at its physical address. */
  331. map_at(elf_fd, from_guest_phys(phdr[i].p_paddr),
  332. phdr[i].p_offset, phdr[i].p_filesz);
  333. }
  334. /* The entry point is given in the ELF header. */
  335. return ehdr->e_entry;
  336. }
  337. /*L:150 A bzImage, unlike an ELF file, is not meant to be loaded. You're
  338. * supposed to jump into it and it will unpack itself. We used to have to
  339. * perform some hairy magic because the unpacking code scared me.
  340. *
  341. * Fortunately, Jeremy Fitzhardinge convinced me it wasn't that hard and wrote
  342. * a small patch to jump over the tricky bits in the Guest, so now we just read
  343. * the funky header so we know where in the file to load, and away we go! */
  344. static unsigned long load_bzimage(int fd)
  345. {
  346. struct boot_params boot;
  347. int r;
  348. /* Modern bzImages get loaded at 1M. */
  349. void *p = from_guest_phys(0x100000);
  350. /* Go back to the start of the file and read the header. It should be
  351. * a Linux boot header (see Documentation/x86/i386/boot.txt) */
  352. lseek(fd, 0, SEEK_SET);
  353. read(fd, &boot, sizeof(boot));
  354. /* Inside the setup_hdr, we expect the magic "HdrS" */
  355. if (memcmp(&boot.hdr.header, "HdrS", 4) != 0)
  356. errx(1, "This doesn't look like a bzImage to me");
  357. /* Skip over the extra sectors of the header. */
  358. lseek(fd, (boot.hdr.setup_sects+1) * 512, SEEK_SET);
  359. /* Now read everything into memory. in nice big chunks. */
  360. while ((r = read(fd, p, 65536)) > 0)
  361. p += r;
  362. /* Finally, code32_start tells us where to enter the kernel. */
  363. return boot.hdr.code32_start;
  364. }
  365. /*L:140 Loading the kernel is easy when it's a "vmlinux", but most kernels
  366. * come wrapped up in the self-decompressing "bzImage" format. With a little
  367. * work, we can load those, too. */
  368. static unsigned long load_kernel(int fd)
  369. {
  370. Elf32_Ehdr hdr;
  371. /* Read in the first few bytes. */
  372. if (read(fd, &hdr, sizeof(hdr)) != sizeof(hdr))
  373. err(1, "Reading kernel");
  374. /* If it's an ELF file, it starts with "\177ELF" */
  375. if (memcmp(hdr.e_ident, ELFMAG, SELFMAG) == 0)
  376. return map_elf(fd, &hdr);
  377. /* Otherwise we assume it's a bzImage, and try to load it. */
  378. return load_bzimage(fd);
  379. }
  380. /* This is a trivial little helper to align pages. Andi Kleen hated it because
  381. * it calls getpagesize() twice: "it's dumb code."
  382. *
  383. * Kernel guys get really het up about optimization, even when it's not
  384. * necessary. I leave this code as a reaction against that. */
  385. static inline unsigned long page_align(unsigned long addr)
  386. {
  387. /* Add upwards and truncate downwards. */
  388. return ((addr + getpagesize()-1) & ~(getpagesize()-1));
  389. }
  390. /*L:180 An "initial ram disk" is a disk image loaded into memory along with
  391. * the kernel which the kernel can use to boot from without needing any
  392. * drivers. Most distributions now use this as standard: the initrd contains
  393. * the code to load the appropriate driver modules for the current machine.
  394. *
  395. * Importantly, James Morris works for RedHat, and Fedora uses initrds for its
  396. * kernels. He sent me this (and tells me when I break it). */
  397. static unsigned long load_initrd(const char *name, unsigned long mem)
  398. {
  399. int ifd;
  400. struct stat st;
  401. unsigned long len;
  402. ifd = open_or_die(name, O_RDONLY);
  403. /* fstat() is needed to get the file size. */
  404. if (fstat(ifd, &st) < 0)
  405. err(1, "fstat() on initrd '%s'", name);
  406. /* We map the initrd at the top of memory, but mmap wants it to be
  407. * page-aligned, so we round the size up for that. */
  408. len = page_align(st.st_size);
  409. map_at(ifd, from_guest_phys(mem - len), 0, st.st_size);
  410. /* Once a file is mapped, you can close the file descriptor. It's a
  411. * little odd, but quite useful. */
  412. close(ifd);
  413. verbose("mapped initrd %s size=%lu @ %p\n", name, len, (void*)mem-len);
  414. /* We return the initrd size. */
  415. return len;
  416. }
  417. /*:*/
  418. /* Simple routine to roll all the commandline arguments together with spaces
  419. * between them. */
  420. static void concat(char *dst, char *args[])
  421. {
  422. unsigned int i, len = 0;
  423. for (i = 0; args[i]; i++) {
  424. if (i) {
  425. strcat(dst+len, " ");
  426. len++;
  427. }
  428. strcpy(dst+len, args[i]);
  429. len += strlen(args[i]);
  430. }
  431. /* In case it's empty. */
  432. dst[len] = '\0';
  433. }
  434. /*L:185 This is where we actually tell the kernel to initialize the Guest. We
  435. * saw the arguments it expects when we looked at initialize() in lguest_user.c:
  436. * the base of Guest "physical" memory, the top physical page to allow and the
  437. * entry point for the Guest. */
  438. static void tell_kernel(unsigned long start)
  439. {
  440. unsigned long args[] = { LHREQ_INITIALIZE,
  441. (unsigned long)guest_base,
  442. guest_limit / getpagesize(), start };
  443. verbose("Guest: %p - %p (%#lx)\n",
  444. guest_base, guest_base + guest_limit, guest_limit);
  445. lguest_fd = open_or_die("/dev/lguest", O_RDWR);
  446. if (write(lguest_fd, args, sizeof(args)) < 0)
  447. err(1, "Writing to /dev/lguest");
  448. }
  449. /*:*/
  450. static void add_device_fd(int fd)
  451. {
  452. FD_SET(fd, &devices.infds);
  453. if (fd > devices.max_infd)
  454. devices.max_infd = fd;
  455. }
  456. /*L:200
  457. * The Waker.
  458. *
  459. * With console, block and network devices, we can have lots of input which we
  460. * need to process. We could try to tell the kernel what file descriptors to
  461. * watch, but handing a file descriptor mask through to the kernel is fairly
  462. * icky.
  463. *
  464. * Instead, we clone off a thread which watches the file descriptors and writes
  465. * the LHREQ_BREAK command to the /dev/lguest file descriptor to tell the Host
  466. * stop running the Guest. This causes the Launcher to return from the
  467. * /dev/lguest read with -EAGAIN, where it will write to /dev/lguest to reset
  468. * the LHREQ_BREAK and wake us up again.
  469. *
  470. * This, of course, is merely a different *kind* of icky.
  471. *
  472. * Given my well-known antipathy to threads, I'd prefer to use processes. But
  473. * it's easier to share Guest memory with threads, and trivial to share the
  474. * devices.infds as the Launcher changes it.
  475. */
  476. static int waker(void *unused)
  477. {
  478. /* Close the write end of the pipe: only the Launcher has it open. */
  479. close(waker_fds.pipe[1]);
  480. for (;;) {
  481. fd_set rfds = devices.infds;
  482. unsigned long args[] = { LHREQ_BREAK, 1 };
  483. unsigned int maxfd = devices.max_infd;
  484. /* We also listen to the pipe from the Launcher. */
  485. FD_SET(waker_fds.pipe[0], &rfds);
  486. if (waker_fds.pipe[0] > maxfd)
  487. maxfd = waker_fds.pipe[0];
  488. /* Wait until input is ready from one of the devices. */
  489. select(maxfd+1, &rfds, NULL, NULL, NULL);
  490. /* Message from Launcher? */
  491. if (FD_ISSET(waker_fds.pipe[0], &rfds)) {
  492. char c;
  493. /* If this fails, then assume Launcher has exited.
  494. * Don't do anything on exit: we're just a thread! */
  495. if (read(waker_fds.pipe[0], &c, 1) != 1)
  496. _exit(0);
  497. continue;
  498. }
  499. /* Send LHREQ_BREAK command to snap the Launcher out of it. */
  500. pwrite(lguest_fd, args, sizeof(args), cpu_id);
  501. }
  502. return 0;
  503. }
  504. /* This routine just sets up a pipe to the Waker process. */
  505. static void setup_waker(void)
  506. {
  507. /* This pipe is closed when Launcher dies, telling Waker. */
  508. if (pipe(waker_fds.pipe) != 0)
  509. err(1, "Creating pipe for Waker");
  510. if (clone(waker, malloc(4096) + 4096, CLONE_VM | SIGCHLD, NULL) == -1)
  511. err(1, "Creating Waker");
  512. }
  513. /*
  514. * Device Handling.
  515. *
  516. * When the Guest gives us a buffer, it sends an array of addresses and sizes.
  517. * We need to make sure it's not trying to reach into the Launcher itself, so
  518. * we have a convenient routine which checks it and exits with an error message
  519. * if something funny is going on:
  520. */
  521. static void *_check_pointer(unsigned long addr, unsigned int size,
  522. unsigned int line)
  523. {
  524. /* We have to separately check addr and addr+size, because size could
  525. * be huge and addr + size might wrap around. */
  526. if (addr >= guest_limit || addr + size >= guest_limit)
  527. errx(1, "%s:%i: Invalid address %#lx", __FILE__, line, addr);
  528. /* We return a pointer for the caller's convenience, now we know it's
  529. * safe to use. */
  530. return from_guest_phys(addr);
  531. }
  532. /* A macro which transparently hands the line number to the real function. */
  533. #define check_pointer(addr,size) _check_pointer(addr, size, __LINE__)
  534. /* Each buffer in the virtqueues is actually a chain of descriptors. This
  535. * function returns the next descriptor in the chain, or vq->vring.num if we're
  536. * at the end. */
  537. static unsigned next_desc(struct virtqueue *vq, unsigned int i)
  538. {
  539. unsigned int next;
  540. /* If this descriptor says it doesn't chain, we're done. */
  541. if (!(vq->vring.desc[i].flags & VRING_DESC_F_NEXT))
  542. return vq->vring.num;
  543. /* Check they're not leading us off end of descriptors. */
  544. next = vq->vring.desc[i].next;
  545. /* Make sure compiler knows to grab that: we don't want it changing! */
  546. wmb();
  547. if (next >= vq->vring.num)
  548. errx(1, "Desc next is %u", next);
  549. return next;
  550. }
  551. /* This looks in the virtqueue and for the first available buffer, and converts
  552. * it to an iovec for convenient access. Since descriptors consist of some
  553. * number of output then some number of input descriptors, it's actually two
  554. * iovecs, but we pack them into one and note how many of each there were.
  555. *
  556. * This function returns the descriptor number found, or vq->vring.num (which
  557. * is never a valid descriptor number) if none was found. */
  558. static unsigned get_vq_desc(struct virtqueue *vq,
  559. struct iovec iov[],
  560. unsigned int *out_num, unsigned int *in_num)
  561. {
  562. unsigned int i, head;
  563. u16 last_avail;
  564. /* Check it isn't doing very strange things with descriptor numbers. */
  565. last_avail = lg_last_avail(vq);
  566. if ((u16)(vq->vring.avail->idx - last_avail) > vq->vring.num)
  567. errx(1, "Guest moved used index from %u to %u",
  568. last_avail, vq->vring.avail->idx);
  569. /* If there's nothing new since last we looked, return invalid. */
  570. if (vq->vring.avail->idx == last_avail)
  571. return vq->vring.num;
  572. /* Grab the next descriptor number they're advertising, and increment
  573. * the index we've seen. */
  574. head = vq->vring.avail->ring[last_avail % vq->vring.num];
  575. lg_last_avail(vq)++;
  576. /* If their number is silly, that's a fatal mistake. */
  577. if (head >= vq->vring.num)
  578. errx(1, "Guest says index %u is available", head);
  579. /* When we start there are none of either input nor output. */
  580. *out_num = *in_num = 0;
  581. i = head;
  582. do {
  583. /* Grab the first descriptor, and check it's OK. */
  584. iov[*out_num + *in_num].iov_len = vq->vring.desc[i].len;
  585. iov[*out_num + *in_num].iov_base
  586. = check_pointer(vq->vring.desc[i].addr,
  587. vq->vring.desc[i].len);
  588. /* If this is an input descriptor, increment that count. */
  589. if (vq->vring.desc[i].flags & VRING_DESC_F_WRITE)
  590. (*in_num)++;
  591. else {
  592. /* If it's an output descriptor, they're all supposed
  593. * to come before any input descriptors. */
  594. if (*in_num)
  595. errx(1, "Descriptor has out after in");
  596. (*out_num)++;
  597. }
  598. /* If we've got too many, that implies a descriptor loop. */
  599. if (*out_num + *in_num > vq->vring.num)
  600. errx(1, "Looped descriptor");
  601. } while ((i = next_desc(vq, i)) != vq->vring.num);
  602. vq->inflight++;
  603. return head;
  604. }
  605. /* After we've used one of their buffers, we tell them about it. We'll then
  606. * want to send them an interrupt, using trigger_irq(). */
  607. static void add_used(struct virtqueue *vq, unsigned int head, int len)
  608. {
  609. struct vring_used_elem *used;
  610. /* The virtqueue contains a ring of used buffers. Get a pointer to the
  611. * next entry in that used ring. */
  612. used = &vq->vring.used->ring[vq->vring.used->idx % vq->vring.num];
  613. used->id = head;
  614. used->len = len;
  615. /* Make sure buffer is written before we update index. */
  616. wmb();
  617. vq->vring.used->idx++;
  618. vq->inflight--;
  619. }
  620. /* This actually sends the interrupt for this virtqueue */
  621. static void trigger_irq(struct virtqueue *vq)
  622. {
  623. unsigned long buf[] = { LHREQ_IRQ, vq->config.irq };
  624. /* If they don't want an interrupt, don't send one, unless empty. */
  625. if ((vq->vring.avail->flags & VRING_AVAIL_F_NO_INTERRUPT)
  626. && vq->inflight)
  627. return;
  628. /* Send the Guest an interrupt tell them we used something up. */
  629. if (write(lguest_fd, buf, sizeof(buf)) != 0)
  630. err(1, "Triggering irq %i", vq->config.irq);
  631. }
  632. /* And here's the combo meal deal. Supersize me! */
  633. static void add_used_and_trigger(struct virtqueue *vq, unsigned head, int len)
  634. {
  635. add_used(vq, head, len);
  636. trigger_irq(vq);
  637. }
  638. /*
  639. * The Console
  640. *
  641. * Here is the input terminal setting we save, and the routine to restore them
  642. * on exit so the user gets their terminal back. */
  643. static struct termios orig_term;
  644. static void restore_term(void)
  645. {
  646. tcsetattr(STDIN_FILENO, TCSANOW, &orig_term);
  647. }
  648. /* We associate some data with the console for our exit hack. */
  649. struct console_abort
  650. {
  651. /* How many times have they hit ^C? */
  652. int count;
  653. /* When did they start? */
  654. struct timeval start;
  655. };
  656. /* This is the routine which handles console input (ie. stdin). */
  657. static bool handle_console_input(struct device *dev)
  658. {
  659. int len;
  660. unsigned int head, in_num, out_num;
  661. struct iovec iov[dev->vq->vring.num];
  662. struct console_abort *abort = dev->priv;
  663. /* First we need a console buffer from the Guests's input virtqueue. */
  664. head = get_vq_desc(dev->vq, iov, &out_num, &in_num);
  665. /* If they're not ready for input, stop listening to this file
  666. * descriptor. We'll start again once they add an input buffer. */
  667. if (head == dev->vq->vring.num)
  668. return false;
  669. if (out_num)
  670. errx(1, "Output buffers in console in queue?");
  671. /* This is why we convert to iovecs: the readv() call uses them, and so
  672. * it reads straight into the Guest's buffer. */
  673. len = readv(dev->fd, iov, in_num);
  674. if (len <= 0) {
  675. /* This implies that the console is closed, is /dev/null, or
  676. * something went terribly wrong. */
  677. warnx("Failed to get console input, ignoring console.");
  678. /* Put the input terminal back. */
  679. restore_term();
  680. /* Remove callback from input vq, so it doesn't restart us. */
  681. dev->vq->handle_output = NULL;
  682. /* Stop listening to this fd: don't call us again. */
  683. return false;
  684. }
  685. /* Tell the Guest about the new input. */
  686. add_used_and_trigger(dev->vq, head, len);
  687. /* Three ^C within one second? Exit.
  688. *
  689. * This is such a hack, but works surprisingly well. Each ^C has to be
  690. * in a buffer by itself, so they can't be too fast. But we check that
  691. * we get three within about a second, so they can't be too slow. */
  692. if (len == 1 && ((char *)iov[0].iov_base)[0] == 3) {
  693. if (!abort->count++)
  694. gettimeofday(&abort->start, NULL);
  695. else if (abort->count == 3) {
  696. struct timeval now;
  697. gettimeofday(&now, NULL);
  698. if (now.tv_sec <= abort->start.tv_sec+1) {
  699. unsigned long args[] = { LHREQ_BREAK, 0 };
  700. /* Close the fd so Waker will know it has to
  701. * exit. */
  702. close(waker_fds.pipe[1]);
  703. /* Just in case Waker is blocked in BREAK, send
  704. * unbreak now. */
  705. write(lguest_fd, args, sizeof(args));
  706. exit(2);
  707. }
  708. abort->count = 0;
  709. }
  710. } else
  711. /* Any other key resets the abort counter. */
  712. abort->count = 0;
  713. /* Everything went OK! */
  714. return true;
  715. }
  716. /* Handling output for console is simple: we just get all the output buffers
  717. * and write them to stdout. */
  718. static void handle_console_output(struct virtqueue *vq, bool timeout)
  719. {
  720. unsigned int head, out, in;
  721. int len;
  722. struct iovec iov[vq->vring.num];
  723. /* Keep getting output buffers from the Guest until we run out. */
  724. while ((head = get_vq_desc(vq, iov, &out, &in)) != vq->vring.num) {
  725. if (in)
  726. errx(1, "Input buffers in output queue?");
  727. len = writev(STDOUT_FILENO, iov, out);
  728. add_used_and_trigger(vq, head, len);
  729. }
  730. }
  731. /* This is called when we no longer want to hear about Guest changes to a
  732. * virtqueue. This is more efficient in high-traffic cases, but it means we
  733. * have to set a timer to check if any more changes have occurred. */
  734. static void block_vq(struct virtqueue *vq)
  735. {
  736. struct itimerval itm;
  737. vq->vring.used->flags |= VRING_USED_F_NO_NOTIFY;
  738. vq->blocked = true;
  739. itm.it_interval.tv_sec = 0;
  740. itm.it_interval.tv_usec = 0;
  741. itm.it_value.tv_sec = 0;
  742. itm.it_value.tv_usec = timeout_usec;
  743. setitimer(ITIMER_REAL, &itm, NULL);
  744. }
  745. /*
  746. * The Network
  747. *
  748. * Handling output for network is also simple: we get all the output buffers
  749. * and write them (ignoring the first element) to this device's file descriptor
  750. * (/dev/net/tun).
  751. */
  752. static void handle_net_output(struct virtqueue *vq, bool timeout)
  753. {
  754. unsigned int head, out, in, num = 0;
  755. int len;
  756. struct iovec iov[vq->vring.num];
  757. static int last_timeout_num;
  758. /* Keep getting output buffers from the Guest until we run out. */
  759. while ((head = get_vq_desc(vq, iov, &out, &in)) != vq->vring.num) {
  760. if (in)
  761. errx(1, "Input buffers in output queue?");
  762. len = writev(vq->dev->fd, iov, out);
  763. if (len < 0)
  764. err(1, "Writing network packet to tun");
  765. add_used_and_trigger(vq, head, len);
  766. num++;
  767. }
  768. /* Block further kicks and set up a timer if we saw anything. */
  769. if (!timeout && num)
  770. block_vq(vq);
  771. /* We never quite know how long should we wait before we check the
  772. * queue again for more packets. We start at 500 microseconds, and if
  773. * we get fewer packets than last time, we assume we made the timeout
  774. * too small and increase it by 10 microseconds. Otherwise, we drop it
  775. * by one microsecond every time. It seems to work well enough. */
  776. if (timeout) {
  777. if (num < last_timeout_num)
  778. timeout_usec += 10;
  779. else if (timeout_usec > 1)
  780. timeout_usec--;
  781. last_timeout_num = num;
  782. }
  783. }
  784. /* This is where we handle a packet coming in from the tun device to our
  785. * Guest. */
  786. static bool handle_tun_input(struct device *dev)
  787. {
  788. unsigned int head, in_num, out_num;
  789. int len;
  790. struct iovec iov[dev->vq->vring.num];
  791. /* First we need a network buffer from the Guests's recv virtqueue. */
  792. head = get_vq_desc(dev->vq, iov, &out_num, &in_num);
  793. if (head == dev->vq->vring.num) {
  794. /* Now, it's expected that if we try to send a packet too
  795. * early, the Guest won't be ready yet. Wait until the device
  796. * status says it's ready. */
  797. /* FIXME: Actually want DRIVER_ACTIVE here. */
  798. /* Now tell it we want to know if new things appear. */
  799. dev->vq->vring.used->flags &= ~VRING_USED_F_NO_NOTIFY;
  800. wmb();
  801. /* We'll turn this back on if input buffers are registered. */
  802. return false;
  803. } else if (out_num)
  804. errx(1, "Output buffers in network recv queue?");
  805. /* Read the packet from the device directly into the Guest's buffer. */
  806. len = readv(dev->fd, iov, in_num);
  807. if (len <= 0)
  808. err(1, "reading network");
  809. /* Tell the Guest about the new packet. */
  810. add_used_and_trigger(dev->vq, head, len);
  811. verbose("tun input packet len %i [%02x %02x] (%s)\n", len,
  812. ((u8 *)iov[1].iov_base)[0], ((u8 *)iov[1].iov_base)[1],
  813. head != dev->vq->vring.num ? "sent" : "discarded");
  814. /* All good. */
  815. return true;
  816. }
  817. /*L:215 This is the callback attached to the network and console input
  818. * virtqueues: it ensures we try again, in case we stopped console or net
  819. * delivery because Guest didn't have any buffers. */
  820. static void enable_fd(struct virtqueue *vq, bool timeout)
  821. {
  822. add_device_fd(vq->dev->fd);
  823. /* Snap the Waker out of its select loop. */
  824. write(waker_fds.pipe[1], "", 1);
  825. }
  826. static void net_enable_fd(struct virtqueue *vq, bool timeout)
  827. {
  828. /* We don't need to know again when Guest refills receive buffer. */
  829. vq->vring.used->flags |= VRING_USED_F_NO_NOTIFY;
  830. enable_fd(vq, timeout);
  831. }
  832. /* When the Guest tells us they updated the status field, we handle it. */
  833. static void update_device_status(struct device *dev)
  834. {
  835. struct virtqueue *vq;
  836. /* This is a reset. */
  837. if (dev->desc->status == 0) {
  838. verbose("Resetting device %s\n", dev->name);
  839. /* Clear any features they've acked. */
  840. memset(get_feature_bits(dev) + dev->feature_len, 0,
  841. dev->feature_len);
  842. /* Zero out the virtqueues. */
  843. for (vq = dev->vq; vq; vq = vq->next) {
  844. memset(vq->vring.desc, 0,
  845. vring_size(vq->config.num, LGUEST_VRING_ALIGN));
  846. lg_last_avail(vq) = 0;
  847. }
  848. } else if (dev->desc->status & VIRTIO_CONFIG_S_FAILED) {
  849. warnx("Device %s configuration FAILED", dev->name);
  850. } else if (dev->desc->status & VIRTIO_CONFIG_S_DRIVER_OK) {
  851. unsigned int i;
  852. verbose("Device %s OK: offered", dev->name);
  853. for (i = 0; i < dev->feature_len; i++)
  854. verbose(" %02x", get_feature_bits(dev)[i]);
  855. verbose(", accepted");
  856. for (i = 0; i < dev->feature_len; i++)
  857. verbose(" %02x", get_feature_bits(dev)
  858. [dev->feature_len+i]);
  859. if (dev->ready)
  860. dev->ready(dev);
  861. }
  862. }
  863. /* This is the generic routine we call when the Guest uses LHCALL_NOTIFY. */
  864. static void handle_output(unsigned long addr)
  865. {
  866. struct device *i;
  867. struct virtqueue *vq;
  868. /* Check each device and virtqueue. */
  869. for (i = devices.dev; i; i = i->next) {
  870. /* Notifications to device descriptors update device status. */
  871. if (from_guest_phys(addr) == i->desc) {
  872. update_device_status(i);
  873. return;
  874. }
  875. /* Notifications to virtqueues mean output has occurred. */
  876. for (vq = i->vq; vq; vq = vq->next) {
  877. if (vq->config.pfn != addr/getpagesize())
  878. continue;
  879. /* Guest should acknowledge (and set features!) before
  880. * using the device. */
  881. if (i->desc->status == 0) {
  882. warnx("%s gave early output", i->name);
  883. return;
  884. }
  885. if (strcmp(vq->dev->name, "console") != 0)
  886. verbose("Output to %s\n", vq->dev->name);
  887. if (vq->handle_output)
  888. vq->handle_output(vq, false);
  889. return;
  890. }
  891. }
  892. /* Early console write is done using notify on a nul-terminated string
  893. * in Guest memory. */
  894. if (addr >= guest_limit)
  895. errx(1, "Bad NOTIFY %#lx", addr);
  896. write(STDOUT_FILENO, from_guest_phys(addr),
  897. strnlen(from_guest_phys(addr), guest_limit - addr));
  898. }
  899. static void handle_timeout(void)
  900. {
  901. char buf[32];
  902. struct device *i;
  903. struct virtqueue *vq;
  904. /* Clear the pipe */
  905. read(timeoutpipe[0], buf, sizeof(buf));
  906. /* Check each device and virtqueue: flush blocked ones. */
  907. for (i = devices.dev; i; i = i->next) {
  908. for (vq = i->vq; vq; vq = vq->next) {
  909. if (!vq->blocked)
  910. continue;
  911. vq->vring.used->flags &= ~VRING_USED_F_NO_NOTIFY;
  912. vq->blocked = false;
  913. if (vq->handle_output)
  914. vq->handle_output(vq, true);
  915. }
  916. }
  917. }
  918. /* This is called when the Waker wakes us up: check for incoming file
  919. * descriptors. */
  920. static void handle_input(void)
  921. {
  922. /* select() wants a zeroed timeval to mean "don't wait". */
  923. struct timeval poll = { .tv_sec = 0, .tv_usec = 0 };
  924. for (;;) {
  925. struct device *i;
  926. fd_set fds = devices.infds;
  927. int num;
  928. num = select(devices.max_infd+1, &fds, NULL, NULL, &poll);
  929. /* Could get interrupted */
  930. if (num < 0)
  931. continue;
  932. /* If nothing is ready, we're done. */
  933. if (num == 0)
  934. break;
  935. /* Otherwise, call the device(s) which have readable file
  936. * descriptors and a method of handling them. */
  937. for (i = devices.dev; i; i = i->next) {
  938. if (i->handle_input && FD_ISSET(i->fd, &fds)) {
  939. if (i->handle_input(i))
  940. continue;
  941. /* If handle_input() returns false, it means we
  942. * should no longer service it. Networking and
  943. * console do this when there's no input
  944. * buffers to deliver into. Console also uses
  945. * it when it discovers that stdin is closed. */
  946. FD_CLR(i->fd, &devices.infds);
  947. }
  948. }
  949. /* Is this the timeout fd? */
  950. if (FD_ISSET(timeoutpipe[0], &fds))
  951. handle_timeout();
  952. }
  953. }
  954. /*L:190
  955. * Device Setup
  956. *
  957. * All devices need a descriptor so the Guest knows it exists, and a "struct
  958. * device" so the Launcher can keep track of it. We have common helper
  959. * routines to allocate and manage them.
  960. */
  961. /* The layout of the device page is a "struct lguest_device_desc" followed by a
  962. * number of virtqueue descriptors, then two sets of feature bits, then an
  963. * array of configuration bytes. This routine returns the configuration
  964. * pointer. */
  965. static u8 *device_config(const struct device *dev)
  966. {
  967. return (void *)(dev->desc + 1)
  968. + dev->num_vq * sizeof(struct lguest_vqconfig)
  969. + dev->feature_len * 2;
  970. }
  971. /* This routine allocates a new "struct lguest_device_desc" from descriptor
  972. * table page just above the Guest's normal memory. It returns a pointer to
  973. * that descriptor. */
  974. static struct lguest_device_desc *new_dev_desc(u16 type)
  975. {
  976. struct lguest_device_desc d = { .type = type };
  977. void *p;
  978. /* Figure out where the next device config is, based on the last one. */
  979. if (devices.lastdev)
  980. p = device_config(devices.lastdev)
  981. + devices.lastdev->desc->config_len;
  982. else
  983. p = devices.descpage;
  984. /* We only have one page for all the descriptors. */
  985. if (p + sizeof(d) > (void *)devices.descpage + getpagesize())
  986. errx(1, "Too many devices");
  987. /* p might not be aligned, so we memcpy in. */
  988. return memcpy(p, &d, sizeof(d));
  989. }
  990. /* Each device descriptor is followed by the description of its virtqueues. We
  991. * specify how many descriptors the virtqueue is to have. */
  992. static void add_virtqueue(struct device *dev, unsigned int num_descs,
  993. void (*handle_output)(struct virtqueue *, bool))
  994. {
  995. unsigned int pages;
  996. struct virtqueue **i, *vq = malloc(sizeof(*vq));
  997. void *p;
  998. /* First we need some memory for this virtqueue. */
  999. pages = (vring_size(num_descs, LGUEST_VRING_ALIGN) + getpagesize() - 1)
  1000. / getpagesize();
  1001. p = get_pages(pages);
  1002. /* Initialize the virtqueue */
  1003. vq->next = NULL;
  1004. vq->last_avail_idx = 0;
  1005. vq->dev = dev;
  1006. vq->inflight = 0;
  1007. vq->blocked = false;
  1008. /* Initialize the configuration. */
  1009. vq->config.num = num_descs;
  1010. vq->config.irq = devices.next_irq++;
  1011. vq->config.pfn = to_guest_phys(p) / getpagesize();
  1012. /* Initialize the vring. */
  1013. vring_init(&vq->vring, num_descs, p, LGUEST_VRING_ALIGN);
  1014. /* Append virtqueue to this device's descriptor. We use
  1015. * device_config() to get the end of the device's current virtqueues;
  1016. * we check that we haven't added any config or feature information
  1017. * yet, otherwise we'd be overwriting them. */
  1018. assert(dev->desc->config_len == 0 && dev->desc->feature_len == 0);
  1019. memcpy(device_config(dev), &vq->config, sizeof(vq->config));
  1020. dev->num_vq++;
  1021. dev->desc->num_vq++;
  1022. verbose("Virtqueue page %#lx\n", to_guest_phys(p));
  1023. /* Add to tail of list, so dev->vq is first vq, dev->vq->next is
  1024. * second. */
  1025. for (i = &dev->vq; *i; i = &(*i)->next);
  1026. *i = vq;
  1027. /* Set the routine to call when the Guest does something to this
  1028. * virtqueue. */
  1029. vq->handle_output = handle_output;
  1030. /* As an optimization, set the advisory "Don't Notify Me" flag if we
  1031. * don't have a handler */
  1032. if (!handle_output)
  1033. vq->vring.used->flags = VRING_USED_F_NO_NOTIFY;
  1034. }
  1035. /* The first half of the feature bitmask is for us to advertise features. The
  1036. * second half is for the Guest to accept features. */
  1037. static void add_feature(struct device *dev, unsigned bit)
  1038. {
  1039. u8 *features = get_feature_bits(dev);
  1040. /* We can't extend the feature bits once we've added config bytes */
  1041. if (dev->desc->feature_len <= bit / CHAR_BIT) {
  1042. assert(dev->desc->config_len == 0);
  1043. dev->feature_len = dev->desc->feature_len = (bit/CHAR_BIT) + 1;
  1044. }
  1045. features[bit / CHAR_BIT] |= (1 << (bit % CHAR_BIT));
  1046. }
  1047. /* This routine sets the configuration fields for an existing device's
  1048. * descriptor. It only works for the last device, but that's OK because that's
  1049. * how we use it. */
  1050. static void set_config(struct device *dev, unsigned len, const void *conf)
  1051. {
  1052. /* Check we haven't overflowed our single page. */
  1053. if (device_config(dev) + len > devices.descpage + getpagesize())
  1054. errx(1, "Too many devices");
  1055. /* Copy in the config information, and store the length. */
  1056. memcpy(device_config(dev), conf, len);
  1057. dev->desc->config_len = len;
  1058. }
  1059. /* This routine does all the creation and setup of a new device, including
  1060. * calling new_dev_desc() to allocate the descriptor and device memory.
  1061. *
  1062. * See what I mean about userspace being boring? */
  1063. static struct device *new_device(const char *name, u16 type, int fd,
  1064. bool (*handle_input)(struct device *))
  1065. {
  1066. struct device *dev = malloc(sizeof(*dev));
  1067. /* Now we populate the fields one at a time. */
  1068. dev->fd = fd;
  1069. /* If we have an input handler for this file descriptor, then we add it
  1070. * to the device_list's fdset and maxfd. */
  1071. if (handle_input)
  1072. add_device_fd(dev->fd);
  1073. dev->desc = new_dev_desc(type);
  1074. dev->handle_input = handle_input;
  1075. dev->name = name;
  1076. dev->vq = NULL;
  1077. dev->ready = NULL;
  1078. dev->feature_len = 0;
  1079. dev->num_vq = 0;
  1080. /* Append to device list. Prepending to a single-linked list is
  1081. * easier, but the user expects the devices to be arranged on the bus
  1082. * in command-line order. The first network device on the command line
  1083. * is eth0, the first block device /dev/vda, etc. */
  1084. if (devices.lastdev)
  1085. devices.lastdev->next = dev;
  1086. else
  1087. devices.dev = dev;
  1088. devices.lastdev = dev;
  1089. return dev;
  1090. }
  1091. /* Our first setup routine is the console. It's a fairly simple device, but
  1092. * UNIX tty handling makes it uglier than it could be. */
  1093. static void setup_console(void)
  1094. {
  1095. struct device *dev;
  1096. /* If we can save the initial standard input settings... */
  1097. if (tcgetattr(STDIN_FILENO, &orig_term) == 0) {
  1098. struct termios term = orig_term;
  1099. /* Then we turn off echo, line buffering and ^C etc. We want a
  1100. * raw input stream to the Guest. */
  1101. term.c_lflag &= ~(ISIG|ICANON|ECHO);
  1102. tcsetattr(STDIN_FILENO, TCSANOW, &term);
  1103. /* If we exit gracefully, the original settings will be
  1104. * restored so the user can see what they're typing. */
  1105. atexit(restore_term);
  1106. }
  1107. dev = new_device("console", VIRTIO_ID_CONSOLE,
  1108. STDIN_FILENO, handle_console_input);
  1109. /* We store the console state in dev->priv, and initialize it. */
  1110. dev->priv = malloc(sizeof(struct console_abort));
  1111. ((struct console_abort *)dev->priv)->count = 0;
  1112. /* The console needs two virtqueues: the input then the output. When
  1113. * they put something the input queue, we make sure we're listening to
  1114. * stdin. When they put something in the output queue, we write it to
  1115. * stdout. */
  1116. add_virtqueue(dev, VIRTQUEUE_NUM, enable_fd);
  1117. add_virtqueue(dev, VIRTQUEUE_NUM, handle_console_output);
  1118. verbose("device %u: console\n", devices.device_num++);
  1119. }
  1120. /*:*/
  1121. static void timeout_alarm(int sig)
  1122. {
  1123. write(timeoutpipe[1], "", 1);
  1124. }
  1125. static void setup_timeout(void)
  1126. {
  1127. if (pipe(timeoutpipe) != 0)
  1128. err(1, "Creating timeout pipe");
  1129. if (fcntl(timeoutpipe[1], F_SETFL,
  1130. fcntl(timeoutpipe[1], F_GETFL) | O_NONBLOCK) != 0)
  1131. err(1, "Making timeout pipe nonblocking");
  1132. add_device_fd(timeoutpipe[0]);
  1133. signal(SIGALRM, timeout_alarm);
  1134. }
  1135. /*M:010 Inter-guest networking is an interesting area. Simplest is to have a
  1136. * --sharenet=<name> option which opens or creates a named pipe. This can be
  1137. * used to send packets to another guest in a 1:1 manner.
  1138. *
  1139. * More sopisticated is to use one of the tools developed for project like UML
  1140. * to do networking.
  1141. *
  1142. * Faster is to do virtio bonding in kernel. Doing this 1:1 would be
  1143. * completely generic ("here's my vring, attach to your vring") and would work
  1144. * for any traffic. Of course, namespace and permissions issues need to be
  1145. * dealt with. A more sophisticated "multi-channel" virtio_net.c could hide
  1146. * multiple inter-guest channels behind one interface, although it would
  1147. * require some manner of hotplugging new virtio channels.
  1148. *
  1149. * Finally, we could implement a virtio network switch in the kernel. :*/
  1150. static u32 str2ip(const char *ipaddr)
  1151. {
  1152. unsigned int b[4];
  1153. if (sscanf(ipaddr, "%u.%u.%u.%u", &b[0], &b[1], &b[2], &b[3]) != 4)
  1154. errx(1, "Failed to parse IP address '%s'", ipaddr);
  1155. return (b[0] << 24) | (b[1] << 16) | (b[2] << 8) | b[3];
  1156. }
  1157. static void str2mac(const char *macaddr, unsigned char mac[6])
  1158. {
  1159. unsigned int m[6];
  1160. if (sscanf(macaddr, "%02x:%02x:%02x:%02x:%02x:%02x",
  1161. &m[0], &m[1], &m[2], &m[3], &m[4], &m[5]) != 6)
  1162. errx(1, "Failed to parse mac address '%s'", macaddr);
  1163. mac[0] = m[0];
  1164. mac[1] = m[1];
  1165. mac[2] = m[2];
  1166. mac[3] = m[3];
  1167. mac[4] = m[4];
  1168. mac[5] = m[5];
  1169. }
  1170. /* This code is "adapted" from libbridge: it attaches the Host end of the
  1171. * network device to the bridge device specified by the command line.
  1172. *
  1173. * This is yet another James Morris contribution (I'm an IP-level guy, so I
  1174. * dislike bridging), and I just try not to break it. */
  1175. static void add_to_bridge(int fd, const char *if_name, const char *br_name)
  1176. {
  1177. int ifidx;
  1178. struct ifreq ifr;
  1179. if (!*br_name)
  1180. errx(1, "must specify bridge name");
  1181. ifidx = if_nametoindex(if_name);
  1182. if (!ifidx)
  1183. errx(1, "interface %s does not exist!", if_name);
  1184. strncpy(ifr.ifr_name, br_name, IFNAMSIZ);
  1185. ifr.ifr_name[IFNAMSIZ-1] = '\0';
  1186. ifr.ifr_ifindex = ifidx;
  1187. if (ioctl(fd, SIOCBRADDIF, &ifr) < 0)
  1188. err(1, "can't add %s to bridge %s", if_name, br_name);
  1189. }
  1190. /* This sets up the Host end of the network device with an IP address, brings
  1191. * it up so packets will flow, the copies the MAC address into the hwaddr
  1192. * pointer. */
  1193. static void configure_device(int fd, const char *tapif, u32 ipaddr)
  1194. {
  1195. struct ifreq ifr;
  1196. struct sockaddr_in *sin = (struct sockaddr_in *)&ifr.ifr_addr;
  1197. memset(&ifr, 0, sizeof(ifr));
  1198. strcpy(ifr.ifr_name, tapif);
  1199. /* Don't read these incantations. Just cut & paste them like I did! */
  1200. sin->sin_family = AF_INET;
  1201. sin->sin_addr.s_addr = htonl(ipaddr);
  1202. if (ioctl(fd, SIOCSIFADDR, &ifr) != 0)
  1203. err(1, "Setting %s interface address", tapif);
  1204. ifr.ifr_flags = IFF_UP;
  1205. if (ioctl(fd, SIOCSIFFLAGS, &ifr) != 0)
  1206. err(1, "Bringing interface %s up", tapif);
  1207. }
  1208. static int get_tun_device(char tapif[IFNAMSIZ])
  1209. {
  1210. struct ifreq ifr;
  1211. int netfd;
  1212. /* Start with this zeroed. Messy but sure. */
  1213. memset(&ifr, 0, sizeof(ifr));
  1214. /* We open the /dev/net/tun device and tell it we want a tap device. A
  1215. * tap device is like a tun device, only somehow different. To tell
  1216. * the truth, I completely blundered my way through this code, but it
  1217. * works now! */
  1218. netfd = open_or_die("/dev/net/tun", O_RDWR);
  1219. ifr.ifr_flags = IFF_TAP | IFF_NO_PI | IFF_VNET_HDR;
  1220. strcpy(ifr.ifr_name, "tap%d");
  1221. if (ioctl(netfd, TUNSETIFF, &ifr) != 0)
  1222. err(1, "configuring /dev/net/tun");
  1223. if (ioctl(netfd, TUNSETOFFLOAD,
  1224. TUN_F_CSUM|TUN_F_TSO4|TUN_F_TSO6|TUN_F_TSO_ECN) != 0)
  1225. err(1, "Could not set features for tun device");
  1226. /* We don't need checksums calculated for packets coming in this
  1227. * device: trust us! */
  1228. ioctl(netfd, TUNSETNOCSUM, 1);
  1229. memcpy(tapif, ifr.ifr_name, IFNAMSIZ);
  1230. return netfd;
  1231. }
  1232. /*L:195 Our network is a Host<->Guest network. This can either use bridging or
  1233. * routing, but the principle is the same: it uses the "tun" device to inject
  1234. * packets into the Host as if they came in from a normal network card. We
  1235. * just shunt packets between the Guest and the tun device. */
  1236. static void setup_tun_net(char *arg)
  1237. {
  1238. struct device *dev;
  1239. int netfd, ipfd;
  1240. u32 ip = INADDR_ANY;
  1241. bool bridging = false;
  1242. char tapif[IFNAMSIZ], *p;
  1243. struct virtio_net_config conf;
  1244. netfd = get_tun_device(tapif);
  1245. /* First we create a new network device. */
  1246. dev = new_device("net", VIRTIO_ID_NET, netfd, handle_tun_input);
  1247. /* Network devices need a receive and a send queue, just like
  1248. * console. */
  1249. add_virtqueue(dev, VIRTQUEUE_NUM, net_enable_fd);
  1250. add_virtqueue(dev, VIRTQUEUE_NUM, handle_net_output);
  1251. /* We need a socket to perform the magic network ioctls to bring up the
  1252. * tap interface, connect to the bridge etc. Any socket will do! */
  1253. ipfd = socket(PF_INET, SOCK_DGRAM, IPPROTO_IP);
  1254. if (ipfd < 0)
  1255. err(1, "opening IP socket");
  1256. /* If the command line was --tunnet=bridge:<name> do bridging. */
  1257. if (!strncmp(BRIDGE_PFX, arg, strlen(BRIDGE_PFX))) {
  1258. arg += strlen(BRIDGE_PFX);
  1259. bridging = true;
  1260. }
  1261. /* A mac address may follow the bridge name or IP address */
  1262. p = strchr(arg, ':');
  1263. if (p) {
  1264. str2mac(p+1, conf.mac);
  1265. add_feature(dev, VIRTIO_NET_F_MAC);
  1266. *p = '\0';
  1267. }
  1268. /* arg is now either an IP address or a bridge name */
  1269. if (bridging)
  1270. add_to_bridge(ipfd, tapif, arg);
  1271. else
  1272. ip = str2ip(arg);
  1273. /* Set up the tun device. */
  1274. configure_device(ipfd, tapif, ip);
  1275. add_feature(dev, VIRTIO_F_NOTIFY_ON_EMPTY);
  1276. /* Expect Guest to handle everything except UFO */
  1277. add_feature(dev, VIRTIO_NET_F_CSUM);
  1278. add_feature(dev, VIRTIO_NET_F_GUEST_CSUM);
  1279. add_feature(dev, VIRTIO_NET_F_GUEST_TSO4);
  1280. add_feature(dev, VIRTIO_NET_F_GUEST_TSO6);
  1281. add_feature(dev, VIRTIO_NET_F_GUEST_ECN);
  1282. add_feature(dev, VIRTIO_NET_F_HOST_TSO4);
  1283. add_feature(dev, VIRTIO_NET_F_HOST_TSO6);
  1284. add_feature(dev, VIRTIO_NET_F_HOST_ECN);
  1285. set_config(dev, sizeof(conf), &conf);
  1286. /* We don't need the socket any more; setup is done. */
  1287. close(ipfd);
  1288. devices.device_num++;
  1289. if (bridging)
  1290. verbose("device %u: tun %s attached to bridge: %s\n",
  1291. devices.device_num, tapif, arg);
  1292. else
  1293. verbose("device %u: tun %s: %s\n",
  1294. devices.device_num, tapif, arg);
  1295. }
  1296. /* Our block (disk) device should be really simple: the Guest asks for a block
  1297. * number and we read or write that position in the file. Unfortunately, that
  1298. * was amazingly slow: the Guest waits until the read is finished before
  1299. * running anything else, even if it could have been doing useful work.
  1300. *
  1301. * We could use async I/O, except it's reputed to suck so hard that characters
  1302. * actually go missing from your code when you try to use it.
  1303. *
  1304. * So we farm the I/O out to thread, and communicate with it via a pipe. */
  1305. /* This hangs off device->priv. */
  1306. struct vblk_info
  1307. {
  1308. /* The size of the file. */
  1309. off64_t len;
  1310. /* The file descriptor for the file. */
  1311. int fd;
  1312. /* IO thread listens on this file descriptor [0]. */
  1313. int workpipe[2];
  1314. /* IO thread writes to this file descriptor to mark it done, then
  1315. * Launcher triggers interrupt to Guest. */
  1316. int done_fd;
  1317. };
  1318. /*L:210
  1319. * The Disk
  1320. *
  1321. * Remember that the block device is handled by a separate I/O thread. We head
  1322. * straight into the core of that thread here:
  1323. */
  1324. static bool service_io(struct device *dev)
  1325. {
  1326. struct vblk_info *vblk = dev->priv;
  1327. unsigned int head, out_num, in_num, wlen;
  1328. int ret;
  1329. u8 *in;
  1330. struct virtio_blk_outhdr *out;
  1331. struct iovec iov[dev->vq->vring.num];
  1332. off64_t off;
  1333. /* See if there's a request waiting. If not, nothing to do. */
  1334. head = get_vq_desc(dev->vq, iov, &out_num, &in_num);
  1335. if (head == dev->vq->vring.num)
  1336. return false;
  1337. /* Every block request should contain at least one output buffer
  1338. * (detailing the location on disk and the type of request) and one
  1339. * input buffer (to hold the result). */
  1340. if (out_num == 0 || in_num == 0)
  1341. errx(1, "Bad virtblk cmd %u out=%u in=%u",
  1342. head, out_num, in_num);
  1343. out = convert(&iov[0], struct virtio_blk_outhdr);
  1344. in = convert(&iov[out_num+in_num-1], u8);
  1345. off = out->sector * 512;
  1346. /* The block device implements "barriers", where the Guest indicates
  1347. * that it wants all previous writes to occur before this write. We
  1348. * don't have a way of asking our kernel to do a barrier, so we just
  1349. * synchronize all the data in the file. Pretty poor, no? */
  1350. if (out->type & VIRTIO_BLK_T_BARRIER)
  1351. fdatasync(vblk->fd);
  1352. /* In general the virtio block driver is allowed to try SCSI commands.
  1353. * It'd be nice if we supported eject, for example, but we don't. */
  1354. if (out->type & VIRTIO_BLK_T_SCSI_CMD) {
  1355. fprintf(stderr, "Scsi commands unsupported\n");
  1356. *in = VIRTIO_BLK_S_UNSUPP;
  1357. wlen = sizeof(*in);
  1358. } else if (out->type & VIRTIO_BLK_T_OUT) {
  1359. /* Write */
  1360. /* Move to the right location in the block file. This can fail
  1361. * if they try to write past end. */
  1362. if (lseek64(vblk->fd, off, SEEK_SET) != off)
  1363. err(1, "Bad seek to sector %llu", out->sector);
  1364. ret = writev(vblk->fd, iov+1, out_num-1);
  1365. verbose("WRITE to sector %llu: %i\n", out->sector, ret);
  1366. /* Grr... Now we know how long the descriptor they sent was, we
  1367. * make sure they didn't try to write over the end of the block
  1368. * file (possibly extending it). */
  1369. if (ret > 0 && off + ret > vblk->len) {
  1370. /* Trim it back to the correct length */
  1371. ftruncate64(vblk->fd, vblk->len);
  1372. /* Die, bad Guest, die. */
  1373. errx(1, "Write past end %llu+%u", off, ret);
  1374. }
  1375. wlen = sizeof(*in);
  1376. *in = (ret >= 0 ? VIRTIO_BLK_S_OK : VIRTIO_BLK_S_IOERR);
  1377. } else {
  1378. /* Read */
  1379. /* Move to the right location in the block file. This can fail
  1380. * if they try to read past end. */
  1381. if (lseek64(vblk->fd, off, SEEK_SET) != off)
  1382. err(1, "Bad seek to sector %llu", out->sector);
  1383. ret = readv(vblk->fd, iov+1, in_num-1);
  1384. verbose("READ from sector %llu: %i\n", out->sector, ret);
  1385. if (ret >= 0) {
  1386. wlen = sizeof(*in) + ret;
  1387. *in = VIRTIO_BLK_S_OK;
  1388. } else {
  1389. wlen = sizeof(*in);
  1390. *in = VIRTIO_BLK_S_IOERR;
  1391. }
  1392. }
  1393. /* OK, so we noted that it was pretty poor to use an fdatasync as a
  1394. * barrier. But Christoph Hellwig points out that we need a sync
  1395. * *afterwards* as well: "Barriers specify no reordering to the front
  1396. * or the back." And Jens Axboe confirmed it, so here we are: */
  1397. if (out->type & VIRTIO_BLK_T_BARRIER)
  1398. fdatasync(vblk->fd);
  1399. /* We can't trigger an IRQ, because we're not the Launcher. It does
  1400. * that when we tell it we're done. */
  1401. add_used(dev->vq, head, wlen);
  1402. return true;
  1403. }
  1404. /* This is the thread which actually services the I/O. */
  1405. static int io_thread(void *_dev)
  1406. {
  1407. struct device *dev = _dev;
  1408. struct vblk_info *vblk = dev->priv;
  1409. char c;
  1410. /* Close other side of workpipe so we get 0 read when main dies. */
  1411. close(vblk->workpipe[1]);
  1412. /* Close the other side of the done_fd pipe. */
  1413. close(dev->fd);
  1414. /* When this read fails, it means Launcher died, so we follow. */
  1415. while (read(vblk->workpipe[0], &c, 1) == 1) {
  1416. /* We acknowledge each request immediately to reduce latency,
  1417. * rather than waiting until we've done them all. I haven't
  1418. * measured to see if it makes any difference.
  1419. *
  1420. * That would be an interesting test, wouldn't it? You could
  1421. * also try having more than one I/O thread. */
  1422. while (service_io(dev))
  1423. write(vblk->done_fd, &c, 1);
  1424. }
  1425. return 0;
  1426. }
  1427. /* Now we've seen the I/O thread, we return to the Launcher to see what happens
  1428. * when that thread tells us it's completed some I/O. */
  1429. static bool handle_io_finish(struct device *dev)
  1430. {
  1431. char c;
  1432. /* If the I/O thread died, presumably it printed the error, so we
  1433. * simply exit. */
  1434. if (read(dev->fd, &c, 1) != 1)
  1435. exit(1);
  1436. /* It did some work, so trigger the irq. */
  1437. trigger_irq(dev->vq);
  1438. return true;
  1439. }
  1440. /* When the Guest submits some I/O, we just need to wake the I/O thread. */
  1441. static void handle_virtblk_output(struct virtqueue *vq, bool timeout)
  1442. {
  1443. struct vblk_info *vblk = vq->dev->priv;
  1444. char c = 0;
  1445. /* Wake up I/O thread and tell it to go to work! */
  1446. if (write(vblk->workpipe[1], &c, 1) != 1)
  1447. /* Presumably it indicated why it died. */
  1448. exit(1);
  1449. }
  1450. /*L:198 This actually sets up a virtual block device. */
  1451. static void setup_block_file(const char *filename)
  1452. {
  1453. int p[2];
  1454. struct device *dev;
  1455. struct vblk_info *vblk;
  1456. void *stack;
  1457. struct virtio_blk_config conf;
  1458. /* This is the pipe the I/O thread will use to tell us I/O is done. */
  1459. pipe(p);
  1460. /* The device responds to return from I/O thread. */
  1461. dev = new_device("block", VIRTIO_ID_BLOCK, p[0], handle_io_finish);
  1462. /* The device has one virtqueue, where the Guest places requests. */
  1463. add_virtqueue(dev, VIRTQUEUE_NUM, handle_virtblk_output);
  1464. /* Allocate the room for our own bookkeeping */
  1465. vblk = dev->priv = malloc(sizeof(*vblk));
  1466. /* First we open the file and store the length. */
  1467. vblk->fd = open_or_die(filename, O_RDWR|O_LARGEFILE);
  1468. vblk->len = lseek64(vblk->fd, 0, SEEK_END);
  1469. /* We support barriers. */
  1470. add_feature(dev, VIRTIO_BLK_F_BARRIER);
  1471. /* Tell Guest how many sectors this device has. */
  1472. conf.capacity = cpu_to_le64(vblk->len / 512);
  1473. /* Tell Guest not to put in too many descriptors at once: two are used
  1474. * for the in and out elements. */
  1475. add_feature(dev, VIRTIO_BLK_F_SEG_MAX);
  1476. conf.seg_max = cpu_to_le32(VIRTQUEUE_NUM - 2);
  1477. set_config(dev, sizeof(conf), &conf);
  1478. /* The I/O thread writes to this end of the pipe when done. */
  1479. vblk->done_fd = p[1];
  1480. /* This is the second pipe, which is how we tell the I/O thread about
  1481. * more work. */
  1482. pipe(vblk->workpipe);
  1483. /* Create stack for thread and run it. Since stack grows upwards, we
  1484. * point the stack pointer to the end of this region. */
  1485. stack = malloc(32768);
  1486. /* SIGCHLD - We dont "wait" for our cloned thread, so prevent it from
  1487. * becoming a zombie. */
  1488. if (clone(io_thread, stack + 32768, CLONE_VM | SIGCHLD, dev) == -1)
  1489. err(1, "Creating clone");
  1490. /* We don't need to keep the I/O thread's end of the pipes open. */
  1491. close(vblk->done_fd);
  1492. close(vblk->workpipe[0]);
  1493. verbose("device %u: virtblock %llu sectors\n",
  1494. devices.device_num, le64_to_cpu(conf.capacity));
  1495. }
  1496. /* Our random number generator device reads from /dev/random into the Guest's
  1497. * input buffers. The usual case is that the Guest doesn't want random numbers
  1498. * and so has no buffers although /dev/random is still readable, whereas
  1499. * console is the reverse.
  1500. *
  1501. * The same logic applies, however. */
  1502. static bool handle_rng_input(struct device *dev)
  1503. {
  1504. int len;
  1505. unsigned int head, in_num, out_num, totlen = 0;
  1506. struct iovec iov[dev->vq->vring.num];
  1507. /* First we need a buffer from the Guests's virtqueue. */
  1508. head = get_vq_desc(dev->vq, iov, &out_num, &in_num);
  1509. /* If they're not ready for input, stop listening to this file
  1510. * descriptor. We'll start again once they add an input buffer. */
  1511. if (head == dev->vq->vring.num)
  1512. return false;
  1513. if (out_num)
  1514. errx(1, "Output buffers in rng?");
  1515. /* This is why we convert to iovecs: the readv() call uses them, and so
  1516. * it reads straight into the Guest's buffer. We loop to make sure we
  1517. * fill it. */
  1518. while (!iov_empty(iov, in_num)) {
  1519. len = readv(dev->fd, iov, in_num);
  1520. if (len <= 0)
  1521. err(1, "Read from /dev/random gave %i", len);
  1522. iov_consume(iov, in_num, len);
  1523. totlen += len;
  1524. }
  1525. /* Tell the Guest about the new input. */
  1526. add_used_and_trigger(dev->vq, head, totlen);
  1527. /* Everything went OK! */
  1528. return true;
  1529. }
  1530. /* And this creates a "hardware" random number device for the Guest. */
  1531. static void setup_rng(void)
  1532. {
  1533. struct device *dev;
  1534. int fd;
  1535. fd = open_or_die("/dev/random", O_RDONLY);
  1536. /* The device responds to return from I/O thread. */
  1537. dev = new_device("rng", VIRTIO_ID_RNG, fd, handle_rng_input);
  1538. /* The device has one virtqueue, where the Guest places inbufs. */
  1539. add_virtqueue(dev, VIRTQUEUE_NUM, enable_fd);
  1540. verbose("device %u: rng\n", devices.device_num++);
  1541. }
  1542. /* That's the end of device setup. */
  1543. /*L:230 Reboot is pretty easy: clean up and exec() the Launcher afresh. */
  1544. static void __attribute__((noreturn)) restart_guest(void)
  1545. {
  1546. unsigned int i;
  1547. /* Since we don't track all open fds, we simply close everything beyond
  1548. * stderr. */
  1549. for (i = 3; i < FD_SETSIZE; i++)
  1550. close(i);
  1551. /* The exec automatically gets rid of the I/O and Waker threads. */
  1552. execv(main_args[0], main_args);
  1553. err(1, "Could not exec %s", main_args[0]);
  1554. }
  1555. /*L:220 Finally we reach the core of the Launcher which runs the Guest, serves
  1556. * its input and output, and finally, lays it to rest. */
  1557. static void __attribute__((noreturn)) run_guest(void)
  1558. {
  1559. for (;;) {
  1560. unsigned long args[] = { LHREQ_BREAK, 0 };
  1561. unsigned long notify_addr;
  1562. int readval;
  1563. /* We read from the /dev/lguest device to run the Guest. */
  1564. readval = pread(lguest_fd, &notify_addr,
  1565. sizeof(notify_addr), cpu_id);
  1566. /* One unsigned long means the Guest did HCALL_NOTIFY */
  1567. if (readval == sizeof(notify_addr)) {
  1568. verbose("Notify on address %#lx\n", notify_addr);
  1569. handle_output(notify_addr);
  1570. continue;
  1571. /* ENOENT means the Guest died. Reading tells us why. */
  1572. } else if (errno == ENOENT) {
  1573. char reason[1024] = { 0 };
  1574. pread(lguest_fd, reason, sizeof(reason)-1, cpu_id);
  1575. errx(1, "%s", reason);
  1576. /* ERESTART means that we need to reboot the guest */
  1577. } else if (errno == ERESTART) {
  1578. restart_guest();
  1579. /* EAGAIN means a signal (timeout).
  1580. * Anything else means a bug or incompatible change. */
  1581. } else if (errno != EAGAIN)
  1582. err(1, "Running guest failed");
  1583. /* Only service input on thread for CPU 0. */
  1584. if (cpu_id != 0)
  1585. continue;
  1586. /* Service input, then unset the BREAK to release the Waker. */
  1587. handle_input();
  1588. if (pwrite(lguest_fd, args, sizeof(args), cpu_id) < 0)
  1589. err(1, "Resetting break");
  1590. }
  1591. }
  1592. /*L:240
  1593. * This is the end of the Launcher. The good news: we are over halfway
  1594. * through! The bad news: the most fiendish part of the code still lies ahead
  1595. * of us.
  1596. *
  1597. * Are you ready? Take a deep breath and join me in the core of the Host, in
  1598. * "make Host".
  1599. :*/
  1600. static struct option opts[] = {
  1601. { "verbose", 0, NULL, 'v' },
  1602. { "tunnet", 1, NULL, 't' },
  1603. { "block", 1, NULL, 'b' },
  1604. { "rng", 0, NULL, 'r' },
  1605. { "initrd", 1, NULL, 'i' },
  1606. { NULL },
  1607. };
  1608. static void usage(void)
  1609. {
  1610. errx(1, "Usage: lguest [--verbose] "
  1611. "[--tunnet=(<ipaddr>:<macaddr>|bridge:<bridgename>:<macaddr>)\n"
  1612. "|--block=<filename>|--initrd=<filename>]...\n"
  1613. "<mem-in-mb> vmlinux [args...]");
  1614. }
  1615. /*L:105 The main routine is where the real work begins: */
  1616. int main(int argc, char *argv[])
  1617. {
  1618. /* Memory, top-level pagetable, code startpoint and size of the
  1619. * (optional) initrd. */
  1620. unsigned long mem = 0, start, initrd_size = 0;
  1621. /* Two temporaries. */
  1622. int i, c;
  1623. /* The boot information for the Guest. */
  1624. struct boot_params *boot;
  1625. /* If they specify an initrd file to load. */
  1626. const char *initrd_name = NULL;
  1627. /* Save the args: we "reboot" by execing ourselves again. */
  1628. main_args = argv;
  1629. /* We don't "wait" for the children, so prevent them from becoming
  1630. * zombies. */
  1631. signal(SIGCHLD, SIG_IGN);
  1632. /* First we initialize the device list. Since console and network
  1633. * device receive input from a file descriptor, we keep an fdset
  1634. * (infds) and the maximum fd number (max_infd) with the head of the
  1635. * list. We also keep a pointer to the last device. Finally, we keep
  1636. * the next interrupt number to use for devices (1: remember that 0 is
  1637. * used by the timer). */
  1638. FD_ZERO(&devices.infds);
  1639. devices.max_infd = -1;
  1640. devices.lastdev = NULL;
  1641. devices.next_irq = 1;
  1642. cpu_id = 0;
  1643. /* We need to know how much memory so we can set up the device
  1644. * descriptor and memory pages for the devices as we parse the command
  1645. * line. So we quickly look through the arguments to find the amount
  1646. * of memory now. */
  1647. for (i = 1; i < argc; i++) {
  1648. if (argv[i][0] != '-') {
  1649. mem = atoi(argv[i]) * 1024 * 1024;
  1650. /* We start by mapping anonymous pages over all of
  1651. * guest-physical memory range. This fills it with 0,
  1652. * and ensures that the Guest won't be killed when it
  1653. * tries to access it. */
  1654. guest_base = map_zeroed_pages(mem / getpagesize()
  1655. + DEVICE_PAGES);
  1656. guest_limit = mem;
  1657. guest_max = mem + DEVICE_PAGES*getpagesize();
  1658. devices.descpage = get_pages(1);
  1659. break;
  1660. }
  1661. }
  1662. /* The options are fairly straight-forward */
  1663. while ((c = getopt_long(argc, argv, "v", opts, NULL)) != EOF) {
  1664. switch (c) {
  1665. case 'v':
  1666. verbose = true;
  1667. break;
  1668. case 't':
  1669. setup_tun_net(optarg);
  1670. break;
  1671. case 'b':
  1672. setup_block_file(optarg);
  1673. break;
  1674. case 'r':
  1675. setup_rng();
  1676. break;
  1677. case 'i':
  1678. initrd_name = optarg;
  1679. break;
  1680. default:
  1681. warnx("Unknown argument %s", argv[optind]);
  1682. usage();
  1683. }
  1684. }
  1685. /* After the other arguments we expect memory and kernel image name,
  1686. * followed by command line arguments for the kernel. */
  1687. if (optind + 2 > argc)
  1688. usage();
  1689. verbose("Guest base is at %p\n", guest_base);
  1690. /* We always have a console device */
  1691. setup_console();
  1692. /* We can timeout waiting for Guest network transmit. */
  1693. setup_timeout();
  1694. /* Now we load the kernel */
  1695. start = load_kernel(open_or_die(argv[optind+1], O_RDONLY));
  1696. /* Boot information is stashed at physical address 0 */
  1697. boot = from_guest_phys(0);
  1698. /* Map the initrd image if requested (at top of physical memory) */
  1699. if (initrd_name) {
  1700. initrd_size = load_initrd(initrd_name, mem);
  1701. /* These are the location in the Linux boot header where the
  1702. * start and size of the initrd are expected to be found. */
  1703. boot->hdr.ramdisk_image = mem - initrd_size;
  1704. boot->hdr.ramdisk_size = initrd_size;
  1705. /* The bootloader type 0xFF means "unknown"; that's OK. */
  1706. boot->hdr.type_of_loader = 0xFF;
  1707. }
  1708. /* The Linux boot header contains an "E820" memory map: ours is a
  1709. * simple, single region. */
  1710. boot->e820_entries = 1;
  1711. boot->e820_map[0] = ((struct e820entry) { 0, mem, E820_RAM });
  1712. /* The boot header contains a command line pointer: we put the command
  1713. * line after the boot header. */
  1714. boot->hdr.cmd_line_ptr = to_guest_phys(boot + 1);
  1715. /* We use a simple helper to copy the arguments separated by spaces. */
  1716. concat((char *)(boot + 1), argv+optind+2);
  1717. /* Boot protocol version: 2.07 supports the fields for lguest. */
  1718. boot->hdr.version = 0x207;
  1719. /* The hardware_subarch value of "1" tells the Guest it's an lguest. */
  1720. boot->hdr.hardware_subarch = 1;
  1721. /* Tell the entry path not to try to reload segment registers. */
  1722. boot->hdr.loadflags |= KEEP_SEGMENTS;
  1723. /* We tell the kernel to initialize the Guest: this returns the open
  1724. * /dev/lguest file descriptor. */
  1725. tell_kernel(start);
  1726. /* We clone off a thread, which wakes the Launcher whenever one of the
  1727. * input file descriptors needs attention. We call this the Waker, and
  1728. * we'll cover it in a moment. */
  1729. setup_waker();
  1730. /* Finally, run the Guest. This doesn't return. */
  1731. run_guest();
  1732. }
  1733. /*:*/
  1734. /*M:999
  1735. * Mastery is done: you now know everything I do.
  1736. *
  1737. * But surely you have seen code, features and bugs in your wanderings which
  1738. * you now yearn to attack? That is the real game, and I look forward to you
  1739. * patching and forking lguest into the Your-Name-Here-visor.
  1740. *
  1741. * Farewell, and good coding!
  1742. * Rusty Russell.
  1743. */