cn_proc.c 8.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308
  1. /*
  2. * cn_proc.c - process events connector
  3. *
  4. * Copyright (C) Matt Helsley, IBM Corp. 2005
  5. * Based on cn_fork.c by Guillaume Thouvenin <guillaume.thouvenin@bull.net>
  6. * Original copyright notice follows:
  7. * Copyright (C) 2005 BULL SA.
  8. *
  9. *
  10. * This program is free software; you can redistribute it and/or modify
  11. * it under the terms of the GNU General Public License as published by
  12. * the Free Software Foundation; either version 2 of the License, or
  13. * (at your option) any later version.
  14. *
  15. * This program is distributed in the hope that it will be useful,
  16. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  17. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  18. * GNU General Public License for more details.
  19. *
  20. * You should have received a copy of the GNU General Public License
  21. * along with this program; if not, write to the Free Software
  22. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  23. */
  24. #include <linux/module.h>
  25. #include <linux/kernel.h>
  26. #include <linux/ktime.h>
  27. #include <linux/init.h>
  28. #include <linux/connector.h>
  29. #include <linux/gfp.h>
  30. #include <linux/ptrace.h>
  31. #include <asm/atomic.h>
  32. #include <asm/unaligned.h>
  33. #include <linux/cn_proc.h>
  34. #define CN_PROC_MSG_SIZE (sizeof(struct cn_msg) + sizeof(struct proc_event))
  35. static atomic_t proc_event_num_listeners = ATOMIC_INIT(0);
  36. static struct cb_id cn_proc_event_id = { CN_IDX_PROC, CN_VAL_PROC };
  37. /* proc_event_counts is used as the sequence number of the netlink message */
  38. static DEFINE_PER_CPU(__u32, proc_event_counts) = { 0 };
  39. static inline void get_seq(__u32 *ts, int *cpu)
  40. {
  41. preempt_disable();
  42. *ts = __this_cpu_inc_return(proc_event_counts) -1;
  43. *cpu = smp_processor_id();
  44. preempt_enable();
  45. }
  46. void proc_fork_connector(struct task_struct *task)
  47. {
  48. struct cn_msg *msg;
  49. struct proc_event *ev;
  50. __u8 buffer[CN_PROC_MSG_SIZE];
  51. struct timespec ts;
  52. if (atomic_read(&proc_event_num_listeners) < 1)
  53. return;
  54. msg = (struct cn_msg*)buffer;
  55. ev = (struct proc_event*)msg->data;
  56. get_seq(&msg->seq, &ev->cpu);
  57. ktime_get_ts(&ts); /* get high res monotonic timestamp */
  58. put_unaligned(timespec_to_ns(&ts), (__u64 *)&ev->timestamp_ns);
  59. ev->what = PROC_EVENT_FORK;
  60. ev->event_data.fork.parent_pid = task->real_parent->pid;
  61. ev->event_data.fork.parent_tgid = task->real_parent->tgid;
  62. ev->event_data.fork.child_pid = task->pid;
  63. ev->event_data.fork.child_tgid = task->tgid;
  64. memcpy(&msg->id, &cn_proc_event_id, sizeof(msg->id));
  65. msg->ack = 0; /* not used */
  66. msg->len = sizeof(*ev);
  67. /* If cn_netlink_send() failed, the data is not sent */
  68. cn_netlink_send(msg, CN_IDX_PROC, GFP_KERNEL);
  69. }
  70. void proc_exec_connector(struct task_struct *task)
  71. {
  72. struct cn_msg *msg;
  73. struct proc_event *ev;
  74. struct timespec ts;
  75. __u8 buffer[CN_PROC_MSG_SIZE];
  76. if (atomic_read(&proc_event_num_listeners) < 1)
  77. return;
  78. msg = (struct cn_msg*)buffer;
  79. ev = (struct proc_event*)msg->data;
  80. get_seq(&msg->seq, &ev->cpu);
  81. ktime_get_ts(&ts); /* get high res monotonic timestamp */
  82. put_unaligned(timespec_to_ns(&ts), (__u64 *)&ev->timestamp_ns);
  83. ev->what = PROC_EVENT_EXEC;
  84. ev->event_data.exec.process_pid = task->pid;
  85. ev->event_data.exec.process_tgid = task->tgid;
  86. memcpy(&msg->id, &cn_proc_event_id, sizeof(msg->id));
  87. msg->ack = 0; /* not used */
  88. msg->len = sizeof(*ev);
  89. cn_netlink_send(msg, CN_IDX_PROC, GFP_KERNEL);
  90. }
  91. void proc_id_connector(struct task_struct *task, int which_id)
  92. {
  93. struct cn_msg *msg;
  94. struct proc_event *ev;
  95. __u8 buffer[CN_PROC_MSG_SIZE];
  96. struct timespec ts;
  97. const struct cred *cred;
  98. if (atomic_read(&proc_event_num_listeners) < 1)
  99. return;
  100. msg = (struct cn_msg*)buffer;
  101. ev = (struct proc_event*)msg->data;
  102. ev->what = which_id;
  103. ev->event_data.id.process_pid = task->pid;
  104. ev->event_data.id.process_tgid = task->tgid;
  105. rcu_read_lock();
  106. cred = __task_cred(task);
  107. if (which_id == PROC_EVENT_UID) {
  108. ev->event_data.id.r.ruid = cred->uid;
  109. ev->event_data.id.e.euid = cred->euid;
  110. } else if (which_id == PROC_EVENT_GID) {
  111. ev->event_data.id.r.rgid = cred->gid;
  112. ev->event_data.id.e.egid = cred->egid;
  113. } else {
  114. rcu_read_unlock();
  115. return;
  116. }
  117. rcu_read_unlock();
  118. get_seq(&msg->seq, &ev->cpu);
  119. ktime_get_ts(&ts); /* get high res monotonic timestamp */
  120. put_unaligned(timespec_to_ns(&ts), (__u64 *)&ev->timestamp_ns);
  121. memcpy(&msg->id, &cn_proc_event_id, sizeof(msg->id));
  122. msg->ack = 0; /* not used */
  123. msg->len = sizeof(*ev);
  124. cn_netlink_send(msg, CN_IDX_PROC, GFP_KERNEL);
  125. }
  126. void proc_sid_connector(struct task_struct *task)
  127. {
  128. struct cn_msg *msg;
  129. struct proc_event *ev;
  130. struct timespec ts;
  131. __u8 buffer[CN_PROC_MSG_SIZE];
  132. if (atomic_read(&proc_event_num_listeners) < 1)
  133. return;
  134. msg = (struct cn_msg *)buffer;
  135. ev = (struct proc_event *)msg->data;
  136. get_seq(&msg->seq, &ev->cpu);
  137. ktime_get_ts(&ts); /* get high res monotonic timestamp */
  138. put_unaligned(timespec_to_ns(&ts), (__u64 *)&ev->timestamp_ns);
  139. ev->what = PROC_EVENT_SID;
  140. ev->event_data.sid.process_pid = task->pid;
  141. ev->event_data.sid.process_tgid = task->tgid;
  142. memcpy(&msg->id, &cn_proc_event_id, sizeof(msg->id));
  143. msg->ack = 0; /* not used */
  144. msg->len = sizeof(*ev);
  145. cn_netlink_send(msg, CN_IDX_PROC, GFP_KERNEL);
  146. }
  147. void proc_ptrace_connector(struct task_struct *task, int ptrace_id)
  148. {
  149. struct cn_msg *msg;
  150. struct proc_event *ev;
  151. struct timespec ts;
  152. __u8 buffer[CN_PROC_MSG_SIZE];
  153. struct task_struct *tracer;
  154. if (atomic_read(&proc_event_num_listeners) < 1)
  155. return;
  156. msg = (struct cn_msg *)buffer;
  157. ev = (struct proc_event *)msg->data;
  158. get_seq(&msg->seq, &ev->cpu);
  159. ktime_get_ts(&ts); /* get high res monotonic timestamp */
  160. put_unaligned(timespec_to_ns(&ts), (__u64 *)&ev->timestamp_ns);
  161. ev->what = PROC_EVENT_PTRACE;
  162. ev->event_data.ptrace.process_pid = task->pid;
  163. ev->event_data.ptrace.process_tgid = task->tgid;
  164. if (ptrace_id == PTRACE_ATTACH) {
  165. ev->event_data.ptrace.tracer_pid = current->pid;
  166. ev->event_data.ptrace.tracer_tgid = current->tgid;
  167. } else if (ptrace_id == PTRACE_DETACH) {
  168. ev->event_data.ptrace.tracer_pid = 0;
  169. ev->event_data.ptrace.tracer_tgid = 0;
  170. } else
  171. return;
  172. memcpy(&msg->id, &cn_proc_event_id, sizeof(msg->id));
  173. msg->ack = 0; /* not used */
  174. msg->len = sizeof(*ev);
  175. cn_netlink_send(msg, CN_IDX_PROC, GFP_KERNEL);
  176. }
  177. void proc_exit_connector(struct task_struct *task)
  178. {
  179. struct cn_msg *msg;
  180. struct proc_event *ev;
  181. __u8 buffer[CN_PROC_MSG_SIZE];
  182. struct timespec ts;
  183. if (atomic_read(&proc_event_num_listeners) < 1)
  184. return;
  185. msg = (struct cn_msg*)buffer;
  186. ev = (struct proc_event*)msg->data;
  187. get_seq(&msg->seq, &ev->cpu);
  188. ktime_get_ts(&ts); /* get high res monotonic timestamp */
  189. put_unaligned(timespec_to_ns(&ts), (__u64 *)&ev->timestamp_ns);
  190. ev->what = PROC_EVENT_EXIT;
  191. ev->event_data.exit.process_pid = task->pid;
  192. ev->event_data.exit.process_tgid = task->tgid;
  193. ev->event_data.exit.exit_code = task->exit_code;
  194. ev->event_data.exit.exit_signal = task->exit_signal;
  195. memcpy(&msg->id, &cn_proc_event_id, sizeof(msg->id));
  196. msg->ack = 0; /* not used */
  197. msg->len = sizeof(*ev);
  198. cn_netlink_send(msg, CN_IDX_PROC, GFP_KERNEL);
  199. }
  200. /*
  201. * Send an acknowledgement message to userspace
  202. *
  203. * Use 0 for success, EFOO otherwise.
  204. * Note: this is the negative of conventional kernel error
  205. * values because it's not being returned via syscall return
  206. * mechanisms.
  207. */
  208. static void cn_proc_ack(int err, int rcvd_seq, int rcvd_ack)
  209. {
  210. struct cn_msg *msg;
  211. struct proc_event *ev;
  212. __u8 buffer[CN_PROC_MSG_SIZE];
  213. struct timespec ts;
  214. if (atomic_read(&proc_event_num_listeners) < 1)
  215. return;
  216. msg = (struct cn_msg*)buffer;
  217. ev = (struct proc_event*)msg->data;
  218. msg->seq = rcvd_seq;
  219. ktime_get_ts(&ts); /* get high res monotonic timestamp */
  220. put_unaligned(timespec_to_ns(&ts), (__u64 *)&ev->timestamp_ns);
  221. ev->cpu = -1;
  222. ev->what = PROC_EVENT_NONE;
  223. ev->event_data.ack.err = err;
  224. memcpy(&msg->id, &cn_proc_event_id, sizeof(msg->id));
  225. msg->ack = rcvd_ack + 1;
  226. msg->len = sizeof(*ev);
  227. cn_netlink_send(msg, CN_IDX_PROC, GFP_KERNEL);
  228. }
  229. /**
  230. * cn_proc_mcast_ctl
  231. * @data: message sent from userspace via the connector
  232. */
  233. static void cn_proc_mcast_ctl(struct cn_msg *msg,
  234. struct netlink_skb_parms *nsp)
  235. {
  236. enum proc_cn_mcast_op *mc_op = NULL;
  237. int err = 0;
  238. if (msg->len != sizeof(*mc_op))
  239. return;
  240. mc_op = (enum proc_cn_mcast_op*)msg->data;
  241. switch (*mc_op) {
  242. case PROC_CN_MCAST_LISTEN:
  243. atomic_inc(&proc_event_num_listeners);
  244. break;
  245. case PROC_CN_MCAST_IGNORE:
  246. atomic_dec(&proc_event_num_listeners);
  247. break;
  248. default:
  249. err = EINVAL;
  250. break;
  251. }
  252. cn_proc_ack(err, msg->seq, msg->ack);
  253. }
  254. /*
  255. * cn_proc_init - initialization entry point
  256. *
  257. * Adds the connector callback to the connector driver.
  258. */
  259. static int __init cn_proc_init(void)
  260. {
  261. int err;
  262. if ((err = cn_add_callback(&cn_proc_event_id, "cn_proc",
  263. &cn_proc_mcast_ctl))) {
  264. printk(KERN_WARNING "cn_proc failed to register\n");
  265. return err;
  266. }
  267. return 0;
  268. }
  269. module_init(cn_proc_init);