ide-dma.c 24 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981
  1. /*
  2. * linux/drivers/ide/ide-dma.c Version 4.10 June 9, 2000
  3. *
  4. * Copyright (c) 1999-2000 Andre Hedrick <andre@linux-ide.org>
  5. * May be copied or modified under the terms of the GNU General Public License
  6. */
  7. /*
  8. * Special Thanks to Mark for his Six years of work.
  9. *
  10. * Copyright (c) 1995-1998 Mark Lord
  11. * May be copied or modified under the terms of the GNU General Public License
  12. */
  13. /*
  14. * This module provides support for the bus-master IDE DMA functions
  15. * of various PCI chipsets, including the Intel PIIX (i82371FB for
  16. * the 430 FX chipset), the PIIX3 (i82371SB for the 430 HX/VX and
  17. * 440 chipsets), and the PIIX4 (i82371AB for the 430 TX chipset)
  18. * ("PIIX" stands for "PCI ISA IDE Xcellerator").
  19. *
  20. * Pretty much the same code works for other IDE PCI bus-mastering chipsets.
  21. *
  22. * DMA is supported for all IDE devices (disk drives, cdroms, tapes, floppies).
  23. *
  24. * By default, DMA support is prepared for use, but is currently enabled only
  25. * for drives which already have DMA enabled (UltraDMA or mode 2 multi/single),
  26. * or which are recognized as "good" (see table below). Drives with only mode0
  27. * or mode1 (multi/single) DMA should also work with this chipset/driver
  28. * (eg. MC2112A) but are not enabled by default.
  29. *
  30. * Use "hdparm -i" to view modes supported by a given drive.
  31. *
  32. * The hdparm-3.5 (or later) utility can be used for manually enabling/disabling
  33. * DMA support, but must be (re-)compiled against this kernel version or later.
  34. *
  35. * To enable DMA, use "hdparm -d1 /dev/hd?" on a per-drive basis after booting.
  36. * If problems arise, ide.c will disable DMA operation after a few retries.
  37. * This error recovery mechanism works and has been extremely well exercised.
  38. *
  39. * IDE drives, depending on their vintage, may support several different modes
  40. * of DMA operation. The boot-time modes are indicated with a "*" in
  41. * the "hdparm -i" listing, and can be changed with *knowledgeable* use of
  42. * the "hdparm -X" feature. There is seldom a need to do this, as drives
  43. * normally power-up with their "best" PIO/DMA modes enabled.
  44. *
  45. * Testing has been done with a rather extensive number of drives,
  46. * with Quantum & Western Digital models generally outperforming the pack,
  47. * and Fujitsu & Conner (and some Seagate which are really Conner) drives
  48. * showing more lackluster throughput.
  49. *
  50. * Keep an eye on /var/adm/messages for "DMA disabled" messages.
  51. *
  52. * Some people have reported trouble with Intel Zappa motherboards.
  53. * This can be fixed by upgrading the AMI BIOS to version 1.00.04.BS0,
  54. * available from ftp://ftp.intel.com/pub/bios/10004bs0.exe
  55. * (thanks to Glen Morrell <glen@spin.Stanford.edu> for researching this).
  56. *
  57. * Thanks to "Christopher J. Reimer" <reimer@doe.carleton.ca> for
  58. * fixing the problem with the BIOS on some Acer motherboards.
  59. *
  60. * Thanks to "Benoit Poulot-Cazajous" <poulot@chorus.fr> for testing
  61. * "TX" chipset compatibility and for providing patches for the "TX" chipset.
  62. *
  63. * Thanks to Christian Brunner <chb@muc.de> for taking a good first crack
  64. * at generic DMA -- his patches were referred to when preparing this code.
  65. *
  66. * Most importantly, thanks to Robert Bringman <rob@mars.trion.com>
  67. * for supplying a Promise UDMA board & WD UDMA drive for this work!
  68. *
  69. * And, yes, Intel Zappa boards really *do* use both PIIX IDE ports.
  70. *
  71. * ATA-66/100 and recovery functions, I forgot the rest......
  72. *
  73. */
  74. #include <linux/module.h>
  75. #include <linux/types.h>
  76. #include <linux/kernel.h>
  77. #include <linux/timer.h>
  78. #include <linux/mm.h>
  79. #include <linux/interrupt.h>
  80. #include <linux/pci.h>
  81. #include <linux/init.h>
  82. #include <linux/ide.h>
  83. #include <linux/delay.h>
  84. #include <linux/scatterlist.h>
  85. #include <asm/io.h>
  86. #include <asm/irq.h>
  87. static const struct drive_list_entry drive_whitelist [] = {
  88. { "Micropolis 2112A" , NULL },
  89. { "CONNER CTMA 4000" , NULL },
  90. { "CONNER CTT8000-A" , NULL },
  91. { "ST34342A" , NULL },
  92. { NULL , NULL }
  93. };
  94. static const struct drive_list_entry drive_blacklist [] = {
  95. { "WDC AC11000H" , NULL },
  96. { "WDC AC22100H" , NULL },
  97. { "WDC AC32500H" , NULL },
  98. { "WDC AC33100H" , NULL },
  99. { "WDC AC31600H" , NULL },
  100. { "WDC AC32100H" , "24.09P07" },
  101. { "WDC AC23200L" , "21.10N21" },
  102. { "Compaq CRD-8241B" , NULL },
  103. { "CRD-8400B" , NULL },
  104. { "CRD-8480B", NULL },
  105. { "CRD-8482B", NULL },
  106. { "CRD-84" , NULL },
  107. { "SanDisk SDP3B" , NULL },
  108. { "SanDisk SDP3B-64" , NULL },
  109. { "SANYO CD-ROM CRD" , NULL },
  110. { "HITACHI CDR-8" , NULL },
  111. { "HITACHI CDR-8335" , NULL },
  112. { "HITACHI CDR-8435" , NULL },
  113. { "Toshiba CD-ROM XM-6202B" , NULL },
  114. { "TOSHIBA CD-ROM XM-1702BC", NULL },
  115. { "CD-532E-A" , NULL },
  116. { "E-IDE CD-ROM CR-840", NULL },
  117. { "CD-ROM Drive/F5A", NULL },
  118. { "WPI CDD-820", NULL },
  119. { "SAMSUNG CD-ROM SC-148C", NULL },
  120. { "SAMSUNG CD-ROM SC", NULL },
  121. { "ATAPI CD-ROM DRIVE 40X MAXIMUM", NULL },
  122. { "_NEC DV5800A", NULL },
  123. { "SAMSUNG CD-ROM SN-124", "N001" },
  124. { "Seagate STT20000A", NULL },
  125. { "CD-ROM CDR_U200", "1.09" },
  126. { NULL , NULL }
  127. };
  128. /**
  129. * ide_dma_intr - IDE DMA interrupt handler
  130. * @drive: the drive the interrupt is for
  131. *
  132. * Handle an interrupt completing a read/write DMA transfer on an
  133. * IDE device
  134. */
  135. ide_startstop_t ide_dma_intr (ide_drive_t *drive)
  136. {
  137. u8 stat = 0, dma_stat = 0;
  138. dma_stat = HWIF(drive)->ide_dma_end(drive);
  139. stat = HWIF(drive)->INB(IDE_STATUS_REG); /* get drive status */
  140. if (OK_STAT(stat,DRIVE_READY,drive->bad_wstat|DRQ_STAT)) {
  141. if (!dma_stat) {
  142. struct request *rq = HWGROUP(drive)->rq;
  143. task_end_request(drive, rq, stat);
  144. return ide_stopped;
  145. }
  146. printk(KERN_ERR "%s: dma_intr: bad DMA status (dma_stat=%x)\n",
  147. drive->name, dma_stat);
  148. }
  149. return ide_error(drive, "dma_intr", stat);
  150. }
  151. EXPORT_SYMBOL_GPL(ide_dma_intr);
  152. static int ide_dma_good_drive(ide_drive_t *drive)
  153. {
  154. return ide_in_drive_list(drive->id, drive_whitelist);
  155. }
  156. #ifdef CONFIG_BLK_DEV_IDEDMA_PCI
  157. /**
  158. * ide_build_sglist - map IDE scatter gather for DMA I/O
  159. * @drive: the drive to build the DMA table for
  160. * @rq: the request holding the sg list
  161. *
  162. * Perform the PCI mapping magic necessary to access the source or
  163. * target buffers of a request via PCI DMA. The lower layers of the
  164. * kernel provide the necessary cache management so that we can
  165. * operate in a portable fashion
  166. */
  167. int ide_build_sglist(ide_drive_t *drive, struct request *rq)
  168. {
  169. ide_hwif_t *hwif = HWIF(drive);
  170. struct scatterlist *sg = hwif->sg_table;
  171. ide_map_sg(drive, rq);
  172. if (rq_data_dir(rq) == READ)
  173. hwif->sg_dma_direction = PCI_DMA_FROMDEVICE;
  174. else
  175. hwif->sg_dma_direction = PCI_DMA_TODEVICE;
  176. return pci_map_sg(hwif->pci_dev, sg, hwif->sg_nents, hwif->sg_dma_direction);
  177. }
  178. EXPORT_SYMBOL_GPL(ide_build_sglist);
  179. /**
  180. * ide_build_dmatable - build IDE DMA table
  181. *
  182. * ide_build_dmatable() prepares a dma request. We map the command
  183. * to get the pci bus addresses of the buffers and then build up
  184. * the PRD table that the IDE layer wants to be fed. The code
  185. * knows about the 64K wrap bug in the CS5530.
  186. *
  187. * Returns the number of built PRD entries if all went okay,
  188. * returns 0 otherwise.
  189. *
  190. * May also be invoked from trm290.c
  191. */
  192. int ide_build_dmatable (ide_drive_t *drive, struct request *rq)
  193. {
  194. ide_hwif_t *hwif = HWIF(drive);
  195. unsigned int *table = hwif->dmatable_cpu;
  196. unsigned int is_trm290 = (hwif->chipset == ide_trm290) ? 1 : 0;
  197. unsigned int count = 0;
  198. int i;
  199. struct scatterlist *sg;
  200. hwif->sg_nents = i = ide_build_sglist(drive, rq);
  201. if (!i)
  202. return 0;
  203. sg = hwif->sg_table;
  204. while (i) {
  205. u32 cur_addr;
  206. u32 cur_len;
  207. cur_addr = sg_dma_address(sg);
  208. cur_len = sg_dma_len(sg);
  209. /*
  210. * Fill in the dma table, without crossing any 64kB boundaries.
  211. * Most hardware requires 16-bit alignment of all blocks,
  212. * but the trm290 requires 32-bit alignment.
  213. */
  214. while (cur_len) {
  215. if (count++ >= PRD_ENTRIES) {
  216. printk(KERN_ERR "%s: DMA table too small\n", drive->name);
  217. goto use_pio_instead;
  218. } else {
  219. u32 xcount, bcount = 0x10000 - (cur_addr & 0xffff);
  220. if (bcount > cur_len)
  221. bcount = cur_len;
  222. *table++ = cpu_to_le32(cur_addr);
  223. xcount = bcount & 0xffff;
  224. if (is_trm290)
  225. xcount = ((xcount >> 2) - 1) << 16;
  226. if (xcount == 0x0000) {
  227. /*
  228. * Most chipsets correctly interpret a length of 0x0000 as 64KB,
  229. * but at least one (e.g. CS5530) misinterprets it as zero (!).
  230. * So here we break the 64KB entry into two 32KB entries instead.
  231. */
  232. if (count++ >= PRD_ENTRIES) {
  233. printk(KERN_ERR "%s: DMA table too small\n", drive->name);
  234. goto use_pio_instead;
  235. }
  236. *table++ = cpu_to_le32(0x8000);
  237. *table++ = cpu_to_le32(cur_addr + 0x8000);
  238. xcount = 0x8000;
  239. }
  240. *table++ = cpu_to_le32(xcount);
  241. cur_addr += bcount;
  242. cur_len -= bcount;
  243. }
  244. }
  245. sg = sg_next(sg);
  246. i--;
  247. }
  248. if (count) {
  249. if (!is_trm290)
  250. *--table |= cpu_to_le32(0x80000000);
  251. return count;
  252. }
  253. printk(KERN_ERR "%s: empty DMA table?\n", drive->name);
  254. use_pio_instead:
  255. ide_destroy_dmatable(drive);
  256. return 0; /* revert to PIO for this request */
  257. }
  258. EXPORT_SYMBOL_GPL(ide_build_dmatable);
  259. /**
  260. * ide_destroy_dmatable - clean up DMA mapping
  261. * @drive: The drive to unmap
  262. *
  263. * Teardown mappings after DMA has completed. This must be called
  264. * after the completion of each use of ide_build_dmatable and before
  265. * the next use of ide_build_dmatable. Failure to do so will cause
  266. * an oops as only one mapping can be live for each target at a given
  267. * time.
  268. */
  269. void ide_destroy_dmatable (ide_drive_t *drive)
  270. {
  271. struct pci_dev *dev = HWIF(drive)->pci_dev;
  272. struct scatterlist *sg = HWIF(drive)->sg_table;
  273. int nents = HWIF(drive)->sg_nents;
  274. pci_unmap_sg(dev, sg, nents, HWIF(drive)->sg_dma_direction);
  275. }
  276. EXPORT_SYMBOL_GPL(ide_destroy_dmatable);
  277. /**
  278. * config_drive_for_dma - attempt to activate IDE DMA
  279. * @drive: the drive to place in DMA mode
  280. *
  281. * If the drive supports at least mode 2 DMA or UDMA of any kind
  282. * then attempt to place it into DMA mode. Drives that are known to
  283. * support DMA but predate the DMA properties or that are known
  284. * to have DMA handling bugs are also set up appropriately based
  285. * on the good/bad drive lists.
  286. */
  287. static int config_drive_for_dma (ide_drive_t *drive)
  288. {
  289. ide_hwif_t *hwif = drive->hwif;
  290. struct hd_driveid *id = drive->id;
  291. if (drive->media != ide_disk) {
  292. if (hwif->host_flags & IDE_HFLAG_NO_ATAPI_DMA)
  293. return 0;
  294. }
  295. /*
  296. * Enable DMA on any drive that has
  297. * UltraDMA (mode 0/1/2/3/4/5/6) enabled
  298. */
  299. if ((id->field_valid & 4) && ((id->dma_ultra >> 8) & 0x7f))
  300. return 1;
  301. /*
  302. * Enable DMA on any drive that has mode2 DMA
  303. * (multi or single) enabled
  304. */
  305. if (id->field_valid & 2) /* regular DMA */
  306. if ((id->dma_mword & 0x404) == 0x404 ||
  307. (id->dma_1word & 0x404) == 0x404)
  308. return 1;
  309. /* Consult the list of known "good" drives */
  310. if (ide_dma_good_drive(drive))
  311. return 1;
  312. return 0;
  313. }
  314. /**
  315. * dma_timer_expiry - handle a DMA timeout
  316. * @drive: Drive that timed out
  317. *
  318. * An IDE DMA transfer timed out. In the event of an error we ask
  319. * the driver to resolve the problem, if a DMA transfer is still
  320. * in progress we continue to wait (arguably we need to add a
  321. * secondary 'I don't care what the drive thinks' timeout here)
  322. * Finally if we have an interrupt we let it complete the I/O.
  323. * But only one time - we clear expiry and if it's still not
  324. * completed after WAIT_CMD, we error and retry in PIO.
  325. * This can occur if an interrupt is lost or due to hang or bugs.
  326. */
  327. static int dma_timer_expiry (ide_drive_t *drive)
  328. {
  329. ide_hwif_t *hwif = HWIF(drive);
  330. u8 dma_stat = hwif->INB(hwif->dma_status);
  331. printk(KERN_WARNING "%s: dma_timer_expiry: dma status == 0x%02x\n",
  332. drive->name, dma_stat);
  333. if ((dma_stat & 0x18) == 0x18) /* BUSY Stupid Early Timer !! */
  334. return WAIT_CMD;
  335. HWGROUP(drive)->expiry = NULL; /* one free ride for now */
  336. /* 1 dmaing, 2 error, 4 intr */
  337. if (dma_stat & 2) /* ERROR */
  338. return -1;
  339. if (dma_stat & 1) /* DMAing */
  340. return WAIT_CMD;
  341. if (dma_stat & 4) /* Got an Interrupt */
  342. return WAIT_CMD;
  343. return 0; /* Status is unknown -- reset the bus */
  344. }
  345. /**
  346. * ide_dma_host_set - Enable/disable DMA on a host
  347. * @drive: drive to control
  348. *
  349. * Enable/disable DMA on an IDE controller following generic
  350. * bus-mastering IDE controller behaviour.
  351. */
  352. void ide_dma_host_set(ide_drive_t *drive, int on)
  353. {
  354. ide_hwif_t *hwif = HWIF(drive);
  355. u8 unit = (drive->select.b.unit & 0x01);
  356. u8 dma_stat = hwif->INB(hwif->dma_status);
  357. if (on)
  358. dma_stat |= (1 << (5 + unit));
  359. else
  360. dma_stat &= ~(1 << (5 + unit));
  361. hwif->OUTB(dma_stat, hwif->dma_status);
  362. }
  363. EXPORT_SYMBOL_GPL(ide_dma_host_set);
  364. #endif /* CONFIG_BLK_DEV_IDEDMA_PCI */
  365. /**
  366. * ide_dma_off_quietly - Generic DMA kill
  367. * @drive: drive to control
  368. *
  369. * Turn off the current DMA on this IDE controller.
  370. */
  371. void ide_dma_off_quietly(ide_drive_t *drive)
  372. {
  373. drive->using_dma = 0;
  374. ide_toggle_bounce(drive, 0);
  375. drive->hwif->dma_host_set(drive, 0);
  376. }
  377. EXPORT_SYMBOL(ide_dma_off_quietly);
  378. /**
  379. * ide_dma_off - disable DMA on a device
  380. * @drive: drive to disable DMA on
  381. *
  382. * Disable IDE DMA for a device on this IDE controller.
  383. * Inform the user that DMA has been disabled.
  384. */
  385. void ide_dma_off(ide_drive_t *drive)
  386. {
  387. printk(KERN_INFO "%s: DMA disabled\n", drive->name);
  388. ide_dma_off_quietly(drive);
  389. }
  390. EXPORT_SYMBOL(ide_dma_off);
  391. /**
  392. * ide_dma_on - Enable DMA on a device
  393. * @drive: drive to enable DMA on
  394. *
  395. * Enable IDE DMA for a device on this IDE controller.
  396. */
  397. void ide_dma_on(ide_drive_t *drive)
  398. {
  399. drive->using_dma = 1;
  400. ide_toggle_bounce(drive, 1);
  401. drive->hwif->dma_host_set(drive, 1);
  402. }
  403. #ifdef CONFIG_BLK_DEV_IDEDMA_PCI
  404. /**
  405. * ide_dma_setup - begin a DMA phase
  406. * @drive: target device
  407. *
  408. * Build an IDE DMA PRD (IDE speak for scatter gather table)
  409. * and then set up the DMA transfer registers for a device
  410. * that follows generic IDE PCI DMA behaviour. Controllers can
  411. * override this function if they need to
  412. *
  413. * Returns 0 on success. If a PIO fallback is required then 1
  414. * is returned.
  415. */
  416. int ide_dma_setup(ide_drive_t *drive)
  417. {
  418. ide_hwif_t *hwif = drive->hwif;
  419. struct request *rq = HWGROUP(drive)->rq;
  420. unsigned int reading;
  421. u8 dma_stat;
  422. if (rq_data_dir(rq))
  423. reading = 0;
  424. else
  425. reading = 1 << 3;
  426. /* fall back to pio! */
  427. if (!ide_build_dmatable(drive, rq)) {
  428. ide_map_sg(drive, rq);
  429. return 1;
  430. }
  431. /* PRD table */
  432. if (hwif->mmio)
  433. writel(hwif->dmatable_dma, (void __iomem *)hwif->dma_prdtable);
  434. else
  435. outl(hwif->dmatable_dma, hwif->dma_prdtable);
  436. /* specify r/w */
  437. hwif->OUTB(reading, hwif->dma_command);
  438. /* read dma_status for INTR & ERROR flags */
  439. dma_stat = hwif->INB(hwif->dma_status);
  440. /* clear INTR & ERROR flags */
  441. hwif->OUTB(dma_stat|6, hwif->dma_status);
  442. drive->waiting_for_dma = 1;
  443. return 0;
  444. }
  445. EXPORT_SYMBOL_GPL(ide_dma_setup);
  446. static void ide_dma_exec_cmd(ide_drive_t *drive, u8 command)
  447. {
  448. /* issue cmd to drive */
  449. ide_execute_command(drive, command, &ide_dma_intr, 2*WAIT_CMD, dma_timer_expiry);
  450. }
  451. void ide_dma_start(ide_drive_t *drive)
  452. {
  453. ide_hwif_t *hwif = HWIF(drive);
  454. u8 dma_cmd = hwif->INB(hwif->dma_command);
  455. /* Note that this is done *after* the cmd has
  456. * been issued to the drive, as per the BM-IDE spec.
  457. * The Promise Ultra33 doesn't work correctly when
  458. * we do this part before issuing the drive cmd.
  459. */
  460. /* start DMA */
  461. hwif->OUTB(dma_cmd|1, hwif->dma_command);
  462. hwif->dma = 1;
  463. wmb();
  464. }
  465. EXPORT_SYMBOL_GPL(ide_dma_start);
  466. /* returns 1 on error, 0 otherwise */
  467. int __ide_dma_end (ide_drive_t *drive)
  468. {
  469. ide_hwif_t *hwif = HWIF(drive);
  470. u8 dma_stat = 0, dma_cmd = 0;
  471. drive->waiting_for_dma = 0;
  472. /* get dma_command mode */
  473. dma_cmd = hwif->INB(hwif->dma_command);
  474. /* stop DMA */
  475. hwif->OUTB(dma_cmd&~1, hwif->dma_command);
  476. /* get DMA status */
  477. dma_stat = hwif->INB(hwif->dma_status);
  478. /* clear the INTR & ERROR bits */
  479. hwif->OUTB(dma_stat|6, hwif->dma_status);
  480. /* purge DMA mappings */
  481. ide_destroy_dmatable(drive);
  482. /* verify good DMA status */
  483. hwif->dma = 0;
  484. wmb();
  485. return (dma_stat & 7) != 4 ? (0x10 | dma_stat) : 0;
  486. }
  487. EXPORT_SYMBOL(__ide_dma_end);
  488. /* returns 1 if dma irq issued, 0 otherwise */
  489. static int __ide_dma_test_irq(ide_drive_t *drive)
  490. {
  491. ide_hwif_t *hwif = HWIF(drive);
  492. u8 dma_stat = hwif->INB(hwif->dma_status);
  493. /* return 1 if INTR asserted */
  494. if ((dma_stat & 4) == 4)
  495. return 1;
  496. if (!drive->waiting_for_dma)
  497. printk(KERN_WARNING "%s: (%s) called while not waiting\n",
  498. drive->name, __FUNCTION__);
  499. return 0;
  500. }
  501. #else
  502. static inline int config_drive_for_dma(ide_drive_t *drive) { return 0; }
  503. #endif /* CONFIG_BLK_DEV_IDEDMA_PCI */
  504. int __ide_dma_bad_drive (ide_drive_t *drive)
  505. {
  506. struct hd_driveid *id = drive->id;
  507. int blacklist = ide_in_drive_list(id, drive_blacklist);
  508. if (blacklist) {
  509. printk(KERN_WARNING "%s: Disabling (U)DMA for %s (blacklisted)\n",
  510. drive->name, id->model);
  511. return blacklist;
  512. }
  513. return 0;
  514. }
  515. EXPORT_SYMBOL(__ide_dma_bad_drive);
  516. static const u8 xfer_mode_bases[] = {
  517. XFER_UDMA_0,
  518. XFER_MW_DMA_0,
  519. XFER_SW_DMA_0,
  520. };
  521. static unsigned int ide_get_mode_mask(ide_drive_t *drive, u8 base, u8 req_mode)
  522. {
  523. struct hd_driveid *id = drive->id;
  524. ide_hwif_t *hwif = drive->hwif;
  525. unsigned int mask = 0;
  526. switch(base) {
  527. case XFER_UDMA_0:
  528. if ((id->field_valid & 4) == 0)
  529. break;
  530. if (hwif->udma_filter)
  531. mask = hwif->udma_filter(drive);
  532. else
  533. mask = hwif->ultra_mask;
  534. mask &= id->dma_ultra;
  535. /*
  536. * avoid false cable warning from eighty_ninty_three()
  537. */
  538. if (req_mode > XFER_UDMA_2) {
  539. if ((mask & 0x78) && (eighty_ninty_three(drive) == 0))
  540. mask &= 0x07;
  541. }
  542. break;
  543. case XFER_MW_DMA_0:
  544. if ((id->field_valid & 2) == 0)
  545. break;
  546. if (hwif->mdma_filter)
  547. mask = hwif->mdma_filter(drive);
  548. else
  549. mask = hwif->mwdma_mask;
  550. mask &= id->dma_mword;
  551. break;
  552. case XFER_SW_DMA_0:
  553. if (id->field_valid & 2) {
  554. mask = id->dma_1word & hwif->swdma_mask;
  555. } else if (id->tDMA) {
  556. /*
  557. * ide_fix_driveid() doesn't convert ->tDMA to the
  558. * CPU endianness so we need to do it here
  559. */
  560. u8 mode = le16_to_cpu(id->tDMA);
  561. /*
  562. * if the mode is valid convert it to the mask
  563. * (the maximum allowed mode is XFER_SW_DMA_2)
  564. */
  565. if (mode <= 2)
  566. mask = ((2 << mode) - 1) & hwif->swdma_mask;
  567. }
  568. break;
  569. default:
  570. BUG();
  571. break;
  572. }
  573. return mask;
  574. }
  575. /**
  576. * ide_find_dma_mode - compute DMA speed
  577. * @drive: IDE device
  578. * @req_mode: requested mode
  579. *
  580. * Checks the drive/host capabilities and finds the speed to use for
  581. * the DMA transfer. The speed is then limited by the requested mode.
  582. *
  583. * Returns 0 if the drive/host combination is incapable of DMA transfers
  584. * or if the requested mode is not a DMA mode.
  585. */
  586. u8 ide_find_dma_mode(ide_drive_t *drive, u8 req_mode)
  587. {
  588. ide_hwif_t *hwif = drive->hwif;
  589. unsigned int mask;
  590. int x, i;
  591. u8 mode = 0;
  592. if (drive->media != ide_disk) {
  593. if (hwif->host_flags & IDE_HFLAG_NO_ATAPI_DMA)
  594. return 0;
  595. }
  596. for (i = 0; i < ARRAY_SIZE(xfer_mode_bases); i++) {
  597. if (req_mode < xfer_mode_bases[i])
  598. continue;
  599. mask = ide_get_mode_mask(drive, xfer_mode_bases[i], req_mode);
  600. x = fls(mask) - 1;
  601. if (x >= 0) {
  602. mode = xfer_mode_bases[i] + x;
  603. break;
  604. }
  605. }
  606. if (hwif->chipset == ide_acorn && mode == 0) {
  607. /*
  608. * is this correct?
  609. */
  610. if (ide_dma_good_drive(drive) && drive->id->eide_dma_time < 150)
  611. mode = XFER_MW_DMA_1;
  612. }
  613. mode = min(mode, req_mode);
  614. printk(KERN_INFO "%s: %s mode selected\n", drive->name,
  615. mode ? ide_xfer_verbose(mode) : "no DMA");
  616. return mode;
  617. }
  618. EXPORT_SYMBOL_GPL(ide_find_dma_mode);
  619. static int ide_tune_dma(ide_drive_t *drive)
  620. {
  621. ide_hwif_t *hwif = drive->hwif;
  622. u8 speed;
  623. if (noautodma || drive->nodma || (drive->id->capability & 1) == 0)
  624. return 0;
  625. /* consult the list of known "bad" drives */
  626. if (__ide_dma_bad_drive(drive))
  627. return 0;
  628. if (ide_id_dma_bug(drive))
  629. return 0;
  630. if (hwif->host_flags & IDE_HFLAG_TRUST_BIOS_FOR_DMA)
  631. return config_drive_for_dma(drive);
  632. speed = ide_max_dma_mode(drive);
  633. if (!speed) {
  634. /* is this really correct/needed? */
  635. if ((hwif->host_flags & IDE_HFLAG_CY82C693) &&
  636. ide_dma_good_drive(drive))
  637. return 1;
  638. else
  639. return 0;
  640. }
  641. if (hwif->host_flags & IDE_HFLAG_NO_SET_MODE)
  642. return 0;
  643. if (ide_set_dma_mode(drive, speed))
  644. return 0;
  645. return 1;
  646. }
  647. static int ide_dma_check(ide_drive_t *drive)
  648. {
  649. ide_hwif_t *hwif = drive->hwif;
  650. int vdma = (hwif->host_flags & IDE_HFLAG_VDMA)? 1 : 0;
  651. if (!vdma && ide_tune_dma(drive))
  652. return 0;
  653. /* TODO: always do PIO fallback */
  654. if (hwif->host_flags & IDE_HFLAG_TRUST_BIOS_FOR_DMA)
  655. return -1;
  656. ide_set_max_pio(drive);
  657. return vdma ? 0 : -1;
  658. }
  659. int ide_id_dma_bug(ide_drive_t *drive)
  660. {
  661. struct hd_driveid *id = drive->id;
  662. if (id->field_valid & 4) {
  663. if ((id->dma_ultra >> 8) && (id->dma_mword >> 8))
  664. goto err_out;
  665. } else if (id->field_valid & 2) {
  666. if ((id->dma_mword >> 8) && (id->dma_1word >> 8))
  667. goto err_out;
  668. }
  669. return 0;
  670. err_out:
  671. printk(KERN_ERR "%s: bad DMA info in identify block\n", drive->name);
  672. return 1;
  673. }
  674. int ide_set_dma(ide_drive_t *drive)
  675. {
  676. int rc;
  677. /*
  678. * Force DMAing for the beginning of the check.
  679. * Some chipsets appear to do interesting
  680. * things, if not checked and cleared.
  681. * PARANOIA!!!
  682. */
  683. ide_dma_off_quietly(drive);
  684. rc = ide_dma_check(drive);
  685. if (rc)
  686. return rc;
  687. ide_dma_on(drive);
  688. return 0;
  689. }
  690. #ifdef CONFIG_BLK_DEV_IDEDMA_PCI
  691. void ide_dma_lost_irq (ide_drive_t *drive)
  692. {
  693. printk("%s: DMA interrupt recovery\n", drive->name);
  694. }
  695. EXPORT_SYMBOL(ide_dma_lost_irq);
  696. void ide_dma_timeout (ide_drive_t *drive)
  697. {
  698. ide_hwif_t *hwif = HWIF(drive);
  699. printk(KERN_ERR "%s: timeout waiting for DMA\n", drive->name);
  700. if (hwif->ide_dma_test_irq(drive))
  701. return;
  702. hwif->ide_dma_end(drive);
  703. }
  704. EXPORT_SYMBOL(ide_dma_timeout);
  705. static void ide_release_dma_engine(ide_hwif_t *hwif)
  706. {
  707. if (hwif->dmatable_cpu) {
  708. pci_free_consistent(hwif->pci_dev,
  709. PRD_ENTRIES * PRD_BYTES,
  710. hwif->dmatable_cpu,
  711. hwif->dmatable_dma);
  712. hwif->dmatable_cpu = NULL;
  713. }
  714. }
  715. static int ide_release_iomio_dma(ide_hwif_t *hwif)
  716. {
  717. release_region(hwif->dma_base, 8);
  718. if (hwif->extra_ports)
  719. release_region(hwif->extra_base, hwif->extra_ports);
  720. return 1;
  721. }
  722. /*
  723. * Needed for allowing full modular support of ide-driver
  724. */
  725. int ide_release_dma(ide_hwif_t *hwif)
  726. {
  727. ide_release_dma_engine(hwif);
  728. if (hwif->mmio)
  729. return 1;
  730. else
  731. return ide_release_iomio_dma(hwif);
  732. }
  733. static int ide_allocate_dma_engine(ide_hwif_t *hwif)
  734. {
  735. hwif->dmatable_cpu = pci_alloc_consistent(hwif->pci_dev,
  736. PRD_ENTRIES * PRD_BYTES,
  737. &hwif->dmatable_dma);
  738. if (hwif->dmatable_cpu)
  739. return 0;
  740. printk(KERN_ERR "%s: -- Error, unable to allocate DMA table.\n",
  741. hwif->cds->name);
  742. return 1;
  743. }
  744. static int ide_mapped_mmio_dma(ide_hwif_t *hwif, unsigned long base)
  745. {
  746. printk(KERN_INFO " %s: MMIO-DMA ", hwif->name);
  747. return 0;
  748. }
  749. static int ide_iomio_dma(ide_hwif_t *hwif, unsigned long base)
  750. {
  751. printk(KERN_INFO " %s: BM-DMA at 0x%04lx-0x%04lx",
  752. hwif->name, base, base + 7);
  753. if (!request_region(base, 8, hwif->name)) {
  754. printk(" -- Error, ports in use.\n");
  755. return 1;
  756. }
  757. if (hwif->cds->extra) {
  758. hwif->extra_base = base + (hwif->channel ? 8 : 16);
  759. if (!hwif->mate || !hwif->mate->extra_ports) {
  760. if (!request_region(hwif->extra_base,
  761. hwif->cds->extra, hwif->cds->name)) {
  762. printk(" -- Error, extra ports in use.\n");
  763. release_region(base, 8);
  764. return 1;
  765. }
  766. hwif->extra_ports = hwif->cds->extra;
  767. }
  768. }
  769. return 0;
  770. }
  771. static int ide_dma_iobase(ide_hwif_t *hwif, unsigned long base)
  772. {
  773. if (hwif->mmio)
  774. return ide_mapped_mmio_dma(hwif, base);
  775. return ide_iomio_dma(hwif, base);
  776. }
  777. void ide_setup_dma(ide_hwif_t *hwif, unsigned long base)
  778. {
  779. u8 dma_stat;
  780. if (ide_dma_iobase(hwif, base))
  781. return;
  782. if (ide_allocate_dma_engine(hwif)) {
  783. ide_release_dma(hwif);
  784. return;
  785. }
  786. hwif->dma_base = base;
  787. if (!hwif->dma_command)
  788. hwif->dma_command = hwif->dma_base + 0;
  789. if (!hwif->dma_vendor1)
  790. hwif->dma_vendor1 = hwif->dma_base + 1;
  791. if (!hwif->dma_status)
  792. hwif->dma_status = hwif->dma_base + 2;
  793. if (!hwif->dma_vendor3)
  794. hwif->dma_vendor3 = hwif->dma_base + 3;
  795. if (!hwif->dma_prdtable)
  796. hwif->dma_prdtable = hwif->dma_base + 4;
  797. if (!hwif->dma_host_set)
  798. hwif->dma_host_set = &ide_dma_host_set;
  799. if (!hwif->dma_setup)
  800. hwif->dma_setup = &ide_dma_setup;
  801. if (!hwif->dma_exec_cmd)
  802. hwif->dma_exec_cmd = &ide_dma_exec_cmd;
  803. if (!hwif->dma_start)
  804. hwif->dma_start = &ide_dma_start;
  805. if (!hwif->ide_dma_end)
  806. hwif->ide_dma_end = &__ide_dma_end;
  807. if (!hwif->ide_dma_test_irq)
  808. hwif->ide_dma_test_irq = &__ide_dma_test_irq;
  809. if (!hwif->dma_timeout)
  810. hwif->dma_timeout = &ide_dma_timeout;
  811. if (!hwif->dma_lost_irq)
  812. hwif->dma_lost_irq = &ide_dma_lost_irq;
  813. dma_stat = hwif->INB(hwif->dma_status);
  814. printk(KERN_CONT ", BIOS settings: %s:%s, %s:%s\n",
  815. hwif->drives[0].name, (dma_stat & 0x20) ? "DMA" : "PIO",
  816. hwif->drives[1].name, (dma_stat & 0x40) ? "DMA" : "PIO");
  817. }
  818. EXPORT_SYMBOL_GPL(ide_setup_dma);
  819. #endif /* CONFIG_BLK_DEV_IDEDMA_PCI */