page_alloc.c 169 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148
  1. /*
  2. * linux/mm/page_alloc.c
  3. *
  4. * Manages the free list, the system allocates free pages here.
  5. * Note that kmalloc() lives in slab.c
  6. *
  7. * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
  8. * Swap reorganised 29.12.95, Stephen Tweedie
  9. * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
  10. * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
  11. * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
  12. * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
  13. * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
  14. * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
  15. */
  16. #include <linux/stddef.h>
  17. #include <linux/mm.h>
  18. #include <linux/swap.h>
  19. #include <linux/interrupt.h>
  20. #include <linux/pagemap.h>
  21. #include <linux/jiffies.h>
  22. #include <linux/bootmem.h>
  23. #include <linux/memblock.h>
  24. #include <linux/compiler.h>
  25. #include <linux/kernel.h>
  26. #include <linux/kmemcheck.h>
  27. #include <linux/module.h>
  28. #include <linux/suspend.h>
  29. #include <linux/pagevec.h>
  30. #include <linux/blkdev.h>
  31. #include <linux/slab.h>
  32. #include <linux/ratelimit.h>
  33. #include <linux/oom.h>
  34. #include <linux/notifier.h>
  35. #include <linux/topology.h>
  36. #include <linux/sysctl.h>
  37. #include <linux/cpu.h>
  38. #include <linux/cpuset.h>
  39. #include <linux/memory_hotplug.h>
  40. #include <linux/nodemask.h>
  41. #include <linux/vmalloc.h>
  42. #include <linux/vmstat.h>
  43. #include <linux/mempolicy.h>
  44. #include <linux/stop_machine.h>
  45. #include <linux/sort.h>
  46. #include <linux/pfn.h>
  47. #include <linux/backing-dev.h>
  48. #include <linux/fault-inject.h>
  49. #include <linux/page-isolation.h>
  50. #include <linux/page_cgroup.h>
  51. #include <linux/debugobjects.h>
  52. #include <linux/kmemleak.h>
  53. #include <linux/compaction.h>
  54. #include <trace/events/kmem.h>
  55. #include <linux/ftrace_event.h>
  56. #include <linux/memcontrol.h>
  57. #include <linux/prefetch.h>
  58. #include <linux/migrate.h>
  59. #include <linux/page-debug-flags.h>
  60. #include <asm/tlbflush.h>
  61. #include <asm/div64.h>
  62. #include "internal.h"
  63. #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
  64. DEFINE_PER_CPU(int, numa_node);
  65. EXPORT_PER_CPU_SYMBOL(numa_node);
  66. #endif
  67. #ifdef CONFIG_HAVE_MEMORYLESS_NODES
  68. /*
  69. * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
  70. * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
  71. * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
  72. * defined in <linux/topology.h>.
  73. */
  74. DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
  75. EXPORT_PER_CPU_SYMBOL(_numa_mem_);
  76. #endif
  77. /*
  78. * Array of node states.
  79. */
  80. nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
  81. [N_POSSIBLE] = NODE_MASK_ALL,
  82. [N_ONLINE] = { { [0] = 1UL } },
  83. #ifndef CONFIG_NUMA
  84. [N_NORMAL_MEMORY] = { { [0] = 1UL } },
  85. #ifdef CONFIG_HIGHMEM
  86. [N_HIGH_MEMORY] = { { [0] = 1UL } },
  87. #endif
  88. #ifdef CONFIG_MOVABLE_NODE
  89. [N_MEMORY] = { { [0] = 1UL } },
  90. #endif
  91. [N_CPU] = { { [0] = 1UL } },
  92. #endif /* NUMA */
  93. };
  94. EXPORT_SYMBOL(node_states);
  95. unsigned long totalram_pages __read_mostly;
  96. unsigned long totalreserve_pages __read_mostly;
  97. /*
  98. * When calculating the number of globally allowed dirty pages, there
  99. * is a certain number of per-zone reserves that should not be
  100. * considered dirtyable memory. This is the sum of those reserves
  101. * over all existing zones that contribute dirtyable memory.
  102. */
  103. unsigned long dirty_balance_reserve __read_mostly;
  104. int percpu_pagelist_fraction;
  105. gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
  106. #ifdef CONFIG_PM_SLEEP
  107. /*
  108. * The following functions are used by the suspend/hibernate code to temporarily
  109. * change gfp_allowed_mask in order to avoid using I/O during memory allocations
  110. * while devices are suspended. To avoid races with the suspend/hibernate code,
  111. * they should always be called with pm_mutex held (gfp_allowed_mask also should
  112. * only be modified with pm_mutex held, unless the suspend/hibernate code is
  113. * guaranteed not to run in parallel with that modification).
  114. */
  115. static gfp_t saved_gfp_mask;
  116. void pm_restore_gfp_mask(void)
  117. {
  118. WARN_ON(!mutex_is_locked(&pm_mutex));
  119. if (saved_gfp_mask) {
  120. gfp_allowed_mask = saved_gfp_mask;
  121. saved_gfp_mask = 0;
  122. }
  123. }
  124. void pm_restrict_gfp_mask(void)
  125. {
  126. WARN_ON(!mutex_is_locked(&pm_mutex));
  127. WARN_ON(saved_gfp_mask);
  128. saved_gfp_mask = gfp_allowed_mask;
  129. gfp_allowed_mask &= ~GFP_IOFS;
  130. }
  131. bool pm_suspended_storage(void)
  132. {
  133. if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS)
  134. return false;
  135. return true;
  136. }
  137. #endif /* CONFIG_PM_SLEEP */
  138. #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
  139. int pageblock_order __read_mostly;
  140. #endif
  141. static void __free_pages_ok(struct page *page, unsigned int order);
  142. /*
  143. * results with 256, 32 in the lowmem_reserve sysctl:
  144. * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
  145. * 1G machine -> (16M dma, 784M normal, 224M high)
  146. * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
  147. * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
  148. * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
  149. *
  150. * TBD: should special case ZONE_DMA32 machines here - in those we normally
  151. * don't need any ZONE_NORMAL reservation
  152. */
  153. int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
  154. #ifdef CONFIG_ZONE_DMA
  155. 256,
  156. #endif
  157. #ifdef CONFIG_ZONE_DMA32
  158. 256,
  159. #endif
  160. #ifdef CONFIG_HIGHMEM
  161. 32,
  162. #endif
  163. 32,
  164. };
  165. EXPORT_SYMBOL(totalram_pages);
  166. static char * const zone_names[MAX_NR_ZONES] = {
  167. #ifdef CONFIG_ZONE_DMA
  168. "DMA",
  169. #endif
  170. #ifdef CONFIG_ZONE_DMA32
  171. "DMA32",
  172. #endif
  173. "Normal",
  174. #ifdef CONFIG_HIGHMEM
  175. "HighMem",
  176. #endif
  177. "Movable",
  178. };
  179. int min_free_kbytes = 1024;
  180. static unsigned long __meminitdata nr_kernel_pages;
  181. static unsigned long __meminitdata nr_all_pages;
  182. static unsigned long __meminitdata dma_reserve;
  183. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  184. static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
  185. static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
  186. static unsigned long __initdata required_kernelcore;
  187. static unsigned long __initdata required_movablecore;
  188. static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
  189. /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
  190. int movable_zone;
  191. EXPORT_SYMBOL(movable_zone);
  192. #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  193. #if MAX_NUMNODES > 1
  194. int nr_node_ids __read_mostly = MAX_NUMNODES;
  195. int nr_online_nodes __read_mostly = 1;
  196. EXPORT_SYMBOL(nr_node_ids);
  197. EXPORT_SYMBOL(nr_online_nodes);
  198. #endif
  199. int page_group_by_mobility_disabled __read_mostly;
  200. /*
  201. * NOTE:
  202. * Don't use set_pageblock_migratetype(page, MIGRATE_ISOLATE) directly.
  203. * Instead, use {un}set_pageblock_isolate.
  204. */
  205. void set_pageblock_migratetype(struct page *page, int migratetype)
  206. {
  207. if (unlikely(page_group_by_mobility_disabled))
  208. migratetype = MIGRATE_UNMOVABLE;
  209. set_pageblock_flags_group(page, (unsigned long)migratetype,
  210. PB_migrate, PB_migrate_end);
  211. }
  212. bool oom_killer_disabled __read_mostly;
  213. #ifdef CONFIG_DEBUG_VM
  214. static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
  215. {
  216. int ret = 0;
  217. unsigned seq;
  218. unsigned long pfn = page_to_pfn(page);
  219. do {
  220. seq = zone_span_seqbegin(zone);
  221. if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
  222. ret = 1;
  223. else if (pfn < zone->zone_start_pfn)
  224. ret = 1;
  225. } while (zone_span_seqretry(zone, seq));
  226. return ret;
  227. }
  228. static int page_is_consistent(struct zone *zone, struct page *page)
  229. {
  230. if (!pfn_valid_within(page_to_pfn(page)))
  231. return 0;
  232. if (zone != page_zone(page))
  233. return 0;
  234. return 1;
  235. }
  236. /*
  237. * Temporary debugging check for pages not lying within a given zone.
  238. */
  239. static int bad_range(struct zone *zone, struct page *page)
  240. {
  241. if (page_outside_zone_boundaries(zone, page))
  242. return 1;
  243. if (!page_is_consistent(zone, page))
  244. return 1;
  245. return 0;
  246. }
  247. #else
  248. static inline int bad_range(struct zone *zone, struct page *page)
  249. {
  250. return 0;
  251. }
  252. #endif
  253. static void bad_page(struct page *page)
  254. {
  255. static unsigned long resume;
  256. static unsigned long nr_shown;
  257. static unsigned long nr_unshown;
  258. /* Don't complain about poisoned pages */
  259. if (PageHWPoison(page)) {
  260. reset_page_mapcount(page); /* remove PageBuddy */
  261. return;
  262. }
  263. /*
  264. * Allow a burst of 60 reports, then keep quiet for that minute;
  265. * or allow a steady drip of one report per second.
  266. */
  267. if (nr_shown == 60) {
  268. if (time_before(jiffies, resume)) {
  269. nr_unshown++;
  270. goto out;
  271. }
  272. if (nr_unshown) {
  273. printk(KERN_ALERT
  274. "BUG: Bad page state: %lu messages suppressed\n",
  275. nr_unshown);
  276. nr_unshown = 0;
  277. }
  278. nr_shown = 0;
  279. }
  280. if (nr_shown++ == 0)
  281. resume = jiffies + 60 * HZ;
  282. printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
  283. current->comm, page_to_pfn(page));
  284. dump_page(page);
  285. print_modules();
  286. dump_stack();
  287. out:
  288. /* Leave bad fields for debug, except PageBuddy could make trouble */
  289. reset_page_mapcount(page); /* remove PageBuddy */
  290. add_taint(TAINT_BAD_PAGE);
  291. }
  292. /*
  293. * Higher-order pages are called "compound pages". They are structured thusly:
  294. *
  295. * The first PAGE_SIZE page is called the "head page".
  296. *
  297. * The remaining PAGE_SIZE pages are called "tail pages".
  298. *
  299. * All pages have PG_compound set. All tail pages have their ->first_page
  300. * pointing at the head page.
  301. *
  302. * The first tail page's ->lru.next holds the address of the compound page's
  303. * put_page() function. Its ->lru.prev holds the order of allocation.
  304. * This usage means that zero-order pages may not be compound.
  305. */
  306. static void free_compound_page(struct page *page)
  307. {
  308. __free_pages_ok(page, compound_order(page));
  309. }
  310. void prep_compound_page(struct page *page, unsigned long order)
  311. {
  312. int i;
  313. int nr_pages = 1 << order;
  314. set_compound_page_dtor(page, free_compound_page);
  315. set_compound_order(page, order);
  316. __SetPageHead(page);
  317. for (i = 1; i < nr_pages; i++) {
  318. struct page *p = page + i;
  319. __SetPageTail(p);
  320. set_page_count(p, 0);
  321. p->first_page = page;
  322. }
  323. }
  324. /* update __split_huge_page_refcount if you change this function */
  325. static int destroy_compound_page(struct page *page, unsigned long order)
  326. {
  327. int i;
  328. int nr_pages = 1 << order;
  329. int bad = 0;
  330. if (unlikely(compound_order(page) != order) ||
  331. unlikely(!PageHead(page))) {
  332. bad_page(page);
  333. bad++;
  334. }
  335. __ClearPageHead(page);
  336. for (i = 1; i < nr_pages; i++) {
  337. struct page *p = page + i;
  338. if (unlikely(!PageTail(p) || (p->first_page != page))) {
  339. bad_page(page);
  340. bad++;
  341. }
  342. __ClearPageTail(p);
  343. }
  344. return bad;
  345. }
  346. static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
  347. {
  348. int i;
  349. /*
  350. * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
  351. * and __GFP_HIGHMEM from hard or soft interrupt context.
  352. */
  353. VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
  354. for (i = 0; i < (1 << order); i++)
  355. clear_highpage(page + i);
  356. }
  357. #ifdef CONFIG_DEBUG_PAGEALLOC
  358. unsigned int _debug_guardpage_minorder;
  359. static int __init debug_guardpage_minorder_setup(char *buf)
  360. {
  361. unsigned long res;
  362. if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
  363. printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
  364. return 0;
  365. }
  366. _debug_guardpage_minorder = res;
  367. printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
  368. return 0;
  369. }
  370. __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
  371. static inline void set_page_guard_flag(struct page *page)
  372. {
  373. __set_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
  374. }
  375. static inline void clear_page_guard_flag(struct page *page)
  376. {
  377. __clear_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
  378. }
  379. #else
  380. static inline void set_page_guard_flag(struct page *page) { }
  381. static inline void clear_page_guard_flag(struct page *page) { }
  382. #endif
  383. static inline void set_page_order(struct page *page, int order)
  384. {
  385. set_page_private(page, order);
  386. __SetPageBuddy(page);
  387. }
  388. static inline void rmv_page_order(struct page *page)
  389. {
  390. __ClearPageBuddy(page);
  391. set_page_private(page, 0);
  392. }
  393. /*
  394. * Locate the struct page for both the matching buddy in our
  395. * pair (buddy1) and the combined O(n+1) page they form (page).
  396. *
  397. * 1) Any buddy B1 will have an order O twin B2 which satisfies
  398. * the following equation:
  399. * B2 = B1 ^ (1 << O)
  400. * For example, if the starting buddy (buddy2) is #8 its order
  401. * 1 buddy is #10:
  402. * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
  403. *
  404. * 2) Any buddy B will have an order O+1 parent P which
  405. * satisfies the following equation:
  406. * P = B & ~(1 << O)
  407. *
  408. * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
  409. */
  410. static inline unsigned long
  411. __find_buddy_index(unsigned long page_idx, unsigned int order)
  412. {
  413. return page_idx ^ (1 << order);
  414. }
  415. /*
  416. * This function checks whether a page is free && is the buddy
  417. * we can do coalesce a page and its buddy if
  418. * (a) the buddy is not in a hole &&
  419. * (b) the buddy is in the buddy system &&
  420. * (c) a page and its buddy have the same order &&
  421. * (d) a page and its buddy are in the same zone.
  422. *
  423. * For recording whether a page is in the buddy system, we set ->_mapcount -2.
  424. * Setting, clearing, and testing _mapcount -2 is serialized by zone->lock.
  425. *
  426. * For recording page's order, we use page_private(page).
  427. */
  428. static inline int page_is_buddy(struct page *page, struct page *buddy,
  429. int order)
  430. {
  431. if (!pfn_valid_within(page_to_pfn(buddy)))
  432. return 0;
  433. if (page_zone_id(page) != page_zone_id(buddy))
  434. return 0;
  435. if (page_is_guard(buddy) && page_order(buddy) == order) {
  436. VM_BUG_ON(page_count(buddy) != 0);
  437. return 1;
  438. }
  439. if (PageBuddy(buddy) && page_order(buddy) == order) {
  440. VM_BUG_ON(page_count(buddy) != 0);
  441. return 1;
  442. }
  443. return 0;
  444. }
  445. /*
  446. * Freeing function for a buddy system allocator.
  447. *
  448. * The concept of a buddy system is to maintain direct-mapped table
  449. * (containing bit values) for memory blocks of various "orders".
  450. * The bottom level table contains the map for the smallest allocatable
  451. * units of memory (here, pages), and each level above it describes
  452. * pairs of units from the levels below, hence, "buddies".
  453. * At a high level, all that happens here is marking the table entry
  454. * at the bottom level available, and propagating the changes upward
  455. * as necessary, plus some accounting needed to play nicely with other
  456. * parts of the VM system.
  457. * At each level, we keep a list of pages, which are heads of continuous
  458. * free pages of length of (1 << order) and marked with _mapcount -2. Page's
  459. * order is recorded in page_private(page) field.
  460. * So when we are allocating or freeing one, we can derive the state of the
  461. * other. That is, if we allocate a small block, and both were
  462. * free, the remainder of the region must be split into blocks.
  463. * If a block is freed, and its buddy is also free, then this
  464. * triggers coalescing into a block of larger size.
  465. *
  466. * -- nyc
  467. */
  468. static inline void __free_one_page(struct page *page,
  469. struct zone *zone, unsigned int order,
  470. int migratetype)
  471. {
  472. unsigned long page_idx;
  473. unsigned long combined_idx;
  474. unsigned long uninitialized_var(buddy_idx);
  475. struct page *buddy;
  476. if (unlikely(PageCompound(page)))
  477. if (unlikely(destroy_compound_page(page, order)))
  478. return;
  479. VM_BUG_ON(migratetype == -1);
  480. page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
  481. VM_BUG_ON(page_idx & ((1 << order) - 1));
  482. VM_BUG_ON(bad_range(zone, page));
  483. while (order < MAX_ORDER-1) {
  484. buddy_idx = __find_buddy_index(page_idx, order);
  485. buddy = page + (buddy_idx - page_idx);
  486. if (!page_is_buddy(page, buddy, order))
  487. break;
  488. /*
  489. * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
  490. * merge with it and move up one order.
  491. */
  492. if (page_is_guard(buddy)) {
  493. clear_page_guard_flag(buddy);
  494. set_page_private(page, 0);
  495. __mod_zone_freepage_state(zone, 1 << order,
  496. migratetype);
  497. } else {
  498. list_del(&buddy->lru);
  499. zone->free_area[order].nr_free--;
  500. rmv_page_order(buddy);
  501. }
  502. combined_idx = buddy_idx & page_idx;
  503. page = page + (combined_idx - page_idx);
  504. page_idx = combined_idx;
  505. order++;
  506. }
  507. set_page_order(page, order);
  508. /*
  509. * If this is not the largest possible page, check if the buddy
  510. * of the next-highest order is free. If it is, it's possible
  511. * that pages are being freed that will coalesce soon. In case,
  512. * that is happening, add the free page to the tail of the list
  513. * so it's less likely to be used soon and more likely to be merged
  514. * as a higher order page
  515. */
  516. if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
  517. struct page *higher_page, *higher_buddy;
  518. combined_idx = buddy_idx & page_idx;
  519. higher_page = page + (combined_idx - page_idx);
  520. buddy_idx = __find_buddy_index(combined_idx, order + 1);
  521. higher_buddy = higher_page + (buddy_idx - combined_idx);
  522. if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
  523. list_add_tail(&page->lru,
  524. &zone->free_area[order].free_list[migratetype]);
  525. goto out;
  526. }
  527. }
  528. list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
  529. out:
  530. zone->free_area[order].nr_free++;
  531. }
  532. static inline int free_pages_check(struct page *page)
  533. {
  534. if (unlikely(page_mapcount(page) |
  535. (page->mapping != NULL) |
  536. (atomic_read(&page->_count) != 0) |
  537. (page->flags & PAGE_FLAGS_CHECK_AT_FREE) |
  538. (mem_cgroup_bad_page_check(page)))) {
  539. bad_page(page);
  540. return 1;
  541. }
  542. if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
  543. page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
  544. return 0;
  545. }
  546. /*
  547. * Frees a number of pages from the PCP lists
  548. * Assumes all pages on list are in same zone, and of same order.
  549. * count is the number of pages to free.
  550. *
  551. * If the zone was previously in an "all pages pinned" state then look to
  552. * see if this freeing clears that state.
  553. *
  554. * And clear the zone's pages_scanned counter, to hold off the "all pages are
  555. * pinned" detection logic.
  556. */
  557. static void free_pcppages_bulk(struct zone *zone, int count,
  558. struct per_cpu_pages *pcp)
  559. {
  560. int migratetype = 0;
  561. int batch_free = 0;
  562. int to_free = count;
  563. spin_lock(&zone->lock);
  564. zone->all_unreclaimable = 0;
  565. zone->pages_scanned = 0;
  566. while (to_free) {
  567. struct page *page;
  568. struct list_head *list;
  569. /*
  570. * Remove pages from lists in a round-robin fashion. A
  571. * batch_free count is maintained that is incremented when an
  572. * empty list is encountered. This is so more pages are freed
  573. * off fuller lists instead of spinning excessively around empty
  574. * lists
  575. */
  576. do {
  577. batch_free++;
  578. if (++migratetype == MIGRATE_PCPTYPES)
  579. migratetype = 0;
  580. list = &pcp->lists[migratetype];
  581. } while (list_empty(list));
  582. /* This is the only non-empty list. Free them all. */
  583. if (batch_free == MIGRATE_PCPTYPES)
  584. batch_free = to_free;
  585. do {
  586. int mt; /* migratetype of the to-be-freed page */
  587. page = list_entry(list->prev, struct page, lru);
  588. /* must delete as __free_one_page list manipulates */
  589. list_del(&page->lru);
  590. mt = get_freepage_migratetype(page);
  591. /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
  592. __free_one_page(page, zone, 0, mt);
  593. trace_mm_page_pcpu_drain(page, 0, mt);
  594. if (likely(get_pageblock_migratetype(page) != MIGRATE_ISOLATE)) {
  595. __mod_zone_page_state(zone, NR_FREE_PAGES, 1);
  596. if (is_migrate_cma(mt))
  597. __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 1);
  598. }
  599. } while (--to_free && --batch_free && !list_empty(list));
  600. }
  601. spin_unlock(&zone->lock);
  602. }
  603. static void free_one_page(struct zone *zone, struct page *page, int order,
  604. int migratetype)
  605. {
  606. spin_lock(&zone->lock);
  607. zone->all_unreclaimable = 0;
  608. zone->pages_scanned = 0;
  609. __free_one_page(page, zone, order, migratetype);
  610. if (unlikely(migratetype != MIGRATE_ISOLATE))
  611. __mod_zone_freepage_state(zone, 1 << order, migratetype);
  612. spin_unlock(&zone->lock);
  613. }
  614. static bool free_pages_prepare(struct page *page, unsigned int order)
  615. {
  616. int i;
  617. int bad = 0;
  618. trace_mm_page_free(page, order);
  619. kmemcheck_free_shadow(page, order);
  620. if (PageAnon(page))
  621. page->mapping = NULL;
  622. for (i = 0; i < (1 << order); i++)
  623. bad += free_pages_check(page + i);
  624. if (bad)
  625. return false;
  626. if (!PageHighMem(page)) {
  627. debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
  628. debug_check_no_obj_freed(page_address(page),
  629. PAGE_SIZE << order);
  630. }
  631. arch_free_page(page, order);
  632. kernel_map_pages(page, 1 << order, 0);
  633. return true;
  634. }
  635. static void __free_pages_ok(struct page *page, unsigned int order)
  636. {
  637. unsigned long flags;
  638. int migratetype;
  639. if (!free_pages_prepare(page, order))
  640. return;
  641. local_irq_save(flags);
  642. __count_vm_events(PGFREE, 1 << order);
  643. migratetype = get_pageblock_migratetype(page);
  644. set_freepage_migratetype(page, migratetype);
  645. free_one_page(page_zone(page), page, order, migratetype);
  646. local_irq_restore(flags);
  647. }
  648. /*
  649. * Read access to zone->managed_pages is safe because it's unsigned long,
  650. * but we still need to serialize writers. Currently all callers of
  651. * __free_pages_bootmem() except put_page_bootmem() should only be used
  652. * at boot time. So for shorter boot time, we shift the burden to
  653. * put_page_bootmem() to serialize writers.
  654. */
  655. void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
  656. {
  657. unsigned int nr_pages = 1 << order;
  658. unsigned int loop;
  659. prefetchw(page);
  660. for (loop = 0; loop < nr_pages; loop++) {
  661. struct page *p = &page[loop];
  662. if (loop + 1 < nr_pages)
  663. prefetchw(p + 1);
  664. __ClearPageReserved(p);
  665. set_page_count(p, 0);
  666. }
  667. page_zone(page)->managed_pages += 1 << order;
  668. set_page_refcounted(page);
  669. __free_pages(page, order);
  670. }
  671. #ifdef CONFIG_CMA
  672. /* Free whole pageblock and set it's migration type to MIGRATE_CMA. */
  673. void __init init_cma_reserved_pageblock(struct page *page)
  674. {
  675. unsigned i = pageblock_nr_pages;
  676. struct page *p = page;
  677. do {
  678. __ClearPageReserved(p);
  679. set_page_count(p, 0);
  680. } while (++p, --i);
  681. set_page_refcounted(page);
  682. set_pageblock_migratetype(page, MIGRATE_CMA);
  683. __free_pages(page, pageblock_order);
  684. totalram_pages += pageblock_nr_pages;
  685. }
  686. #endif
  687. /*
  688. * The order of subdivision here is critical for the IO subsystem.
  689. * Please do not alter this order without good reasons and regression
  690. * testing. Specifically, as large blocks of memory are subdivided,
  691. * the order in which smaller blocks are delivered depends on the order
  692. * they're subdivided in this function. This is the primary factor
  693. * influencing the order in which pages are delivered to the IO
  694. * subsystem according to empirical testing, and this is also justified
  695. * by considering the behavior of a buddy system containing a single
  696. * large block of memory acted on by a series of small allocations.
  697. * This behavior is a critical factor in sglist merging's success.
  698. *
  699. * -- nyc
  700. */
  701. static inline void expand(struct zone *zone, struct page *page,
  702. int low, int high, struct free_area *area,
  703. int migratetype)
  704. {
  705. unsigned long size = 1 << high;
  706. while (high > low) {
  707. area--;
  708. high--;
  709. size >>= 1;
  710. VM_BUG_ON(bad_range(zone, &page[size]));
  711. #ifdef CONFIG_DEBUG_PAGEALLOC
  712. if (high < debug_guardpage_minorder()) {
  713. /*
  714. * Mark as guard pages (or page), that will allow to
  715. * merge back to allocator when buddy will be freed.
  716. * Corresponding page table entries will not be touched,
  717. * pages will stay not present in virtual address space
  718. */
  719. INIT_LIST_HEAD(&page[size].lru);
  720. set_page_guard_flag(&page[size]);
  721. set_page_private(&page[size], high);
  722. /* Guard pages are not available for any usage */
  723. __mod_zone_freepage_state(zone, -(1 << high),
  724. migratetype);
  725. continue;
  726. }
  727. #endif
  728. list_add(&page[size].lru, &area->free_list[migratetype]);
  729. area->nr_free++;
  730. set_page_order(&page[size], high);
  731. }
  732. }
  733. /*
  734. * This page is about to be returned from the page allocator
  735. */
  736. static inline int check_new_page(struct page *page)
  737. {
  738. if (unlikely(page_mapcount(page) |
  739. (page->mapping != NULL) |
  740. (atomic_read(&page->_count) != 0) |
  741. (page->flags & PAGE_FLAGS_CHECK_AT_PREP) |
  742. (mem_cgroup_bad_page_check(page)))) {
  743. bad_page(page);
  744. return 1;
  745. }
  746. return 0;
  747. }
  748. static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
  749. {
  750. int i;
  751. for (i = 0; i < (1 << order); i++) {
  752. struct page *p = page + i;
  753. if (unlikely(check_new_page(p)))
  754. return 1;
  755. }
  756. set_page_private(page, 0);
  757. set_page_refcounted(page);
  758. arch_alloc_page(page, order);
  759. kernel_map_pages(page, 1 << order, 1);
  760. if (gfp_flags & __GFP_ZERO)
  761. prep_zero_page(page, order, gfp_flags);
  762. if (order && (gfp_flags & __GFP_COMP))
  763. prep_compound_page(page, order);
  764. return 0;
  765. }
  766. /*
  767. * Go through the free lists for the given migratetype and remove
  768. * the smallest available page from the freelists
  769. */
  770. static inline
  771. struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
  772. int migratetype)
  773. {
  774. unsigned int current_order;
  775. struct free_area * area;
  776. struct page *page;
  777. /* Find a page of the appropriate size in the preferred list */
  778. for (current_order = order; current_order < MAX_ORDER; ++current_order) {
  779. area = &(zone->free_area[current_order]);
  780. if (list_empty(&area->free_list[migratetype]))
  781. continue;
  782. page = list_entry(area->free_list[migratetype].next,
  783. struct page, lru);
  784. list_del(&page->lru);
  785. rmv_page_order(page);
  786. area->nr_free--;
  787. expand(zone, page, order, current_order, area, migratetype);
  788. return page;
  789. }
  790. return NULL;
  791. }
  792. /*
  793. * This array describes the order lists are fallen back to when
  794. * the free lists for the desirable migrate type are depleted
  795. */
  796. static int fallbacks[MIGRATE_TYPES][4] = {
  797. [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
  798. [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
  799. #ifdef CONFIG_CMA
  800. [MIGRATE_MOVABLE] = { MIGRATE_CMA, MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
  801. [MIGRATE_CMA] = { MIGRATE_RESERVE }, /* Never used */
  802. #else
  803. [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
  804. #endif
  805. [MIGRATE_RESERVE] = { MIGRATE_RESERVE }, /* Never used */
  806. [MIGRATE_ISOLATE] = { MIGRATE_RESERVE }, /* Never used */
  807. };
  808. /*
  809. * Move the free pages in a range to the free lists of the requested type.
  810. * Note that start_page and end_pages are not aligned on a pageblock
  811. * boundary. If alignment is required, use move_freepages_block()
  812. */
  813. int move_freepages(struct zone *zone,
  814. struct page *start_page, struct page *end_page,
  815. int migratetype)
  816. {
  817. struct page *page;
  818. unsigned long order;
  819. int pages_moved = 0;
  820. #ifndef CONFIG_HOLES_IN_ZONE
  821. /*
  822. * page_zone is not safe to call in this context when
  823. * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
  824. * anyway as we check zone boundaries in move_freepages_block().
  825. * Remove at a later date when no bug reports exist related to
  826. * grouping pages by mobility
  827. */
  828. BUG_ON(page_zone(start_page) != page_zone(end_page));
  829. #endif
  830. for (page = start_page; page <= end_page;) {
  831. /* Make sure we are not inadvertently changing nodes */
  832. VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
  833. if (!pfn_valid_within(page_to_pfn(page))) {
  834. page++;
  835. continue;
  836. }
  837. if (!PageBuddy(page)) {
  838. page++;
  839. continue;
  840. }
  841. order = page_order(page);
  842. list_move(&page->lru,
  843. &zone->free_area[order].free_list[migratetype]);
  844. set_freepage_migratetype(page, migratetype);
  845. page += 1 << order;
  846. pages_moved += 1 << order;
  847. }
  848. return pages_moved;
  849. }
  850. int move_freepages_block(struct zone *zone, struct page *page,
  851. int migratetype)
  852. {
  853. unsigned long start_pfn, end_pfn;
  854. struct page *start_page, *end_page;
  855. start_pfn = page_to_pfn(page);
  856. start_pfn = start_pfn & ~(pageblock_nr_pages-1);
  857. start_page = pfn_to_page(start_pfn);
  858. end_page = start_page + pageblock_nr_pages - 1;
  859. end_pfn = start_pfn + pageblock_nr_pages - 1;
  860. /* Do not cross zone boundaries */
  861. if (start_pfn < zone->zone_start_pfn)
  862. start_page = page;
  863. if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
  864. return 0;
  865. return move_freepages(zone, start_page, end_page, migratetype);
  866. }
  867. static void change_pageblock_range(struct page *pageblock_page,
  868. int start_order, int migratetype)
  869. {
  870. int nr_pageblocks = 1 << (start_order - pageblock_order);
  871. while (nr_pageblocks--) {
  872. set_pageblock_migratetype(pageblock_page, migratetype);
  873. pageblock_page += pageblock_nr_pages;
  874. }
  875. }
  876. /* Remove an element from the buddy allocator from the fallback list */
  877. static inline struct page *
  878. __rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
  879. {
  880. struct free_area * area;
  881. int current_order;
  882. struct page *page;
  883. int migratetype, i;
  884. /* Find the largest possible block of pages in the other list */
  885. for (current_order = MAX_ORDER-1; current_order >= order;
  886. --current_order) {
  887. for (i = 0;; i++) {
  888. migratetype = fallbacks[start_migratetype][i];
  889. /* MIGRATE_RESERVE handled later if necessary */
  890. if (migratetype == MIGRATE_RESERVE)
  891. break;
  892. area = &(zone->free_area[current_order]);
  893. if (list_empty(&area->free_list[migratetype]))
  894. continue;
  895. page = list_entry(area->free_list[migratetype].next,
  896. struct page, lru);
  897. area->nr_free--;
  898. /*
  899. * If breaking a large block of pages, move all free
  900. * pages to the preferred allocation list. If falling
  901. * back for a reclaimable kernel allocation, be more
  902. * aggressive about taking ownership of free pages
  903. *
  904. * On the other hand, never change migration
  905. * type of MIGRATE_CMA pageblocks nor move CMA
  906. * pages on different free lists. We don't
  907. * want unmovable pages to be allocated from
  908. * MIGRATE_CMA areas.
  909. */
  910. if (!is_migrate_cma(migratetype) &&
  911. (unlikely(current_order >= pageblock_order / 2) ||
  912. start_migratetype == MIGRATE_RECLAIMABLE ||
  913. page_group_by_mobility_disabled)) {
  914. int pages;
  915. pages = move_freepages_block(zone, page,
  916. start_migratetype);
  917. /* Claim the whole block if over half of it is free */
  918. if (pages >= (1 << (pageblock_order-1)) ||
  919. page_group_by_mobility_disabled)
  920. set_pageblock_migratetype(page,
  921. start_migratetype);
  922. migratetype = start_migratetype;
  923. }
  924. /* Remove the page from the freelists */
  925. list_del(&page->lru);
  926. rmv_page_order(page);
  927. /* Take ownership for orders >= pageblock_order */
  928. if (current_order >= pageblock_order &&
  929. !is_migrate_cma(migratetype))
  930. change_pageblock_range(page, current_order,
  931. start_migratetype);
  932. expand(zone, page, order, current_order, area,
  933. is_migrate_cma(migratetype)
  934. ? migratetype : start_migratetype);
  935. trace_mm_page_alloc_extfrag(page, order, current_order,
  936. start_migratetype, migratetype);
  937. return page;
  938. }
  939. }
  940. return NULL;
  941. }
  942. /*
  943. * Do the hard work of removing an element from the buddy allocator.
  944. * Call me with the zone->lock already held.
  945. */
  946. static struct page *__rmqueue(struct zone *zone, unsigned int order,
  947. int migratetype)
  948. {
  949. struct page *page;
  950. retry_reserve:
  951. page = __rmqueue_smallest(zone, order, migratetype);
  952. if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
  953. page = __rmqueue_fallback(zone, order, migratetype);
  954. /*
  955. * Use MIGRATE_RESERVE rather than fail an allocation. goto
  956. * is used because __rmqueue_smallest is an inline function
  957. * and we want just one call site
  958. */
  959. if (!page) {
  960. migratetype = MIGRATE_RESERVE;
  961. goto retry_reserve;
  962. }
  963. }
  964. trace_mm_page_alloc_zone_locked(page, order, migratetype);
  965. return page;
  966. }
  967. /*
  968. * Obtain a specified number of elements from the buddy allocator, all under
  969. * a single hold of the lock, for efficiency. Add them to the supplied list.
  970. * Returns the number of new pages which were placed at *list.
  971. */
  972. static int rmqueue_bulk(struct zone *zone, unsigned int order,
  973. unsigned long count, struct list_head *list,
  974. int migratetype, int cold)
  975. {
  976. int mt = migratetype, i;
  977. spin_lock(&zone->lock);
  978. for (i = 0; i < count; ++i) {
  979. struct page *page = __rmqueue(zone, order, migratetype);
  980. if (unlikely(page == NULL))
  981. break;
  982. /*
  983. * Split buddy pages returned by expand() are received here
  984. * in physical page order. The page is added to the callers and
  985. * list and the list head then moves forward. From the callers
  986. * perspective, the linked list is ordered by page number in
  987. * some conditions. This is useful for IO devices that can
  988. * merge IO requests if the physical pages are ordered
  989. * properly.
  990. */
  991. if (likely(cold == 0))
  992. list_add(&page->lru, list);
  993. else
  994. list_add_tail(&page->lru, list);
  995. if (IS_ENABLED(CONFIG_CMA)) {
  996. mt = get_pageblock_migratetype(page);
  997. if (!is_migrate_cma(mt) && mt != MIGRATE_ISOLATE)
  998. mt = migratetype;
  999. }
  1000. set_freepage_migratetype(page, mt);
  1001. list = &page->lru;
  1002. if (is_migrate_cma(mt))
  1003. __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
  1004. -(1 << order));
  1005. }
  1006. __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
  1007. spin_unlock(&zone->lock);
  1008. return i;
  1009. }
  1010. #ifdef CONFIG_NUMA
  1011. /*
  1012. * Called from the vmstat counter updater to drain pagesets of this
  1013. * currently executing processor on remote nodes after they have
  1014. * expired.
  1015. *
  1016. * Note that this function must be called with the thread pinned to
  1017. * a single processor.
  1018. */
  1019. void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
  1020. {
  1021. unsigned long flags;
  1022. int to_drain;
  1023. local_irq_save(flags);
  1024. if (pcp->count >= pcp->batch)
  1025. to_drain = pcp->batch;
  1026. else
  1027. to_drain = pcp->count;
  1028. if (to_drain > 0) {
  1029. free_pcppages_bulk(zone, to_drain, pcp);
  1030. pcp->count -= to_drain;
  1031. }
  1032. local_irq_restore(flags);
  1033. }
  1034. #endif
  1035. /*
  1036. * Drain pages of the indicated processor.
  1037. *
  1038. * The processor must either be the current processor and the
  1039. * thread pinned to the current processor or a processor that
  1040. * is not online.
  1041. */
  1042. static void drain_pages(unsigned int cpu)
  1043. {
  1044. unsigned long flags;
  1045. struct zone *zone;
  1046. for_each_populated_zone(zone) {
  1047. struct per_cpu_pageset *pset;
  1048. struct per_cpu_pages *pcp;
  1049. local_irq_save(flags);
  1050. pset = per_cpu_ptr(zone->pageset, cpu);
  1051. pcp = &pset->pcp;
  1052. if (pcp->count) {
  1053. free_pcppages_bulk(zone, pcp->count, pcp);
  1054. pcp->count = 0;
  1055. }
  1056. local_irq_restore(flags);
  1057. }
  1058. }
  1059. /*
  1060. * Spill all of this CPU's per-cpu pages back into the buddy allocator.
  1061. */
  1062. void drain_local_pages(void *arg)
  1063. {
  1064. drain_pages(smp_processor_id());
  1065. }
  1066. /*
  1067. * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
  1068. *
  1069. * Note that this code is protected against sending an IPI to an offline
  1070. * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
  1071. * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
  1072. * nothing keeps CPUs from showing up after we populated the cpumask and
  1073. * before the call to on_each_cpu_mask().
  1074. */
  1075. void drain_all_pages(void)
  1076. {
  1077. int cpu;
  1078. struct per_cpu_pageset *pcp;
  1079. struct zone *zone;
  1080. /*
  1081. * Allocate in the BSS so we wont require allocation in
  1082. * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
  1083. */
  1084. static cpumask_t cpus_with_pcps;
  1085. /*
  1086. * We don't care about racing with CPU hotplug event
  1087. * as offline notification will cause the notified
  1088. * cpu to drain that CPU pcps and on_each_cpu_mask
  1089. * disables preemption as part of its processing
  1090. */
  1091. for_each_online_cpu(cpu) {
  1092. bool has_pcps = false;
  1093. for_each_populated_zone(zone) {
  1094. pcp = per_cpu_ptr(zone->pageset, cpu);
  1095. if (pcp->pcp.count) {
  1096. has_pcps = true;
  1097. break;
  1098. }
  1099. }
  1100. if (has_pcps)
  1101. cpumask_set_cpu(cpu, &cpus_with_pcps);
  1102. else
  1103. cpumask_clear_cpu(cpu, &cpus_with_pcps);
  1104. }
  1105. on_each_cpu_mask(&cpus_with_pcps, drain_local_pages, NULL, 1);
  1106. }
  1107. #ifdef CONFIG_HIBERNATION
  1108. void mark_free_pages(struct zone *zone)
  1109. {
  1110. unsigned long pfn, max_zone_pfn;
  1111. unsigned long flags;
  1112. int order, t;
  1113. struct list_head *curr;
  1114. if (!zone->spanned_pages)
  1115. return;
  1116. spin_lock_irqsave(&zone->lock, flags);
  1117. max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
  1118. for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
  1119. if (pfn_valid(pfn)) {
  1120. struct page *page = pfn_to_page(pfn);
  1121. if (!swsusp_page_is_forbidden(page))
  1122. swsusp_unset_page_free(page);
  1123. }
  1124. for_each_migratetype_order(order, t) {
  1125. list_for_each(curr, &zone->free_area[order].free_list[t]) {
  1126. unsigned long i;
  1127. pfn = page_to_pfn(list_entry(curr, struct page, lru));
  1128. for (i = 0; i < (1UL << order); i++)
  1129. swsusp_set_page_free(pfn_to_page(pfn + i));
  1130. }
  1131. }
  1132. spin_unlock_irqrestore(&zone->lock, flags);
  1133. }
  1134. #endif /* CONFIG_PM */
  1135. /*
  1136. * Free a 0-order page
  1137. * cold == 1 ? free a cold page : free a hot page
  1138. */
  1139. void free_hot_cold_page(struct page *page, int cold)
  1140. {
  1141. struct zone *zone = page_zone(page);
  1142. struct per_cpu_pages *pcp;
  1143. unsigned long flags;
  1144. int migratetype;
  1145. if (!free_pages_prepare(page, 0))
  1146. return;
  1147. migratetype = get_pageblock_migratetype(page);
  1148. set_freepage_migratetype(page, migratetype);
  1149. local_irq_save(flags);
  1150. __count_vm_event(PGFREE);
  1151. /*
  1152. * We only track unmovable, reclaimable and movable on pcp lists.
  1153. * Free ISOLATE pages back to the allocator because they are being
  1154. * offlined but treat RESERVE as movable pages so we can get those
  1155. * areas back if necessary. Otherwise, we may have to free
  1156. * excessively into the page allocator
  1157. */
  1158. if (migratetype >= MIGRATE_PCPTYPES) {
  1159. if (unlikely(migratetype == MIGRATE_ISOLATE)) {
  1160. free_one_page(zone, page, 0, migratetype);
  1161. goto out;
  1162. }
  1163. migratetype = MIGRATE_MOVABLE;
  1164. }
  1165. pcp = &this_cpu_ptr(zone->pageset)->pcp;
  1166. if (cold)
  1167. list_add_tail(&page->lru, &pcp->lists[migratetype]);
  1168. else
  1169. list_add(&page->lru, &pcp->lists[migratetype]);
  1170. pcp->count++;
  1171. if (pcp->count >= pcp->high) {
  1172. free_pcppages_bulk(zone, pcp->batch, pcp);
  1173. pcp->count -= pcp->batch;
  1174. }
  1175. out:
  1176. local_irq_restore(flags);
  1177. }
  1178. /*
  1179. * Free a list of 0-order pages
  1180. */
  1181. void free_hot_cold_page_list(struct list_head *list, int cold)
  1182. {
  1183. struct page *page, *next;
  1184. list_for_each_entry_safe(page, next, list, lru) {
  1185. trace_mm_page_free_batched(page, cold);
  1186. free_hot_cold_page(page, cold);
  1187. }
  1188. }
  1189. /*
  1190. * split_page takes a non-compound higher-order page, and splits it into
  1191. * n (1<<order) sub-pages: page[0..n]
  1192. * Each sub-page must be freed individually.
  1193. *
  1194. * Note: this is probably too low level an operation for use in drivers.
  1195. * Please consult with lkml before using this in your driver.
  1196. */
  1197. void split_page(struct page *page, unsigned int order)
  1198. {
  1199. int i;
  1200. VM_BUG_ON(PageCompound(page));
  1201. VM_BUG_ON(!page_count(page));
  1202. #ifdef CONFIG_KMEMCHECK
  1203. /*
  1204. * Split shadow pages too, because free(page[0]) would
  1205. * otherwise free the whole shadow.
  1206. */
  1207. if (kmemcheck_page_is_tracked(page))
  1208. split_page(virt_to_page(page[0].shadow), order);
  1209. #endif
  1210. for (i = 1; i < (1 << order); i++)
  1211. set_page_refcounted(page + i);
  1212. }
  1213. /*
  1214. * Similar to the split_page family of functions except that the page
  1215. * required at the given order and being isolated now to prevent races
  1216. * with parallel allocators
  1217. */
  1218. int capture_free_page(struct page *page, int alloc_order, int migratetype)
  1219. {
  1220. unsigned int order;
  1221. unsigned long watermark;
  1222. struct zone *zone;
  1223. int mt;
  1224. BUG_ON(!PageBuddy(page));
  1225. zone = page_zone(page);
  1226. order = page_order(page);
  1227. mt = get_pageblock_migratetype(page);
  1228. if (mt != MIGRATE_ISOLATE) {
  1229. /* Obey watermarks as if the page was being allocated */
  1230. watermark = low_wmark_pages(zone) + (1 << order);
  1231. if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
  1232. return 0;
  1233. __mod_zone_freepage_state(zone, -(1UL << alloc_order), mt);
  1234. }
  1235. /* Remove page from free list */
  1236. list_del(&page->lru);
  1237. zone->free_area[order].nr_free--;
  1238. rmv_page_order(page);
  1239. if (alloc_order != order)
  1240. expand(zone, page, alloc_order, order,
  1241. &zone->free_area[order], migratetype);
  1242. /* Set the pageblock if the captured page is at least a pageblock */
  1243. if (order >= pageblock_order - 1) {
  1244. struct page *endpage = page + (1 << order) - 1;
  1245. for (; page < endpage; page += pageblock_nr_pages) {
  1246. int mt = get_pageblock_migratetype(page);
  1247. if (mt != MIGRATE_ISOLATE && !is_migrate_cma(mt))
  1248. set_pageblock_migratetype(page,
  1249. MIGRATE_MOVABLE);
  1250. }
  1251. }
  1252. return 1UL << alloc_order;
  1253. }
  1254. /*
  1255. * Similar to split_page except the page is already free. As this is only
  1256. * being used for migration, the migratetype of the block also changes.
  1257. * As this is called with interrupts disabled, the caller is responsible
  1258. * for calling arch_alloc_page() and kernel_map_page() after interrupts
  1259. * are enabled.
  1260. *
  1261. * Note: this is probably too low level an operation for use in drivers.
  1262. * Please consult with lkml before using this in your driver.
  1263. */
  1264. int split_free_page(struct page *page)
  1265. {
  1266. unsigned int order;
  1267. int nr_pages;
  1268. BUG_ON(!PageBuddy(page));
  1269. order = page_order(page);
  1270. nr_pages = capture_free_page(page, order, 0);
  1271. if (!nr_pages)
  1272. return 0;
  1273. /* Split into individual pages */
  1274. set_page_refcounted(page);
  1275. split_page(page, order);
  1276. return nr_pages;
  1277. }
  1278. /*
  1279. * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
  1280. * we cheat by calling it from here, in the order > 0 path. Saves a branch
  1281. * or two.
  1282. */
  1283. static inline
  1284. struct page *buffered_rmqueue(struct zone *preferred_zone,
  1285. struct zone *zone, int order, gfp_t gfp_flags,
  1286. int migratetype)
  1287. {
  1288. unsigned long flags;
  1289. struct page *page;
  1290. int cold = !!(gfp_flags & __GFP_COLD);
  1291. again:
  1292. if (likely(order == 0)) {
  1293. struct per_cpu_pages *pcp;
  1294. struct list_head *list;
  1295. local_irq_save(flags);
  1296. pcp = &this_cpu_ptr(zone->pageset)->pcp;
  1297. list = &pcp->lists[migratetype];
  1298. if (list_empty(list)) {
  1299. pcp->count += rmqueue_bulk(zone, 0,
  1300. pcp->batch, list,
  1301. migratetype, cold);
  1302. if (unlikely(list_empty(list)))
  1303. goto failed;
  1304. }
  1305. if (cold)
  1306. page = list_entry(list->prev, struct page, lru);
  1307. else
  1308. page = list_entry(list->next, struct page, lru);
  1309. list_del(&page->lru);
  1310. pcp->count--;
  1311. } else {
  1312. if (unlikely(gfp_flags & __GFP_NOFAIL)) {
  1313. /*
  1314. * __GFP_NOFAIL is not to be used in new code.
  1315. *
  1316. * All __GFP_NOFAIL callers should be fixed so that they
  1317. * properly detect and handle allocation failures.
  1318. *
  1319. * We most definitely don't want callers attempting to
  1320. * allocate greater than order-1 page units with
  1321. * __GFP_NOFAIL.
  1322. */
  1323. WARN_ON_ONCE(order > 1);
  1324. }
  1325. spin_lock_irqsave(&zone->lock, flags);
  1326. page = __rmqueue(zone, order, migratetype);
  1327. spin_unlock(&zone->lock);
  1328. if (!page)
  1329. goto failed;
  1330. __mod_zone_freepage_state(zone, -(1 << order),
  1331. get_pageblock_migratetype(page));
  1332. }
  1333. __count_zone_vm_events(PGALLOC, zone, 1 << order);
  1334. zone_statistics(preferred_zone, zone, gfp_flags);
  1335. local_irq_restore(flags);
  1336. VM_BUG_ON(bad_range(zone, page));
  1337. if (prep_new_page(page, order, gfp_flags))
  1338. goto again;
  1339. return page;
  1340. failed:
  1341. local_irq_restore(flags);
  1342. return NULL;
  1343. }
  1344. #ifdef CONFIG_FAIL_PAGE_ALLOC
  1345. static struct {
  1346. struct fault_attr attr;
  1347. u32 ignore_gfp_highmem;
  1348. u32 ignore_gfp_wait;
  1349. u32 min_order;
  1350. } fail_page_alloc = {
  1351. .attr = FAULT_ATTR_INITIALIZER,
  1352. .ignore_gfp_wait = 1,
  1353. .ignore_gfp_highmem = 1,
  1354. .min_order = 1,
  1355. };
  1356. static int __init setup_fail_page_alloc(char *str)
  1357. {
  1358. return setup_fault_attr(&fail_page_alloc.attr, str);
  1359. }
  1360. __setup("fail_page_alloc=", setup_fail_page_alloc);
  1361. static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
  1362. {
  1363. if (order < fail_page_alloc.min_order)
  1364. return false;
  1365. if (gfp_mask & __GFP_NOFAIL)
  1366. return false;
  1367. if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
  1368. return false;
  1369. if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
  1370. return false;
  1371. return should_fail(&fail_page_alloc.attr, 1 << order);
  1372. }
  1373. #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
  1374. static int __init fail_page_alloc_debugfs(void)
  1375. {
  1376. umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
  1377. struct dentry *dir;
  1378. dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
  1379. &fail_page_alloc.attr);
  1380. if (IS_ERR(dir))
  1381. return PTR_ERR(dir);
  1382. if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
  1383. &fail_page_alloc.ignore_gfp_wait))
  1384. goto fail;
  1385. if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
  1386. &fail_page_alloc.ignore_gfp_highmem))
  1387. goto fail;
  1388. if (!debugfs_create_u32("min-order", mode, dir,
  1389. &fail_page_alloc.min_order))
  1390. goto fail;
  1391. return 0;
  1392. fail:
  1393. debugfs_remove_recursive(dir);
  1394. return -ENOMEM;
  1395. }
  1396. late_initcall(fail_page_alloc_debugfs);
  1397. #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
  1398. #else /* CONFIG_FAIL_PAGE_ALLOC */
  1399. static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
  1400. {
  1401. return false;
  1402. }
  1403. #endif /* CONFIG_FAIL_PAGE_ALLOC */
  1404. /*
  1405. * Return true if free pages are above 'mark'. This takes into account the order
  1406. * of the allocation.
  1407. */
  1408. static bool __zone_watermark_ok(struct zone *z, int order, unsigned long mark,
  1409. int classzone_idx, int alloc_flags, long free_pages)
  1410. {
  1411. /* free_pages my go negative - that's OK */
  1412. long min = mark;
  1413. long lowmem_reserve = z->lowmem_reserve[classzone_idx];
  1414. int o;
  1415. free_pages -= (1 << order) - 1;
  1416. if (alloc_flags & ALLOC_HIGH)
  1417. min -= min / 2;
  1418. if (alloc_flags & ALLOC_HARDER)
  1419. min -= min / 4;
  1420. #ifdef CONFIG_CMA
  1421. /* If allocation can't use CMA areas don't use free CMA pages */
  1422. if (!(alloc_flags & ALLOC_CMA))
  1423. free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
  1424. #endif
  1425. if (free_pages <= min + lowmem_reserve)
  1426. return false;
  1427. for (o = 0; o < order; o++) {
  1428. /* At the next order, this order's pages become unavailable */
  1429. free_pages -= z->free_area[o].nr_free << o;
  1430. /* Require fewer higher order pages to be free */
  1431. min >>= 1;
  1432. if (free_pages <= min)
  1433. return false;
  1434. }
  1435. return true;
  1436. }
  1437. #ifdef CONFIG_MEMORY_ISOLATION
  1438. static inline unsigned long nr_zone_isolate_freepages(struct zone *zone)
  1439. {
  1440. if (unlikely(zone->nr_pageblock_isolate))
  1441. return zone->nr_pageblock_isolate * pageblock_nr_pages;
  1442. return 0;
  1443. }
  1444. #else
  1445. static inline unsigned long nr_zone_isolate_freepages(struct zone *zone)
  1446. {
  1447. return 0;
  1448. }
  1449. #endif
  1450. bool zone_watermark_ok(struct zone *z, int order, unsigned long mark,
  1451. int classzone_idx, int alloc_flags)
  1452. {
  1453. return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
  1454. zone_page_state(z, NR_FREE_PAGES));
  1455. }
  1456. bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark,
  1457. int classzone_idx, int alloc_flags)
  1458. {
  1459. long free_pages = zone_page_state(z, NR_FREE_PAGES);
  1460. if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
  1461. free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
  1462. /*
  1463. * If the zone has MIGRATE_ISOLATE type free pages, we should consider
  1464. * it. nr_zone_isolate_freepages is never accurate so kswapd might not
  1465. * sleep although it could do so. But this is more desirable for memory
  1466. * hotplug than sleeping which can cause a livelock in the direct
  1467. * reclaim path.
  1468. */
  1469. free_pages -= nr_zone_isolate_freepages(z);
  1470. return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
  1471. free_pages);
  1472. }
  1473. #ifdef CONFIG_NUMA
  1474. /*
  1475. * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
  1476. * skip over zones that are not allowed by the cpuset, or that have
  1477. * been recently (in last second) found to be nearly full. See further
  1478. * comments in mmzone.h. Reduces cache footprint of zonelist scans
  1479. * that have to skip over a lot of full or unallowed zones.
  1480. *
  1481. * If the zonelist cache is present in the passed in zonelist, then
  1482. * returns a pointer to the allowed node mask (either the current
  1483. * tasks mems_allowed, or node_states[N_MEMORY].)
  1484. *
  1485. * If the zonelist cache is not available for this zonelist, does
  1486. * nothing and returns NULL.
  1487. *
  1488. * If the fullzones BITMAP in the zonelist cache is stale (more than
  1489. * a second since last zap'd) then we zap it out (clear its bits.)
  1490. *
  1491. * We hold off even calling zlc_setup, until after we've checked the
  1492. * first zone in the zonelist, on the theory that most allocations will
  1493. * be satisfied from that first zone, so best to examine that zone as
  1494. * quickly as we can.
  1495. */
  1496. static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
  1497. {
  1498. struct zonelist_cache *zlc; /* cached zonelist speedup info */
  1499. nodemask_t *allowednodes; /* zonelist_cache approximation */
  1500. zlc = zonelist->zlcache_ptr;
  1501. if (!zlc)
  1502. return NULL;
  1503. if (time_after(jiffies, zlc->last_full_zap + HZ)) {
  1504. bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
  1505. zlc->last_full_zap = jiffies;
  1506. }
  1507. allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
  1508. &cpuset_current_mems_allowed :
  1509. &node_states[N_MEMORY];
  1510. return allowednodes;
  1511. }
  1512. /*
  1513. * Given 'z' scanning a zonelist, run a couple of quick checks to see
  1514. * if it is worth looking at further for free memory:
  1515. * 1) Check that the zone isn't thought to be full (doesn't have its
  1516. * bit set in the zonelist_cache fullzones BITMAP).
  1517. * 2) Check that the zones node (obtained from the zonelist_cache
  1518. * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
  1519. * Return true (non-zero) if zone is worth looking at further, or
  1520. * else return false (zero) if it is not.
  1521. *
  1522. * This check -ignores- the distinction between various watermarks,
  1523. * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
  1524. * found to be full for any variation of these watermarks, it will
  1525. * be considered full for up to one second by all requests, unless
  1526. * we are so low on memory on all allowed nodes that we are forced
  1527. * into the second scan of the zonelist.
  1528. *
  1529. * In the second scan we ignore this zonelist cache and exactly
  1530. * apply the watermarks to all zones, even it is slower to do so.
  1531. * We are low on memory in the second scan, and should leave no stone
  1532. * unturned looking for a free page.
  1533. */
  1534. static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
  1535. nodemask_t *allowednodes)
  1536. {
  1537. struct zonelist_cache *zlc; /* cached zonelist speedup info */
  1538. int i; /* index of *z in zonelist zones */
  1539. int n; /* node that zone *z is on */
  1540. zlc = zonelist->zlcache_ptr;
  1541. if (!zlc)
  1542. return 1;
  1543. i = z - zonelist->_zonerefs;
  1544. n = zlc->z_to_n[i];
  1545. /* This zone is worth trying if it is allowed but not full */
  1546. return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
  1547. }
  1548. /*
  1549. * Given 'z' scanning a zonelist, set the corresponding bit in
  1550. * zlc->fullzones, so that subsequent attempts to allocate a page
  1551. * from that zone don't waste time re-examining it.
  1552. */
  1553. static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
  1554. {
  1555. struct zonelist_cache *zlc; /* cached zonelist speedup info */
  1556. int i; /* index of *z in zonelist zones */
  1557. zlc = zonelist->zlcache_ptr;
  1558. if (!zlc)
  1559. return;
  1560. i = z - zonelist->_zonerefs;
  1561. set_bit(i, zlc->fullzones);
  1562. }
  1563. /*
  1564. * clear all zones full, called after direct reclaim makes progress so that
  1565. * a zone that was recently full is not skipped over for up to a second
  1566. */
  1567. static void zlc_clear_zones_full(struct zonelist *zonelist)
  1568. {
  1569. struct zonelist_cache *zlc; /* cached zonelist speedup info */
  1570. zlc = zonelist->zlcache_ptr;
  1571. if (!zlc)
  1572. return;
  1573. bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
  1574. }
  1575. static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
  1576. {
  1577. return node_isset(local_zone->node, zone->zone_pgdat->reclaim_nodes);
  1578. }
  1579. static void __paginginit init_zone_allows_reclaim(int nid)
  1580. {
  1581. int i;
  1582. for_each_online_node(i)
  1583. if (node_distance(nid, i) <= RECLAIM_DISTANCE)
  1584. node_set(i, NODE_DATA(nid)->reclaim_nodes);
  1585. else
  1586. zone_reclaim_mode = 1;
  1587. }
  1588. #else /* CONFIG_NUMA */
  1589. static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
  1590. {
  1591. return NULL;
  1592. }
  1593. static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
  1594. nodemask_t *allowednodes)
  1595. {
  1596. return 1;
  1597. }
  1598. static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
  1599. {
  1600. }
  1601. static void zlc_clear_zones_full(struct zonelist *zonelist)
  1602. {
  1603. }
  1604. static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
  1605. {
  1606. return true;
  1607. }
  1608. static inline void init_zone_allows_reclaim(int nid)
  1609. {
  1610. }
  1611. #endif /* CONFIG_NUMA */
  1612. /*
  1613. * get_page_from_freelist goes through the zonelist trying to allocate
  1614. * a page.
  1615. */
  1616. static struct page *
  1617. get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
  1618. struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
  1619. struct zone *preferred_zone, int migratetype)
  1620. {
  1621. struct zoneref *z;
  1622. struct page *page = NULL;
  1623. int classzone_idx;
  1624. struct zone *zone;
  1625. nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
  1626. int zlc_active = 0; /* set if using zonelist_cache */
  1627. int did_zlc_setup = 0; /* just call zlc_setup() one time */
  1628. classzone_idx = zone_idx(preferred_zone);
  1629. zonelist_scan:
  1630. /*
  1631. * Scan zonelist, looking for a zone with enough free.
  1632. * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
  1633. */
  1634. for_each_zone_zonelist_nodemask(zone, z, zonelist,
  1635. high_zoneidx, nodemask) {
  1636. if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
  1637. !zlc_zone_worth_trying(zonelist, z, allowednodes))
  1638. continue;
  1639. if ((alloc_flags & ALLOC_CPUSET) &&
  1640. !cpuset_zone_allowed_softwall(zone, gfp_mask))
  1641. continue;
  1642. /*
  1643. * When allocating a page cache page for writing, we
  1644. * want to get it from a zone that is within its dirty
  1645. * limit, such that no single zone holds more than its
  1646. * proportional share of globally allowed dirty pages.
  1647. * The dirty limits take into account the zone's
  1648. * lowmem reserves and high watermark so that kswapd
  1649. * should be able to balance it without having to
  1650. * write pages from its LRU list.
  1651. *
  1652. * This may look like it could increase pressure on
  1653. * lower zones by failing allocations in higher zones
  1654. * before they are full. But the pages that do spill
  1655. * over are limited as the lower zones are protected
  1656. * by this very same mechanism. It should not become
  1657. * a practical burden to them.
  1658. *
  1659. * XXX: For now, allow allocations to potentially
  1660. * exceed the per-zone dirty limit in the slowpath
  1661. * (ALLOC_WMARK_LOW unset) before going into reclaim,
  1662. * which is important when on a NUMA setup the allowed
  1663. * zones are together not big enough to reach the
  1664. * global limit. The proper fix for these situations
  1665. * will require awareness of zones in the
  1666. * dirty-throttling and the flusher threads.
  1667. */
  1668. if ((alloc_flags & ALLOC_WMARK_LOW) &&
  1669. (gfp_mask & __GFP_WRITE) && !zone_dirty_ok(zone))
  1670. goto this_zone_full;
  1671. BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
  1672. if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
  1673. unsigned long mark;
  1674. int ret;
  1675. mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
  1676. if (zone_watermark_ok(zone, order, mark,
  1677. classzone_idx, alloc_flags))
  1678. goto try_this_zone;
  1679. if (IS_ENABLED(CONFIG_NUMA) &&
  1680. !did_zlc_setup && nr_online_nodes > 1) {
  1681. /*
  1682. * we do zlc_setup if there are multiple nodes
  1683. * and before considering the first zone allowed
  1684. * by the cpuset.
  1685. */
  1686. allowednodes = zlc_setup(zonelist, alloc_flags);
  1687. zlc_active = 1;
  1688. did_zlc_setup = 1;
  1689. }
  1690. if (zone_reclaim_mode == 0 ||
  1691. !zone_allows_reclaim(preferred_zone, zone))
  1692. goto this_zone_full;
  1693. /*
  1694. * As we may have just activated ZLC, check if the first
  1695. * eligible zone has failed zone_reclaim recently.
  1696. */
  1697. if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
  1698. !zlc_zone_worth_trying(zonelist, z, allowednodes))
  1699. continue;
  1700. ret = zone_reclaim(zone, gfp_mask, order);
  1701. switch (ret) {
  1702. case ZONE_RECLAIM_NOSCAN:
  1703. /* did not scan */
  1704. continue;
  1705. case ZONE_RECLAIM_FULL:
  1706. /* scanned but unreclaimable */
  1707. continue;
  1708. default:
  1709. /* did we reclaim enough */
  1710. if (!zone_watermark_ok(zone, order, mark,
  1711. classzone_idx, alloc_flags))
  1712. goto this_zone_full;
  1713. }
  1714. }
  1715. try_this_zone:
  1716. page = buffered_rmqueue(preferred_zone, zone, order,
  1717. gfp_mask, migratetype);
  1718. if (page)
  1719. break;
  1720. this_zone_full:
  1721. if (IS_ENABLED(CONFIG_NUMA))
  1722. zlc_mark_zone_full(zonelist, z);
  1723. }
  1724. if (unlikely(IS_ENABLED(CONFIG_NUMA) && page == NULL && zlc_active)) {
  1725. /* Disable zlc cache for second zonelist scan */
  1726. zlc_active = 0;
  1727. goto zonelist_scan;
  1728. }
  1729. if (page)
  1730. /*
  1731. * page->pfmemalloc is set when ALLOC_NO_WATERMARKS was
  1732. * necessary to allocate the page. The expectation is
  1733. * that the caller is taking steps that will free more
  1734. * memory. The caller should avoid the page being used
  1735. * for !PFMEMALLOC purposes.
  1736. */
  1737. page->pfmemalloc = !!(alloc_flags & ALLOC_NO_WATERMARKS);
  1738. return page;
  1739. }
  1740. /*
  1741. * Large machines with many possible nodes should not always dump per-node
  1742. * meminfo in irq context.
  1743. */
  1744. static inline bool should_suppress_show_mem(void)
  1745. {
  1746. bool ret = false;
  1747. #if NODES_SHIFT > 8
  1748. ret = in_interrupt();
  1749. #endif
  1750. return ret;
  1751. }
  1752. static DEFINE_RATELIMIT_STATE(nopage_rs,
  1753. DEFAULT_RATELIMIT_INTERVAL,
  1754. DEFAULT_RATELIMIT_BURST);
  1755. void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
  1756. {
  1757. unsigned int filter = SHOW_MEM_FILTER_NODES;
  1758. if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
  1759. debug_guardpage_minorder() > 0)
  1760. return;
  1761. /*
  1762. * This documents exceptions given to allocations in certain
  1763. * contexts that are allowed to allocate outside current's set
  1764. * of allowed nodes.
  1765. */
  1766. if (!(gfp_mask & __GFP_NOMEMALLOC))
  1767. if (test_thread_flag(TIF_MEMDIE) ||
  1768. (current->flags & (PF_MEMALLOC | PF_EXITING)))
  1769. filter &= ~SHOW_MEM_FILTER_NODES;
  1770. if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
  1771. filter &= ~SHOW_MEM_FILTER_NODES;
  1772. if (fmt) {
  1773. struct va_format vaf;
  1774. va_list args;
  1775. va_start(args, fmt);
  1776. vaf.fmt = fmt;
  1777. vaf.va = &args;
  1778. pr_warn("%pV", &vaf);
  1779. va_end(args);
  1780. }
  1781. pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
  1782. current->comm, order, gfp_mask);
  1783. dump_stack();
  1784. if (!should_suppress_show_mem())
  1785. show_mem(filter);
  1786. }
  1787. static inline int
  1788. should_alloc_retry(gfp_t gfp_mask, unsigned int order,
  1789. unsigned long did_some_progress,
  1790. unsigned long pages_reclaimed)
  1791. {
  1792. /* Do not loop if specifically requested */
  1793. if (gfp_mask & __GFP_NORETRY)
  1794. return 0;
  1795. /* Always retry if specifically requested */
  1796. if (gfp_mask & __GFP_NOFAIL)
  1797. return 1;
  1798. /*
  1799. * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim
  1800. * making forward progress without invoking OOM. Suspend also disables
  1801. * storage devices so kswapd will not help. Bail if we are suspending.
  1802. */
  1803. if (!did_some_progress && pm_suspended_storage())
  1804. return 0;
  1805. /*
  1806. * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
  1807. * means __GFP_NOFAIL, but that may not be true in other
  1808. * implementations.
  1809. */
  1810. if (order <= PAGE_ALLOC_COSTLY_ORDER)
  1811. return 1;
  1812. /*
  1813. * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
  1814. * specified, then we retry until we no longer reclaim any pages
  1815. * (above), or we've reclaimed an order of pages at least as
  1816. * large as the allocation's order. In both cases, if the
  1817. * allocation still fails, we stop retrying.
  1818. */
  1819. if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
  1820. return 1;
  1821. return 0;
  1822. }
  1823. static inline struct page *
  1824. __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
  1825. struct zonelist *zonelist, enum zone_type high_zoneidx,
  1826. nodemask_t *nodemask, struct zone *preferred_zone,
  1827. int migratetype)
  1828. {
  1829. struct page *page;
  1830. /* Acquire the OOM killer lock for the zones in zonelist */
  1831. if (!try_set_zonelist_oom(zonelist, gfp_mask)) {
  1832. schedule_timeout_uninterruptible(1);
  1833. return NULL;
  1834. }
  1835. /*
  1836. * Go through the zonelist yet one more time, keep very high watermark
  1837. * here, this is only to catch a parallel oom killing, we must fail if
  1838. * we're still under heavy pressure.
  1839. */
  1840. page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
  1841. order, zonelist, high_zoneidx,
  1842. ALLOC_WMARK_HIGH|ALLOC_CPUSET,
  1843. preferred_zone, migratetype);
  1844. if (page)
  1845. goto out;
  1846. if (!(gfp_mask & __GFP_NOFAIL)) {
  1847. /* The OOM killer will not help higher order allocs */
  1848. if (order > PAGE_ALLOC_COSTLY_ORDER)
  1849. goto out;
  1850. /* The OOM killer does not needlessly kill tasks for lowmem */
  1851. if (high_zoneidx < ZONE_NORMAL)
  1852. goto out;
  1853. /*
  1854. * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
  1855. * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
  1856. * The caller should handle page allocation failure by itself if
  1857. * it specifies __GFP_THISNODE.
  1858. * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
  1859. */
  1860. if (gfp_mask & __GFP_THISNODE)
  1861. goto out;
  1862. }
  1863. /* Exhausted what can be done so it's blamo time */
  1864. out_of_memory(zonelist, gfp_mask, order, nodemask, false);
  1865. out:
  1866. clear_zonelist_oom(zonelist, gfp_mask);
  1867. return page;
  1868. }
  1869. #ifdef CONFIG_COMPACTION
  1870. /* Try memory compaction for high-order allocations before reclaim */
  1871. static struct page *
  1872. __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
  1873. struct zonelist *zonelist, enum zone_type high_zoneidx,
  1874. nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
  1875. int migratetype, bool sync_migration,
  1876. bool *contended_compaction, bool *deferred_compaction,
  1877. unsigned long *did_some_progress)
  1878. {
  1879. struct page *page = NULL;
  1880. if (!order)
  1881. return NULL;
  1882. if (compaction_deferred(preferred_zone, order)) {
  1883. *deferred_compaction = true;
  1884. return NULL;
  1885. }
  1886. current->flags |= PF_MEMALLOC;
  1887. *did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask,
  1888. nodemask, sync_migration,
  1889. contended_compaction, &page);
  1890. current->flags &= ~PF_MEMALLOC;
  1891. /* If compaction captured a page, prep and use it */
  1892. if (page) {
  1893. prep_new_page(page, order, gfp_mask);
  1894. goto got_page;
  1895. }
  1896. if (*did_some_progress != COMPACT_SKIPPED) {
  1897. /* Page migration frees to the PCP lists but we want merging */
  1898. drain_pages(get_cpu());
  1899. put_cpu();
  1900. page = get_page_from_freelist(gfp_mask, nodemask,
  1901. order, zonelist, high_zoneidx,
  1902. alloc_flags & ~ALLOC_NO_WATERMARKS,
  1903. preferred_zone, migratetype);
  1904. if (page) {
  1905. got_page:
  1906. preferred_zone->compact_blockskip_flush = false;
  1907. preferred_zone->compact_considered = 0;
  1908. preferred_zone->compact_defer_shift = 0;
  1909. if (order >= preferred_zone->compact_order_failed)
  1910. preferred_zone->compact_order_failed = order + 1;
  1911. count_vm_event(COMPACTSUCCESS);
  1912. return page;
  1913. }
  1914. /*
  1915. * It's bad if compaction run occurs and fails.
  1916. * The most likely reason is that pages exist,
  1917. * but not enough to satisfy watermarks.
  1918. */
  1919. count_vm_event(COMPACTFAIL);
  1920. /*
  1921. * As async compaction considers a subset of pageblocks, only
  1922. * defer if the failure was a sync compaction failure.
  1923. */
  1924. if (sync_migration)
  1925. defer_compaction(preferred_zone, order);
  1926. cond_resched();
  1927. }
  1928. return NULL;
  1929. }
  1930. #else
  1931. static inline struct page *
  1932. __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
  1933. struct zonelist *zonelist, enum zone_type high_zoneidx,
  1934. nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
  1935. int migratetype, bool sync_migration,
  1936. bool *contended_compaction, bool *deferred_compaction,
  1937. unsigned long *did_some_progress)
  1938. {
  1939. return NULL;
  1940. }
  1941. #endif /* CONFIG_COMPACTION */
  1942. /* Perform direct synchronous page reclaim */
  1943. static int
  1944. __perform_reclaim(gfp_t gfp_mask, unsigned int order, struct zonelist *zonelist,
  1945. nodemask_t *nodemask)
  1946. {
  1947. struct reclaim_state reclaim_state;
  1948. int progress;
  1949. cond_resched();
  1950. /* We now go into synchronous reclaim */
  1951. cpuset_memory_pressure_bump();
  1952. current->flags |= PF_MEMALLOC;
  1953. lockdep_set_current_reclaim_state(gfp_mask);
  1954. reclaim_state.reclaimed_slab = 0;
  1955. current->reclaim_state = &reclaim_state;
  1956. progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
  1957. current->reclaim_state = NULL;
  1958. lockdep_clear_current_reclaim_state();
  1959. current->flags &= ~PF_MEMALLOC;
  1960. cond_resched();
  1961. return progress;
  1962. }
  1963. /* The really slow allocator path where we enter direct reclaim */
  1964. static inline struct page *
  1965. __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
  1966. struct zonelist *zonelist, enum zone_type high_zoneidx,
  1967. nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
  1968. int migratetype, unsigned long *did_some_progress)
  1969. {
  1970. struct page *page = NULL;
  1971. bool drained = false;
  1972. *did_some_progress = __perform_reclaim(gfp_mask, order, zonelist,
  1973. nodemask);
  1974. if (unlikely(!(*did_some_progress)))
  1975. return NULL;
  1976. /* After successful reclaim, reconsider all zones for allocation */
  1977. if (IS_ENABLED(CONFIG_NUMA))
  1978. zlc_clear_zones_full(zonelist);
  1979. retry:
  1980. page = get_page_from_freelist(gfp_mask, nodemask, order,
  1981. zonelist, high_zoneidx,
  1982. alloc_flags & ~ALLOC_NO_WATERMARKS,
  1983. preferred_zone, migratetype);
  1984. /*
  1985. * If an allocation failed after direct reclaim, it could be because
  1986. * pages are pinned on the per-cpu lists. Drain them and try again
  1987. */
  1988. if (!page && !drained) {
  1989. drain_all_pages();
  1990. drained = true;
  1991. goto retry;
  1992. }
  1993. return page;
  1994. }
  1995. /*
  1996. * This is called in the allocator slow-path if the allocation request is of
  1997. * sufficient urgency to ignore watermarks and take other desperate measures
  1998. */
  1999. static inline struct page *
  2000. __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
  2001. struct zonelist *zonelist, enum zone_type high_zoneidx,
  2002. nodemask_t *nodemask, struct zone *preferred_zone,
  2003. int migratetype)
  2004. {
  2005. struct page *page;
  2006. do {
  2007. page = get_page_from_freelist(gfp_mask, nodemask, order,
  2008. zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
  2009. preferred_zone, migratetype);
  2010. if (!page && gfp_mask & __GFP_NOFAIL)
  2011. wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
  2012. } while (!page && (gfp_mask & __GFP_NOFAIL));
  2013. return page;
  2014. }
  2015. static inline
  2016. void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
  2017. enum zone_type high_zoneidx,
  2018. enum zone_type classzone_idx)
  2019. {
  2020. struct zoneref *z;
  2021. struct zone *zone;
  2022. for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
  2023. wakeup_kswapd(zone, order, classzone_idx);
  2024. }
  2025. static inline int
  2026. gfp_to_alloc_flags(gfp_t gfp_mask)
  2027. {
  2028. int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
  2029. const gfp_t wait = gfp_mask & __GFP_WAIT;
  2030. /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
  2031. BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
  2032. /*
  2033. * The caller may dip into page reserves a bit more if the caller
  2034. * cannot run direct reclaim, or if the caller has realtime scheduling
  2035. * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
  2036. * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
  2037. */
  2038. alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
  2039. if (!wait) {
  2040. /*
  2041. * Not worth trying to allocate harder for
  2042. * __GFP_NOMEMALLOC even if it can't schedule.
  2043. */
  2044. if (!(gfp_mask & __GFP_NOMEMALLOC))
  2045. alloc_flags |= ALLOC_HARDER;
  2046. /*
  2047. * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
  2048. * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
  2049. */
  2050. alloc_flags &= ~ALLOC_CPUSET;
  2051. } else if (unlikely(rt_task(current)) && !in_interrupt())
  2052. alloc_flags |= ALLOC_HARDER;
  2053. if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
  2054. if (gfp_mask & __GFP_MEMALLOC)
  2055. alloc_flags |= ALLOC_NO_WATERMARKS;
  2056. else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
  2057. alloc_flags |= ALLOC_NO_WATERMARKS;
  2058. else if (!in_interrupt() &&
  2059. ((current->flags & PF_MEMALLOC) ||
  2060. unlikely(test_thread_flag(TIF_MEMDIE))))
  2061. alloc_flags |= ALLOC_NO_WATERMARKS;
  2062. }
  2063. #ifdef CONFIG_CMA
  2064. if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
  2065. alloc_flags |= ALLOC_CMA;
  2066. #endif
  2067. return alloc_flags;
  2068. }
  2069. bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
  2070. {
  2071. return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
  2072. }
  2073. static inline struct page *
  2074. __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
  2075. struct zonelist *zonelist, enum zone_type high_zoneidx,
  2076. nodemask_t *nodemask, struct zone *preferred_zone,
  2077. int migratetype)
  2078. {
  2079. const gfp_t wait = gfp_mask & __GFP_WAIT;
  2080. struct page *page = NULL;
  2081. int alloc_flags;
  2082. unsigned long pages_reclaimed = 0;
  2083. unsigned long did_some_progress;
  2084. bool sync_migration = false;
  2085. bool deferred_compaction = false;
  2086. bool contended_compaction = false;
  2087. /*
  2088. * In the slowpath, we sanity check order to avoid ever trying to
  2089. * reclaim >= MAX_ORDER areas which will never succeed. Callers may
  2090. * be using allocators in order of preference for an area that is
  2091. * too large.
  2092. */
  2093. if (order >= MAX_ORDER) {
  2094. WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
  2095. return NULL;
  2096. }
  2097. /*
  2098. * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
  2099. * __GFP_NOWARN set) should not cause reclaim since the subsystem
  2100. * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
  2101. * using a larger set of nodes after it has established that the
  2102. * allowed per node queues are empty and that nodes are
  2103. * over allocated.
  2104. */
  2105. if (IS_ENABLED(CONFIG_NUMA) &&
  2106. (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
  2107. goto nopage;
  2108. restart:
  2109. if (!(gfp_mask & __GFP_NO_KSWAPD))
  2110. wake_all_kswapd(order, zonelist, high_zoneidx,
  2111. zone_idx(preferred_zone));
  2112. /*
  2113. * OK, we're below the kswapd watermark and have kicked background
  2114. * reclaim. Now things get more complex, so set up alloc_flags according
  2115. * to how we want to proceed.
  2116. */
  2117. alloc_flags = gfp_to_alloc_flags(gfp_mask);
  2118. /*
  2119. * Find the true preferred zone if the allocation is unconstrained by
  2120. * cpusets.
  2121. */
  2122. if (!(alloc_flags & ALLOC_CPUSET) && !nodemask)
  2123. first_zones_zonelist(zonelist, high_zoneidx, NULL,
  2124. &preferred_zone);
  2125. rebalance:
  2126. /* This is the last chance, in general, before the goto nopage. */
  2127. page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
  2128. high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
  2129. preferred_zone, migratetype);
  2130. if (page)
  2131. goto got_pg;
  2132. /* Allocate without watermarks if the context allows */
  2133. if (alloc_flags & ALLOC_NO_WATERMARKS) {
  2134. /*
  2135. * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
  2136. * the allocation is high priority and these type of
  2137. * allocations are system rather than user orientated
  2138. */
  2139. zonelist = node_zonelist(numa_node_id(), gfp_mask);
  2140. page = __alloc_pages_high_priority(gfp_mask, order,
  2141. zonelist, high_zoneidx, nodemask,
  2142. preferred_zone, migratetype);
  2143. if (page) {
  2144. goto got_pg;
  2145. }
  2146. }
  2147. /* Atomic allocations - we can't balance anything */
  2148. if (!wait)
  2149. goto nopage;
  2150. /* Avoid recursion of direct reclaim */
  2151. if (current->flags & PF_MEMALLOC)
  2152. goto nopage;
  2153. /* Avoid allocations with no watermarks from looping endlessly */
  2154. if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
  2155. goto nopage;
  2156. /*
  2157. * Try direct compaction. The first pass is asynchronous. Subsequent
  2158. * attempts after direct reclaim are synchronous
  2159. */
  2160. page = __alloc_pages_direct_compact(gfp_mask, order,
  2161. zonelist, high_zoneidx,
  2162. nodemask,
  2163. alloc_flags, preferred_zone,
  2164. migratetype, sync_migration,
  2165. &contended_compaction,
  2166. &deferred_compaction,
  2167. &did_some_progress);
  2168. if (page)
  2169. goto got_pg;
  2170. sync_migration = true;
  2171. /*
  2172. * If compaction is deferred for high-order allocations, it is because
  2173. * sync compaction recently failed. In this is the case and the caller
  2174. * requested a movable allocation that does not heavily disrupt the
  2175. * system then fail the allocation instead of entering direct reclaim.
  2176. */
  2177. if ((deferred_compaction || contended_compaction) &&
  2178. (gfp_mask & __GFP_NO_KSWAPD))
  2179. goto nopage;
  2180. /* Try direct reclaim and then allocating */
  2181. page = __alloc_pages_direct_reclaim(gfp_mask, order,
  2182. zonelist, high_zoneidx,
  2183. nodemask,
  2184. alloc_flags, preferred_zone,
  2185. migratetype, &did_some_progress);
  2186. if (page)
  2187. goto got_pg;
  2188. /*
  2189. * If we failed to make any progress reclaiming, then we are
  2190. * running out of options and have to consider going OOM
  2191. */
  2192. if (!did_some_progress) {
  2193. if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
  2194. if (oom_killer_disabled)
  2195. goto nopage;
  2196. /* Coredumps can quickly deplete all memory reserves */
  2197. if ((current->flags & PF_DUMPCORE) &&
  2198. !(gfp_mask & __GFP_NOFAIL))
  2199. goto nopage;
  2200. page = __alloc_pages_may_oom(gfp_mask, order,
  2201. zonelist, high_zoneidx,
  2202. nodemask, preferred_zone,
  2203. migratetype);
  2204. if (page)
  2205. goto got_pg;
  2206. if (!(gfp_mask & __GFP_NOFAIL)) {
  2207. /*
  2208. * The oom killer is not called for high-order
  2209. * allocations that may fail, so if no progress
  2210. * is being made, there are no other options and
  2211. * retrying is unlikely to help.
  2212. */
  2213. if (order > PAGE_ALLOC_COSTLY_ORDER)
  2214. goto nopage;
  2215. /*
  2216. * The oom killer is not called for lowmem
  2217. * allocations to prevent needlessly killing
  2218. * innocent tasks.
  2219. */
  2220. if (high_zoneidx < ZONE_NORMAL)
  2221. goto nopage;
  2222. }
  2223. goto restart;
  2224. }
  2225. }
  2226. /* Check if we should retry the allocation */
  2227. pages_reclaimed += did_some_progress;
  2228. if (should_alloc_retry(gfp_mask, order, did_some_progress,
  2229. pages_reclaimed)) {
  2230. /* Wait for some write requests to complete then retry */
  2231. wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
  2232. goto rebalance;
  2233. } else {
  2234. /*
  2235. * High-order allocations do not necessarily loop after
  2236. * direct reclaim and reclaim/compaction depends on compaction
  2237. * being called after reclaim so call directly if necessary
  2238. */
  2239. page = __alloc_pages_direct_compact(gfp_mask, order,
  2240. zonelist, high_zoneidx,
  2241. nodemask,
  2242. alloc_flags, preferred_zone,
  2243. migratetype, sync_migration,
  2244. &contended_compaction,
  2245. &deferred_compaction,
  2246. &did_some_progress);
  2247. if (page)
  2248. goto got_pg;
  2249. }
  2250. nopage:
  2251. warn_alloc_failed(gfp_mask, order, NULL);
  2252. return page;
  2253. got_pg:
  2254. if (kmemcheck_enabled)
  2255. kmemcheck_pagealloc_alloc(page, order, gfp_mask);
  2256. return page;
  2257. }
  2258. /*
  2259. * This is the 'heart' of the zoned buddy allocator.
  2260. */
  2261. struct page *
  2262. __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
  2263. struct zonelist *zonelist, nodemask_t *nodemask)
  2264. {
  2265. enum zone_type high_zoneidx = gfp_zone(gfp_mask);
  2266. struct zone *preferred_zone;
  2267. struct page *page = NULL;
  2268. int migratetype = allocflags_to_migratetype(gfp_mask);
  2269. unsigned int cpuset_mems_cookie;
  2270. int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET;
  2271. gfp_mask &= gfp_allowed_mask;
  2272. lockdep_trace_alloc(gfp_mask);
  2273. might_sleep_if(gfp_mask & __GFP_WAIT);
  2274. if (should_fail_alloc_page(gfp_mask, order))
  2275. return NULL;
  2276. /*
  2277. * Check the zones suitable for the gfp_mask contain at least one
  2278. * valid zone. It's possible to have an empty zonelist as a result
  2279. * of GFP_THISNODE and a memoryless node
  2280. */
  2281. if (unlikely(!zonelist->_zonerefs->zone))
  2282. return NULL;
  2283. retry_cpuset:
  2284. cpuset_mems_cookie = get_mems_allowed();
  2285. /* The preferred zone is used for statistics later */
  2286. first_zones_zonelist(zonelist, high_zoneidx,
  2287. nodemask ? : &cpuset_current_mems_allowed,
  2288. &preferred_zone);
  2289. if (!preferred_zone)
  2290. goto out;
  2291. #ifdef CONFIG_CMA
  2292. if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
  2293. alloc_flags |= ALLOC_CMA;
  2294. #endif
  2295. /* First allocation attempt */
  2296. page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
  2297. zonelist, high_zoneidx, alloc_flags,
  2298. preferred_zone, migratetype);
  2299. if (unlikely(!page))
  2300. page = __alloc_pages_slowpath(gfp_mask, order,
  2301. zonelist, high_zoneidx, nodemask,
  2302. preferred_zone, migratetype);
  2303. trace_mm_page_alloc(page, order, gfp_mask, migratetype);
  2304. out:
  2305. /*
  2306. * When updating a task's mems_allowed, it is possible to race with
  2307. * parallel threads in such a way that an allocation can fail while
  2308. * the mask is being updated. If a page allocation is about to fail,
  2309. * check if the cpuset changed during allocation and if so, retry.
  2310. */
  2311. if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
  2312. goto retry_cpuset;
  2313. return page;
  2314. }
  2315. EXPORT_SYMBOL(__alloc_pages_nodemask);
  2316. /*
  2317. * Common helper functions.
  2318. */
  2319. unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
  2320. {
  2321. struct page *page;
  2322. /*
  2323. * __get_free_pages() returns a 32-bit address, which cannot represent
  2324. * a highmem page
  2325. */
  2326. VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
  2327. page = alloc_pages(gfp_mask, order);
  2328. if (!page)
  2329. return 0;
  2330. return (unsigned long) page_address(page);
  2331. }
  2332. EXPORT_SYMBOL(__get_free_pages);
  2333. unsigned long get_zeroed_page(gfp_t gfp_mask)
  2334. {
  2335. return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
  2336. }
  2337. EXPORT_SYMBOL(get_zeroed_page);
  2338. void __free_pages(struct page *page, unsigned int order)
  2339. {
  2340. if (put_page_testzero(page)) {
  2341. if (order == 0)
  2342. free_hot_cold_page(page, 0);
  2343. else
  2344. __free_pages_ok(page, order);
  2345. }
  2346. }
  2347. EXPORT_SYMBOL(__free_pages);
  2348. void free_pages(unsigned long addr, unsigned int order)
  2349. {
  2350. if (addr != 0) {
  2351. VM_BUG_ON(!virt_addr_valid((void *)addr));
  2352. __free_pages(virt_to_page((void *)addr), order);
  2353. }
  2354. }
  2355. EXPORT_SYMBOL(free_pages);
  2356. static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
  2357. {
  2358. if (addr) {
  2359. unsigned long alloc_end = addr + (PAGE_SIZE << order);
  2360. unsigned long used = addr + PAGE_ALIGN(size);
  2361. split_page(virt_to_page((void *)addr), order);
  2362. while (used < alloc_end) {
  2363. free_page(used);
  2364. used += PAGE_SIZE;
  2365. }
  2366. }
  2367. return (void *)addr;
  2368. }
  2369. /**
  2370. * alloc_pages_exact - allocate an exact number physically-contiguous pages.
  2371. * @size: the number of bytes to allocate
  2372. * @gfp_mask: GFP flags for the allocation
  2373. *
  2374. * This function is similar to alloc_pages(), except that it allocates the
  2375. * minimum number of pages to satisfy the request. alloc_pages() can only
  2376. * allocate memory in power-of-two pages.
  2377. *
  2378. * This function is also limited by MAX_ORDER.
  2379. *
  2380. * Memory allocated by this function must be released by free_pages_exact().
  2381. */
  2382. void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
  2383. {
  2384. unsigned int order = get_order(size);
  2385. unsigned long addr;
  2386. addr = __get_free_pages(gfp_mask, order);
  2387. return make_alloc_exact(addr, order, size);
  2388. }
  2389. EXPORT_SYMBOL(alloc_pages_exact);
  2390. /**
  2391. * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
  2392. * pages on a node.
  2393. * @nid: the preferred node ID where memory should be allocated
  2394. * @size: the number of bytes to allocate
  2395. * @gfp_mask: GFP flags for the allocation
  2396. *
  2397. * Like alloc_pages_exact(), but try to allocate on node nid first before falling
  2398. * back.
  2399. * Note this is not alloc_pages_exact_node() which allocates on a specific node,
  2400. * but is not exact.
  2401. */
  2402. void *alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
  2403. {
  2404. unsigned order = get_order(size);
  2405. struct page *p = alloc_pages_node(nid, gfp_mask, order);
  2406. if (!p)
  2407. return NULL;
  2408. return make_alloc_exact((unsigned long)page_address(p), order, size);
  2409. }
  2410. EXPORT_SYMBOL(alloc_pages_exact_nid);
  2411. /**
  2412. * free_pages_exact - release memory allocated via alloc_pages_exact()
  2413. * @virt: the value returned by alloc_pages_exact.
  2414. * @size: size of allocation, same value as passed to alloc_pages_exact().
  2415. *
  2416. * Release the memory allocated by a previous call to alloc_pages_exact.
  2417. */
  2418. void free_pages_exact(void *virt, size_t size)
  2419. {
  2420. unsigned long addr = (unsigned long)virt;
  2421. unsigned long end = addr + PAGE_ALIGN(size);
  2422. while (addr < end) {
  2423. free_page(addr);
  2424. addr += PAGE_SIZE;
  2425. }
  2426. }
  2427. EXPORT_SYMBOL(free_pages_exact);
  2428. static unsigned int nr_free_zone_pages(int offset)
  2429. {
  2430. struct zoneref *z;
  2431. struct zone *zone;
  2432. /* Just pick one node, since fallback list is circular */
  2433. unsigned int sum = 0;
  2434. struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
  2435. for_each_zone_zonelist(zone, z, zonelist, offset) {
  2436. unsigned long size = zone->present_pages;
  2437. unsigned long high = high_wmark_pages(zone);
  2438. if (size > high)
  2439. sum += size - high;
  2440. }
  2441. return sum;
  2442. }
  2443. /*
  2444. * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
  2445. */
  2446. unsigned int nr_free_buffer_pages(void)
  2447. {
  2448. return nr_free_zone_pages(gfp_zone(GFP_USER));
  2449. }
  2450. EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
  2451. /*
  2452. * Amount of free RAM allocatable within all zones
  2453. */
  2454. unsigned int nr_free_pagecache_pages(void)
  2455. {
  2456. return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
  2457. }
  2458. static inline void show_node(struct zone *zone)
  2459. {
  2460. if (IS_ENABLED(CONFIG_NUMA))
  2461. printk("Node %d ", zone_to_nid(zone));
  2462. }
  2463. void si_meminfo(struct sysinfo *val)
  2464. {
  2465. val->totalram = totalram_pages;
  2466. val->sharedram = 0;
  2467. val->freeram = global_page_state(NR_FREE_PAGES);
  2468. val->bufferram = nr_blockdev_pages();
  2469. val->totalhigh = totalhigh_pages;
  2470. val->freehigh = nr_free_highpages();
  2471. val->mem_unit = PAGE_SIZE;
  2472. }
  2473. EXPORT_SYMBOL(si_meminfo);
  2474. #ifdef CONFIG_NUMA
  2475. void si_meminfo_node(struct sysinfo *val, int nid)
  2476. {
  2477. pg_data_t *pgdat = NODE_DATA(nid);
  2478. val->totalram = pgdat->node_present_pages;
  2479. val->freeram = node_page_state(nid, NR_FREE_PAGES);
  2480. #ifdef CONFIG_HIGHMEM
  2481. val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
  2482. val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
  2483. NR_FREE_PAGES);
  2484. #else
  2485. val->totalhigh = 0;
  2486. val->freehigh = 0;
  2487. #endif
  2488. val->mem_unit = PAGE_SIZE;
  2489. }
  2490. #endif
  2491. /*
  2492. * Determine whether the node should be displayed or not, depending on whether
  2493. * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
  2494. */
  2495. bool skip_free_areas_node(unsigned int flags, int nid)
  2496. {
  2497. bool ret = false;
  2498. unsigned int cpuset_mems_cookie;
  2499. if (!(flags & SHOW_MEM_FILTER_NODES))
  2500. goto out;
  2501. do {
  2502. cpuset_mems_cookie = get_mems_allowed();
  2503. ret = !node_isset(nid, cpuset_current_mems_allowed);
  2504. } while (!put_mems_allowed(cpuset_mems_cookie));
  2505. out:
  2506. return ret;
  2507. }
  2508. #define K(x) ((x) << (PAGE_SHIFT-10))
  2509. static void show_migration_types(unsigned char type)
  2510. {
  2511. static const char types[MIGRATE_TYPES] = {
  2512. [MIGRATE_UNMOVABLE] = 'U',
  2513. [MIGRATE_RECLAIMABLE] = 'E',
  2514. [MIGRATE_MOVABLE] = 'M',
  2515. [MIGRATE_RESERVE] = 'R',
  2516. #ifdef CONFIG_CMA
  2517. [MIGRATE_CMA] = 'C',
  2518. #endif
  2519. [MIGRATE_ISOLATE] = 'I',
  2520. };
  2521. char tmp[MIGRATE_TYPES + 1];
  2522. char *p = tmp;
  2523. int i;
  2524. for (i = 0; i < MIGRATE_TYPES; i++) {
  2525. if (type & (1 << i))
  2526. *p++ = types[i];
  2527. }
  2528. *p = '\0';
  2529. printk("(%s) ", tmp);
  2530. }
  2531. /*
  2532. * Show free area list (used inside shift_scroll-lock stuff)
  2533. * We also calculate the percentage fragmentation. We do this by counting the
  2534. * memory on each free list with the exception of the first item on the list.
  2535. * Suppresses nodes that are not allowed by current's cpuset if
  2536. * SHOW_MEM_FILTER_NODES is passed.
  2537. */
  2538. void show_free_areas(unsigned int filter)
  2539. {
  2540. int cpu;
  2541. struct zone *zone;
  2542. for_each_populated_zone(zone) {
  2543. if (skip_free_areas_node(filter, zone_to_nid(zone)))
  2544. continue;
  2545. show_node(zone);
  2546. printk("%s per-cpu:\n", zone->name);
  2547. for_each_online_cpu(cpu) {
  2548. struct per_cpu_pageset *pageset;
  2549. pageset = per_cpu_ptr(zone->pageset, cpu);
  2550. printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
  2551. cpu, pageset->pcp.high,
  2552. pageset->pcp.batch, pageset->pcp.count);
  2553. }
  2554. }
  2555. printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
  2556. " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
  2557. " unevictable:%lu"
  2558. " dirty:%lu writeback:%lu unstable:%lu\n"
  2559. " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
  2560. " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
  2561. " free_cma:%lu\n",
  2562. global_page_state(NR_ACTIVE_ANON),
  2563. global_page_state(NR_INACTIVE_ANON),
  2564. global_page_state(NR_ISOLATED_ANON),
  2565. global_page_state(NR_ACTIVE_FILE),
  2566. global_page_state(NR_INACTIVE_FILE),
  2567. global_page_state(NR_ISOLATED_FILE),
  2568. global_page_state(NR_UNEVICTABLE),
  2569. global_page_state(NR_FILE_DIRTY),
  2570. global_page_state(NR_WRITEBACK),
  2571. global_page_state(NR_UNSTABLE_NFS),
  2572. global_page_state(NR_FREE_PAGES),
  2573. global_page_state(NR_SLAB_RECLAIMABLE),
  2574. global_page_state(NR_SLAB_UNRECLAIMABLE),
  2575. global_page_state(NR_FILE_MAPPED),
  2576. global_page_state(NR_SHMEM),
  2577. global_page_state(NR_PAGETABLE),
  2578. global_page_state(NR_BOUNCE),
  2579. global_page_state(NR_FREE_CMA_PAGES));
  2580. for_each_populated_zone(zone) {
  2581. int i;
  2582. if (skip_free_areas_node(filter, zone_to_nid(zone)))
  2583. continue;
  2584. show_node(zone);
  2585. printk("%s"
  2586. " free:%lukB"
  2587. " min:%lukB"
  2588. " low:%lukB"
  2589. " high:%lukB"
  2590. " active_anon:%lukB"
  2591. " inactive_anon:%lukB"
  2592. " active_file:%lukB"
  2593. " inactive_file:%lukB"
  2594. " unevictable:%lukB"
  2595. " isolated(anon):%lukB"
  2596. " isolated(file):%lukB"
  2597. " present:%lukB"
  2598. " managed:%lukB"
  2599. " mlocked:%lukB"
  2600. " dirty:%lukB"
  2601. " writeback:%lukB"
  2602. " mapped:%lukB"
  2603. " shmem:%lukB"
  2604. " slab_reclaimable:%lukB"
  2605. " slab_unreclaimable:%lukB"
  2606. " kernel_stack:%lukB"
  2607. " pagetables:%lukB"
  2608. " unstable:%lukB"
  2609. " bounce:%lukB"
  2610. " free_cma:%lukB"
  2611. " writeback_tmp:%lukB"
  2612. " pages_scanned:%lu"
  2613. " all_unreclaimable? %s"
  2614. "\n",
  2615. zone->name,
  2616. K(zone_page_state(zone, NR_FREE_PAGES)),
  2617. K(min_wmark_pages(zone)),
  2618. K(low_wmark_pages(zone)),
  2619. K(high_wmark_pages(zone)),
  2620. K(zone_page_state(zone, NR_ACTIVE_ANON)),
  2621. K(zone_page_state(zone, NR_INACTIVE_ANON)),
  2622. K(zone_page_state(zone, NR_ACTIVE_FILE)),
  2623. K(zone_page_state(zone, NR_INACTIVE_FILE)),
  2624. K(zone_page_state(zone, NR_UNEVICTABLE)),
  2625. K(zone_page_state(zone, NR_ISOLATED_ANON)),
  2626. K(zone_page_state(zone, NR_ISOLATED_FILE)),
  2627. K(zone->present_pages),
  2628. K(zone->managed_pages),
  2629. K(zone_page_state(zone, NR_MLOCK)),
  2630. K(zone_page_state(zone, NR_FILE_DIRTY)),
  2631. K(zone_page_state(zone, NR_WRITEBACK)),
  2632. K(zone_page_state(zone, NR_FILE_MAPPED)),
  2633. K(zone_page_state(zone, NR_SHMEM)),
  2634. K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
  2635. K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
  2636. zone_page_state(zone, NR_KERNEL_STACK) *
  2637. THREAD_SIZE / 1024,
  2638. K(zone_page_state(zone, NR_PAGETABLE)),
  2639. K(zone_page_state(zone, NR_UNSTABLE_NFS)),
  2640. K(zone_page_state(zone, NR_BOUNCE)),
  2641. K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
  2642. K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
  2643. zone->pages_scanned,
  2644. (zone->all_unreclaimable ? "yes" : "no")
  2645. );
  2646. printk("lowmem_reserve[]:");
  2647. for (i = 0; i < MAX_NR_ZONES; i++)
  2648. printk(" %lu", zone->lowmem_reserve[i]);
  2649. printk("\n");
  2650. }
  2651. for_each_populated_zone(zone) {
  2652. unsigned long nr[MAX_ORDER], flags, order, total = 0;
  2653. unsigned char types[MAX_ORDER];
  2654. if (skip_free_areas_node(filter, zone_to_nid(zone)))
  2655. continue;
  2656. show_node(zone);
  2657. printk("%s: ", zone->name);
  2658. spin_lock_irqsave(&zone->lock, flags);
  2659. for (order = 0; order < MAX_ORDER; order++) {
  2660. struct free_area *area = &zone->free_area[order];
  2661. int type;
  2662. nr[order] = area->nr_free;
  2663. total += nr[order] << order;
  2664. types[order] = 0;
  2665. for (type = 0; type < MIGRATE_TYPES; type++) {
  2666. if (!list_empty(&area->free_list[type]))
  2667. types[order] |= 1 << type;
  2668. }
  2669. }
  2670. spin_unlock_irqrestore(&zone->lock, flags);
  2671. for (order = 0; order < MAX_ORDER; order++) {
  2672. printk("%lu*%lukB ", nr[order], K(1UL) << order);
  2673. if (nr[order])
  2674. show_migration_types(types[order]);
  2675. }
  2676. printk("= %lukB\n", K(total));
  2677. }
  2678. printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
  2679. show_swap_cache_info();
  2680. }
  2681. static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
  2682. {
  2683. zoneref->zone = zone;
  2684. zoneref->zone_idx = zone_idx(zone);
  2685. }
  2686. /*
  2687. * Builds allocation fallback zone lists.
  2688. *
  2689. * Add all populated zones of a node to the zonelist.
  2690. */
  2691. static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
  2692. int nr_zones, enum zone_type zone_type)
  2693. {
  2694. struct zone *zone;
  2695. BUG_ON(zone_type >= MAX_NR_ZONES);
  2696. zone_type++;
  2697. do {
  2698. zone_type--;
  2699. zone = pgdat->node_zones + zone_type;
  2700. if (populated_zone(zone)) {
  2701. zoneref_set_zone(zone,
  2702. &zonelist->_zonerefs[nr_zones++]);
  2703. check_highest_zone(zone_type);
  2704. }
  2705. } while (zone_type);
  2706. return nr_zones;
  2707. }
  2708. /*
  2709. * zonelist_order:
  2710. * 0 = automatic detection of better ordering.
  2711. * 1 = order by ([node] distance, -zonetype)
  2712. * 2 = order by (-zonetype, [node] distance)
  2713. *
  2714. * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
  2715. * the same zonelist. So only NUMA can configure this param.
  2716. */
  2717. #define ZONELIST_ORDER_DEFAULT 0
  2718. #define ZONELIST_ORDER_NODE 1
  2719. #define ZONELIST_ORDER_ZONE 2
  2720. /* zonelist order in the kernel.
  2721. * set_zonelist_order() will set this to NODE or ZONE.
  2722. */
  2723. static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
  2724. static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
  2725. #ifdef CONFIG_NUMA
  2726. /* The value user specified ....changed by config */
  2727. static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
  2728. /* string for sysctl */
  2729. #define NUMA_ZONELIST_ORDER_LEN 16
  2730. char numa_zonelist_order[16] = "default";
  2731. /*
  2732. * interface for configure zonelist ordering.
  2733. * command line option "numa_zonelist_order"
  2734. * = "[dD]efault - default, automatic configuration.
  2735. * = "[nN]ode - order by node locality, then by zone within node
  2736. * = "[zZ]one - order by zone, then by locality within zone
  2737. */
  2738. static int __parse_numa_zonelist_order(char *s)
  2739. {
  2740. if (*s == 'd' || *s == 'D') {
  2741. user_zonelist_order = ZONELIST_ORDER_DEFAULT;
  2742. } else if (*s == 'n' || *s == 'N') {
  2743. user_zonelist_order = ZONELIST_ORDER_NODE;
  2744. } else if (*s == 'z' || *s == 'Z') {
  2745. user_zonelist_order = ZONELIST_ORDER_ZONE;
  2746. } else {
  2747. printk(KERN_WARNING
  2748. "Ignoring invalid numa_zonelist_order value: "
  2749. "%s\n", s);
  2750. return -EINVAL;
  2751. }
  2752. return 0;
  2753. }
  2754. static __init int setup_numa_zonelist_order(char *s)
  2755. {
  2756. int ret;
  2757. if (!s)
  2758. return 0;
  2759. ret = __parse_numa_zonelist_order(s);
  2760. if (ret == 0)
  2761. strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
  2762. return ret;
  2763. }
  2764. early_param("numa_zonelist_order", setup_numa_zonelist_order);
  2765. /*
  2766. * sysctl handler for numa_zonelist_order
  2767. */
  2768. int numa_zonelist_order_handler(ctl_table *table, int write,
  2769. void __user *buffer, size_t *length,
  2770. loff_t *ppos)
  2771. {
  2772. char saved_string[NUMA_ZONELIST_ORDER_LEN];
  2773. int ret;
  2774. static DEFINE_MUTEX(zl_order_mutex);
  2775. mutex_lock(&zl_order_mutex);
  2776. if (write)
  2777. strcpy(saved_string, (char*)table->data);
  2778. ret = proc_dostring(table, write, buffer, length, ppos);
  2779. if (ret)
  2780. goto out;
  2781. if (write) {
  2782. int oldval = user_zonelist_order;
  2783. if (__parse_numa_zonelist_order((char*)table->data)) {
  2784. /*
  2785. * bogus value. restore saved string
  2786. */
  2787. strncpy((char*)table->data, saved_string,
  2788. NUMA_ZONELIST_ORDER_LEN);
  2789. user_zonelist_order = oldval;
  2790. } else if (oldval != user_zonelist_order) {
  2791. mutex_lock(&zonelists_mutex);
  2792. build_all_zonelists(NULL, NULL);
  2793. mutex_unlock(&zonelists_mutex);
  2794. }
  2795. }
  2796. out:
  2797. mutex_unlock(&zl_order_mutex);
  2798. return ret;
  2799. }
  2800. #define MAX_NODE_LOAD (nr_online_nodes)
  2801. static int node_load[MAX_NUMNODES];
  2802. /**
  2803. * find_next_best_node - find the next node that should appear in a given node's fallback list
  2804. * @node: node whose fallback list we're appending
  2805. * @used_node_mask: nodemask_t of already used nodes
  2806. *
  2807. * We use a number of factors to determine which is the next node that should
  2808. * appear on a given node's fallback list. The node should not have appeared
  2809. * already in @node's fallback list, and it should be the next closest node
  2810. * according to the distance array (which contains arbitrary distance values
  2811. * from each node to each node in the system), and should also prefer nodes
  2812. * with no CPUs, since presumably they'll have very little allocation pressure
  2813. * on them otherwise.
  2814. * It returns -1 if no node is found.
  2815. */
  2816. static int find_next_best_node(int node, nodemask_t *used_node_mask)
  2817. {
  2818. int n, val;
  2819. int min_val = INT_MAX;
  2820. int best_node = -1;
  2821. const struct cpumask *tmp = cpumask_of_node(0);
  2822. /* Use the local node if we haven't already */
  2823. if (!node_isset(node, *used_node_mask)) {
  2824. node_set(node, *used_node_mask);
  2825. return node;
  2826. }
  2827. for_each_node_state(n, N_MEMORY) {
  2828. /* Don't want a node to appear more than once */
  2829. if (node_isset(n, *used_node_mask))
  2830. continue;
  2831. /* Use the distance array to find the distance */
  2832. val = node_distance(node, n);
  2833. /* Penalize nodes under us ("prefer the next node") */
  2834. val += (n < node);
  2835. /* Give preference to headless and unused nodes */
  2836. tmp = cpumask_of_node(n);
  2837. if (!cpumask_empty(tmp))
  2838. val += PENALTY_FOR_NODE_WITH_CPUS;
  2839. /* Slight preference for less loaded node */
  2840. val *= (MAX_NODE_LOAD*MAX_NUMNODES);
  2841. val += node_load[n];
  2842. if (val < min_val) {
  2843. min_val = val;
  2844. best_node = n;
  2845. }
  2846. }
  2847. if (best_node >= 0)
  2848. node_set(best_node, *used_node_mask);
  2849. return best_node;
  2850. }
  2851. /*
  2852. * Build zonelists ordered by node and zones within node.
  2853. * This results in maximum locality--normal zone overflows into local
  2854. * DMA zone, if any--but risks exhausting DMA zone.
  2855. */
  2856. static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
  2857. {
  2858. int j;
  2859. struct zonelist *zonelist;
  2860. zonelist = &pgdat->node_zonelists[0];
  2861. for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
  2862. ;
  2863. j = build_zonelists_node(NODE_DATA(node), zonelist, j,
  2864. MAX_NR_ZONES - 1);
  2865. zonelist->_zonerefs[j].zone = NULL;
  2866. zonelist->_zonerefs[j].zone_idx = 0;
  2867. }
  2868. /*
  2869. * Build gfp_thisnode zonelists
  2870. */
  2871. static void build_thisnode_zonelists(pg_data_t *pgdat)
  2872. {
  2873. int j;
  2874. struct zonelist *zonelist;
  2875. zonelist = &pgdat->node_zonelists[1];
  2876. j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
  2877. zonelist->_zonerefs[j].zone = NULL;
  2878. zonelist->_zonerefs[j].zone_idx = 0;
  2879. }
  2880. /*
  2881. * Build zonelists ordered by zone and nodes within zones.
  2882. * This results in conserving DMA zone[s] until all Normal memory is
  2883. * exhausted, but results in overflowing to remote node while memory
  2884. * may still exist in local DMA zone.
  2885. */
  2886. static int node_order[MAX_NUMNODES];
  2887. static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
  2888. {
  2889. int pos, j, node;
  2890. int zone_type; /* needs to be signed */
  2891. struct zone *z;
  2892. struct zonelist *zonelist;
  2893. zonelist = &pgdat->node_zonelists[0];
  2894. pos = 0;
  2895. for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
  2896. for (j = 0; j < nr_nodes; j++) {
  2897. node = node_order[j];
  2898. z = &NODE_DATA(node)->node_zones[zone_type];
  2899. if (populated_zone(z)) {
  2900. zoneref_set_zone(z,
  2901. &zonelist->_zonerefs[pos++]);
  2902. check_highest_zone(zone_type);
  2903. }
  2904. }
  2905. }
  2906. zonelist->_zonerefs[pos].zone = NULL;
  2907. zonelist->_zonerefs[pos].zone_idx = 0;
  2908. }
  2909. static int default_zonelist_order(void)
  2910. {
  2911. int nid, zone_type;
  2912. unsigned long low_kmem_size,total_size;
  2913. struct zone *z;
  2914. int average_size;
  2915. /*
  2916. * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
  2917. * If they are really small and used heavily, the system can fall
  2918. * into OOM very easily.
  2919. * This function detect ZONE_DMA/DMA32 size and configures zone order.
  2920. */
  2921. /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
  2922. low_kmem_size = 0;
  2923. total_size = 0;
  2924. for_each_online_node(nid) {
  2925. for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
  2926. z = &NODE_DATA(nid)->node_zones[zone_type];
  2927. if (populated_zone(z)) {
  2928. if (zone_type < ZONE_NORMAL)
  2929. low_kmem_size += z->present_pages;
  2930. total_size += z->present_pages;
  2931. } else if (zone_type == ZONE_NORMAL) {
  2932. /*
  2933. * If any node has only lowmem, then node order
  2934. * is preferred to allow kernel allocations
  2935. * locally; otherwise, they can easily infringe
  2936. * on other nodes when there is an abundance of
  2937. * lowmem available to allocate from.
  2938. */
  2939. return ZONELIST_ORDER_NODE;
  2940. }
  2941. }
  2942. }
  2943. if (!low_kmem_size || /* there are no DMA area. */
  2944. low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
  2945. return ZONELIST_ORDER_NODE;
  2946. /*
  2947. * look into each node's config.
  2948. * If there is a node whose DMA/DMA32 memory is very big area on
  2949. * local memory, NODE_ORDER may be suitable.
  2950. */
  2951. average_size = total_size /
  2952. (nodes_weight(node_states[N_MEMORY]) + 1);
  2953. for_each_online_node(nid) {
  2954. low_kmem_size = 0;
  2955. total_size = 0;
  2956. for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
  2957. z = &NODE_DATA(nid)->node_zones[zone_type];
  2958. if (populated_zone(z)) {
  2959. if (zone_type < ZONE_NORMAL)
  2960. low_kmem_size += z->present_pages;
  2961. total_size += z->present_pages;
  2962. }
  2963. }
  2964. if (low_kmem_size &&
  2965. total_size > average_size && /* ignore small node */
  2966. low_kmem_size > total_size * 70/100)
  2967. return ZONELIST_ORDER_NODE;
  2968. }
  2969. return ZONELIST_ORDER_ZONE;
  2970. }
  2971. static void set_zonelist_order(void)
  2972. {
  2973. if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
  2974. current_zonelist_order = default_zonelist_order();
  2975. else
  2976. current_zonelist_order = user_zonelist_order;
  2977. }
  2978. static void build_zonelists(pg_data_t *pgdat)
  2979. {
  2980. int j, node, load;
  2981. enum zone_type i;
  2982. nodemask_t used_mask;
  2983. int local_node, prev_node;
  2984. struct zonelist *zonelist;
  2985. int order = current_zonelist_order;
  2986. /* initialize zonelists */
  2987. for (i = 0; i < MAX_ZONELISTS; i++) {
  2988. zonelist = pgdat->node_zonelists + i;
  2989. zonelist->_zonerefs[0].zone = NULL;
  2990. zonelist->_zonerefs[0].zone_idx = 0;
  2991. }
  2992. /* NUMA-aware ordering of nodes */
  2993. local_node = pgdat->node_id;
  2994. load = nr_online_nodes;
  2995. prev_node = local_node;
  2996. nodes_clear(used_mask);
  2997. memset(node_order, 0, sizeof(node_order));
  2998. j = 0;
  2999. while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
  3000. /*
  3001. * We don't want to pressure a particular node.
  3002. * So adding penalty to the first node in same
  3003. * distance group to make it round-robin.
  3004. */
  3005. if (node_distance(local_node, node) !=
  3006. node_distance(local_node, prev_node))
  3007. node_load[node] = load;
  3008. prev_node = node;
  3009. load--;
  3010. if (order == ZONELIST_ORDER_NODE)
  3011. build_zonelists_in_node_order(pgdat, node);
  3012. else
  3013. node_order[j++] = node; /* remember order */
  3014. }
  3015. if (order == ZONELIST_ORDER_ZONE) {
  3016. /* calculate node order -- i.e., DMA last! */
  3017. build_zonelists_in_zone_order(pgdat, j);
  3018. }
  3019. build_thisnode_zonelists(pgdat);
  3020. }
  3021. /* Construct the zonelist performance cache - see further mmzone.h */
  3022. static void build_zonelist_cache(pg_data_t *pgdat)
  3023. {
  3024. struct zonelist *zonelist;
  3025. struct zonelist_cache *zlc;
  3026. struct zoneref *z;
  3027. zonelist = &pgdat->node_zonelists[0];
  3028. zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
  3029. bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
  3030. for (z = zonelist->_zonerefs; z->zone; z++)
  3031. zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
  3032. }
  3033. #ifdef CONFIG_HAVE_MEMORYLESS_NODES
  3034. /*
  3035. * Return node id of node used for "local" allocations.
  3036. * I.e., first node id of first zone in arg node's generic zonelist.
  3037. * Used for initializing percpu 'numa_mem', which is used primarily
  3038. * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
  3039. */
  3040. int local_memory_node(int node)
  3041. {
  3042. struct zone *zone;
  3043. (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
  3044. gfp_zone(GFP_KERNEL),
  3045. NULL,
  3046. &zone);
  3047. return zone->node;
  3048. }
  3049. #endif
  3050. #else /* CONFIG_NUMA */
  3051. static void set_zonelist_order(void)
  3052. {
  3053. current_zonelist_order = ZONELIST_ORDER_ZONE;
  3054. }
  3055. static void build_zonelists(pg_data_t *pgdat)
  3056. {
  3057. int node, local_node;
  3058. enum zone_type j;
  3059. struct zonelist *zonelist;
  3060. local_node = pgdat->node_id;
  3061. zonelist = &pgdat->node_zonelists[0];
  3062. j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
  3063. /*
  3064. * Now we build the zonelist so that it contains the zones
  3065. * of all the other nodes.
  3066. * We don't want to pressure a particular node, so when
  3067. * building the zones for node N, we make sure that the
  3068. * zones coming right after the local ones are those from
  3069. * node N+1 (modulo N)
  3070. */
  3071. for (node = local_node + 1; node < MAX_NUMNODES; node++) {
  3072. if (!node_online(node))
  3073. continue;
  3074. j = build_zonelists_node(NODE_DATA(node), zonelist, j,
  3075. MAX_NR_ZONES - 1);
  3076. }
  3077. for (node = 0; node < local_node; node++) {
  3078. if (!node_online(node))
  3079. continue;
  3080. j = build_zonelists_node(NODE_DATA(node), zonelist, j,
  3081. MAX_NR_ZONES - 1);
  3082. }
  3083. zonelist->_zonerefs[j].zone = NULL;
  3084. zonelist->_zonerefs[j].zone_idx = 0;
  3085. }
  3086. /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
  3087. static void build_zonelist_cache(pg_data_t *pgdat)
  3088. {
  3089. pgdat->node_zonelists[0].zlcache_ptr = NULL;
  3090. }
  3091. #endif /* CONFIG_NUMA */
  3092. /*
  3093. * Boot pageset table. One per cpu which is going to be used for all
  3094. * zones and all nodes. The parameters will be set in such a way
  3095. * that an item put on a list will immediately be handed over to
  3096. * the buddy list. This is safe since pageset manipulation is done
  3097. * with interrupts disabled.
  3098. *
  3099. * The boot_pagesets must be kept even after bootup is complete for
  3100. * unused processors and/or zones. They do play a role for bootstrapping
  3101. * hotplugged processors.
  3102. *
  3103. * zoneinfo_show() and maybe other functions do
  3104. * not check if the processor is online before following the pageset pointer.
  3105. * Other parts of the kernel may not check if the zone is available.
  3106. */
  3107. static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
  3108. static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
  3109. static void setup_zone_pageset(struct zone *zone);
  3110. /*
  3111. * Global mutex to protect against size modification of zonelists
  3112. * as well as to serialize pageset setup for the new populated zone.
  3113. */
  3114. DEFINE_MUTEX(zonelists_mutex);
  3115. /* return values int ....just for stop_machine() */
  3116. static int __build_all_zonelists(void *data)
  3117. {
  3118. int nid;
  3119. int cpu;
  3120. pg_data_t *self = data;
  3121. #ifdef CONFIG_NUMA
  3122. memset(node_load, 0, sizeof(node_load));
  3123. #endif
  3124. if (self && !node_online(self->node_id)) {
  3125. build_zonelists(self);
  3126. build_zonelist_cache(self);
  3127. }
  3128. for_each_online_node(nid) {
  3129. pg_data_t *pgdat = NODE_DATA(nid);
  3130. build_zonelists(pgdat);
  3131. build_zonelist_cache(pgdat);
  3132. }
  3133. /*
  3134. * Initialize the boot_pagesets that are going to be used
  3135. * for bootstrapping processors. The real pagesets for
  3136. * each zone will be allocated later when the per cpu
  3137. * allocator is available.
  3138. *
  3139. * boot_pagesets are used also for bootstrapping offline
  3140. * cpus if the system is already booted because the pagesets
  3141. * are needed to initialize allocators on a specific cpu too.
  3142. * F.e. the percpu allocator needs the page allocator which
  3143. * needs the percpu allocator in order to allocate its pagesets
  3144. * (a chicken-egg dilemma).
  3145. */
  3146. for_each_possible_cpu(cpu) {
  3147. setup_pageset(&per_cpu(boot_pageset, cpu), 0);
  3148. #ifdef CONFIG_HAVE_MEMORYLESS_NODES
  3149. /*
  3150. * We now know the "local memory node" for each node--
  3151. * i.e., the node of the first zone in the generic zonelist.
  3152. * Set up numa_mem percpu variable for on-line cpus. During
  3153. * boot, only the boot cpu should be on-line; we'll init the
  3154. * secondary cpus' numa_mem as they come on-line. During
  3155. * node/memory hotplug, we'll fixup all on-line cpus.
  3156. */
  3157. if (cpu_online(cpu))
  3158. set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
  3159. #endif
  3160. }
  3161. return 0;
  3162. }
  3163. /*
  3164. * Called with zonelists_mutex held always
  3165. * unless system_state == SYSTEM_BOOTING.
  3166. */
  3167. void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
  3168. {
  3169. set_zonelist_order();
  3170. if (system_state == SYSTEM_BOOTING) {
  3171. __build_all_zonelists(NULL);
  3172. mminit_verify_zonelist();
  3173. cpuset_init_current_mems_allowed();
  3174. } else {
  3175. /* we have to stop all cpus to guarantee there is no user
  3176. of zonelist */
  3177. #ifdef CONFIG_MEMORY_HOTPLUG
  3178. if (zone)
  3179. setup_zone_pageset(zone);
  3180. #endif
  3181. stop_machine(__build_all_zonelists, pgdat, NULL);
  3182. /* cpuset refresh routine should be here */
  3183. }
  3184. vm_total_pages = nr_free_pagecache_pages();
  3185. /*
  3186. * Disable grouping by mobility if the number of pages in the
  3187. * system is too low to allow the mechanism to work. It would be
  3188. * more accurate, but expensive to check per-zone. This check is
  3189. * made on memory-hotadd so a system can start with mobility
  3190. * disabled and enable it later
  3191. */
  3192. if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
  3193. page_group_by_mobility_disabled = 1;
  3194. else
  3195. page_group_by_mobility_disabled = 0;
  3196. printk("Built %i zonelists in %s order, mobility grouping %s. "
  3197. "Total pages: %ld\n",
  3198. nr_online_nodes,
  3199. zonelist_order_name[current_zonelist_order],
  3200. page_group_by_mobility_disabled ? "off" : "on",
  3201. vm_total_pages);
  3202. #ifdef CONFIG_NUMA
  3203. printk("Policy zone: %s\n", zone_names[policy_zone]);
  3204. #endif
  3205. }
  3206. /*
  3207. * Helper functions to size the waitqueue hash table.
  3208. * Essentially these want to choose hash table sizes sufficiently
  3209. * large so that collisions trying to wait on pages are rare.
  3210. * But in fact, the number of active page waitqueues on typical
  3211. * systems is ridiculously low, less than 200. So this is even
  3212. * conservative, even though it seems large.
  3213. *
  3214. * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
  3215. * waitqueues, i.e. the size of the waitq table given the number of pages.
  3216. */
  3217. #define PAGES_PER_WAITQUEUE 256
  3218. #ifndef CONFIG_MEMORY_HOTPLUG
  3219. static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
  3220. {
  3221. unsigned long size = 1;
  3222. pages /= PAGES_PER_WAITQUEUE;
  3223. while (size < pages)
  3224. size <<= 1;
  3225. /*
  3226. * Once we have dozens or even hundreds of threads sleeping
  3227. * on IO we've got bigger problems than wait queue collision.
  3228. * Limit the size of the wait table to a reasonable size.
  3229. */
  3230. size = min(size, 4096UL);
  3231. return max(size, 4UL);
  3232. }
  3233. #else
  3234. /*
  3235. * A zone's size might be changed by hot-add, so it is not possible to determine
  3236. * a suitable size for its wait_table. So we use the maximum size now.
  3237. *
  3238. * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
  3239. *
  3240. * i386 (preemption config) : 4096 x 16 = 64Kbyte.
  3241. * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
  3242. * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
  3243. *
  3244. * The maximum entries are prepared when a zone's memory is (512K + 256) pages
  3245. * or more by the traditional way. (See above). It equals:
  3246. *
  3247. * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
  3248. * ia64(16K page size) : = ( 8G + 4M)byte.
  3249. * powerpc (64K page size) : = (32G +16M)byte.
  3250. */
  3251. static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
  3252. {
  3253. return 4096UL;
  3254. }
  3255. #endif
  3256. /*
  3257. * This is an integer logarithm so that shifts can be used later
  3258. * to extract the more random high bits from the multiplicative
  3259. * hash function before the remainder is taken.
  3260. */
  3261. static inline unsigned long wait_table_bits(unsigned long size)
  3262. {
  3263. return ffz(~size);
  3264. }
  3265. #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
  3266. /*
  3267. * Check if a pageblock contains reserved pages
  3268. */
  3269. static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
  3270. {
  3271. unsigned long pfn;
  3272. for (pfn = start_pfn; pfn < end_pfn; pfn++) {
  3273. if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
  3274. return 1;
  3275. }
  3276. return 0;
  3277. }
  3278. /*
  3279. * Mark a number of pageblocks as MIGRATE_RESERVE. The number
  3280. * of blocks reserved is based on min_wmark_pages(zone). The memory within
  3281. * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
  3282. * higher will lead to a bigger reserve which will get freed as contiguous
  3283. * blocks as reclaim kicks in
  3284. */
  3285. static void setup_zone_migrate_reserve(struct zone *zone)
  3286. {
  3287. unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
  3288. struct page *page;
  3289. unsigned long block_migratetype;
  3290. int reserve;
  3291. /*
  3292. * Get the start pfn, end pfn and the number of blocks to reserve
  3293. * We have to be careful to be aligned to pageblock_nr_pages to
  3294. * make sure that we always check pfn_valid for the first page in
  3295. * the block.
  3296. */
  3297. start_pfn = zone->zone_start_pfn;
  3298. end_pfn = start_pfn + zone->spanned_pages;
  3299. start_pfn = roundup(start_pfn, pageblock_nr_pages);
  3300. reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
  3301. pageblock_order;
  3302. /*
  3303. * Reserve blocks are generally in place to help high-order atomic
  3304. * allocations that are short-lived. A min_free_kbytes value that
  3305. * would result in more than 2 reserve blocks for atomic allocations
  3306. * is assumed to be in place to help anti-fragmentation for the
  3307. * future allocation of hugepages at runtime.
  3308. */
  3309. reserve = min(2, reserve);
  3310. for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
  3311. if (!pfn_valid(pfn))
  3312. continue;
  3313. page = pfn_to_page(pfn);
  3314. /* Watch out for overlapping nodes */
  3315. if (page_to_nid(page) != zone_to_nid(zone))
  3316. continue;
  3317. block_migratetype = get_pageblock_migratetype(page);
  3318. /* Only test what is necessary when the reserves are not met */
  3319. if (reserve > 0) {
  3320. /*
  3321. * Blocks with reserved pages will never free, skip
  3322. * them.
  3323. */
  3324. block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
  3325. if (pageblock_is_reserved(pfn, block_end_pfn))
  3326. continue;
  3327. /* If this block is reserved, account for it */
  3328. if (block_migratetype == MIGRATE_RESERVE) {
  3329. reserve--;
  3330. continue;
  3331. }
  3332. /* Suitable for reserving if this block is movable */
  3333. if (block_migratetype == MIGRATE_MOVABLE) {
  3334. set_pageblock_migratetype(page,
  3335. MIGRATE_RESERVE);
  3336. move_freepages_block(zone, page,
  3337. MIGRATE_RESERVE);
  3338. reserve--;
  3339. continue;
  3340. }
  3341. }
  3342. /*
  3343. * If the reserve is met and this is a previous reserved block,
  3344. * take it back
  3345. */
  3346. if (block_migratetype == MIGRATE_RESERVE) {
  3347. set_pageblock_migratetype(page, MIGRATE_MOVABLE);
  3348. move_freepages_block(zone, page, MIGRATE_MOVABLE);
  3349. }
  3350. }
  3351. }
  3352. /*
  3353. * Initially all pages are reserved - free ones are freed
  3354. * up by free_all_bootmem() once the early boot process is
  3355. * done. Non-atomic initialization, single-pass.
  3356. */
  3357. void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
  3358. unsigned long start_pfn, enum memmap_context context)
  3359. {
  3360. struct page *page;
  3361. unsigned long end_pfn = start_pfn + size;
  3362. unsigned long pfn;
  3363. struct zone *z;
  3364. if (highest_memmap_pfn < end_pfn - 1)
  3365. highest_memmap_pfn = end_pfn - 1;
  3366. z = &NODE_DATA(nid)->node_zones[zone];
  3367. for (pfn = start_pfn; pfn < end_pfn; pfn++) {
  3368. /*
  3369. * There can be holes in boot-time mem_map[]s
  3370. * handed to this function. They do not
  3371. * exist on hotplugged memory.
  3372. */
  3373. if (context == MEMMAP_EARLY) {
  3374. if (!early_pfn_valid(pfn))
  3375. continue;
  3376. if (!early_pfn_in_nid(pfn, nid))
  3377. continue;
  3378. }
  3379. page = pfn_to_page(pfn);
  3380. set_page_links(page, zone, nid, pfn);
  3381. mminit_verify_page_links(page, zone, nid, pfn);
  3382. init_page_count(page);
  3383. reset_page_mapcount(page);
  3384. SetPageReserved(page);
  3385. /*
  3386. * Mark the block movable so that blocks are reserved for
  3387. * movable at startup. This will force kernel allocations
  3388. * to reserve their blocks rather than leaking throughout
  3389. * the address space during boot when many long-lived
  3390. * kernel allocations are made. Later some blocks near
  3391. * the start are marked MIGRATE_RESERVE by
  3392. * setup_zone_migrate_reserve()
  3393. *
  3394. * bitmap is created for zone's valid pfn range. but memmap
  3395. * can be created for invalid pages (for alignment)
  3396. * check here not to call set_pageblock_migratetype() against
  3397. * pfn out of zone.
  3398. */
  3399. if ((z->zone_start_pfn <= pfn)
  3400. && (pfn < z->zone_start_pfn + z->spanned_pages)
  3401. && !(pfn & (pageblock_nr_pages - 1)))
  3402. set_pageblock_migratetype(page, MIGRATE_MOVABLE);
  3403. INIT_LIST_HEAD(&page->lru);
  3404. #ifdef WANT_PAGE_VIRTUAL
  3405. /* The shift won't overflow because ZONE_NORMAL is below 4G. */
  3406. if (!is_highmem_idx(zone))
  3407. set_page_address(page, __va(pfn << PAGE_SHIFT));
  3408. #endif
  3409. }
  3410. }
  3411. static void __meminit zone_init_free_lists(struct zone *zone)
  3412. {
  3413. int order, t;
  3414. for_each_migratetype_order(order, t) {
  3415. INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
  3416. zone->free_area[order].nr_free = 0;
  3417. }
  3418. }
  3419. #ifndef __HAVE_ARCH_MEMMAP_INIT
  3420. #define memmap_init(size, nid, zone, start_pfn) \
  3421. memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
  3422. #endif
  3423. static int __meminit zone_batchsize(struct zone *zone)
  3424. {
  3425. #ifdef CONFIG_MMU
  3426. int batch;
  3427. /*
  3428. * The per-cpu-pages pools are set to around 1000th of the
  3429. * size of the zone. But no more than 1/2 of a meg.
  3430. *
  3431. * OK, so we don't know how big the cache is. So guess.
  3432. */
  3433. batch = zone->present_pages / 1024;
  3434. if (batch * PAGE_SIZE > 512 * 1024)
  3435. batch = (512 * 1024) / PAGE_SIZE;
  3436. batch /= 4; /* We effectively *= 4 below */
  3437. if (batch < 1)
  3438. batch = 1;
  3439. /*
  3440. * Clamp the batch to a 2^n - 1 value. Having a power
  3441. * of 2 value was found to be more likely to have
  3442. * suboptimal cache aliasing properties in some cases.
  3443. *
  3444. * For example if 2 tasks are alternately allocating
  3445. * batches of pages, one task can end up with a lot
  3446. * of pages of one half of the possible page colors
  3447. * and the other with pages of the other colors.
  3448. */
  3449. batch = rounddown_pow_of_two(batch + batch/2) - 1;
  3450. return batch;
  3451. #else
  3452. /* The deferral and batching of frees should be suppressed under NOMMU
  3453. * conditions.
  3454. *
  3455. * The problem is that NOMMU needs to be able to allocate large chunks
  3456. * of contiguous memory as there's no hardware page translation to
  3457. * assemble apparent contiguous memory from discontiguous pages.
  3458. *
  3459. * Queueing large contiguous runs of pages for batching, however,
  3460. * causes the pages to actually be freed in smaller chunks. As there
  3461. * can be a significant delay between the individual batches being
  3462. * recycled, this leads to the once large chunks of space being
  3463. * fragmented and becoming unavailable for high-order allocations.
  3464. */
  3465. return 0;
  3466. #endif
  3467. }
  3468. static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
  3469. {
  3470. struct per_cpu_pages *pcp;
  3471. int migratetype;
  3472. memset(p, 0, sizeof(*p));
  3473. pcp = &p->pcp;
  3474. pcp->count = 0;
  3475. pcp->high = 6 * batch;
  3476. pcp->batch = max(1UL, 1 * batch);
  3477. for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
  3478. INIT_LIST_HEAD(&pcp->lists[migratetype]);
  3479. }
  3480. /*
  3481. * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
  3482. * to the value high for the pageset p.
  3483. */
  3484. static void setup_pagelist_highmark(struct per_cpu_pageset *p,
  3485. unsigned long high)
  3486. {
  3487. struct per_cpu_pages *pcp;
  3488. pcp = &p->pcp;
  3489. pcp->high = high;
  3490. pcp->batch = max(1UL, high/4);
  3491. if ((high/4) > (PAGE_SHIFT * 8))
  3492. pcp->batch = PAGE_SHIFT * 8;
  3493. }
  3494. static void __meminit setup_zone_pageset(struct zone *zone)
  3495. {
  3496. int cpu;
  3497. zone->pageset = alloc_percpu(struct per_cpu_pageset);
  3498. for_each_possible_cpu(cpu) {
  3499. struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
  3500. setup_pageset(pcp, zone_batchsize(zone));
  3501. if (percpu_pagelist_fraction)
  3502. setup_pagelist_highmark(pcp,
  3503. (zone->present_pages /
  3504. percpu_pagelist_fraction));
  3505. }
  3506. }
  3507. /*
  3508. * Allocate per cpu pagesets and initialize them.
  3509. * Before this call only boot pagesets were available.
  3510. */
  3511. void __init setup_per_cpu_pageset(void)
  3512. {
  3513. struct zone *zone;
  3514. for_each_populated_zone(zone)
  3515. setup_zone_pageset(zone);
  3516. }
  3517. static noinline __init_refok
  3518. int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
  3519. {
  3520. int i;
  3521. struct pglist_data *pgdat = zone->zone_pgdat;
  3522. size_t alloc_size;
  3523. /*
  3524. * The per-page waitqueue mechanism uses hashed waitqueues
  3525. * per zone.
  3526. */
  3527. zone->wait_table_hash_nr_entries =
  3528. wait_table_hash_nr_entries(zone_size_pages);
  3529. zone->wait_table_bits =
  3530. wait_table_bits(zone->wait_table_hash_nr_entries);
  3531. alloc_size = zone->wait_table_hash_nr_entries
  3532. * sizeof(wait_queue_head_t);
  3533. if (!slab_is_available()) {
  3534. zone->wait_table = (wait_queue_head_t *)
  3535. alloc_bootmem_node_nopanic(pgdat, alloc_size);
  3536. } else {
  3537. /*
  3538. * This case means that a zone whose size was 0 gets new memory
  3539. * via memory hot-add.
  3540. * But it may be the case that a new node was hot-added. In
  3541. * this case vmalloc() will not be able to use this new node's
  3542. * memory - this wait_table must be initialized to use this new
  3543. * node itself as well.
  3544. * To use this new node's memory, further consideration will be
  3545. * necessary.
  3546. */
  3547. zone->wait_table = vmalloc(alloc_size);
  3548. }
  3549. if (!zone->wait_table)
  3550. return -ENOMEM;
  3551. for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
  3552. init_waitqueue_head(zone->wait_table + i);
  3553. return 0;
  3554. }
  3555. static __meminit void zone_pcp_init(struct zone *zone)
  3556. {
  3557. /*
  3558. * per cpu subsystem is not up at this point. The following code
  3559. * relies on the ability of the linker to provide the
  3560. * offset of a (static) per cpu variable into the per cpu area.
  3561. */
  3562. zone->pageset = &boot_pageset;
  3563. if (zone->present_pages)
  3564. printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
  3565. zone->name, zone->present_pages,
  3566. zone_batchsize(zone));
  3567. }
  3568. int __meminit init_currently_empty_zone(struct zone *zone,
  3569. unsigned long zone_start_pfn,
  3570. unsigned long size,
  3571. enum memmap_context context)
  3572. {
  3573. struct pglist_data *pgdat = zone->zone_pgdat;
  3574. int ret;
  3575. ret = zone_wait_table_init(zone, size);
  3576. if (ret)
  3577. return ret;
  3578. pgdat->nr_zones = zone_idx(zone) + 1;
  3579. zone->zone_start_pfn = zone_start_pfn;
  3580. mminit_dprintk(MMINIT_TRACE, "memmap_init",
  3581. "Initialising map node %d zone %lu pfns %lu -> %lu\n",
  3582. pgdat->node_id,
  3583. (unsigned long)zone_idx(zone),
  3584. zone_start_pfn, (zone_start_pfn + size));
  3585. zone_init_free_lists(zone);
  3586. return 0;
  3587. }
  3588. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  3589. #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
  3590. /*
  3591. * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
  3592. * Architectures may implement their own version but if add_active_range()
  3593. * was used and there are no special requirements, this is a convenient
  3594. * alternative
  3595. */
  3596. int __meminit __early_pfn_to_nid(unsigned long pfn)
  3597. {
  3598. unsigned long start_pfn, end_pfn;
  3599. int i, nid;
  3600. for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
  3601. if (start_pfn <= pfn && pfn < end_pfn)
  3602. return nid;
  3603. /* This is a memory hole */
  3604. return -1;
  3605. }
  3606. #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
  3607. int __meminit early_pfn_to_nid(unsigned long pfn)
  3608. {
  3609. int nid;
  3610. nid = __early_pfn_to_nid(pfn);
  3611. if (nid >= 0)
  3612. return nid;
  3613. /* just returns 0 */
  3614. return 0;
  3615. }
  3616. #ifdef CONFIG_NODES_SPAN_OTHER_NODES
  3617. bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
  3618. {
  3619. int nid;
  3620. nid = __early_pfn_to_nid(pfn);
  3621. if (nid >= 0 && nid != node)
  3622. return false;
  3623. return true;
  3624. }
  3625. #endif
  3626. /**
  3627. * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
  3628. * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
  3629. * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
  3630. *
  3631. * If an architecture guarantees that all ranges registered with
  3632. * add_active_ranges() contain no holes and may be freed, this
  3633. * this function may be used instead of calling free_bootmem() manually.
  3634. */
  3635. void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
  3636. {
  3637. unsigned long start_pfn, end_pfn;
  3638. int i, this_nid;
  3639. for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
  3640. start_pfn = min(start_pfn, max_low_pfn);
  3641. end_pfn = min(end_pfn, max_low_pfn);
  3642. if (start_pfn < end_pfn)
  3643. free_bootmem_node(NODE_DATA(this_nid),
  3644. PFN_PHYS(start_pfn),
  3645. (end_pfn - start_pfn) << PAGE_SHIFT);
  3646. }
  3647. }
  3648. /**
  3649. * sparse_memory_present_with_active_regions - Call memory_present for each active range
  3650. * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
  3651. *
  3652. * If an architecture guarantees that all ranges registered with
  3653. * add_active_ranges() contain no holes and may be freed, this
  3654. * function may be used instead of calling memory_present() manually.
  3655. */
  3656. void __init sparse_memory_present_with_active_regions(int nid)
  3657. {
  3658. unsigned long start_pfn, end_pfn;
  3659. int i, this_nid;
  3660. for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
  3661. memory_present(this_nid, start_pfn, end_pfn);
  3662. }
  3663. /**
  3664. * get_pfn_range_for_nid - Return the start and end page frames for a node
  3665. * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
  3666. * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
  3667. * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
  3668. *
  3669. * It returns the start and end page frame of a node based on information
  3670. * provided by an arch calling add_active_range(). If called for a node
  3671. * with no available memory, a warning is printed and the start and end
  3672. * PFNs will be 0.
  3673. */
  3674. void __meminit get_pfn_range_for_nid(unsigned int nid,
  3675. unsigned long *start_pfn, unsigned long *end_pfn)
  3676. {
  3677. unsigned long this_start_pfn, this_end_pfn;
  3678. int i;
  3679. *start_pfn = -1UL;
  3680. *end_pfn = 0;
  3681. for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
  3682. *start_pfn = min(*start_pfn, this_start_pfn);
  3683. *end_pfn = max(*end_pfn, this_end_pfn);
  3684. }
  3685. if (*start_pfn == -1UL)
  3686. *start_pfn = 0;
  3687. }
  3688. /*
  3689. * This finds a zone that can be used for ZONE_MOVABLE pages. The
  3690. * assumption is made that zones within a node are ordered in monotonic
  3691. * increasing memory addresses so that the "highest" populated zone is used
  3692. */
  3693. static void __init find_usable_zone_for_movable(void)
  3694. {
  3695. int zone_index;
  3696. for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
  3697. if (zone_index == ZONE_MOVABLE)
  3698. continue;
  3699. if (arch_zone_highest_possible_pfn[zone_index] >
  3700. arch_zone_lowest_possible_pfn[zone_index])
  3701. break;
  3702. }
  3703. VM_BUG_ON(zone_index == -1);
  3704. movable_zone = zone_index;
  3705. }
  3706. /*
  3707. * The zone ranges provided by the architecture do not include ZONE_MOVABLE
  3708. * because it is sized independent of architecture. Unlike the other zones,
  3709. * the starting point for ZONE_MOVABLE is not fixed. It may be different
  3710. * in each node depending on the size of each node and how evenly kernelcore
  3711. * is distributed. This helper function adjusts the zone ranges
  3712. * provided by the architecture for a given node by using the end of the
  3713. * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
  3714. * zones within a node are in order of monotonic increases memory addresses
  3715. */
  3716. static void __meminit adjust_zone_range_for_zone_movable(int nid,
  3717. unsigned long zone_type,
  3718. unsigned long node_start_pfn,
  3719. unsigned long node_end_pfn,
  3720. unsigned long *zone_start_pfn,
  3721. unsigned long *zone_end_pfn)
  3722. {
  3723. /* Only adjust if ZONE_MOVABLE is on this node */
  3724. if (zone_movable_pfn[nid]) {
  3725. /* Size ZONE_MOVABLE */
  3726. if (zone_type == ZONE_MOVABLE) {
  3727. *zone_start_pfn = zone_movable_pfn[nid];
  3728. *zone_end_pfn = min(node_end_pfn,
  3729. arch_zone_highest_possible_pfn[movable_zone]);
  3730. /* Adjust for ZONE_MOVABLE starting within this range */
  3731. } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
  3732. *zone_end_pfn > zone_movable_pfn[nid]) {
  3733. *zone_end_pfn = zone_movable_pfn[nid];
  3734. /* Check if this whole range is within ZONE_MOVABLE */
  3735. } else if (*zone_start_pfn >= zone_movable_pfn[nid])
  3736. *zone_start_pfn = *zone_end_pfn;
  3737. }
  3738. }
  3739. /*
  3740. * Return the number of pages a zone spans in a node, including holes
  3741. * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
  3742. */
  3743. static unsigned long __meminit zone_spanned_pages_in_node(int nid,
  3744. unsigned long zone_type,
  3745. unsigned long *ignored)
  3746. {
  3747. unsigned long node_start_pfn, node_end_pfn;
  3748. unsigned long zone_start_pfn, zone_end_pfn;
  3749. /* Get the start and end of the node and zone */
  3750. get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
  3751. zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
  3752. zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
  3753. adjust_zone_range_for_zone_movable(nid, zone_type,
  3754. node_start_pfn, node_end_pfn,
  3755. &zone_start_pfn, &zone_end_pfn);
  3756. /* Check that this node has pages within the zone's required range */
  3757. if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
  3758. return 0;
  3759. /* Move the zone boundaries inside the node if necessary */
  3760. zone_end_pfn = min(zone_end_pfn, node_end_pfn);
  3761. zone_start_pfn = max(zone_start_pfn, node_start_pfn);
  3762. /* Return the spanned pages */
  3763. return zone_end_pfn - zone_start_pfn;
  3764. }
  3765. /*
  3766. * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
  3767. * then all holes in the requested range will be accounted for.
  3768. */
  3769. unsigned long __meminit __absent_pages_in_range(int nid,
  3770. unsigned long range_start_pfn,
  3771. unsigned long range_end_pfn)
  3772. {
  3773. unsigned long nr_absent = range_end_pfn - range_start_pfn;
  3774. unsigned long start_pfn, end_pfn;
  3775. int i;
  3776. for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
  3777. start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
  3778. end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
  3779. nr_absent -= end_pfn - start_pfn;
  3780. }
  3781. return nr_absent;
  3782. }
  3783. /**
  3784. * absent_pages_in_range - Return number of page frames in holes within a range
  3785. * @start_pfn: The start PFN to start searching for holes
  3786. * @end_pfn: The end PFN to stop searching for holes
  3787. *
  3788. * It returns the number of pages frames in memory holes within a range.
  3789. */
  3790. unsigned long __init absent_pages_in_range(unsigned long start_pfn,
  3791. unsigned long end_pfn)
  3792. {
  3793. return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
  3794. }
  3795. /* Return the number of page frames in holes in a zone on a node */
  3796. static unsigned long __meminit zone_absent_pages_in_node(int nid,
  3797. unsigned long zone_type,
  3798. unsigned long *ignored)
  3799. {
  3800. unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
  3801. unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
  3802. unsigned long node_start_pfn, node_end_pfn;
  3803. unsigned long zone_start_pfn, zone_end_pfn;
  3804. get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
  3805. zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
  3806. zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
  3807. adjust_zone_range_for_zone_movable(nid, zone_type,
  3808. node_start_pfn, node_end_pfn,
  3809. &zone_start_pfn, &zone_end_pfn);
  3810. return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
  3811. }
  3812. #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  3813. static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
  3814. unsigned long zone_type,
  3815. unsigned long *zones_size)
  3816. {
  3817. return zones_size[zone_type];
  3818. }
  3819. static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
  3820. unsigned long zone_type,
  3821. unsigned long *zholes_size)
  3822. {
  3823. if (!zholes_size)
  3824. return 0;
  3825. return zholes_size[zone_type];
  3826. }
  3827. #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  3828. static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
  3829. unsigned long *zones_size, unsigned long *zholes_size)
  3830. {
  3831. unsigned long realtotalpages, totalpages = 0;
  3832. enum zone_type i;
  3833. for (i = 0; i < MAX_NR_ZONES; i++)
  3834. totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
  3835. zones_size);
  3836. pgdat->node_spanned_pages = totalpages;
  3837. realtotalpages = totalpages;
  3838. for (i = 0; i < MAX_NR_ZONES; i++)
  3839. realtotalpages -=
  3840. zone_absent_pages_in_node(pgdat->node_id, i,
  3841. zholes_size);
  3842. pgdat->node_present_pages = realtotalpages;
  3843. printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
  3844. realtotalpages);
  3845. }
  3846. #ifndef CONFIG_SPARSEMEM
  3847. /*
  3848. * Calculate the size of the zone->blockflags rounded to an unsigned long
  3849. * Start by making sure zonesize is a multiple of pageblock_order by rounding
  3850. * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
  3851. * round what is now in bits to nearest long in bits, then return it in
  3852. * bytes.
  3853. */
  3854. static unsigned long __init usemap_size(unsigned long zonesize)
  3855. {
  3856. unsigned long usemapsize;
  3857. usemapsize = roundup(zonesize, pageblock_nr_pages);
  3858. usemapsize = usemapsize >> pageblock_order;
  3859. usemapsize *= NR_PAGEBLOCK_BITS;
  3860. usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
  3861. return usemapsize / 8;
  3862. }
  3863. static void __init setup_usemap(struct pglist_data *pgdat,
  3864. struct zone *zone, unsigned long zonesize)
  3865. {
  3866. unsigned long usemapsize = usemap_size(zonesize);
  3867. zone->pageblock_flags = NULL;
  3868. if (usemapsize)
  3869. zone->pageblock_flags = alloc_bootmem_node_nopanic(pgdat,
  3870. usemapsize);
  3871. }
  3872. #else
  3873. static inline void setup_usemap(struct pglist_data *pgdat,
  3874. struct zone *zone, unsigned long zonesize) {}
  3875. #endif /* CONFIG_SPARSEMEM */
  3876. #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
  3877. /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
  3878. void __init set_pageblock_order(void)
  3879. {
  3880. unsigned int order;
  3881. /* Check that pageblock_nr_pages has not already been setup */
  3882. if (pageblock_order)
  3883. return;
  3884. if (HPAGE_SHIFT > PAGE_SHIFT)
  3885. order = HUGETLB_PAGE_ORDER;
  3886. else
  3887. order = MAX_ORDER - 1;
  3888. /*
  3889. * Assume the largest contiguous order of interest is a huge page.
  3890. * This value may be variable depending on boot parameters on IA64 and
  3891. * powerpc.
  3892. */
  3893. pageblock_order = order;
  3894. }
  3895. #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
  3896. /*
  3897. * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
  3898. * is unused as pageblock_order is set at compile-time. See
  3899. * include/linux/pageblock-flags.h for the values of pageblock_order based on
  3900. * the kernel config
  3901. */
  3902. void __init set_pageblock_order(void)
  3903. {
  3904. }
  3905. #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
  3906. static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
  3907. unsigned long present_pages)
  3908. {
  3909. unsigned long pages = spanned_pages;
  3910. /*
  3911. * Provide a more accurate estimation if there are holes within
  3912. * the zone and SPARSEMEM is in use. If there are holes within the
  3913. * zone, each populated memory region may cost us one or two extra
  3914. * memmap pages due to alignment because memmap pages for each
  3915. * populated regions may not naturally algined on page boundary.
  3916. * So the (present_pages >> 4) heuristic is a tradeoff for that.
  3917. */
  3918. if (spanned_pages > present_pages + (present_pages >> 4) &&
  3919. IS_ENABLED(CONFIG_SPARSEMEM))
  3920. pages = present_pages;
  3921. return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
  3922. }
  3923. /*
  3924. * Set up the zone data structures:
  3925. * - mark all pages reserved
  3926. * - mark all memory queues empty
  3927. * - clear the memory bitmaps
  3928. *
  3929. * NOTE: pgdat should get zeroed by caller.
  3930. */
  3931. static void __paginginit free_area_init_core(struct pglist_data *pgdat,
  3932. unsigned long *zones_size, unsigned long *zholes_size)
  3933. {
  3934. enum zone_type j;
  3935. int nid = pgdat->node_id;
  3936. unsigned long zone_start_pfn = pgdat->node_start_pfn;
  3937. int ret;
  3938. pgdat_resize_init(pgdat);
  3939. init_waitqueue_head(&pgdat->kswapd_wait);
  3940. init_waitqueue_head(&pgdat->pfmemalloc_wait);
  3941. pgdat_page_cgroup_init(pgdat);
  3942. for (j = 0; j < MAX_NR_ZONES; j++) {
  3943. struct zone *zone = pgdat->node_zones + j;
  3944. unsigned long size, realsize, freesize, memmap_pages;
  3945. size = zone_spanned_pages_in_node(nid, j, zones_size);
  3946. realsize = freesize = size - zone_absent_pages_in_node(nid, j,
  3947. zholes_size);
  3948. /*
  3949. * Adjust freesize so that it accounts for how much memory
  3950. * is used by this zone for memmap. This affects the watermark
  3951. * and per-cpu initialisations
  3952. */
  3953. memmap_pages = calc_memmap_size(size, realsize);
  3954. if (freesize >= memmap_pages) {
  3955. freesize -= memmap_pages;
  3956. if (memmap_pages)
  3957. printk(KERN_DEBUG
  3958. " %s zone: %lu pages used for memmap\n",
  3959. zone_names[j], memmap_pages);
  3960. } else
  3961. printk(KERN_WARNING
  3962. " %s zone: %lu pages exceeds freesize %lu\n",
  3963. zone_names[j], memmap_pages, freesize);
  3964. /* Account for reserved pages */
  3965. if (j == 0 && freesize > dma_reserve) {
  3966. freesize -= dma_reserve;
  3967. printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
  3968. zone_names[0], dma_reserve);
  3969. }
  3970. if (!is_highmem_idx(j))
  3971. nr_kernel_pages += freesize;
  3972. /* Charge for highmem memmap if there are enough kernel pages */
  3973. else if (nr_kernel_pages > memmap_pages * 2)
  3974. nr_kernel_pages -= memmap_pages;
  3975. nr_all_pages += freesize;
  3976. zone->spanned_pages = size;
  3977. zone->present_pages = freesize;
  3978. /*
  3979. * Set an approximate value for lowmem here, it will be adjusted
  3980. * when the bootmem allocator frees pages into the buddy system.
  3981. * And all highmem pages will be managed by the buddy system.
  3982. */
  3983. zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
  3984. #ifdef CONFIG_NUMA
  3985. zone->node = nid;
  3986. zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
  3987. / 100;
  3988. zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
  3989. #endif
  3990. zone->name = zone_names[j];
  3991. spin_lock_init(&zone->lock);
  3992. spin_lock_init(&zone->lru_lock);
  3993. zone_seqlock_init(zone);
  3994. zone->zone_pgdat = pgdat;
  3995. zone_pcp_init(zone);
  3996. lruvec_init(&zone->lruvec);
  3997. if (!size)
  3998. continue;
  3999. set_pageblock_order();
  4000. setup_usemap(pgdat, zone, size);
  4001. ret = init_currently_empty_zone(zone, zone_start_pfn,
  4002. size, MEMMAP_EARLY);
  4003. BUG_ON(ret);
  4004. memmap_init(size, nid, j, zone_start_pfn);
  4005. zone_start_pfn += size;
  4006. }
  4007. }
  4008. static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
  4009. {
  4010. /* Skip empty nodes */
  4011. if (!pgdat->node_spanned_pages)
  4012. return;
  4013. #ifdef CONFIG_FLAT_NODE_MEM_MAP
  4014. /* ia64 gets its own node_mem_map, before this, without bootmem */
  4015. if (!pgdat->node_mem_map) {
  4016. unsigned long size, start, end;
  4017. struct page *map;
  4018. /*
  4019. * The zone's endpoints aren't required to be MAX_ORDER
  4020. * aligned but the node_mem_map endpoints must be in order
  4021. * for the buddy allocator to function correctly.
  4022. */
  4023. start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
  4024. end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
  4025. end = ALIGN(end, MAX_ORDER_NR_PAGES);
  4026. size = (end - start) * sizeof(struct page);
  4027. map = alloc_remap(pgdat->node_id, size);
  4028. if (!map)
  4029. map = alloc_bootmem_node_nopanic(pgdat, size);
  4030. pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
  4031. }
  4032. #ifndef CONFIG_NEED_MULTIPLE_NODES
  4033. /*
  4034. * With no DISCONTIG, the global mem_map is just set as node 0's
  4035. */
  4036. if (pgdat == NODE_DATA(0)) {
  4037. mem_map = NODE_DATA(0)->node_mem_map;
  4038. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  4039. if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
  4040. mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
  4041. #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  4042. }
  4043. #endif
  4044. #endif /* CONFIG_FLAT_NODE_MEM_MAP */
  4045. }
  4046. void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
  4047. unsigned long node_start_pfn, unsigned long *zholes_size)
  4048. {
  4049. pg_data_t *pgdat = NODE_DATA(nid);
  4050. /* pg_data_t should be reset to zero when it's allocated */
  4051. WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
  4052. pgdat->node_id = nid;
  4053. pgdat->node_start_pfn = node_start_pfn;
  4054. init_zone_allows_reclaim(nid);
  4055. calculate_node_totalpages(pgdat, zones_size, zholes_size);
  4056. alloc_node_mem_map(pgdat);
  4057. #ifdef CONFIG_FLAT_NODE_MEM_MAP
  4058. printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
  4059. nid, (unsigned long)pgdat,
  4060. (unsigned long)pgdat->node_mem_map);
  4061. #endif
  4062. free_area_init_core(pgdat, zones_size, zholes_size);
  4063. }
  4064. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  4065. #if MAX_NUMNODES > 1
  4066. /*
  4067. * Figure out the number of possible node ids.
  4068. */
  4069. static void __init setup_nr_node_ids(void)
  4070. {
  4071. unsigned int node;
  4072. unsigned int highest = 0;
  4073. for_each_node_mask(node, node_possible_map)
  4074. highest = node;
  4075. nr_node_ids = highest + 1;
  4076. }
  4077. #else
  4078. static inline void setup_nr_node_ids(void)
  4079. {
  4080. }
  4081. #endif
  4082. /**
  4083. * node_map_pfn_alignment - determine the maximum internode alignment
  4084. *
  4085. * This function should be called after node map is populated and sorted.
  4086. * It calculates the maximum power of two alignment which can distinguish
  4087. * all the nodes.
  4088. *
  4089. * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
  4090. * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
  4091. * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
  4092. * shifted, 1GiB is enough and this function will indicate so.
  4093. *
  4094. * This is used to test whether pfn -> nid mapping of the chosen memory
  4095. * model has fine enough granularity to avoid incorrect mapping for the
  4096. * populated node map.
  4097. *
  4098. * Returns the determined alignment in pfn's. 0 if there is no alignment
  4099. * requirement (single node).
  4100. */
  4101. unsigned long __init node_map_pfn_alignment(void)
  4102. {
  4103. unsigned long accl_mask = 0, last_end = 0;
  4104. unsigned long start, end, mask;
  4105. int last_nid = -1;
  4106. int i, nid;
  4107. for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
  4108. if (!start || last_nid < 0 || last_nid == nid) {
  4109. last_nid = nid;
  4110. last_end = end;
  4111. continue;
  4112. }
  4113. /*
  4114. * Start with a mask granular enough to pin-point to the
  4115. * start pfn and tick off bits one-by-one until it becomes
  4116. * too coarse to separate the current node from the last.
  4117. */
  4118. mask = ~((1 << __ffs(start)) - 1);
  4119. while (mask && last_end <= (start & (mask << 1)))
  4120. mask <<= 1;
  4121. /* accumulate all internode masks */
  4122. accl_mask |= mask;
  4123. }
  4124. /* convert mask to number of pages */
  4125. return ~accl_mask + 1;
  4126. }
  4127. /* Find the lowest pfn for a node */
  4128. static unsigned long __init find_min_pfn_for_node(int nid)
  4129. {
  4130. unsigned long min_pfn = ULONG_MAX;
  4131. unsigned long start_pfn;
  4132. int i;
  4133. for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
  4134. min_pfn = min(min_pfn, start_pfn);
  4135. if (min_pfn == ULONG_MAX) {
  4136. printk(KERN_WARNING
  4137. "Could not find start_pfn for node %d\n", nid);
  4138. return 0;
  4139. }
  4140. return min_pfn;
  4141. }
  4142. /**
  4143. * find_min_pfn_with_active_regions - Find the minimum PFN registered
  4144. *
  4145. * It returns the minimum PFN based on information provided via
  4146. * add_active_range().
  4147. */
  4148. unsigned long __init find_min_pfn_with_active_regions(void)
  4149. {
  4150. return find_min_pfn_for_node(MAX_NUMNODES);
  4151. }
  4152. /*
  4153. * early_calculate_totalpages()
  4154. * Sum pages in active regions for movable zone.
  4155. * Populate N_MEMORY for calculating usable_nodes.
  4156. */
  4157. static unsigned long __init early_calculate_totalpages(void)
  4158. {
  4159. unsigned long totalpages = 0;
  4160. unsigned long start_pfn, end_pfn;
  4161. int i, nid;
  4162. for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
  4163. unsigned long pages = end_pfn - start_pfn;
  4164. totalpages += pages;
  4165. if (pages)
  4166. node_set_state(nid, N_MEMORY);
  4167. }
  4168. return totalpages;
  4169. }
  4170. /*
  4171. * Find the PFN the Movable zone begins in each node. Kernel memory
  4172. * is spread evenly between nodes as long as the nodes have enough
  4173. * memory. When they don't, some nodes will have more kernelcore than
  4174. * others
  4175. */
  4176. static void __init find_zone_movable_pfns_for_nodes(void)
  4177. {
  4178. int i, nid;
  4179. unsigned long usable_startpfn;
  4180. unsigned long kernelcore_node, kernelcore_remaining;
  4181. /* save the state before borrow the nodemask */
  4182. nodemask_t saved_node_state = node_states[N_MEMORY];
  4183. unsigned long totalpages = early_calculate_totalpages();
  4184. int usable_nodes = nodes_weight(node_states[N_MEMORY]);
  4185. /*
  4186. * If movablecore was specified, calculate what size of
  4187. * kernelcore that corresponds so that memory usable for
  4188. * any allocation type is evenly spread. If both kernelcore
  4189. * and movablecore are specified, then the value of kernelcore
  4190. * will be used for required_kernelcore if it's greater than
  4191. * what movablecore would have allowed.
  4192. */
  4193. if (required_movablecore) {
  4194. unsigned long corepages;
  4195. /*
  4196. * Round-up so that ZONE_MOVABLE is at least as large as what
  4197. * was requested by the user
  4198. */
  4199. required_movablecore =
  4200. roundup(required_movablecore, MAX_ORDER_NR_PAGES);
  4201. corepages = totalpages - required_movablecore;
  4202. required_kernelcore = max(required_kernelcore, corepages);
  4203. }
  4204. /* If kernelcore was not specified, there is no ZONE_MOVABLE */
  4205. if (!required_kernelcore)
  4206. goto out;
  4207. /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
  4208. find_usable_zone_for_movable();
  4209. usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
  4210. restart:
  4211. /* Spread kernelcore memory as evenly as possible throughout nodes */
  4212. kernelcore_node = required_kernelcore / usable_nodes;
  4213. for_each_node_state(nid, N_MEMORY) {
  4214. unsigned long start_pfn, end_pfn;
  4215. /*
  4216. * Recalculate kernelcore_node if the division per node
  4217. * now exceeds what is necessary to satisfy the requested
  4218. * amount of memory for the kernel
  4219. */
  4220. if (required_kernelcore < kernelcore_node)
  4221. kernelcore_node = required_kernelcore / usable_nodes;
  4222. /*
  4223. * As the map is walked, we track how much memory is usable
  4224. * by the kernel using kernelcore_remaining. When it is
  4225. * 0, the rest of the node is usable by ZONE_MOVABLE
  4226. */
  4227. kernelcore_remaining = kernelcore_node;
  4228. /* Go through each range of PFNs within this node */
  4229. for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
  4230. unsigned long size_pages;
  4231. start_pfn = max(start_pfn, zone_movable_pfn[nid]);
  4232. if (start_pfn >= end_pfn)
  4233. continue;
  4234. /* Account for what is only usable for kernelcore */
  4235. if (start_pfn < usable_startpfn) {
  4236. unsigned long kernel_pages;
  4237. kernel_pages = min(end_pfn, usable_startpfn)
  4238. - start_pfn;
  4239. kernelcore_remaining -= min(kernel_pages,
  4240. kernelcore_remaining);
  4241. required_kernelcore -= min(kernel_pages,
  4242. required_kernelcore);
  4243. /* Continue if range is now fully accounted */
  4244. if (end_pfn <= usable_startpfn) {
  4245. /*
  4246. * Push zone_movable_pfn to the end so
  4247. * that if we have to rebalance
  4248. * kernelcore across nodes, we will
  4249. * not double account here
  4250. */
  4251. zone_movable_pfn[nid] = end_pfn;
  4252. continue;
  4253. }
  4254. start_pfn = usable_startpfn;
  4255. }
  4256. /*
  4257. * The usable PFN range for ZONE_MOVABLE is from
  4258. * start_pfn->end_pfn. Calculate size_pages as the
  4259. * number of pages used as kernelcore
  4260. */
  4261. size_pages = end_pfn - start_pfn;
  4262. if (size_pages > kernelcore_remaining)
  4263. size_pages = kernelcore_remaining;
  4264. zone_movable_pfn[nid] = start_pfn + size_pages;
  4265. /*
  4266. * Some kernelcore has been met, update counts and
  4267. * break if the kernelcore for this node has been
  4268. * satisified
  4269. */
  4270. required_kernelcore -= min(required_kernelcore,
  4271. size_pages);
  4272. kernelcore_remaining -= size_pages;
  4273. if (!kernelcore_remaining)
  4274. break;
  4275. }
  4276. }
  4277. /*
  4278. * If there is still required_kernelcore, we do another pass with one
  4279. * less node in the count. This will push zone_movable_pfn[nid] further
  4280. * along on the nodes that still have memory until kernelcore is
  4281. * satisified
  4282. */
  4283. usable_nodes--;
  4284. if (usable_nodes && required_kernelcore > usable_nodes)
  4285. goto restart;
  4286. /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
  4287. for (nid = 0; nid < MAX_NUMNODES; nid++)
  4288. zone_movable_pfn[nid] =
  4289. roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
  4290. out:
  4291. /* restore the node_state */
  4292. node_states[N_MEMORY] = saved_node_state;
  4293. }
  4294. /* Any regular or high memory on that node ? */
  4295. static void check_for_memory(pg_data_t *pgdat, int nid)
  4296. {
  4297. enum zone_type zone_type;
  4298. if (N_MEMORY == N_NORMAL_MEMORY)
  4299. return;
  4300. for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
  4301. struct zone *zone = &pgdat->node_zones[zone_type];
  4302. if (zone->present_pages) {
  4303. node_set_state(nid, N_HIGH_MEMORY);
  4304. if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
  4305. zone_type <= ZONE_NORMAL)
  4306. node_set_state(nid, N_NORMAL_MEMORY);
  4307. break;
  4308. }
  4309. }
  4310. }
  4311. /**
  4312. * free_area_init_nodes - Initialise all pg_data_t and zone data
  4313. * @max_zone_pfn: an array of max PFNs for each zone
  4314. *
  4315. * This will call free_area_init_node() for each active node in the system.
  4316. * Using the page ranges provided by add_active_range(), the size of each
  4317. * zone in each node and their holes is calculated. If the maximum PFN
  4318. * between two adjacent zones match, it is assumed that the zone is empty.
  4319. * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
  4320. * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
  4321. * starts where the previous one ended. For example, ZONE_DMA32 starts
  4322. * at arch_max_dma_pfn.
  4323. */
  4324. void __init free_area_init_nodes(unsigned long *max_zone_pfn)
  4325. {
  4326. unsigned long start_pfn, end_pfn;
  4327. int i, nid;
  4328. /* Record where the zone boundaries are */
  4329. memset(arch_zone_lowest_possible_pfn, 0,
  4330. sizeof(arch_zone_lowest_possible_pfn));
  4331. memset(arch_zone_highest_possible_pfn, 0,
  4332. sizeof(arch_zone_highest_possible_pfn));
  4333. arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
  4334. arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
  4335. for (i = 1; i < MAX_NR_ZONES; i++) {
  4336. if (i == ZONE_MOVABLE)
  4337. continue;
  4338. arch_zone_lowest_possible_pfn[i] =
  4339. arch_zone_highest_possible_pfn[i-1];
  4340. arch_zone_highest_possible_pfn[i] =
  4341. max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
  4342. }
  4343. arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
  4344. arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
  4345. /* Find the PFNs that ZONE_MOVABLE begins at in each node */
  4346. memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
  4347. find_zone_movable_pfns_for_nodes();
  4348. /* Print out the zone ranges */
  4349. printk("Zone ranges:\n");
  4350. for (i = 0; i < MAX_NR_ZONES; i++) {
  4351. if (i == ZONE_MOVABLE)
  4352. continue;
  4353. printk(KERN_CONT " %-8s ", zone_names[i]);
  4354. if (arch_zone_lowest_possible_pfn[i] ==
  4355. arch_zone_highest_possible_pfn[i])
  4356. printk(KERN_CONT "empty\n");
  4357. else
  4358. printk(KERN_CONT "[mem %0#10lx-%0#10lx]\n",
  4359. arch_zone_lowest_possible_pfn[i] << PAGE_SHIFT,
  4360. (arch_zone_highest_possible_pfn[i]
  4361. << PAGE_SHIFT) - 1);
  4362. }
  4363. /* Print out the PFNs ZONE_MOVABLE begins at in each node */
  4364. printk("Movable zone start for each node\n");
  4365. for (i = 0; i < MAX_NUMNODES; i++) {
  4366. if (zone_movable_pfn[i])
  4367. printk(" Node %d: %#010lx\n", i,
  4368. zone_movable_pfn[i] << PAGE_SHIFT);
  4369. }
  4370. /* Print out the early node map */
  4371. printk("Early memory node ranges\n");
  4372. for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
  4373. printk(" node %3d: [mem %#010lx-%#010lx]\n", nid,
  4374. start_pfn << PAGE_SHIFT, (end_pfn << PAGE_SHIFT) - 1);
  4375. /* Initialise every node */
  4376. mminit_verify_pageflags_layout();
  4377. setup_nr_node_ids();
  4378. for_each_online_node(nid) {
  4379. pg_data_t *pgdat = NODE_DATA(nid);
  4380. free_area_init_node(nid, NULL,
  4381. find_min_pfn_for_node(nid), NULL);
  4382. /* Any memory on that node */
  4383. if (pgdat->node_present_pages)
  4384. node_set_state(nid, N_MEMORY);
  4385. check_for_memory(pgdat, nid);
  4386. }
  4387. }
  4388. static int __init cmdline_parse_core(char *p, unsigned long *core)
  4389. {
  4390. unsigned long long coremem;
  4391. if (!p)
  4392. return -EINVAL;
  4393. coremem = memparse(p, &p);
  4394. *core = coremem >> PAGE_SHIFT;
  4395. /* Paranoid check that UL is enough for the coremem value */
  4396. WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
  4397. return 0;
  4398. }
  4399. /*
  4400. * kernelcore=size sets the amount of memory for use for allocations that
  4401. * cannot be reclaimed or migrated.
  4402. */
  4403. static int __init cmdline_parse_kernelcore(char *p)
  4404. {
  4405. return cmdline_parse_core(p, &required_kernelcore);
  4406. }
  4407. /*
  4408. * movablecore=size sets the amount of memory for use for allocations that
  4409. * can be reclaimed or migrated.
  4410. */
  4411. static int __init cmdline_parse_movablecore(char *p)
  4412. {
  4413. return cmdline_parse_core(p, &required_movablecore);
  4414. }
  4415. early_param("kernelcore", cmdline_parse_kernelcore);
  4416. early_param("movablecore", cmdline_parse_movablecore);
  4417. #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  4418. /**
  4419. * set_dma_reserve - set the specified number of pages reserved in the first zone
  4420. * @new_dma_reserve: The number of pages to mark reserved
  4421. *
  4422. * The per-cpu batchsize and zone watermarks are determined by present_pages.
  4423. * In the DMA zone, a significant percentage may be consumed by kernel image
  4424. * and other unfreeable allocations which can skew the watermarks badly. This
  4425. * function may optionally be used to account for unfreeable pages in the
  4426. * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
  4427. * smaller per-cpu batchsize.
  4428. */
  4429. void __init set_dma_reserve(unsigned long new_dma_reserve)
  4430. {
  4431. dma_reserve = new_dma_reserve;
  4432. }
  4433. void __init free_area_init(unsigned long *zones_size)
  4434. {
  4435. free_area_init_node(0, zones_size,
  4436. __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
  4437. }
  4438. static int page_alloc_cpu_notify(struct notifier_block *self,
  4439. unsigned long action, void *hcpu)
  4440. {
  4441. int cpu = (unsigned long)hcpu;
  4442. if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
  4443. lru_add_drain_cpu(cpu);
  4444. drain_pages(cpu);
  4445. /*
  4446. * Spill the event counters of the dead processor
  4447. * into the current processors event counters.
  4448. * This artificially elevates the count of the current
  4449. * processor.
  4450. */
  4451. vm_events_fold_cpu(cpu);
  4452. /*
  4453. * Zero the differential counters of the dead processor
  4454. * so that the vm statistics are consistent.
  4455. *
  4456. * This is only okay since the processor is dead and cannot
  4457. * race with what we are doing.
  4458. */
  4459. refresh_cpu_vm_stats(cpu);
  4460. }
  4461. return NOTIFY_OK;
  4462. }
  4463. void __init page_alloc_init(void)
  4464. {
  4465. hotcpu_notifier(page_alloc_cpu_notify, 0);
  4466. }
  4467. /*
  4468. * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
  4469. * or min_free_kbytes changes.
  4470. */
  4471. static void calculate_totalreserve_pages(void)
  4472. {
  4473. struct pglist_data *pgdat;
  4474. unsigned long reserve_pages = 0;
  4475. enum zone_type i, j;
  4476. for_each_online_pgdat(pgdat) {
  4477. for (i = 0; i < MAX_NR_ZONES; i++) {
  4478. struct zone *zone = pgdat->node_zones + i;
  4479. unsigned long max = 0;
  4480. /* Find valid and maximum lowmem_reserve in the zone */
  4481. for (j = i; j < MAX_NR_ZONES; j++) {
  4482. if (zone->lowmem_reserve[j] > max)
  4483. max = zone->lowmem_reserve[j];
  4484. }
  4485. /* we treat the high watermark as reserved pages. */
  4486. max += high_wmark_pages(zone);
  4487. if (max > zone->present_pages)
  4488. max = zone->present_pages;
  4489. reserve_pages += max;
  4490. /*
  4491. * Lowmem reserves are not available to
  4492. * GFP_HIGHUSER page cache allocations and
  4493. * kswapd tries to balance zones to their high
  4494. * watermark. As a result, neither should be
  4495. * regarded as dirtyable memory, to prevent a
  4496. * situation where reclaim has to clean pages
  4497. * in order to balance the zones.
  4498. */
  4499. zone->dirty_balance_reserve = max;
  4500. }
  4501. }
  4502. dirty_balance_reserve = reserve_pages;
  4503. totalreserve_pages = reserve_pages;
  4504. }
  4505. /*
  4506. * setup_per_zone_lowmem_reserve - called whenever
  4507. * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
  4508. * has a correct pages reserved value, so an adequate number of
  4509. * pages are left in the zone after a successful __alloc_pages().
  4510. */
  4511. static void setup_per_zone_lowmem_reserve(void)
  4512. {
  4513. struct pglist_data *pgdat;
  4514. enum zone_type j, idx;
  4515. for_each_online_pgdat(pgdat) {
  4516. for (j = 0; j < MAX_NR_ZONES; j++) {
  4517. struct zone *zone = pgdat->node_zones + j;
  4518. unsigned long present_pages = zone->present_pages;
  4519. zone->lowmem_reserve[j] = 0;
  4520. idx = j;
  4521. while (idx) {
  4522. struct zone *lower_zone;
  4523. idx--;
  4524. if (sysctl_lowmem_reserve_ratio[idx] < 1)
  4525. sysctl_lowmem_reserve_ratio[idx] = 1;
  4526. lower_zone = pgdat->node_zones + idx;
  4527. lower_zone->lowmem_reserve[j] = present_pages /
  4528. sysctl_lowmem_reserve_ratio[idx];
  4529. present_pages += lower_zone->present_pages;
  4530. }
  4531. }
  4532. }
  4533. /* update totalreserve_pages */
  4534. calculate_totalreserve_pages();
  4535. }
  4536. static void __setup_per_zone_wmarks(void)
  4537. {
  4538. unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
  4539. unsigned long lowmem_pages = 0;
  4540. struct zone *zone;
  4541. unsigned long flags;
  4542. /* Calculate total number of !ZONE_HIGHMEM pages */
  4543. for_each_zone(zone) {
  4544. if (!is_highmem(zone))
  4545. lowmem_pages += zone->present_pages;
  4546. }
  4547. for_each_zone(zone) {
  4548. u64 tmp;
  4549. spin_lock_irqsave(&zone->lock, flags);
  4550. tmp = (u64)pages_min * zone->present_pages;
  4551. do_div(tmp, lowmem_pages);
  4552. if (is_highmem(zone)) {
  4553. /*
  4554. * __GFP_HIGH and PF_MEMALLOC allocations usually don't
  4555. * need highmem pages, so cap pages_min to a small
  4556. * value here.
  4557. *
  4558. * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
  4559. * deltas controls asynch page reclaim, and so should
  4560. * not be capped for highmem.
  4561. */
  4562. int min_pages;
  4563. min_pages = zone->present_pages / 1024;
  4564. if (min_pages < SWAP_CLUSTER_MAX)
  4565. min_pages = SWAP_CLUSTER_MAX;
  4566. if (min_pages > 128)
  4567. min_pages = 128;
  4568. zone->watermark[WMARK_MIN] = min_pages;
  4569. } else {
  4570. /*
  4571. * If it's a lowmem zone, reserve a number of pages
  4572. * proportionate to the zone's size.
  4573. */
  4574. zone->watermark[WMARK_MIN] = tmp;
  4575. }
  4576. zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
  4577. zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
  4578. setup_zone_migrate_reserve(zone);
  4579. spin_unlock_irqrestore(&zone->lock, flags);
  4580. }
  4581. /* update totalreserve_pages */
  4582. calculate_totalreserve_pages();
  4583. }
  4584. /**
  4585. * setup_per_zone_wmarks - called when min_free_kbytes changes
  4586. * or when memory is hot-{added|removed}
  4587. *
  4588. * Ensures that the watermark[min,low,high] values for each zone are set
  4589. * correctly with respect to min_free_kbytes.
  4590. */
  4591. void setup_per_zone_wmarks(void)
  4592. {
  4593. mutex_lock(&zonelists_mutex);
  4594. __setup_per_zone_wmarks();
  4595. mutex_unlock(&zonelists_mutex);
  4596. }
  4597. /*
  4598. * The inactive anon list should be small enough that the VM never has to
  4599. * do too much work, but large enough that each inactive page has a chance
  4600. * to be referenced again before it is swapped out.
  4601. *
  4602. * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
  4603. * INACTIVE_ANON pages on this zone's LRU, maintained by the
  4604. * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
  4605. * the anonymous pages are kept on the inactive list.
  4606. *
  4607. * total target max
  4608. * memory ratio inactive anon
  4609. * -------------------------------------
  4610. * 10MB 1 5MB
  4611. * 100MB 1 50MB
  4612. * 1GB 3 250MB
  4613. * 10GB 10 0.9GB
  4614. * 100GB 31 3GB
  4615. * 1TB 101 10GB
  4616. * 10TB 320 32GB
  4617. */
  4618. static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
  4619. {
  4620. unsigned int gb, ratio;
  4621. /* Zone size in gigabytes */
  4622. gb = zone->present_pages >> (30 - PAGE_SHIFT);
  4623. if (gb)
  4624. ratio = int_sqrt(10 * gb);
  4625. else
  4626. ratio = 1;
  4627. zone->inactive_ratio = ratio;
  4628. }
  4629. static void __meminit setup_per_zone_inactive_ratio(void)
  4630. {
  4631. struct zone *zone;
  4632. for_each_zone(zone)
  4633. calculate_zone_inactive_ratio(zone);
  4634. }
  4635. /*
  4636. * Initialise min_free_kbytes.
  4637. *
  4638. * For small machines we want it small (128k min). For large machines
  4639. * we want it large (64MB max). But it is not linear, because network
  4640. * bandwidth does not increase linearly with machine size. We use
  4641. *
  4642. * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
  4643. * min_free_kbytes = sqrt(lowmem_kbytes * 16)
  4644. *
  4645. * which yields
  4646. *
  4647. * 16MB: 512k
  4648. * 32MB: 724k
  4649. * 64MB: 1024k
  4650. * 128MB: 1448k
  4651. * 256MB: 2048k
  4652. * 512MB: 2896k
  4653. * 1024MB: 4096k
  4654. * 2048MB: 5792k
  4655. * 4096MB: 8192k
  4656. * 8192MB: 11584k
  4657. * 16384MB: 16384k
  4658. */
  4659. int __meminit init_per_zone_wmark_min(void)
  4660. {
  4661. unsigned long lowmem_kbytes;
  4662. lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
  4663. min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
  4664. if (min_free_kbytes < 128)
  4665. min_free_kbytes = 128;
  4666. if (min_free_kbytes > 65536)
  4667. min_free_kbytes = 65536;
  4668. setup_per_zone_wmarks();
  4669. refresh_zone_stat_thresholds();
  4670. setup_per_zone_lowmem_reserve();
  4671. setup_per_zone_inactive_ratio();
  4672. return 0;
  4673. }
  4674. module_init(init_per_zone_wmark_min)
  4675. /*
  4676. * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
  4677. * that we can call two helper functions whenever min_free_kbytes
  4678. * changes.
  4679. */
  4680. int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
  4681. void __user *buffer, size_t *length, loff_t *ppos)
  4682. {
  4683. proc_dointvec(table, write, buffer, length, ppos);
  4684. if (write)
  4685. setup_per_zone_wmarks();
  4686. return 0;
  4687. }
  4688. #ifdef CONFIG_NUMA
  4689. int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
  4690. void __user *buffer, size_t *length, loff_t *ppos)
  4691. {
  4692. struct zone *zone;
  4693. int rc;
  4694. rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
  4695. if (rc)
  4696. return rc;
  4697. for_each_zone(zone)
  4698. zone->min_unmapped_pages = (zone->present_pages *
  4699. sysctl_min_unmapped_ratio) / 100;
  4700. return 0;
  4701. }
  4702. int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
  4703. void __user *buffer, size_t *length, loff_t *ppos)
  4704. {
  4705. struct zone *zone;
  4706. int rc;
  4707. rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
  4708. if (rc)
  4709. return rc;
  4710. for_each_zone(zone)
  4711. zone->min_slab_pages = (zone->present_pages *
  4712. sysctl_min_slab_ratio) / 100;
  4713. return 0;
  4714. }
  4715. #endif
  4716. /*
  4717. * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
  4718. * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
  4719. * whenever sysctl_lowmem_reserve_ratio changes.
  4720. *
  4721. * The reserve ratio obviously has absolutely no relation with the
  4722. * minimum watermarks. The lowmem reserve ratio can only make sense
  4723. * if in function of the boot time zone sizes.
  4724. */
  4725. int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
  4726. void __user *buffer, size_t *length, loff_t *ppos)
  4727. {
  4728. proc_dointvec_minmax(table, write, buffer, length, ppos);
  4729. setup_per_zone_lowmem_reserve();
  4730. return 0;
  4731. }
  4732. /*
  4733. * percpu_pagelist_fraction - changes the pcp->high for each zone on each
  4734. * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
  4735. * can have before it gets flushed back to buddy allocator.
  4736. */
  4737. int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
  4738. void __user *buffer, size_t *length, loff_t *ppos)
  4739. {
  4740. struct zone *zone;
  4741. unsigned int cpu;
  4742. int ret;
  4743. ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
  4744. if (!write || (ret < 0))
  4745. return ret;
  4746. for_each_populated_zone(zone) {
  4747. for_each_possible_cpu(cpu) {
  4748. unsigned long high;
  4749. high = zone->present_pages / percpu_pagelist_fraction;
  4750. setup_pagelist_highmark(
  4751. per_cpu_ptr(zone->pageset, cpu), high);
  4752. }
  4753. }
  4754. return 0;
  4755. }
  4756. int hashdist = HASHDIST_DEFAULT;
  4757. #ifdef CONFIG_NUMA
  4758. static int __init set_hashdist(char *str)
  4759. {
  4760. if (!str)
  4761. return 0;
  4762. hashdist = simple_strtoul(str, &str, 0);
  4763. return 1;
  4764. }
  4765. __setup("hashdist=", set_hashdist);
  4766. #endif
  4767. /*
  4768. * allocate a large system hash table from bootmem
  4769. * - it is assumed that the hash table must contain an exact power-of-2
  4770. * quantity of entries
  4771. * - limit is the number of hash buckets, not the total allocation size
  4772. */
  4773. void *__init alloc_large_system_hash(const char *tablename,
  4774. unsigned long bucketsize,
  4775. unsigned long numentries,
  4776. int scale,
  4777. int flags,
  4778. unsigned int *_hash_shift,
  4779. unsigned int *_hash_mask,
  4780. unsigned long low_limit,
  4781. unsigned long high_limit)
  4782. {
  4783. unsigned long long max = high_limit;
  4784. unsigned long log2qty, size;
  4785. void *table = NULL;
  4786. /* allow the kernel cmdline to have a say */
  4787. if (!numentries) {
  4788. /* round applicable memory size up to nearest megabyte */
  4789. numentries = nr_kernel_pages;
  4790. numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
  4791. numentries >>= 20 - PAGE_SHIFT;
  4792. numentries <<= 20 - PAGE_SHIFT;
  4793. /* limit to 1 bucket per 2^scale bytes of low memory */
  4794. if (scale > PAGE_SHIFT)
  4795. numentries >>= (scale - PAGE_SHIFT);
  4796. else
  4797. numentries <<= (PAGE_SHIFT - scale);
  4798. /* Make sure we've got at least a 0-order allocation.. */
  4799. if (unlikely(flags & HASH_SMALL)) {
  4800. /* Makes no sense without HASH_EARLY */
  4801. WARN_ON(!(flags & HASH_EARLY));
  4802. if (!(numentries >> *_hash_shift)) {
  4803. numentries = 1UL << *_hash_shift;
  4804. BUG_ON(!numentries);
  4805. }
  4806. } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
  4807. numentries = PAGE_SIZE / bucketsize;
  4808. }
  4809. numentries = roundup_pow_of_two(numentries);
  4810. /* limit allocation size to 1/16 total memory by default */
  4811. if (max == 0) {
  4812. max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
  4813. do_div(max, bucketsize);
  4814. }
  4815. max = min(max, 0x80000000ULL);
  4816. if (numentries < low_limit)
  4817. numentries = low_limit;
  4818. if (numentries > max)
  4819. numentries = max;
  4820. log2qty = ilog2(numentries);
  4821. do {
  4822. size = bucketsize << log2qty;
  4823. if (flags & HASH_EARLY)
  4824. table = alloc_bootmem_nopanic(size);
  4825. else if (hashdist)
  4826. table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
  4827. else {
  4828. /*
  4829. * If bucketsize is not a power-of-two, we may free
  4830. * some pages at the end of hash table which
  4831. * alloc_pages_exact() automatically does
  4832. */
  4833. if (get_order(size) < MAX_ORDER) {
  4834. table = alloc_pages_exact(size, GFP_ATOMIC);
  4835. kmemleak_alloc(table, size, 1, GFP_ATOMIC);
  4836. }
  4837. }
  4838. } while (!table && size > PAGE_SIZE && --log2qty);
  4839. if (!table)
  4840. panic("Failed to allocate %s hash table\n", tablename);
  4841. printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
  4842. tablename,
  4843. (1UL << log2qty),
  4844. ilog2(size) - PAGE_SHIFT,
  4845. size);
  4846. if (_hash_shift)
  4847. *_hash_shift = log2qty;
  4848. if (_hash_mask)
  4849. *_hash_mask = (1 << log2qty) - 1;
  4850. return table;
  4851. }
  4852. /* Return a pointer to the bitmap storing bits affecting a block of pages */
  4853. static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
  4854. unsigned long pfn)
  4855. {
  4856. #ifdef CONFIG_SPARSEMEM
  4857. return __pfn_to_section(pfn)->pageblock_flags;
  4858. #else
  4859. return zone->pageblock_flags;
  4860. #endif /* CONFIG_SPARSEMEM */
  4861. }
  4862. static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
  4863. {
  4864. #ifdef CONFIG_SPARSEMEM
  4865. pfn &= (PAGES_PER_SECTION-1);
  4866. return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
  4867. #else
  4868. pfn = pfn - zone->zone_start_pfn;
  4869. return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
  4870. #endif /* CONFIG_SPARSEMEM */
  4871. }
  4872. /**
  4873. * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
  4874. * @page: The page within the block of interest
  4875. * @start_bitidx: The first bit of interest to retrieve
  4876. * @end_bitidx: The last bit of interest
  4877. * returns pageblock_bits flags
  4878. */
  4879. unsigned long get_pageblock_flags_group(struct page *page,
  4880. int start_bitidx, int end_bitidx)
  4881. {
  4882. struct zone *zone;
  4883. unsigned long *bitmap;
  4884. unsigned long pfn, bitidx;
  4885. unsigned long flags = 0;
  4886. unsigned long value = 1;
  4887. zone = page_zone(page);
  4888. pfn = page_to_pfn(page);
  4889. bitmap = get_pageblock_bitmap(zone, pfn);
  4890. bitidx = pfn_to_bitidx(zone, pfn);
  4891. for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
  4892. if (test_bit(bitidx + start_bitidx, bitmap))
  4893. flags |= value;
  4894. return flags;
  4895. }
  4896. /**
  4897. * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
  4898. * @page: The page within the block of interest
  4899. * @start_bitidx: The first bit of interest
  4900. * @end_bitidx: The last bit of interest
  4901. * @flags: The flags to set
  4902. */
  4903. void set_pageblock_flags_group(struct page *page, unsigned long flags,
  4904. int start_bitidx, int end_bitidx)
  4905. {
  4906. struct zone *zone;
  4907. unsigned long *bitmap;
  4908. unsigned long pfn, bitidx;
  4909. unsigned long value = 1;
  4910. zone = page_zone(page);
  4911. pfn = page_to_pfn(page);
  4912. bitmap = get_pageblock_bitmap(zone, pfn);
  4913. bitidx = pfn_to_bitidx(zone, pfn);
  4914. VM_BUG_ON(pfn < zone->zone_start_pfn);
  4915. VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
  4916. for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
  4917. if (flags & value)
  4918. __set_bit(bitidx + start_bitidx, bitmap);
  4919. else
  4920. __clear_bit(bitidx + start_bitidx, bitmap);
  4921. }
  4922. /*
  4923. * This function checks whether pageblock includes unmovable pages or not.
  4924. * If @count is not zero, it is okay to include less @count unmovable pages
  4925. *
  4926. * PageLRU check wihtout isolation or lru_lock could race so that
  4927. * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
  4928. * expect this function should be exact.
  4929. */
  4930. bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
  4931. bool skip_hwpoisoned_pages)
  4932. {
  4933. unsigned long pfn, iter, found;
  4934. int mt;
  4935. /*
  4936. * For avoiding noise data, lru_add_drain_all() should be called
  4937. * If ZONE_MOVABLE, the zone never contains unmovable pages
  4938. */
  4939. if (zone_idx(zone) == ZONE_MOVABLE)
  4940. return false;
  4941. mt = get_pageblock_migratetype(page);
  4942. if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
  4943. return false;
  4944. pfn = page_to_pfn(page);
  4945. for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
  4946. unsigned long check = pfn + iter;
  4947. if (!pfn_valid_within(check))
  4948. continue;
  4949. page = pfn_to_page(check);
  4950. /*
  4951. * We can't use page_count without pin a page
  4952. * because another CPU can free compound page.
  4953. * This check already skips compound tails of THP
  4954. * because their page->_count is zero at all time.
  4955. */
  4956. if (!atomic_read(&page->_count)) {
  4957. if (PageBuddy(page))
  4958. iter += (1 << page_order(page)) - 1;
  4959. continue;
  4960. }
  4961. /*
  4962. * The HWPoisoned page may be not in buddy system, and
  4963. * page_count() is not 0.
  4964. */
  4965. if (skip_hwpoisoned_pages && PageHWPoison(page))
  4966. continue;
  4967. if (!PageLRU(page))
  4968. found++;
  4969. /*
  4970. * If there are RECLAIMABLE pages, we need to check it.
  4971. * But now, memory offline itself doesn't call shrink_slab()
  4972. * and it still to be fixed.
  4973. */
  4974. /*
  4975. * If the page is not RAM, page_count()should be 0.
  4976. * we don't need more check. This is an _used_ not-movable page.
  4977. *
  4978. * The problematic thing here is PG_reserved pages. PG_reserved
  4979. * is set to both of a memory hole page and a _used_ kernel
  4980. * page at boot.
  4981. */
  4982. if (found > count)
  4983. return true;
  4984. }
  4985. return false;
  4986. }
  4987. bool is_pageblock_removable_nolock(struct page *page)
  4988. {
  4989. struct zone *zone;
  4990. unsigned long pfn;
  4991. /*
  4992. * We have to be careful here because we are iterating over memory
  4993. * sections which are not zone aware so we might end up outside of
  4994. * the zone but still within the section.
  4995. * We have to take care about the node as well. If the node is offline
  4996. * its NODE_DATA will be NULL - see page_zone.
  4997. */
  4998. if (!node_online(page_to_nid(page)))
  4999. return false;
  5000. zone = page_zone(page);
  5001. pfn = page_to_pfn(page);
  5002. if (zone->zone_start_pfn > pfn ||
  5003. zone->zone_start_pfn + zone->spanned_pages <= pfn)
  5004. return false;
  5005. return !has_unmovable_pages(zone, page, 0, true);
  5006. }
  5007. #ifdef CONFIG_CMA
  5008. static unsigned long pfn_max_align_down(unsigned long pfn)
  5009. {
  5010. return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
  5011. pageblock_nr_pages) - 1);
  5012. }
  5013. static unsigned long pfn_max_align_up(unsigned long pfn)
  5014. {
  5015. return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
  5016. pageblock_nr_pages));
  5017. }
  5018. /* [start, end) must belong to a single zone. */
  5019. static int __alloc_contig_migrate_range(struct compact_control *cc,
  5020. unsigned long start, unsigned long end)
  5021. {
  5022. /* This function is based on compact_zone() from compaction.c. */
  5023. unsigned long nr_reclaimed;
  5024. unsigned long pfn = start;
  5025. unsigned int tries = 0;
  5026. int ret = 0;
  5027. migrate_prep();
  5028. while (pfn < end || !list_empty(&cc->migratepages)) {
  5029. if (fatal_signal_pending(current)) {
  5030. ret = -EINTR;
  5031. break;
  5032. }
  5033. if (list_empty(&cc->migratepages)) {
  5034. cc->nr_migratepages = 0;
  5035. pfn = isolate_migratepages_range(cc->zone, cc,
  5036. pfn, end, true);
  5037. if (!pfn) {
  5038. ret = -EINTR;
  5039. break;
  5040. }
  5041. tries = 0;
  5042. } else if (++tries == 5) {
  5043. ret = ret < 0 ? ret : -EBUSY;
  5044. break;
  5045. }
  5046. nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
  5047. &cc->migratepages);
  5048. cc->nr_migratepages -= nr_reclaimed;
  5049. ret = migrate_pages(&cc->migratepages,
  5050. alloc_migrate_target,
  5051. 0, false, MIGRATE_SYNC);
  5052. }
  5053. putback_movable_pages(&cc->migratepages);
  5054. return ret > 0 ? 0 : ret;
  5055. }
  5056. /**
  5057. * alloc_contig_range() -- tries to allocate given range of pages
  5058. * @start: start PFN to allocate
  5059. * @end: one-past-the-last PFN to allocate
  5060. * @migratetype: migratetype of the underlaying pageblocks (either
  5061. * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
  5062. * in range must have the same migratetype and it must
  5063. * be either of the two.
  5064. *
  5065. * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
  5066. * aligned, however it's the caller's responsibility to guarantee that
  5067. * we are the only thread that changes migrate type of pageblocks the
  5068. * pages fall in.
  5069. *
  5070. * The PFN range must belong to a single zone.
  5071. *
  5072. * Returns zero on success or negative error code. On success all
  5073. * pages which PFN is in [start, end) are allocated for the caller and
  5074. * need to be freed with free_contig_range().
  5075. */
  5076. int alloc_contig_range(unsigned long start, unsigned long end,
  5077. unsigned migratetype)
  5078. {
  5079. unsigned long outer_start, outer_end;
  5080. int ret = 0, order;
  5081. struct compact_control cc = {
  5082. .nr_migratepages = 0,
  5083. .order = -1,
  5084. .zone = page_zone(pfn_to_page(start)),
  5085. .sync = true,
  5086. .ignore_skip_hint = true,
  5087. };
  5088. INIT_LIST_HEAD(&cc.migratepages);
  5089. /*
  5090. * What we do here is we mark all pageblocks in range as
  5091. * MIGRATE_ISOLATE. Because pageblock and max order pages may
  5092. * have different sizes, and due to the way page allocator
  5093. * work, we align the range to biggest of the two pages so
  5094. * that page allocator won't try to merge buddies from
  5095. * different pageblocks and change MIGRATE_ISOLATE to some
  5096. * other migration type.
  5097. *
  5098. * Once the pageblocks are marked as MIGRATE_ISOLATE, we
  5099. * migrate the pages from an unaligned range (ie. pages that
  5100. * we are interested in). This will put all the pages in
  5101. * range back to page allocator as MIGRATE_ISOLATE.
  5102. *
  5103. * When this is done, we take the pages in range from page
  5104. * allocator removing them from the buddy system. This way
  5105. * page allocator will never consider using them.
  5106. *
  5107. * This lets us mark the pageblocks back as
  5108. * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
  5109. * aligned range but not in the unaligned, original range are
  5110. * put back to page allocator so that buddy can use them.
  5111. */
  5112. ret = start_isolate_page_range(pfn_max_align_down(start),
  5113. pfn_max_align_up(end), migratetype,
  5114. false);
  5115. if (ret)
  5116. return ret;
  5117. ret = __alloc_contig_migrate_range(&cc, start, end);
  5118. if (ret)
  5119. goto done;
  5120. /*
  5121. * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
  5122. * aligned blocks that are marked as MIGRATE_ISOLATE. What's
  5123. * more, all pages in [start, end) are free in page allocator.
  5124. * What we are going to do is to allocate all pages from
  5125. * [start, end) (that is remove them from page allocator).
  5126. *
  5127. * The only problem is that pages at the beginning and at the
  5128. * end of interesting range may be not aligned with pages that
  5129. * page allocator holds, ie. they can be part of higher order
  5130. * pages. Because of this, we reserve the bigger range and
  5131. * once this is done free the pages we are not interested in.
  5132. *
  5133. * We don't have to hold zone->lock here because the pages are
  5134. * isolated thus they won't get removed from buddy.
  5135. */
  5136. lru_add_drain_all();
  5137. drain_all_pages();
  5138. order = 0;
  5139. outer_start = start;
  5140. while (!PageBuddy(pfn_to_page(outer_start))) {
  5141. if (++order >= MAX_ORDER) {
  5142. ret = -EBUSY;
  5143. goto done;
  5144. }
  5145. outer_start &= ~0UL << order;
  5146. }
  5147. /* Make sure the range is really isolated. */
  5148. if (test_pages_isolated(outer_start, end, false)) {
  5149. pr_warn("alloc_contig_range test_pages_isolated(%lx, %lx) failed\n",
  5150. outer_start, end);
  5151. ret = -EBUSY;
  5152. goto done;
  5153. }
  5154. /* Grab isolated pages from freelists. */
  5155. outer_end = isolate_freepages_range(&cc, outer_start, end);
  5156. if (!outer_end) {
  5157. ret = -EBUSY;
  5158. goto done;
  5159. }
  5160. /* Free head and tail (if any) */
  5161. if (start != outer_start)
  5162. free_contig_range(outer_start, start - outer_start);
  5163. if (end != outer_end)
  5164. free_contig_range(end, outer_end - end);
  5165. done:
  5166. undo_isolate_page_range(pfn_max_align_down(start),
  5167. pfn_max_align_up(end), migratetype);
  5168. return ret;
  5169. }
  5170. void free_contig_range(unsigned long pfn, unsigned nr_pages)
  5171. {
  5172. for (; nr_pages--; ++pfn)
  5173. __free_page(pfn_to_page(pfn));
  5174. }
  5175. #endif
  5176. #ifdef CONFIG_MEMORY_HOTPLUG
  5177. static int __meminit __zone_pcp_update(void *data)
  5178. {
  5179. struct zone *zone = data;
  5180. int cpu;
  5181. unsigned long batch = zone_batchsize(zone), flags;
  5182. for_each_possible_cpu(cpu) {
  5183. struct per_cpu_pageset *pset;
  5184. struct per_cpu_pages *pcp;
  5185. pset = per_cpu_ptr(zone->pageset, cpu);
  5186. pcp = &pset->pcp;
  5187. local_irq_save(flags);
  5188. if (pcp->count > 0)
  5189. free_pcppages_bulk(zone, pcp->count, pcp);
  5190. drain_zonestat(zone, pset);
  5191. setup_pageset(pset, batch);
  5192. local_irq_restore(flags);
  5193. }
  5194. return 0;
  5195. }
  5196. void __meminit zone_pcp_update(struct zone *zone)
  5197. {
  5198. stop_machine(__zone_pcp_update, zone, NULL);
  5199. }
  5200. #endif
  5201. void zone_pcp_reset(struct zone *zone)
  5202. {
  5203. unsigned long flags;
  5204. int cpu;
  5205. struct per_cpu_pageset *pset;
  5206. /* avoid races with drain_pages() */
  5207. local_irq_save(flags);
  5208. if (zone->pageset != &boot_pageset) {
  5209. for_each_online_cpu(cpu) {
  5210. pset = per_cpu_ptr(zone->pageset, cpu);
  5211. drain_zonestat(zone, pset);
  5212. }
  5213. free_percpu(zone->pageset);
  5214. zone->pageset = &boot_pageset;
  5215. }
  5216. local_irq_restore(flags);
  5217. }
  5218. #ifdef CONFIG_MEMORY_HOTREMOVE
  5219. /*
  5220. * All pages in the range must be isolated before calling this.
  5221. */
  5222. void
  5223. __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
  5224. {
  5225. struct page *page;
  5226. struct zone *zone;
  5227. int order, i;
  5228. unsigned long pfn;
  5229. unsigned long flags;
  5230. /* find the first valid pfn */
  5231. for (pfn = start_pfn; pfn < end_pfn; pfn++)
  5232. if (pfn_valid(pfn))
  5233. break;
  5234. if (pfn == end_pfn)
  5235. return;
  5236. zone = page_zone(pfn_to_page(pfn));
  5237. spin_lock_irqsave(&zone->lock, flags);
  5238. pfn = start_pfn;
  5239. while (pfn < end_pfn) {
  5240. if (!pfn_valid(pfn)) {
  5241. pfn++;
  5242. continue;
  5243. }
  5244. page = pfn_to_page(pfn);
  5245. /*
  5246. * The HWPoisoned page may be not in buddy system, and
  5247. * page_count() is not 0.
  5248. */
  5249. if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
  5250. pfn++;
  5251. SetPageReserved(page);
  5252. continue;
  5253. }
  5254. BUG_ON(page_count(page));
  5255. BUG_ON(!PageBuddy(page));
  5256. order = page_order(page);
  5257. #ifdef CONFIG_DEBUG_VM
  5258. printk(KERN_INFO "remove from free list %lx %d %lx\n",
  5259. pfn, 1 << order, end_pfn);
  5260. #endif
  5261. list_del(&page->lru);
  5262. rmv_page_order(page);
  5263. zone->free_area[order].nr_free--;
  5264. for (i = 0; i < (1 << order); i++)
  5265. SetPageReserved((page+i));
  5266. pfn += (1 << order);
  5267. }
  5268. spin_unlock_irqrestore(&zone->lock, flags);
  5269. }
  5270. #endif
  5271. #ifdef CONFIG_MEMORY_FAILURE
  5272. bool is_free_buddy_page(struct page *page)
  5273. {
  5274. struct zone *zone = page_zone(page);
  5275. unsigned long pfn = page_to_pfn(page);
  5276. unsigned long flags;
  5277. int order;
  5278. spin_lock_irqsave(&zone->lock, flags);
  5279. for (order = 0; order < MAX_ORDER; order++) {
  5280. struct page *page_head = page - (pfn & ((1 << order) - 1));
  5281. if (PageBuddy(page_head) && page_order(page_head) >= order)
  5282. break;
  5283. }
  5284. spin_unlock_irqrestore(&zone->lock, flags);
  5285. return order < MAX_ORDER;
  5286. }
  5287. #endif
  5288. static const struct trace_print_flags pageflag_names[] = {
  5289. {1UL << PG_locked, "locked" },
  5290. {1UL << PG_error, "error" },
  5291. {1UL << PG_referenced, "referenced" },
  5292. {1UL << PG_uptodate, "uptodate" },
  5293. {1UL << PG_dirty, "dirty" },
  5294. {1UL << PG_lru, "lru" },
  5295. {1UL << PG_active, "active" },
  5296. {1UL << PG_slab, "slab" },
  5297. {1UL << PG_owner_priv_1, "owner_priv_1" },
  5298. {1UL << PG_arch_1, "arch_1" },
  5299. {1UL << PG_reserved, "reserved" },
  5300. {1UL << PG_private, "private" },
  5301. {1UL << PG_private_2, "private_2" },
  5302. {1UL << PG_writeback, "writeback" },
  5303. #ifdef CONFIG_PAGEFLAGS_EXTENDED
  5304. {1UL << PG_head, "head" },
  5305. {1UL << PG_tail, "tail" },
  5306. #else
  5307. {1UL << PG_compound, "compound" },
  5308. #endif
  5309. {1UL << PG_swapcache, "swapcache" },
  5310. {1UL << PG_mappedtodisk, "mappedtodisk" },
  5311. {1UL << PG_reclaim, "reclaim" },
  5312. {1UL << PG_swapbacked, "swapbacked" },
  5313. {1UL << PG_unevictable, "unevictable" },
  5314. #ifdef CONFIG_MMU
  5315. {1UL << PG_mlocked, "mlocked" },
  5316. #endif
  5317. #ifdef CONFIG_ARCH_USES_PG_UNCACHED
  5318. {1UL << PG_uncached, "uncached" },
  5319. #endif
  5320. #ifdef CONFIG_MEMORY_FAILURE
  5321. {1UL << PG_hwpoison, "hwpoison" },
  5322. #endif
  5323. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  5324. {1UL << PG_compound_lock, "compound_lock" },
  5325. #endif
  5326. };
  5327. static void dump_page_flags(unsigned long flags)
  5328. {
  5329. const char *delim = "";
  5330. unsigned long mask;
  5331. int i;
  5332. BUILD_BUG_ON(ARRAY_SIZE(pageflag_names) != __NR_PAGEFLAGS);
  5333. printk(KERN_ALERT "page flags: %#lx(", flags);
  5334. /* remove zone id */
  5335. flags &= (1UL << NR_PAGEFLAGS) - 1;
  5336. for (i = 0; i < ARRAY_SIZE(pageflag_names) && flags; i++) {
  5337. mask = pageflag_names[i].mask;
  5338. if ((flags & mask) != mask)
  5339. continue;
  5340. flags &= ~mask;
  5341. printk("%s%s", delim, pageflag_names[i].name);
  5342. delim = "|";
  5343. }
  5344. /* check for left over flags */
  5345. if (flags)
  5346. printk("%s%#lx", delim, flags);
  5347. printk(")\n");
  5348. }
  5349. void dump_page(struct page *page)
  5350. {
  5351. printk(KERN_ALERT
  5352. "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
  5353. page, atomic_read(&page->_count), page_mapcount(page),
  5354. page->mapping, page->index);
  5355. dump_page_flags(page->flags);
  5356. mem_cgroup_print_bad_page(page);
  5357. }